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ABSTRACT

Shape and Laminate Optimization of Fiber-Reinforced-Polymer

Structures

By

Jun Wu

Fiber Reinforced polymer (FRP) composites, or advanced composite materials, which

have shown outstanding mechanical characteristics, such as high strength-to-weight and.

high stiffness-to—weight, and high chemical and environmental endurance compared to

conventional materials, have been adapted from aerospace and defense industries to civil

infrastructure applications. The nature of FRP composites makes them strong and stiff in

planes along fiber orientations but rather weak through their thickness. Thus, they are

most efficient when used under global in-plane stress demands. Due to their high material

costs, a way to employ their high material stiffness and strength is to use them in

structural forms in which the structural efficiency is maximized by shaping the structural

geometry to achieve mainly in-plane behavior under the applied loads. Therefore, an

approach is needed to develop the structural forms where the in-plane properties of FRP

composites can be used efficiently.

An integrated approach is developed for the shape and laminate optimization of FRP

structures. The integrated approach is implemented in a two-level uncoupled procedure:

shape and laminate—property optimization followed by laminate design optimization,

where structural shape and laminate design are optimized simultaneously with the aim of

maximizing structural stiffness.



Examples of optimizing laminated FRP shell structures are provided to validate the

procedure. The performance of the integrated approach is evaluated by comparing a

shape-and-material optimized FRP shell with two shape-only optimized FRP shells. The

numerical results show that the proposed integrated approach is reliable and provides a

useful tool for designing optimized laminated FRP structures.

The integrated approach is also used to aid the rational implementation of FRP

composites in civil infrastructure by developing innovative bridge design concepts.

Innovative FRP composite membrane—based bridge systems were explored through

analytical studies of the integrated approach. Two types of bridge systems are developed,

FRP membrane beam bridges and FRP membrane suspension bridges. Both bridge

systems consist of a shape-and-laminate optimized FRP membrane/shell carrying the in—

plane tensile and shear forces together with a conventional reinforced concrete deck

providing the live load transfer. The analytical studies of optimizing the FRP membrane

bridges provide the initial development of innovative systems that use FRP composites in

their inherent behavioral characteristics for new high-performance structures.

Results from this work demonstrate that FRP composites can be used with higher

efficiency in new structural systems as long as their advantageous properties of

directional strength, lightweight, and tailored properties are properly considered in the

design process. The work further discusses the feasible implementation of the optimum

design for composite membrane-based bridges in practical engineering construction. The

work also provides insight to further development and applications of the integrated

Optimization approach.
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1 Introduction

1.1 General

Fiber reinforced polymer (FRP) composites have been adopted from aerospace and

defense industries to civil infrastructure due to their unique properties, such as high

strength-to-weight and stiffness-to-weight ratios, and high chemical and environmental

endurance. However, to date, the use of FRP composites for civil infrastructure is mainly

for structural rehabilitation and strengthening. The use of FRP composites to fabricate

primary structural components has been limited, primarily due to high material costs and

designs based on shapes suitable to conventional materials. The layered and fiber

dominated structure of FRP composites makes them most efficient when used under in—

plane stress demands. The shape resistance concept that structures carry loads by shaping

structural geometries to achieve in-plane or membrane resultants is introduced in this

chapter, followed by a brief discussion of shape finding for shape resistant structures.

Laminate Optimum designs are then discussed to improve in—plane behavior of shape

resistant structures by tailoring the material properties of FRP composites property. The

rationale to find material-adapted structural shapes and tailor shape-adapted material

properties for efficient use of FRP composites in new construction is thus recognized.

The aim of this research is then presented so as to develop an approach that accomplishes

these integrated design tasks.

1.2 FRP composites for civil infrastructure

This section provides an overview of the mechanical characteristics of laminated FRP

composites and a brief review of current applications in civil infrastructure.

 



1.2.1 Introduction to FRP composites

Fiber reinforced polymer (FRP) composites are materials in which a reinforcement

constituent of fibers is surrounded by a continuous and uniform matrix constituent of

polymer. The fibers are generally strong and stiff to provide a primary load-carrying

capacity. The polymer matrix holds the fibers together, protects the fibers from damage,

and allows loads to be distributed among individual fibers.

FRP composites are typically used in laminates, which consist of thin layers of fiber-

reinforced material fully bonded together. Each individual layer, or lamina, contains an

arrangement of fibers embedded within a thin layer of polymer matrix material.

Depending on the arrangement of the fiber constituent, an individual layer of a laminated

composite may be constructed by a number of forms. A typical form is to align

unidirectional continuous fibers in a given direction. As it will be discussed in Section

1.2, this arrangement provides a unique feature of the material properties of FRP

laminates, which can be altered by varying the percentage of layers in the laminate with

different orientations. Therefore, FRP laminates composed of unidirectional continuous-

fiber composite layers are commonly used in designs of high-performance structures and

are thus primarily considered in this research.

1.2.2 Mechanical properties of FRP laminates

The properties of FRP composite layers, such as stiffness and strength, strongly

depend on the directional nature of the fibers. The fibers used in FRP composites usually

have much higher stiffness than the polymer matrix. Consequently, unidirectional FRP

composites have different stiffness properties along the fiber direction and perpendicular



to the fiber direction. The stiffness of FRP composites in the fiber direction is governed

by the fibers and the stiffness perpendicular to the fiber direction is mostly dominated by

the polymer matrix. Such materials, in which material properties have two mutually

perpendicular planes of symmetry, are referred to as orthotropic.

The stiffness of Orthotropic FRP laminates can be fully described by four elastic

stiffness properties, which are referred to as the engineering constants, i.e., two Young’s

moduli, E1 and E2, along the fiber and transverse to the fiber directions respectively, and

the shear modulus 612 and Poisson ratio v12 in the plane of the layer. Typical stiffness

properties of various unidirectional FRP composites are given in Table 1.1.

Table 1.1 Properties of various fiber-reinforced cmosite layers

1 E2 G12

(GPa) (GPa) (GPa)

300/5208 Graphite/Epoxy 181 10.3 7.17 0.28

AS4/3501 Graphite/Epoxy 138 8.96 7.10 0.30

B(4)/5505 Boron/Epoxy 204 18.5 5 .59 0.23

Kevlar49/Ep Aramid/Epoxy 76 5.50 2.30 0.34

Scotchply 1003 Glass/Epoxy 38.6 8.27 4.14 0.26

 

Material Constituents v12

 

 

It needs to be pointed out that FRP layers are highly dependent on the fiber

orientation as shown in Figure 1—1, which demonstrates how the elastic moduli are

strongly influenced by deviation of the fiber orientation. In addition, FRP laminates,

which are constructed of unidirectional-fiber layers stacked at different orientations,

inherit the properties of the individual layers and thus lead to high in-plane but rather low

through-thickness properties. However, material properties of an entire laminate in

different directions along the plane of fibers can be adjusted to maximize the utility of the

directional nature of the material properties by varying the number, orientation, and

stacking sequence of the layers.
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Figure 1—1 FRP elastic modulus as a function of fiber orientation

1.2.3 FRP composites in civil structures
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Traditionally, FRP composites have been used extensively in aerospace and consumer

sporting goods where their high stiffness and strength-to—weight characteristics were first

exploited. These properties, together with their high chemical and environmental

endurance and non-magnetic properties compared to conventional materials, have

increased interests in the use of FRP composites for civil infrastructure applications

[Bakis et al., 2002].

Particularly in the rehabilitation of existing structural systems, advanced composites

have shown significant promise in recent laboratory and field applications. The seismic

retrofitting of bridge columns (Figure l—2a) with carbon fiber wraps or pre-formed

jackets has been demonstrated to be technically just as effective, and in some



circumstances more economical, as conventional steel jacketing. The benefits of light

weight and high strength also make FRP composites attractive for the flexural and shear

strengthening of existing concrete structures (Figure 1—2b) [Teng et al., 2002; Hollaway

and Leeming, 1999].

 

    
c)Rehabrlrtaion

Figure 1—2 Applications of FRP composites in civil infrastructures

Structural rehabilitation with FRP composites includes not only repairing and

strengthening of aging infrastructure but also replacement of substandard structural

components such as new bridge decks [Black, 2000] (Figure 1—2c). The advantages of

employing FRPs in new bridge decks include its corrosion resistance, their reduced

weight, and ease of installation. Decks made from composite materials can be customized

to dimensions of traditional decks and can avoid modifications or replacement to the

existing substructure.

Another application of using FRPs in structural components is reinforcing bars

(rebars) fabricated from either glass-fiber or carbon-fiber reinforced plastic composites



[Chaallal and Benmokrane, 1996]. Due to corrosion of steel reinforcement in concrete

structures, deterioration of concrete results in costly maintenance, repairs and shortening

of the structure’s service life. FRP rebars have thus shown to be a viable alternative to

steel reinforcement and prestressing tendons in areas where the use of steel can lead to a

limited life span due to the effects of corrosion.

Finally, the use of all—FRP composite designs for major structural components in new

construction has also become of great interest. Two design and construction systems for

short- and medium-span bridges consisting of tubular FRP members in combination with

conventional materials have been developed and applied to two vehicular bridges in

California [Burguefio, 1999].

1.3 Outstanding issues and motivation

In spite of the many applications of FRP composites in civil infrastructure cited above,

their use is predominantly in structural rehabilitation and strengthening [Bakis et al.,

2002, Karbhari and Seible, 2000]. Construction of new structures composed in their

majority by FRP composite materials is still limited to a few highly subsidized

demonstration projects. Most of the projects are unique and wide acceptance by the civil

engineering community and commercialization has not yet occurred. The limited use is

partially due to a high cost of FRP composites compared to the conventional materials

such as concrete and steel. Another reason is using FRP composites for primary structural

members in shapes copied from those used for conventional materials (i.e., linear shapes

such as I-section) does not take advantage of the predominant in—plane stiffness and

strength of laminated FRP composites [Burguefio, 1999; Keller, 2002].



In order to make composite structures competitive with metallic counterparts, the

overall cost of producing FRP composites needs to be reduced. Advances in

manufacturing techniques, such as pultrusion, resin transfer molding, filament winding

and the automated or semi-automated manufacturing of large components, has

significantly reduced costs. A more efficient way to use FRP composites is in conjunction

with conventional structural materials rather than for individual component replacement

or complete FRP composite designs [Burguer'io, 1999]. This requires new structural

concepts and systems that combine the dominant characteristics of concrete in

compression and steel in inelastic deformation capacity with the superior mechanical

characteristics of directional strength and stiffness in the direction of the composite

fibers. Therefore, efficient use of laminated FRP composites requires developing

structural concepts and systems that employ them under in-plane stress demands

[Burguefio and Wu, 2002].

1.4 Shape and material optimized FRP structures

The deve10pment of FRP structures working under in-plane structural demands

requires combining shape finding methods and material-property tailoring. The concepts

of shape resistant structures and material tailoring are thus introduced next, followed by a

brief discussion of the integrated optimization approach for laminated FRP structures

presented in this dissertation.



1.4.1 Shape resistant structures and optimal shape finding

A genre of structural systems that can be used to improve the efficiency of laminated

FRP composites is called shape-resistant structures (Figure 1—1), which carry design

loads in large spans mainly through in-plane or membrane resultants acquired by shaping

the material according to the applied loads. Membrane structures and thin-shells are two

types of shape resistant structures in which the material is efficiently used under in-plane

stress demands developed by the structural shapes.

 Arch Bridge

Shell Structure

Figure 1-3 Shape resistant structures [Otto, 1969]

Traditional design methods using trial-and-error are not applicable for the design

shape-resistant structures. The methods typically used for the design of shape-resistant

structures are called form-finding or shape optimization. These methods, which range



from experimental to diverse numerical approaches, have been successfully developed

for determining the optimal shapes and form finding of shell/membrane structures.

However, they can not be readily applied to the optimal shape design of laminated FRP

composite structures since they apply primarily to structures made from isotropic

materials, maintaining the same material properties during the form finding process.

Designs for FRP structures obtained through these methods are thus often far from

optimal because other competitive material properties cannot be explored.

1.4.2 FRP laminates and optimal laminate design

As previously mentioned in Section 1.2.2, the material properties of FRP laminates

can be altered by varying the number, fiber orientations, and the stacking sequence of

layers in a laminate. This advantage of tailoring the material properties provides the

possibility of improving the structural performance of a shape resistant structure by

adjusting the properties of FRP laminates to strengthen the in—plane behavior of the shape

resistant design. Evolutionary design optimization methods have been successfully

developed and applied for optimal laminate designs requiring discrete changes of fiber

orientations and the stacking sequence. However, these methods cannot be directly

incorporated with shape optimization procedures, which depend on continuous changes

of the structural geometry. Material optimum designs are thus isolated from the shape-

finding process of structural resistant designs. Therefore, development of efficient

designs for FRP structures in infrastructure requires a general approach accomplishing

simultaneous shape and material optimization.



1.4.3 Shape and laminate optimization of FRP structures

From the previous discussion it is understood that finding an efficient structural

design Of a laminated FRP structure that meets all the requirements for a specific

application should be achieved not only by shaping the geometric configuration of the

structure, but also by tailoring the material properties, It is thus considerably more

complex to find efficient designs for laminated FRP structures than for those made of

isotropic materials.

Several researchers have investigated the optimum structural design of FRP structural

components. For example, Aref [2001] investigated an approach using genetic algorithms

to minimize the weight of structural components by simultaneously changing the cross-

sectional shape and ply orientations of the FRP laminates. In another effort, Qiao et al.

[1998] developed a global approximation method to optimize material architecture by

volume fractions Of cross-plies and the cross-sectional area of laminated FRP beams. In

spite of these and other developments, the methods developed thus far for the

optimization Of FRP laminate structures are only applied to what can be termed as sizing

optimization of standard linear shapes with limited laminate optimization of thickness

and/or orientation of limited number of plies.

Although research on the optimum design of FRP laminates and components has been

under continued investigation, it is much less developed than shape optimization

algorithms for conventional structures. The optimum design of an FRP laminate structure

involves both the shape optimization Of the structure and the material Optimizations of the

laminate. Thus, a general approach is required to simultaneously solve for structural

shape and material properties thus improve the performance of laminated FRP structures.

10



1.5 Objective and scope of the dissertation

The main Objective Of the research reported in this dissertation was to develop an

implement a general analytical approach for the development and optimal design c

material-adopted shapes for laminated FRP composites in civil structures. The propose

analytical approach was evaluated and validated by Optimizing FRP shell structures an

applied to develop innovative bridge systems using FRP membrane/shell elements.

The dissertation outlines the developed analytical procedure for simultaneous]

finding the Optimal shape and optimal laminate design of FRP structures. The integrate

approach serves as an analytical tool to aid in the design of laminated FRP composit

bridge systems and provides insight to the concept of efficiently using FRP laminates b

taking advantage Of their directional strength and material tailorability.

Chapter 1 provides with an introduction to FRP composites, particularly laminate

FRP composites and their mechanical prOperties. Current applications of FRP composite

in civil structures are briefly reviewed. The research motivation is discussed, followed b

the research scope.

Chapter 2 presents the fundamental relations that govern the linear elastic propertie

of FRP laminates. The chapter then discusses the computation Of elastic properties 21

functions of variables that can be changed during the design process, followed by th

formulation Of constraints between these variables.

Chapter 3 reviews the existing techniques and their limits for form finding c

membrane structures and shape Optimization of shell structures. The concept of structurz

shape Optimization is then introduced with a brief discussion of requirements for materiz

ll



optimization of FRP laminates. Finally, an uncoupled integrated approach is proposed for

shape and material optimization.

Chapter 4 and Chapter 5, respectively, describe the optimization problem

formulation, the chosen algorithm and its corresponding implementation for each

Optimization level in the integrated approach.

Chapter 6 focuses on the investigation of the performance and stability of the

integrated approach by investigating the optimization Of FRP shells. The proposed

approach is evaluated by studying and comparing the structural behavior between a

shape-and-material Optimized shell and two shape-only Optimized shells.

Chapter 7 proposes two types of FRP composite membrane-based bridge systems that

effectively employ laminated FRP composites. The developed integrated approach is

implemented and evaluated through analytical studies on these two bridges.

Chapter 8 summarizes and concludes the current research efforts for the integrated

shape and laminate Optimization and provides recommendations for future research.

12
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2 Laminated Fiber Reinforced Polymer (FRP) Composites

Laminated FRP composites are a class Of composite materials where the layers of

unidirectional fiber—reinforced composites are staked at different orientations. By varying

volume fractions and the fiber orientations Of layers in a laminate, material properties of

the entire laminate can be adjusted to meet the requirements of a design. FRP laminates

have a wide range of application in structural design, especially for high—performance

structures that have stringent requirements of specific (property divided by weight)

stiffness and strength. In this research, FRP laminates are the only type Of FRP composite

considered in the composite structures.

Applicable structural designs require meeting certain response quantities such as

displacements, stresses, buckling loads and natural frequencies. These response quantities

depend on the constitutive behavior of materials, which are determined by the elastic

properties such as Young’s modulus, shear modulus, and Poisson’s ratio. For laminated

FRP composites, the constitutive behavior is determined not only by the these elastic

prOperties but also by the parameters Of fiber orientations and stacking sequence that can

be altered in order to improve structural performance.

The Objective of this chapter is to discuss how the sectional stifi‘ness calculations of

FRP laminates depend on the parameters that can be changed during a design process.

The chapter begins by presenting the stress-strain relation that governs linear elastic

responses of an orthotropic lamina. The section stiffness of FRP laminates composed of

orthotropic laminas oriented at angles is then formulated based on the constitutive

relations and the lamination stacking sequence. In addition, the formulation of the section

stiffness is given in mathematical terms of lamina invariants and lamination parameters.
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This alternative formulation of the section stiffness requires establishing the relationships

between lamination parameters when altering fiber orientations in a stacking sequence.

Thus, the feasible domain of out-plane lamination parameters is explored with respect to

the in-plane lamination parameters at the end of this Chapter.

2.1 Constitutive relations for FRP laminates

The stress-strain relation for a three—dimensional anisotropic linear material, also

known as Hooke’s law, is expressed in the following tensor form:

023': ijmnéinn (2-1)

Because of symmetry, 03:0},- and £;,,,,=a.m, there are only 21 independent material

constants in the C matrix, in which Cijmn= 11”,": gm. SO, Eq. (2.1) can be rewritten in the

matrix form:

r N r N r i

0.11 C11 C12 C13 C14 C15 C16 811

0.22 C22 C23 C24 C25 C26 822

03 C33 C3 C15 C36 8 3
i 3>=< 4 ‘ <3 f. (2.2)

0'23 C44 C45 C46 823

031 C55 C56 831

(0'12 , isym C66 J .812 i      
In the case of a three—dimensional orthotropic material, such as a unidirectional fiber-

reinforced lamina, there are two perpendicular planes Of symmetry that define two

principal axes of material properties. These principal axes correspond to the direction of

the fibers and the directions perpendicular to the fibers, denoted by subscripts 1, 2 and 3,

respectively. The stress-strain relation in the principal material directions of an

orthotrOpic lamina is given by Eq. (2.3)

15



ro-lli C11 C12 C13 0 0 0 \ r811‘

022 C22 C23 0 0 0 822

0' C 0 0 0 e

1 33 i=4 33 l1 ‘3 y. (2.3)

023 C44 0 0 £33

031 C55 0 83]

i012, tsym C66, i512,      
Due to the thinness of typical lamina, all layers of the FRP laminates are assumed to

behave in a plane stress state in the 1-2 principal material plane so that 0'33 2 0, 023 = 0

and 0,3 = 0. The strain—stress relation is then simplified to Eq. (2.4)

011 Q1] Q12 0 £11

022 2 Q12 Q22 0 822 , (2-4)

012 0 O Q66 812

where the Qij are the reduced material stiffness coefficients which are given in terms of

four independent engineering material constants in principal material directions as:

 

E E

Q11 _ 1 v Q22 _ 2 ,

1_V12V21 1 V17V21

v E V E
Q12 _ 12 2 _ 21 l , (2.5)

1_V12V21 1—V12V21

Q66 : G12 '

Since an orthotropic FRP layer can be generally oriented at a certain angle with

respect to a structural coordinate system of x-y-z, the stress—strain relations (Eq. (2.4)) in

the material coordinate system must be transformed to the structural coordinate system.

