mixer. r Win. m? m. ..um..H r1... . irilnl. This is to certify that the thesis entitled Error Analysis of Material Characterization Using a Wave Guide Applicator presented by Jason Jeffrey Meeusen has been accepted towards fulfillment of the requirements for the MS. degree in Electrical Engineering MaTo} Professor’s Signature 5 ~ é ‘ O4 Date MSU is an Affirmative Action/Equal Opportunity Institution . _."-—c-l-O-O-O-o- . LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE AUG 2, (l 2005 6/01 c:/ClRClDateDue.p65-p.15 Error Analysis of Material Characterization Using a Wave Guide Applicator By Jason Jeffrey Meeusen A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Electrical and Computer Engineering 2004 Em 7 “PI-.1 KL; : ,v , 5““:1‘ A.i' ‘ l‘lfi". ‘_ ‘ - u.” . "Y'I- -' '9 k 14')“. “iv- - . ‘ 'éAufl‘fh)‘ I ' "r. , p51 “3.71. ’ L ('3 ‘49? :: ABSTRACT Error Analysis of Material Characterization Using 3 Wave Guide Applicator By Jason Jeffrey Meeusen Error analysis is the process of finding the amount of estimated error in a final calculated result, given the uncertainty of all the variables within the calculation. This thesis will cover an error analysis method applied to the characterization of electromagnetic materials, which uses the error propagation equation to estimate the final uncertainty. The thesis will first discuss the extraction of the electromagnetic properties of a material using an X-band wave guide system. Next, the identification of errors such as uncertainty in network analyzer measurements, sample thickness, and waveguide dimensions will be discussed. Finally, the errors must be quantified so they can be used to obtain an uncertainty on the complex permeability and permittivity of the material sample by using the error propagation equation. Results will show that each contributing factor to the uncertainty of the complex permeability and permittivity is largely dependant on the electromagnetic properties of the material sample. For My Loving Wife and Supportive Family iii ~I- ' \ n. " "r‘l'q'! ,ia'... .. . “'3? r .“ “L'L “'1' 0b- - 35.: ii ‘. .A‘ 1.; 9.. ‘ “J ~A4 ,g. -1 ACKNOWLEDGMENTS First and foremost I would like to thank my wife, Katherine, for her endless patience and support through my journey in graduate school. Without her, I would not have had anything but school in my life. I only hope that I can now repay her for what she has done for me. A sincere thank you to my graduate adviser, Dr. Rothwell. The writing of this thesis would not have been possible without his generous support and knowledge. He has an unparalleled sense of humor and he took me in when I needed help. Words cannot express my gratitude. I would also like to thank Lydell Frasch and Garrett Heil at Boeing for their generous financial support and help pertaining to the research involved with this thesis. Thanks to Brian Wright and Roxanne Peacock for all of their advice and inter- esting conversations throughout my time here at MSU. I thank them also for their generous support by letting me work for them through most of my college career. Finally, I would like to thank my parents. Without them, college would have never been an option. Thank you for believing in my potential. iv r—v C .“J LHAPI Dt‘iI'x'u': $7.0 I.) L») LQ 34 F ~ - :HAP] EFF): ’h n‘... y; TABLE OF CONTENTS LIST OF TABLES ................................. vii LIST OF FIGURES ................................ viii CHAPTER 1 Introduction ..................................... 1 CHAPTER 2 Material Characterization ............................. 3 2.1 Methods of Material Characterization .................. 3 2.1.1 Wave Guide Applicator ...................... 4 2.2 Practical Uses ............................... 5 CHAPTER 3 Derivation of Equations .............................. 7 3.1 Waveguide Electromagnetic Theory ................... 7 3.2 Forward Relationship ........................... 11 3.2.1 Forward Relationship Results .................. 19 3.3 Inverse Relationship ........................... 21 3.3.1 Inverse Relationship Results ................... 27 3.4 Compensation Within Inverse Relationship ............... 29 3.4.1 Compensated Inverse Relationship Results ........... 31 CHAPTER 4 Error Analysis of Material Characterization ................... 44 4.1 Measurement of Errors .......................... 44 4.1.1 Systematic Errors ......................... 45 4.1.2 Random Errors .......................... 46 4.1.3 Standard Deviation ........................ 46 4.2 Error Analysis ............................... 47 4.2.1 Propagation of Errors ...................... 47 4.2.2 Computer Calculation of Uncertainties ............. 50 4.3 Spline Method ............................... 52 4.4 Error Analysis Results .......................... 54 CHAPTER 5 Conclusion ..................................... 125 APPENDIX A Fortran Code of Forward Problem ......................... 128 APPET' lb"‘ ... .dn) APPE" Mabf‘ BEBY 1i APPENDIX B Fortran Code of Inverse Problem ......................... 131 APPENDIX C Fortran Code of Inverse Problem with Compensation .............. 134 APPENDIX D Fortran Code of Inverse Problem with Error Analysis .............. 138 APPENDIX E Matlab Code for Graphing Fortran Output With MagRAM .......... 160 APPENDIX F Matlab Code for Graphing Fortran Output With Rexolite ........... 162 BIBLIOGRAPHY ................................. 165 vi L I d. if A.) .L- .J- CA.) Table 2.1 Table 2.2 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 3.5 Table 3.6 Table 3.7 Table 3.8 Table 3.9 Table 3.10 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 LIST OF TABLES Information for the waveguide used by The Boeing Company . . . 4 Information for the measurement equipment used by The Boeing Company ............................... 5 Material properties for MagRAM as provided by The Boeing Com- pany .................................. 19 Calculated S-parameters for MagRAM using Forward program . . 20 Material properties for Rexolite as provided by The Boeing Company 20 Calculated S-parameters for Rexolite using Forward program . . . 21 Calculated p and c for MagRAM using Inverse program ..... 28 Calculated p and c for Rexolite using Inverse program ...... 29 Sample data for MagRAM provided by The Boeing Company . . 32 Calculated material parameters for MagRAM using Compensated Inverse program ............................ 33 Sample data for Rexolite provided by The Boeing Company . . . 34 Calculated material parameters for Rexolite using Compensated Inverse program ............................ 35 Input arguments used for independent error analysis of Rexolite and MagRAM using Error Analysis program ............ 54 Comparison of resultant uncertainties for Rexolite ......... 55 Different cables used for error analysis using setup #1 for the com- parison ................................. 56 Different setups used for error analysis as shown from Table 2.2 . 58 Input arguments used for independent error analysis of Rexolite and MagRAM using Error Analysis program ............ 58 Comparison of resultant uncertainties for MagRAM ........ 59 Comparison of resultant uncertainties for Rexolite ......... 60 vii 'W‘sr I Rani ‘ f 12:3? fliilfr 3 "Ir.( Fr. l.’ ‘W-' ‘ E...» I’I-p _ J IAAtI. "'1 A. fl?" n‘ ’ “"1? FIA A.‘-‘ a... .. .J.‘ FLN'p 'P. ‘4: g F‘T‘YP- ‘5 JA“ a "V. 4‘ . . A“ Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 4.12 LIST OF FIGURES Waveguide with one material layer ooooooooooooooooo Waveguide with one material layer Waveguide with multiple material layers .............. Illustration of phase compensation for a piece of material in a waveguide ............................... The Boeing Company results vs. the Compensated Inverse pro- gram results for permeability of MagRAM ............. The Boeing Company results vs. the Compensated Inverse pro- gram results for permittivity of MagRAM The Boeing Company results vs. the Compensated Inverse pro- gram results for permeability of Rexolite .............. The Boeing Company results vs. the Compensated Inverse pro- gram results for permittivity of Rexolite .............. Worst case error for SH and setup #1 using “HP 8510 Specifica- tions & Performance Verification Program” Worst case error for S22 and setup #1 using “HP 8510 Specifica- tions & Performance Verification Program” oooooooooooo Worst case error for S12 and setup #1 using “HP 8510 Specifica- tions & Performance Verification Program” Worst case error for S21 and setup #1 using “HP 8510 Specifica- tions & Performance Verification Program” Error analysis of permeability for 0.3% tolerance in material thick- ness for MagRAM Error analysis of permittivity for 0.3% tolerance in material thick— ness for MagRAM Error analysis of permeability for 0.3% tolerance in material thick- ness for Rexolite oooooooooooooooooooooooooo ........................... Error analysis of permittivity for 0.3% tolerance in material thick- ness for Rexolite ooooooooooooooooooooooooooo Error analysis of permeability for 1.0% tolerance in material thick- ness for MagRAM Error analysis of permittivity for 1.0% tolerance in material thick- ness for MagRAM Error analysis of permeability for 1.0% tolerance in material thick- ness for Rexolite oooooooooooooooooooooooooo Error analysis of permittivity for 1.0% tolerance in material thick- ness for Rexolite ooooooooooooooooooooooooooo viii 38 39 40 42 43 '-‘o . AI {111:6 Ft “fir .g-J. .. ""‘f’ 1;. AA“ ‘Ml'j F”; “f '7"? F‘; .Aa'f ‘ Figure 4.13 Figure 4.14 Figure 4.15 Figure 4.16 Figure 4.17 Figure 4.18 Figure 4.19 Figure 4.20 Figure 4.21 Figure 4.22 Figure 4.23 Figure 4.24 Figure 4.25 Figure 4.26 Figure 4.27 Figure 4.28 Figure 4.29 Figure 4.30 Figure 4.31 Error analysis of permeability for 3.0% tolerance in material thick- ness for MagRAM Error analysis of permittivity for 3.0% tolerance in material thick- ness for MagRAM oooooooooooooooooooooooooo oooooooooooooooooooooooooo Error analysis of permeability for 3.0% tolerance in material thick- ness for Rexolite Error analysis of permittivity for 3.0% tolerance in material thick- ness for Rexolite ooooooooooooooooooooooooooo Error analysis of permeability for 0.3% tolerance in waveguide width for MagRAM .......................... Error analysis of permittivity for 0.3% tolerance in waveguide width for MagRAM .......................... 0.3% Error analysis of permeability for tolerance in width for Rexolite waveguide Error analysis of permittivity for width for Rexolite Error analysis of permeability for 1.0% tolerance in waveguide width for MagRAM .......................... Error analysis of permittivity for 1.0% tolerance in waveguide width for MagRAM .......................... 1.0% Error analysis of permeability for tolerance in width for Rexolite waveguide Error analysis of permittivity for width for Rexolite oooooooooooooooooooooooooo Error analysis of permeability for 3.0% tolerance in waveguide width for MagRAM .......................... Error analysis of permittivity for 3.0% tolerance in waveguide width for MagRAM .......................... 3.0% oooooooooooooooooooooooooo Error analysis of permeability for tolerance in width for Rexolite waveguide Error analysis of permittivity for width for Rexolite oooooooooooooooooooooooooo Error analysis of permeability using test setup #1 with cable model HP-85132C and MagRAM ...................... Error analysis of permittivity using test setup #1 with cable model HP-85132C and MagRAM ...................... Error analysis of permeability using test setup #1 with cable model HP-85132C and Rexolite ....................... ix 81 82 83 84 85 86 87 88 89 90 91 Fare pm.“ .V.,' ‘ F.‘ 4" rm. '“t’-‘ F4;— oa‘ ' Em»- .-..,. . ling. . r I ‘5‘”? 1 "hi A._ Figure 4.32 Figure 4.33 Figure 4.34 Figure 4.35 Figure 4.36 Figure 4.37 Figure 4.38 Figure 4.39 Figure 4.40 Figure 4.41 Figure 4.42 Figure 4.43 Figure 4.44 Figure 4.45 Figure 4.46 Figure 4.47 Figure 4.48 Figure 4.49 Figure 4.50 Figure 4.51 Figure 4.52 Figure 4.53 Error analysis of permittivity using test setup #1 with cable model HP-85132C and Rexolite ....................... Error analysis of permeability using test setup #1 with cable model HP-85132D and MagRAM ...................... Error analysis of permittivity using test setup #1 with cable model HP-85132D and MagRAM ...................... Error analysis of permeability using test setup #1 with cable model HP-85132D and Rexolite ....................... Error analysis of permittivity using test setup #1 with cable model HP-85132D and Rexolite ....................... Error analysis of permeability using test setup #1 with cable model HP-85132E and MagRAM ...................... Error analysis of permittivity using test setup #1 with cable model HP-85132E and MagRAM ...................... Error analysis of permeability using test setup #1 with cable model HP-85132E and Rexolite ....................... Error analysis of permittivity using test setup #1 with cable model HP-85132E and Rexolite ....................... Error analysis of permeability using test setup #1 with cable model HP-85132F and MagRAM ...................... Error analysis of permittivity using test setup #1 with cable model HP—85132F and MagRAM ...................... Error analysis of permeability using test setup #1 with cable model HP-85132F and Rexolite ....................... Error analysis of permittivity using test setup #1 with cable model HP-85132F and Rexolite ....................... Error analysis of permeability using test setup #1 with no cable and MagRAM ............................. Error analysis of permittivity using test setup #1 with no cable and MagRAM ............................. Error analysis of permeability using test setup #1 with no cable and Rexolite ............................. Error analysis of permittivity using test setup #1 with no cable and Rexolite ooooooooooooooooooooooooooooo Error analysis of permeability using test setup #2 and MagRAM Error analysis of permittivity using test setup #2 and MagRAM . Error analysis of permeability using test setup #2 and Rexolite Error analysis of permittivity using test setup #2 and Rexolite Error analysis of permeability using test setup #3 and MagRAM 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 109 110 111 112 113 '1‘. am .»..—.— an: “(arr ‘. "’J“ l". .OVI‘ p-J‘ . “‘7 .‘- A. s-V-In' .:. AA Fv-fi". L§ .A‘ F' 7‘ "r .- .. Figure 4.54 Figure 4.55 Figure 4.56 Figure 4.57 Figure 4.58 Figure 4.59 Figure 4.60 Figure 4.61 Figure 4.62 Figure 4.63 Figure 4.64 Error analysis of permittivity using test setup #3 and MagRAM . Error analysis of permeability using test setup #3 and Rexolite Error analysis of permittivity using test setup #3 and Rexolite Error analysis of permeability using test setup #1 with 0.3% ma- terial thickness tolerance and 0.3% waveguide width tolerance for MagRAM ............................... Error analysis of permittivity using test setup #1 with 0.3% ma- terial thickness tolerance and 0.3% waveguide width tolerance for MagRAM ............................... Error analysis of permeability using test setup #1 with 0.3% ma- terial thickness tolerance and 0.3% waveguide width tolerance for Rexolite ................................ Error analysis of permittivity using test setup #1 with 0.3% ma- terial thickness tolerance and 0.3% waveguide width tolerance for Rexolite ................................ Error analysis of permeability using test setup #1 with 3.0% ma- terial thickness tolerance and 3.0% waveguide width tolerance for MagRAM ............................... Error analysis of permittivity using test setup #1 with 3.0% ma- terial thickness tolerance and 3.0% waveguide width tolerance for MagRAM ............................... Error analysis of permeability using test setup #1 with 3.0% ma- terial thickness tolerance and 3.0% waveguide width tolerance for Rexolite ................................ Error analysis of permittivity using test setup #1 with 3.0% ma- terial thickness tolerance and 3.0% waveguide width tolerance for Rexolite ................................ xi 114 115 116 117 118 119 120 121 122 123 124 CHAPTER 1 INTRODUCTION When working with a material, engineers often need the electromagnetic properties (constitutive relations) of the material in question. Reasons for needing the material properties can vary greatly. An engineer might be interested in the material’s ability to absorb radar energy to avoid detection. Another engineer might be trying to shrink the physical size of an antenna by surrounding it with a dielectric while keeping the antenna’s electrical size constant. In both cases, the engineers need to know the constitutive relations of the material and the frequencies at which the values are valid. Without an accurate way to determine the constitutive relations of materials, both tasks would be very difficult guessing games. To understand how a material will react in the presence of an electromagnetic wave, four things are needed [1]. First, you need Maxwell’s equations. Second, you need to know the electromagnetic properties of the material in question. Third, you need to know the incident electromagnetic fields. Finally, you need to know the boundary conditions. Knowing these four things enables one to calculate the reflected and transmitted waves associated with that medium and its incident waves [2]. It is also possible to restate the problem. Instead of finding the transmitted and reflected waves, we could calculate the permeability (,u) and permittivity (c) of an unknown material by measuring the transmitted and reflected fields [3]. Since the boundary conditions, incident, transmitted and reflected waves are known, the electromagnetic properties can be calculated, within a certain tolerance, for a piece of material. ‘0 no Tolerance is the key word. When dealing with the accuracy of calculating a and 6, many factors come into play. One will notice that there are many other things that need to be measured other than the incident and reflected waves. For example, the material thickness, the dimensions of the waveguide and the accuracy of the equipment used to do the measurements need to be represented in some way. Every measurement has an error or tolerance associated with it that effects the final result [4, 5]. Using methods discussed in this thesis, the uncertainty of e and ,u can be obtained. This thesis is divided into 5 chapters. Chapter 2 will discuss material properties, why they are needed and what methods can be used to obtain them. Chapter 3 will discuss the method and calculations used to obtain the material properties and how to verify the results. The error analysis will be covered in Chapter 4 and includes types of errors and their inclusion into the material property calculations. Lastly, Chapter 5 will discuss the results. [19' Hr ' .g F l...~’\\ 1;. 4+ [.1 r" ‘. I h, Ali-p“, « 4i» . it w J . . I LE 7" o“ CHAPTER 2 MATERIAL CHARACTERIZATION For the purpose of this thesis, the materials are assumed to be isotropic and homoge- neous to make the derivations easier. In order to describe how the material responds to an incident wave, constitutive relations must be formed [1]. The constitutive rela- (7‘11 tions for the derivations in this thesis are B = riff and D = c . When the constitutive relations, or electromagnetic properties, of a material are known, the transmitted and reflected waves can be calculated or simulated to aid in the development of a product. Not all the energy from an incident wave is transmitted or reflected. Some of the energy is absorbed into the material itself and dissipated as heat. In order to compensate for the losses associated with a medium, it is necessary to describe p. and 6 as complex values: it = u’ —jp", c = 6, —j6” [1]. Describing p, and c in complex form also eliminates the need to include conductivity (0) in Maxwell’s equations since the effects of 0 can be included in complex 6 [6]. 2.1 Methods of Material Characterization There are several methods that exist for the measurement of the permittivity and permeability of a given material. Generally, a sample is placed in the path of a traveling electromagnetic wave, either in free space, inside a propagating structure or resonator cavity. Since the reflection and transmission coefficients of the experimental device are directly related to electromagnetic properties of the material, they are measured using a network analyzer and used to find the permittivity and permeability of the material. This method of material characterization applies to unbounded free v.‘ r»; .‘. ~--11 4 .4 space as well as bounded free space measurements. 