
.1 v1 ' '
“559‘

4
.
?

;

L
»

x
r
E

.
n
?

L a
:

g
1
%
.

T
a
r
t
a
n
.
&

E
a
!

rh
i
;

3
.

#
2
.
?
?
?

.
.
L

‘
3
3
.

.
.

.
. .

i
i
3
.
:

a
:

._
.

2
1
.
“
.

u
.
.
.

.
v

.
..

.
F
:

I
.

.
"
“
2
2
3
3

:
_

.
.

.
r
v
:

L

h

gum
- N :24

‘21.

L. ‘~.

This is to certify that the

dissertation entitled

Evolutionary Optimization and Ensemble Techniques for

Data Mining and Pattern Recognition

presented by

Alexander P. Topchy

has been accepted towards fulfillment

of the requirements for the

Doctoral degree in Computer Science

affl
V WajoVProfessor’s Signature

5/{1/057

Date

MSU is an Affirmative Action/Equal Opportunity Institution

.
o
-
g
-
o
-
o
-
-
o
-
I
-
o
-
u
-
n
-
c
-
u
-
o
u
o
—
u
-
u
-
o
-
o
-
o
-
.
-
o
-
n
-
n
—
o
—
g
—
n
-
n
-
-
-
a
_
-
—
-
—
-
-
—
.
_
-
_
.
_
-
—
4
_
-
_
-
_
-
-
.
-
_
-
4

4

.UBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c:/ClRC/DateDue.p65-p.15

EVOLUTIONARY OPTIMIZATION AND ENSEMBLE TECHNIQUES

FOR DATA MINING AND PATTERN RECOGNITION

By

Alexander P. Topchy

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2004

ABSTRACT

EVOLUTIONARY OPTIMIZATION AND ENSEMBLE TECHNIQUES

FOR DATA MINING AND PATTERN RECOGNITION

By

Alexander P. Topchy

This dissertation addresses fundamental data mining and pattern recognition problems —

feature extraction, modeling, and data clustering — through evolutionary computation and

ensemble-based approaches.

We offer feature extraction methods for improved pattern classification using genetic

algorithms. New features are synthesized by merging the values of original variables

during the search process. The genetic search of (sub-) optimal combinations of values is

performed using a graph-based encoding of candidate solutions. A compact solution

representation with minimal redundancy is used for a wide class of grouping problems,

including clustering of variable values. Genetic value clustering is applied to text

categonzation, DNA-based assignments of individuals in population genetics and

parametric learning of Bayesian network classifiers. It is shown that such feature

extraction results in better predictive accuracy of classification decisions.

We develop genetic programming algorithms for modeling input-output mappings of

continuous variables that incorporates dynamical fitting of free parameters of evolved

models. Traditional genetic programming is extended by gradient descent optimization of

leaf coefficients of tree—like programs during the evolutionary search that is made

possible using algorithmic differentiation. Experimental results show significant

improvement in both computational requirements and modeling accuracy for a set of

symbolic regression problems.

Ensembles of partitions of data sets are studied in two respects: combination of

multiple clusterings and generation of clusterings for an ensemble. We develop two

efficient consensus functions for finding a combined partition of good quality. The first

consensus function uses an information-theoretic principle based on maximal generalized

mutual information. The second function finds a consensus clustering by estimating a

probabilistic mixture model from the observed ensemble. It is demonstrated that the

ensemble’s partitions can be generated by weak clustering algorithms, in particular, by

clustering in random low-dimensional subspaces of the original feature space.

Experiments indicate that ensemble of an weak partitions can be more accurate than a

single sophisticated clustering algorithm. .Finally, we consider how the partition

generation process can be made adaptable to provide better decisions for the patterns

located near the inter-cluster boundaries.

Dedicated to my parents, Pavel Topchy and Tamara Zemel

Acknowledgements

The years at MSU have been a fantastic experience and it is a joy to remember and to

thank my teachers and colleagues whose influence contributed to this thesis.

First and foremost, I would like to thank my advisor, Bill Punch, for his

extraordinary support and patience. His fruitful suggestions and our discussions

contributed enormously to this work. From the first time I stepped in the door of

Computer Science Department, until now, Bill has allowed me freedom to explore my

own directions in research. I have come to appreciate the wisdom of his way that has

guided me safely through the process.