The transformation of stresses and strains can be accomplished by

0.11 an 81] xx

0'22 = T 0'yy and 6‘22 = T 8», , (2.6)

0'12 ny 812 8”
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where T is a transformation matrix. Assuming that the 1-2-3 axis originally coincides

with the x—y-z axis and considering a rotation 19 about the 3 (or z) axis, the

transformation matrix is given by:

cos2 19 sin2 (9 2cost93inr9

T = sin26’ c0326 -—2cosr93int9 . (2.7)

. . 7 . ’3

——cos€s1n6l cost9srn6 cos“ 6 —sm“ 6’

With Eq. (2.6) and Eq. (2.7) substituted into Eq. (2.4), the strain-stress relation in the

structural coordinate system is transformed to:

0.1x 8)“ Q1 1 Q12 Q16 8.0

-1 — —" '—

0), =T QT e), = Q, Q,, Q,, a), . (2.8)

axy 813’ Q1 6 Q26 Q66 8.x):

Q}!- are called the transformed reduced stiffness coefficients, which can be expressed

in a simpler form by introducing the lamina invariants [Tsai and Hahn, 1980] as:

Q11 =U,+U,cos26+U,cos46 (2.9a)

5, = U, — U, c0346 (2%)

5,, = Ul — U, cos 29 + U, cos 4e (2.9c)

5, = éU, sin 26 + U, sin 46 (2.9d)

5,, = éU,sm26 — U,Sin46 (2%)

5,, = US — U, cos46’ (2.91)

where the Us are the lamina invariants defined as [Tsai and Hahn, 1980]:

1
U1 = g(3Qll + 35,, + 25,, + 4Q,,) (2.10a)
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1

U2 25(Q11 _Q22) (Z-IOb)

1

U3 = §(Q11 + Q22 — 2Q12 _4Q66) (Z-IOC)

U4 :%(Q11 +Q22 +6Q12 _4Q66) (210(1)

1

Us : §(Q11 + Q22 _ 2Q12 +4Q66) (2-106)

When n orthotropic layers oriented at different angles are stacked together, a set of

additional assumptions are needed in order to derive the equations that govern the

constitutive behavior of the laminate. Each layer is assumed to be perfectly bonded to the

adjacent layers so that the laminated layers deform in unison without experiencing any

discontinuity in displacements. Furthermore, Classical Kirchhoff plate theory is assumed

for the bending behavior of the laminate so that the strains in the out-of—plane direction Z

are neglected and the w displacement in direction z is constant through the thickness Of

the laminate. These two assumptions, along with the assumption of the layers being in a

state of plane stress, define what is known as classical lamination theory (CLT), which

will be applied herein to formulate the constitutive behavior of the laminates.

 

 

  

 

 

 

  
  

 

 

Z ll hk/:Zk+l'Zk

‘1— \ 1/

\_ l/

he, © 9L A ———le
\ ® OK i/ \ ZkiIZL L+l

) /7’<II IT 1 i =x

Z

mi 3 i“ Z1
i to 92 i i l

/ G) 91 \ 

Figure 2—1 Laminated FRP composites
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According to CLT, the strains in a plate under a state of stress can be defined by the

addition of the constant mid—plane strain {8”} and the linear variation due to the bending

curvatures { K} as:

0

XY 8&2? KXX

_ 0

)’y — 8y)» + Z Ky), '
(2.11)

8,, 8:, KB,

The stresses in the km ply expressed by the material reduced stiffness of that particular

ply are:

(k) — — — (k) 0

an Q1 1 Q12 Q16 8n Kn

_ — — — (k)

0'”, — Q12 Q22 Q26 8:, + 2: Km . (2.12)

0.x); Q16 Q26 Q66 83y Kay

The stress resultants and moment resultants for unit width of the cross section are

Obtained by integrating the stresses of all plies through the laminate thickness:

(k)

NX an n 0.“

Ny = ill/22 0“,, dz=§ I z:1 0'), dz, (2.13a)

ny 0x), — X)

Mx 03.. (k) Us.

My 41/: 0,, zdz=;I: a, zdz. (2.13b)

Mx, 03,, ' 0,,

Substituting the stress-strain relations of Eq. (2.12) into Eq. (2.13), the following

section stiffness of the laminate is Obtained:
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Nx A11 A12 A16 Bll BIZ Blfi 8:)

Ny
A22 A26 BIZ 82?. 326 6:,

ND. : A66 B16 BIG 866 8:;
(2.14)

M .1- Dn D12 D,, K,

M y
D22 D26 K,

M A), sym
D66 Kn

where, [MM is the extensional (in—plane) stiffness matrix; [B]3X3 is the bending—

extension coupling stiffness matrix; and [D]3X3 is the flexural (out—plane) stiffness matrix.

The components of the A-B-D matrix can be expressed in terms of the reduced stiffness

Q1“) ’5 of each layer by

A, =Z5j’”(z—z,_1) (2.15a)

1 _ .
3, =5 ,(M.(z;_z;_1) (2.151»

1 1 ,
=§H Q,“(zi —z,_,) (2.15c)

If all layers are of the same material, the components Of the stiffness matrix can be

further simplified by substituting (2.9) into (2.15) Obtaining:

A, =h~A,‘.(U,v) (2.16a)

h2 II:

B, =—2—-B,(U,V) (2.16b)

I13 .
D, =E-D,(U,v) (2.16c)

where the VS are termed lamination parameters. The use of lamination parameters was

first proposed by Tsai and Hahn [1980]. However, it should be noted that the notation

used in Eq. (2.16) uses a non—dimensional formulation of the lamination parameters,

20



which deviates from the classical definition from Tsai and Hahn [1980] by the multipliers

h, h2/2, and h3/12, respectively. The non—dimensional formulation has been found to be

more convenient for use in Optimization problems [Miki, 1982; 1985], and is defined by

the following expressions.

Vol/um} : {1, 09 1}» (2.17a)

" , 1 2 . , 12 _

VllA,B,D} : ZCOS 26m —(Zk _ Zk—l )a 7(Zf — Zk—l )> —3(Zf — Z111 )} 2 (2-17b)

k=l h h h

" . , 1 2 7 7 12

V21A.B.Dl : Zsm 29(k){_ (Z1 _ Zk—l )2 Tizi _ Zi—r ) ‘Tizi _ Zi—1)}’ (2-170)

k=1 h h h

" , l 2 2 2 12 ,

V3lA.B.D} : ZCOS 46m{— (Zk _ Zk—l )’ 7(Zk — Zk—l )7 —3(ZI: ’— Z2-1)}’ (217(1)

M h h h

" . 1 2 2 2 12 ,

V4lA.B,D} : Zsrn 46(k){_(zk _ Zk-1)‘—2(Zk _ ZH ) _3(Zf — 224)}. (2.176)

k:1 h ll 11

The A; , B; ,D; coefficients in terms of the lamina invariants Us and the lamination

parameters V’s are summarized in Table 2—1.

Table 2—1 A*, B*, and D... matrices in terms of lamina invariants and lamination

 

 

parameters

V0{A,B,D} VllA,B.D) V2{A,B,D} V3]A,B.D} V4{A,B,D)

{Air’Bierfii U1 U2 0 U1 0

{A;..B;..D;.} U1 -U2 0 u. 0

{Aferfzerzi U4 0 0 U1 0

{A;,,B;,,D;,} U5 0 0 U1 0

{46,812,053 0 0 U2 0 2U3

{ester} 0 0 U2 0 -211,
 

The lamina invariants US are independent Of the ply orientation and are determined

only by the property of a single layer with respect tO the material coordinate system. The

lamination parameters V’s are related to the fiber orientations and stacking sequence of
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the layers with respect to the structural coordinate system. Thus, as long as the properties

Of the FRP lamina are known, the section stiffness of an FRP laminate can be determined

by lamination parameters representing the fiber orientations and the stacking sequence.

2.2 Stacking sequence of laminates

In the previous section, the section stiffness matrix describing the elastic responses of

a laminate was presented. According to the section stiffness matrix, it should be noted

that coupling effects may exist. These coupling effects are easily introduced by random

stacking sequences. However, these coupling effects can hamper the effective use of FRP

laminates, and their source and effect should be clearly understood.

The [B] matrix represents the coupling effects between in-plane and out-Of-plane

deformations. Then, according to Eq. (2.17), the [B] matrix vanishes when the stacking

sequence Of a laminate is restricted to be symmetric with respect to the laminate mid-

plane. According to Eq. (2.14), for symmetric laminates, the in-plane responses and out-

of—plane responses can be solved independently. The in-plane resultants are only related

to the mid—plane strains and the moment resultants are only related to the section

curvatures.

The stiffness terms A16 and A26 in the in-plane stiffness matrix creates a shear-and-

extension coupling effect. This coupling effect will result in in-plane normal stress

resultants by shear deformations. The shear-and-extension coupling can be eliminated by

balancing layers of Off-axis fiber orientations. Balanced laminates require that for each

layer with a negative orientation angle 6there is a layer with a positive orientation angle

6. Although the layers in a balanced pair do not need to be placed adjacent to each other,

22



the distance of two balanced layers will determine the value Of the bending—twisting

coupling terms of D16 and D26.

The bending-twisting coupling terms D16 and 026 exist for all laminates that have off-

axis fiber orientations. The out-Of-plane bending—twisting coupling effect can not be

eliminated even when balanced laminates are used. However, balanced laminates in

which layers Of positive and negative Off—axis angles are placed adjacent to one another

will reduce the effect of out-Of-plane bending-twisting coupling. Furthermore, for a

certain laminate thickness, the bending—twisting terms, 016 and D26, vanish with an

increasing number Of the layers. This behavior will be proved in the following section

dealing with constrained relations between lamination parameters.

Designs with consideration of coupling effects are generally avoided in the use Of

FRP laminates, unless the coupling behavior is sought for pseudo-active structures. Thus,

only balanced and symmetric laminates, which have the least-pronounced coupling

characteristics, were investigated in the current research. Coupling of the in-plane and

out-Of-plane responses, denoted by the [B] matrix, vanishes for symmetric laminates.

According to the Eq. (2. 17), the in-plane shear-extension coupling defined by A16 and A26

vanishes when the laminates are balanced. The out-of—plane bending-twist coupling is

considered zero on condition that the number of layers is large enough. Based on the

above-mentioned assumptions of the staking sequences, the section stiffness Of laminates

can be simplified to:
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N, All A,, 0 0 0 o a:

N, A,, A,, 0 0 0 0 5;?

N“, i 0 O A,, 0 0 O 8:;, . = . i (2.18)

Mx 0 O 0 D11 D12 0 KX

M, 0 0 0 1),, 1),, 0 K,

[M 1,, L 0 0 0 0 0 1),, - ,K,

2.3 Constrained relations of lamination parameters

Use Of the lamination parameters to define the section stiffness of laminates requires

the definition of an allowable domain for each lamination parameter so that they meet the

coupled constraints in relation with other lamination parameters. The constrained

relationship between the lamination parameters V1 A, V3,, V10, V20, V3,, and V4,, and

their feasible domain are established in the following sections.

2.3.1 Relation between in-plane lamination parameters

As discussed previously, in—plane shear-extension coupling effects vanish for

balanced and symmetric laminates. Then, according to Eq. (2.18), the in-plane section

stiffness is determined by:

A11 A12 0

A: A,, A,, 0 (2.19)

0 0 A,,

Recalling Table 2.1and Eq. (16), the components Of the stiffness matrix A can be

determined in terms of lamination parameters and lamina invariants by:
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i A1 1 Ah U1 V121 V3A 1

A *, v v, 22 :h,AE-,:h U1 1A M U, , (2.20)

A12 A12 U4 0 TVs/1 U

* 3

(A66 [A66, _U5 0 _V3A_ 

According to Eq. (2.20), when the properties Of the lamina are known (i.e., U1, U2,

and U5), the in—plane stiffness is fully determined by the axial lamination parameters

V1,, and V3, , which are defined as follows:

V1.1 = 2v, cos 219, , (2.2la)

r=l

v,,, = 2v, cos4o, , (2.11b)

r=l

where n is the number of different i6 groups, and v, is the volume fraction of the layer

with i6,- orientation angle

 
2z 2z _1

: r _ r ,
2.22

' h h ( )

and satisfies:

2v, =1. (2.23)

r=l

where z, in Eq. (2.22) is defined with respect to Figure 2—1.

From Eq. (2.21) and Eq. (2.23), it can be noted that the lamination parameters VIA and

V3,, , respectively, have the boundary:

—lSVM,V,ASI (2.24)

Obviously, the allowable value Of lamination parameters of V1,, and V3,, should

satisfy the inequality equation (2.24). Furthermore, the possible in-plane elastic
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properties are constrained by an allowable combination of V1, and V3,. Using the

trigonometric relation, c0346 = 2cos2 219+1, the allowable region Of VIA and V3,, should

satisfy:

V3,, — (2V1: —1): iv, cos 46 —— [2[: v, cos 26?]~ - I]

r=l r=l

(2.25)

= 2iv,[cos 26, —:v, cos 28,]~ .

r=l r=l

The term V3,, — (2V,: —1) is non-negative, and achieves zero only on the condition of

n = 1, that is, when the laminate has only one layer. Therefore, the relation stated by Eq.

(2.25) can be expressed as:

v 2 2v,,2 —1. (2.26)
3A

Consequently, the allowable combination domain of in-plane lamination parameters

specified by Eq. (2.24) and Eq. (2.26) can be depicted in a diagram (Figure 2—2). The

diagram has been effectively used to design laminates with prescribed in—plane stiffness

properties in a general graphical procedure introduced by Miki [1982].
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Figure 2—2 Feasible domain of in—plane lamination parameters

2.3.2 Relation between out-of—plane lamination parameters

For symmetric and balanced symmetric laminates, the flexural lamination parameters

V”, and V30 are defined as:

V,,, = Zs, cos 26, , (2.27a)

r=l

V,,, = 2s, cos4e,, (2.27b)

r=l

where n is the number of different i6 groups, and s, is defined as:

3 3

8. =6?) {git—J . (2.28)

As before, both lamination parameters must satisfy the boundary defined by

 

—1 S V10, V30 S 1. In addition, in a procedure similar to that presented previously, it can
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be shown that the allowable region (Figure 2—3) of combining V”, and V31) satisfies

[Miki, 1985]:

1 v...

 

  
Figure 2—3 Feasible domain Of out-plane lamination parameters

As previously discussed, the bending-twisting coupling terms 016 and D26, which are

caused by any Off-axis fiber orientation layer, exist even for balanced and symmetric

laminates. The bending-twisting coupling terms D16 and D26 are determined by the V20

and V4,, lamination parameters, where:

V,,, = Zs, sin 219, , (2.30a)

r=l

V4,, = 2s, sin 46, . (2.30b)

r=l
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Considering symmetric and balanced laminates in which each layer has constant

thickness and the balanced layers are placed adjacent with each other,

expressed by:

 

3 3

Sr : 2Zr __ 2 Zr + <'r—l + 2Zr-l

h h h

  

=lil3-2t’22.”l+l";‘i

=Z:7[4r3 +4(r-1)3 —(2r—1)3]

6r—3

4n3 '

 

Then, V2,) and V4,, satisfy

  
”0:216:293.n26 <Zs46rn—33:

r=l n

V4D:Z6r—33in 46f <z6r:3—

,_1 4n 4n3

  

:4n'

3, can be

(2.31)

(2.32a)

(2.32b)

According to Eq. (2.32), as the number of layers increases, the lamination parameters

of V2,, and V40 that define the bending—twisting coupling tend to vanish.

2.3.3 Relation between in-plane and out-Of-plane lamination parameters

In optimization practices that use lamination parameters to design FRP laminates, it

has been observed that the in-plane lamination parameters (V1,, V3,) and out-of-plane

lamination parameters (VH3, V30) are not independent of each other when altering fiber

orientations and the stacking sequence of a laminate. This implies that determination of

laminate properties by in-plane and out-of—plane lamination parameters is constrained by

an allowable combination domain.
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Considering symmetric and balanced laminates, in which each layer has a constant

thickness and the balanced layers are placed adjacent to each other, the in-plane and out-

of—plane lamination parameters can be expressed as:

VIA = 212005219, % , (2.33a)

V3,, 2 zoos 46, % , (2.33b)

V”, zgcos2flriL’13hL—l, (2.33c)

V3,, = :cos 419,1%. (2.33d)

,z, n n“

The allowable combination domain is defined as a feasible region of (V10, V30) with

respect to a given in—plane feasible design (VIA , V3,, ). The mathematical equivalence can

be alternatively implemented to find out the feasible region bound of (V1,, , V30) in terms

of functions of (V1,, , V3,) throughout whole feasible domain previously defined for the

in-plane lamination parameters (Eq. (2.26)) and Figure 2—2.

The region boundaries of (V10, V30) with respect to (VIA , V3,) can be implemented

by a two-step procedure. The first step is to define the bounds of V10 with respect to a

given feasible design (V1,, , V3,, ). This step can be formulated by the Optimization

problem stated in Eq. (2.34). Figure 2—4 shows an example of determining the feasible

boundary of V10 for a given point of {V1A, V3A} = {-0.4, -O.4};
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Objective:

" 1 3 2 — 3 +1
Max/Min V”, — V, = Zcos 26, —[—:—,—C— — 1] (2.34a)

,2, n n“

Constraints given by:

" 1
VI, = Zoos 2e, — (2.3413)

r=l n

n 1

v,, = Zcos46, —, (2.34c)

ll
r=l

where the 6,,’s are chosen as design variables, and t9, 6 [— 90°,90° J.
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Figure 2—4 Boundary determination of V10 for a given {Vm V3A}

The second step is then to define the bounds of V3,, for a given value within the

domain of V”, found in the first step with respect to the given design of (V1, , V3,, ). The

procedure can be accomplished by solving another Optimization problem as stated in Eq.
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(2.35) below. Figure 2—5 shows an example of determining the feasible boundary of V30

for a given point of {Vim V3,, V10} 2 {-0.4, 04, V10} for VIDE [max VID, min V30].

Objective:

" 1 2 — +1
Max/Min V30 — V3,, 2 Zoos 46, _[3r__3r___ - I] (2.35a)

r=l n n”

Constraints given by:

V10 : V 6 [Vlein ’VlDJnaxJ (2-35b)

" 1

VI, = Zcos2o, — (2.350)

r=l n

V3,, 2 2008 46’, 1, (2.35d)

n
r=l

where the @’s are chosen as design variables, and 6,, E J— 90°,90° J.
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Figure 2—5 Boundary determination of V3,; for a given {V1A, V3A, V19}

 
32



Due to the highly non-linear objective functions, numerical methods are best suited

for use in the optimization process. Given a pair of (V1,, , Vsn ), a set of 61 was searched to

achieve the maximum/minimum objective. The optimization search is performed for the

different feasible sets of (V1,, VM) throughout the feasible design domain. Thus, the

bound for any given point (VID, V30) can be constructed by interpolating between

discrete points within the (V1,, , V3, ) space.

The numerical solution was implemented with the optimization toolbox provided in

Matlab [MathWorks, 2000]. Figure 2—6 illustrates the allowable regions of out-of-plane

lamination parameters (V1,), V30) for three in-plane lamination parameter sets {VIA ,

V,, }: {-04, —0.4}, {0,0} and {0.7, 0.8}.

f v30 (V3A)

,‘

  
1.0

 

V10 (V1A)

 
Figure 2—6 Feasible domain of combining in-plane and out-plane lamination parameters
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As shown in Figure 2—6, the feasible domain for a pair of out-plane lamination

parameters can not achieve the feasible region illustrated in Figure 2—3 in combination

with a given pair of in-plane lamination parameters. Moreover, its feasible region will

depend on the given pair of in-plane lamination parameters.

2.4 Summary

In this chapter, the section stifi‘hess matrix Of FRP laminates based on classical

lamination theory were derived in terms of lamina invariants and lamination parameters.

The elastic properties and coupling effects were discussed, followed by the assumptions

about the stacking sequences of laminates considered in this work. The section stiffness

matrix of the laminates that will be used throughout the research was derived based on

these assumptions. Finally, constrained relations of lamination parameters were

established for laminate designs.
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3 Integrated Optimization Process for Laminated FRP Structures

The nature of laminated FRP composites makes them strong and stiff in-plane, along

the fiber orientation, but rather weak through their thickness. Thus, they are most

efficient when used under global in—plane stress demands. Therefore, the efficient use of

laminated FRP composites in civil infrastructure requires finding structural forms that

can maximize the in-plane carrying capacity of laminated FRP composites.

   
(a) Membrane structure if (b) Shellc

Figure 3—1 Shape resistant structures

Tension membrane structures (Figure 3—1 (a)) and thin-shells (Figure 3—1 (b)) are two

structural form types for lightweight structures that carry loads in large spans mainly

through in-plane, or membrane resultants. These two types of lightweight structures

belong to the genre of shape resistant structures in which structural strength is obtained

primarily by shaping the material to achieve membrane behavior under the applied loads.

The shape-resistant nature of in—plane structural response makes structures highly

efficient since only a minimal amount of material is used. Therefore, the form finding of

lightweight structures is to determine the layout, or shape, in which the material is

optimally used so that the structure is subjected primarily to membrane forces rather than

bending.
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This chapter presents an overview of the capabilities and limitations of different

approaches to the Optimization of laminated FRP structures. An integrated approach

accomplishing the combined tasks of shape and FRP laminate optimization is

conceptually presented. The algorithms for each level of optimization are identified,

followed by a discussion of the proposed integrated approach.

3.1 Form finding and structural shape optimization

Different experimental methods and computational methods have been developed for

the form finding of lightweight structures. Methods for form finding of tension

membrane structures and compression thin-shell structures, which depend on different

types of membrane action, are introduced in this chapter. The computational methods

derived from the experimental methods are also presented. A general computational

method for form finding of lightweight structures is then discussed.