2.1.1 Wave Guide Applicator The method of material characterization explored in this thesis uses a propagating structure or waveguide. This waveguide is owned and operated by The Boeing Com- pany and is built to run in the X-band of frequencies. Listed below in Table 2.1 is what is known about the waveguide used for the material measurements. Waveguide Dimensions 0.02286 x 0.01016 (Inches) Frequency Range 8.2-12.4 (GHz) Table 2.1. Information for the waveguide used by The Boeing Company A detailed equipment list is also provided by The Boeing Company which is es— sential in the error analysis portion of the thesis. This list is shown in Table 2.2. Ah: 7. Measurement Equipment Name Part Number Setup #1 Network Analyzer HP-8510C (85103C & 85102B) Test Set HP-8514B (45 MHz - 20 GHz) Source HP-834IB (10 MHz - 20 GHz) Calibration Kit HP-85050C (7mm Precision Cal Kit) Calibration Technique Thru-Reflect-Line (TRL) Test Port Cables HP-85132E (3.5mm - 7.0mm) Setup #2 Network Analyzer HP—8510C (85101C & 851028) Test Set HP-8517B (45 MHz - 50 GHz) Source HP-83651A (10 MHz - 50 GHz) Calibration Kit HP-85050C (7mm Precision Cal Kit) Calibration Technique Thru-Refiect-Line (TRL) Test Port Cables HP-85132E (3.5mm - 7.0mm) Setup #3 Network Analyzer HP-8510C (85101C & 85102B) Test Set HP-8515A (45 MHz - 26.5 GHz) Source HP-834IB (10 MHz - 20 GHz) Calibration Kit HP-85050C (7mm Precision Cal Kit) Calibration Technique Thru—Reflect-Line (TRL) Test Port Cables HP-85132E (3.5mm - 7.0mm) Setup #4 Network Analyzer HP—8510C (85101C & 85102A) Test Set HP-8515A (45 MHz - 26.5 GHz) Source HP-8341A (10 MHz - 20 GHz) Calibration Kit HP-85050C (7mm Precision Cal Kit) Calibration Technique Thru-Reflect-Line (TRL) Test Port Cables HP-85132E (3.5mm - 7.0mm) Table 2.2. Information for the measurement equipment used by The Boeing Company 2.2 Practical Uses Material response is an integral part of electromagnetics and cannot be ignored. Ma- terial characterization is useful for many different areas of Electrical Engineering. An example would be an antenna engineer using a dielectric to shrink the physical size of an antenna while keeping the same effective electrical size to fit a small enclosure for a GPS system or cellular phone. Another example would be the manufacture of coaxial cables. The material prop- Ff'. lift~ >——a .—o r; . u erties of the dielectric need to be obtained so the engineers can determine the correct radius required for the desired propagating impedance. Lastly, an aircraft manufacturer could use the electromagnetic properties of a material to make the skin of their aircraft absorbent to a specific range of frequencies. It is, therefor, necessary to measure material properties as accurately as possible and understand the limitations of such a measured result. ‘ I Ann-«m- . _'. :' .. HIITLSL..IA EMPTIL. .. Tilt“ iii“ lilisjlgn Of man-r .V r‘ “ I \d. (Jr- & CHAPTER 3 DERIVATION OF EQUATIONS Although the goal of this thesis is to determine the uncertainty of the relative per- meability and permittivity of a medium, the derivation of the equations used for measuring the material properties is necessary in understanding the whole procedure. The first calculations to be derived will establish the relationship between the trans- mission and reflection coefficients of a guided wave incident on a flat, parallel piece of material with predetermined ,u and c. This relationship between material property and the incident wave will be referred to as the “forward relationship”. The transmission and reflection coefficients in this thesis will be referred to as 7' and p respectively. When referring to the measured quantities at. the waveguide ports, the transmitted and reflected waves will be referred to as their “S-parameter” equivalents or S21 and 811 respectively. Once the forward relationship is established, the relationship in the inverse direc- tion can be derived. A relationship in the inverse direction would determine the u and e of a material given 7' and p. The inverse relationship is essential to the error analysis of the measured )1 and c. 3.1 Waveguide Electromagnetic Theory The calculations used and derived in this section are cited largely from [1] and [2]. For the rectangular waveguide used in experiments reported in this thesis, the electromagnetic fields are traveling in the 2 direction with the lowest mode of prop- agation to ensure that there is only one propagating wave to measure. The lowest EDEN“ I and are Q'v- , . h‘1‘ ll :1“ r - A A's.) in f YET few ;--« In>1li"i,. wil‘fe mode of propagation for The Boeing Company’s waveguide is the TE10 mode, there- for, everything will be derived for this mode. The setup used for the experiments reported in this thesis can be seen in Figure 3.1 where the waves that exist outside the material can be represented as incident, transmitted and reflected waves. The waves propagating inside of the material are represented as a and fl. Since Em, Em”, and a are propagating in the +2 direction and are assumed to be polarized in the +i direction, they can be represented by the exponential function Ea; = Ae—jkzz (3.1) Also in Figure 3.1 the waves Eref and B are traveling in the —23 direction and can be represented by the exponential function E; = Bejkzz (3.2) Inside each exponential, the term k2 is called the axial wavenumber and it relates the velocity of the traveling wave in the Z direction with its angular frequency. The general form of the wavenumber is written as k=f=wfin an '1) where k2 = k3, + k5 + kg (3.4) In order to find kz, it is necessary to find the cutoff wavenumber (kc), or the wavenum- bar at ‘ TC 5.1%”. ‘1‘.“ -O. H. ~.“‘7‘I\\IT ‘1 “In; “If a {1‘ If] Pg. -._; Jr‘f‘\5,. - ber at which there is no wave propagation in the Z direction as shown here k3 = k2|kz20 = k3 + kg (3.6) To solve for 16;, kg has to be substituted into (3.4) to give 1332 1.3 = k2 -— k3, = k2 (1— 75%) (3.7) substituting (3.3) and (3.5) into (3.7) results in 2 a, = k-‘/1—§C§ (3.8) where fC is the cutoff frequency inside the waveguide while propagating in a particular medium. In order to obtain the cutoff frequency, the eigenvalues of the waveguide need to be calculated. The eigenvalues are the transverse wavenumbers kg; and ky determined from the boundary conditions on the waveguide walls. The eigenvalues in this problem are calculated as kw = 175 m=0,1,2... (3.9) 0 kg = % n=0,1,2... (3.10) where a and b are the dimensions of the waveguide and the integers m and n. are used to represent the mode that the waveguide is operating in (TEmn). The eigenvalues can be " H? 'r -l 5"1 A I "— “.9 F. if The ‘ can be substituted into the equation for kc kc = wig“; z l/(ZEIY‘L (1)92 Solving for fC by equating (3.5) and (3.11) gives + arm-(H fc -_— 27r\1/ZE\/(:ndz)2 (ii-T + A slii v to or since the wave is propagating in the TE10 mode 1 fc=2a\/;L—€- where 11 and 6 depend on the medium in which the wave is propagating. The I? fields in the waveguide can be calculated by using Faraday’s law -o VxE=—jwpff For the forward propagating waves, substituting (3.1) into (3.15) gives Ae—jkzz Hy = T (3.11) (3.12) (3.13) (3.14) (3.15) (3.16) where C refers to the wave impedance inside a waveguide for f > fC and is written as 10 (3.17) If“ ' ...~ eq; The ‘ and are 1 ,. E‘II' 1". Similarly for the backward propagating waves, substituting (3.2) into (3.15) gives Bejk: Z Hy: C Using (3.3) and (3.8), equation (3.17)is rewritten as um C _ 2 w,/;1€ — f2- and then simplified to I p. C = — 2 6 _ J; f2 This equation for C will be used in the rest of the thesis. (3.18) (3.19) (3.20) The transmission (T) and reflection (p) coefficients are ratios of the electric fields and are defined as 7’ : Etran Einr' [1 _ Ercf Einc 3.2 Forward Relationship (3.21) (3.22) The calculations used and derived in this section are cited largely from [1] and [2] The “Forward Relationship” derived here will relate the transmission and refiec- tion coefficients to the relative permeability and permittivity (pmr and (Wu) within a material slab given umr ° #0 = um and cmr - 60 = em, as depicted in Figure 3.1. 11 9.24 <13. 4‘. , Since IE1. Vim; ‘ \l) Hymn! ”17‘er r J [1"] In order to start this derivation, two new variables E,- and E f will be introduced as shown in Figure 3.2 and are defined as Er = Einc 'I' Eref (3'23) Ef : Etran (3.24) and similarly Hi : Hinc "I" Href (325) Hf = Htran (326) Since these variables represent the transverse components of the electric and magnetic fields, vector notation is not necessary. Using (3.1), (3.2), (3.16) and (3.18), the above magnetic field equations can be found to equal [‘1' : mc _ 76f 327 1 C0 C0 ( ) Etrrm H = — 3.28 f (0 ( ) where (0 is the wave impedance for bounded free space. Using (3.20), (0 is found to 1 C0 = —f2 g (3.29) 1‘ T equal where fd) is (3.30) 12 “IF-n: p . . . l AIfi‘Jh is t AS in 31 VI. which is the cutoff frequency inside bounded free space derived from (3.14). The waveguide problem will be further complicated by introducing more than one layer of material inside, as depicted in Figure 3.3. It can be seen from Figure 3.3 that there are two waves propagating in each layer of material. These waves are labeled am and 6m respectively. Inside the material, the a and I3 waves can be combined into a single expression and written as E17 = Ante—jkznlz + B1716‘jkzmz (3.31) where the first exponential represents a wave traveling in the +2 direction and the second exponential represents a wave traveling in the —z direction. Since (3.31) is traveling in a material layer, the km, term is expressed from (3.8) as 2 w . kzm : ’C‘Vflmrcmr 1 “ f}? (332) where c is the speed of light and fan is f — ——3——— (3 33) cm 2‘1 \/ Hmr € 1711‘ I which is the cutoff frequency inside the material derived from (3.14). As in section 3.1, the If field can be calculated from (3.15) to be A ‘jkzmz _ , .779sz Hy = me Ema (3.34) CT", where (m is the wave impedance inside of the material layer. (m can be expressed 13 from where ' I311- szlvai . ([1 from (3.20) as 1 1. 1. . Cm = ———‘ ] ‘l—O‘ ] I mr (3.35) 60 6mr 1_ fgm f2 where fan is given in (3.33). The E and If field equations on the first boundary of a material layer can be solved in terms of the second boundary by first letting Ex," = E,;(;.~ = zm) = A,,,e—jk3m2m + B,,,ef"zmzm (3.36) A, fjkzmzm _ B_ {jkzmzm Ham : Hy(z : 27") : rue rne (3.37) ' Cm E;I.‘m—l = EI(Z = gin—1) z Ame—jkzmzm—l + Brrte‘jkfzmzm—1 (338) A ,e-J'kzmzm—l _ B ejkszm—l CT". Solving equations (3.36) and (3.37) in terms of Am, and Bm gives Ex," +cmHym = 2Ameri’vmzm (3.40) Ell/‘1” — C1,),Hym : ZBynejkzmzm (3.41) SO 1 H eikszm 3 42 Am = '2‘ [Exm'l‘Cm ym] , ( - ) I _.- . Bm = 5 [Esrm " CmHym] 8 szm~m (3.43) 14 ff) .__. wt we "',-‘ P . A HAAAAJAL“ 1 EQUa Blind (if: titration: .L Previoug D? Substituting (3.42) and (3.43) into (3.38) and (3.39) yields 1 . . _ - . , EIm—l : 5 [Earm 'i' CmHym] ejkzmqne Jklmzm—l I _: .~ , ,' -~ 4 +5 [Exm — (ml—131m] 8 Jk“m~m€-’k"m‘m-l ejkzmtm _+_ e-jkzmtm ejkzmtm _ e—jkzmtm = E1171 2 + Canym 2 : Exm COS (kzmtm) + jCynHym Sin (kzyntm) (3.44) where tm = 2m — zm_1 Similarly, Sin (kzmtm) Hym—l = Hym C05 (kzmtm) + jEzm Cm (3.45) Equations (3.44) and (3.45) are written so that the E and If fields on the m — 1 boundary is completely represented in terms of the mth boundary. By arranging the equations in this order, each material layer in Figure 3.3 can be represented by the previous and next layer’s electric and magnetic field. Arranging (3.44) and (3.45) into matrix form gives Exm_1 C05 (kzmt'm) ij Sin (kzmtm) El'm = _ ' (k t ) (3.46) .7 sm ‘ . Hym-l 2m m COS (k-zmtm) H 31m Cm. or in a more compressed form E1; _ E1 m 1 = M m (3.47) Hym—l Hym 15 _ L where Be layer a: ‘ T2 mi'f‘l ‘ or NC" 111:: (K “E A.‘ “I. Orig) 1 where the wave matrix is given by 1” cos (kzmtm) ij Sin (kzmtm) ( ) , = 3.48 ‘. 4 . k7 t ’ M COS (kzmtm) (771 Because of the continuity of El. and Hy at each interface, the fields exiting one layer are equal to the fields incident on the next layer as seen in Figure 3.3. So, for n layers of material, the matrices can be cascaded as E, _ E Tm‘ =MIMQ...M,, 1"" (3.49) Hym—l Hym or E, _ n E, 1'" 1 = I] Mm I'" (3.50) Hym~l m=l Hym Since all the la ers of material have been re resented l) the cascaded 1W matrices, y P y Exm_1, Hym—l’ Egg", and Hym are equal to the bounded free space equations found in (3.23), (3.24), (3.27) and (3.28) respectively. So, the matrix in (3.50) becomes E, n 13, Hi "1:1 Hf No matter how many layers of material are in the system, as long as there is only one unknown layer, the matrix equation can be reduced into three layers for 16 {hf 1.1K.- '- OT it: rv . 4.1'. mathematical convenience E,- E f = Alleft ' Munknoum ' Alright (3-52) H, H f where A116 ft and [Wright are the contraction of all the known layers on the left and right sides of the unknown layer. If the system happens to only consist of one layer, A118 ft and Mrz'ght can be replaced with the identity matrix [6 (1)] so that A! total = A116 ft ' Alunkno-wn ' [wright = A’Iunknown (3°53) The transmission and reflection coefficients will now be found in terms of the unknown matrix entries. Given (3.48), (3.52) and (3.53), a single layered system can be written as Ei COS (kzmtm) ij Sill (kmntm) Ef — .. (k t ) (3-54) Sin 7 H i J Aim m COS (Alzmtm) H f Cm or to make the derivation easier E- 4111 4112 E ’ = f (3.55) H7; M21 A122 Hf Using (3.55), E,- and H,- are Ez' = M11Ef+Mlng (3.56) Hi = A/IglEf -+- [”2ng (3.57) 17 TEEN] 5" Factor ( ('11th a4 !_' Then by substituting (3.23), (3.24), (3.27) and (3.28) into (3.56) and (3.57) gives 1 Einc + Eref = AJIIEtran + A112Z3Etran (3'58) 1 1 1 —Ei1zc " _Eref = A421Etran + A122—Etran (3-59) C0 C0 (0 Equation (3.58) is then rearranged to give 1 Eref : A“IllEtr‘arn. + A112C_OEtran - Einc (3-60) Then substituting into (3.59) and multiplying both sides by (0 results in 1 Einc " AillEt'ran + A'112'C‘6Etran — Einc = COAI21Etran + A’I22Etran (3'61) Factor out Em", and apply (3.21) to find the expression for the transmission coeffi- cient as 7' = 2 (3.62) A41 M11 + $12 + MziCo + M22 where the terms A111, 4112, Mm and A122 are given in (3.48). The reflection coefficient can be derived in the same fashion by substituting (3.58) and (3.59) into (3.22) and applying some algebra to get M Ma + 713 — M21C0 —- M22 Mil + 7— + M21C0 + M22 0 18 3.2.1 A p.“ _ the P" FUN}: used ;: IIiPrb‘li the ra: [my V‘; sh!- - p‘ie I‘ll". " r pd‘rflnw. 3.2.1 Forward Relationship Results A program was written in FORTRAN to compute the S-parameter coefficients given the permeability and permittivity of a material layer inside the waveguide. The Forward program is shown in Appendix A for reference. Two sets of data were used in the testing of the Forward calculations. The first set of data consists of the measured a and e of lV’IagRAM provided by The Boeing Company at 201 points in the range of 8-12 GHz. Representative points are shown in Table 3.1. Relative Relative Relative Relative Frequency Permittivity Permittivity Permeability Permeability (GHz) (Real) (Imaginary) (Real) (Imaginary) 8.32600 20.61915 -0.45778 1.61163 —2.15671 9.04000 20.50717 -0.50155 1.47979 -2.08967 9.77500 20.37240 ~0.49106 1.35299 -2.02382 10.61500 20.40467 -0.40625 1.21399 -1 .93652 11.87500 20.41216 -0.36015 1.04721 -1.80428 Table 3.1. Material properties for MagRAM as provided by The Boeing Company Using the Forward program, the input arguments in Table 3.1 were used to com- pute the S-parameters located at the boundaries of the material layer. These S- parameters will not correspond to real life measurements because the proper com- pensation is not accounted for. The results will however accurately depict the S- parameters at the boundaries of the medium in the waveguide. The resulting S- parameters are shown in Table 3.2 for each corresponding frequency. The values in Table 3.2 will be verified with the Inverse program in section 3.3.1. 19 Frequency S 1 1 S I 1 321 521 (GHz) (6113) (D69) (dB) (Deg) 8.32600 -3.54334 -167.69275 -20.59249 134.90907 9.04000 -3.80197 -166.39375 —21.50234 124.98930 9.77500 -3.95370 -165.44933 -22.58655 115.41341 10.61500 -4.00873 —164.76779 -23.90743 104.60103 11.87500 -4.01569 —164.24632 -25.85478 89.90709 Table 3.2. Calculated S-parameters for MagRAM using Forward program The second set of data consists of the measured u and e of Rexolite provided by The Boeing Company at 201 points in the range of 8-12 GHz. Representative points are shown in Table 3.3. Relative Relative Relative Relative Frequency Permittivity Permittivity Permeability Permeability (G112) (Real) (Imaginary) (Real) (Imaginary) 8.32600 2.52555 -0.00317 1.00098 0.00214 9.04000 2.52327 -0.00102 1.00282 0.00007 9.77500 2.52133 -0.00260 1.00247 -0.00152 10.61500 2.52196 —0.00300 1.00200 —0.00172 11.87500 2.52593 —0.00206 0.99806 -0.00154 Table 3.3. Material properties for Rexolite as provided by The Boeing Company Using the Forward program, the input arguments in Table 3.3 were used to com— pute the S-parameters located at the boundaries of the material layer. As men- tioned with MagRAM, these are the material boundary S-parameters and will not coincide with waveguide measurements unless properly compensated. The resulting S-parameters are shown in Table 3.4 for each corresponding frequency. The values in Table 3.4 will be verified with the Inverse program in section 3.3.1. 20 3.3 I Tht‘ (r; In \. given i niat). ' 1'1 (1,. 7‘ v FxliL Frequency 511 $11 $21 521 (GHz) (dB) (Deg) (43) (Deg) 8.32600 -5.03803 -147.09491 -I .63356 -56.98653 9.04000 -5.40875 -150.64702 4.47723 -60.61267 9.77500 -5.61971 45480183 -1.40905 -64.74479 10.61500 -5.74420 45979144 -1.36612 -69.74192 11.87500 -5.84244 -167.33481 -1.32812 -77.33021 Table 3.4. Calculated S-parameters for Rexolite using Forward program 3.3 Inverse Relationship The calculations used and derived in this section are cited largely from [3]. In section 3.2 the equations were derived that allow the calculation of p and r given emr and umr. In this section, the reverse will be accomplished. Given the reflection and transmission coefficients, the relative complex material properties em,- and mm will be calculated. From (3.48) the matrix entries for the material layer can be rewritten as a. (ejkzmtm + e‘jkzmtm) % (ejkzmtm _ e—jkzmtm) M = (3.64) Cm 1-1— ( .lkzmtm _ efilkzmtm) l (ejkzmtm + e—jkzmtm) 2 Cm 2 using Euler’s Relation. To make the inverse derivation easier, the following substitu- tion variables will be defined u = ejkzmtm (3.65) Cr = ‘7’; (3.66) r—l 21 ‘ D As...) . l u 5) ": Ali‘n (.4 Re .. .5 0n ht Solving (3.67) for (1. results in Also from (3.29), (3.35) and (3.66), (T can be written as ($54 a 4,: f it" (3.69) rein 72— 1— Using (3.32) and (3.65), the natural log of u can be calculated as 1n“ = jkzmtm 2 ,w J‘C—thHmrEmr‘) 1 — f;? (3.70) The material property um,- can now be solved by taking the product of (3.69) and (3.70) as shown ,/ _ [.39 f 2 , .w 2 ((1)011 u) #mTJ—tmviumremr 1 _ fCT2n / fr2m 6mr C f 1 _ __'__ f2 clnu Mmr = C" 2 (3.71) thm 1 _ Lg When calculating 1n u, care has to be taken because u is a complex number. Depend- ing on how thick the material slab is in comparison to the wavelength of the electric 22 “1’"! . .- where r‘ r , x r . \hebd \J‘u J . Lift . V)..“‘1i 9 .,, . ~‘4.}\"q Ff'v'II rip: r“ 41%: :. {0 r7 wimp field, lnu is calculated as 1n u = ln lul + jarg(u) — j27rn (3.72) where it starts at 0 for tm < /\/4 and is increased by 1 for every /\/4 increase in thickness. The material property 61,”. can be calculated by first dividing (3.69) by (3.70) to get 2 l J—tm5mr (1 _ £07711) 3 = C f (3.73) Cr 2 then by substituting ckc fem = —_—"" 27!") l-hnrémr (3.74) derived from (3.5) and substituting it back into (3.73) results in lnu _w c2k2. 1 ‘_ = JFt-m (fmr “ ( C ) (3'75) Cr 277)2#/mr 1 _ 129 V f2 Substituting kc = g from (3.11) into (3.75) and solving for emr yields ( fEO lnu 02 6,: l——-,w +— (3.76) mr f2 J—C'thr 4‘12f2/‘mr From (3.71) and (3.76), the only unknowns in the equations for the material properties are (T, which from (3.68) can be described in terms of p and In ii. In order to complete the task of deriving the inverse relationship between T, p, ,u. and e, the 23 P by l1: unknowns p and u have to be described in terms of r and p or the transmission and reflection coefficients respectively. From (3.64) and (3.65) the following substitutions can be made Mil = :- Mm = g 4&1: g M22 = % (u+u-1) a—u4) C ‘Q V ~ l H 9—44) A 3 u+u—1) A (3.77) (3.78) (3.79) (3.80) Using (3.21), (3.66) and (3.77) through (3.80), r can be written in terms of u. and p by first solving ‘Ilw AI 6111+ —C1—2 + 6’121C0 + (”22 0 1 _1 1 5W + u )+ §Cr( u+ 1 l — +2 u— 1 1 1 _ u — u_1) + ——(u — u_1) + 5(u + u 1) 2Cr (13 + -:——p) (u — u—l) l—p 24 (3.81) [her an 11‘ . III (‘1: then solving (3.81) for r results in _ u(1 - 292) r — u2 _ p2 (3.82) To get the reflection coefficient in terms of u and 1), equation (3.63) has to be analyzed in the same fashion as was used to determine (3.81). For the numerator 1W 1 _ 1 _ NIH-F-C—ég-CoilWQl—Afgg = -2-(u+u 1)+§Cr(u—u 1) 11 1 72r—(u — u—1)— §(u+u-1) _1,,_1 1+p l-p - 2 u 1—p 1+p 1 2 = (u _ Z) 1 _pp2 (3.83) Note that the denominator of (3.62) is the same as the denominator in (3.63). So obtaining p is accomplished by multiplying the result in (3.83) by the reciprocal of (3.81) which results in p(u2 — 1) = __ 3.84 p u2_p2 ( ) In order to complete the derivation of the “Inverse Relationship”, u and 19 need 25 V'- l..