I owe many inspirational ideas to Anil Jain, who has been like a second advisor to

me. It was a privilege to be a student in his pattern recognition classes, which defined my

interest to the field for many years to come. The results of this thesis would be impossible

without Anil Jain’s motivation and without research assistantship he kindly provided in

the past year.

Kim Scribner fostered my interest in genetic data analysis. I deeply appreciate his

enthusiasm for unorthodox approaches, the high standards he set, the genuinely positive

attitude to science and to my research progress. He supported me materially and morally

for many years for what I am very grateful.

I thank Erik Goodman for asking just the right questions to improve the work, for

providing valuable feedback on my projects at all times, for unforgettable GARAGe

group meetings. Most importantly, thanks to his help with organizing and hosting my

visit to MSU in the summer of 1997, I became determined to pursue the study at MSU, in

particular, in GARAGE group, which eventually became my alma mater.

vi

TABLE OF CONTENTS

LIST OF TABLESX

LIST OF FIGURES .. X11

1 INTRODUCTION ... 1

1.1 MOTIVATION, GOALS, PROBLEM DOMAINS ... 2

1.2 CONTRIBUTIONS OF THE THESIS ... 4

2 BACKGROUND ON DIMENSIONALITY REDUCTION 11

2.1 OPTIMAL SUBSET SEARCH .. 15

2.2 HEURISTIC SEARCH... 16

2.3 FILTER METHODS ... 18

2.4 WRAPPER METHODS ... 19

2.5 EVOLUTIONARY FEATURE SELECTION .. 22

3 GENETIC VALUE CLUSTERING .. 25

3.1 CLUSTERING IN NA'I'VE BAYES MODEL .. 25

3.2 BACKGROUND ON VALUE ABSTRACTION AND CLUSTERING 27

3.3 CLUSTER REPRESENTATION IN GENETIC ALGORITHM ... 30

3.4 APPLICATION DOMAINS FOR VALUE CLUSTERING ... 39

3.5 CLOSED FORM ANALYSIS OF VALUE CLUSTERING ... 44

vii

3.6 EXPERIMENTAL STUDY .. 55

3.6.1 Genetic algorithm details .. 56

3.6.2 Experimental results .. 57

3.7 CONCLUSIONS .. 65

4 GENETIC PROGRAMMING WITH LOCAL LEARNING 66

4.1 LAMARCKIAN VERSUS BALDWINIAN STRATEGY IN GP .. 70

4.2 HYBRID GENETIC PROGRAMMING ... 73

4.3 LEARNING LEAF COEFFICIENTS ... 74

4.4 PROGRAM DIFFERENTIATION IN DETAIL .. 75

4.5 LEARNING RATE AND NUMBER OF STEPS ... 81

4.6 EXPERIMENTAL DESIGN ... 83

4.7 EXPERIMENTAL RESULTS ... ~...... 85

4.8 CONCLUSIONS .. 91

5 CLUSTERING ENSEMBLES 92

5.1 RELATED WORK .. 96

5.2 REPRESENTATION OF MULTIPLE PARTITIONS ... 101

5.3 A MIXTURE MODEL OF CONSENSUS .. 103

5.4 INFORMATION-THEORETIC CONSENSUS OF CLUSTERINGS 111

5.5 COMBINATION OF WEAK CLUSTERINGS ... 1 14

5.5.1 Splitting by random hyperplanes ... 115

5.5.2 Combination of clusterings in random subspaces .. 119

viii

5.6 EMPIRICAL STUDY 122

5.6.1 Datasets 122

5.6.2 Selection of parameters and algorithms 123

5.6.3 Experiments with complete Partitions 124

5.6.4 Experiments with incomplete partitions 126

5.6.5 Results of random subspaces algorithm 127

5.6.6 Results of random splitting algorithm 138

5.7 ADAPTIVE CLUSTERING ENSFMRI Fs 140

5.7.1 Adaptive sampling and clustering 141

5.7.2 Empirical study of adaptive ensembles 146

5.8 CONCLUSIONS 150

6 SUMMARY 152

APPENDIX. EM ALGORITHM FOR CONSENSUS SOLUTION................ . 155

BIBLIOGRAPHY 159

LIST OF TABLES

3.1 Comparison of test accuracy for the best solutions found by GA value clustering

and best-first hillclimbing with “naive“ non-clustered solution on “acquisitions” versus