3.1.1 Form finding of tension membrane structures

Tension membrane structures, which may consist of prestressed cable nets or fabric

membranes, are very attractive alternatives to span large distances. They are very light,

elegant, and structurally efficient. The material is optimally used since membranes are

subjected to constant surface stresses. Therefore, the form finding of a membrane

structure implies finding a shape that results in a constant surface stress distribution under

prestressing and externally applied loads.

A membrane that exhibits a constant surface stress is described as a stable minimal

surface. Naturally, stable minimal surfaces are achieved by soap films, which have zero
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mean curvature at every point on the surface and maintain a minimum surface area when

in stable equilibrium. The soap film analogy (Figure 3—2) [Hildebrandt and Tromba,

1983] is an experimental method that mimics the characteristics of soap films to

determine an optimal shape for a tension membrane structure, which is to act in a similar

state to that of a soap film.

 

Figure 3—2 Soap film analogy method and tension membrane structures and

[Hildebrandt and Tromba, 1983]

The inherent basis of the soap film analogy method for form finding is to find an

Optimal membrane shape due to a uniform stress distributed on a deformed structure.

Mathematically, this procedure leads to minimal surfaces sustained in a stable

equilibrium state. The mathematical principle of the soap film analogy was used to

develop several numerical methods, such as the force density method [Schek, 1974;

Linkwitz, 1999], the dynamic relaxation method [Barnes, 1994; Lewis and Lewis, 1996],

and the updated reference strategy method [Bletzinger, 1997; Bonet and Mahaney, 2001].

The force density method [Schek, 1974; Linkwitz, 1999] is primarily used for cable

structures. A cable net structure is discretized into branches. The force-length ratios, or

force densities, Of the branches are defined as structural degrees of freedom. Each node,

or the intersection of the branches, is subject to external loads and internal forces from

the connecting branches. The optimal shape is the deformed shape of the cable structure

38



that achieves an equilibrium state with the prescribed cable forces. Equilibrium of the

structure is obtained by shaping the structure to achieve force balance at every node. The

problem can be solved by a set of linear equations in terms Of nodal coordinates and

force-densities at the branches. However, based on special discretization and linearization

techniques, such as modified Newton-Raphson iterations [Haug and Powell, 1972;

Suzuki and Hangai 1991], the force density method is mainly intended for the form

finding Of cable structures, for which equilibrium can be enforced by linear equilibrium

equations of force-density parameters.

The dynamic relaxation method [Barnes, 1994; Lewis and Lewis, 1996] finds optimal

shapes Of tension membranes by the principle of minimum potential energy of surface

tension, which governs the formation of soap films. This method solves a static problem

by non-linear equilibrium equations simulating a pseudo—dynamic process in time.

Initially, the membrane surface is discretized by finite elements. The mass of the

structure is equivalently distributed to the nodes of the elements. Initially, the nodal

velocities and displacements of the structure are set to zero. The residual forces, which

are calculated as a difference of external and internal loads, excite an oscillation of the

structure. The nodes of the structure start to vibrate with increasing velocities and

accumulating displacements. The kinetic energy of the structure is monitored during this

process. At the peak of the kinetic energy, the oscillation is interrupted. The nodal

velocities are reset to zero and the residual forces are recomputed for the current

deflected structure. The iteration process is restarted from the current deformed geometry

and continued until the residual forces are reduced to a minimum. The dynamic

relaxation method is particularly suitable for structural analyses involving large
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displacements. However, this technique has no reliable means of controlling the in-plane

distortion of finite element meshes [Bonet and Mahaney, 2001]. Therefore, the method

can produce unreliable results or, in some cases, result in unstableperformance

procedures.

The updated reference strategy (URS) method [Bletzinger, 1997; Bonet and

Mahaney, 2001] is another form-finding approach to solve minimal surfaces. This

method is consistently derived from continuum mechanics of elastic bodies with respect

to large deflections and small strains. The fundamental concept of the method is to

supplement the stiffness matrix in terms of Cauchy stress tensors in the actual deformed

configuration with an additional stiffness matrix. The additional stiffness matrix is

derived in terms of the second Piola—Kirchhoff stress tensor in a reference configuration.

According to the URS, the reference configuration is chosen as the previous deformed

shape of the last iteration. The additional stiffness matrix is known as a geometrical

stiffness matrix, which measures the amount of shear distortion of the deformed

structures between two continuous steps. The reference configuration is iteratively

adapted and the optimization process is terminated when the differences of shear

distortion in subsequent reference configurations are within an acceptable tolerance. The

structural shape leads to the minimum surface area of a membrane. This method can be

applied to cable net structures and membrane structures. If applied to one-dimensional

elastic bodies such as cable structures, it will reduce to the force density method.

However, update of the reference configuration requires nodal movements normal to the

structural surface. This enforcement reduces the nodal degrees of freedom to a 1D

direction, which is in conflict with the generation of a free-form surface in 3D space.
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Also, the additional stiffness matrix will be singular for the special cases in which nodal

displacements are tangential to the surface. This main deficiency exists for all the

procedures previously presented for minimal surface. From a mathematical point of view,

this deficiency is inherited for all numerical solutions of minimal surfaces. Furthermore

the stress filed of a deformed structure is prescribed and not related to structural

deformations.

Other computational approaches that involve non-finite element analyses have been

developed for the form finding Of tension membrane structures [Brew and Lewis, 2003].

However, all Of these methods are limited to special applications due to their inherent

simulation of the soap film analogy. The soap film analogy, which can physically only be

implemented in isotropic films, leads to uniform membrane stresses by minimizing the

surface area of the membrane. The computational methods inherent the limitations of the

physical approach that they simulate. These computational methods solve an Optimal

shape by achieving either a minimum area of a stable surface or uniform membrane

stresses, which can be only implemented in tension membrane structures.

3.1.2 Form finding of shell structures

Shell structures are another type of shape resistant structures that use materials

efficiently. Their excellent structural performance for high load resistance over large

spans results from their double-arching behavior that allows them to carry loads by

membrane resultants rather than bending. Hanging chains are the simplest structures to

carry external loadings by tangent tension resultants obtained through catenary shapes.

Several experimental methods have been developed for the form finding of shell
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structures on the basis of the mechanical principle of bending-free hanging chains, or

catenaries.

The hanging method (Figure 3—3) is an experimental approach that directly employs

the mechanical principle of hanging chains. The models obtained by the hanging method

are free of bending and only subject to tension. Therefore, the inverse of the hanging

shapes can be considered as the optimal shapes for masonry arches and vaults in pure

compression. Applying this principle to three-dimensional structures, Heinz Isler [1991,

1994] successfully implemented optimal shapes of shell structures defined by physical

hanging experiments. In the experimental manipulation, shell structures are simulated by

similar-dimension membrane materials such as textile cloths that are not able to resist

bending and shear. The membranes are hanged according to the boundary conditions of

the real structure. The Optimal shape of a shell is Obtained by taking the inverse shape of

the deflected structure subject to a variety of forces, preferably self—weight. In addition to

the hanging method, other physical handling techniques are also used in form-finding

experimental methods for shell structures, such as the pneumatic method and the flow

method [Isler, 1991].
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(c) ’ “(11)

Figure 3—3 Hanging method and shell structures and [Isler, 1991, 1994]

The inherent nature of the hanging method generates an optimal shape that is the

deflected shape of a structure made of “membrane materials” or materials with negligible

bending stiffness. This process can be numerically simulated by finite element analyses

based on geometrical nonlinear theory that allows finite deformations. The structure is

discretized into a finite element model using membrane elements. A geometric nonlinear

analysis starts with a plane structural geometry. Two approaches are used to achieve

optimal shapes. The first approach is to fasten the membrane on the final supports and to

load the structure until it reaches its equilibrium state. The second one is to define a

membrane with oversize dimensions and to allow the boundary points to slip into their

final positions by large rigid body motions. In the numerical simulation of hanging

models, in-plane shear stiffness needs to be a fraction of the modulus of elasticity in order

to avoid a singular structural stiffness matrix and obtain a fold-free deformed shape.
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Additionally, the critical stresses and deflections measured on controlling points are used

to control the deformation states in the form finding process.

A variety of concrete shell structures designed by the hanging method or other

physical experiments have shown good structural performance and also have good

aesthetical qualities. However, shape Optimum designs by the hanging method are limited

to specific applications. Membrane materials used in the experiments are usually

isotropic and thus do not relate even to the actual materials used for actually constructing

the shells. In addition, because the optimal shapes achieved by hanging methods result

from mechanical deformations, design factors that alter the optimal results can not be

considered simultaneously in the Optimization processes. For example, the anisotropic

property of laminated FRP composites can be tailored by fiber orientations and stacking

sequences. However, these factors, in which material alterations may change the optimal

shape from a positive to a negative curved surface, can not be taken into account by

hanging methods. Stability effects such as buckling also can not be considered by

hanging models since the hanging model is only subjected to tension [Isler, 1991]. A

sophisticated analysis or a test on a stiff and slender real model is needed to clarify

instability issues. The cutting pattern for initial flat membranes, which are critical to

avoid developing wrinkles and folds in the deformed shapes, has to be determined by trial

and error in a variety of possible solutions. Therefore, a more general approach, which

can take into account more design freedom and constraints that are not implemented in

physical experiments and their corresponding numerical simulation has become of

growing research interest for the form finding of lightweight structures (Figure 3—4)

[Ramm et al., 1991; 1993].
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 Initial Shape
Figure 3—4 Structural shape Optimization [Ramm, 1992]

3.1.3 Structural shape optimization

The experimental form—finding methods previously presented rely on the selection of

experimental materials and are limited to specific structural forms. The numerical

methods used inherit the limitations of the physical approaches that they simulate. A

better approach to form finding is structural shape optimization, which solves the form

finding problem by defining an optimization problem through an objective function that

measures the “goodness” or “efficiency” of a structural shape design. The Objective

function is defined by design variables, which are parameters that change during the

design process. Design variables can be continuous or discrete depending on whether

they can take values from a continuum or are limited to a set of discrete values. The

process of shape optimization is then to improve the goodness Of the design.

Optimization processes are generally performed with some limits that constrain the

choice of a design. Such limits are called constraints and usually include performance

criteria. Structural shape Optimization is thus a general and versatile technique for

structural form finding.
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Shape optimization problems are typically defined in standard mathematical terms as:

Objective: Min f(x)

Subject to: gi(x) _<0 i = 1 to m

hj(x)=0 j=1top

where x is the design variables vector, XL and XU, are the lower and upper bound vectors

of the design variables, f(x) is the Objective function, and g,~(x) and [1,-(x) are the equality

and inequality constraints, respectively.

As far as structural shapes is concerned, the design variables are obviously chosen as

the coordinates of points that govern the geometry of a structure. The selection of the

Objective function depends on the application. For example, the objective for the shape

optimization of shell structures consists in the form finding of membrane structures such

as to obtain a minimal area of stable surfaces while maximizing the structural stiffness.

The constraints are used to implement design limits such as maximum stresses and

displacements for the achievement of an optimum Objective.

Structural shape Optimization combines highly specialized techniques from different

disciplines including computer aided geometrical design (CAGD) [Bohm et al., 1984],

structural finite element analyses [Cook et al., 2001], structural sensitivity analyses

[Arora and Haug, 1979; Haftka and Adelman, 1989], and mathematical algorithms

[Arora, 1989].
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The classical approach employed in structural shape Optimization is based on the

following steps:

1. A finite element model is generated by computer aided geometric design;

2. Structural responses, such as displacements and stresses, are evaluated through

structural analyses;

3. Sensitivities are computed to formulate the Optimization problem in mathematical

terms;

4. A mathematical algorithm is chosen to solve the optimization problem and a new

design of the structure is generated until an optimum is achieved.

The above—mentioned procedure is structural depicted by an optimization procedure

of a shell structure in Figure 3—5.
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Figure 3—5 Structural shape Optimization process
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3.1.3.1 Computer aided geometric design

In a shape Optimization problem, the design variables are geometric parameters

defining a structural shape. The generality Of a structural shape requires as many

geometric design variables as possible. However, considering the efficiency of

computational approaches, the number of design variables should be restricted as far as

possible. CAGD techniques [Bohm et al., 1984] can assure the generality of a structural

shape defined by fewer design variables. The coordinates of the key nodes governing the

structural shape are thus typically chosen as the design variables. The shape of an entire

structure can then be generated by appropriate shape functions in terms of the coordinates

of the key nodes. A finite element mesh is then defined discretize the resulting shape for

conducting the finite element analyses.

3.1.3.2 Finite element analysis

Finite element analyses used in structural Optimization provide the evaluation of

structural responses required by the objective and constraint functions, and also by the

design sensitivity analyses. The finite element method provides a numerical procedure for

analyzing continua and structures that are too complicated to be solved satisfactorily by

analytical methods. In most of practical optimization problems, structures are modeled by

the finite element method to calculate their response to applied loads.

3.1.3.3 Design sensitivity analysis

The design sensitivity analysis (DSA) is a fundamental requirement for structural

shape optimization. Design sensitivity analysis supplies gradient information on objective

and constraint funcions with respect to the design variables for formulating the
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Optimization problem. Considering that finite element analyses are used, two major

techniques, numerical and analytical, can be used to calculate structural sensitivity

derivatives for finite element modeled structures [Adelman and Haftka, 1986].

Numerical techniques using finite difference methods are straightforward methods in

which derivatives are calculated by a finite difference approximation. The accuracy of the

derivatives Obtained by this technique is depended on the selection of the perturbation

step size for the finite difference. Analytical techniques, such as direct differentiation

methods and adjoint variable methods, are reliable methods for most kinds of

applications at the cost of a higher programming and computational effort. They can be

more efficient than numerical techniques if only parts of the structure are affected by

shape variants. However, especially for the sensitivity analyses in general shape

Optimization, analytical techniques will not be able to calculate structural sensitivity

derivatives when structural responses implicitly depend on the design variables. In

general, the techniques employed for design sensitivity analyses rely on the algorithm to

be chosen to solve the optimization problem.

3.1.3.4 Mathematical algorithm

Given a constrained optimization problem, design updates and the convergence to an

optimum design rely on a mathematical algorithm. Most of mathematical algorithms are

based on the general iteration:

x(k+1) = x(k) + akdu)

(k+1)
where x00 is the design variables vector Of the kth iteration, x is the design estimate of

the (k+1)th iteration, on, is a step size, and da‘) is a search direction.
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Depending on techniques used to update the designs, mathematical algorithms for

solving constrained Optimization problems are broadly classified as transformation

methods and direct methods [Belegundu and Arora, 1985]. Transformation methods were

developed to solve a constrained Optimization problem by transforming it into an

unconstrained problem whose solution converges to a solution of the original problem.

The basic concept of transformation methods is to construct a transformed function by

adding a penalty for constraint violations to the objective function. Transformation

methods include the penalty (exterior) and barrier (interior) function methods as well as

multiplier (augmented Lagragian) methods.

Due to the limitation inherited from the transformed functions, direct methods, also

known as primal methods, were developed to directly solve the original constrained

Optimization problem. Many methods such as the method of feasible directions, the

gradient projection method and the constrained steepest descent method have been

developed and successfully used for engineering design problems. Compared to other

methods, the constrained steepest descent (CSD) method is robust and effective for

solving nonlinear constrained optimization problems. Direct methods are generally based

on the following four basic steps:

1. Linearize the Objective and constraint functions about the current desing estimate;

2. Define a subproblem formulated by the linearized objective and constraint

functions to determine a searching direction;

9
°

Solve the subproblem to give a search direction in the design space;

9
“

Calculate a step size to minimize a descentfimction in the search direction.
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The Objective and constraint functions are linearized by the design sensitivity

analyses previously discussed. The searching direction is determined by a subproblem

based on the linearized Objective and constraint functions Of the current design. In

numerical practices, the subproblems using nonlinear programming have a better

algorithm performance and optimum convergence rate than those using linear

programming.

The descent function plays a very important role in CSD methods for constrained

problems. The basic concept is to compute a step size along the search direction such that

the descent function is reduced. Therefore, the descent function is used to monitor the

progress of the algorithm towards an optimum point. For constrained problems, the

descent function is generally constructed by adding a penalty for constraint violations to

the current value Of the objective function. Several descent functions have been proposed

and applied successfully in practical optimization designs [Han, 1971; Powell, 1978;

Schittkowski, 1981].

Based on a descent function, a step size is determined by searching for a minimum Of

the descent function along the desirable direction in the design space. The step size

determination is also known as a one-dimensional search, or line search, problem.

Several numerical techniques have been employed for the step size calculation, such as

equal interval search, golden section search and polynomial interpolation. However, such

exact line search techniques can be inefficient for constrained optimization methods.

Therefore, an inexact line search is preferred to determine a step size for practical

implementation of constrained problems.
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All of these classical mathematical algorithms make use of derivatives of the

objective function and constraint functions with respect to the design variables to

construct an approximate model of the initial optimization problem. These algorithms

rely on the gradients derived by linearizing the original functions to perform the

optimization processes. Such gradient-based algorithms can not be generally applied on

the Optimization of FRP laminates, which typically involve discrete design variables in

the Objective function and constraints. The rationale behind this limitation brings about

the concept and technique presented here for material optimization of laminated FRP

composites as discussed in the next section.

3.2 Material optimization of laminated FRP composites

Laminated FRP composites consist of thin layers of fiber-reinforced material fully

bonded together. Each individual layer, or lamina, contains an arrangement of

unidirectional fibers embedded within a thin layer Of polymer matrix material. The

material properties of the entire laminate can be adjusted to meet the requirements of a

design by varying the percentage of layers in the laminate, their individual orientations

and the stacking sequence of the layers. Therefore, finding an efficient structure design

can be achieved by tailoring the material prOperties. FRP laminates are thus the most

commonly used type of composite material in the design Of high-performance structures.

From the above statements, and as presented in Chapter 3, it follows that the design

space for the material optimization Of laminated FRP composites is typically a set of

discrete parameters that define the material elastic properties. Such optimization

problems in which design variables are restricted to take only discrete/integer value are
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referred to as integer programming (IP) problems. Classical gradient-based algorithms

for structural optimizations requiring the gradient information of objective and constraint

functions can not generally be employed to solve IP optimization problems. In recent

years, there has been considerable interest in exploring new Optimization methods that do

not rely on derivatives of the Objective function and constraints to solve this type of

problems. For example, the branch-and—bound algorithm [Lawler and wood, 1966;

Tomlin, 1970] was advanced to solve linear integer programming problems. Due to the

robustness and reliability to achieve global optimums in nonlinear integer programming

problems, genetic algorithms [Holland, 1975] and simulated annealing methods

[Kirkpatrick et al., 1983] have emerged as strong contenders against classical gradient-

based algorithms. These methods belong to a genetic category of stochastic search

techniques. Such evolution-based algorithms rely on the selection of fittest “individuals”

in a “population” to Obtain an Optimum design by implementing the operations based on

the principles of natural genetics. Unlike classical gradient-based algorithms that move

from one point to another in the design space, such algorithms work with a population of

designs. By keeping the solutions that have the potential of being the Optimum in the

population, such algorithms generally result in a global or near-global Optimum rather

than converging to a local optimum.

The evolution-based algorithms, such as genetic algorithms have been successfully

applied to the material design of FRP composites [Giirdal et al., 2000; Liu el al., 2000].

However, most of the research on FRP Optimum design for use in high-performance

structures has focused only on material Optimization, that is, altering material properties

by arranging the stacking sequence and fiber orientations. Such optimization is isolated
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from the structural shape, which also influences the mechanical behavior of a structure.

This approach may thus lead to designs that make limited use of the dominant in—plane

strength and stiffness of FRP laminates. On the other hand, the structural shape

optimization procedures discussed in Section 1.4.1 were primarily focused on Optimum

designs of structures made from isotropic materials. Optimum designs obtained by

traditional shape optimization methods maintain the same material properties during the

form finding process. These designs are often far from optimal because other competitive

material properties cannot be explored. Therefore, efficient structural designs can be best

obtained through shape efficient structures constructed with tailored laminated FRP

composites.

Finding an efficient structure design that meets all the requirements for a specific

application can then be achieved not only by shaping the geometric configuration of the

structure but also by tailoring the material properties. It follows that not only continuous

parameters (defining the shape Of the structure) but also discrete parameters of lay-up and

angles (defining the elastic properties of the material) should be taken into account in an

optimization procedure. For the optimal design of FRP composite structures, the design

space is thus a mixed set of discrete and continuous design variables.

Gradient-based algorithms, which depend upon sensitivity analyses requiring

continuity and derivative existence, are thus not applicable. Although genetic algorithms

have been used with some success in problems where a mixed set of integer, discrete, and

continuous variables are presented, they generally require more iteration steps to arrive at

an optimum design. The random search in genetic algorithms requires more finite

element analyses for evaluation of the objective and constraint functions, which decreases
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computational efficiency and may result in a slower convergence compared to gradient-

based algorithms. Therefore, an efficient optimization process needs to be explored for

the combined shape and laminate optimization Of FRP composite structures.