- ‘-. t its. to be found in terms of p and 7'. Two new variables will be defined and are given as g = p—T (3.85) 6 = p+r (3.86) Substituting (3.82) and (3.84) into (3.85) and (3.86) gives —1 g z p“ (3.87) u—p , 1 5 = Bu—Jr— (3.88) u+p Multiplying g and 6 and adding 1 to each side of the resulting equation yields (1)2142 - 1) + (u2 — 102) (u2 - p2) €5+1=p2—T2+I= (3.89) Solving (3.84) in terms of (u2 — p2) and substituting it into the denominator of (3.89) and rearranging the numerator results in p2u2 — p2 + u2 — 1 2 2 _ p —T +1—p p(u2—1) (3.90) Next, factor out u2 — 1 which gives 2 2 2 — 1 p T +1 : p + (3.91) 26 Rearranging (3.91) results in a quadratic expression given as 2 (p2—72+1 p — —-—— p )p+1=0 (3%) which has a solution of 2 2 2 2 2 — +1 -— 1 p = L_T__ :l: \/(_p___:__—+_—__) _1 (393) 2p 2p In practice, the — sign is chosen in the above expression. Once p is known, u can be found by solving .UO-pU p7 _ 1’ u2_p2 p—p _pW’-U u2_p2 _ ul-pU _ 1—fi ”r = u @9n p—p 3.3.1 Inverse Relationship Results As in 3.2.1, a program was written in FORTRAN to compute the material properties )1 and 6 given the S-parameters at the boundaries of the material layer inside the waveguide. The Inverse program is shown in Appendix B for reference. Two sets of data were used in the testing of the Inverse calculations. The first set of data consists of the S-parameters given in Table 3.2 for MagRAM which are the result of the Forward program shown in Appendix A. Using the Inverse program, the input arguments in Table 3.2 were used to compute 27 u and e of the material layer. The resulting material properties are shown in Table 3.5 for each corresponding frequency. Relative Relative Relative Relative Fiequency Permittivity Permittivity Permeability Permeability (GI-12) (Real) (Imaginary) (Real) (Imaginary) 8.32600 20.61913 -0.45779 1.61163 -2.15671 9.04000 20.50718 -0.50154 1.47979 -2.08967 9.77500 20.37239 -0.49107 1.35299 -2.02382 10.61500 20.40467 -0.40625 1.21399 -1.93652 11.87500 20.41216 -0.36015 1.04721 -1.80428 Table 3.5. Calculated p and e for MagRAM using Inverse program It can be seen by comparing Table 3.1 and Table 3.5 that the precision between the Forward and Inverse programs is fairly close. The second set of data consists of the S—parameters given in Table 3.4 for Rexolite which are the result of the Forward program in Appendix A. Using the Inverse program, the input arguments in Table 3.4 were used to compute p and e of the material layer. The resulting material properties are shown in Table 3.6 for each corresponding frequency. 28 Relative Relative Relative Relative Frequency Permittivity Permittivity Permeability Permeability (6712) (Real) (Imaginary) (Real) (Imaginary) 8.32600 2.52555 -0.00317 1.00098 0.00214 9.04000 2.52327 -0.00102 1.00282 0.00007 9.77500 2.52133 -0.00260 1.00247 -0.00152 10.61500 2.52196 -0.00300 1.00200 -0.00172 11.87500 2.52593 -0.00206 0.99806 -0.00154 Table 3.6. Calculated u and e for Rexolite using Inverse program It can be seen by comparing Table 3.3 and Table 3.6 that the precision between the Forward and Inverse programs is fairly close. 3.4 Compensation Within Inverse Relationship The calculations used and derived in this section are cited largely from [3]. The equations in section 3.3 all assume that the unknown slab of material is placed at the calibration plane of the waveguide. When measuring the transmission and reflection coefficients of a material slab in a waveguide using a network analyzer, it is critical to be able to determine the location of the material slab to adjust the S-parameters accordingly. Figure 3.4 depicts the phase relationships in the waveguide where (pr - Reference phase of the waveguide (1311, (2522, (1521 - Actual reflection and transmission phases (911m, $22,”, $211,, - Measured reflection and transmission phases Phase of the material thickness in air ¢t 7,251 and (152 Phase of the air space to the left and right of the material 29 Assuming the material and measurement system is homogeneous and isotropic, the following equations can be written from Figure 3.4 ¢r = ¢1+¢t+¢2 (3-95) ¢2im = ¢1+2+¢21 (3.96) 9511"). = 2°¢1+¢11 (3-97) 0522-"). = 2°¢2+¢22 (3-98) 9511 = $22 (3.99) Algebraic manipulation of the above equations yield _ $11m—¢22m 9511 — 2 - 9r + Cbt (3.100) ((521 = 9521171 - (M + (it (3.101) which gives the phase relationships at. the material boundaries given the phase mea- surements at the waveguide ports. a, is the reference phase measured during the calibration of the network analyzer and (fit is the phase of the material calculated by 9: = km. - tm (3.102) where kzm is found in (3.32) and tm is the thickness of the material. Using (3.100) and (3.101), it is no longer necessary to know the position of the material in the waveguide. By measuring S11 and S22, it is possible to correct the phases in the 311 and S21 measurements to remove the uncertainty in the position of the material relative to the calibration plane of the waveguide. 30 3.4.1 Compensated Inverse Relationship Results The Boeing Company has provided measured S-parameter and material property data for the development of the error analysis software. The data includes values for MagRAM and Rexolite. Modifying the Inverse program in Appendix B with the compensation methods derived in Section 3.4, resulted in the Compensated Inverse program and is shown in Appendix C for reference. The MagRAM data used to test the Compensated Inverse program is shown in Table 3.7. The S-parameters are used as inputs for the program, while the perme- ability and permittivity values are used as a reference to check whether the program yields valid results. 31 Sample Thickness = 124.50 mil Frequency 8.32600 9.04000 9. 77500 10.61500 11.87500 (GHZ) 811 (dB) -3.54352 ~3.80211 —3.95380 -4.00880 -4.01574 Sll (Deg) -169.33398 —168.47723 —167.77812 -167.45778 -167.29394 S22 (dB) —3.62212 -3.86602 -3.99953 -4.09377 -4.17685 S22 (Deg) -127.08378 -117.07008 -108.07798 -98.73757 -86.03702 S21 (dB) -20.59144 -21.50134 -22.58553 -23.90637 -25.85370 S21 (Deg) 154.40008 148.61645 142.94182 136.27872 127.49588 S12 (dB) -20.59534 —21.49905 -22.58432 -23.90067 -25.85262 Sl2 (Deg) _ 154.42669 148.68650 142.93125 136.27909 127.55798 Reference 821 (dB) -0.00053 -0.00027 0.00265 0.00212 0.00000 Reference S21 (Deg) 0.00350 -0.00699 -0.00350 -0.02447 -0.01049 Relative Permittivity 20.61915 20.50717 20.37240 20.40467 20.41216 (real) Relative Permittivity -0.45778 -0.50155 -0.49106 -0.40625 -0.36015 (imaginary) Relative Permeability 1.61163 1.47979 1.35299 1 .21399 1.04721 (real) Relative Permeability -2. 15671 -2.08967 -2.02382 -1.93652 -1.80428 (imaginary) Table 3.7. Sample data for MagRAM provided by The Boeing Company 32 Given the S-parameters from Table 3.7, the Compensated Inverse program yields the results shown in Table 3.8 which compare very closely with Boeing’s data. Frequency 8.32600 9.04000 9.77500 10.61500 11.87500 (GHZ) Relative Permittivity 20.61928 20.50754 20.37291 20.40534 20.41297 (real) Relative Permittivity -0.45979 -0.50345 -0.49285 -0.40801 —0.36191 (imaginary) Relative Permeability 1.61192 1.48004 1.35321 1.21419 1.04739 (real) Relative Permeability -2.15636 —2.08933 -2.02350 -1.93620 ~1.80399 (imaginary) Table 3.8. Calculated material parameters for MagRAM using Compensated Inverse program In addition, all 201 data points for permeability and permittivity provided by The Boeing Company from 8-12 GHz were plotted with the 201 data points calculated by the Compensated Inverse program. The results can be seen in Figure 3.5 and Figure 3.6. The Rexolite data used to test the Compensated Inverse program is shown in Table 3.9. 33 Sample Thickness = 139. 50 mil Frequency 8.32600 9.04000 9.77500 10.61500 11.87500 (GHZ) 811 (dB) -5.03857 -5.40918 -5.62008 -5.74449 -5.84262 Sll (Deg) -147.04711 -150.62139 -154.75536 -159.74187 -166.98874 S22 (dB) -5.08363 -5.43419 -5.61501 -5.74029 -5.89618 S22 (Deg) —103.47583 -97.73404 -93.16832 -88.85808 -83.45555 S21 (dB) -1.63333 -1.47705 -1.40894 -1.36598 -l.32803 S21 (Deg) -35.15038 -34.14061 -33.90210 -34.24785 ~35.21472 812 (dB) -1.63423 -1.47861 -1.40818 -1.36501 -1.32737 Sl2 (Deg) -35.12359 -34.06997 -33.87642 -34.20636 ~35.16429 Reference S21 (dB) -0.00053 -0.00027 0.00265 0.00212 0.00000 Reference S21 (Deg) 0.00350 -0.00699 -0.00350 -0.02447 -0.01049 Relative Permittivity 2.52555 2.52327 2.52133 2.52196 2.52593 (real) Relative Permittivity -0.00317 —0.00102 -0.00260 —0.00300 -0.00206 (imaginary) Relative Permeability 1.00098 1.00282 1.00247 1.00200 0.99806 (real) Relative Permeability 0.00214 0.00007 -0.00152 -0.00172 -0.00154 (imaginary) Table 3.9. Sample data for Rexolite provided by The Boeing Company 34 Given the S-parameters from Table 3.9, the Compensated Inverse program yields the results shown in Table 3.10 which compare very closely with Boeing’s data. Frequency 8.32600 9.04000 9.77500 10.61500 11.87500 (GHZ) Relative Permittivity 2.52540 2.52316 2.52125 2.52189 2.52588 (real) Relative Permittivity -0.00325 -0.00109 -0.00267 -0.00306 -0.00212 (imaginary) Relative Permeability 1.00104 1.00286 1.00250 1.00203 0.99807 (real) Relative Permeability 0.00219 0.00012 -0.00149 -0.00169 -0.00151 (imaginary) Table 3.10. Calculated material parameters for Rexolite using Compensated Inverse program In addition, all 201 data points for permeability and permittivity provided by The Boeing Company from 8-12 GHz were plotted with the 201 data points calculated by the Compensated Inverse program. These data points can be seen in Figure 3.7 and Figure 3.8. As seen from the above tables and figures, the results from the Compensated Inverse program compare very closely with the measurements given by The Boeing Company and are not distinguishable in the figures without zooming in to the third or fourth decimal place. 35 Bounded Material Bounded Freespace Layer Freeepace Einc Bum Figure 3.1. Waveguide with one material layer 36 Bounded Material Bounded Freespace lgyer Freespace 12, E, > Br ’ '13.. in» so ”an a... no, 6.. Figure 3.2. Waveguide with one material layer 37 Bounded Material ________________________ Material Bounded Freespace Layer 1 Layer m+1 Freespace 0. 0. 1 I z I “ml an»: I E, ------- E _____’ __f+ '15: '32 Ba Bm+1 “111+! "02 8. ”I, 6I "'29 82 ”In, all! 8m” “09 so Figure 3.3. Waveguide with multiple material layers 38 <—¢1—> 4—0.—> <—¢z—-> ‘— ¢21m $5“. —'> «011—, / \ 6%" on / \mn Figure 3.4. Illustration of phase compensation for a piece of material in a waveguide 39 Permeability vs. Frequency I- '6 I- I- U- —----4------fi---cud-Oc-nnhu--o-‘co-ud h-QOI-d-----—fi------‘---—--fi----ufl-uouuuh-uuundcu—od t---- J I I I I 1 6.6.1 '61 "'.I II.‘ .I.I.'I.l 8.5 1.e---- 1.2--- 1---- u — 5 4| as: Essa-Ema Freq (GHz) ''''''''''''''''''' "" ""l " 'J|I'-' lllllllll ................... I---L I I I I I 1 -l-‘ "6'J6' '6 I--- I'III . u . a — I 66" IIIILI'I I '6'- I'l'l . . u u a - n c u . . - - u u n - n P F 4 4 o- 0- 0- 3-2-5 Ease-ma 8.5 Freq (GHz) the Compensated Inverse program Figure 3.5. The Boeing Company results vs. results for permeability of MagRAM 40 Permittivity vs. Frequency vir— - u-d -----------‘ IIIIIIIIIIIIIII """""""""" IIIIIIIIIIIIIII 1 Freq (GHz) 8.5 22 21.5 20--- n 5 U 21 19.5---- 2 saw: gags-can. "- 1" III v!" III Y'l III; L-----J----d I'l L-----J------ 6-1 "1 '61 "l 8.5 U 1---- Base 522.83 -2 t--- Freq (GHz) the Compensated Inverse program Figure 3.6. The Boeing Company results vs. results for permittivity of MagRAM 41 d d I d c n - u g n - - g c u u . . . . 1 - - o . c - u n p g u c . . . . 5 ""L'-"r 'I'b-"l- 6666 n . . . . 1| - a a u 1 . - c a u — a - c n a - "I'h'666-1 """" “I---" 6666 1 . . . . 1 c u c . u u n n u u u u 5. 1.2 '-"‘-"'--r ....... ”'6'-" ..... U H . . . . 4|. G u u u n (1" n u n n W .u u. q u 1 F - u o c n u o n c - - - '-"L--"'.r ...... h'-"”l"ll 5 u u u u 9 - . . u u - — u q u u o ....... 9 n a o u - - u a - - o o - u o - j--'L-|"I-r '''''' ”I66'” 6666 5- " u n u 8 c n o - p p n h 1 5 1 5 9 5 1. D 9. U 8. 4| 0 U cams Ego-mean. ...... J:v-- __J____-_J______L_____ v V VV V V V V V """"""""""""" 0.05 -005 amp-e gage-ma 10 10.5 11 11.5 12 9.5 8.5 Freq (GHz) the Compensated Inverse program Figure 3.7. The Boeing Company results vs. results for permeability of Rexolite 42 Permittivity 113. Frequency " u u u . . . . . . . . ... ....... 1. ...... .- ........ n-.. 2 . . . . 1 . . . . . . . . . . . . . . . . 5 TL lllllll L lllll L IIIIIIII .ll . . . . . 4| . . . . 1| . . . . . . . . o c - - FJ. ..... Ll--- 'J— ........ "'1 1 . . . . 1| . . . . . . . . n u n u 5.?) .- ....... .fl ...... .n ........ "i U H . . . . 1| 0 . . . . II\ n u u n W I. 1111111 . rrrrrr . 11111111 .11 0 rl .u .n .u n 1F . . . . . . . . . . . . 1. ....... 1” ...... .. ........ 5 u _ u - 9 . . . . . . . . . . . . I" ....... J- ...... .“ ........ "1 9 . . . . . . . . . . . . . . . . L- ....... .“ ...... .h ........ n- 5 u u u L 8 . . . . n — h n 8. 5 5 5 2 5 2 4. 2 2 one regs-ma ''''' ..... ‘‘‘‘‘ IIIII IIIII IIIII " u . . . . .1 .............. 1. ...... 2 . . 1 . . . . . . . . 5 .r lllllllllllll u" IIIII i1 . . 1 . . . . . . . . 1 1 llllllllllllll J llllll . . 1 . . . . u u 542. .r '''''''''''''' I” ..... 10H . . 1G . . [ls " u w . 11111111111111 . 111111 or u. .n 1F u n . . n. .............. .H ...... .5. n u g . . . . . . v .............. .n ...... 9 n u . . . . .r .............. .u ...... 5 8 0.1 D -01 38.5 rage-ma the Compensated Inverse program Figure 3.8. The Boeing Company results vs. results for permittivity of Rexolite 43 CHAPTER 4 ERROR ANALYSIS OF MATERIAL CHARACTERIZATION When calculating the permeability and permittivity of a medium using measured quantities, it is important to remember that the values calculated are not absolute. All of the data used during the calculations have some kind of uncertainty or error associated with them. Some uncertainties can be the result of the measurement equipment having a specific tolerance or error in the system. There can also be uncertainty associated with the expanding and contracting of the material and the waveguide due to changes in temperature or maybe human error when reading a measurement device. For these reasons, it is important to understand how the final values behave given certain changes in the input variables. In this chapter, the above topics will be discussed with relevance to this thesis and then a method to analytically and graphically interpret these tolerances will be shown. 4.1 Measurement of Errors Errors can effect the accuracy and precision of an experiment. Accuracy is the mea- sure of how close the calculated result is to the true value. Precision, on the other hand, is usually referred to as the uncertainty of an experiment, and it effects the repeatability of the result. If an experiment has high repeatability, then each consec- utive experiment will give results very close in value to one another. It is possible to have high precision with low accuracy. However, having high accuracy will generally give better precision. Before the errors can be analyzed or 44 compensated for, they first need to be understood. 4.1.1 Systematic Errors Different types of errors have different effects on precision and accuracy. The sys- tematic error is not easy to detect and not easily studied by statistical analysis [4]. This type of error is caused by human bias or faulty calibration of equipment. For example, a micrometer my have a zeroing error, reading 0.2mil when the jaws are closed. Suppose five measurements of the width, tm, of a material layer were 124.6, 124.6, 124.7, 124.8 and 124.8mil. The mean of these—124.7mil—would obviously be an incorrect ‘best estimate’ (see Section 4.1.3) of tm. For better accuracy, the zero error should be subtracted from each measurement or from the average to give 124.5mil [5]. Moreover, it might have happened that the temperature was fluctuating as the measurements proceeded. If the measurements are critical or vary largely with tem- perature changes, the coefficient of temperature expansion may be needed to correct the measurements accordingly. Systematic errors usually do not effect precision (assuming everything else is con- stant) and give low accuracy because they have constant or slowly variant offset from the real value. The best way in dealing with this type of error is to make sure that all of the equipment used for the experiment is calibrated correctly. Sometimes there is more than one method for calibrating a piece of equipment such as a network an- alyzer. It is then advisable to find the best method given the frequency range of the experiment. 45 4. 1.2 Random Errors When all systematic errors have either been eliminated or corrected for, ‘true’ mea- surements usually are not obtained because of variations called random errors. Ran- dom errors may arise from ambiguities or uncertainties in the process of measurement, or from fluctuations which are too irregular or fast to be observed in detail [5]. These types of errors will yield different results for each run of an experiment. The problem of reducing random errors is essentially one of improving the experimental method and refining the techniques, as well as simply repeating the experiment [4]. In order to better quantify random errors, it is better to run a large number of experiments to find the standard deviation for use in some kind of error analysis. 4.1.3 Standard Deviation Given 11 measurements 11,12, . . . ,1?” and assuming n is greater than 1, the mean is calculated as The deviation from each measurement is then calculated as 61: $1_ X", 62 = 1:2 "' X", . . . 6n = 1‘" "" X" (4.2) Given the number of measurements and the deviation from each measurement, the mean square deviation is 0,2,: (6¥+6g+-~+6g)/n (4.3) In general, the mean is considered to be the best estimate of the ‘true’ value 46 under the prevailing experimental conditions. The variance 0,2, and the standard deviation an characterize the uncertainties associated with the experimental attempts to determine the ‘true’ values. The standard deviation, on, has the limiting value a as n increases, and provides a reasonable best estimate for the precision [4]. When asymmetrical distributions occur, the standard deviation is less a guide to an assessment of the experiment. Only the complete curve can really be trusted with non-symmetric deviation curves. Nevertheless, if a single number has to be given, there is usually no better measure of precision than the standard deviation [5]. 4.2 Error Analysis Error analysis is the method of combining uncertainties in separate measurements to find the total uncertainty for the calculated measurements. 4.2.1 Propagation of Errors If the final value or result is a function of one or more measured variables, the un- certainty in each measured variable will propagate into the final value. Therefore, a method must be determined to estimate the amount of error which makes its way into the final result. Given a variable W, which is dependant on variables A, B and C, the estimation of error can be found for W by expanding it about A, B and C in a Taylor series [4, 7]. (9W 3W W 2: W0 + (A A0) (—) + (B - Bo) (—) + 8A 8000 BB AOCO a 1 2 82W +(C' — C0) (—) — {(A — A0) ( ) + + (4.4) 00 A030 2' 6A2 BOCO 47 Knowing the actual errors, AA = A — A0 and so forth, the first term in the Taylor expansion would give W 2 W0 + AA (96%),; C + AB (5E)A + AC (%g) (4.5) 0 '0 000 A030 where the terms in parenthesis are the partial derivatives of W with respect to each measured variable, given the other variables are held fixed as indicated by the sub- scripts. From (4.5), the error in W can be found from AW 2 W — W0. One will notice that this approximation neglects the higher order terms within the Taylor expansion. However, if there is no covariance between the measured variables, the higher order terms can be neglected [4]. If the errors are large, the second partial derivatives (82VV/8A2, etc.) and partial cross derivatives (OZW/BA BB, etc.) should be included [5]. There is one fundamental problem with the Taylor approximation in (4.5), the actual errors are generally not known for each variable. However, the standard devia— tion is usually obtainable such as shown in Section 4.1.3. Given that W is a function of A, B and C, W = f(A, B, C), (4.6) the most probable value for W is given by We = W = NEE-C) (4-7) The uncertainty in the resulting value of W can be analyzed by taking each indi- 48 vidual measurement Ai, Bi, . .. into individual results W, such as W, = f(A,-,B,-,...) (4.8) The variance can then be found from (4.7) and (4.8) as Next, the Taylor expansion from (4.5) can be rewritten as W,—W2(A,-—Z) (633/7) +(B,-—‘§) (98%) +... (4.10) and then substituted into (4.9) to give 0%,, 2 lim NZ(A1“A)(%LX)+(B'_§)(%%)+"']2 2 lim %Z:(A— A)2 (ii—ZYJF +(-—B —B)2 (fig/)2 +...](4.11) The variance of W can now be written in terms of the variances of A, B and C by substituting (4.9), with respect to each variable, into (4.11) which results in aw 2 aw a__W 02 ~ __ Since the variance is simply the square of the standard deviation, the standard devi- 49 ation can be found by taking the square root of (4.12) as 2 aw2 2 aw2 2 aw2 Orv”: 0A '54— +08 E}— +0C 30— +... (4.13) 4.2.2 Computer Calculation of Uncertainties An analytical approach for finding a solutions to (4.13) would begin by creating a function for W in terms of each measured variable, such as H7 = function(A, B, C, . . .) (4.14) Then, the partial derivatives are calculated using a one-sided or central difference method. Using a central difference method results in functi0n(A + dA, B, C, . . .) — functi0n(A — dA, B, C, . . .) 