“earnings” classification problem .. 58

3.2 Comparison of test accuracy for the best solutions found by GA value clustering

and hillclimbing with “naive“ non-clustered solution on “silver” and “gold” versus “gas”

and “nat-gas” topics classification problem ... 59

3.3 Characteristics of the datasets used in BNC experiments .. 62

3.4 Classification accuracy of the compared classifiers over test sets (no smoothing). 64

3.5 Classification accuracy on test sets with classifier smoothing ((1:1/2) 64

4.1 Performance Comparison of Hybrid and Regular GP. All data collected after 30000

function eValuations and averaged over 10 experiments .. 86

4.2 Effects of local learning ,... 88

5.1 Clustering ensemble and consensus solution ... 107

5.2 Characteristics of the data sets ... 122

5.3 Mean error rate (%) for the “Galaxy” dataset .. 127

5.4 Mean error rate (%) for the “Half-rings” ... 128

5.5 Mean error rate (%) for the “Biochemistry” dataset .. 129

5.6 Mean error rate (%) for the “2-spirals” .. 129

5.7 Mean error rate (%) for the Iris dataset .. 130

5.8 Clustering error rate of EM algorithm as a function of the number of missing labels

for the large datasets ... 129

5.9 “2 Spirals” data experiments. Average error rate (% over 20 runs) of clustering

combination using the random l—d projections algorithm with different number of

components in combination H, different resolutions of components k and seven types of

consensus functions .. 134

5.10 Average error rate (%, over 20 runs) of combination clustering using random

projections algorithm on “Galaxy/star” data set ... 139

5.11 Consistent re-labeling of 4 partitions ... 144

xi

LIST OF FIGURES

2.1. Feature extraction wrapper-type approach with GA search engine 20

3.1. Regular graph-based clustering GA selects N genes from the total of N2 edges,

while compact encoding needs only N-l from N (N—l)/2 edges. GA search space size is

reduced to N! from N”... 32

3.2. Ratio of GA search space size to the true number of distinct partitions of objects on

logarithmic scale ... 33

3.3. Sample chromosomes and corresponding clusterings are shown by connected

subgraphs for regular and compact encodings .. 34

3.4. Ratio of GA search space sizes in non-compact and compact encoding. 35

3.5. An example of encoding alphabets at each chromosome position in compact and

equalized compact graph-based representations of a set of 6 items 38

3.6. Reduction of search space size in equalized compact encoding as compared to

regular graph~based encoding. .. 38

3.7. TAN structure with four attributes. Augmented edges are Shown among the attribute

nodes. .. 42

3.8. Conditional probability table P(X,Y|C=c) before value clustering and after the

merging of values {3,4} of X variable and values {2, 3} of Y variable 43

3.9. Accuracy gain AE due to merging states {1,2} for sample size 2N=10: a) if {p1, p2:

p1}, {q1, q2= qr}, b) if {p1, p2: 4/5 191}, {q1,q2= 5/4 ql} ... 49

3.10. Accuracy gain AB due to merging states { 1,2} for sample size 2N=20: a) if {p1, p2:

p1}, {q1, (12: q] }, b) if {p1, p2: 4/5 p1},{q1, q2= 5/4 (1,} ... 50

xii

3.11. Accuracy gain AE due to merging states {1,2} for sample size 2N=30: a) if {p1, p2:

p1},{q1, 612: q] }, b) If {p1,p2= 4/5 p1},IQ1, q2= 5/4 qr} ... 51

3.12. Accuracy gain AE due to merging states { 1,2} for sample size 2N=10: a) {p1, p2:

2/3p1},{q1, q2= 3/2 ql}b){p1,p2=1/2p1}, {q|, q2= 2 QII .. 52

3.13. Accuracy gain AE due to merging states {1,2} for sample size 2N=20: a) {p1, p2:

2/3p1},{q1, q2= 3/2 qr} b) {p1,p2= 1/2p1}, {(11, q2= 2 qt} .. 53

3.14. Accuracy gain AE due to merging states {1,2} for sample size 2N=30: a) {p}, 1);;

2/3p1},{q1, Q2: 3/2 q1}b){p1,p2=1/2p1},{q1, (12: 2 £11} .. 54

3.15. Underlying dependencies between the variables in the datasets “weak”, “moderate”

and “strong”. ... 64

4.1. Sample tree with a set of random constants. In hybrid GP all the leaf coefficients are

subjected to training. ... 68

4.2. Example of a function of 3 variables drawn as a tree. C1 and C2 are the leaf

coefficients... ... 76

4.3. Example of a function for algorithmic differentiation with respect to a parameter c.

... 78

4.4. Example of a function for algorithmic differentiation with respect to 2 parameters C;

and cz ... 80

4.5. Local learning strongly affects fitness of individuals. Typical learning progress is

illustrated using individuals from test problem f2 ... 82

4.6. Comparison of selection process in HGP and GP. Local learning changes outcome

of some tournaments used to select a mating pool. .. 87

4.7: Typical dynamic of number of terminals (numeric coefficients) used by the best