3.3 Integrated shape and FRP laminate optimization

From the above discussions, shape optimization problems and FRP laminate

optimization problems are generally highly nonlinear. However, gradient-based and

genetic-based algorithms, which are robust and reliable to solve shape optimization

problems and laminate Optimization problems respectively, can not be directly applied to

solve optimum designs of shaped-optimized laminated FRP structures. Therefore, an

integrated approach that utilizes the computational advantages offered by both algorithms

is proposed to accomplish the combined task of shape and material optimization. Due to

difficulties to solve the entire problem through a single optimization procedure, the

optimization task is thus to be implemented in a two-level uncoupled approach (Figure 3—

6):

Level 1: Shape and laminate-property optimization: to achieve an optimal shape

with optimal stiffness properties;

Level 2: Laminate design optimization: to design an FRP laminate that has the

same stiffness properties as those obtained in the first step.

55



<_§@

Level-1 3

Shape and Laminate-Property

Optimization

(Gradient based algorithm)

Level-2 fl

Laminate Design

Optimization

(Genetic algorithm)

3

End

 

 

 

 

Figure 3—6 Two-level approach of shape and laminate optimization

The alternative formulation of the laminated composite material stiffness derived in

terms of lamina invariants and lamination parameters (see Section 2.1) allows

implementation of the proposed optimization scheme. First, the lamination parameters

(Vim, 0)) that determine the sectional stiffness of laminates are combined with geometric

parameters that define the shape of the structure. The optimum set of continuous design

variables (sectional stiffness and geometry) is found so as to maximize the stiffness of the

structure. As a second and final step, a set Of stacking sequences of variable fiber

orientations is then searched to achieve the desired lamination parameters, as obtained

from the first step.

The two-level optimization approach combines shape optimization of the structural

geometry with material optimization for the FRP laminate design. In addition to the

computational efficiency provided by gradient-based algorithms, diverse laminate

designs can be achieved by implementing genetic-based algorithms in the proposed

integrated approach. The proposed approach takes advantage of decoupling the two

56



different Optimization processes and corresponding optimization Objectives with respect

to their own set of design variables.

According to the two levels employed in the integrated approach, each optimization

level involves an independent problem formulation by identifying and defining design

variables, objective functions and constraints, and requires the implementation of the

corresponding algorithm. The following two chapters describe in detail the procedure for

each optimization level.
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4 Shape and Laminate-Property Optimization of FRP Structures

This optimization level seeks the most efficient structural geometry and laminate

sectional stiffness subject to constraints such as structural performance, geometrical

dimensions, and laminate failure criteria. This chapter firstly presents the formulation of

optimization problem by identifying the design variables and the objective function used

for this level Of optimization. The algorithm used. to solve the optimization problem is

given first, followed by its implementation.

4.1 Formulation of the shape and laminate-property optimization problem

Solving optimization problems involves transcribing a verbal description of an

optimization problem into a well-defined mathematical statement. Therefore, this

optimization level starts by identifying design variables, an objective function and the

corresponding constraints, which are presented in the following three sections.

4.1.1 Design variables

The design variables are independent parameters chosen to describe the design of a

system in mathematical terms. Proper formulation of an optimization problem always

starts by identifying the design variables for the system. In this Optimization level, the

design variables are the continuous geometric parameters defining the structural shape

and the continuous lamination parameters defining the section stiffness properties of the

FRP laminate.

The generality of an Optimal shape requires as many geometric design variables as

possible. However, in order to maximize the efficiency of the computational algorithm,
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only key dimensional points that define the geometric shape of a structure are chosen as

the shape (geometric) design variables. The entire structure is then constructed by CAGD

techniques by interpolating the key points.

The laminate coupling effects, which are introduced by random stacking sequences of

angle plies (see Section 2.2), are generally avoided for effective use of engineering

materials. Therefore, symmetric and balanced laminates, which have the least-

pronounced coupling characteristics, are considered in this research. The in-plane and

out-of—plane coupling defined by the [B] matrix, and the in-plane shear-extension

coupling, defined by the A16 and A26 terms, vanish due to the use of symmetric and

balanced laminates. In order to reduce the effects Of out-of-plane bend-twist coupling,

defined by the D16 and D26 terms, 48-layer symmetric and balanced laminates are used, in

which the lamination parameters V20 and V40 are considered to be equal to zero. Thus,

only the lamination parameters VIA, V3A, V10 and V30 (see Section 2.2) [Giirdal et al.,

1999], which fully define the in-plane and out-of-plane section stiffness properties, are

chosen as the material-property design variables.

4.1.2 Objective function

The objective of the shape optimization procedure to determine the layout of a shape

resistant structure is to maximize structural stiffness as measured by the structural

stiffness matrix. However, the two-order tensor of the structural stiffness matrix can not

be used to evaluate the objective function, which requires a scalar value. Therefore, the

structural strain energy, a scalar that quantifies the structural stiffness, is calculated

instead in the objective function.
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Considering a finite-element-discretized structure without initial strains and stresses,

the total strain energy, U, can be stated as

1 1

U = EjlelT [Elieldv =§{D}T [K1D} (4.1)
V

where [E] is the material stiffness, {D} is the global degree-of-freedom (d.o.f.) vector of

the entire structure, and [K] is the structural stiffness matrix.

The global d.o.f. vector {D} can be solved by the equilibrium equation as:

{D}=[Kl“{R}. (4.2)

where {R} is the consistent global nodal load vector.

By substituting Eq. (4.2) into (4.1), the strain energy can be evaluated as:

u =$11K1-'{R}}T1K1{1K1*{R}}

=§1Rnr<rir<111<rin (43>

=11er [Kl“{R}.
2

According to Eq. (4.3), for a given statically equivalent load {R}, the total strain

energy U decreases as the structural stiffness [K] increases. Furthermore, the strain

energy contribution by different strain types can be determined by recalling Kirchhoff’s

theory, which is assumed in classical lamination theory. Thus, the strain in a plate under a

state of plane stress is defined by the addition of the mid-plane strain {60 } and the linear

variation due to bending curvatures {K} as:

{e} = {5" }+ z{K}. (4.4)

Substituting Eq. (4.4) into Eq. (4.1) one obtains:
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l (1141+ 4le 19111808 zinildv

j({s~ i [QKSO }+ 2z{8" }T [gym any (grain.

(4.5)

It is thus shown in Eq. (4.5) that, within a unit volume, the strain energy contributed

by the bending curvature and axial-bending coupling are quadratically and linearly

proportional to the section thickness, respectively. Therefore, minimization of the

structural strain energy implies minimizing bending and axial-bending effects, thus

maximizing in-plane response and consequently increasing the system stiffness.

4.1.3 Constraints

As previously stated, the objective of the shape and laminate-property optimization is

to maximize structural stiffness. However, maximizing the stiffness without restricting

material use is meaningless since stiffness can be improved if the amount of material is

increased. Thus, the mass of FRP composite used is restricted. Instead of using the

equality constraint that the volume of FRP laminates remains the constant during the

optimization process, an inequality constraint is chosen to limit the volume of FRP

laminates within a certain level. This can be implemented by constraining the thickness

of the laminate and the structural geometry.

Among the several function constraints that need to be satisfied for a laminated FRP

structure, service and failure constraints are the two most important design criteria for

engineering applications. These design criteria can be investigated by the structural

responses of maximum structural deflection and maximum section stresses as evaluated

by finite element analyses.
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4.2 Algorithm of shape and laminate-property optimization

In the shape and laminate—property Optimization of laminated FRP structures, the

objective function and constraints are nonlinear functions with respect to the design

variables. The constrained steepest descent (CSD) method is a simple, yet effective,

gradient-based algorithm used for solving this type of nonlinear problems [Arora, 1989].

The CSD method is based on four basic steps as presented in the following.

4.2.1 Linearization of Objective and constrain functions

For shape and material-property optimization, the objective and constraint functions

are implicit functions of the design variables. The solution strategy employed by the CSD

method involves solving an approximate problem obtained by linearizing the original

objective and constraint functions. The derivatives of objective and constraints functions

used to construct the approximate problem are derived by Taylor series expansions. The

approximate optimization problem using the first-order Taylor series expansion is

formulated as:

Objective:

n

f :ZCldl’ or f :CTd
(4'63)

i=1

Subject to:

n

Za,d,sb,, j=1tom; or ATdsb (4.6b)

i=1

n

211,41,- =e,-, j=1to p; or NTd=e (4.6c)

1'21
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where e,- is the negative of the j"’ equality constraint function value at the current design

x , e, = —h,(x(k’); bj is the negative of the j"' inequality constraint function value at the

current design it“), b, =—gj(xa"); Cj is the derivative Of the objective function with

respect to the i"’ design variable, c]. = af(xa‘))/ 8x1; n}, is the derivative of the j”' equality

constraint with respect to the i"' design variable, n, 2 8h, (x‘k’ )/ dig; a),- is the derivative of

the j”' inequality constraint with respect to the i"' design variable, a, 2 8g 1. (x‘k) )/ 8x, .

The derivatives Obtained by a linear Taylor series expansion can be numerically

evaluated by finite difference approaches. In this optimization level, the forward

difference technique is used to evaluate the numerical differentiation of a multi-variable

function fix) with respect to variables x,- , which is defined as:

8f_ = limit f(x1,...,x, +Axi2""xn)—f(x1"“’xi""2xn)

ax; ax,—>O Axl-

 (4.7)

where Ax,- is a small perturbation in the variables xi.

The accuracy of function gradients depend on the selection of the perturbation Ax.

Value selection of the perturbation is presented in detail by Gill, Murray and Wright

[1981]. In general, a perturbation of 1% of the current value, which works fairly well for

most of optimum designs, was chosen for this optimization problem.

4.2.2 Definition and determination of a searching direction

In order to solve the constrained optimization problem, the CSD method requires a

desirable searching direction towards the optimum design. A searching direction is

determined by solving an subproblem. Due to its high efficiency and quadratic
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convergence rate, a subproblem using a quadratic programming (QP) formulation is

chosen to determine the searching direction.

The QP subproblem employs a Hessian matrix constructed by a quadratic objective

function and linear constrains, which are defined in the following:

Minimize:

f=ch+%-dTHd

Subject to:

NTd = e

ATd s b (4.8)

where H is the Hessian matrix, which represents the second-order derivatives of the

Objective function with respect to the design variables.

For large-scale Optimization problems it is difficult and inefficient to calculate the

second-order derivatives matrix. However, due to the usefulness of incorporating the

Hessian matrix into the optimization algorithm, the Quasi-Newton method was developed

to approximate the Hessian matrix by making use of information obtained from previous

iterations. In the Quasi-Newton method, an approximate Hessian matrix is updated by

using design changes and the gradient vector of the previous iteration. Several updating

procedures have been developed [Gill et al., 1981]. The modified BFGS (Broyden-

Fletcher-Goldfarb-Shanno) method [Powell, 1978] is implemented to numerically

approximate the Hessian matrix in this optimization level.
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4.2.3 Definition of the constrained steepest descent function

For shape and laminate-property optimization the objective is to minimize the strain

energy of a structure. Achievement of this optimum requires a reduction of the objective

function value in each iteration. A descent function is used to ensure the reduction in

optimization processes towards the minimum. For constrained Optimization problems, the

descent function needs to take into account violations of the constraints by adding a

penalty for constraint violations to the current value of the Objective function.

Several descent functions [Han, 1977; Powell, 1978] have been proposed for

constrained optimization problems. Pshenichny’s descent function [Pshenichny and

Danilin, 1978, Arora, 1989, 1997] is chosen as the descent function of the CSD method

in the shape and laminate-property optimization due to its wide use in engineering

optimization problems.

Pshenichny’s descent function (I) at point xfl‘) is defined as

<D(x(k))= f(x("))+RV(x(")), or o, = f, +RV, (4.9)

where fk is the k"' value of objective function, R is a penalty parameter initially specified

by the user, V1, is the k” value of the maximum among all the constraint violations and

zero.

The penalty parameter R is a positive number and may be changed during the iterative

process. It must be greater than or equal to the sum of all the Lagrange multipliers of the

QP subproblem at the point xlk).
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P

R22

i=1

"1

vfk)| + Zuf") (4.10)

i=1

) h

where v,“ and 11,“) are the values of Lagrange multiplier at the k”' iteration for the i’

equality and inequality constraint, respectively.

The maximum constraint violation V is nonnegative and is determined at the point x“)

of the kth iteration by

V = max{0,|h,|,|h,|,...,|h,|;g,,g,,...,gm} (4.11)

4.2.4 Determination of the step size

Given a descent function, a step size will be searched to minimize the descent

function along with the given direction in the design space. The step size determination is

often called a one-dimensional search (or line search) problem. Several zero-order

methods [Cooper and Steinberg, 1970] are available for one-dimensional search

problems, such as the Equal Interval Search and the Gloden Section Search. Other

methods using polynomial interpolation can be an efficient technique to solve one-

dimensional searches. However, sometimes it is difficult to approximate a function of the

step size at the current point x“) by, e. g., a second-order polynomial interpolation. Thus,

in the numerical implementations of this optimization level, the step size determination is

solved by an inexact line search using a bisection procedure as described in the

following.

At the km iteration, an acceptable step size at is determined as t,- with the smallest

integerj to satisfy the descent function:
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(1) 3(1), —t,,8, (4.12)
k+l,j

(k+lJ)

where (I) is the descent function evaluated at the trial design point x that is
k+l,j

x("+"j):x(k’+tjd(k), tj is the j” trial step determined by using the bisection

t, = (1/2)’, j = 0,1,2,..., and [it is the constant determined by ,b’, = yJ|d(k)lJ2,}/E [0,1],

4.3 Implementation of shape and laminate-property optimization

The scheme of shape and laminate-property optimization (Figure 4—1) was

implemented in a fully automated custom program written in Matlab [MathWorks, Inc.,

2000]. An initial reference structure, generated by a custom program for computer-aided-

geometric-design (CAGD), is chosen as the starting design for the Optimization

procedure. The objective strain energy function and constraint values are evaluated by the
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finite element software ABAQUS [HKS, 2001]. A numerical searching strategy

implemented with Matlab functions determines a search direction and a step size towards

an optimal solution. The new geometry and section stiffness properties of the structure

are updated and provided as input for the next ABAQUS analysis. The iterative process is

continued until no further modifications are required and the optimality conditions are

satisfied.
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5 FRP Laminates Design Optimization

This optimization level is to design laminates based on the optimal section stiffness,

defined by the optimal lamination parameters, which was Obtained in the first

optimization level. This chapter starts with the formulation of the laminate Optimum

design problem by identifying the design variables and objective function. The algorithm

chosen to solve the optimum design is then presented, followed by a description of its

implementation.

5.1 Formulation of laminate design optimization

Similar to the shape—and-material optimization, the process of formulating this

optimization level, as described in Section 4.1, involves identifying the design variables,

the Objective function and the corresponding constraints, which are presented in the

following three sections.

5.1.1 Design variables

The goal Of the second optimization level is to find stacking sequences of several

orthotropic layers with certain fiber orientations that will lead to the lamination

parameters obtained in the first optimization level. The fiber orientations for each of a

predefined number of plies, which determine the lamination parameters for the section

stiffness properties of an FRP laminate, are defined as discrete design variables. Because

balanced laminates are used (see Figure 5—1), negative and positive fiber orientations will

occur in the laminate designs. Therefore, the definition domain of fiber orientations is

from -90° to 90°.
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As shown in Section 2.3.2, the lamination parameters of V20 and V40, which

determine the out-plane bend-twist coupling terms of D16 and D26, will vanish when the

numberof plies increases. However, a large number of plies will make the computation

inefficient. According to Eq. (2.31), a 48-layer balanced and syrmnetric laminate has

lamination parameters V20 and V4,) smaller than 0.0625, which leads to the bend twist

terms of D16 and D26 (see Table 2—1) much smaller than D11, D12, D22, and D26 terms. Its

out-plane bend-twist coupling effect can thus be neglected compared to the other out-

plane stiffness terms. Therefore, 48-layer balanced and symmetric laminates are

employed in this research and their optimum designs are to be determined in this

Optimization level.
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5.1.2 Objective function

The objective function is to minimize the discrepancy between the lamination

parameters (i.e. VIA, V3A, etc.) evaluated with the design variables from this (2nd)

optimization level and the optimal lamination parameters obtained from the first

optimization level. The objective function can be expressed as

Minimize: A = J20, —17,. )2 .

 

where V, are the lamination parameters evaluated by the design variables of fiber

orientations, and V are the lamination parameters of the optimal laminates derived in
l

the first Optimization level.

5.1.3 Constraints

The laminate design optimization problem as formulated here is an unconstrained

problem. Therefore, no constraints are required in this laminate design optimization

problem.

5.2 Algorithm for laminate design optimization

For the laminate design Optimization problem, the objective function is not

continuous and derivable with respect to the discrete design variables representing the

fiber orientations. Gradient-based algorithms, which depend upon the requirements of

continuity and derivative existence, are thus not applicable. Conversely, genetic

algorithms, which do not rely on derivatives, are suitable to solve this type of problem.
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A genetic algorithm is a guided random search technique that works on a population

of designs. Each individual in the population represents a design obtained by genetic

coding techniques. A fitness value is selected for each individual in order to determine its

probability of being chosen as a future “parent design” to create a “children design.”

Therefore, the application of a genetic algorithm to an Optimization problem is based on

the steps [Gen and Cheng, 2000] presented in the following sections.

5.2.1 Design representation by genetic coding

In order to reduce the bending-twisting coupling terms D16 and D26, balanced

laminates pairs of positive (+6) and negative (-6) off-axis layers adjacent to each other

are assumed for this research. Therefore, a pair of balanced off-axis layers can be

represented by the fiber orientation Of the top layer in the pair. Considering that the

laminates are also symmetric, the 48—layers balanced and symmetric laminates designed

in this optimization level can thus be interpreted by 12 integer design variables, which

represent 12 different fiber orientations of it9with a certain stacking sequence.

The optimum achieved by genetic algorithms depends on genetic Operators that

mimic the principle of natural genetics. The application of genetic operators requires

representing the possible combinations Of design variables in terms of bit strings that

simulate genetic chromosomes. Binary numbers, which are predominantly used for the

purpose of computer implementation [Back, et. al., 1997], are therefore employed as the

technique of genetic coding to represent 12 design variables of different fiber orientations

as bit strings. The process of genetic coding for the balanced and symmetric laminate

designs, with the reduction mentioned above, is illustrated in Figure 5—2.
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5.2.2 Definition of a population size

A population in genetic algorithms includes all the designs in a generation. The size

of the population is determined by the initial generation and is fixed for all. future

generations. Currently there are no general rules or solutions for determining the optimal

population size for a specific problem. Typically, a population size is chosen at least as

large as the chromosome string length in terms of binary bits. The current laminate

design problem has 12 integer design variables with values ranging between —90 and 90.

Each design variable requires at least 8 bits for binary representation. Therefore, a

population size of 100 is chosen for the total 96-bit length of a genetic chromosome.

5.2.3 Definition of fitness values and a selection scheme

The forward movement of genetic algorithms depends on a selection process by

giving higher chances for better individual designs to pass their characteristics to future

generations. Thus, the selection process requires a value to evaluate the fitness of an

individual design in a generation. For unconstrained optimization problems, the value Of

the objective function can be used as the fitness value of a design.
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Once the fitness values of the designs in a generation are determined, the designs with

higher fitness values will be selected to create child designs by a selection scheme.

Several selection schemes [Goldberg 1989; Davis, 1991] have been developed for

genetic procedure, such as roulette wheel, tournament selection and ranking selection.

Due to its small spread about the desired distribution and its freedom from bias,

stochastic universal sampling [Baker, 1987] is used in this work as the selection scheme

in the laminate design Optimization.

5.2.4 Implementation of genetic operators

Crossover (Figure 5—3) is one of two major genetic Operators used in genetic

algorithms. The task of the crossover operator [Goldberg, 1989; Davis, 1991] is to

explore new designs alternatives by combining the existing family traits. The crossover

operation generates children designs by exchanging genetic segments of the selected

parent designs. The crossover Operation is typically to be executed with a probability

number. A random number, uniformly distributed between 0 and 1, will determine the

implementation of the crossover operator. The crossover operation is performed when the

random number is less than the probability of occurrence.

  
 

 

 

 

 

 

   

Chromosome 1 Chromosome 1

(91 i D (m (91 i O (91 i 191le Crossover [91 i” i (91 ((91 L (9120

. _ X . ,2 x _ _ --. .. _ -

19(1) ((910 1.9.1:: 19120 (*0.- (- l (6. ( (91190
Chromosome 2 Chromosome 2

Figure 5—3 Crossover operator

In addition to the crossover, mutation (Figure 5—4) is needed to prevent the premature

of the Optimization procedure to achieve an optimum design by exploring new traits with
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the genes that are not represented in the initial population. This function is implemented

by the mutation operator [Goldberg 1989; Davis, 1991], which introduces occasional

random alteration of a genetic bit string. Based on the small rates of occurrence of this

phenomenon in biological systems and on numerical experiments, mutation is generally

performed with a small probability of occurrence.