1V 2 d A 2dA ’ leB : functzon(A, B + (18, C, . . .) — functzon(A, B — dB, C, . . . ), 2dB leC : functzon(/l, B, C + dC, . . .) — functzon(A, B, C — dC, . . . ), 2dC etc' (4.15) where dA, dB, dC, and so forth are the standard deviations 0A: 03, 00 respectively. From (4.12) and (4.15), the variance of W can be written as aw? 2 dA2 (an/A)2 + (132 (dWB)2 + dC2 (dWC)2 + . .. (4.16) 50 Since the standard deviations in the denominator of (4.15) cancel with the ones outside the parenthesis in (4.16), (4.16) is easier written as le2 ~ functi0n(A + (1A, B, C, . . .) — fu-n.cti0n(A — (1A, B, C, . . .) 2 I — 2 function.(A, B + dB, C, . . .) — functi0n(A, B — dB, C, . . .) 2 2 + function(A, B,C + dC, . . .) — function(A, B, C — dC, . . .) 2 2 + (4-17) which simplifies to aw? 2 (fdA)2+(de)2+(de)2+... (4.18) where fdA —— function.(A + (1A, B, C, . . .) — function(A __ dA, 83 C, . . .) _ 2 , de _ fanct’i0n(A, B + (18, C, . . . ) — functi0n(A, B — dB, C, . . .) _ 2 , (1C _ functi0n(A,B,C+dC,...)-—function(A,B,C—dC,...) f — 2 , em (4.19) 51 The standard deviation of the entire system can then be calculated from (4.18) as aw 2 sqrt[(fdA)2 + (de)2 + (de)2 + . . l (4.20) 4.3 Spline Method The calculations used and derived in this section are cited largely from [8]. When working with the HP8510 network analyzer, a program is available that calculates the uncertainties of measurements given that specific equipment was used with a specific calibration process. This program, called “HP 8510 Specifications 86 Performance Verification Program”, can display a table of the worst case error for amplitude and phase for all of the S-parameters. Example plots using setup #1 from Table 2.2 and the HP program are displayed in Figure 4.1 through Figure 4.4 using 21 points for each output. Each graph shows the amount of error for setup #1, given the measured amplitude of each S—parameter. In order to use this information in the Error Analysis Program (Appendix D), an approximation has to be made for all the error values that are not explicitly given in the table provided by the HP program. An approximation is achieved by interpolating the desired value from the values that are given. The method of interpolation used in the Error Analysis Program is called ‘Cubic Spline Interpolation’ [8]. Given a tabulated function y, = y(:r,~), where 2' = 1...N, focus is concentrated on a particular interval between CL‘J‘ and ivy-+1, and the linear interpolation of that interval is found as y = (lyj + byj+1 (4-21) 52 where a = 4.4-Li (4.22) rj+1 _ ‘rj and :13 — xj b=1—a=—— (4.23) $j+1 ‘ 333' The purpose of the cubic spline method, however, is to have an interpolation formula that is smooth in the first derivative and continuous in the second derivative. So, if the tabulated second derivative is provided in addition to the above information, the interpolation is given as II II 3/ = my + byj+l + 0313' + dyj+1 (4.24) where c- -1-(a3—a)(;z:- —:1:-)2 (4 25) and 1 a = 6(b3 —— lam-+1 — raj)? (4.26) In order to obtain a tabulated second derivative for this task, the function ‘spline’ from Numerical Recipes [8] is called at the beginning of the program that calculates the second derivative of each data point with respect to the data surrounding it. This second derivative is then used to calculate the interpolated values on the fly using the function called ‘splint’ from Numerical Recipes [8]. 53 4.4 Error Analysis Results The error analysis program was first run with the standard deviations of the waveguide width and the material thickness independently from one another to see how each one contributed to the total error. The standard deviations used for each test are shown in Table 4.1 along with references to the figures for each case. Every figure contains three lines. The center line refers to the calculated permeability or permeability of the material. The lines above and below the center line refer to the maximum and minimum permittivity or permeability possible, based on the amount of uncertainty introduced into the calculations. Input Argument Error Figure References ] Material 0.3% Figure 4.5 through Figure 4.8 Thickness 1.0% Figure 4.9 through Figure 4.12 (tm) 3.0% Figure 4.13 through Figure 4.16 Waveguide 0.3% Figure 4.17 through Figure 4.20 Width 1.0% Figure 4.21 through Figure 4.24 (a) 3.0% Figure 4.25 through Figure 4.28 Table 4.1. Input arguments used for independent error analysis of Rexolite and Ma- gRAM using Error Analysis program Results from figures in Table 4.1 are shown in Table 4.2 for simplicity. 54 Resultant Resultant Uncertainty Uncertainty Type of From From Material Constitutive Percent Material Waveguide Tested Parameter Error Thickness Width MagRAM Permeability 0.3% 0.03-0.2% 0.03-0.04% (real) 3.0% 04-23% 0.36—0.44% Permeability 0.3% 0.6-0. 75% 048-0. 13% (imaginary) 3.0% 6.0-7.5% 5.5-1.4% Permittivity 0.3% 0.2-0.06% 0.38-0.1% (real) 3.0% 1.8—0.6% 4.0-1.09% Permittivity 0.3% 8.5-17.3% 7.7-3.3% L (imaginary) 3.0% 85-174% 75-33% Rexolite Permeability 0.3% 0.03-0.08% 0.027—0.014% (real) 3.0% 0.34-0.82% 0.3-0.15% Permeability 0.3% 0.56-0.0% 0.56—0.0% (imaginary) 3.0% 6.0-7.5% {3.5-1.4% Permittivity 0.3% 0.17-0.12% 0.19-0.05% (real) 3.0% 1.68-1.18% 200.5% Permittivity 0.3% 0% 0% (imaginary) 3.0% 2.52% 3.2-1.6% Table 4.2 shows the amount of uncertainty introduced in the calculation of per- meability and permittivity given that either the material thickness has uncertainty or the waveguide width has uncertainty. Each entry in the table has a range for the final contributed uncertainty. For instance, the 3.0% row and waveguide width column indicate a 7.7-3.3% uncertainty for the imaginary part of permittivity. This means it has a 7.7% final contributed uncertainty at. the lowest frequency tested and a 3.3% final contributed uncertainty at the highest frequency tested. The amount of final uncertainty contributed from each test seems to be consistent with the input uncertainty amount. In other words, a ten fold increase in uncertainty (0.3% to 3.0%) yields roughly a ten fold increase in the final uncertainty contribution Table 4.2. Comparison of resultant uncertainties for Rexolite 55 (060.75% to 60-75%). Next, the error numbers obtained from the “HP 8510 Specifications & Performance Verification Program” mentioned in Section 4.3 were tested in the Error Analysis program. Setup #1, as described in Table 2.2, was chosen with five different cable selections to determine if The Boeing Company was using the best suited cables for the specified frequency range. Table 4.3 shows the different cable selections that were tested. Cables Figures ] HP85132C Figure 4.29 through Figure 4.32 Single Long Cable (3.5mm - 7.0mm) HP85132D Figure 4.33 through Figure 4.36 Pair Short Cables (3.5mm - 7.0mm) HP85132E Figure 4.37 through Figure 4.40 Single Long Cable (3.5mm - 7.0mm) HP85132F Figure 4.41 through Figure 4.44 Pair Short Cables (3.5mm - 7.0mm) No Cables Figure 4.45 through Figure 4.48 Table 4.3. Different cables used for error analysis using setup #1 for the comparison 56 From Figure 4.29 through Figure 4.44 it can be seen that cable HP-85132E is the best cable from the four that were tested. Cable HP-85132E has roughly 7% error for permeability and 3.5% error for permittivity. The effects of uncertainty on the imaginary part of permittivity is quite high for all four cable options. By running the error propagation program with the “no cable” option, it is shown that in most cases, the equipment has more influence on the uncertainty than the material thickness and waveguide width. It should be stressed that the HP Specifications & Performance Program was set up to output the “worst case” error for each setup since there was no configuration to output the standard deviation of error. Using cable HP-85132E as specified by The Boeing Company, three other network analyzer setups were simulated. The additional network analyzer setups are shown in Table 2.2. All four setups from Table 2.2 were tested in the error analysis program without. additional error from the material thickness or waveguide width. Table 4.4 summa- rizes which figures represent the output from each system. According to the “HP 8510 Specifications & Performance Verification Program”, the error associated with setup #3 and #4 are identical. Since the two systems perform identically, additional plots will not be created for system #4 and the reader will be referred to the system #3 plots instead. The error contribution from systems #1, #3, and #4 are identi- cal to each other. System #2 has slightly more error (roughly 0.2%) and would be considered the least preferred setup of the four. 57 Analyzer Setup ] Figures Setup #1 Figure 4.37 through Figure 4.40 Setup #2 Figure 4.49 through Figure 4.52 Setup #3 Figure 4.53 through Figure 4.56 Setup #4 Figure 4.53 through Figure 4.56 Table 4.4. Different setups used for error analysis as shown from Table 2.2 Finally, the total amount of error was tested with combinations of material thick- ness standard deviations, waveguide width standard deviations and network analyzer errors from setup #1. The results should be typical of a worst case measurement if the system is properly calibrated. The error combinations are shown in Table 4.5. Measurement Waveguide Material Figure References Equipment Width Thickness Setup #1 0.3% 0.3% Figure 4.57 through Figure 4.60 Setup #1 3.0% 3.0% Figure 4.61 through Figure 4.64 Table 4.5. Input arguments used for independent error analysis of Rexolite and Ma- gRAM using Error Analysis program From the figures stated above, tables were created to show the correlation between the uncertainty in the measurements, and the uncertainty in the complex a and c for MagRAM and Rexolite. The data which shows the relationship for MagRAM is shown in Table 4.6. The data which shows the relationship for Rexolite is shown in Table 4.7. 58 Resultant Resultant Uncertainty Uncertainty From From Uncertainty Constitutive Percent Material Waveguide From Combined Parameter Error Thickness Width System #1 Uncertainty Permeability 0.3% 0.03-0.2% 0.03-0.04% 7.6-7.2% 7.6-7.2% (real) 3.0% 04-23% 0.360.44% 7.68-7.67% Permeability 0.3% 0.6-0.75% 048-0. 13% 8.9-6.49% 8.9-6.5% (imaginary) 3.0% 60-75% 55-14% 13.2-10.48% Permittivity 0.3% 0.2-0.06% 038-0. 1% 3.8-3.4% 3.87-3.4% (real) 3.0% 1.8-0.6% 401.1% 533.56% Permittivity 0.3% 8.5-17.3% 7.7-3.3% 292-280% 293-281% (imaginary) 3.0% 85-174% 75-33% 323-340% Table 4.6. Comparison of resultant uncertainties for MagRAM By examining Table 4.6 it can be seen that the total amount of error is largely influenced by the system uncertainties for both a 0.3% amount of uncertainty and for a 3.0% amount of uncertainty in the measurements. The material thickness and waveguide width had high contributions for the imaginary permeability and the real permittivity at the 3.0% level, but the rest of the uncertainty is due to the measuring system itself. 59 Resultant Resultant Uncertainty Uncertainty From From Uncertainty Constitutive Percent Material Waveguide From Combined Parameter Error Thickness Width System #1 Uncertainty Permeability 0.3% 0.03—0.08% 0.027-0.014% 64-26% 64-26% (real) 3.0% 0.34-0.82% 0.3-0.15% 64-28% Permeability 0.3% 0.56-0.0% 0.56-0.0% Large Large (imaginary) 3.0% 3.3-9.5% 3.37-0.0% Large Permittivity 0.3% 0.17-0.12% 0.19-0.05% .31-1.49% .36-1.49% (real) 3.0% 1.68-1.18% 2.0-0.5% 2.0-1.8% Permittivity 0.3% 0% 0% Large Large (imaginary) 3.0% 2.5-2.8% 3.2-1.6% Large Table 4.7. Comparison of resultant uncertainties for Rexolite By examining Table 4.7 it can be seen that the total amount of error is largely influenced by the system uncertainties for both a 0.3% amount of uncertainty and for a 3.0% amount of uncertainty in the measurements. The waveguide width contributed the most for permittivity at the 3.0% level, but the rest of the uncertainty is due to the measuring system itself. 60 0.8 0.6 Measured S11 Reflection Coefficient 0.4 0.2 q . q _ 1 q a q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m ..... .. ..... .15.. ..... 8. t ....... u ...... .. ...... .. ...... . . . . . D n . . . WI . . . . .m . . . . n n . c . . . ms. 0 . . H mm H n u S . . . . e . . . . . . . 0 . . . h . . . . C . . . t . . . . . . . c' "0'-.. 0000 .0000'0" ''''' n """" l 5- n ..... u """"" " '0'0'00" IIII J] W n n . . U 0 . . . vl . . . . .l . . . O . . . . a . . . N u u u u e u n n E . . . . w . . . e u u u “ Du ” u n S . . . . . . . a fi'.".- .... “'00000" '''' n ''''' I 4. H lllll O lllllll " l-|-'l'" ''''' r C u . . . 0 H . . MN . . . . S . . . . . . . . . m u m u n m n n u . . . . 3 . . . W n u u u a u n H Al . . . . 2 e . . . 1 ..... .. uuuuu pill... ..... r...- .M ....... . uuuuuu L cccccc .. nnnnnn 1 S u u u " Jn. " u n u n n u n u n . . . . . . . n u u n u u n . . . . . . . . . . . q . . . . . . . . b 0 h I 1 8 PO 4 2 U U 5 U 5 0 0.00.0 Btw mmmcn. Sm came; Sew ammo .285 Sm Figure 4.1. Worst case error for Sll and setup #1 using “HP 8510 Specifications & Performance Verification Program” 61 822 Worst Case Error With Setup #1 d u u d n n u u u u u u o u u n . . g u - c o u u u u u - u u g - u u u a i. .. u u . u u g - - u c - - a p — . - o u u n . 'I'-"" 0000 "I ..... "'0"'¢0004+# . c u c u u o u . u p . c c a u c u - c n u u n c - c g ""-I- 0000 P 00000 -"l|-h'-'L " u n u n n u n u n u n u u n u - . . u u . - n - fi"'-hu ..... Dr 0000 n ..... w 00000 u u n u . c c - . - u - n c g - - o c u .. n n a 1.. 8 B 4 2 0. D 0. 0. 0. U U U 0 came; Sum 33 $52) mmm 0.8 0.6 Measured S22 Reflection Coefficient 0.4 I--- '0'- IIIIIII uni C------J----------q 000000 ..... 000000 .-‘--------r-------- 5 0 Btu $ch mmm 0.8 0.6 Measured S22 Reflection Coefficient 0.4 0.2 Figure 4.2. Worst case error for 822 and setup #1 using “HP 8510 Specifications & Performance Verification Program” 62 812 Worst Case Error With Setup #1 Idddd d 4 Cid-dd! d d dud-‘1‘ d 1 % did d d daddd-d I d =ddddd c i! 2:... . 3...... . 3...... . . .2 .. . 3...... . 3...... . .. . .. . 3...... . Z... . . 3...... . 3...... . .. . .. . 3...... . .2... . 3...... . 3...... . . . .. . 3...... . 2:... . 3...... . 3...... . . . .. . 3...... . 3..... 3...... . 3...... . .. . .. . 3...... . 2:... . 3...... . 3...... . .. .. . 3...... . ....... . 3...... . 3...... . .. . .. . 3...... . 2:... . 3...... . 3...... . .. . .. . 3...... . 2:... . 2:... . 3...... . .. . .. . 3...... . U 2:... . ...... . 3...... . JJld Jl. 40'9345.I.IJIII_ will fidadJldll: 1.JI.IJII’:4‘I.I.IJIII .. . .. . 3...... . . “I 2:... . 3.. ... . 3...... . .. . .. . 3...... . e 2:... . 3.. .. . 3...... . .. . . . .. . r 2:... . 3... .. . 3...... . .. . .. . .. . 2:... . 3.... . . 3...... . .. . . . .. . m 2:... . 3.... . . 3...... . .. . .. . .. . 0 2:... . 3...... . 3...... . .. . .. .. . VI 2:... . 3..... . 3...... . .. . .. . .. . f ....... . 3..... . 3...... . .. . .. . .. . 2:... . 3..... . 3...... . ..d.|.l.l.uqli..u..ufl.l.l.lan . . . 5 d 2... . . . 3.... . . . 3..... . . ....... . 3...... . .. . . II... 2:... . 3...... . 3...... . 2:... . 3...... . .. . I ....... . 3...... . 3...... . 2:... . 3...... . .. . e 2:... . 3...... . 3...... . 2:... . 3...... . .. . V. 2:... . 3...... . 3...... . 2:... . 3...... . .. . e 2:... . 3...... . 3...... . ....... . 3...... . .. . L ....... . 3...... . 3...... . 3..... . 3...... . .. . ....... . 3...... . 3...... . 2:... . 3...... . .. . 2 2:... . 3...... . 3...... . 2:... . 3...... . .. . 1 2:... . 3...... . 3...... . 2:... . 3...... . 3...... . 3 2:... . 3...... 3...... . 2:... . 3...... . 3...... . . d 2:... . 3...... . 3...... . 2:... . 3...... . 3...... . e 2:... . 3...... . 3...... . 2:... . 3...... . 3...... . r 2:... . 3...... . 3...... . 2:... . 3...... . 3...... . U 2:... . 3...... . 3...... . ....... . 3...... . 3...... . S 2:... . 3...... . 3...... . 2:... . 3...... . 3...... . 2:... . 3...... 3...... . ....... . 3...... . 3...... . a 2:... . 3...... 3...... . 2:... . 3...... . 3...... . e ....... . 3...... 3...... . ....... . 3...... . 3.... . . U M 2:... . 3...... 3...... . . IbllBCP-LI.ILIIBChrlrLIII F.hCLLIhIIBCP-Ll.l llBChf—lrl‘lll “—31.3...“ . 3...... . 3.... . . 1 2:... . 3...... 4 3...... . ....... . 3...... . 3.... . . . 2:... . 3...... 3...... . 2:... . 3...... . . . 3...... . 3...... 3...... . 2:... . 3...... . . . 2:... . 3...... 3...... . 2:... . 3...... . . . 2:... . 3...... 3...... . 2:... . 3...... . . ....... . 3...... 3...... . ....... . 3...... . . 2:... . 3...... 3...... . 2:... . 3...... . . 2:... . 3...... 3...... . 2:... . 3...... . . 3...... . 3...... m 3...... . 3...... . 3...... . . 2:... . 3...... _ 3...... . 3333» L DIP.- n D n U I! hp L Ebb-I P P Inn-FIE I 1 0 0 0 0 0 1 0 1| 1| 1 1 1... EB .25 $8 .295 Stm $sz Em -90 -70 -50 Measured 812 Level (dB from ref) 63 -10 10 Figure 4.3. Worst case error for 812 and setup #1 using “HP 8510 Specifications & Performance Verification Program” 1. a. d 1 11.111 1 1 1:41: I d w .1 di 4 In. 1. I d unnu-Id d d 2:... . 3...... . 3...... . . ... .. . .32... . 3...... . .. . 3...... . 3...... . 2... . . .32.. . . 3.... . . . .. . 3...... . 3...... . ...... . 2...... . 3...... . . . 3...... . 3...... . 2:... . .32... . 3...... . . . 3...... . 3...... . 2:... .32.... 3...... . .. . 32.... . 3...... . 2:... . .32.. . . ...... .. . .. 3...... . 3...... . 2:... . .32.. . . ...... .. . .. . 3...... . 3...... . 2:... . 2...... . 3...... . .. . 3...... . 32... . . 2:... . ...... . . 3...... . . . 2:... . 3...... . 2:... . . 2... . 32.... . m Jldl fi.Jl.lJll93.—.W.IWJII1 U H31.Jl.l4ll3 fisu.O.I.-ll5_dd.l-IWJIII . . . 3...... . q}.- fil 2:... . ... .. . . 3...... . p . . . 3...... . e 2:... . .32 .. . ...... . . . U . . . 3...... . r 2:... . ...2 .. . ...... .. . ..l . . 3...... . 3...... . 2:... . ...... . . ...... .. . e . . 3..... . 3...... . m 2:... . ...... . . ...... .. . S . . 3...... . 3...... . o 2:... . 2.2.. . . ...... .. . . . 3...... 3...... . vl 2:... . .32.. . ...... . . . h . . 3...... . 3...... . f 2:... . .32.. . 3...... . ..l . . 3...... . 32.... . 2:... . .32.. . 3...... . .I. . . 3..... . . 3..... . . L U B ....I.i.i.| .II.I....2|.|.i. usuw..n.....|.i.i|.lul W u.«.l.l.l.lqtummy-‘54.... fl.u.u.i.lu.ti 5 :0 mm... . a. 2.2.. . . ...... .. . 2:... . 3...... . . ..... . . II‘ 2:... . 2...... . 3...... . rl 2:... . 3...... . 3 .... . II 2:... . .32.... 3...... . 0 2:... . 3...... . 3..... . e 2:... . .32.... 3...... . r 2:... . 3...... . .... ... . V 2:... . .32... . 3...... . rl 2:... . 3...... . .... ... . e 2:... . 2...... . 3...... . E 2:... . 3...... . 3... .. . L 2:... . .32... n 3...... . 2:... . 3...... . ...: .. . 2:... . 2...... 3...... . fl 2:... . 32.... . 3... .. . 1| 2:... . .32.. . . ...... .. . .... . . 3...... . .. . 2:... . 2...... . 3...... . a ....nu . . 32... . . 3......:.|.| .Ill 0 a ”cm-ChiI.II.|3|..i.I.i.-.._ii...._..h.l.|.i I.|Il C .u..n.l.l.l.i...ii.l..l..c.t.l.ll.nlu2l.... . I. 3 2:... . .32... . ...... .. . ...... . 3...... . 3...... . . d 2:... . .32... 3...... . .ol 2:... . 3...... . 32.... . e 2:... . 2...... 3...... . S 2:... . 32.... . 3...... . ..l 2:... . .32... 3...... . vl 2:... . 3...... . 3...... . U 2:... . .32... 3...... . 0 2:... . 3...... . 3...... . S 3...... . 2...... 3...... . 2:... . 3...... . 3...... . 3...... . .32... 3...... . W 2:... . 3...... . 3...... . a 3...... . 2...... 3...... . 3...... . 3...... . 3...... . e 2:... . 2...... 3...... . 1 2:... . 32.... . ...... . . U M 2:... . .32... 32.... . . . . ii .i... in .I .It III. a iii-.--unw..fi-.-m--anrr+.n n 1. 33.." . L. 1.3.? u. .2...va 2:... . 3...... . ...... . . . 2:... . .32... 3...... . 2:... . 3...... . ...... . . 2:... . .32... 3...... . 2:... . 3...... . . . 3...... . 2...... 3...... . 32.... . 3...... . . . 2:... . 2...... 3...... . 3...... . 3...... . . . 2:... . .32... 3...... . 2:... . 3...... . . . 2:... . 2...... 3...... . 2:... . 3...... . . . 2:... . .32... 3...... . 2:... . 3...... . . 2:... . 2...... 3...... . . .32.. . 3...... . nun-H". - ”Hun—u” - u U auuuuuu bun- - rhu— h-p-nb D n n 1 o ... .... 1. 0 0 1 1 0 U U U U 1 U 1 4| 1| 1.. AI. EB .25 ...me .985 33m mmmzn. Km -90 -70 Measured 821 Level (dB from ref) 64 -10 ' 10 Figure 4.4. Worst case error for 821 and setup #1 using “HP 8510 Specifications & Performance Verification Program” Error Analysis of Permeability vs. Frequency ----+ IIIIIIIII "' ''''''''' 00000000 .----4------*-----*------’-----4------h-----‘----d r-----q----- 1- I I L 12 --l 0.1 III- -I--'- --l 1.4---- 1.2-- 1---- 9.9. ..___._$§mn_ 10 10.5 11 11.5 9.5 Freq (GHz) I T T I T U L-----4------L-----J--_---L-----J---_--L-----J--—-.i . c . u - - p n P... 0- 4 325. ..___._$ean_ 12 11.5 Freq (GHz) Figure 4.5. Error analysis of permeability for 0.3% tolerance in material thickness for MagRAM 65 Error Analysis of Permittivity vs. Frequency --u-q - a - u u u u g - n . u a c . - lllliflllJ IIIIIIII 1| IJI. - u . a 4 u u . o u u g u u c - u u . - . 'l'lh'l'h’--| ’0 05-1 - g - n c u u u o u - g . c u g n u - a u u - TIIIQIIOJ IIIIIII 1| Ill..- . u - c c a g u g o u u a u u u a u . - '000'000h0'00 " 0‘01 - u . u a g a u o o o n u u c a a u o - T---*|-I-u'l-| sq- 'h'l - c . u g u . g u u u u c . u u u n . - Iiiiriiruiiii .... 13L - - - n c a u u a a c o n u g u a - c u u - u - '00-“-I-J ..... “I '4.1 u n . o o u p c n . ... . g c c .. . u . u c u . . . . . . u u u . c . u c - a n b r — - 1| 00 Ah. AH a). mw 2 0 0 0 0 GL fiz GA fl; 2.2. 3532.9. 