program as a function of GP generations (for the test function f1) 88

4.8: Surface fitting test problems f1, f2 and respective learning curves. 89

xiii

4.9 Surface fitting test problems f3, f4, f5 and respective learning curves

5.1: Four possible partitions of 12 data points into 2 clusters. Different partitions use

different sets of labels. ..

5.2 Clustering by a random hyperplane: (a) An example of splitting 2-spiral data set b

random line. Points on the same side of the line are in the same cluster. (b) Probability

Splitting two one-dimensional objects for different number of random thresholds as a

function of distance between objects. ...

5.3 Dependence of distances derived from the co-association values vs. the actual

Euclidean distance x for each possible pair of objects in his data. Co-association matri

were computed for different numbers of hyperplanes r =1 ,2,3,4

5.4. Projecting data on a random line: (a) A sample data with two identifiable natural

clusters and a line randomly selected for projection. (b) Histogram of the distribution c

points resulting from data projection onto a random line ...

5.5 “2 spirals” and “Half—rings” datasets difficult for any centroid based clustering

algorithms. ..‘ ..

5.6 Consensus clustering error rate as a function of the number of missing labels in th

ensemble for the his dataset, H=5, k=3. ...

5.7: Consensus error as a function of the number of clusters in the contributing partiti

for Galaxy data and ensemble size H220...

5.8. Performance of random subspaces algorithm on his data. (a) Number of errors b3

the combination of k-means partitions (k=4) in multidimensional space and projected j

subspaces. Average—link consensus function was used. (b) Accuracy of projection

algorithm as a function of the number of components and the number of clusters k in 6

component. ..

5.9. Dependence of accuracy of the projection algorithm on the type of consensus

function for his data set. k=3. ...

xiv

5.10. Number of misassigned points by random hyperplanes algorithm in clustering o

spiral” dataset: (a) for different number of hyperplanes (b) for different consensus

functions ..

5.11. Two possible decision boundaries for a 2-cluster data set. Sampling probabilitie

data points are indicated by gray level intensity at different iterations (to <t1<t2) of th

adaptive sampling. True components in the 2-class mixture are shown as circles and

triangles. ..

5.12. Clustering accuracy for ensembles with adaptive and non-adaptive sampling

mechanisms as a function of ensemble size for some data sets and selected consensus

functions..

XV

Chapter 1

Introduction

Contemporary data mining research stems from the three fundamental information—

processing tasks: classification, clustering and prediction. These problems are closely

related in their mathematical formulations as well as their methods for solving those

tasks. Knowledge domains shape unique characteristics of each particular problem, but

underlying principles of Solution and decision-making tools often remain the same.

Mathematical optimization is one of the ubiquitous methods used for such information

processing. Numerical and combinatorial optimization is essential for achievements in

applied data mining, such as genetic data analysis, e-commerce knowledge extraction, or

autonomous robot navigation. One such contribution to data mining has been made by

evolutionary computations, as reviewed recently in [42]. Evolutionary search has grown

to become a discipline in its own right with major interactions from system identification,

Statistical pattern recognition, design, pure discrete mathematics, and many other fields.

New ensemble methods have recently become important not only in traditional

statistical pattern recognition [28], but in the emerging area of distributed data mining

[101][67]. Multiple classifiers (ensembles of), clusterings and regression solutions can be

combined to contribute to an improved overall consensus solution.

Both evolutionary and ensemble methods operate with multiple solutions for a given

problem, though in different ways. In evolutionary computation, we rely on information

exchange between candidate solutions to find a (sub-) optimal solution as a result of a

stochastic dynamic process. In ensembles of classifiers/clusterings, the ultimate solution

is produced by a fixed known consensus function. Yet all such methods implicitly or

explicitly seek to combine strengths and benefits of individual solutions.