 Mutation A A

(... 1Q 101101 mjojlo ...... O _, (I J) 101101 mm“) .....J)

' v v _ v

Binary chromosome Binary chromosome

Figure 5—4 Mutation operator

  

5.3 Implementation of laminate design optimization

The laminate design optimization by a genetic algorithm begins with the random

generation of a population of design alternatives. It is processed by means of genetic

operators (see Figure 5—5), crossover and mutation create a new population. Among

several types of crossover operators, two-point crossover is considered to be superior

[Booker, 1987] and is thus employed in this work for the laminate design optimization.

The new generation, which combines the most desirable characteristics of the Old

population with less discrepancy to the optimal lamination parameters, will replace the

old population. The process is repeated until a stopping criterion is satisfied. The

stopping criterion is implemented in the form of a maximum number of generations

without improvement in the best design. The scheme of the genetic algorithm described

above was implemented in the program GALOPPS by Goodman [1996]. As part of this

work, custom programs were specifically developed to be used together with GALOPPS.

The additional programs allow implementation of the genetic representation of design
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variables and evaluation of the objective function to accomplish the laminate design

optimization.

From Level-l

V

Initialize Laminates

- Fiber orientations

- Stacking sequence

11

[ Generate Population J I Implement Genetic Operator

3 - Selection crossover

J Evaluate Objective Function J - Mutation

 

Represent Design Variables

By Genetic Chromosome

  

  

 

 

  

  

 

Figure 5—5 Laminate design optimization
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6 Shape and Laminate Optimization of FRP Shells

As discussed in Section 3.1.2, shells are shape-resistant structures in which strength

and stiffness is Obtained by shaping the material to achieve primarily in-plane or

membrane compression resultants due to the applied loads. The efficiency of FRP

structures can then be enhanced by their use in this type of geometry. Thus, the shape and

laminate optimization of FRP shell structures is presented here to evaluate the proposed

integrated approach for shape and material optimization. To demonstrate the capability

and effectiveness of the integrated optimization approach, the results and performance of

a shape-and-material optimized shell are compared to two other shape-only optimized

shells. Shape-only optimized shells, Optimized only with the shape optimization

technique used in the integrated approach utilize laminates with fiber orientations of i45°

and 0°/90. The optimum designs of three FRP shells are compared to similar optimal

studies obtained for isotropic materials [Ramm et al., 2000, 1992; Isler, 1991, 1994]. The

optimum results for all three FRP shells are also compared with respect to the Objective

of strain energy and other types of structural performance in terms of displacements and

section resultants.

6.1 Shape and laminate optimized FRP shell

The shell selected for studies of integrated Optimization, referred later as Shell 1, is of

arbitrary dimensions with has a projected area of 4.88 m by 4.88 m and a thickness of

25.4 mm. The shell is taken to be simply supported at the comers and is subjected to a

uniform gravity load of 6.89 kN/m2 (Figure 6-1). The laminates used in the shell studies

are based on atypical medium-performance carbon/epoxy material system for use in civil
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structures. Thus the lamina orthotropic properties are taken as: E1 1 = 155.025 GPa, E22 =

10.335 GPa, 012 = 6.89 GPa, G13 2 6.89 GPa, 023 = 0.689 GPa, and V12 2 0.3.

P = 6.9 kN/m2

 

key points 
Figure 6—1 Geometry, loading, and control points for shell structures

Taking advantage of symmetry, the geometric shape of the shell can be controlled by

14 design variables that define the vertical coordinates of key points as shown in Figure

6—1. The key points are distributed non-uniformly over 1/8 of the shell area in order to

sample geometric details about the free edges of the shell. The shape of the entire shell is

then constructed by spline interpolation of the key points. Four-node doubly curved

general-purpose shell elements, which use reduced integration with hourglass control

[HKS, 2001], are used to discretize the entire shell into a 64x64 finite element mesh.

The first-level Optimization histories of the objective, partial geometric design

variables and FRP laminate-property design variables are presented in Figure 6—2, Figure

6—3 and Figure 6—4 respectively. The optimization starts with a flat shell with a section
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stiffness corresponding to a [900/00/00/900] laminate, which lamination parameters are

{V121, V321, V10, V3D}={0, 1, —0.75, 1}. In the course of the Optimization process, the strain

energy of the shell, starting at 112.98 kN—m converges stably to 0.0496 kN-m after 66

iterations with the optimal shape shown and the Optimal material property defined by

lamination parameters {V1A, V32], V10, V3D}={-0.12654, -0.08372, -0.00498, -0.79898}.

Stiffness variation is small (Figure 6—2) during the last steps with minor changes in shape

and material prOperties (Figure 6—3 and Figure 6—4). Figure 6—2 also shows a collection

of the shell shapes as they evolved during the optimization process. It can be seen that the

central point of the shell rises in order to reduce bending moments while a negative

curvature appears at the edges of the shell. This featuring shape is clearly illustrated in

the elevation view of the shell (see Figure 6—3). These features of the optimal shape have

also been observed by other researchers on the shape Optimization of concrete shells (see

Figure 3—3 (b) and Figure 3—4) [Ramm et al., 2000, 1992; lsler, 1991, 1994; Ram and

Mehlhom, 1991].
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Figure 6—2 History of objective function — FRP Shell 1
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Figure 6—4 Histories of laminate-property design variables — FRP Shell 1

After the optimal laminate properties represented by lamination parameters were

achieved, the optimal design of the laminate by fiber orientations and stacking sequence

was carried out to achieve the optimal properties. The genetic algorithm optimization

process included 10,000 generations and each of them had a population of 50 individuals.

The second-level optimization history is presented in Figure 6—5. Genetic-based

optimization algorithms can lead to multiple designs that satisfy the Optimization criteria.

Thus, multiple Optimal designs of laminates were found with the optimal laminate

properties derived in the first optimization. The optimal laminate designs, with

corresponding lamination parameters within an error of 1% compared to the optimal

lamination parameters obtained in the first-level optimization, are listed in Table 6—1. It
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should be further noted that all optimal laminates have several common laminas with the

same fiber orientations arranged in the same stacking sequence.
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Figure 6—5 Second-level optimization process — FRP Shell 1

Table 6—1 Optimal laminate designs of FRP shells
 

 

Laminate designs Error

[: 46/: 43/: 46/: 45/: 39/: 47/: 66/ : 2/ : 88/02/902 /: 87], 0.610%

[: 46 /: 43/: 46/: 45 /: 46 /: 39/: 66/ : 2/ : 88/02/ : 89/: 87]S 0.445%

[: 46/: 43/: 46/: 45/: 46/: 39/: 66/ : 2/ : 88/02/902/112 87]5 0.427%

[: 46/: 43/: 46/: 45/: 46/: 39/: 66/ : 2/ : 88/02/ : 89/9021s 0.300%

[: 46/: 43/: 46/: 45/: 46/: 39/: 66/ : 2/ : 88/02/902/902JS 0.287%

[: 46/: 43/: 45 /: 45/: 48/: 39/: 66/ : 2/ : 88/02/ : 89/902], Q 157%

 

6.2 Shape-only optimized laminated FRP shells

The optimum result above (Shell 1) is compared to the shape optimization of two

laminated FRP shells (Shell 2 and Shell 3) with constant material properties. These two

shells have the same geometry and loading of the shell analyzed in the previous example.

86



The geometric design variables used here were the same as before, see Figure 6—1.

Guided by the experiments of hanging models [Ramm et al., 2000], two laminate designs

were chosen. Shell 2 used a [450/-450/-450/450J65 laminate with the lamination

parameters {V121, V3A, V10, V30}={0, -1, 0, —1} while Shell 3 used a [00/900/90°/0°]

laminate with the lamination parameters {VI/b V3A, V11), V3D}={0, l, 0.75, 1}. Therefore,

the laminate-property design variables of the lamination parameters determining the

stiffness matrix of each shell are constant throughout the optimization procedure. The

optimization process histories for Shell 2 and Shell 3 are presented in Figure 6—6 and

Figure 6—7, and Figure 6—8 and Figure 6—9, respectively. It should be noted that the

obtained optimal shapes for the two shells using different laminate designs are different

(see Table 6—2), although the initial shapes were the same.
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6.3 Comparison of three optimal shells

The structural response of all three optimal shells regarding strain energies,

displacements and section resultants is summarized in Table 6—2 and Table 6—3,

respectively.

Table 6—2 Summary Of strain energies and displacements of optimal shells

Strain Energy Max Deflection

(N-m) (mm)

Shell 2 M 72.76 1.23

Shell 3 r...‘ 92.98 1.59
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According to Table 6—2, the optimal shell Obtained through the shape and laminate

Optimization (Shell 1) has the maximum structural stiffness, that is, the smallest vertical

displacement and the smallest strain energy among all three shells. Shell 2, constructed

by the laminate of [45°/-45°/-45°/45°]6s, was found to be better than Shell 3, constructed

by the laminate of [0°/90°/90°/0°] with respect to the structural stiffness.

The inherent nature of shape Optimization for membrane structures and thin shells is

to minimize bending stresses thus ensuring in-plane only response. Achievement of this

Objective was evaluated by comparing the section resultants between initial and optimal

structures for all three shells. As shown in Table 6—3, the bending moments are reduced

significantly after the optimization process. Meanwhile, membrane compressions are

developed in all three Optimal shells compared to the zero in-plane response of the initial

structures. Contours of the force (SF1) and moment (SMl) section resultants (see Figure

6—10 for element axis orientation) are also compared for the initial and Optimal structures

in Figure 6—11. Figure 6—11 makes evident that bending behavior is minimized while the

in-plane behavior becomes dominant. Additionally the results in Figure 6—11 show that

the section resultants seek to be uniformly distributed throughout the entire structure.
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Local coordinate systems

 Global coordinate system

Figure 6—10 Global and local coordinate systems

Table 6—3 Summary of structural responses of initial and optimal shells
 

 

 

 

 

 

Shell 1 Shell 2 Shell 3

Initial Optimum Initial Optimum Initial Optimum

SFl Max 20 235.195 :0 192.815 :0 412.599

(kN/m) Min :0 -744.289 =0 -755147 =0 -820.294

SF2 Max 2:0 241.325 :0 192.990 zO 415.226

(kN/m) Min 2:0 -945.860 :0 -953.566 20 -1012.41

SMl Max 0287 0.329 108.288 0.395 123.407 0.355

(kN-m/m) Min -24.957 -0.368 -24.932 -0.283 -64.117 -0.171

SM2 Max -0.158 0.298 108.288 0.387 114.982 0.195

(kNvm/m) Min -54.077 -0.478 -24.932 0358 -41.885 -0.067
 

SF1 , SF2: Direct membrane force per unit width in local l-, 2-axis of elements

SMl, SM2: Bending moment force per unit width about local 2-, 1-axis of elements
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Membrane Force (SFl) Bending Moment (SMl)

Initial Optimal Initial Optimal

23x10'12kN 235.0 kN 220.0 kN-m/m 20.09 kN-m/m

 

s—3><10'12 kN $0.09 kN-m/m    $20.0 kN-m/m .

Shell 1

Shell 2

 

 
Shell 3

 
i

i

i

i

i

i

i

i

l

i

i

l

i

SMl: Bending moment force per unit width about local 2-axis of elements

Figure 6—11 Structural responses of initial and optimal shells

Images in this thesis/dissertation are presented in color.
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It should be noted that stress leveling within the shell is not an optimization criterion

to achieve maximum structural stiffness. For example, the shape-and-material optimal

shell (Shell 1) attained the minimum strain energy and had the lowest membrane force

and highest bending moment specific values (i.e., value at a given location) than the other

two shape-only optimal shells. However, this does not conflict with the objective to

minimize the strain energy of the entire structure by reducing bending moments. The in-

plane structural performance can be best evaluated by comparing the stress-state in

individual elements, which are summarized in Table 6—3. Thus, as shown in Figure 6—12,

90% of Shell 1 is subject to membrane forces ranging between —45 and 0 kN/m,

compared to 79% and 84% for Shell 2 and Shell 3, respectively. The efficiency of Shell 1

is more obviously shown in Figure 6—13 regarding the bending moment SMl. Thus,

although Shell 3 has the smallest range of bending moments among all three optimal

shells, only 32% of Shell 3 is subject to bending moments of small magnitude, i.e.,

between —30 and 30 kN-m/m, compared to 74% and 47% for Shell 1 and Shell2,

respectively.

According to the analyses described above, the stiffness of bending structures is in

fact improved by achieving the objective of minimizing the structure’s strain energy. In

addition, the structural performance of laminated FRP shells can be further enhanced by

the integration of shape and material optimization. Therefore, the shape and material

objective function of minimizing strain energy leads to structural geometries and material

properties that are dominated by in-plane response with minimum bending demands.
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6.4 Buckling analyses of optimized laminated FRP shells

As it is well known, shape-resistant structures carry their design loads primarily by

axial or membrane action, rather than by bending action. When subjected to compression

forces as in the case of shells, these stiff thin structures are sensitive to buckling.

Considering that a structural stability criterion was not implemented in the presented

integrated Optimization approach, the structural buckling performance was evaluated and

compared among the Optimized shells.

Eigenvalue buckling analyses are generally used to provide useful estimates Of the

critical buckling loads and collapse mode shapes of stiff structures. To evaluate the

buckling response of the optimized shells, the unloaded optimal shells are chosen as the

base state and buckling loads are calculated relative to the base state of the structure. The

optimization load-generating load case of 6.9 kN/m2 applied in the gravity direction is

used gain to introduce the linear perturbation. The subspace iteration extraction method is

used to explore the eigenvalues and eigenvectors of the first five buckling modes. The

results for Shell 1, Shell 2, and Shell 3 are summarized in Table 6—4, Table 6—5, and

Table 6—6, respectively.

As judged by the values for the first buckling eigenvalue given in Table 6—4 through

Table 6—6, structural buckling capability is improved by the shape and FRP laminate

optimization along with maximizing structural stiffness. The general-optimized shell

(Shell 1) has the highest buckling capacity (xi: = 8.05 ), compared to Shell 2 (4,2 -- 4.29)

and Shell 3 (if = 3.49 ). On the other hand, although the buckling mode shapes vary

significantly in character, it can be seen that the first three eigenvalues are closely spaced.

The series of closely spaced eigenvalues indicates that the optimized shells are
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imperfection sensitive. In addition, the smaller spacing of eigenvalues for Shell 1 further

implies Shell 1 is more buckling-sensitive compared to Shell 2 and Shell3. Therefore, it

can be concluded that a stiffer structure will increase buckling resistance but suffer from

higher buckling sensitiveness.

Table 6—4 Buckling analyses of Shell 1

. Buckling shapes

Mode Eigenvalue Side view Axis 1-3 Side view Axis 2-3

Base

State _ fir ti

3 8.88 Wm

4 13.38 mn

5 13.49 nm

 

Table 6—5 Buckling analyses of Shell 2

Buckling shapes

MOde Elgenvalue Side view Axis 13 Side view Axis 2—3
 

Base
_ r 3 ‘

State L1 L2

1 4.29

2 4.37

3 4.82

4 6.70

5 9.46
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Table 6—6 Buckling analyses of Shell 3

Buckling shapes (eigenvectors)

MOde Eigenvalue Side view Axis 13 Side view Axis 2-3

   

 

 

if}: IL 1:2

1 3.49 h

2 3.53 n

3 3.64 r fl

4 4.63 n

5 11.55 m

 

6.5 Summary

In this chapter, the Optimization procedure of the integrated approach was evaluated

and validated by optimizing FRP shells. It was illustrated in the comparison of a general-

Optirnized Shell and shape—only optimized FRP Shells that the structural performance of a

Shape resistant structure can be improved by using FRP laminates with Optimized

material design. Stability evaluation of the optimized shells showed that buckling

capacity should be an essential constraint of the integrated approach for shape resistant

structures subject to compression.
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7 FRP Composite Membrane-Based Bridge Systems

Laminated FRP composites have been widely applied in strengthening and

rehabilitating aging bridge systems and proved to be efficient. However, the application

of laminated FRP composites for an entire structure is still limited. Although technical

advances in manufacturing FRP composites have significantly reduced the manufacturing

cost, their high material cost and the lack of proven design philosophies compared to

conventional materials still confines the use of laminated FRP composites in primary

structural components of bridge systems. However, the use of FRP composites in

conjunction with conventional structural materials has Shown that technical efficiency

can be achieved within competitive economical constraints [Burguefio, 1999; Seible et al.,

1999]. Furthermore, it was proved that the use of the high in-plane strength and Stiffness

of FRP composites can be maximized by material—adapted concepts of employing Shape

resistant structures of membrane/shells. Therefore, FRP composites membrane-based

bridge systems are proposed as analytical studies for the application of laminated FRP

composites in bridge systems.

The use of Optimized laminated FRP composites in bridge systems is conceptualized

in two bridge designs that can effectively employ the in-plane stiffness of FRP laminates.

Both bridge types consist of a laminated FRP membrane together with a conventional

reinforced concrete deck, in which the laminated FRP membrane provides the in-plane

strength and the concrete deck provides the live load transfer and resists the majority Of

the compression forces. The developed optimization approach will be implemented and

evaluated through analytical studies on these two types of FRP membrane-based bridges.
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7.1 FRP composite membrane beam (CMB) bridges

Based on the concept of girder—slab bridges, an FRP Composite Membrane Beam

(CMB) bridge (Figure 7—1) is considered as a case study for the proposed optimization

approach. Because of the high Stiffness provided by double-curvature surfaces, the

system uses a hyperbolic paraboloid laminated membrane working compositely with a

conventional reinforced concrete deck as schematically shown in Figure 7—1. The

proposed system behavior is such that the FRP laminate is to carry the in-plane tensile

and Shear forces while the concrete deck carries the compressive force. The developed

Shape and FRP laminate Optimization approach was thus used to obtain the optimal Shape

and laminate design of the membrane element for the CMB bridge system.

   

  

Abutment

Membrane

Abutment

Figure 7—1 Composite membrane beam (CMB) bridge

7.1.1 Bridge system description

The proposed CMB Bridge for optimization studies is a 10.06 m long simple-span

bridge girder with a 2.44 m wide compression flange (Figure 7—2). The flange is a 203.2

mm thick concrete deck with a density of 2402.8 kg/m3. In order to reduce difficulties of

finite element modeling, the abutments were not modeled in the finite element analyses.

Rather, the abutment stiffness was taken into account in the computational model by

constraining the plane section motion that it imposes on the rotations and displacements
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at both ends of the bridge (Figure 7—2). The laminates used in the CMB bridge systems

are assumed to be from medium-performance carbon/epoxy FRP lamina, of which the

lamina orthotropic properties are taken as: E/ 1 = 88.253 GPa, E22 = 48.884 GPa, 012 =

4.557 GPa, 013 = 4.557 GPa, G23 = 0.456 GPa, and v12 = 0.513.

    Truck Load

Figure 7—2 Computational model of the CMB bridge

Table 7—1 Load case specification for CMB bridge ommization

 

 

. . . . Design Criteria
lelt State Load Case Specrficatlon Stress Deflection

Optimization l.0><DL + l.0><LL 0.0501. -

Service 1.0xDL + l.0><(LL + 1.33xTL) 0.250'u L/800

Strength 1.25xDL + l.75x(LL + 1.33xTL) 0.506u -

According to the AASHTO Bridge Design Specification [AASHTO, 1998], the

simple-span CMB bridge is to be designed to load combinations that include dead load

(DL), live lane load (LL) and concentrated loads from a three-axle truck (TL). The design
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lane load consists of a uniformly distributed pressure Of 3.06 kPa over each lane while the

design truck load consists of three concentrated loads spaced at 4.27 m (Figure 7—2). The

load case used in the integrated Optimization procedure takes into account the dead and

uniform live load with unit, or service load factors (Table 7—1). In addition to the

optimization load case, the service and strength load cases (Table 7—1), in which the

loads are combined with different load factors also need to be considered [AASHTO,

1998]. The influence of these two load cases on the Optimal CMB bridge design was

studied through post optimality analyses.

Two design criteria, namely stress and deflection are used for the CMB bridge

designs. The stress criterion chooses a percentage, or stress index, of ultimate material

failure for each limit state. The prediction of the ultimate material failure varies with

different failure stress criteria, which define different failure surfaces surrounding the

origin in three-dimensional Space {01], 0'22, 0'12}. The stress index is used to measure the

proximity to the failure surface. The material failure determinations by different stress

criteria are all depended on the stress limits of the individual lamina measured along the

material directions. Following knowledge gained through experiments on carbon/epoxy

FRP laminates, 1% and 0.5% of the Young’s modulus of the corresponding direction

respectively are commonly used as the tensile and compressive stress limits, while 0.5%

of the shear modulus was chosen as the Shear limit. Therefore, the tension and

compression stress limits along the l-axis (fiber-longitudinal direction) and 2-axis (fiber-

transverse direction) were chosen to be: X1 = 0.883 GPa, XC = -O.442 GPa and YT = 0.489

GPa, YC = -0.244 GPa, respectively, and the shear stress limit in the 1-2 plane was taken

as S = 22.9 MPa.
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In addition, the maximum structural deflection of U800 [AASHTO, 1998] was

chosen as another design criterion for the service limit state. Although the AASHTO

[1998] bridge design Specifications recommend the deflection limit Of U800 to apply for

live load only, this limit is used conservatively in this work together with the system dead

load.