12 10.5 11 11.5 Freq(GHz) 10 9.5 8.5 IIIIIIIIIIIIIIIIIIIIIIII I 1------r-----1----d l’"'"1"""f""' ”------ r----- 1 ---- '0l .'1 '01 "l ..1 'll 0" 39E. b_>_z_E.mn_ 11 11.5 12 10.5 Freq (GHz) Figure 4.6. Error analysis of permittivity for 0.3% tolerance in material thickness for MagRAM 66 Error Analysis of Permeability vs. Frequency d . o - - . - . . '''' J-"" 0"- 1"--. . c n c . c c . n - """ 5"--- ---- 'l '0 u . J . c c c . u . c . - ..... ‘0'--- -' J---"1----l . - . n n - n . u u IIIIIIIIIIIIIIIIIIIIIIIIIIIIII g - . u . a . o g a - . lllll J....' 0' 4-00-01II00I-l - c - u u a n c n u u u n u ............ ‘--'--r-"'l - u - - . - . — - . . - innit. iiiiiii 4 rrrrr fiiiuur - c u n - c u u u o . o c u """ L'---‘ '- ""-'-r--"l - . . u n - u u - n — n 3 2 1 1 9 8 1 1 4| 0 U 9...... range-on. 11 11.5 12 10.5 Freq (GHz) IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII """""""""" Freq (GH'z) 0.05 BEE. ..EBmemn. Figure 4.7. Error analysis of permeability for 0.3% tolerance in material thickness for Rexolite 67 Error Analysis of Permittivity vs. Frequency 00000000 "" I--- "" 00000000 0 0 | 0 --J-unuuuL-nucI-J-u I I I I L--- I I I I M‘ I l 1 Cf---- I- IL J 'l -----L----- '1 98.. 5235.3. 12 10.5 11 11.5 Freq (GHz) 10 9.5 8.5 IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII ...................... IIIIIIIIIIIIIIIIIIIIIIIIIII llllllllllllllllllllllllll 000000000000000000000000000 3.25. 333.53. . . n U 5 12 11.5 10.5 11 Freq (GHz) 9.5 8.5 Figure 4.8. Error analysis of permittivity for 0.3% tolerance in material thickness for Rexolite 68 Error Analysis of Permeability vs. Frequency 1 fi I I fl---- '0' II- '0' I" I --..-—---—..—----4------...._--.- IIIII ‘l' I ..-----..------ "----- Pu---- ---r-----fi--.~---'----uq------'- III 0" Ill '01 0'1 . B 1 1.4---- 12. as... ..____.$§mn_ Freq (GHz) T -‘--J----‘ -----1---- I I I I I I I I I I - u IIIIIIII r.. I- IIIIIIrIIIIIL — a u u u - u n - . - — a - q a u - 1d IIIIII 1 ........ 1 """ L a - u u a - u . n u - - c u — .IL IIIIIIIIIIIIIII DIIIII - c a u u - n u - c - n a u o u - o T. ...... a ..... w-----r - o o c a - u - - o - c a u c It ...... r ............ a - u o 4 a o u o - u p n h B 8 and. 2 1 1 2 - 8.2.5. £53.38... 10.5 11 11.5 12 10 9.5 8.5 Freq (GHz) Figure 4.9. Error analysis of permeability for 1.0% tolerance in material thickness for MagRAM 69 Error Analysis of Permittivity vs. Frequency IIII I I II . . u . n - c n u u - f u . I I I I I L I I I I I n I I 4 "I- I j; 0 Freq (GHz) I L I L I J_ 21 2 D 2 cam: bingeaa zoo» - 20.5 2o4 2o---- 12 1.5 1 10.5 11 1 9.5 8.5 IIIIIII IIIIIII IIIIIII IIIIIII IIIIIII T I I I I I I -‘---- r---- IIIIIIIIIIII r-----w----- III III III III III III orn- . . n 5. n.. 33: bsaéan. -1 _--- Freq (GHz) Figure 4.10. Error analysis of permittivity for 1.0% tolerance in material thickness for MagRAM 70 q a . . u u u u IIIII JIIIII II‘IIIII V... . . c n u n . . e . . W IIIII L. IIIIIIIII . II . w n . F H " Ba. . . c 1 I .... J """"""" 1'--- V. . . . ou . . . uh ” u u n. . . . b IIIIIIIIIII r IIIIIII r IIIII a . . . e u u H m . . . pl . . . e . v v IIIII J'I'-‘ ' II--- I'-'l W . . . 0 n u n .B u n u S IIIIIIIIIII r IIIIIIIIIIIIII . . . NJ . . . - - m u . . A . - u . . . vl IIIII .— IIIII q- IIIIIIIII 1 IIIII 0 . . . n . . . . . . E u o u . . . IIIIIIIIIII fl IICIIrIIIIL 0.99 ---- 0 98 easy :_._s$§mn_ Freq (GHz) IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII — ” nU 0.05 awe: £535 11 11.5 12 10.5 Freq (GHz) 9.5 Figure 4.11. Error analysis of permeability for 1.0% tolerance in material thickness for Rexolite 71 Error Analysis of Permittivity vs. Frequency ----d :8; $555.”. I 4 . a c - c . . . I IIIIIII J IIIIIIIIIIIIII JII . n u u n . u . g u c - - . - IIIIIII L PIIIIIIILI T u n .J u - - . - _ c o . u c g c u .I IIIIIII J .u IIIIIII JII - a - u u . - c g o u . o u . IIIIIIII‘ 'IIII IILIl - u - n - o o n - a c o u o - o p u I IIIIIII J 1 IIIIIII Jll - u . - g . c u g u u - o - . u - . c a . u - - n o g . . u - c n IIIIIIII J fiIIIIIIIJIi - o . a c g c c . n u o . o - IIIIIIII L PIIIIIIILII . u c u c c c a u u p p 5 5 5 2 2 12 10.5 11 11.5 Freq (GHz) 10 9.5 8.5 IIIIIIIIIIIII IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII I'll-"-"'-'- '-'--'-----'l . . n D 0.05 325 €5an 8.5 -0.05 Freq (GHz) Figure 4.12. Error analysis of permittivity for 1.0% tolerance in material thickness for Rexolite 72 Error Analysis of Permeability vs. Frequency 93s £386.ch u q 1 u — - u . - . - . c - - - TII‘ IIIIII ‘ IIIIII ‘IIII 1III . . - a - . c o g - a n _ . u c _ . o - III“ IIIIII r IIIIII r IIIrIII . n n u - . o c - — g u . _ g u . - c c . c c . III4 IIIIII 1 IIIIIIIIIII 1III . . - n - u u . a n - c - . - rIIF IIIIII rIIII ' IIIIII rIII . . . - . a - - . - c c . - . - _ . a - . . c . Illd IIIIII q. IIIII a. IIIIII .Illl - g o u . — o n - - - a . o g n — c . III. IIIIIIIIIIII r IIIIII rIIl . u g - . a . a u - g c o o - u u . III4 lllllllllll fl llllll quill . o c - o g c c o u c - - c . III‘ IIIIIIIIIII r IIIIII rIIl - u - . p u g _ c a P n — p 5 4 2 1 1| 1 1 11 11.5 12 10.5 Freq (GHz) u u n u c n g p - - IJI III III IJ IIIIIIIIIIII o u n c c u g n . - fL lllll L IIIIIIIIIIII n u - c - u - r4 IIIIIIIIIIIIIIII . o - u c a c a - - TL IIIIIIIIIII L IIIIIIIIIII u u c - . u u — u n — c . - g - . IJIIIIIIRI IIIII . u n u c u - a u . . n — - rs IIIIII r IIIII .— llllllllll . . u u _ n u - u - - u - . u - _ u I- IIIIII 1IIII J IIIII IIIII - . a u - c u - c u . - - IL IIIIII r IIIII IIIl . c . - u - o c - c a n — n p 6 8 and. 2 1 1 2 see; r___0_$§mn_ 12 11.5 Freq (GHz) Figure 4.13. Error analysis of permeability for 3.0% tolerance in material thickness for MagRAM 73 Error Analysis of Permittivity vs. Frequency 10.5 8.5 cam: biggmn. 2 11.5 1 11 10 9.5 (GHz) Freq IIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIII III 0c--- -1 ---- c n 5. n.v 8.2:: $2555.”. Freq (GHz) Figure 4.14. Error analysis of permittivity for 3.0% tolerance in material thickness for MagRAM 74 . u H - u n n . a w; u n . . u g n n u . u - w . . . . IIIII LIIIIIrIII 1 J m. . . . r . . . F u u n V. . . . . c g - m, n n n " .lm . g . - IIIII LIIIIIr II LI IIIrIIIII a . . . . e . - o n . c . rml . . c — . c . e r: .u -.u ..... am.“ — u u u 0 u u u n .B u n u u we; ..... .r : .. ..... III . u . . a . . . . n . . . . . . . . A . . o _ rl IIIII 4 IIIII 1 Ilulfi IIIII 0 . g a . W” . u g - . - u . E u n u u IIIII L-IIIIIur I I-IIIII—rIIII . - . - n n . n 3 2 1 1 9 8 0 0. 0. 9. 9 1 1 1 U 0 925 $3353 11 11.5 12 10.5 Freq (GHz) 8.5 IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII - n 0 89:: $3365.; 12 11.5 10.5 11 Freq (GHz) 9.5 8.5 Figure 4.15. Error analysis of permeability for 3.0% tolerance in material thickness for Rexolite 75 Error Analysis of Permittivity vs. Frequency IIIIIIIIIIIIIIII - - - u - L - - u g - . J — - u o - L - . u a — — J u - u u — came 335::ch 11 10.5 10 9.5 8.5 Freq (GHz) IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIl 0.05 o - . U 325 :52ch -0.05 12 11.5 11 10.5 Freq (GHz) 9.5 8.5 Figure 4.16. Error analysis of permittivity for 3.0% tolerance in material thickness for Rexolite 76 q q . . . . u u "" ...... ‘ VJ . . c u u n . . 8 fi . . w i ...... .r m u n F . . . u u S III‘ IIIIII 1 V. . . VJ . . m m m a .--” ...... .r e . . m u u r . . e ...... .1 D- . . ,m . . s u u .9 III” IIIIII u . .WJ . . a . . n . . A _ . r TL ..... .. O . . rl . . rl . . E . . 1L ..... .r ‘l I I l IIIIIIII 1------r----- IIIIIIIII 1.4---- n B 1 1.2-- 1 ---- :8; @3393 8.5 Freq (GHz) u d d u . a u - a - - u u — - IJ IIIIIIII J IIIIII 1 IIIIII c - c - u o - u u . - u - o . . c - IL IIIIII r IIIIL IIIIII r IIIIII u c - u . - - c u - u p - . . c u - u a u c c . rJ IIIIII 1II IIJ IIIIII 1 IIIIII . - c c a c c o u u c c o . n u c u n - ... IIIIII rIII L IIIIII f IIIIII . - - u u u u n a . c . . c - u u - u - u . . I... IIIIII q- lllllllllll ql llllll p . u u . c u - u u — o - - - IL IIIIII r IIIIIIIIII r IIIIII - . n u . c . . - c u c u - u p _ - IJ llllll an IIIIIIIIII nu IIIIII - - c c . g n . c c u a g . - IL IIIIII r IIIIIIIIII r IIIIII . . c c - — n n c — - c n — - B 8 9... 2 1| 4: 52 c u a 83.5 3.33635 Freq (GHz) Figure 4.17. Error analysis of permeability for 0.3% tolerance in waveguide width for 77 MagRAM Error Analysis of Permittivity vs. Frequency - - a - a - - c . c - u a . c u c n . . IIIIQIIIJIlllclI. quIIIJIl — - p . o c . g - c u u n u a - u n . u c c c - a - u n . u - u a . u - . c . g - u o - o u c o g o u _ o c j - c c u c n p u - u u - u . a u o c u u a c u . c - n n c u u n n . a a u u g n o - c c u u g n u o u n c . - lilldlnlallll. ..IIIJII - . c - c u - n u a - u g a o - g c - o - - q . . IIIIFIIILIIll-Il IPIIILIP - - a - c a u n . c u - o - c n o g — c - u c - n o u a u u - IIII‘IIIJ IIIII III‘IIIJII - u - . o p s c - c - u - - a a . n n - u o n - c o - u - u u - n . o u - n - u - n p p n m a s 4. 2 m U U U U 2 2 2 2 2mm: bizgctma 12 11.5 11 10.5 10 9.5 8.5 Freq (GHz) IIIIII_v IIIIIII III III III ass: £22523 -1 ---- Freq (GHz) Figure 4.18. Error analysis of permittivity for 0.3% tolerance in waveguide width for MagRAM 78 ErrorAnalysis of Permeability vs. Frequency I I IIIII IIIIIIIIIII III III IIIIIIIII IIIIII r-----‘------ ---- IIIII IIIII IIIII IIIII IIIII 1.01 ---- 93a :__s$ssn_ 11 11.5 12 10.5 IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII 0.05 a n D 89:: Ezfiamsaa 12 11.5 8.5 Freq (GHz) Figure 4.19. Error analysis of permeability for 0.3% tolerance in waveguide width for Rexolite 79 Error Analysis of Permittivity vs. Frequency ” u u . . . . . . IIIIIIII nun-I IIII-‘IIIIIIIJoIl 2 IIIIIIIIIIIIII IIIIIIIIIIIIJ . . . 1 . . . . . . . . . . . . 5 f nnnnnnn .. ...... _. ....... Li . uuuuuuuuuuuuuuuuuuuuuuuu . . . 1 . . . 1 . . . . . . . . . IIIIIIII J-IIII.II-‘IIIIIIIJ-II 1 IIIIIIIIIIIIII IIIIIIIIIIIII . . . 1 . . . . . . . . . \II . IIIIIIII L-IIII III-'IIIIIIIJII U H IIIIIIIIIIIIII- IIIIIIIIIIIII . . . 1 G . . . . II\ . u n u m. n IIIIIIII nIIIInwVII-IIIIIII .II 0 r IIIIIIIIIIIII IIIIIIIIIIIII 4. .... .. J. 1 F . . . . . . . . . . . . ........ 5. . . . 9 . . . . . . . . . . . . IIIIIIII JcIII . II-‘IIIIIIInJ—II 9 IIIIIIIIIIIIII IIIIIIIIIIIII . . . . . . . . . . . . . T IIIIIII “IIIIWWII-r IIIIIII L—Il 5- IIIIIIIIIIIIII . IIIIIIIIIIIII n u u 8 . a _. .P m 5 5 5 5 5 U 5 2 5. 2. 4 0. 0 2 2 U D 9.25 gagged 325 3:5?ch 10.5 11 11.5 12 10 9.5 9 8.5 Freq (GHZ) Figure 4.20. Error analysis of permittivity for 0.3% tolerance in waveguide width for Rexolite 80 11 10.5 10 Freq (GHz) 81 q u q q . . . . . . . . . . . . g . . . . .--“ IIIIII .1 IIIIII 1 ..... 1-- w rJ """""""""""""""" VJ - . - - . C . . . . . n n u n u u e . . . . 5 . U III“ IIIIII r IIIIII P IIIII rIII - IL IIIIIIIIIIIIIIIIIIIIIII q . . . . 1 u e . . . . 1 r . . . . . F u u n u u . . . . . . S IIIIIIIIIIIIIIIIIIIIIII 1 I IIIIII IIIIIIIIIIIII I V q u. u. u. 1. .H Y n n . n u m . . . \II . m . . . . 5 z . a III” IIIIII "I IIIII or IIIIII urIII U H I‘- IIIIIIIIIIIIIIIII l e u u u u 1 G u m . . . . q . rl . . . . . e e P ...... _. ..... _. m H J. ........... . . . . . f . . . . . 0 S u u n u u .9 ...H ...... . ...... .. ...... "I: 5. r. ..................... .WJ " u n 9 u a . . . . n . . . . A . . . . r IL ........... u. ...... “ll 9 .n ..................... 0 . . . . vl . . . . rl . . . . E . . . . . . . 5 . III’ IIIIIIIIIII r IIIIII rIII I I‘ IIIIIIIIIIIIIIIIIIII u n n 8 n n u . . . . . . . r n _ - n n h B 4. 2. 1 6. B 0. 2 came 5:53:65 awe: 3.53885 9.5 Figure 4.21. Error analysis of permeability for 1.0% tolerance in waveguide width for MagRAM Error Analysis of Permittivity vs. Frequency I--- I--- -----r-----‘----. J------L----- J----- I 12 98: $2585.”. - u o u o a . - 4 J u p . u n . u u u u u u u u u h .— . c p u . - . c g n a a u a n a . o g . . o c c o a - a u c g a - u . - g n o n . n n n o n . I'-Irlllh|"'--' - ' -r'-"'1 - u o o - u u - . c - a - n a a n c . n n u g n u a c u c a c u . c o u n n u a u u n a - u . u n u u a o - o - u o n c u a fi - a . - - u o u n c c c - g n n c c - . n u u . - u a - c c . c n c - n u o n u c - u u u — - u n - n u . - u o o - c - - . u o - - h p u 1 8 B 4 2 .U 2 U U D U 2 2 2 2 2 9.5 10 10.5 11 11.5 8.5 IIIIIII lllllll Freq (GHz) IIIIIII '''''' IIIIIII r---- IIIIIII --l --l --- awe: rigged -1 _--- 9.5 10 10.5 11 11.5 12 Freq(GHz) 9 Figure 4.22. Error analysis of permittivity for 1.0% tolerance in waveguide width for 82 MagRAM Error Analysis of Permeability vs. Frequency lllll lllllllllllllllll '''' -J------L---- If I I I I I. I I I I I -r----- I I L I I I l I r I I I I I J I I I I I -‘----- r---- IIIII """" 103 1.02"- 101 :25 $3855 12 11.5 10 10.5 11 9.5 8.5 Freq (GHz) Freq (GHz) 39:: b=5mmEBa Figure 4.23. Error analysis of permeability for 1.0% tolerance in waveguide width for Rexolite 83 Error Analysis of Permittivity vs. Frequency IIIIIIIIIIIIIIIIIIIII IL 12 ............... 11.5 11 10.5 Freq (GHz) """"""""""""" 9.5 """l' " ' ' - 9 .................... 255»- 2. 245-"- :mm: gagged "'I"-"" "-""-'l"l ...................... . c . b 0 U 05 -U.US awe; 355;..qu Freq (GHz) Figure 4.24. Error analysis of permittivity for 1.0% tolerance in waveguide width for Rexolite 84 ''''''' I'- "' "- Error Analysis of Permeability vs. Frequency -1-----1 1 12 --l "1 I'll --l . . . . . . h n n » PO «.4 2 4| as; :___o_$§mn_ 10 10.5 11 11.5 Freq(GHz) 9.5 r. rm h t M w e di 1 d . . .1 . . u . . WC . . 2 ..H ......... .n .......... I 1 v _ . m - u u n 5 .m .... IIIIIIIII L IIIIIIIIIIII . e n n n H m — n c a - n u r n u u to I III-III I I IIIIIIIIIIII 1 O .n u. 4. 1 t u u " NM " n ” r0. fix 3. I" ...... r ............... ... U H r u 1 w. m . y . q t J. .................... U m m . 4| E... .w n m ---: 5. a u 9 p . f . O u .m l. uuuuuuuuuuuuuuuuu 9 W; . .nla " m IL.IIIIII .r IIIII. 5 r u u u u 8 m . . . . r. _ . . . E 5 B o. 2. 5. ..i 1.. Q 2 M 4 ates £5323 m m m a F M 85 Error Analysis of Permittivity vs. Frequency """""""""""""""" ................ ---‘----- Freq (GHz) 5 U 2 2mm: gaggma my .5 19 ----1 r-----1------ Freq (GHiz) ass: :55qu -1 ---- Figure 4.26. Error analysis of permittivity for 3.0% tolerance in waveguide width for MagRAM 86 ass $585.3. - I . . c u . — . u - - - - . '''' J-""'-1--"J- --1-"'l . w; n n . n u n n e . . U 1----“ ..... r"--L. . I'L w . - o u r _ - c - - F u n w" . . . S IIIII J- """ .1- J. .... 1 """" V. . . . w... u n H .II . . . H . . . b iiiiiiiiiiiiiiiiiiiiiiiii a . . . e . _ n . . c g m . u . . . e .u u .u .1 . """"""" 1- "-" "-- m . o c u 0 u u . n .B u u u S IIIIIIIIII r- IIIIIIIIIII W. n u . n a . . . n . y . A . . . . - . r IIIII J IIIII a- ..... fl IIIII o . u - n — u g . . . E . - u . . . IIIIIIIIII rl IIIIIIIrIIIIl fil . u u . . c n n . n 3 2 4| 1 9 8 nu nu nu a: up 1 1 1 U D 11 11.5 12 10.5 Freq (GHz) """"""""""""""""""" IIIIIIIIIIIIIIIIIIIIIIIIII 0.05 - n U awe; £3325 8.5 Freq (GHz) Figure 4.27. Error analysis of permeability for 3.0% tolerance in waveguide width for Rexolite 87 Error Analysis of Permittivity vs. Frequency I I I U T I I l 12 1 -----L I I I I I I I J- ----OJcnuunoLuuu-CJ-C-ud .....‘C.... I I I I I I I I I I I I I. I l --J- I I I I I I I I I I I I I ----J-- I l -J--- L---- c u u o _ L I I I I I I I l 5. 2 — a . c - g n n 5 5. 5. 2 2.45 L"- 2 came EEEEEQ 11.5 11 10.5 Freq (GHz) ....................... ------"'---l IIIIIIIIIII """""""""""""""""" ........................ IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII . . n U 0.05 awe; b.2258 -U.05 11.5 12 11 8.5 Freq (GHz) Figure 4.28. Error analysis of permittivity for 3.0% tolerance in waveguide width for Rexolite 88 Error Analysis of Permeability vs. Frequency d d d H d 1 . . . . . . . . . . . . . . . . . . . . . . . . . . fiJ-I-ull -. :1 mm 1. . "ll-".----.- - o u u c — . . . . . . . . . . . . . 5 . . . . . IL--- F---‘ I--'J - " L """"" r--l'r """" . 1 . . . . . 1 . . . . . . . . . . . . . . . . . . . I'J- ........... ----l 1 I.‘ J. ----.1-'I|-1 ..... . AII . . . . . . . . . . . . . . n 5 fl... " . n u I.- IIIIIIII . rrIIII rIIIIr IIIII - U H u 41 G u . u n . le . . . . u w. u H n u a .. 1 H .- .. .- .- - a u - - - - u - a u .1. ............... iii 5. Lil-.. ----------------- u 9 u n n . . . . . . . . . . . . . . . . -:5:-:-9 u u n u n . . . . . . . . . . . 'L- ....... h """" 5. t-r--'-h -.r- "---: u n u n 8 u u . u u . . . . . . . . . . h u b n — n b n h :3: 3:58.59”; Baez gsameao Freq (GHz) 89 Figure 4.29. Error analysis of permeability using test setup #1 with cable model HP-85132C and MagRAM Error Analysis of Permittivity vs. Frequency ----uhu-uo—‘u-I-I‘ 22 21.5 ass basis-n. 10.5 11 11.5 12 10 9.5 8.5 ) Freq (GHz .1 I I I I I I I I I I I '|- I I I Ulnar ' -'-' -'-" I I I I I .- I l I I I I I I I 4 I I I I I I I I I 4 I I I I I I I I I I I I I I I I- I I I I I I I I I 4 I I I I I I I I I I I- I I I I I 1 L-----J---- I I L----- I I 12 i -1 1 ____ U 1--- 32.5 :52qu -2_--- 10.5 11 11.5 (GHz) 10 Freq 9.5 8.5 Figure 4.30. Error analysis of permittivity using test setup #1 with cable model HP-85132C and MagRAM 90 r--- I I I I -----‘----‘ I ‘ """"" IIIIIIIIII - n - - u u o u u - c a. c c - c - F .- o u .- p o d u c n u - .r c ...... Error Analysis of Permeability vs. Frequency 1.1 cam: bzsmmgon. 12 11.5 Freq (GHz) dl - a d g . . u . u . . . o . . . . F: . . n . . . . . . . n . . . u - . - - . - . P IIIII L IIIII 1.. . .1 . - u g c . c . c . - a . . — - . . - a u . c . c c . . . - tori-III-.. II'I-'1 . . . . . . - u u - c u a _ . . . . fl lllll .— lllll fil . . . n . g c o n u o . g o o - n r '''' r """" 'l . . . . . . s . . . . . 'fi ......... j ........ "I . - . . - c c c c . If IIIIIIIIIIIIIII f] . . . u c — u . . p n 1 5 1 .U U U U . 83.5 2:53.53. 12 11.5 11 10.5 Freq (GHz) 10 9.5 8.5 Figure 4.31. Error analysis of permeability using test setup #1 with cable model HP-85132C and Rexolite 91 Error Analysis of Permittivity vs. Frequency q d d lq . u o n n c a u u u u u u u n u l ...... J ..... J ..... .-l u u - u g u - u - p u . c - g - a p u . I L | ' ' I I L- ' I ' I L .... .-J u - g c a a u - u n c c n n u c g . u u u w n o ' J IIIIIIIIIII I J """" C'l . c u u u - u u - c u c c u c u n . u u I ‘ """""""" L ...... .-- o u c - u u c - n u u o a c a u u u u - c . J ....... J '''' J IIIIII .-l p u u o u c n . a u u u u o - . - fil .- IIIIIII l- IIIIIIIIIIIII all. u u u o - o c u u - - u c u - T J. ...... JI' - ' - """""" -'l - c p o u u a u o - a u n - o c — c c - - ~ ....... L ' - ' - L ...... ..l T u o u c u n . . a u c . p n n F B 5 5. 5 2 5. 2 . 2 2 98: Sign 11 11.5 12 10.5 10 9.5 8.5 Freq (GHz) IIIIII ...... ----L-----J----- ...... awe; 352::ch Freq (GHz) Figure 4.32. Error analysis of permittivity using test setup #1 with cable model HP-85132C and Rexolite 92 Error Analysis of Permeability vs. Frequency 'I I- I I I I - -4---- I I I I ----flanood ----flu---- -h-----d------h- I I IIIIIIIII 4------'- ----l ""I Ill I'l IIIIIIIIIIIIII 'IIIl Ill as; $3825 11 11.5 12 10.5 Freq (GHz) 0 1 9.5 awe: 3.5365,; 4 . . . ................. Tl: 2 . . 1 . . . . . . . . . . . 5 P"'-L ''''''' r ..... o . . . 1 . . . 1 . . . . . . . . . . . . .1... . . _ . . . u u u 5. ..r--- .. 1-37:1 nU . . . 1 . . . . . . . . . .IIII. lllllllllllll . lllll U .. . . .1 1 . . . . . . . . . . Li... --L- ---": --., ..... 5. n u u u u 9 . . . . . . . . . . . . . :-..: 9 . . . . . . . . . . . . . . _ . . . . u u u H u 8 . . . . . p p _ p p 5. 8.. 0. 2. 4. B ... ... o. 2 2 Freq (GHz) Figure 4.33. Error analysis of permeability using test setup #1 with cable model HP-85132D and MagRAM 93 Error Analysis of Permittivity vs. Frequency Freq (GHz) - n p . . . — 5. U U 2 22 2 98; gagged IIIIIIIII IIIIIIIII - ' IIIIIIIII p .... . . . . . - — ' """"""""" d ''''' 4"- . . n . . I IIIIIIIIIII F IIIIIIIII . . . . . . . . | 1 ........ q ...... . . . . . . . . . . . . . . . . . . . . . . . h p b 1 U 4 325 £555 10.5 11 11.5 12 Freq (GHz) 10 9.5 8.5 Figure 4.34. Error analysis of permittivity using test setup #1 with cable model HP-85132D and MagRAM 94 Error Analysis of Permeability vs. Frequency k-- I I I I Oq------*-----4------’----c I ..... IIIIIIII IIIIl I IIIIII IIIIIII IIIIIIII 1 0.95 ---- ammo £33535 0.85 10 10.5 11 11.5 12 9.5 Freq (GHz) d d u _ c . _ c - c n o I‘ ..................... ‘l - g o _ c . . . - i u a u _ n u If IIIIIIIIII L III-Ir IIIrl . - u - - - g n c v . u u u a - o - - u . u n u u. . . I1 IIIIIIIIII J IIIIII 1 IIII‘I - . _ - . u _ c - u _ u a u - _ — o . . _. . . 'f'l'- L IIIII Lr IIIIII r III'rl - - _ _ a - — _ . c . . _. . . c . _. . c . . _. . . c - .v - - ...-III IJIIIIIJIIIIIIWI III—.1 - u .v - a u — _ _ . o c _ o a u - _ c u u - u - Ir IIIIIIIIII In. IIIIIIIIIII '1 n - _ _ g u - _ . a . . _ . . . . h . . a - - - c . _ - Ifil IIIJIIIIIIIIIIIIfiII llfil - u c n u - - - a c u a n . _ . o . . _ . . Ir IIIIIIIIII 1w iiiiii rill: rl . _ . . . _. . . . . k . n p p 1 a o e .. U . . D U U. 39:: $3365.“. 10 10.5 11 11.5 12 Freq(GHz) 9.5 8.5 Figure 4.35. Error analysis of permeability using test setup #1 with cable model HP-85132D and Rexolite 95 Error Analysis of Permittivity vs. Frequency a I I I -‘u-u-Odocnocc‘nhunndo----aha---- I ‘u-u-IJ-nonu cam: V €525 10.5 11 11.5 12 10 Freq 9.5 8.5 GHz) ( .u o u c p 1 IIIIIIIIIIIIII J IIIII - n g p - F IIIIIIIIIIIII u n u c u u c 1 llllllllllllll J - u _ u u c r IIIIIIIIIIIIII L c u c u c c ..... flIIIII—II IIIIIIIJIIIIII . a o u o IIIIIIIIIIIIIIIIIIIIIIIII n u o g - - u a n p - ..... ‘IIIIIII IIIIIIIJII III - - u - - u . WI IIr IIIIIIIIIIIIIIIIIII o o a - 4| 0 U ass; :5?ch 12 11.5 11 10.5 GHz 10 9.5 8.5 l ( Freq Figure 4.36. Error analysis of permittivity using test setup #1 with cable model HP—85132D and Rexolite 96 ErrorAnalysis of Permeability vs. Frequency u u u u u . . . . . . . . . . 