1.1 Motivation, goals, problem domains

This dissertation addresses three problems, which are central to modern data mining:

1. Finding the best subset of Variables relevant to a computational model. In general,

new variables can be synthesized from existing data features. Generalization or

predictive classification accuracy of the model is the main evaluation criterion in

feature selection and extraction.

2. Data model identification. Prediction of output variables is based on learning of

an unknown real-valued function for a given training sample and a set of

elementary functional components.

3. Data clustering. Partitioning of data into meaningful groups of data points.

Clustering criteria use available data features and a variety of prior knowledge

about data distribution properties.

Generally, these problems are known to be NP-hard. Therefore, solutions are 30!

using heuristics in combination with powerful search methods. Despite signifi

progress, every domain problem has its own set of difficulties that are not

satisfactorily resolved. This dissertation work contributes to data mining solut:

generally and more narrowly concentrates on the following central issues of the at

mentioned tasks:

1. In classification: evolutionary feature extraction and dimensionality reduc

based on genetic search of optimal feature value combinations. Accuracy-dn'

construction of new features using intelligent value clustering.

2. In model identification: fast genetic programming for data-driven inductior

predictive models with real-valued input-output mappings.

3. In clustering: generic and robust methods to combine multiple clusterings of

including the use of novel fast algorithms for consensus clustering as we]

inexpensive and weak clustering components.

The following introduces these tasks and highlights the role of evolutionary and enser

computations in their solutions.

The data models that we consider are used for classification and predic

systems. The fidelity of the model can be judged by its accuracy or other related mea:

Our ultimate goal is to improve the predictive accuracy of these computational model

The abundance of features is characteristic of practical tasks such as ir.

recognition or text classification. The measurement complexity and associated costs 1

researchers to seek a balance between representing all the data and representing 0an

data necessary to solve the problem. Other constraints exist as well, such as the fact

the extracted data must be comprehensible or compact. Statistical pattern recognition a

machine learning often define these problems as feature subset selection and featt

extraction, where features refer to the components of the pattern measurement vect

The process of feature selection/extraction is also known as dimensionality reductir

Since the dimensionality of the pattern vector is reduced. The result of dimensional

reduction could be much richer than simplified data and knowledge representation —

can also help diminish the effect of the “curse of dimensionality” [28][133]. The curse

dimensionality phenomenon manifests itself in decreasing classification accuracy as 1

number of features grows beyond a certain limit. Such decreasing accuracy occurs wh

parameters of the model are estimated from the data. Estimation errors will inevital

degrade the accuracy of the model derived from fixed training samples. It is important

notethat both the number of features and the number of values assumed by e2

individual feature are problematic. Thus this total number of values in the input spa

called measurement complexity, is the crux issue. Overcoming the curse

dimensionality by lowering the measurement complexity is pivotal to this Study.

general, appropriate input transformation may include the elimination of some featu

altogether or only some of the values or both.

1.2 Contributions of the thesis

AS the first main contribution of the dissertation, we propose a family of algorithms

merging both values and features. As such, this work is a kind of feature extracti

While numerous approaches for dimensionality reduction are known, we focus on

called wrapper-style algorithms. Wrapper-Style feature extraction evaluates candidate

solutions while simultaneously doing both model induction and accuracy estimation. It is

more computationally expensive than filter-style extraction or data pre-processing but

potentially more accurate, as we detail below. The novelty of the approach is in the use of

a genetic algorithm for clustering the values of the variables. In contrast, traditional

genetic algorithm approaches to data mining operate only on the features as a whole by

including/excluding them from the feature set. We take that work a step further and

organize search in the entire input Space. The role of various search criteria is analyzed

and compared against filter-type feature extraction, which does not use an explicit data

model, but instead relies only on information-theoretic methods, such as maximization of

mutual information between the input and target variables.

Special attention is paid to the design of the genetic algorithm for value

clustering. Since variables assume nominal values, the model search is effectively

reduced to a grouping problem. This problem is known to be NP-hard, and genetic

algorithms often outperform other grouping heuristics developed for bin packing, graph

coloring, load balancing, etc. [32]. New genetic representations are designed for the

studied family of models.

We analyze the performance of the value clustering algorithms in three application

domains:

1. Text categorization. Classification of text using a naive Bayes classifier and a

“bag of words” data model.

2. Bayesian network induction. Improving the accuracy of a Bayesian network

classifier by learning the conditional probability tables with local structure.