7.1.2 Integrated Optimization of CMB bridges

Based on the above-mentioned geometry, properties, and loading of the CMB bridge

system, the integrated Optimization approach was applied to design CMB bridges by

sequentially employing the shape and laminate-property optimization and the laminate

design optimization procedures.

7.1.2.1 Shape and material-property optimization

The shape design variables for the CMB bridge are the width and depth of the FRP

membrane at the middle (W2, 112) and ends (w), h) of bridge component (Figure 7—3).

These variables are used to define the hyperbolic paraboloid shape of the membrane

through a CAGD algorithm. The laminate design variables are the lamination parameters

{V,A, V3A, V10, V30} controlling the in-plane tension stiffness and out-plane bending

stiffness.

103



   

 

     

Depth (h2), . * /

Thickness (t)

. ..» ” Width (w2)
Wldth (w l) ,,/‘

//
/ 

Figure 7—3 Geometric key points for CMB bridge shape optimization

It is well known that structural stiffness is improved when the amount of material

increases. Therefore, the mass of materials needs to be constrained during shape

optimization when the Objective is maximizing structural stiffness. An inequality

constraint, instead of using an equality constraint, is used to limit the mass of materials

used in the structure. Considering that the geometry of the concrete deck remains

constant during the optimization process, the material constraint is thus implemented by

setting a lower and upper bound for the geometric design variables that are controlling

the geometric dimensions and the thickness of laminated FRP composite (Table 7—2).

Maximum stresses evaluated at the top and bottom surface of the laminate and the

maximum deflection of the entire structure are two additional constraints taken into

account in the structural design criteria for the integrated optimization procedure.
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Table 7—2 Dimensional constraints for geometric design variables

W1 W2 ’1] [12 1

Bound (mm) (mm) (mm) (mm) (mm)
Lower 609 609 609 305 6.35

Upper 2438 2438 1219 1219 19.05

 

 

 

The Structural design achieved by an optimization process is normally obtained for a

single load case. Due to the random nature of the truck loading position the optimization

load case for the CMB bridge was taken as the combination of the dead load and live lane

load with unit (service) factors (Table 7—1). This assumption was found to be

conservative in the post optimality analyses (Section 7.2.4) as truck loading governs the

demands in Short-Span bridges.

In the finite element analyses, the strains on the FRP laminates and concrete are

expected to remain in the linear elastic range. Furthermore, the approximation of

formulating the structure stiffness matrix in the reference (original) configuration is

expected to have an error of 10'3 order compared to unity because of the small rotations

and displacements under the loads. Thus, material linear elasticity and geometric linearity

were used in the structural finite element analyses.

The stability of the proposed optimization approach was studied by searching for the

Optimal CMB bridge design from three different starting or initial designs. The initial

designs considered are listed in Table 7—3. The optimization histories of the first-level

shape and laminate-property optimization for the CMB bridges are shown in Figure 7-4

through Figure 7—12.
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Table 7—3 Initial designs of CMB Bridges
 

Initial design Model A Model B Model C
 

{WI’WZ’
hlyw2,t

}
{1625.

6, 1016, {1625.6, 1016, {1219.2, 1219.2,

(mm) 609.6, 609.6, 19.05} 609.6, 609.6, 19.05} 812.8, 508, 6.35}

{V1A,V3A,V,D, V30} {0,1,0.75,1} {O,-1,0,-1} {0,1,0.75,1}

Laminate Design [0°/90°]s [:45°]g [0°/90°]3
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Figure 7—4 History of Objective function — CMB Model A
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Figure 7—10 History of objective function — CMB Model C
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AS summarized in Table 7—4, the Shapes for all three CMB bridges (see

Table 7—3) converged to a Similar geometry with negligible differences. The

optimization processes starting from three different initial attempts also resulted in the

same in-plane lamination parameters (see Table 7—4). However, the out-plane lamination

parameters were different.

Table 7—4 Optimum results of shape and material-property optimization
 

 

Optimal design Model A Model B Model C

Stra‘“ Energy 83.85 83.85 83.85
(N-m)

{W1 W2 h) W2 1} { 1359.0, 2184.4, { 1365.2, 2184.4, { 1352.6, 2222.4,

(mm) ’ 984.3, 1219.2, 1022.4, 1219.2, 997.0, 1219.2,

19.05} 19.05} 19.05}

{V1A, V3A, V11), V30} {0.81,0.31,-1,1 } {0.81,0.31,-0.8,0.7} {O.81,0.31,0.75,1}

 

In fact, it was noted that the lamination parameters governing out-plane bending

stiffness of membranes remain unchanged beyond certain iteration steps. This behavior

does not significantly disturb the solution since the strain energy minimization process

leads to a system dominated by in-plane stress resultants, i.e., bending resultants become

negligible. Therefore, the out-plane lamination parameters, which determine the flexural

stiffness, have a smaller influence on the optimization process when the Structure

becomes dominated by in-plane behavior.

7.1.2.2 Laminate design optimization

Assuming that only the in-plane lamination parameters govern the sectional stiffness

of the FRP laminate, the optimal lay-up of the laminate can be solved by an alternate

method presented by G‘Lirdal et a]. [1999]. This method allows finding the optimal lay-up

for a 4-layer laminate with only two distinct orientation angles for a given volume
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fraction. By this method, the lay-up corresponding to the Optimal section Stiffness, which

is defined by the Optimal lamination parameters of -{ VIA, V321 }={0.81, 0.31} is found to be

[l7°/19°]g. This result is later compared to the solution found by the developed laminate

design Optimization.

Symmetric and balanced laminates with certain number of distinct fiber orientations,

which are defined by the design variables, were determined by the laminate design

optimization process. In order to be able to compare the results with the previous Optimal

laminate design, optimal 8-layer symmetric and balanced laminates that have two distinct

orientation angles were searched by the laminate design optimization algorithm.

Furthermore, as it was discussed in Section 2.3, the bend-twist (D16 and D26 terms)

coupling effect is minimized by increasing the number of plies in a symmetric and

balanced laminate. Therefore, optimal 48-layer symmetric and balanced laminates (an

arbitrarily selected large number of plies), which have twelve distinct fiber orientations,

were also investigated.

In the second-level optimization, an optimal laminate is achieved by minimizing the

difference of the lamination parameters of the searched laminates from the Optimal

lamination parameters derived from the first-level optimization. Therefore, the optimum

criterion of the laminate design optimization is an allowable value of discrepancy. For the

current research, a maximum error of 1% was considered acceptable for the optimum

laminate design.
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Figure 7—13 Laminate design optimization for 8-layer laminates

The optimal 8-layer laminate was found to be composed of [i17°/i'19°]g with an error

of 0.22% with respect to the optimal in-plane section properties from the first-level

optimization. The resulting laminate design is thus the same as that previously obtained

neglecting out-of—plane behavior through Gurdal et al.’s [1999] method. The optimization

history of the objective function (lamination parameter error minimization) is shown in

Figure 7—13. The optimal 48-layer symmetric and balanced laminate was found to be

[i17°/i21°/i'19°/i25°/i2l°/i5°/ir22°/i12°/ir25°/i14°/ i17°li12°]3 with an error of 0.73%.

Its optimization history is Shown in Figure 7—14.
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Figure 7—14 Laminate design optimization for 48-layer laminates

The lamination parameters and the section stiffness of the three optimal laminate are

compared and summarized in Table 7—5. As shown in the table, all three optimal

laminates have the same in-plane section properties and in-plane lamination parameters

while the major terms of the out-of-plane section stiffness {D22, D22, D22, D66} and the

out-plane lamination parameters {V112, V322} are only slightly different. However, the

bend-twist coupling terms (D16 and D26) of the out-plane stiffness are different for all

three laminates. Thus, as expected, balanced and symmetric laminates have less bend-

twist coupling effects than symmetric-only laminates. It also can be noted that the bend-

twist coupling terms can be further reduced by increasing the distinct groups of balanced

fiber orientations.
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Table 7—5 Optimal laminates from laminate design optimization process
 

Lamination

O timal laminate parameters A matrix D matrix

p {V/A, V321, V10. (103 kN) (kN-m)

V20. V31), V40}

{0,809,0308, ’362 6.01 0 I [43.6 6.67 10.81

 

  

4-layer [17°/19°]s 0824,0566, 20.7 0 25.0 -4.41

0358,0933} L 6.98, 79!]

{0,809,0308, "36.2 5.96 0 “ ”43.6 6.67 4.07]

8-layer [i17°/i19°]3 0824,0215, 20.7 0 25.0 —l.58

0358,0352} _ 6.98, I 7.91 1

48-layer :21°/:5°/:22°/:12°/ 0.800, -0.037, 20.8 24.4 0'23

:25°/:14°/:17°/:12°]S 0231,0056} 893-  

[i17°/i21°/i19°/i-25°/ {0.803, 0.310, |7361 5.96 0] ”42.1 7.80 -0.68“

 

7.1.3 System characteristics of optimal CMB bridges

The system characteristics of the Optimized CMB bridge systems were investigated

by studying their structural behavior for the optimal load case and their buckling

sensitivity. Due to the Slight geometric variations existing in the optimum designs, the

CMB bridge chosen for the system evaluation studies has a shape with average

dimensions of the obtained optimal bridges (see Table 7—4). The optimal 8-1ayer laminate

design is used for FRP membrane in system characteristic Studies. The variations to the

Optimum design by using an average geometry and the 8-layer laminate with non-zero

bend-twist coupling will be studied in post Optimality analyses.

7.1.3.1 Structural behavior ofoptimal CMB bridges

As Shown in Figure 7—4, Figure 7—7 and Figure 7—10, the optimal geometry of the

FRP membrane is that of a hyperbolic paraboloid. A hyperbolic paraboloid is obtained by

translating a parabola along the longitudinal direction of another parabola. This shape
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Obviously follows as a direct consequence of the moment diagram of the loaded CMB

bridge to assure in-plane behavior of the FRP membrane.

The results illustrated in Table 7—6 and Table 7—7 clearly Show that the FRP

membrane of the optimized CMB bridge is dominated by an in-plane stress-State by

comparing the in-plane and out-of-plane section resultants. In addition, the FRP

membrane also provides a Shear force resistance, which reaches maximum values at both

ends of the bridge structure. However, the bar chart in Figure 7—15 shows that 91% of the

FRP membrane is subjected to longitudinal tension ranging from 0 kN/m to 133.9 kN/m,

while only 9% of the membrane is subjected to longitudinal compressions with values les

than 25 kN/m. Figure 7—16 reveals that the transverse section stress resultants of the FRP

membrane due to the Poisson effect are mainly compression forces with values close to

zero. The Shear membrane force distribution Shown in Figure 7—17 further indicates that

the high level of shear forces is a local behavior and most of the FRP membrane is

subjected to a low level shear forces, i.e., values close to zero. Therefore, the FRP

membrane is primarily subjected to longitudinal tensile stresses rather than transverse

stresses.

According to Table 7—6 and Table 7—7, although the concrete deck is subjected to

higher out-of-plane section resultants than the FRP membrane, the concrete deck is still

dominated by in-plane membrane forces. Furthermore, the deck is mainly subjected to

longitudinal compression (Figure 7—15), which introduces a small level Of transverse

tension due to the Poisson effects (Figure 7—16). Therefore, the Optimized FRP CMB

bridge behavior is such that the FRP membrane carries the in-plane longitudinal tensile

and shear forces while the concrete deck carries the compressive forces.
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7.1.3.2 Stability evaluation

As previously discussed, shape optimization of a shape resistant structure will

improve their structural stiffness. Such optimized structures become stiffer and carry their

design loads primarily by axial or membrane action rather than bending. This leads to a

response that usually involves very small deformations prior to buckling. Therefore,

Shape optimized structures are stability sensitive. The stability of the optimized ClVIB

bridge was investigated by eigenvalue buckling analyses, which are generally used to

estimate the critical buckling loads and potential collapse shapes of stiff structures.

Considering that the material properties of the optimal 8-layer laminate were only

slightly different to the optimal 48-layer laminate, the laminate design of [il7°/i19°]s

was employed to reduce the computational cost of the buckling analyses. The buckling
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analysis of the optimal CMB bridge considered a perturbation uniform load of 6.9 kN/m2

on the concrete deck acting in the gravity direction. The method of subspace iteration

eigenvalue extraction [HKS, 2000] was used to predict the first five eigenvalues and the

corresponding eigenmodels for the optimal CMB bridge as summarized in Table 7—8.

Table 7—8 Buckling eigenvalues and eigenvectors of the optimal CMB bridge
 

 

Mode Eigenvalue Eigenmodel

1 -76.909

2 —76.909

3 -77.137

4 -77.137

5 —79.923  
 

As shown in Table 7—8, negative eigenvalues were obtained from the buckling

analyses. Such negative eigenvalues indicate that the optimized CMB bridge would

buckle if the perturbation load were applied opposite to the gravity direction. However,

the first five buckling modes show that the structure has closely spaced eigenvalues,

which indicates that the structure is imperfection sensitive. Therefore, further

consideration to buckling stability is required for CMB bridges if the applied loading can

act in a direction opposite to that of gravity.
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7.1.4 Post optimality analyses

Structural designs by optimization methods are obtained with optimal parameters

achieved regarding certain optimization conditions. For example, the optimum design

defined by the optimal geometric and material parameters for the CMB bridge is

achieved with respect to an optimization load case. However, the CMB bridge might not

be constructed exactly to the optimal geometry and the optimal laminate specified by the

optimal design variables may not be easily achieved in practice. Furthermore, multiple

load cases that must be resisted with corresponding performance limit states are typically

considered for the design of bridge structures. The performance of an optimized structure

could thus be compromised due to changes in structural geometry, loading and material

properties. Therefore, the response of the optimum solution to the CMB bridge system

due to geometric imperfections, loading alterations and material property changes (bend-

twist coupling effects) was investigated. The CMB bridge model used in the post

optimality analyses was constructed by averaging dimensions of the three optimized

CMB bridges previously obtained (see Table 7—4).

7.1.4.] Influence ofbending twisting coupling effect of laminate properties

The influence of material coupling effects to the optimal CMB model was

investigated by analyzing CMB bridge systems with different optimal laminates for the

FRP membrane that varied only in their coupling stiffness terms (i.e., 016 and D26). The

previously obtained optimal 8-layer and 48—layer laminates, which varied in the out-plane

material properties (see Table 7—5), are thus used in this analysis. The structural

responses of the two CMB models constructed by these two balanced-and-symmetric

laminates are compared in Table 7—9.
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Table 7—9 Structural response of optimal CMB bridge with different Optimal laminates

CMB In-plane section Out-of—plane section Max Strain

membrane resultants (kN/m) resultants (kN-m/m) Deflection Energy

model SFl SF2 SF3 SMl SM2 SM3 (mm) WW

8- Max 133.87 1.20 52.33 0.15 0.06 0.02

layer Min -10.51 -l3.79 —52.31 -0.13 -0.08 -0.02

48- Max 133.88 1.29 52.31 0.15 0.06 0.02

layer Min -10.47 -13.76 -52.31 —0.13 -0.07 -0.02

SFl, SF2: Direct membrane force per unit width in local l-, 2-axis of elements.

SF3: Shear membrane force per unit width in local 1-2 plane.

SMl, SM2: Bending moment force per unit width about local 2-, l-axis of elements.

SM3: Twisting moment force per unit width in local 1-2 plane.

 

 

1.692 84.51

 

1.692 84.51

 

According to Table 7—9, both of the material-modified CMB bridges have the same

strain energy while maximum deflection and the in-plane section resultants in the

membrane vary slightly. This can be explained by the in-plane dominated behavior of the

optimized CMB bridge. The optimized CMB bridge is primarily subjected to in-plane

longitudinal tension rather than out-of—plane section resultants. Furthermore, the small

magnitudes of the bend-twist coupling terms (D16 and D26) compared to the other major

bending stiffness terms (D11 and D22) also partially reduce the bending—twisting coupling

effect. Therefore, material property changes in bend-twist coupling can be neglected for

the structural behavior of the optimal CMB bridge.

7.1.4.2 Influence ofgeometric variations

Table 7—10 summarizes the geometric variations of the CMB bridge using average

shape dimensions with respect to the three optimal CMB bridges in terms of geometric

design variables. It can be noted that the maximum variation of 1.94% occurs for h 1 (the

height at the end of the bridge) by using average dimensions. Consequently, the strain

energy of the CMB bridge with average dimensions has an 0.7% increase (Table 7—4 and
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Table 7—9). Although the CMB bridge combining several slightly-different optimal

designs by averaging shape geometries can be still considered an optimum design in the

current application, it can be anticipated that adequate performance of optimum designs

can be compromised by geometric imperfections.

Table 7—10 Geometric variations of optimal CMB bridges

 

 

W1 W2 I11 I22 I

(mm) (turn) (turn) (Hun) (turn)

Model A 1359.0 2184.4 984.3 1219.2 19.05

Model B 1365.2 2184.4 1022.4 1219.2 19.05

Model C 1352.6 2222.4 997.0 1219.2 19.05

Average 1358.9 2197.1 1001.2 1219.2 19.1

Variation 0.46% 1.00% 1.94% 0.00% 0.00%

 

Variation = (Standard deviation of a dimension) / (Average dimension)

7.1.4.3 Influence of loading alterations

Structural designs require a structure that meets design criteria (i.e. limit states) with

respect to different load cases. However the CMB bridge was optimized with respect to a

single load case. Other load cases, i.e., the service load case and the strength load case,

are required to comply with structural design requirements for different limit states

[ASSHTO, 1998]. Therefore, the performance of the optimized CMB bridge due to these

two load cases was studied with respect to the corresponding design criteria.

Considering that most unidirectional laminated composites behave in a brittle

manner, local failures generally can lead to complete fracture and total loss of load-

carrying capacity. Therefore, the first-ply failure theory, which assumes failure of a

composite laminate to take place when failure initiates in the most critical layer of the

laminate, is used to evaluate the material strength of laminates. Several stress criteria

have been developed to predict the material failure of FRP lamina under different limit

states [Jones, 1999]. In addition to the maximum stress criterion implemented in the
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integrated optimization procedure, other three commonly used stress criteria were

employed to calculate the ultimate strength of laminates in the study of load alternations.

The criteria used were the Tsai-Hill [Tsai, 1968], Tsai-Wu [Wu, 1974] and Azzi-Tsai-

Hill [Azzi and Tsai, 1965] models. These models are more accurate in comparison to the

maximum stress criteria since they consider polynomialcombination of the stress state

rather independent relations [Jones, 1999].

The structural responses and the stress indices of the optimized CMB bridge with

respect to the different limit states are summarized in Table 7—11 and Table 7—12

respectively. As expected, the strength limit state has the maximum influence on the

optimized CMB bridge as it results in maximum in-plane stress demands and a maximum

deflection. With regards the deflection criterion, the maximum deflection obtained in the

service limit state reached 5.237mm, which is 41.65% deflection limit (U800) of 12.573

mm. It should be pointed out that the maximum stress index reached 5.39% of the

material failure, that is 21.54% of the allowed service stress limit (Table 7—1). Therefore,

the deflection criterion governed the design of the optimum CMB bridge under service

loading. Furthermore, it can be noted that the stress indices are below the design limits

proposed for each limit state (Table 7—1).

Although the optimized ClVIB bridge satisfied the design criteria specified in Table 7—

l for all limit states, the maximum stress criterion has the lowest stress index, which

underestimates the stress level of laminates compared to the other failure stress criteria.

Therefore, a more accurate material strength criteria should be applied in the stress

constraint in future optimization studies.
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Table 7—11 Laminate stresses of the optimized CMB bridge under different limit states
 

 

 

 

Load case (N/irlllmz) (N/Erzrinz) (NS/:12) Max$23M

Optimization 11:44: 2:: if; -8233 4.692

3...... 11?: 32:23 131?}. 1:32 -5237

Straw“ 11?: 3223? 1:13: -3133 -8-649
 

S“, 822: Direct stress in local 1-, 2-axis of elements.

Sn: Shear stress in local 1-2 plane.