3.1.1:“---L ....... 4 ---. mm L. .11-.. u n n u . u u u 5 u u . . . . u n - . IILIIIIhIIIIh Llllll . IF .— r IIIII . . . . 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . I;.---L---L--- ..---1 1 1.. J. .1 ..... . . . . 1 . . . - - u u - - . m m m u 5 n, u " ILiirivirlir IIIL. lllll AU. H r.r .n .r lllll u u n . All G . . . . . . . I|\ . . . n u u n W n u n ..... m H ... u. n u n u u " TIL-IIII” IIIIhIIIII. 5 I". .H 'IIIII . . u 9 u n n n u u a - _ . . . . . . . . n n u u n u " IIJIIII dIIIIJIIIIl 9 l1 J ... lllll u u n n u u u n . n " tuna: Ir..- a uninhirllsliicl 5 r L ritual - c a u u u . 8 u . . n n n n n h n n 8. 8 4. 2 1 8. 6 2. 4. 6 1 1 1 1 o 4 4 Q a... 2 saw: 3:588qu 39:: 3:53.53 Freq (GHz) 97 Figure 4.37. Error analysis of permeability using test setup #1 with cable model HP-85132E and MagRAM Error Analysis of Permittivity vs. Frequency _ u u u 1. _ . . . . _ . . . _ . . . 1 . . . . . . . . _ . . . _ . . . 5 'rIIIL. IIIIIIIIII ”--- AI--- 1 . . . . 1 _ . . . _ . . . _ . . . . . . . _ . . . . . . . _ . . . 1 G _ . . . ll; " u n u m. - III - IIIIIIIIIII .III .lIIl U _. J. n J. 1 H _ . . . _ . . . _ . . . n u u n u 9 _ . . . . . . . . . _ . . . . _ . . . . . . . . . _ . . . . . . . . . . . _ . . . . . 8 . . . . . P . p n 2 5. 1 5. .U 5. 2 1 2 U 2 9 2 2 4| :3: 53:26ch 32:: 55559”. a 1 I J - u a u - - . a c . - g u - - u n p c u u . u n . c u g n u c c . - o n c - u n u u c - . c a u - u o c c u a n . g u n - u - u u - n u a a u . u u u c u c u o . c u n u - a n u u o n c u c n . . u u — g g - IIIWII III—nil llldll IIIJIIL - u - n - o n u u g u u - - n u . u c u u - u g . . n o o c - n . — - u u - u a . - u c u u - g - . u a - . c u . _ . g u u u a u c u c . a . c - . u - _ — p - 4| 0 1 2 — . 12 11.5 11 10.5 D Freq (GHz) 1 9.5 8.5 Error analysis of permittivity using test setup #1 with cable model HP-85132E and MagRAM Figure 4.38. 98 ErrorAnalysis of Permeability vs. Frequency J-----i 4. u u a o u t'-‘ II" ' “----" """" 2 . . . 4| - c c n o - c c - . . . 5 I'-‘L-I--l ¢-lllu"--J 1 - - a 1 - - - o u - u u — I---“ ........ “----" ..... 1 . . . 1| 0 o - u c c u u u 5. .2, .......... ”----" ..... U H . . 1 G - - — ( u u n m I--. ....... .----. ..... U r 4. u u 1 F. u u - - n u - - - 1"-“ IIIIIIIII h- "n'II-‘lL 5 u u u 9 u — - u - - u — ruuihiun fl uuuuuuuuuuu n rrrrr g u c u - . - o - 11-..--- .r ........... u ..... 5. u n u n 8 n u - o — P n — 1. 5 1 5 9. 5 1 U. 9. U 8 4| nu DU cam; 3.5365“. U awe: $5323.“. . . 4. q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'r"'-'L-- -L " r ..... P- . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . ""-"J-- --J‘---r-‘---'-‘l . . _ . . . . . . . . . . _ . . . . _ . . . . : . . r lllll L '''' L'UOI-fi IIIIIII Dull . . t . . . . _ i. . . . r . . . . _. . . . . _. v. . . . _. . . quaint; IIIJIIII‘rfillilifil . . .f ... . . . _ . . . . _ . . . . _ _. . . . L . . ............... r'--llrll i. . _ v. . . . _ . . . . _. . . . . . I . . . . . . . . . 1.. ..... 4 nnnnnnnnnn J. nnnnn .... . . . . . . . . . . . _ . . _ . Ir """"""" AV ......... r- . . _ . . . . w . . . . . . P - ~ - 1.. 5 D 5 4| 0 U D U n.. 2 1 11.5 11 10.5 10 9.5 8.5 Freq ((3112) Figure 4.39. Error analysis of permeability using test setup #1 with cable model HP-85132E and Rexolite 99 Error Analysis of Permittivity vs. Frequency u u u u c o c c I I-"" '1 2 i. n 1 n g o a u c . . 5 ..---I - "I 1 . . 1 u a n c - u T. ........... T 1 . . 1 c c c . UL- IIIIIIIIIIII ". U H . . 1G u u m .l- lllllll - c U 4. .u j 1 .H u u n o u a I‘- lllllll L. ”-l 5a u n . 9 u p o g o o - u . J. ....... .n u... 9 u - o o u n u c u - - - ... ....... .H--- "i 5. n u n 8 u n u p p 5 5 5 2 5. 4. 2 2 saw: gageuma H 985 3325?. 10.5 11 11.5 12 0 Freq (GHz) 1 9.5 8.5 Figure 4.40. Error analysis of permittivity using test setup #1 with cable model HP—85132E and Rexolite 100 Error Analysis of Permeability vs. Frequency 9.3: £5855 - q d . _ - o - o . . - _ - - ' --‘-"l"4||-" -J o . u . - o - . g . _ . . . I- ""F-"lh-.'- ----l _ . - - — u - a . . p . - . . - . - '. -"'*-"-‘- J-"'l . u n c - u — n c - . u . - a c . - c . a . - . _ o . . a . a c . I - - - IIII 4--- '-"l—Iul.l- . . n . u . - u u c o . - u . .II F PIIIILIII'I. - - - . a . a a - _ . a . u — """"" 4"IIJIII'IA . u o - . u - . _ c I- """""""" *.I-"L|"'L . c _ u - - - u c - n _ — — 8 B 4 2 4| 8 Al 1 1 1 0 10.5 11 11.5 12 0 1 9.5 8.5 Freq (GHz) q . . . . '“-"- "-'-‘ '''' 2 . . All . . . . . . . . . . . 5 IF- --L ....... r ..... u . . . 1 . . . 1 . . . . . . . . . ...: -.. ..---r 1 . . . 1 . . . . . . .. .. ..... U H . . . 1 G . . . II\ n n u w. . . U I.“ """"""""""""" "I IIII 1 F” u n u . . . 'Or-'l-‘. "I-r ..... 5a u n u n 9 . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . u u u u 8 . . . . . - b p p _ 5 B 0. 2 4. B .... 4 0. 0. 2 Bee; r___o_$§ma Error analysis of permeability using test setup #1 with cable model HP-85132F and MagRAM Figure 4.41. 101 Error Analysis of Permittivity vs. Frequency I I I J- --- I I I - --L ". ---- ------l' 'l'l I I I I r I I I I ‘ -----------—-—--------q I I I I kn---- 22 n n .U 2 21 +--- 20.5 9mm: 59::ng 10 10.5 11 11.5 12 Freq(GHz) 9.5 8.5 - o - p 1 "I I "' I II- I l I "'-‘I" " I I l I- ............... J--- .----- . c n u 0 -1 _--- awe; bSEEEQ 12 10.5 11 11.5 GHz 10 9.5 8.5 l ( Freq Figure 4.42. Error analysis of permittivity using test setup #1 with cable model HP-85132F and MagRAM 102 Error Analysis of Permeability vs. Frequency I--- 'I-‘ 'III rIII ----q I I I I I I fl-- 1 1.05 ---- 0.95 r"- :me 5:53:25”. JD. 5. I41 1 '11 1 5n. IIUH 1G Ills q LUm 1F 5. 9 :9 :5. 8 5 8 AU IIIIIIIII HIIIIII‘l - u . u n u . IIII IIIIrl . n a o g c c o IIIIIIIIIII ‘1 u c u c - a - c _ c ...... r""-rl . c u u . . . v u a . . . - o IIIIII \l IIIIQ-l . o . n c p — o - o ...... r' ---r . .4 - o . p - o a . u I - --..-- 1.1 u o c u - o - u . . WI IIIIrIII I'l . - - o p 0 5 0. 0 u u 1. 0 Bass £58an 12 11.5 10.5 11 Freq (GHZ) 10 9.5 8.5 Figure 4.43. Error analysis of permeability using test setup #1 with cable model HP-85132F and Rexolite 103 Error Analysis of Permittivity vs. Frequency fi I j t I I ‘C---.J------‘--.--J------L cams 535:..qu 12 11.5 11 10.5 10 Freq 9.5 8.5 GHz) ( IIIIIIIIIIIIIIIIIII IIIII II'IIII IIIIIII I'II'I IIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIII IIIII IIIIIIIIIIIIII 'III‘ IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII U 0.1 -o.1 89:5 bizzgma 10.5 11 11.5 12 10 9.5 8.5 (GHz) Freq Figure 4.44. Error analysis of permittivity using test setup #1 with cable model HP-85132F and Rexolite 104 Error Analysis of Permeability vs. Frequency as; $3855 awe; Esseaa d n d u d - E q - — _ . g o - - a _ . . - u u _ a . - n . u n u 2 I u- II-IIII-IIII-III IIIII2 I-III IIII- IIIII 1IIII‘IIII1 .. q q u _ 1 .- ... . . 1 - a - - u c u - u c u c u n n n n u u u 5 u . . . 5 IIL—IIII” w wI . IIIII 1. T-FIIIIL. IIL. IIIII "lIIII-r IIIII 1 o - - - c 1 - c c c - 1- . . - - - g u a u c - u - _ o - _ u c . . . . . u u u n u n . — IIJ-IIIIh ‘ ‘IIIIJ— IIIII H I-‘IIIIJ- J. ..... '1'---“ IIIII H n u u “I u - u a c - u - - a u - a c u \I’ u p a n u u a n 5. z n u . .- .. 5. ...-...u a ..----..I-l 0 H 4---!" . ..... . ----.-- - U . . . . . 1 G . . . . All - . g - - Ills . - - H . u u u u q u u u . - II.IIII. . .IIII.IIII10 m .fiIIIIJ. IIIIIIII VIIIIVIIIILU ." u. ..q .u 1 F . . . . 1 u - u u - . - - o u g u - o a - c u - u . u u u r . . . . 5 .r IIILIIIIL IIIfIIIIr IIIII 5 ILIIII.’ IIIII PIIIIL IIIII u I I - n o - 9 . . . . 9 u . . . _ c - . u u . c — — g - u n - . o c - u n . u a c u u u o - - 1-4.1--“ ----TIL-iig ..q--.T---. ..--1.1119 n a . u u a - o - g - u c p n — o o - - u - u n - c - o u u - u n n u n "h"'-. ---h-"'h--'-h ''''' 5. """L"IIL-I r--"r ..... 5- " u u u 8 u u u u 8 n n n M n n n n 8. B 4. 2 1 8. 5. 8 Q 2 4. 5. Freq (GHz) Figure 4.45. Error analysis of permeability using test setup #1 with no cable and MagRAM 105 Error Analysis of Permittivity ys. Frequency __r_____ I I I 1"""r""'1""'"r""'1""fir"""1"" I I I L I I I I -.---‘c-CC-nh-GC-u‘cuccd -J I I I I -4----- I I I I I -..-c -L---- -J----- FCC-fincudcdncnouufi-uon IIIl IIIl IIII ‘IIII 21.5----.---- 21 20.5 gas rEzEma 19.5 ---- awe; 32555 d 1 d d - n n a g n . o n u — n — s n o I ''''''''' ‘ III‘ IIIIII JIII - - c o a u g o c - - a . - — a c c - . IIIr IIIIII rI I IFIIIIIILIIJ _ n - o - u u u n - n o - . u n n o - u - - c - rII‘I IIIIII ‘II II‘ IIIIII JIII - - u u - - o c - - o a - . - a - u . . IIIr IIIIII r I II. IIIIII ‘IIl . . . o . - . p . u - - o u . u c . u u _ _ . . 1II‘I IIIIII “I I'd IIIIII JIII - n c n c u - o . c - c - . u c _ . n - IIIr ...... r- I I'IIIIIILIII . u . a u g . u . . - u . c o n _ . . u . - n - III“ IIIIII “I I IqIIIIIIJIIl - - g n - g a c . - u n - g - u - . - - IIIr ''''''' I I'IIIIII‘III - - u c o - u - - u u b u n p 1 U 1.I A).- 12 105 11 11.5 Freq (GHz) 10 9.5 8.5 Figure 4.46. Error analysis of permittivity using test setup #1 with no cable and MagRAM 106 Error Analysis of Permeability vs. Frequency IIII IIII f I I I IIII 'III IIII -----1 12 11.5 IIIIIIIIIIIIIIII Freq (GHz) IIIIIIIIIIIIIIII t-----q------p-----d------*-----‘------h-----‘----- 8.5 1.1 1.05 ---- 0.95 o.9 as: r___§eaa 32.: 55853 10.5 11 11.5 12 Freq (GHz) 10 9.5 8.5 Error analysis of permeability using test setup #1 with no cable and Figure 4.47. Rexolite 107 Error Analysis of Permittivity vs. Frequency r I I I I . I $~ I L I I I I I I I L I -----J I I I I I I I I .------------------------------------------------‘ II II. II .1 I1 I L 9mm. 2.55 r"- U 2.5 55:25.55 2.45 8.5 Freq (GHz) IIIII IIIII IIIII IIIII IIIII IIIII ‘h‘ IIIIIII IIIIII IIIIII IIIIIl IIIIII IIIIII o.1 -o.1 BaEc $22.53 8.5 Freq (GHz) Figure 4.48. Error analysis of permittivity using test setup #1 with no cable and Rexolite 108 Error Analysis of Permeability vs. Frequency II Freq (GHz) IIIIIIIIIIIIII . c - u p — 8. 5. 1 1 9mm; §_5me8& - -----l I ----‘----‘ I I j I I IIIII III IIIII 10.5 Freq (0H2) IIIII IIIIIIIIIIIIIIIIII 2 1 1 11 10 9.5 awe; $385.55 Figure 4.49. Error analysis of permeability using test setup #2 and MagRAM 109 Error Analysis of Permittivity vs. Frequency 22 cam: ESEEEQ 195-"- 12 11.5 Freq (GHz) awe; 535.555 4 d u. I c - p c u - u o a a - a u u u . lI-II IIII‘I IIII4I IIIIJIII - u u u c u - c - . - c u u - c u - - . IIIrIII II'II IIIFII IIILIIL . g u u a - o u c u - u u u . - a u - o - - a . III‘II III‘II III‘II IIIJIII - u - c n u - o p c - o u u u a n - n - rIIrII III'II III’II III‘III . - u p c g u n n g u u u - u o u - . u c - - - llglll lllfill llldll IIIJIIJ - . u u a - . u c - u g g n a u n - c u n c - g o a - u a n - u u u - - c u - c o - - . llqull Illflll llldlll IIJIII . a c c u - s o u u . o u p — o u - . - TII'I IIII'II III'III II‘III . u o u o u u c u . c u b — n n 1 0 4| 0. 2 10.5 11 11.5 1 Freq (GHz) 10 9.5 8.5 Figure 4.50. Error analysis of permittivity using test setup #2 and MagRAM 110 Error Analysis of Permeability vs. Frequency jIII rIII IIII III. III. L---- l IIIIIIIII IIIIIIIII IIIIIIIII . . . h 5 1. .U. 1 . n - 5 9. 0 93: $3865.; 2 10 10.5 11 11.5 1 9.5 Freq (GHz) - u E p o o u c a u a u ; u u u - I‘IIIIIJII-FII III II ‘I . . _ . c a v u . . . . u g c . . . . r IIIII LII I 2 . V .r u n _ u n u u u c c - o c u c . I‘ IIIIJIIIIIJ ‘1 o u c c o c g u u u a n g . o 1 IIIIIIIIIIII r1 . — u c - q u u p o u g g u n . - c I“ IIIIJI III “II n u u . ... . c - n u u c n c a I... IIIII L IIII ri- . u . n a u u u . . n . n u - . - - I“ IIIIIIIIIIIIIII null . n u - o a o n a n u - I'IIII IIIIII '1 - n _ - o . c - - F - — 1 5 1 U U. U. U 3..-.55 £5855 10.5 11 11.5 12 10 9.5 8.5 Freq (GHz) Figure 4.51. Error analysis of permeability using test setup #2 and Rexolite 111 Error Analysis of Permittivity vs. Frequency u .1 . . . . """" J.' ""--"-l 2 . . 1 . . . . . . . . 5 ---L ...... .-l O . . 4| . . 1 . . . . . . . . I IIIIIII "IJ H . . u 5 7. IIIIIIIIIIIIIIIIIIII “I1 0 H . 1 G . ( u 0- ------------ T 0 m . 1 F u . . IIIIIIIIIIIII “I1 5 . 9 . . . . IIIIIIII .II. 9 . . . . L IIIIIIII ”II 5c 8 ass 52:55.”. IIIIIIIIIIIIIIIII IIIII I III III- II IIIIII IIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII IIIIII -r---- IIIIIIIIIIIIIIIIIIIIIIII 0.1 ~-- 0 was; 55558 H 10.5 11 11.5 12 Freq (GHz) 10 9.5 Figure 4.52. Error analysis of permittivity using test setup #2 and Rexolite 112 Error Analysis of Permeability vs. Frequency u u u . _ u g - o - u . - — u ... “----u . . c u - p n u - c c - . . 5 . . 5 --.“----¢ 1 ..r .r ----- 1 . - 1 u - 1 - - . _ c u a - o - . - o . 1 I. n IIIII 1 .32...” 1 .- u. 1 - . . . c u - u 5. fl; " u 5. a ILI U H If r IIIII U H - . . n 1 @- u u 1 m. n m u n w ...-I 0 -. .----.. .U - 5. . 1 H .1 .5 1 H u u . g - --.-- 5. -.- ---- 5 u 9 u 9 - _ . u . _ 3.---- - 9 a. 2-1 ..... 9 n . u c _ - . T-.- -- - 5. E- . --- 5. u 8 u u u 8 u - - u p — p 8 5 2. .4 B 1 1 2 2 Q 2mm: 3:53.555 39:: 3.58685 Figure 4.53. Error analysis of permeability using test setup #3 and MagRAM 113 Error Analysis of Permittivity vs. Frequency "'r"""1‘""'r"""1'""'r""'—1'"""r""*1 ----.l ''''''''''''' ------------------------------‘ ''''' 9 .... '5--- --- IIIIIIIII ---.l'- J---‘ . c . - . - u . o - c - u - o a . . g - c . - . u — "'J '*"-' 9---.-- -J"'I . a . . - - . u . . .P - 22 - o o g g . n 5. U U 2 21 2 :8: £555”. 11.5 12 10 10.5 11 Freq (GHz) 9.5 awe; zzgesa d u a a c u . — o n g - u u . c o u - - u u c g . . - c p . - c - . u p u u c - . . c - . u a n . g u p c o u u - . lI-III Ill‘ll IIIQIIIIIIJIII . . - n u u . - u c . c u c u g u - - u u - c o u . . p u . g c . c n c n n c a u - . c c . - a - - - o - . . o - - n c n u u u u . . n . a . c u u n a u c - a n . a n n . - c n c . c a - - o g . c c u - a c u n . . rl'r' ...-I". ...-F". --.---l . . c n u . _ g - - . u p — — - 1 U 1.: 2 c 10.5 11 11.5 12 U Freq (GHz) 1 9.5 8.5 Figure 4.54. Error analysis of permittivity using test setup #3 and MagRAM 114 q i - p c . . . . u c u . . . 1 n u u n u n u n 5 ."'IA.' 'L '9 Ir .... ”l1. - m c - 1 u . u u u o n u u a u - "-'lJ-" --JQVI'-'f'-1'l'-I-‘141I . u _ n n . _ . . . u - \III " u. . . 5 z IIIIIIIIIIIIIIIIIIIII fl. o t. A "- . U H . . . u 16- . v . u “w u . m- . 4 . . 0 . _. . . 41F u u u _ - u ----- .n .... "- .15. u u n u . 9 u __ u u c f u u ----- h . T9 - c c u n """""" ""-'- ----9P15I 8 u I . . . . . . . . . . . . VJ . . . . C . . . . m n u . 5 u . . . . U .1... pnuuu. nnnnn . .r q . . . 4| . e . . . 4| . H u u u n . . . . s. 1--.. u u ----- 1 .- V. . . . 1| . Y n u u u .5" - o . $1) . H . . . 5 Z . w o H ..- e u u n 1 @- n m . . . 0.. . . . . . e . . . 0 e . VIII-u 4 IIIIIIIII r T1 P . . u 1 F . pm . . . . . . . . S - u c - 0& "-'L— .----u' --l 5n In, . W. n u 9 . a - - - n . Ann " . . . . r I--." .- ----------- . ..... 9 J 0 . . . vl . . r . . E u . 5 " IIIIL f IIIIIIIIIIIIIIIII . r n u 8 . . . . p p p 1 U 8. U D :25 $5855 - n o p 5 U 0 awe; b.3355 Figure 4.55. Error analysis of permeability using test setup #3 and Rexolite 115 ErrorAnalysis of Permittivity vs. Frequency 1 12 'l 11.5 I I I I I 1 L 1 Freq (GHz) 2.55 saw: 3 25881 IIIII ......... 1111 1 Freq (GHz) IIIII '''' IIIII I I I I I l A mec €22.85”. Figure 4.56. Error analysis of permittivity using test setup #3 and Rexolite 116 Error Analysis of Permeability vs. Frequency I- t- I 1 -—---‘----d '-'-h--'- .-----rOI---‘O-D-O-p-----‘------h-----‘---- 5"-1 '--'J cams .c__5$§mn_ . L . - - . o - J . . a - - ---' ---- "'L ..... . . o - n . . II ---- 49"IJ IIIII u u u o u . - a g — u . n c u — o _ . - u . .II- IIII qIIIIJl9IIl - c g - c . n . c - I II IPII I IIIIbIIIILIIIII . . . . . c u . g a u u . p p p p n 8 B 4 2 1 8 4| 1| 1| 1| DU 2 11.5 1 11 10.5 Freq (GHz 8.5 ) ‘1 d u d1 u u g o p u n u u g - o a c - p j‘ I' 'J'-'Il1l-"‘l-'-l . — o a c o u g - a - n n o u c - c ‘P- L ''''''''' r '''' u n u n c u n c u n - c c g c u u g “' J ........ w '''' u u c - o o a a u u u a - rrIIIIL lllllllllll r lllll - n u - n c g c c a c a - c - - c — ffilllld filllll . c o n c u u n u - n a s n c n u u u c u n u - u u - n - u u n - t"-'--J ..... fl ..... u o u n u a a u a - - u u c - I'II--~ 'r---'l - u - o n n c g u u — n - p — n 6 8 0. 2 4. 5 1.- 4.1 7.. 0. 0. BE: $3825 2 1 Freq (GHz) Figure 4.57. Error analysis of permeability using test setup #1 with 0.3% material thickness tolerance and 0.3% waveguide width tolerance for MagRAM 117 Error Analysis of Permittivity vs. Frequency d d d 1 _ a o a - _ c . g o _ . . u _ o a . . 1"-J ......... '9' 'J'-'l _ . . . . _ n a . c _ . o u g _ c . - a _ . . p . r|I'L IIIIIIII r --I-III L'I'l _ - - u o _ a p c c _ . c u u _ u - - n _ . . . . _ . c u . _ u n - - _ . c g c _ . . u c _ . - u u _ . u c g _ - u - u _ - u c u _ . o g a _ . o u q _ g - - u _ u c u - fillll. IIIIIIII ... Ill.lll Jllll - c . o _ c u u u _ . . c u . . . . . _ _ - o - rII-9LIII- "----r ---.-- 'LI'II _ . . u n _ c - — n _ . n u _ - - a _ . - o _ . . . 19"J' ---- 9--..-- J'-'l _ . u u _ . u n _ . u c g _ . . . . . . . r-"L' ' 'III ----.- 'LIIII _ - u u n . i . u u a n u . u u c - n n p 2 5 1 5 m 5 2 1 2 U 9 2 2 4| as: “Esteem. 10 10.5 11 GHz Freq 9.5 8.5 l ( I I I I I 4 I I I I I I I I I .....p-.-. I I I I I I 4 I I I I I ----q------fi----- ----flG-QOGO’- I I I I I P I I I I g u n 1 JO-..‘ I l 12 El 325 3256?. -2 ---- 11.5 11 10.5 0 1 9.5 8.5 Freq (GHz) Figure 4.58. Error analysis of permittivity using test setup #1 with 0.3% material thickness tolerance and 0.3% waveguide width tolerance for MagRAM 118 Error Analysis of Permeability vs. Frequency - 1 d u . u - u n u u . - n . c n - o u u - g u c u u - a . _ g - . - . - g u . c c - - . . . _ 1--'JI"- "-". """ - u . n o g o u - u n u _ u - "IILI'-’ 'II'I. ..... . . . - u u . u . . a . - - u . - . I'IIJ ......... ‘|-'I- |||| . c . - a g o g - u c - — - - '--IL .......... *-I'I- lllll o a . o - u c c . . a . - - f . . IIIJIII 1. IIIIIIIIIII . lllll c - - . . c . o - n r---‘ ''''''''''''' u ..... . - u . u c u . . n c - n — n - 1 5 1- 5 OJ 5 1 nu 9. U B 1: D U 93: rimmead 12 11.5 Freq (GHz) d n q d u c c a o u . o u c g a u a . . "l-"IJ-- '- '-'.--'1"'--‘l . o - c c n u o c c o u u - n u o - u c 1r ..... L '5 r ..... r o . . u n . n o u c - o u . u a - a . a - u . - . "999'IJ '|--TI1""'} - n . a . . . . . u a n c o c c a o u - - I'I999I‘ IIIIIIr'--'I-Il . . . . . a — - c c u u a u a - o o c - c u . u - [1I-'IIJI IIIJIIIILI‘II'III‘I . . _. . . . _ . . u - - a u c _ u u - . a If IIIII n. IIIIII r IIIII '1 — n . u u u u c - c . u u a v . u u - - q u a . u [q """ J ----L IIII 1 """ ‘1 c c u a - g u u u c n _ s . _ . 'r ......... AF .......... '1 . . _ . . . . n . o u u . o r P p h 1 % u % 1 U . . U U n.. . ass: gimmesa 12 11.5 11 10.5 Freq (GHz) 0 1 9.5 8.5 Figure 4.59. Error analysis of permeability using test setup #1 with 0.3% material thickness tolerance and 0.3% waveguide width tolerance for Rexolite 119 Error Analysis of Permittivity vs. Frequency l H . u . . . . . . 'J- ............ J. ...... ”-1 2 . . . 1 . . . . . . . . . . . . 5 r5--'-- | ---L """"" .-l O . . . 1| . . . 1 . . . . . . . . . - ........ - -' """ -- 1 -. a. 1 1 . . . . . . n u n 5. )2 T‘- ............ L. ...... "'l U H . . . 1| G . . . ( H . u H W O ....... - ..... C """"" .-l U r .. .H J. u 1 F . . . . . . . . . . . ... ....... -. ............. r 5. u u u 9 . . . . . . . . . a. IIIIIII I" rrrrrrrr "It 9 . . . . . . . . . . . . ... ....... -. ........... u: 5. u u u u 8 . . . . p p h . 5. 5 5. 5 2 5 2 4 2 2 away $2555.”. ..... """" ..... ...... llllllllll ................. fir I I I I I I I I I I I I I I 1 I I ............... o.1 o awe; reggae .5 11 11.5 12 0 Freq (GHz) 5 9. 8.5 Figure 4.60. Error analysis of permittivity using test setup #1 with 0.3% material thickness tolerance and 0.3% waveguide width tolerance for Rexolite 120 Error Analysis of Permeability vs. Frequency d d a .- - - - u - . - n - - . c . - - — j-""'4"'-‘l-l" ---l c - - c - n . a c - - - a . u - n - . g . u _ - - - n n - - - - fi"--|-"|||"'- J'---‘ - n a u n - g a a u "L-"-*"" --‘L """ . - g - c c . . - - - c _ IIJIIIIAIIII alllIJIIIIJ - u - o u a n - u - - c u u u — - u - - . a - g - . . - - - . - - VIJIIII «IIIIJIIIIJ - - u p . - . . u n - o n - - II-"- I'IIII*III'.I-I'L'IIII . — c - u u - . c u - . p r p — — 8 B 4 2 1 8 AI- 1 1 1 U :25 $3355 12 11.5 11 0.5 U Freq (GHz) 1 9.5 8.5 - u u u c - c c - . u ' ............ 1----1 ..... a . o n p c o - . c a o . u - u a - u - Ir "'L '-'L "-Ir-"'r .... u - . . o - o u o u c . u u . u . . u . g - - . a c - u - u a u a u a u - . g c a - - u u o o u u - n u u - . 'III L rIIIIr IIIII c - - o n - - — n u . - - u o - u - - n - - l-I IIIIIIIIIIIIIII q ''''' u c c c u u - u - o o g - o - - trill-.... r. rIIIIL - c . u u c u u n - c c n - u c . n - u u - . u - — u - c - c u u a - a - - o u - c c - - — . — u a u g u a - c o a u . n - - a . . . c b — — — p 6 8 Q 2 4 PO 4 4 0. 7.. 2 see; £5825... Freq (GHz) Figure 4.61. Error analysis of permeability using test setup #1 with 3.0% material thickness tolerance and 3.0% waveguide width tolerance for MagRAM 121 Error Analysis of Permittivity vs. Frequency _ u u u . . . . _ . . . .III .II .IIII IIII-I 2 .- -. a n 1 _ . . . _ . . . _ . . _ . . . 5 T--|L‘l-'l. ..... H... 1 . . . . 1 . . . . _ . . . . . . . .- .. u u 1 _ . . . _ . . . n u u u 5 ‘2..- . . . . 1 G . . . . II... n u n n W _w J. H n 1 F . . . . _ . . . _ . . . _ . . u 9 n u n . . . . . _ . . . ‘1"'J.' -Ih ...... ”I-‘ g _ . . . . . . . _ . . _ . . .r... .