3. Population genetics. Genotype—based assignment of individuals to populations of

origin. The data model is an extension of a multinomial model with multiple

features and certain value constraints within the features. The allelic values of

multilocus individuals are subjected to merging.

The second main problem studied in the thesis is the prediction of real-valued

target variables and model identification using genetic programming (GP) algorithms. In

data mining, prediction and model identification refer to what is known in control

engineering as system identification, or in statistics as curve fitting and regression. The

goal is to establish the relationship between input and output (target) variables. In all

regards it is a centuries-old “black box” approach, but with one major distinction — the

structure of input-output mapping is not fixed, but rather learned from the data. Thus,

model induction is both structural and parametric in nature, since both functional form

and parameters are adjusted simultaneously. This approach is well known in the neural

network community, e.g. as cascade-correlation networks [33], and as structural learning

supported by evolutionary search [5]. At the same time, genetic programming [75] has

revolutionized the way in which the models are built in many application domains

Genetic programming is capable of operating with arbitrary functional components anc

caning out non-random data-driven search. Numerous volumes [76][77] document the

exceptional ability of GP in finding highly non-trivial and effective solutions to a wide

variety of problems.

However, GP also has very high computational requirements. GP search ofter

evaluates tens of millions of candidate solutions against given sample data. Even thougl

GP excels in obtaining good model structures, it also has other unwanted characteris

such as a relatively poor ability to find the numerical values of parameters. In this the

we offer a new approach that allows significant improvement in the accuracy of lear

models as well as in speed-up of the GP learning process. The proposed approac?

based on the algorithmic differentiation of GP programs during runs. Algorith

differentiation achieves very high precision for parametric values, which are ‘ephem

random constants’ in GP terminology. The associated computational cost is relatively

and is compensated by significant gains from overall reduction in training time. A gen

framework for tree-structured models is introduced. An analysis of data fitting accur:

learning dynamics and complexity of the resulting structures is performed. We relate

approach with other hybrid “memetic” algorithms [111] utilizing both global and le

learning in either Lamarckian or Baldwinian paradigm [134].

The third main part of the work focuses on clustering. While numerous cluster

algorithms are available, they tend to be either non-generic or not very robust. This aS]

of the research contributes to a new area of clustering analysis, namely, the fusion of

results from multiple clustering algorithms. In contrast to supervised classificat

clustering is an inherently ill-posed problem, whose solution violates at least one of

common assumptions about either scale-invariance, richness, or cluster consistency [‘

Different clustering solutions may seem equally plausible without a priori knowle

about the underlying data distributions. The exploratory nature of clustering t2

demands efficient methods that would benefit from combining the strengths of m

individual clustering algorithms. This is the focus of research on clustering enseml:

seeking a combination of multiple partitions that provides improved overall clusterin;

the given data. Clustering ensembles can go beyond what is typically achieved by

single clustering algorithm in several respects:

. Robustness. Better average performance across the domains and datasets.

. Novelty. Finding a combined solution unattainable by any single clustering algorithi

I Stability and confidence estimation. Clustering solutions with lower sensitivity

noise, outliers or sampling variations. Clustering uncertainty can be assessed fre

ensemble distributions.

I Parallelization and Scalability. Parallel clustering of data subsets with subseque

combination of results. Ability to integrate solutions from multiple distributed soure

of data or attributes (features).

A data set can be clustered in many ways, depending on the algorithm employ

and/or its initialization and parameter settings. Can multiple clusterings be combined

that the final partitioning of data improves clustering accuracy? The answer depends

the quality of elementary constituents of the combination as well as particulars of 1

fusion method. This study departs from a traditional combination approach in seve

respects.

First, we develop and study combinations of partitions produced by weak a

extremely weak clustering algorithms that use data projections and random or

Traditional methods rely on clustering algorithms that are powerful on their own, and

such are computationally involved. We argue that it is possible to generate the partitic

using weak, but less expensive, clustering algorithms and still achieve comparable

better performance. Certainly, the key motivation is that the synergy of many su

components will compensate for any individual weaknesses.

Second, we study two clustering combination methods: (i) using a generalizee

mutual information criterion, and (ii) based on mixture model estimation via the ElV.

algorithm. AS a result, we show that the consensus function can be related to the classica

intra-class variance criterion using the generalized entropy and mutual informatior

definition. We propose a probabilistic model of consensus using a finite mixture 0

multinomial distributions in a space of clusterings. A combined partition is found as :

solution to the corresponding maximum likelihood problem using the EM algorithm. We

also analyze clustering ensembles with incomplete information and the effect of missing

cluster labels on the quality of overall consensus.