Table 7—12 Stress indices of the optimized CMB bridge under different limit states
 

 

Load Case MStrs (%) TsaiH (%) TsaiW (%) AzziT (%)

Optimization 1.73 2.17 2.03 2.05

Service 4.31 5.39 5.02 5.07

Strength 7.01 8.76 8.17 8.24
 

In addition to the loading alteration by load cases corresponding different limit states,

the structural response of the optimized CMB bridge due to the extreme loading effects

introduced by the loading pattern of moving trucks in the strength limit state was also

explored. Two extreme truck loading positions were considered. One loading pattern was

introduced to create maximum torsion by placing the truck loads at the edge of the

optimized CMB bridge (Figure 7—18). A second loading position sought to develop the

maximum mid-span moment by placing the two axel loads (142.4 kN) in the middle of

the bridge (Figure 7—19). The structural responses and stress indices for the optimized

CMB bridge due to these two critical loading patterns are summarized in Table 7—13 and

Table 7—14.
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Truck Load

Live Load

Live Load 
Figure 7—19 Load case for maximum bending in the strength limit state

As shown in Table 7—13 and Table 7—14, the maximum structural response is

developed due the load case of maximum torsion. The maximum deflection reached

11.82 mm and the maximum stress demand achieved about 21% of the material failure

stress state (Table 7—14), which is 2 times greater than the maximum stress level of the
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optimized CMB bridge under strength loads. Also, the transverse stresses (822) are

obviously increased due to the twisting behavior introduced by the truck loads (Table 7—

13). Although the optimized CMB bridge is still within the stress limit for the strength

limit state (see Table 7—1), the structural responses under the critical load patterns are

clearly different than those obtained for the optimum load case. Therefore, structural

optimum designs with respect to a typical load pattern should be designed with strength

reserves to allow possible increases of structural response due to non-optimal loading

alterations while in service.

Table 7—13 Laminate stresses of the optimized CMB due to different extreme effects

 

 

 

S S S Max deflection

Load case (N/nlrlnz) (N/rrzrinz) (N/rrlrzmz) (mm)

Max 33.96 12.94 3.03

Strength Min -26.71 -l6.52 -3.19 '8'65

Maximum Max 48.74 23.54 4.07 -1 1.82

Torsion Min -38.36 -50.43 -4.94

Maximum Max 44.83 18.07 4.13 _9 50

Bending Min -37.27 -22.73 -4.22 '

 

S“, 822: Direct stress in local l-, 2-axis of elements.

Sn: Shear stress in local 1-2 plane.

Table 7—14 Stress indices of the optimized CMB due to different extreme effects
 

 

Load Case MStrs (%) TsaiH (%) TsaiW (%) Azzit (%)

Strength 7.01 8.76 8.17 8.24

Maximum Torsion 20.63 21.14 21.44 21.14

Maximum Bending 9.30 11.94 10.76 10.83
 

7.2 FRP composite membrane suspension (CMS) bridges

Inspired by conventional cable suspension bridges, an FRP composite membrane bi-

suspended (CMS) bridge (see Figure 7—20) was conceptualized as a second case study for

the developed optimization approach. In CMS bridge systems, a deck system (either a
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conventional concrete slab or an FRP panel) is assumed to be placed on top of the FRP

membrane such that it transfers the applied live loads through internal diaphragms or

“bulkheads.” Thus, the in—plane stiffness of the FRP membrane is employed in two—way

tension under uniform loading from the deck system. A conceptual depiction of a three—

span CMS bridge is shown in Figure 7—20.

Membrane Deck

Diaphragm

 

‘.

Figure 7—20 Concept for Composite Membrane Suspension (CMS) Bridges

7.2.1 Bridge system description

The CMS bridge proposed for optimization studies is a 60.96 m long three-span

bridge with a 10.36 m wide concrete deck to accommodate two 3.66 m traffic lanes and

essential shoulders (Figure 7—21). The concrete deck is 304.8 mm thick with a density of

2400 kg/m3 for normal concrete. The loads acting on the bridge include the self-weight of

the concrete deck, and the live lane and truck vehicular loads. The live lane load, which

acts over the 3.05 m wide lane, is assumed to be distributed over the entire surface of the

deck, resulting in a pressure of 3.06 kN/mz. The total truck loads introduced by two

trucks for two lanes are also considered to be ideally distributed over the FRP membrane

through diaphragms as a pressure of 1.014 kN/mz. The laminates used for this bridge

system are based on typical medium—performance carbon/epoxy material system for use
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in civil structures. Thus the lamina orthotropic properties are taken as: E“ = 155.025

GPa, E22 1' 10.335 GPa, 012 = 6.89 GPa, 013 = 6.89 GPa, (323 = 0.689 GPa, and m = 0.3.
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Figure 7—21 Geometry of the CMS bridge

The CMS bridge is subjected to dead loads (DL), two lanes of uniformly distributed

lane loads (LL) and two three-axe] truck loads (TL) [AASHTO, 1998]. Two load cases

using different combinations of the applied loads, which are specified in Table 7—15,

were selected to analyze the CMS bridges for service and strength limit states.

As previously used for CMB bridges, the tension and compression stress limits based

on the material properties for l-axis (fiber-longitudinal direction) and 2-axis (fiber-

transverse direction) were chosen as X1 = 1.55 GPa, XC = -O.775 GPa and YT = 0.103
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GPa, YC = —0.052 GPa respectively, and the shear stress limit in 1-2 plane is taken as S

234.45 MPa. The ultimate material failure 0;, is then determined by combining the stress

limits measured on the material directions according to a stress criterion.

Table 7—15 Load cases specification for CMS bridges

Design Criteria

Load Cases Specification Stress

Strength

0.250’u L/800 Service

 

Limit

Deflection State

 

Service load l.0><DL + l.0><(LL + 1.33xTL)

case

Strength load 1.25xDL + 1.75X(LL + 1.33xTL)

case

 

0.506Ll — Strength

 

7.2.2 Integrated optimization of CMS bridges

Based on the above-mentioned geometric, material, and loading definition for the

bridge systems, the integrated optimization approach was applied to design FRP CMS

bridges starting with the shape and laminate-property optimization and then followed by

the laminate design optimization.

7.2.2.1 Shape and FRP laminate-property optimization

Taking advantage of structural symmetry, the hyperbolic profile of the CMS

membrane can be controlled by four key points as shown in Figure 7-22. The shape

design variables were therefore the six degrees of freedom of the four geometric key

points. The membrane system was completely defined by spline interpolation of the key

points. The positions of the pier supports (Figure 7—21 (a)) are constant throughout the

optimization process. The rational of this assumption will be discussed in Section 7.3.3.

The laminate design variables are the lamination parameters {V1A, V3A, V10, V319}

controlling the in-plane tension stiffness and out-plane bending stiffness.
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Geometric key points

 
Figure 7—22 Loading and geometric key points for the CMS bridge

As applied in the integrated optimization of CMB bridges, an inequality constraint

was employed to limit the used mass of the membrane FRP laminate. Therefore, a

material constraint was implemented by setting a lower and upper bound for the

coordinates of the shape key points (Table 7—16). Maximum stresses monitored at the top

and bottom surface of the FRP laminate and maximum deflections of the complete

system constituted two additional constraints required to enforce the structural design

criteria in the integrated optimization procedure. Instead of only using dead load and live

lane in the optimization load case, the load case for the service limit state (Table 7—15),

which includes truck loads, was chosen as the optimization load case for the CMS

bridges.
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Table 7—16 Coordinates constraints for geometric design variables
 

 

Coordinate P1 (m) P2 (m) P3 (m) P4 (m)

bound x y z x y z x y z x y 2

Lower -6.1 —6.1 -10.4 -6.1 ~10.4 -6.l
Upper 30.48 0.0 0.0 0.0 0.0 0.0 30.48 -7.8 0.0 0.0 -7.8 0.0

 

Two typical boundary conditions for suspension bridges were considered in the CMS

bridge analyses (Table 7—17) to evaluate the effect of boundary conditions on the

optimized shape. Model A was provided with simple supports at the positions of the piers

while Model B featured extra roller supports at both ends of the bridge.

Table 7—17 Initial designs of CMS Bridges

Initial design Model A Model B

 

 

Boundary conditions

{ 21,22, Z3, 24, y3, y4} (m) {0, 0,0,0, -10.4, -10.4}

Laminate design [O°/90°]s

{V1A,V3A,VID,V3D} {0,1,0-75,”
 

The integrated optimization approach was implemented as previously described and

the performance and stability of the obtained results was assessed by studying a single

initial design (geometry and laminate layup) for each CMS bridge model (Table 7—17).

Both integrated optimizations were initiated with a plane FRP membrane constructed

with a cross-ply laminate, i.e., a [0°/90°]s. The first-level optimization history of the two

CMS bridges is shown in Figure 7—25 and Figure 7—28, respectively.
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Figure 7—23 Histories of geometric design variables — CMS Model A
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The optimal results obtained from the first-level optimization are summarized in

Table 7—18. It can be seen that although both models have a similar geometric shape, the

optimized objective of Model B has a strain energy value 20% lower than that of Model

A. The improvement in minimizing the strain energy came from changes in the laminate

properties due to the different boundary conditions. In Chapter 6 it was demonstrated that

structural optimization can be further improved by material optimization. Optimum

laminates were thus also determined for the CMS bridges using the second-level

optimization so as to achieve the obtained optimal lamination parameters.

Table 7—18 Optimal results of the first-level optimization for the CMS bridges
 

 

Optimum design Model A Model B

Strain energy (kN-m) 183.26 149.93

{2 z z z } (m) {-6.05, -6.10, —0.43, -0.37, {—6.10, -6.10, -O.22, -0.30,

1’ 2’ 3’ 4’ Y3’ W -8.20, —7.99} -779, -7.85}

{V1A,V3A,V1D,V3D} {0.138, 0.033, —0.317, —0.533} {0.155, 0.106, —0.309, -0.494}

It should be noted in Figure 7—28 that the objective function experienced an abrupt

decrease after a relative smooth development in the iteration history of CMS bridge

optimization. The occurrence is thought to be inherent from the gradient properties of the

objective function with respect to the design variables for this optimization case.

7.2.2.2 Laminate design optimization

In the second level optimization, the genetic optimization procedure was employed to

design optimal laminates with a maximum error of 1% with respect to the optimal

lamination parameters obtained from the first-level optimization.

The genetic iteration histories for the laminate designs of the two CMS bridge models

are shown in Figure 7—29 and Figure 7—30, respectively. The optimal laminate for Model
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A was found to be [i51°/i57°/i60°/i63°/i50°/i67°/i62°/i2l°/0°g]3 with a minimum error

of 0.807% with respect to the Optimal lamination parameters. The optimal laminate for

Model B was [i53°/i51°/i64°2/i53°/i62°/i64°/i4°/0°8]5 with a minimum error of
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Figure 7—29 Second-level optimization process of Model A
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Figure 7—30 Second-level optimization process of Model B

7.2.3 System characteristics of optimal CMS bridges

The system characteristics of the optimized CMS bridges was investigated by

studying the structural response of the bridge systems under the optimal load case and the

stability of the optimized CMS FRP membrane. The influence of boundary conditions on

the optimum designs was evaluated by comparing the results from both models.

7.2.3.1 Structural behavior ofoptimal CMS bridges

The section forces and moment resultants for the CMS bridges are given in Table 7—

19 and Table 7—20, respectively. From these tables it is clearly seen that the FRP

membrane of both CMS bridges is dominated by in-plane stress demands. In addition, a

further review of the section forces along the local 1- and 2-direction (Figure 7—31)
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shows that the FRP membrane is subjected to two-way tension, as the relative magnitude

of both of these stress fields is similar. Therefore, the behavior of FRP CMS bridges is

such that the FRP membrane acts as a membrane structure carrying distributed loads

primarily through bi-directional tension.

 
Figure 7—31 Coordinate systems
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7.2.3.2 Stability

From above-discussed results, the optimized CMS bridges are shape resistance

structures in which high structural stiffness is primarily gained by in-plane membrane

actions rather than flexural actions. As previously addressed, such structures are buckling

sensitive and usually require only small deformations prior to experiencing buckling.

Therefore, the stability of the optimized CMS bridges was investigated through buckling

sensitivity analyses.

Eigenvalue buckling analyses determined with ABAQUS [HKS, 2001] were used to

predict critical buckling loads and potential collapse modes of CMS bridges. The loading

of the service limit state was employed as the perturbation load required for the buckling

analyses. The method of subspace iteration extraction was chosen to obtain the first four

eigenvalues and corresponding eigenshapes, which are summarized in Table 7—21.

According to the results shown in Table 7—21, negative eigenvalues are reported for

both CMS bridge models. Such eigenvalues imply that buckling of the optimal CMS

bridges would happen only if the perturbation load were applied opposite to the gravity

direction. Further comparison of the two models shows how the different boundary

conditions will influence the buckling modes of the structures. Model A has obvious

buckling deformations at the free ends of the bridge while buckling of Model B will

primarily happen at the positions where the columns support the FRP membrane.

Considering that Model B is stiffer due to its lower strain energy, it is understood that

Model B is more sensitive to buckling and, therefore, has higher and more closely spaced

eigenvalues than Model A.
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Table 7—21 Buckling eigenvalues and eigenshapes of the optimal CMS bridges
 

 

    

  

Mode Model A Model B

Eigenvalue Eigenshape Eigenvalue Eigenshape

Base

State ‘ '

1 —0.037 —0.2526

2 -O.114 -0.3151

3 -0.120 —0.3152

4 —0.125 -0.3153

 

 

7.2.4 Post optimality analyses

Optimal structural designs are achieved by satisfying certain optimization paramters

and constraints such as loading and boundary conditions. Change of such conditions can

alter the optimum designs whose response may violate the constraints originally satisfied.

Therefore, it is necessary to evaluate the influence of such changes on the behavior of

optimum designs through post optimality analyses. The following analyses focus on the

influence of loading and boundary—condition changes on the performance of the

previously-obtained optimal CMS bridges.
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7.2.4.1 Influences ofloading alternations

Since the load case for the service limit state was used to achieve the optimal CMS

bridges, the constraints of maximum deflection and maximum stresses were verified for

the strength limit state load case on the optimal CMS bridges.

A first—ply failure analysis was applied to predict the material ultimate strength of the

laminated FRP membrane. In addition to the independent maximum stress criterion

implemented in the integrated optimization procedure, the coupled polynomial stress

failure theories by Tsai-Hill [Tsai, 1968], Tsai-Wu [Wu, 1974] and Azzi-Tsai-Hill [Azzi

and Tsai, 1965] were also used in a first-ply-failure criterion. These models are readily

available in ABAQUS to estimate the stress failure of FRP laminates.

The structural responses and the stress indices of the optimized CMS bridges with

respect to the different limit states, see Table 7—15, are summarized in Table 7—22 and

Table 7—23, respectively. As shown in the tables, although the maximum stresses and

maximum deflection are increased from the service limit state to the strength limit state,

the stress indices for both models of the optimized CMS bridges indicate that the load

case associated to the service limit state is still the critical load case for the bridge system.

It should be noted that the stress index evaluated by the maximum stress criterion

employed in the optimization process predicted that the stress level in the laminates was

within the allowable limits and the material strength. However, as seen in Table 7—23, the

bi—axial stress failure criteria indicate that the stresses on the FRP laminate exceed the

service stress limits. Therefore, multiple stress failure criteria should be considered as

stress constraints during optimization processes.
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Table 7—22 Structural response of optimized CMS bridges for different limit states

 

SH $22 812 Max deflection

MOdel Load case (N/mmz) (N/mmz) (N/mmz) (mm)

. Max 525.08 39.22 20.96

A semce Min -133.91 -15.08 -1141 40030

Max 715.88 53.48 28.57

Strength Min -182.57 20.55 -1555 54559

Service Max 613.59 46.30 19.57 139.95

Min -187.88 ~19.06 —15.52

Max 836.54 63.12 26.68

Strength Min 256.15 25.99 21.17 19””

Sn, S22: Direct stress in local l-, 2-axis of elements.

S12: Shear stress in local 1-2 plane.

SP1, SP2: Minimum, maximum principal stresses

 

 

Table 7—23 Stress indices of optimized CMS bridges for different limit states

Model Load Case MStrs (%) TsaiH (%) TsaiW (%) AzziT (%)
 

Service 23.47 32.38 29.23 30.73

Strength 32.01 44.14 39.84 41.88

Service 20.78 27.20 25.30 25.83

Strength 33.86 45.70 52.90 45.70
 

MStrs: Maximum stress theory failure measure

TsaiH: Tsai-Hill theory failure measure.

TsaiW: Tsai-Wu theory failure measure.

AzziT: Azzi-Tsai-Hill theory failure measure.

In the optimization procedure, the design loads applied on the FRP membrane were

ideally considered to be uniformly distributed over the area that the concrete deck

projects onto the FRP membrane. However, in practice, it is conceptualized that the

concrete deck weight and live loads will be transferred to the FRP membrane through

diaphragms or “bulkheads.” Therefore, spaced line loads (Figure 7—32), which simulate

the pattern of the loads transferred from the diaphragms, were applied on the FRP

membrane as a non-optimal loading pattern. The structural response of the optimal CMS

bridges subject to spaced line loads at the service limit state will be used to verify the

design criteria and is compared to the structural behavior of the optimal CMS bridge

subjected to the distributed loading.

144



Spaced line loads

Membrane
  

  

  

Diaphragm

Figure 7—32 Loading pattern of spaced line loads

The structural response of the optimal CMS bridges subject to the spaced diaphragm

line loading pattern is summarized in Table 7—24, Table 7—25, Table 7—26 and Table 7—

27. By comparing the section forces and moments, it is shown that the response of both

models still remains governed by in-plane stresses. However, it is easily seen in the

figures of Table 7—26 and Table 7—27 that the distribution of the section forces and

moments in the FRP membrane has obvious changes along the loading pattern, while the

magnitude variation of the section forces and moments varied only modestly. A

comparison of Table 7—22 and Table 7—24 shows that compressive forces noticeably

increased in the FRP membrane of Model A after the loading pattern was altered. This

lead to the stress index of the FRP membrane of Model A (see Table 7-23 and Table 7—

25) to be almost twice than the stress demand limits chosen for the service limit state.

However, the stress level and stress indices of Model B had smaller variations compared

to Model A due to changes in the loading pattern.

It can be further noted for Model A that, although its section moments remained small

compared to the in-plane forces, the magnitudes of the section moments increased

considerably for the non-optimal loading pattern as compared to values obtained under
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the uniform load distribution (Table 7—26 and Table 7—27). Accordingly, the structural

strain energy under the non-optimal load pattern is more than two times that of the

Optimal value previously obtained (Table 7—25). The increase in strain energy is caused

by the increase in the section moments throughout the FRP membrane, which can be

clearly seen in the figures and values given in Table 7—27. Consequently, optimal Model

A, obtained by a uniform loading pattern, might not be considered as an optimal shape

for the loading pattern of spaced line loads. On the other hand, the strain energy of Model

B increased only moderately over the optimal strain energy value.

Table 7—24 Structural responses of the optimized CMS bridges

subject to spaced line loads under the service limits state

 

Stress

Model S1 1 322 S 12 SP1 SP2

(N/mmz) (N/mmz) (N/mmz) (N/mmz) (N/mmz)

A Max 439.21 25.99 27.65 17.43 439.29

Min -303.67 20.02 26.61 204.75 48.82

B Max 506.56 36.96 19.74 36.71 506.74

Min 435.39 43.40 40.02 435.75 41.53
 

811. 822: Direct stress in local 1-, 2-axis of elements.

Sn: Shear stress in local 1-2 plane.

SP], SP2: Minimum, maximum principal stresses

Table 7—25 Stress indices of the optimized CMS bridges

subject to spaced line loads under the service limits state
 

 

Stress Index Max Strain

M d 1 '
0 e MStrs (%) TsaiH(%) TsaiW (%) AzziT(%) (1623:?“ fit?)

A 40.10 58.83 68.73 58.83 427.74 414.20

B 23.76 26.65 28.65 25.95 139.65 193.20
 

MStrs: Maximum stress theory failure measure

TsaiH: Tsai-Hill theory failure measure.

TsaiW: Tsai-Wu theory failure measure.

Azzit: Azzi-Tsai-Hill theory failure measure.
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The summarized results point out that the performance of an optimum design can be

significantly altered by changes in loading patterns. However, Optimal CMS bridge

Model B was found to be less sensitive to loading pattern changes than Model A (their

difference arising from their boundary conditions). Thus, the Optimal C1Vfl3 bridge of

Model B would behave better under changes in loading patterns during service.

7.2.4.2 Influence ofboundary conditions

As previously discussed, the optimal CMS bridge designs show different performance

detriments due to changes in loading patterns. The change in performance due to non-

Optimal loading patterns is largely originated from the difference in boundary conditions.

Therefore, it is necessary to investigate the influence of boundary conditions on the

Optimum design of CMS bridges. This can be done by comparing the in-plane behavior

of the two CMS bridge models under the service limit state.