-I'-” ...... u ...... 5. n n H n n 8 . . . . p p — 2 5. 1 5. U 2 1 2 U 2 2 2 saw: gaggma T I I T I I TII t-‘ "' '9' I I I ' ---- " "-""'- I I I I I ------h-o-n- I I I I I I I 4 I I I I ' I--- " 'l'h'l' I I I I I I -----fi-u-u-n "I" " '-'h"-' 8.5 I l 11 11.5 12 I l I l 1---- o c c b 1 c U awe; EEEEBQ -2 1....-- 10.5 D Freq (GHz) 1 9.5 Figure 4.62. Error analysis of permittivity using test setup #1 with 3.0% material thickness tolerance and 3.0% waveguide width tolerance for MagRAM 122 Error Analysis of Permeability vs. Frequency VIII "II I--- IIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII T I I I I I I I ............. lllll IIIII ‘--'l IIIIl IIIII 1.1L"- 98a gimmeaa 0.9 12 11.5 Freq (GHz) awe; :___o_$ean_ dl d u d c o - u n n u u u c u . - o u o u u u o c u u u n c n u u o c u u - - u if IIIII LII IL I- r ..... Pl - o u u u - w u o . . v . . c a u u o n a u . n u — a. c . "IIIIIJII IIJ' IIIII 1 ..... ‘l n u _ n o o - _ + a o u - - o u c — _ u u a — _v u c . . .. . . . u - _ . o u u _v - n a - .v - u . . .v . . a - _v - - I-vIIIIIJI J «I 1|. - - T u o . . _ . . a c _ n o u . _ n a a u ‘ - c In! IIIII L L r PI. - c - c c o - _ u u o a __ u u u - v - u n c - c s - - . l1 IIIII J q.- __.I. o - n o - u u n - u - u u c If IIIIIIIIII r n - a u n - n n - u c n p p —r 1 5 5 1 U U. D U U U . 12 11.5 11 10.5 D Freq (GHz) 1 9.5 8.5 Figure 4.63. Error analysis of permeability using test setup #1 with 3.0% material thickness tolerance and 3.0% waveguide width tolerance for Rexolite 123 Error Analysis of Permittivity vs. Frequency 1 I I I I I I I l II .-----------------'----------------- 1 'III I III IIII-Il I I I I I I I I I I I I I I L I I I I I I ---- I- 'IIIII'I'I 2.5 2.5 . . . — 5 5 2.45 F--- 2 9mm: 332:5qu 11 10.5 10 Freq (GHz) 9.5 8.5 IIIII IIIII IIIII IIIII ..... I - I ;vvvrv v v I I I I I I I A I I I I I I 0.1 0 ans: $2555 12 11.5 11 10.5 GHz 9.5 8.5 ) ( Freq Figure 4.64. Error analysis of permittivity using test setup #1 with 3.0% material thickness tolerance and 3.0% waveguide width tolerance for Rexolite 124 CHAPTER 5 CONCLUSION Given the particular method of error analysis used within this thesis, it is safe to assume that the limiting factor of material characterization is the cables which are used while measuring the S-parameters from the propagating wave structure. It should be taken into account that the error analysis done with the cables was based on a “worst case” scenario. To gain a better understanding of the system, it would be advisable to measure the standard deviation of errors for the system and run that data through the error analysis program. From Figure 4.57 through Figure 4.64 it was shown that the material thickness and waveguide thickness did not contribute to much of the final error as long as the standard deviation of error was within reasonable limits. Figure 4.29 through Figure 4.48 show the dramatic difference between the theo- retical non-cable test setup versus the four cables that were tested. It is concluded that although the measuring instruments themselves contribute to more uncertainty than the material thickness and waveguide width, they do not contribute much of the final uncertainty encountered in this thesis. Given that all the instruments are properly calibrated and all the input parameters are properly measured, the number one contributing factor to the final results, within the scope of this thesis, is the cable that is used on the test instruments. Even though this thesis included much of the obvious sources of error, significant improvements can still be realized in terms of the accuracy of the program. It was mentioned in references [2, 3] that the angle the material is to the normal of wave 125 propagation is a large contributing factor to the source of error. This was not explored in this thesis but the Error Analysis program could be expanded to allow for this extra variable if the Inverse program was rewritten to allow for this input parameter. A much more difficult addition to the program would involve the amount of er- ror given the amount of gap between the material layer and the waveguide walls. This analysis would require a different inverse calculation altogether, but would yield interesting results. 126 APPENDICES 127 1XFH?EHVI)IXZIX FIJIUFILAJV CXDI)E3()F‘FT)FUWDAI{I)IPFUDHBIJEBJ This appendix contains the code written from the derivations in Section 3.2 which calculate the S-parameters of a slab of material inside a waveguide given the permit- tivity and permeability of the medium. The input and output files were written in Microsoft Excel and saved as comma separated values or .csv files. !Forward problem version 2.0 ”‘ I******IIIIII*************************************************** real pi, mu_o, eps_o, a, b, f, w, tm, etran, zo complex mu_m, eps_m, mu, eps, f_c, f_co, var_1, k, km ‘ complex 1, 2m, m11, m12, m21, m22, eref, einc, rho, tau real freq,eps_r,eps_i,mu_r,mu_i real db_mag,angle,slldb,s21db,slla,s21a real db_delta,ang1e_delta,tm_delta i = cmp1x(0.,1.) pi = 4.*atan(1.) ! tm tm .0035433 !Rexolite material thickness .0031623 !MagRAM material thickness mu_o = 4*pi*1.e-7 eps_o = 8.854e-12 a = 0.02286 !width of waveguide open(unit=1, status=’old’, form=’formatted’, action=’read’, & &defau1tfile=’/Documents and Settings/meeusenl/My Documents/& &fortran/’, & &file=’forward-input.csv’) !open this file in this directory open(unit=2, status=’replace’, form=’formatted’, & &action=’readwrite’, defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortranl’, & &file=’forward_output.csv’) !open this file in this directory 128 do read(1,*,iostat=ios) freq,eps_r,eps_i,mu_r,mu_i if(ios .gt. 0.0) cycle !if error, goto next input if(ios /= 0) exit !If end-of-file, exit do loop if (isnan(coefficient)) cycle !if file entry is not a !number, goto next input eps_m = eps_r + (i*eps_i) mu_m = mu_r + (i*mu_i) mu = mu_o*mu_m !static permeability eps = eps_o*eps_m !static permittivity f = freq*1.e9 !add 9 zeros to frequency to make GHz f_c = 1/(2*a*sqrt(mu*eps)) !material cutoff frequency f_co = 1/(2*a*sqrt(mu_o*eps_o)) !waveguide cutoff !frequency w = 2*pi*f var_1 = sqrt(1-(f_c/f)**2) !variable for intermediate !calculations k = w*sqrt(mu*eps) !free space wavenumber km = k*var_1 !material wavenumber !material wave impedance zm = (1/var_1)*sqrt(mu_o/eps_o)*sqrt(mu_m/eps_m) !free space wave impedance 20 = (1/sqrt(1-(f_co/f)**2))*sqrt(mu_o/eps_o) m11 = cos(km*tm) !matrix terms m12 = i*zm*sin(km*tm) m21 = i*(sin(km*tm)/zm) m22 = cos(km*tm) eref = m11+(m12/zo)-m21*zo-m22 einc = m11+(m12/zo)+m21*zo+m22 etran = 2 rho = eref/einc !reflection coefficient tau = etran/einc !transmission coefficient 129 slldb db_mag(rho) !s-parameters s21db db_mag(tau) sila = angle(rho) s21a = angle(tau) write(2,"(f8.5,’,’,f10.5,’,’,f10.5,’,’,f10.5,’,’& &,f10.5,’,’,f8.5)") & &freq,s11db,slia,s21db,s21a,tm and do close(unit=1, status=’keep’) !close opened file write(*,*) ’Finished ***@@@***’ close(unit=2, status=’keep’) !close opened file end !*********************************************************** !convert complex number to magnitude in dB real function db_mag(input) real mag complex input mag = abs(input) db_mag = 20.*1og10(mag) end function !*********************************************************** !convert complex number to phase real function angle(input) use global complex input angle = atan2d(aimag(input),real(input)) end function 130 APPENDIX B FORTRAN CODE OF INVERSE PROBLEM This appendix contains the code written from the derivations in Section 3.3 which calculate the constitutive parameters of a slab of material inside a waveguide given the S—parameters at the boundaries. The input and output files were written in Microsoft Excel and saved as comma separated values or .csv files. ! inverse research problem 4.0 !it************************************************************ module global !global variables real pi, c, a, mu_o, eps_o, f_co, kc real freq complex 1 end module global !***************t********************************************* module values !only used by mu_r and eps_r real sllm, s21m, slli, s21i real w, ko, f, mu_m, eps_m, lamda, quartwave, n real 1amda_g complex rho, tau, var2, p, u, zr, lnu, lnu_test end module values y************************************************************* program main !main program declaration use global complex mu_r, eps-r, find_mu_r, find_eps_r real slldb, s21db, 811a, s21a, tm pi = 4*atan(1.) i = cmplx(0,1) a = 0.02286 !width of waveguide mu_o = 4*pi*1.e-7 eps_o = 8.854e-12 c = 1/sqrt(mu_o*eps_o) !cutoff frequency in air f_co = 1./(2.*a*sqrt(mu_o*eps_o)) kc = pi/a open(unit=1, status=’old’, form=’formatted’, & &action=’read’, defaultfile=’/Documents and Settings/& 131 &meeusen1/My Documents/fortran/’, file=’forward_output.csv’) !open this file in this directory open(unit=2, status=’rep1ace’, form=’formatted’, & &action=’readwrite’, defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, & &file=’reverse_output.csv’) !open this file in this directory do read(1,*,iostat=ios) freq,slldb,s11a,s21db,s21a,tm if(ios .gt. 0.0) cycle !if error, goto next input if(ios /= 0) exit !If end-of-file, exit do loop if (isnan(coefficient)) cycle !if file entry is not a number, goto next input mu_r = find_mu_r(811db, s21db, 311a, s21a, tm) !note, freq is a global variable eps_r = find_eps_r(slldb, s21db, 811a, s21a, tm) write(2,"(f8.5,’,’,f8.5,’,’,f8.5,’,’,f8.5,’,’,f8.5)") & &freq,eps_r,mu_r end do close(unit=1, status=’keep’) !close opened file write(*,*) ’Finished ***@@@***’ close(unit=2, status=’keep’) !close opened file end program main !****************’1‘******************************************** !find complex permeability of material given s-parameters complex function find_mu_r(sl1db, s21db, 311a, s21a, tm) use global use values real slldb, s21db, sila, s21a, tm slim = 10.**(slldb/20.) !convert from db s21m = 10.**(s21db/20.) 8111 = 311m*sind(811a) !find imaginary part s21i = s21m*sind(s21a) sllr = sllm*cosd(slla) !find real part 132 s21r = s21m*cosd(321a) rho s11r + $11i*i !combine real and imaginary parts tau = s21r + s21i*i f = freq*1.e9 !add 9 zeros to frequency to make GHz 2.*pi*f 8 " var2 = (rho**2 - tau**2 + 1)/(rho*2) p = var2-sqrt(var2**2 - 1) u = (tau*p)/(p-rho) ko = w/c zr = (1+p)/(1-p) n=0 do lnu = clog(u) - i*2*pi*n write(*,*) ’n =’, n find_mu_r = (zr*lnu)/((i*ko*tm)*(sqrt(1.-(f_co/f)**2))) if (rea1(find_mu-r) > 0) exit !help track imaginary n=n+1 !component of Inn to end do !make sure it doesn’t !wrap around. end function !************************************************************* !find complex permittivity of material given s-parameters complex function find_eps_r(slldb, s21db, slia, s21a, tm) use global use values real slldb, s21db, 311a, s21a, tm complex find_mu_r, mu_r !required for permittivity calculation mu_r = find_mu_r(811db, s21db, sila, s21a, tm) find-eps_r = ((1nu*sqrt(1-(f_co/f)**2))/(i*ko*tm*zr)+& &((c**2 * kC**2)/((2*pi)**2 * mu_r * f**2))) end function !************************************************************* 133 APPENDIX C FORTRAN CODE OF INVERSE PROBLEM WITH COMPENSATION This appendix contains the code written from the derivations in Section 3.4 which calculate the constitutive parameters of a slab of material inside a waveguide given the S-parameters at the boundaries. The input and output files were written in Microsoft Excel and saved as comma separated values or .csv files. ! inverse research problem 5.0 !************************************************************* module global !global variables real pi, c, a, mu_o, eps_o, f_co, kc real f,w complex 1 end module global !************************************************************* module values lonly used by mu_r and eps_r real silm, lem, 3111, 8211 real ko, mu_m, eps_m, lamda, quartwave, n real lamda_g complex rho, tau, var2, p, u, zr, lnu, lnu_test end module values !****************t***************************#**************** ! The main program calls funstions to compute epsilon and mu, then it calls funstions ! to computer the standard deviation of error for the real part of epsilon and mu ! (eps-r_p and mu_r_p) and the comlex part of epsilon and mu (eps_r_pp and mu_r_pp) program main !main program declaration use global complex mu_r, eps_r, find_mu_r, find_eps_r real freq,811db,811am,s22db,s22am,s21db,s21am,si2db,& &sl2am,amp_r,phi_r real 311a,s21a,tm,slldbm,s21dbm,s22dbm,sl2dbm real beta, ko pi = 4*atan(1.) i = cmplx(0,1) a = 0.02286 lwidth of x-band waveguide mu_o = 4*pi*1.e-7 134 eps-o = 8.854e-12 c = 1/sqrt(eps_o*mu_o) f_co = 1./(2.*a*sqrt(mu_o*eps_o)) kc = pi/a !choose the correct thickness for the material sample tm .0031623 !thickness of MagRAM material tm=.0035433 !thickness of Rexolite material open(unit=1, status=’old’, form=’formatted’, & &action=’read’, defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, & &file=’rexolite.csv’) !open this file in this directory open(unit=2, status=’replace’, form=’formatted’, & &action=’readwrite’, defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, & &file=’result.csv’) !open this file in this directory do read(1,*,iostat=ios) freq,empty,slldbm,sllam,s22dbm,& &s22am,s21dbm,s21am,sl2dbm,sl2am,empty,amp_r,phi_r if(ios .gt. 0.0) cycle !if error, goto next input if(ios /= 0) exit !If end-of-file, exit do loop if (isnan(freq)) cycle !if file entry is not a number, goto next input freq*1.e9 !add 9 zeros to frequency to make GHz 2*pi*f ko = f*2*pi/c beta = ko*sqrt(1-(f_co/f)**2) phi_t = -(beta*tm)*180./pi w !Compensation for the position of the material within !the waveguide. Requires addition s-parameters from !network analyzer. 811a = ((311am+s22am)/2)-phi_r+phi_t 135 lea = s21am-phi_r+phi_t slldb slldbm s21db s21dbm mu_r = find_mu_rfslldb, s21db, 811a, $21a, tm) !note, freq is a global variable eps_r = find_eps_r(811db, s21db, slla, s21a, tm) write(2,"(f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5)") & &freq,eps_r,mu_r end do close(unit=1, status=’keep’) !close opened file write(*,*) ’Finished ***@@@***’ close(unit=2, status=’keep’) !close Opened file end program main !*********10!!ka************************************************* ! This function computes mu in its raw complex form. complex function find_mu_r(slldb, s21db, slla, s21a, tm) use global use values real slldb, s21db, slla, s21a, tm 811m = 10.**(811db/20.) !convert from db s21m = 10.**(821db/20.) sili = 811m*sind(slla) !find imaginary part 8211 = s21m*sind(s21a) sllr = sllm*cosd(slia) !find real part 321r = $21m*cosd(s21a) rho = silr + 311i*i !combine real and imaginary parts tau = s21r + s21i*i n=0 var2 = (rho**2 - tau**2 + 1)/(rho*2) p = var2-sqrt(var2**2 - 1) u = (tau*p)/(p-rho) ko = w/c 136 zr = (1+p)/(1-p) do lnu = clog(u) - i*2*pi*n find_mu_r = (zr*1nu)/((i*ko*tm)*(sqrt(1.-(f_co/f)**2))) if (real(find_mu_r) > 0) exit !help track imaginary n=n+1 !component of lnu to end do lmake sure it doesn’t !wrap around. ! write(*,*) ’1nu=’, imag(1nu) !visual verification of !complex log n working correctly end function !*******III***************************************************** ! This function computes epsilon in its raw complex form. This function calls ! find_mu_r to simplify coding so it is less redundant. complex function find_eps_r(slldb, s21db, 811a, s21a, tm) use global use values real slldb, s21db, s11a, s21a, tm complex find_mu_r, mu_r mu_r = find_mu_r(slldb, s21db, s11a, s21a, tm) find_eps_r = ((lnu*sqrt(1-(f_co/f)**2))/(i*ko*tm*zr)+& &((c**2 * kc**2)/((2*pi)**2 * mu_r * f**2))) end function g************************************************************* 137 APPENDIX D FORTRAN CODE OF INVERSE PROBLEM WITH ERROR ANALYSIS This appendix contains the code written from the derivations in Chapter 4 which calculate the standard deviation of the final error tolerance given the error tolerance of all the input variables. The input and output files were written in Microsoft Excel and saved as comma separated values or .csv files. ! inverse research problem 8.0 !31K**************************************************************** module global !global variables real pi, c, mu_o, eps_o real f,w complex i end module global !***************************************************************** module values !only used by mu_r and eps_r real sllr, s21r, slli, s21i real ko, mu_m, eps_m, lamda, quartwave, n real lamda_g complex rho, tau, var2, p, u, zr, lnu, lnu_test end module values !***************************************************************** ! The main program calls funstions to compute epsilon and mu, then it calls funstions ! to computer the standard deviation of error for the real part of epsilon and mu ! (eps_r_p and mu-r_p) and the comlex part of epsilon and mu (eps_r_pp and mu_r_pp) program main !main program declaration use global complex mu_r, eps-r, find_mu_r, find_eps_r real mu_r_p-delta,eps_r_p_delta,mu_r_p_error,eps_r_p_error real mu_r_pp_de1ta,eps_r_pp_delta real mu_r_pp_error,eps_r_pp_error real freq,sllam,322am,s21am,sl2am,amp_r,phi_r real tm,slldbm,sllm,s21dbm,s22dbm,s22m,sl2dbm,a real ko real sillin_delta,slla_de1ta real s21db_delta,s21a_delta,tm_delta 138 80 real s22lin_delta,s22a_de1ta real sl2db_delta,sl2a_de1ta,a_de1ta real mu_real_upper,mu_rea1_lower real mu_imag_upper,mu_imag_lower real eps_rea1_upper,eps_real_lower real eps_imag_upper,eps_imag_lower real refl,level,y_sil_lin,y_sll_ang,y_s21_db,y_s21_ang real y_sl2_db,y_sl2_ang,y_s22_lin,y_s22_ang integer n real, dimension(50): xa1,ya_sll_lin,ya_sll_ang !largest anticipated array sizes real, dimension(50)::ya_s21_db,ya_s21_ang real, dimension(50)::Y2_sll_lin,Y2_511_ang real, dimension(50)::Y2_s21_db,Y2_s21_ang real, dimension(50)::xa2,ya_s22_lin,ya_s22_ang real, dimension(50)::ya_sl2_db,ya_sl2_ang real, dimension(50)::Y2_s22_lin,Y2_s22_ang real, dimension(50)::Y2_sl2_db,Y2_sl2_ang rea1(8) YP1,YPN character*80 filenamel, filename2 real yesno, percentl, percent2 !Initial values percent1=0.0 percent2=0.0 !Input name of file which contains s-parameters write(*,*) ’Name of the material filez’ read(*,80) filenamel format(A80) !Enter the thickness of the material in inches write(*,*) ’Thickness of material in Inches:’ read(*,*) tm !Percent of uncertainty in material thickness ie. 3.0, !0.1,... write(*,*) ’Percent of error for material thickness:’ read(*,*) percentl 139 !Percent of uncertainty in waveguide width ie. 3.0, !O.1,... write(*,*) ’Percent of error for waveguide width ’ read(*,*) percent2 write(*,*) ’Do you have a file for’ write(*,*) ’the Network analyzer error?’ write(*,*) ’0 - no’ write(*,*) ’1 - yes’ read(*,*) yesno !enter name of file containing uncertainty of the network lanalyzer setup. if (yesno .gt. 0) then write(*,*) ’Name of the network analyzer error file:’ read(*,80) filename2 endif pi = 4*atan(1.) i = cmplx(0,1) mu_o = 4*pi*1.e-7 eps_o = 8 8546-12 c = 1/sqrt(eps_o*mu_o) a = 0.02286 !width of x-band waveguide !convert percent into inches tm_delta=percent1*tm/100. a_de1ta=percent2*a/100. open(unit=1, status=’old’, form=’formatted’, & &action=’read’, defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, file=filename1) !open this file in this directory open(unit=2, status=’replace’, form=’formatted’, & &action=’readwrite’, & &defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, file=’resu1t.csv’) !open this file in this directory 140 rad. “ open(unit=3, status=’replace’, form=’formatted’, & Raction=’readwrite’, & &defaultfile=’/Documents and Settings/& &meeusen1/My Documents/fortran/’, & &file=’resu1t_error.csv’) !open this file in this directory !Don’t run this code if answer is no if (yesno .gt. 0) then open(unit=4, status=’old’, form=’formatted’, & &action=’read’, defaultfi1e=’/Documents and Settings/& &meeusen1/My Documents/fortranI’, file=filename2) !open this file in this directory n=0 !creating arrays with the data from file read(4,*,iostat=ios) refl,y_sli_lin,y_311_ang,& &y_s22_lin,y_s22_ang,empty,level,y_sl2_db,& &y_sl2_ang,y_s21_db,y_s21_ang if(ios .gt. 0.0) cycle !if error, goto next input if(ios /= 0) exit !If end-of-file, exit do loop if (isnan(coefficient) .or. & &y_811_lin .eq. 0.0) cycle !if file entry is not a number, goto next input !Input uncertainty data into arrays n=n+1 xa1(n)=refl ya_s11_lin(n)=y_sll_lin ya_s11_ang(n)=y_sll_ang ya_s22_lin(n)=y_s22_lin ya_s22_ang(n)=y_s22_ang xa2(n)=level ya_s21_db(n)=y_s21_db ya_s21_ang(n)=y_s21_ang ya_s12_db(n)=y_sl2_db ya_sl2_ang(n)=y_sl2_ang enddo 141 !set to a high number to make a "natural spline" YP1=1E30 !set to a high number to make a "natural spline" YPN=1E30 !calculate second derivatives of arrays for !interpolation. call SPLINE(xa1,ya_811_lin,n,YP1,YPN,Y2_sll-lin) call SPLINE(xa1,ya_slI_ang,n,YP1,YPN,Y2_s11_ang) call SPLINE(xa1,ya_s22_lin,n,YP1,YPN,Y2_s22_lin) call SPLINE(xa1,ya_s22_ang,n,YP1,YPN,Y2_s22_ang) call SPLINE(xa2,ya_s21_db,n,YP1,YPN,Y2_s21_db) call SPLINE(xa2,ya_s21_ang,n,YP1,YPN,Y2_s21-ang) call SPLINE(xa2,ya_sl2-db,n,YP1,YPN,Y2_sl2_db) call SPLINE(xa2,ya_sl2_ang,n,YP1,YPN,Y2_sl2_ang) !Spline only has to be called once to calculate !the second derivatives endif do read(1,*,iostat=ios) freq,empty,sl1dbm,s11am,& &s22dbm,322am,s21dbm,s21am,sl2dbm,s12am,empty,& &_r,phi_r if(ios .gt. 0.0) cycle !if error, goto next input if(ios /= 0) exit !If end-of-file, exit do loop if (isnan(freq) .or. freq .eq. 0.0) cycle !if file entry is not a number, goto next input freq*1.e9 !add 9 zeros to frequency to make GHz 2*pi*f k0 = f*2*pi/c V 10.