Third, we propose and evaluate a framework of adaptive clustering ensembles

which generate the partitions using dynamically and non-independently sampled dat:

points. Inspired by the success of supervised boosting algorithms, we devise an adaptivr

scheme for integration of multiple non-independent clusterings. Individual partitions ii

the ensemble are sequentially generated by clustering specially selected subsamples o

the given data set. The sampling probability for each data point dynamically depends or

the consistency of its previous assignments in the ensemble. New subsamples are draw

to increasingly focus on the problematic regions of the input feature space. A measure 0

a data point’s clustering consistency is defined to guide this adaptation.

We analyze clustering combination accuracy as a function of parameters, whicl

control the power and resolution of elementary partitions as well as the leamin

dynamics versus the number of clusterings involved. A simple explanatory model i

offered for behavior of a combination of one-dimensional projection clusterings and

combination of partitions by random cuts. We also introduce a unified representation fc

combining multiple clusterings and formulate the corresponding categorical clustering

problem. A weak clustering is defined via a mutual information distance metric.

10

Chapter 2

Background on dimensionality reduction

Data mining is a science of discovering knowledge in the form of non-superfluous

relationships and patterns in gathered data. Effectively it amounts to building a model of

target variables based on other variables. This modeling is often formulated as a

prediction, regression or classification problem. The complexity of the data can be

enormous, with millions of entries and thousands of dimensions or parameters, both

continuous and categorical. The results can be represented in many ways. The model

could consist of explicit rules or be a black box model — e.g., a neural network. In either

case the usefulness of results strongly depends on the features in use. Potential benefits of

reducing the data dimensions include:

1. Improving the modeling (classification/prediction) accuracy.

2. Removing redundant and non-informative features.

3. Simplification of the developed model.

4. Learning (training) becomes easier and less time consuming.

5. Lower measurements cost.

6. Reliability of the parameter estimation improves.

7. Modeling and inference are faster with fewer parameters

11

Use of unnecessary features may not be harmless for classification accuracy for several

reasons. First, some features do not have any information about the classes of interest.

This happens if the joint probability density of feature variable x and class label variable

to factorizes:

P..-..(X,w) —> p.(x)p.,,(w)

Observation of variable x does not help to infer the value of (I) because they are

statistically independent. Second, the accuracy of some classifiers may suffer if some

input features x and y are highly correlated:

ICorr(x,y)| —> 1

Any classification method relying on feature independence, e.g. maximum likelihood

assignment or nai've (simple) Bayes classifier, can potentially perform worse when both x

and y are included.

Let us review important dimensionality reduction algorithms to provide a background

for our own developments in the field. The terminology and notation used follows

classical texts such as [26][64][28]. We mostly use the term feature to denote the

component of a measurement vector, as commonly accepted in statistical pattem

recognition. Attribute, variable, parameter and field are other equivalent terms and can be

used in context of a Specific application. Feature selection algorithms are concerned with

finding the best subset among existing features according to some criterion. Feature

extraction algorithms usually synthesize a set of “new” features. Suppose there are D

measurements representing the pattern and Y is a complete set of features:

Y={y, |i=1,2,...,D}

l2

Feature selection is concerned with finding the subset X that maximizes chosen criterion

function J(-):

J(X)= max J(Z)

zQY

X = {x, |i=1,2,...,d}

The number of features d in subset X can be fixed in advance or found during the search.

Feature selection either accepts a feature as is, or not at all. In contrast, feature extraction

transforms existing variables Y into the new variables X:

X = W(Y)

The dimensionality of the transformed set X is generally lower than that of the original

feature space. Feature extraction transformation W(Y) is chosen to optimize an objective

function J(-):

J(W(Y)) = max J(W '(Y))
W'

Another taxonomy of methods is based on the types of criteria used for

optimization. In one category, the dimensionality reduction is performed independently

of the subsequent classification. The relevance of candidate feature set or transformation

is estimated without running the actual model but by analyzing data distribution, Often

heuristically. Such methods are called filters. Filtering itself can rely on other models,

e.g. decision trees or neural networks [87]. The other category is the wrapper methods —

the optimization criterion is the prediction accuracy achieved by the selected (extracted)

features. The very same induction algorithm, intended for use after the optimization,

produces the accuracy estimate. Both categories have they advantages discussed in more

detail below.