The membrane forces Of Model A and Model B are compared in Figure 7—33 and

Figure 7—34. According to Figure 7—34, both models are primarily subjected to in-plane

tensile forces and have an almost equal force distribution in the transverse direction of the

bridge. However, although both models are subjected to tension and compression in

longitudinal direction, their in—plane structural behavior, demonstrated by the distribution

of transverse section forces, is different. Figure 7—33 shows that about 85% of Model B is

subjected to membrane forces with 300 kN/m or less while 15% is subjected to

membrane forces higher than 300 kN/m. In contrast, about 30% of Model A has

membrane forces over 300 kN/m. This is the reason that Model A has a higher optimal

strain energy than Model B. The variation in section force distribution is caused by the

difference in boundaryconditions between the two models. These results, combined the
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Force Range (kN/m)

Figure 7—34 Section force (SF2) distribution in CMS optimal designs
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issues discussed in the system characteristics and the load variation studies, lead to the

conclusion that Model B has a more effective and stable in-plane behavior than Model A.

This improved in-plane behavior is achieved by the addition of supporting boundaries at

both ends of Model B (Table 7—17), which strengthens the dual hanging concept of the

CMS bridge system.

7.3 Discussion of FRP membrane-based bridge systems

In this section, the conceptualized FRP composite membrane-based bridge systems

(CMB, CMS—A, and CMS-B) are evaluated by comparing their structural behavior in

terms of material use efficiency. In addition, the selection of an objective function that

could further improve the integrated shape and laminate optimization approach is also

discussed.

7.3.1 Comparison of FRP membrane-based bridge systems

As shown through the studies of system characteristics, the performance of both types

of composite membrane-based bridges is improved by their in-plane behavior as tension

structures after the integrated optimization. However, efficient performance under in-

plane behavior is gained through different schemes for both composite membrane-based

bridges.

The system characteristic studies of the optimal CMB bridges showed that the

structural stiffness used by CMB bridges to carry external loadings is obtained by

developing a force couple between the longitudinal tension forces in the FRP membrane

and the longitudinal compression in the concrete deck. The in-plane section resultants of
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the FRP membrane and the concrete deck in the transverse direction are due primarily to

the Poisson effect and are two orders of magnitude less than the longitudinal in-plane

resultants. Therefore, CMB bridges achieve mainly unidirectional in-plane behavior.

However, the system characteristic studies for the optimal CMS bridges indicated that the

FRP membrane in optimal CMS bridges are subject to in-plane longitudinal and

transverse tensions. The structural stiffness of CMS bridges is thus acquired by achieving

the bi-directional membrane behavior of membrane and shell structures.

The two types of composite membrane-based bridges presented in this work differ not

only in their structural behavior, as previously discussed, but also in their efficiency in

material use. As it is well known, efficient use of materials requires achieving not only

in—plane or membrane resultants but also a uniform stress distribution throughout the

structure. The distribution of stress demands in a generally anisotropic structure can be

represented by strength safety factors of the elements in a finite element model of the

structure. The strength safety factor of an element is evaluated by the stress index of that

element with respect to a specific failure criterion.

However, due to the different structural geometry, loading and material volume used

for CMB and CMS bridge systems, their structural response is different even for the same

limit state. Therefore, a concept of relative stress indices is introduced to evaluate and

compare the efficient use of the FRP membrane. Thus, the stress indices of individual

elements are normalized by the maximum stress index for the complete structure (clearly

applied to each structure separately). Table 7—28 summarizes the distribution of

normalizing stress indices defined by the Tsai-Wu failure theory for the FRP membranes

of all membrane-based bridges under the service limit state load demands. The structural
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fraction distributions, defined as the number of elements within a given relative index

range divided by the total number of elements in the structure, for all three bridges with

respect to the relative stress indices are compared in Figure 7—35. The average and the

standard deviations of the three curves are given in Table 7—29.

Table 7—28 Stress indices distribution of three bridges

CMB CMS - Model A CMS — Model B

Normalized Fraction Normalized Fraction Normalized Fraction

 

Stress # EL Stress # EL Stress # EL

Index 317;; Index :75}: Index ‘21:;

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

6.67% 0.00% 6.25% 26.73% 6.25% 22.16%

13.33% 0.33% 12.50% 28.52% 12.50% 30.73%

20.00% 1.31% 18.75% 20.41% 18.75% 22.47%

26.67% 2.47% 25.00% 10.70% 25.00% 13.69%

33.33% 6.78% 31.25% 5.83% 31.25% 4.27%

40.00% 19.75% 37.50% 2.27% 37.50% 2.97%

46.67% 24.08% 43.75% 1.70% 43.75% 1.77%

53.33% 19.31% 50.00% 1.94% 50.00% 1.14%

60.00% 14.14% 56.25% 1.22% 56.25% 0.31%

66.67% 3.81% 62.50% 0.19% 62.50% 0.09%

73.33% 3.33% 68.75% 0.06% 68.75% 0.03%

80.00% 2.42% 75.00% 0.13% 75.00% 0.06%

86.67% 1.67% 81.25% 0.00% 81.25% 0.00%

93.33% 0.56% 87.50% 0.06% 87.50% 0.06%

100.00% 0.06% 93.75% 0.00% 93.75% 0.19%

0.00% 100.00% 0.25% 100.00% 0.06%
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Figure 7—35 Structure material distribution of relative stress index

Table 7—29 Statistics of relative stress index distribution

 

 

Relative Stress Index CMB CMS —- Model A CMS - Model B

Average 50.07% 14.51% 17.77%

Standard deviation 13.1 1% 10.43% 11.06%

 

Evaluation of the data presented in Figure 7—35 and Table 7—29 indicates that a

higher average of relative stress index implies a higher average stress level for that

structure. Thus, CMS bridges have a higher strength reserve in terms of FRP laminate

capacity than CMB bridges of the same structural size and material use when the

structures are subjected to an equal loading. On the other hand, a smaller standard

deviation of the stress index distribution indicates a large portion of the FRP membrane is

located within a smaller range of the average stress index. From this point of view, CMS

bridges have a better structural performance of uniform stress distribution than CMB
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bridges. Therefore, it can be concluded that CMS bridges utilize the FRP material more

efficiently than CMB bridges.

7.3.2 Discussion of the objective function

As proved in Section 4.1.2, structural stiffness is maximized by achieving in-plane

structural response, which is implemented by minimizing the structural strain energy in

the integrated shape and laminate optimization approach. On the other hand, structural

stiffness can be also improved by adding material. Therefore, structural geometric

dimensions and the thickness of the FRP membrane were constrained to limit the use of

laminated FRP composites. However, it is difficult to distinguish the individual

contribution from structural shape and material quantity towards improved structural

stiffness by minirm'zing the structural strain energy. For example, strain energy can be

further decreased with increased FRP materials even though the structural response be

already in-plane dominant. This limitation of the objective function could result in an

over-designed optimum as shown in the post optimality analyses for CMB bridges (Table

7—12 and Table 7—14). The results from Section 7 .1.4 showed that the stress indices of

the optimal CMB bridges were far below the allowable stress levels for all limit states.

An over-bound constraint on the FRP membrane thickness is the most possible reason.

Therefore, an integrated Optimization employing a narrow-bound constraint on the

membrane thickness was investigated for the optimum design of CMB bridge.

The effort of a narrow bound constraint on the FRP membrane thickness was

implemented by evaluating the optimal design for the CMB bridge with the upper bound

on thickness reduced from 19.05 mm to 9.525 mm. The newly optimized CMB bridge
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(Model D) is summarized in Table 7—30. It can be noted that the FRP membrane for

Model D achieved essentially the same optimal geometric shape and the same optimal

laminate properties compared to the previously obtained Optimum designs (see

Table 7—3). Also, it is noted that the FRP membrane thickness still reached the upper

bound of the thickness constraint. Due to the reduced thickness (50% reduction) the

structural strain energy was almost doubled. However, this increase of the strain energy

does not indicate that the in-plane structural behavior was impaired since the FRP

membrane still achieved a close optimal geometric shape. In fact, the increase of the

strain energy is caused by the increase of in-plane stress resultants due to the thickness

reduction. Therefore, strain energy minimization with geometric constraints can not avoid

over-designed optimal structures although the structural stiffness is properly improved by

achieving membrane response.

Table 7—30 Optimal CMB bridge designs with different membrane thickness constraints
 

 

Optimal design Model A Model B Model C Model D

3m“ Energy 83.85 83.85 83.85 161.90
mm

{w W k W t} {1359.0, {1365.2, {1352.6, {1327.3,

1’ 2' 1’ 2’ 2184.4,984.3, 2184.4, 1022.4, 2222.4, 997.0, 2174.2, 990.6,

(mm) 1219.2,1905} 1219.2,1905} 1219.2,1905} 1219.2,9525}

{081,031, {081,031, {081,031, {081,031,

{V1A,V3A,V10,V3D} _1’ 1} -03, 07} 0.75, 1} 0.75, 1}
 

According to the optimization experience obtained above, optimal CMB bridges with

an average optimal geometry were investigated to study the structural response with

respect to the FRP membrane thickness (Table 7—31). It can be observed that, while the

structure remained under in-plane demands, reductions in membrane thickness increased
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the structural strain energy while the maximum deflection and stress index approached

the prescribed design criteria values, which is also indicative of a more efficient design.

Table 7—31 Structural response with different membrane thickness

Thickness Strain Energy Deflection Stress Index

 

 

T (m) SE (kN-mm) D (m) SI (%)

19.050 84.51 1.692 34.56

15.875 100.33 1.966 41.16

12.700 127.33 2.464 51.13

9.525 165.07 3.226 66.15

6.350 235.12 4.765 95.17
 

Several alternative objective functions that could seek to maximize structural stiffness

and minimize material use were investigated:

0 Objective function f1: Minimize (Strain Energy)><(Thickness)

0 Objective function f2: Minimize (Strain Energy) / (Stress Index)

0 Objective function f3: Minimize (Strain Energy)><(Thickness) / (Stress Index)

The performance of these objective functions evaluated with optimal CMB bridge

designs is summarized in Table 7—32 and graphically represented in Figure 7—36. It can

be seen that the proposed objective function (f3 = SE-T/SI) linearly decreases with

reduction of the membrane thickness. Conversely, as shown in Table 7-31, the decrease

in the membrane thickness leads to stresses and deflections that are closer to the design

criteria. Therefore, the objective of maximizing structural stiffness while minimizing the

material can be achieved by implementing a function that incorporates minimization of

the structural strain energy and the membrane thickness as well as maximization of stress

levels.
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Table 7—32 Evaluations of alternative objective functions

 

 

 

 

   

   

    

f1=SE~T f2=SElT f3=SE-T/SI

(kN-mmz) (kN-mm) (kN-mmz)

1610.0 244.5 4658.5

1592.7 243.8 3869.6

1617.1 249.0 3162.8

1572.3 249.5 2376.9

1493.0 247.1 1568.8

5000

- +1, = SE-T (kN-mmz)

‘ +12: SEISI (kN-mm)

: +f3=SE-T/Sl(kN-mm2)
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Figure 7—36 Performance of different objective functions for optimal CMB bridge

In addition, the optimum designs for FRP composite membrane-based bridges are

currently obtained under an optimization load case taking into account a single loading

effect and a single loading pattern. However, as evaluated in the post optimality analyses

of both bridges, the structural behavior of the Optimum designs can be significantly under

non-optimization loading effects and patterns. Therefore, multiple loading effects and

loading patterns should be considered simultaneously in a limit state in order to reduce
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significant variations in the response of an optimum design. This can be implemented by

a general optimization load case in which different loading effects and patterns are

combined with different weight factors. For example, the extreme loading effects of

maximum torsion, maximum mid-span bending and the normal load effect might be

considered with a uniform weight factor of 1/3 in the optimization load case for the

optimum design of CMB bridges. Similarly, the optimization load case for CMS bridges

might combine the loading patterns of uniform and spaced line loads with a weight factor

of 1/2.

Instead of using a general optimization load case, multiple loading effects and

patterns can be taken into account by using a multi-objective optimization approach.

Multi-objective optimization consists of defining different objective functions assigned

with weight factors with respect to their respective loading effects and patterns. The

optimum design that compromises among the different loading effects and patterns is

obtained by optimizing the multi—objective functions with respect to their own set of

constraints.

7.3.3 Selection of the design variables

It should be noted that the structural performance of CMS bridges (Section 7.2) will

vary with the position of the pier supports. Therefore, the pier position should be taken

into account as one of the geometric design variables in optimizing CMS bridges.

However, preliminary optimization efforts revealed that the objective function of

minimizing the strain energy varied discretely with respect to changes of the pier

positions. This resulted in premature optimization solutions at local optimum points.
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Thus, the pier positions of CMS bridges were currently fixed at constant locations

throughout the Optimization process.

Moreover, it should be noted that, for all of the optimization examples presented in

this dissertation, the geometric key points that determine the structural shape were

selected to achieve a higher computational efficiency. A structural shape is then

generated by interpolating the geometric coordinates of the key points. Therefore, the

structural shapes that can be obtained are limited by the number of geometric key points

and their degrees of freedom. For example, the number of geometric key points selected

for shape finding of FRP membranes in the bridge systems can only determine the

surfaces high up to a 2nd-order curvature by interpolation techniques. The accuracy of

optimal shapes obtained by structural shape optimization for free form finding can be

improved by increasing the number of the geometric key points. However, free form

finding is achieved at the cost of computational efforts due to the increase of design

variables. In addition, general free-forms, although efficient, may not be practically

feasible. The determination of the number of design variables therefore requires

considering the computational efforts, the accuracy of the optimal shape sought, and the

ease of implementation. Thus, in spite of the power provided by these mathematical

optimization tools, it is still the design’s judgment that dictates the successful design of

an efficient structural form.

7.4 Summary

In this chapter, the integrated shape and laminate optimization approach was applied

to the design and Optimization of two innovative and newly proposed FRP composite
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membrane-based bridge systems. The characteristic studies for both bridge systems show

that the high in-plane stiffness and strength characteristics of FRP laminates are utilized

to maximize the performance and efficiency of the bridge systems due to the

effectiveness provided by shape resistant membrane structures. Furthermore, based on the

observation of over-designed optimal CMB bridges, several alternative objective

functions, in addition to the minimization of structural strain energy, were investigated to

achieve in-plane structural response with minimum material use. The objective function

of minimizing the strain energy and the membrane thickness while maximizing the

membrane stress level seems to have the best performance for CMB bridges and is

thought to be a viable objective function for maximizing structural stiffness with

minimum material use. The use of objective functions that take into account multiple

loading effects and patterns were discussed, and the importance behind the selection of

geometric design variables was noted to place the current work and its results into

context.
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8 Conclusions and Future Research Needs

8.1 Conclusions

The presented integrated Optimization approach offers a procedure for simultaneously

finding the optimal shape and Optimal laminate design of FRP structures. The integrated

approach was investigated by analytical studies on the development of FRP shell

structures that combine FRP laminates and shape resistant structures for improved FRP

structural designs. The approach provides an efficient tool to determine maximum

stiffness designs by Optimizing not only the geometry of the membrane or shell but also

the material properties and the composite laminate design.

The integrated optimization approach can also serve as an analytical tool to aid the

rational implementation of laminated FRP composites in civil infrastructure by

developing innovative design concepts. The developed concepts were that of membrane-

based FRP composite bridge systems. The bridge systems consist of a shape-and-material

optimized laminated FRP membranes that carry the in-plane tensile and shear forces

while using a conventional reinforced concrete slab or FRP deck system to provide the

live load transfer. The dual-level optimization approach can thus support the analytical

studies required for initial development of innovative systems that use FRP composites in

their inherent behavioral characteristics for new high-performance structures.

During the efforts of integrated shape and material optimization, it was observed that

an over-bounded constraint of material use can lead to an over-designed optimum

achieved for maximizing structural stiffness. Several feasible objective functions using

combination of the structural strain energy, the membrane thickness, and stresses were

investigated. The objective function of minimizing the strain energy and the membrane
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thickness while maximizing the membrane stress level seems to have the best

performance and is thought to be a viable objective function for maximizing structural

stiffness with minimum material use.

The work has provided insight to the concept that FRP laminates can be used with

higher efficiency in new structural systems as long as their advantageous properties of

directional strength, light weight, and tailored properties are properly considered in the

design process.

8.2 Future research needs

8.2.1 About the integrated approach of shape and laminate optimization

As it is well known, shape-resistant structures, such as thin shells subject to

compression forces, are sensitive to buckling. While not considered in the presented

work, structural buckling performance can be easily included in the proposed integrated

optimization procedure. This can be done by two distinct approaches. One is to consider a

determined buckling capacity as a constraint in the shape and laminate Optimization

procedure, thus achieving the Optimization objective of maximum stiffness while

satisfying the required buckling resistance. Another approach is to search for the

maximum buckling capacity along with maximum stiffness in a multi-objective

optimization process, where the different design objectives can be weighted to maximize

structural performance. Therefore, the presented integrated approach can further evolve

into a multi-objective decoupled approach for both shape and laminate optimization of

FRP lightweight structures by adding appropriate objectives and constraint functions.
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A gradient algorithm is used in the first step of the integrated approach to achieve the

objective of maximizing structural stiffness. Due to the expectation of unaffordable

computation demands by the large-scale optimizations, the numerical technique of finite

difference methods was employed to supply the required gradients information to

advance the gradient algorithm. The main disadvantage of calculating gradients by finite

difference methods is the uncertainty in the choice of a perturbation step size. A

perturbation that is either too large or too small will result in inaccurate gradient

evaluations and misguide the search direction of the algorithm. The techniques from

analytical methods have a better performance, in terms of robustness and accuracy, to

derive gradient information than finite difference methods. However, the differentiation

of objective and constraint functions in analytical methods requires the structural stiffness

matrix, which will change completely even for small shape changes. This makes gradient

derivation computationally costly. Therefore, future reSearch is needed to provide the

proposed integrated approach with an efficient and accurate technique for sensitivity

analyses.

In the current approach, the shape and laminate optimization processes were

decoupled into a two-step procedure, in which laminate designs in the second-step

optimization are based on the lamination parameters from the first step. This requires that

feasible lamination parameters be obtained during the first-step optimization. Thus, the

constrained relationship between the lamination parameters is very important and has to

be solved for the first-step optimization. At present, only the constraints between the

essential lamination parameters, {V,A, V3A, V10, V30}, required by the current approach

were numerically established (with certain assumptions) and applied in the optimization
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process. However, this might not be enough for general applications. A competitive

approach that can avoid the formulation of explicit constraints and implicitly satisfy the

feasibility of laminate designs is to choose fiber orientations as material design variables.

For this alternative approach, the integrated optimization has to be implemented with

genetic algorithms in which geometric and material design variables are both treated as

discrete variables. Although the volume of computations needed for sensitivity analyses

can be avoided by using genetic algorithms, the computational effort will probably not be

reduced because of the random search approach of genetic algorithms. The formulation

of this alternative approach and its computational efficiency can maximize the broad

implementation of the developed method.

8.2.2 About applications of the integrated approach

Although not explored in the current research effort, the integrated approach can be

applied for the optimum design of different lightweight structures seeking to maximize

structural stiffness, such as domes and membrane roof systems. Furthermore, with

appropriate formulation of objective and constraint functions, the integrated optimization

approach can be employed for many diverse applications. For example, a potential

application is vibration tuning of structures. Structures subject to dynamic forces or

excitation at their supports might need to be designed to avoid resonance or other

negative vibration related problems. By relating the objective function to the fundamental

vibration frequency, the integrated approach can yield optimum designs of structures that

can avoid vibration problems.
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The concept employed in the current approach to consider continuous and discrete

design variables separately in a two decoupled procedure can also be applied to other

optimization applications, for example, for smart structures made using piezoelectric

materials. Piezoelectric materials are the materials that can convert electric energy into

mechanical energy and vice versa. They produce an electrical response when

mechanically stressed (sensors) and high motion can be obtained when an electric field is

applied to them (actuators). Composite structures integrated with piezoelectric sensors

and actuators offer potential benefits in a wide range of engineering applications such as

vibration suppression and shape control. The development and efficiency of this type of

structures rely on optimizing the location of the actuators and sensors that control the

behavior of adaptive structures. This type of optimization applications involves

continuous design variables of structural geometric shapes and discrete design variables

that define the position of actuators and sensors. Therefore, the current integrated

approach can be directly applied to investigate this type of optimization problems.

8.2.3 About the engineering and construction of optimal FRP composite structures

It needs to be noted that the fiber orientations of the optimal laminates achieved in the

previous optimization examples are based on the local structural coordinates of the finite

elements describing the FRP membrane, which vary with the normal of the membrane

surface. Therefore, the construction of an FRP membrane with a laminate design in

which the layout is specified based on local coordinates requires further study.

In addition, the construction of bridges like those presented in this work requires

providing an effective membrane/slab connection to assure composite behavior between
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the FRP membrane and the concrete slab, or the FRP panel, of the bridge system.

Particularly for CMB bridges, shear force resistance is required at the membrane/slab

interface under flexural actions. A study on possible forms Of shear connectors is thus

needed to allow implementation for the developed CMB bridge systems. Finally, post

optimality studies on the response of optimal CMS bridges indicated that the distribution

of in-plane stresses depends on the form and spacing of diaphragms, which affect the

efficiency of load transfer to the FRP membrane. A future study is thus required to

investigate geometries and optimal placement of diaphragms for CMS bridges.
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