**(811dbm/20.) 10.**(s22dbm/20.) $11m s22m !If answer to question is no, set all analyzer 142 !uncertainties to zero. Else, find uncertainties by !interpolating existing data. if (yesno .gt. 0) then call SPLINT(xa1,ya_sll_lin,& &Y2_311_lin,n,Slim,slllin_delta) call SPLINT(xa1,ya_sl1_ang,& &Y2_sll_ang,n,811m,511a_de1ta) call SPLINT(xa1,ya_s22_lin,& &Y2_s22_1in,n,s22m,s22lin_de1ta) call SPLINT(xa1,ya_822_ang,& &Y2_s22_ang,n,s22m,s22a_delta) call SPLINT(xa2,ya_sl2_db,& &Y2_sl2_db,n,812dbm,812db_delta) call SPLINT(xa2,ya_812_ang,& &Y2_sl2_ang,n,sl2dbm,si2a_delta) call SPLINT(xa2,ya_s21_db,& &Y2_s21-db,n,s21dbm,s21db_delta) call SPLINT(xa2,ya_s21_ang,& &Y2_s21_ang,n,s21dbm,s21a_delta) else slllin_de1ta=0.0 slla_delta=0.0 8221in_de1ta=0.0 s22a_delta=0.0 sl2db_delta=0.0 sl2a_delta=0.0 s21db_delta=0.0 s21a_de1ta=0.0 endif !Find complex permeability mu_r = find_mu_r(sllm,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a) !note, freq is a global variable !Find complex permittivity eps_r = find_eps_r(s11m,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a) 143 !Find uncertainty in real part of complex permeability mu_r_p_delta = mu_r_p_error(811m,s22m,s21dbm,sl2dbm,& &sllam,322am,s21am,sl2am,amp_r,phi_r,tm,a,& &8111in_delta,811a_delta,s12db_de1ta,sl2a_delta,& &a_delta,s21db_delta,s21a_delta,s22lin_delta,& &s22a_delta,tm_delta) !Find uncertainty in real part of complex permittivity eps_r_p_delta = eps_r_p_error(sllm,s22m,s21dbm,s12dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a,& &slllin_delta,$11a_delta,sl2db_delta,sl2a_delta,& &a_delta,s21db_delta,s21a_delta,s22lin_delta,& &s22a_delta,tm_delta) !Find uncertainty in imaginary part of complex permeability mu_r_pp_delta = mu_r_pp_error(811m,s22m,s21dbm,sl2dbm,& &311am,322am,s21am,sl2am,amp_r,phi_r,tm,a,& &slllin_delta,811a_delta,sl2db_de1ta,sl2a_delta,& &a_delta,s21db_delta,s21a-de1ta,s22lin_delta,& &s22a_delta,tm_delta) !Find uncertainty in imaginary part of complex !permittivity. eps_r_pp_delta = eps_r_pp_error(sllm,s22m,s21dbm,sl2dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a,& &slllin_delta,slla_delta,sl2db_de1ta,s12a_delta,& &a_de1ta,s21db_delta,s21a_delta,s22lin_delta,& &s22a_de1ta,tm_de1ta) !Find upper and lower uncertainty bars. mu_real_upper = rea1(mu_r)+mu_r_p_delta mu-rea1_lower = real(mu_r)-mu_r-p-de1ta eps_real_upper real(eps_r)+eps_r_p_delta eps_real_lower real(eps-r)-eps_r_p_delta mu_imag_upper = imag(mu_r)+mu_r_pp_delta mu_imag_lower = imag(mu_r)-mu_r_pp_delta eps_imag_upper = imag(eps_r)+eps_r_pp_delta eps_imag_lower = imag(eps_r)-eps_r_pp_delta 144 !0utput file with complex permeability, permittivity, and !all associated uncertainties. write(2,"(f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5& &,’,’,’,’,f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5)") & &freq,mu_r,eps_r,mu_r_p_delta,eps_r_p_de1ta,& &mu_r_pp_delta,eps_r-pp_delta !0utput file with complex permeability, permittivity, and !all upper and lower uncertainty bars. write(3,"(f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5,’,’,f10.5,’,’,& &f9.5,’,’,f9.5,’,’,f9.5,’,’,f9.5)“) & &freq,mu_real_upper,mu_rea1-lower,eps_real_upper,& &eps_rea1_lower,mu_imag_upper,mu_imag_lower,& &eps_imag_upper,eps_imag-lower end do close(unit=1, status=’keep’) !close opened file close(unit=2, status=’keep’) !close opened file close(unit=3, status=’keep’) !close opened file close(unit=4, status=’keep’) !close opened file write(*,*) ” write(*,*) ’Finished...’ write(*,*) ” end program main !III*********IIHI!***************************************************** ! This part of the program does the actual computation of the !total error of the real part of mu (mu_r_p_error) based on the !results of individual contributions of errors (deltal, !delta2,...) real function mu_r_p_error(sllm,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a,& &s11db_delta,slla_delta,s12db_delta,& &sl2a_delta,a_de1ta,s21db_delta,s21a_delta,& &s22db_delta,s22a_delta,tm_delta) use global use values real 311m,s22m,s21dbm,s12dbm,sllam 145 real real real real real real deltal s22am,s21am,sl2am,amp_r,phi_r,tm,a sl11in_de1ta,811a_delta,s21db_delta,s21a_de1ta s22lin_delta,s22a_de1ta,sl2db-delta,s12a_de1ta deltal,delta2,delta3,delta4,delta5,tm_delta delta6,delta7,delta8,delta9,delta10,a_de1ta find_mu_r_p (find_mu_r_p(sl1m+8111in_delta,s22m,s21dbm,& k812dbm,sllam,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_mu_r_p(sllm-slllin_de1ta,s22m,& &s21dbm,s12dbm,sllam,s22am,s21am,sl2am,& &_r,phi_r,tm,a))/2 delta2 = (find_mu_r_p(s11m,s22m+s22lin_de1ta,s21dbm,& &sl2dbm,811am,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_mu_r_p(311m,s22m-s22lin_delta,& &s21dbm,sl2dbm,811am,s22am,s21am,sl2am,amp_r,& &phi_r,tm,a))/2 delta3 = (find_mu_r_p(811m,s22m,s21dbm+s21db_de1ta,& asl2dbm,811am,$22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_mu_r_p(811m,s22m,& &s21dbm-s21db_de1ta,812dbm,& &811am,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta4 = (find_mu_r_p(311m,s22m,s21dbm,& &sl2dbm+s12db_de1ta,sllam,s22am,s21am,sl2am,& &_r,phi_r,tm,a)-find-mu_r_p(sllm,s22m,& &s21dbm,sl2dbm-sl2db_de1ta,& &sllam,s22am,821am,sl2am,amp_r,phi_r,tm,a))/2 deltas = (find-mu_r_p(s11m,s22m,s21dbm,sl2dbm,& &sllam+811a_delta,s22am,s21am,sl2am,amp_r,& &phi_r,tm,a)-find_mu_r_p(sl1m,s22m,s21dbm,& &sl2dbm,sllam-s11a_delta,s22am,s21am,sl2am,& &_r,phi_r,tm,a))/2 delta6 = (find_mu_r_p(311m,s22dbm,s21dbm,s12dbm,& 146 &sllam,s22am+s22a_delta,s21am,sI2am,amp-r,& &phi_r,tm,a)-find_mu_r_p(811m,s22dbm,s21dbm,& &sl2dbm,sllam,s22am-s22a_de1ta,s21am,sl2am,& &_r,phi_r,tm,a))/2 delta? = (find_mu_r_pCslIm,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am+s21a_delta,sl2am,amp_r,phi_r,tm,a)-& &find_mu_r_p(811m,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am-s21a_delta,sl2am,amp_r,phi_r,tm,a))/2 delta8 = (find_mu_r_p(811m,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am+sl2a_delta,amp_r,phi_r,tm,a)-& &find_mu_r_p(811m,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am-s12a_delta,amp_r,phi_r,tm,a))/2 delta9 = (find_mu_r_p(sllm,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_de1ta,a)-& &find_mu-r-p(silm,s22m,s21dbm,812dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm-tm_delta,a))/2 delta10 = (find_mu_r_p(sllm,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_delta,a)-& &find_mu_r-p(811m,s22m,s21dbm,si2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a-a_delta))/2 mu_r_p_error = sqrt(de1ta1**2 + delta2**2 + delta3**2 +& &delta4**2 + delta5**2 + delta6**2 +& &delta7**2 + delta8**2 + delta9**2 +& &delta10**2) end function !***IIIItIIIIIUIIII:*II!III************II!*************************IIHII************ ! This part of the program does the actual computation of the !total error of the complex part of mu (mu_r_pp_error) based on !the results of individual contributions of errors (deltal, !delta2,...) 147 real function mu_r_pp_error(sllm,s22m,s21dbm,s12dbm,811am,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a,& &slldb_de1ta,811a_delta,sl2db_delta,& &sl2a_de1ta,a-delta,s21db_delta,s21a_delta,& &s22db_delta,s22a_delta,tm_delta) use global use values real 311m,s22m,s21dbm,sl2dbm,sllam real s22am,s21am,sl2am,amp_r,phi_r,tm,a real slllin_delta,$11a_delta,s21db_delta,s21a_delta real s22lin_delta,s22a_de1ta,sl2db_de1ta,812a_delta real deltal,delta2,delta3,delta4,delta5,tm_delta real delta6,delta7,delta8,delta9,delta10,a_delta real find_mu_r_pp delta1 = (find_mu_r-pp(sl1m+s1llin_delta,s22m,s21dbm,& &s12dbm,sllam,s22am,s21am,leam,amp_r,phi_r,& &tm,a)-find_mu_r_pp(sl1m-3111in_delta,s22m,& &s21dbm,sl2dbm,sl1am,s22am,s21am,sl2am,amp_r,& &phi_r,tm,a))/2 delta2 = (find_mu_r_pp(811m,s22m+s22lin-delta,s21dbm,& &sl2dbm,sllam,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_mu_r_pp(311m,s22m-s22lin_delta,& &s21dbm,sl2dbm,311am,$22am,s21am,sl2am,amp_r,& &phi_r,tm,a))/2 delta3 = (find_mu_r-pp(sllm,s22m,s21dbm+s21db_delta,& &sl2dbm,811am,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find-mu_r_pp(sllm,s22m,& &s21dbm-s21db_delta,sl2dbm,& &311am,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta4 = (find_mu_r_pp(s11m,s22m,s21dbm,& &sl2dbm+312db_de1ta,sllam,s22am,s21am,sl2am,& &_r,phi_r,tm,a)-find_mu_r_pp(811m,s22m,& &s21dbm,sl2dbm-812db_delta,& &811am,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 148 deltas = (find_mu_r_pp(811m,s22m,s21dbm,s12dbm,& &sllam+sila_de1ta,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a)-& &find_mu_r_pp(311m,s22m,s21dbm,sl2dbm,& &s11am-slla_delta,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta6 = (find_mu_r_ppCsllm,s22dbm,s21dbm,sl2dbm,sllam,& &s22am+s22a,delta,s21am,sl2am,amp_r,phi-r,tm,a)-& &find_mu_r_pp(811m,s22dbm,s21dbm,sl2dbm,sllam,& &sZ2am-s22a_delta,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta7 = (find_mu_r_pp(sllm,s22m,s21dbm,sI2dbm,sllam,& &s22am,s21am+s21a_delta,sl2am,amp_r,phi_r,tm,a)-& &find_mu_r_pp(sllm,522m,s21dbm,sl2dbm,sliam,& &s22am,s21am-s21a_delta,s12am,amp_r,phi_r,tm,a))/2 delta8 = (find-mu_r_pp(311m,s22m,s21dbm,sl2dbm,s11am,& &s22am,s21am,sl2am+312a_delta,amp_r,phi_r,tm,a)-& &find_mu_r_pp(sllm,s22m,s21dbm,sl2dbm,s11am,& &s22am,s21am,sl2am-sl2a_de1ta,amp_r,phi_r,tm,a))/2 delta9 = (find_mu_r_pp(811m,s22m,s21dbm,312dbm,811am,& &322am,s21am,sl2am,amp_r,phi_r,tm+tm_delta,a)-& &find_mu_r-pp(811m,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm-tm_delta,a))/2 delta10 = (find_mu-r_pp(311m,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_delta,a)-& &find_mu_r_pp(811m,s22m,521dbm,812dbm,811am,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a-a_delta))/2 mu_r_pp_error = sqrt(de1ta1**2 + delta2**2 + delta3**2 +& &de1ta4**2 + delta5**2 + delta6**2 +& &de1ta7**2 + delta8**2 + delta9**2 +& &delta10**2) end function 149 l***************************************************************** ! This part of the program does the actual computation of the !total error of the real part of epsilon (eps_r_p_error) based on !the results of individual contributions of errors (deltal, !delta2, ...) real function eps_r-p_error(811m,s22m,321dbm,sl2dbm,sllam,& use global use values &s22am,s21am,s12am,amp_r,phi_r,tm,a,& &811db_delta,slla_delta,sl2db_de1ta,& &s12a_delta,a_de1ta,s21db_de1ta,s21a_de1ta,& &822db_de1ta,s22a_de1ta,tm_delta) real $11m,s22m,s21dbm,s12dbm,sl1am real s22am,s21am,sl2am,amp_r,phi_r,tm,a real slllin_delta,311a_delta,s21db_delta,s21a_de1ta real s22lin_delta,s22a_de1ta,s12db_delta,sl2a_delta real deltal,delta2,delta3,de1ta4,delta5,tm_de1ta real delta6,delta7,delta8,delta9,delta10,a_delta real find_eps_r_p deltal = (find_eps_r_p(s11m+slllin_delta,s22m,s21dbm,& &312dbm,811am,s22am,s21am,312am,amp_r,phi_r,& &tm,a)-find_eps_r_p(sl1m-sIllin_de1ta,s22m,& &s21dbm,sl2dbm,311am,s22am,s21am,sl2am,amp_r,& &phi_r,tm,a))/2 delta2 = (find_eps_r_p(311m,s22m+s22lin_delta,s21dbm,& &s12dbm,sllam,s22am,s21am,812am,amp_r,phi_r,& &tm,a)-find_eps_r_p(811m,s22m-s22lin_delta,& &s21dbm,sl2dbm,s11am,s22am,s21am,812am,amp_r,& &phi_r,tm,a))/2 delta3 = (find_eps_r_p(sllm,s22m,s21dbm+s21db_delta,& &sl2dbm,811am,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_eps_r_p(811m,s22m,& &s21dbm-s21db_delta,s12dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 150 delta4 = (find_eps_r_p(811m,322m,s21dbm,& &s12dbm+s12db_delta,sllam,s22am,s21am,sl2am,& &_r,phi_r,tm,a)-find_eps_r_p(sllm,s22m,& &s21dbm,sl2dbm-sl2db_delta,& &s11am,s22am,s21am,sl2am,amp-r,phi_r,tm,a))/2 deltas = (find_eps_r_p(sllm,s22m,s21dbm,312dbm,& &sllam+slla_delta,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a)-& &find_eps_r_p(811m,s22m,s21dbm,sl2dbm,& &311am-slla_de1ta,& &s22am,s21am,s12am,amp_r,phi_r,tm,a))/2 delta6 = (find_eps_r_p(sllm,s22dbm,s21dbm,sl2dbm,sllam,& &s22am+s22a_delta,s21am,812am,amp_r,phi_r,tm,a)-& &find_eps_r_p(811m,s22dbm,s21dbm,sl2dbm,811am,& &s22am-s22a_de1ta,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta? = (find_eps_r_p(811m,s22m,s21dbm,sl2dbm,sllam,& &s22am,521am+s21a_de1ta,si2am,amp_r,phi_r,tm,a)-& &find_eps_r_p(sllm,s22m,s21dbm,sl2dbm,s11am,& &s22am,s21am-s21a_delta,sl2am,amp_r,phi_r,tm,a))/2 delta8 = (find_eps_r_p(311m,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am+si2a_delta,amp_r,phi_r,tm,a)-& &find_eps_r_p(s11m,s22m,s21dbm,s12dbm,811am,& &s22am,s21am,s12am-sl2a_de1ta,amp,r,phi-r,tm,a))/2 delta9 = (find_eps_r_p(sllm,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_delta,a)-& &find_eps_r_p(311m,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,s12am,amp_r,phi_r,tm-tm_delta,a))/2 delta10 = (find_eps_r_p(811m,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_delta,a)-& &find_eps_r_p(slim,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a-a_de1ta))/2 151 eps_r_p_error = sqrt(de1ta1**2 + delta2**2 + delta3**2 +& &delta4**2 + delta5**2 + delta6**2 +& &delta7**2 + delta8**2 + delta9**2 +& &de1ta10**2) end function g**************************************************************** ! This part of the program does the actual computation of the !total error of the complex part of epsilon (eps_r_pp_error) based !on the results of individual contributions of errors (deltal, !delta2, ...) real function eps_r_pp_error(sllm,s22m,s21dbm,sl2dbm,s11am,& &s22am,521am,sl2am,amp_r,phi_r,tm,a,& &311db_de1ta,311a_delta,sl2db_delta,& &sl2a_de1ta,a_de1ta,s21db_delta,s21a_delta,& &s22db_delta,s22a_de1ta,tm_delta) use global use values real 311m,s22m,s21dbm,sl2dbm,811am real s22am,s21am,s12am,amp_r,phi_r,tm,a real s1111n_delta,sl1a_de1ta,s21db_delta,s21a_delta real s22lin_delta,s22a_delta,sl2db_de1ta,sl2a_delta real delta1,delta2,delta3,delta4,delta5,tm_de1ta real delta6,delta7,delta8,de1ta9,delta10,a_de1ta real find_eps_r_pp deltal = (find_eps_r_pp(sl1m+slllin_delta,s22m,s21dbm,& &sl2dbm,sllam,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_eps_r_pp(sllm-slllin_delta,s22m,& &s21dbm,sl2dbm,sllam,s22am,s21am,sl2am,amp_r,& &phi_r,tm,a))/2 delta2 = (find_eps_r_pp(311m,s22m+s22lin_delta,s21dbm,& &s12dbm,811am,s22am,s21am,sl2am,amp_r,phi_r,& &tm,a)-find_eps_r-pp(sllm,s22m-s22lin_delta,& &s21dbm,sl2dbm,311am,822am,821am,s12am,amp_r,& &phi_r,tm,a))/2 152 delta3 = (find_eps_r_pp(sllm,s22m,s21dbm+s21db_de1ta,& &sl2dbm,sllam,$22am,s21am,sl2am,amp-r,phi_r,& &tm,a)-find_eps_r_pp(sllm,$22m,& &s21dbm-s21db-delta,sl2dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta4 = (find_eps_r_pp(811m,s22m,s21dbm,& &sl2dbm+sl2db_delta,s11am,s22am,s21am,sl2am,& &_r,phi_r,tm,a)-find_eps_r_pp(811m,s22m,& &S21dbm,$12dbm-812db_delta,& &311am,s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 deltas = (find_eps_r_pp(s11m,s22m,s21dbm,sl2dbm,& &sllam+s11a_delta,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a)-& &find_eps_r-pp(sllm,s22m,s21dbm,sl2dbm,& &sllam-811a_delta,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta6 = (find_eps_r_pp(s11m,s22m,$21dbm,sl2dbm,sllam,& &s22am+s22a_delta,s21am,sl2am,amp_r,phi_r,tm,a)-& &find_eps_r_pp(sl1m,s22dbm,s21dbm,sl2dbm,sllam,& &s22am-s22a_delta,s21am,sl2am,amp_r,phi_r,tm,a))/2 delta? = (find_eps_r_pp(811m,s22m,s21dbm,812dbm,311am,& &s22am,s21am+s21a_delta,sl2am,amp_r,phi_r,tm,a)-& &find_eps_r_pp(sllm,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am-s21a_delta,sl2am,amp_r,phi_r,tm,a))/2 delta8 = (find_eps_r_pp(sl1m,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am+sl2a_delta,amp_r,phi_r,tm,a)-& &find_eps_r_pp(811m,s22m,s21dbm,sl2dbm,811am,& &s22am,s21am,sl2am-sl2a_de1ta,amp_r,phi-r,tm,a))/2 delta9 = (find-eps_r_pp(811m,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm+tm_de1ta,a)-& &find_eps-r_pp(sl1m,s22m,s21dbm,s12dbm,sllam,& &s22am,s21am,sl2am,amp-r,phi_r,tm-tm_delta,a))/2 153 delta10 = (find_eps_r_pp(sllm,s22m,s21dbm,sl2dbm,s11am,& &s22am,s21am,$12am,amp_r,phi_r,tm+tm-delta,a)-& &find_eps_r_pp(811m,s22m,s21dbm,sl2dbm,silam,& &s22am,s21am,si2am,amp_r,phi_r,tm,a-a_delta))/2 eps_r_pp_error = sqrt(delta1**2 + delta2**2 + delta3**2 +& &delta4**2 + delta5**2 + delta6**2 +& &delta?**2 + delta8**2 + delta9**2 +& &delta10**2) end function !***************************************************************** ! This function returns the real result of the calculated mu and !names it mu_p or mu prime. real function find_mu_r_p(sllm,s22m,s21dbm,sl2dbm,sllam,& &s22am,821am,sl2am,amp_r,phi_r,tm,a) real 811m,s22m,s21dbm,sl2dbm,sllam real s22am,s21am,sl2am,amp_r,phi_r,tm,a complex find_mu_r find_mu_r_p = real(find_mu_r(sllm,s22m,s21dbm,s12dbm,& &811am,s22am,s21am,sl2am,amp_r,phi_r,tm,a)) end function !***********a***************************************************** ! This function returns the complex result of the calculated mu !and names it mu_pp or mu double prime. real function find_mu_r-pp(sl1m,s22m,s21dbm,s12dbm,s11am,& &s22am,s21am,s12am,amp_r,phi_r,tm,a) real sllm,s22m,s21dbm,s12dbm,811am real s22am,s21am,s12am,amp_r,phi_r,tm,a complex find_mu_r find_mu_r_pp = imag(find_mu_r(811m,s22m,s21dbm,sl2dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a)) end function 154 !***************************************************************** ! This function returns the real result of the calculated epsilon !and names it eps_p or epsilon prime. real function find_eps_r_p(811m,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,si2am,amp_r,phi_r,tm,a) real 811m,s22m,s21dbm,sl2dbm,s11am real s22am,s21am,sl2am,amp_r,phi_r,tm,a complex find_eps_r find_eps_r_p = real(find_eps_r(811m,822m,s21dbm,sl2dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a)) end function !***************a************************************************* ! This function returns the complex result of the calculated !epsilon and names it eps_p or epsilon double prime. real function find_eps_r_pp(sllm,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a) real $11m,s22m,s21dbm,s12dbm,sllam real s22am,s21am,sl2am,amp_r,phi_r,tm,a complex find_eps_r find_eps_r_pp = imag(find_eps_r(sllm,s22m,s21dbm,sl2dbm,& &sllam,s22am,s21am,sl2am,amp_r,phi_r,tm,a)) end function !***************************************************************** ! This function computes mu in its raw complex form. complex function find_mu_r(sllm,s22m,s21dbm,sl2dbm,311am,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a) use global use values real 811m,s22m,s21dbm,sl2dbm,sllam real s22am,s21am,leam,amp_r,phi_r,tm,a real f_co 155 f_co = 1./(2.*a*sqrt(mu_o*eps_o)) ko = w/c beta = ko*sqrt(1-(f_co/f)**2) phi_t = -(beta*tm)*180./pi s11a = ((silam+s22am)/2)-phi_r+phi_t $21a = s21am-phi_r+phi_t s21m = 10.**(s21dbm/20.) !convert from dB to linear 3111 = sllm*sind(811a) !find imaginary part s21i = s21m*sind(s21a) sllr = $11m*cosd(811a) !find real part s21r = s21m*cosd(s21a) rho = sllr + slli*i !combine real and imaginary parts tau = s21r + s2li*i n = 0 var2 = (rho**2 - tau**2 + 1)/(rho*2) p = var2-sqrt(var2**2 - 1) u = (tau*p)/(p-rho) zr = (1+p)/(1-p) do lnu = clog(u) - i*2*pi*n write(*,*) ’n =’, n find_mu_r=(zr*lnu)/((i*ko*tm)*(sqrt(1.-(f_co/f)**2))) if (real(find_mu_r) > 0) exit !help track imaginary n=n+1 !component of lnu to- end do !make sure it doesn’t- write(*,*) ’lnu=’, imag(1nu) !wrap around end function 156 l***************************************************************** ! This function computes epsilon in its raw complex form. This function calls ! find_mu_r to simplify coding so it is less redundant. complex function find_eps_r(sllm,s22m,s21dbm,sl2dbm,sllam,& &s22am,s21am,sI2am,amp_r,phi_r,tm,a) use global use values real sllm,s22m,s21dbm,s12dbm,sllam real s22am,s21am,sl2am,amp_r,phi_r,tm,a real f_co, kc complex find_mu_r, mu_r f_co = 1./(2.*a*sqrt(mu_o*eps_o)) kc = pi/a mu_r = find_mu_r(311m,s22m,s21dbm,s12dbm,s11am,& &s22am,s21am,sl2am,amp_r,phi_r,tm,a) find_eps_r = ((1nu*sqrt(1-(f_co/f)**2))/(i*ko*tm*zr)+& &((c**2 * kc**2)/((2*pi)**2 * mu_r * f**2))) end function l***************************************************************** !cubic spline routine (numerical recipes in fortran) !William H. Press, Saul A. Teukolsky, etc..., Numerical Recipes in !FORTRAN, Cambridge University Press, New York: New York, 1992 SUBROUTINE SPLINE(X,Y,N,YP1,YPN,Y2) integer N,NMAX,I,K PARAMETER (NMAX=100) real(8) YP1, YPN real(4) X(N),Y(N),Y2(N),U(NMAX) real P,QN,SIG,UN IF (YP1.GT..99£30) THEN Y2(1)=0. U(1)=0. ELSE Y2(1)=-0.5 157 U(1)=(3./(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1) ENDIF D0 I=2,N-1 SIG=(X(I)-X(I-1))/(X(I+1)-X(I-1)) P=SIG*Y2(I-1)+2. Y2(I)=(SIG-1.)/P U(I)=(6.*((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1))& &/(X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*U(I-1))/P ENDDO IF (YPN.GT..99E30) THEN QN=0. UN=0. ELSE QN=0.5 UN=(3./(X(N)-X(N—1)))*(YPN-(Y(N)-Y(N-1))/(X(N)-X(N-1))) ENDIF Y2(N)=(UN-QN*U(N-1))/(QN*Y2(N-1)+1.) D0 K=N-1,1,-1 Y2(K)=Y2(K)*Y2(K+1)+U(K) ENDDO RETURN END !**********************4!****************************************** !cubic spline routine (numerical recipes in fortran) !William H. Press, Saul A. Teukolsky, etc..., Numerical Recipes in !FORTRAN, Cambridge University Press, New York: New York, 1992 !Modified by: Jason Meeusen, March 2004, In order to allow spline !program to accept negative input arguments. SUBROUTINE SPLINT(XA,YA,Y2A,N,X,Y) DIMENSION XACN),YA(N),Y2A(N) KLO=1 KHI=N DO WHILE(KHI-KLO.GT.1) K=(KHI+KLD)/2 IF(X.GE.0)THEN !Original splint program 158 IF(XACK).GT.X)THEN !did not work with KHI=K !negative ’X’ values ELSE KLO=K ENDIF ELSE !This inclusion solves the IF(XA(K).LT.X)THEN !negative ’X’ input problem KHI=K ELSE KLO=K ENDIF ENDIF ENDDD H=XA