The complexity of the feature selection problem can very high. The total number of

possible subsets with d features out of D is (5) In general, all possible feature

combinations Should be evaluated in order to guarantee the optimal subset of features,

except certain problems with special structure or size. Moreover, the optimality is

achieved only with respect to a chosen evaluation criterion. It is important to note, that a

new solution may be required if the evaluation criterion is changed, e.g., if naive Bayes

classifier is replaced by k—NN classification, etc. As pointed out in [26], feature selection

or extraction and classifier design are not independent, and an optimal subset of features

is Simply a part of the best classifier, at least conceptually. Search strategy can be

considered independent of model, but it efficiency can be vastly improved if domain

specific knowledge is taken into account.

Brute force evaluation of all the subsets is not practical when the number of

features is large. Heuristic search finds sub-optimal solutions in subset space. Still it is

possible to obtain optimal solutions in certain problems, without exhaustive search,

because clever search organization can exclude most of the search space states without

their explicit evaluation [82]. Hence there are two search strategies: optimal and sub-

optimal.

Thus summarizing the taxonomy, feature selection algorithms are usually defined

by following components:

' Evaluation criterion. Filter-type algorithms do not use a classifier or induction

step for selecting subsets. Instead, filtering evaluates features based only on such

data properties as distance, information or consistency. Filter algorithms serve as

14

preprocessors for further induction steps. Wrapper-type algorithms evaluate

features based on performance of the model or the classifier learned.

' Search strategies. Optimal algorithms always find the best subset of features. In

worst case, they require 0(2dT) total computational effort, if T is required for each

subset. Heuristic algorithms do not guarantee optimality, but are often the only

feasible approach to practical problems.

. Initialization and Termination. Initialization sets the Starting point for search. In

single point algorithms, it can be the empty subset or a set with all the features

included, or even some random subset of features. Multipoint (population) search

starts with many candidate solutions. Termination is usually controlled by

computational effort or quality of solution.

2.1 Optimal subset search

The earliest non-exhaustive yet complete search that finds optimal subsets is a branch and

bound feature selection due to Narendra and Fukunaga [96]. It is based on the assumption

that the evaluation criterion is monotonic; that is, for the nested feature sets a ,

E, :> 472 :5 DE, ,

the criterion function fulfills the property:

1(5): 1(5) 3 31(5),

The monotonicity condition allows the algorithm to omit examination of entire branches

in a search tree and effectively reduce the computational effort. The basic scheme of

Narendra and Fukunaga [96] was further significantly improved in [146] [121] and made

15

several times faster. Unfortunately, the monotonic criterion is rarely available in practical

data mining tasks.

The FOCUS algorithm by Almuallin and Dietterich [3][4] offers optimal search

for finding the best model explaining all the training instances. The search is optimal in

the sense that it outputs a concept consistent with the training data. However, it works

only with binary features. Its computational complexity is bounded by 0(n(2a’)‘°g("d)).

The main idea of FOCUS was expanded by Schlimmer [117] with an efficient

implementation of the pruning heuristics for finding Optimal solutions. Breadth-first

search is used in both approaches.

The automatic branch and bound algorithm of Liu et al. [86] attempts to construct

monotonic evaluation criterion for general data in order to make regular branch and

bound applicable. This measure is called “inconsistency” and is computed for every

feature subset based on the number of identical (except class labels) instances. Using the

inconsistency measure the search becomes complete but not exhaustive.

In practice, researchers often seek satisfactory suboptimal solutions because

problem size or non-monotonic criteria prohibit complete search. Most research is

concentrated on heuristic algorithms.

2.2 Heuristic search

Heuristic search algorithms aim to provide reasonably good solutions within affordable

time. Two important results in the area greatly influence our understanding of feature

selection problems:

16

l. Sequential selection of features cannot guarantee that an optimal subset will be

found, as shown in [21]. This is true for any nonexhaustive sequential algorithm.

2. The best individual feature is not necessarily a part of the two best features in

combination [20].

Perhaps the simplest approach is to collect all the best individual features. Apparently,

such a set can be suboptimal when features are not independent. Only when the

evaluation criterion is a sum or product of individual features’ functions, can optimality

be preserved.

Several simple strategies employ two basic operations — addition and deletion — of

features in a subset [73]. Sequential forward selection adds (on each step) one feature to

an initially empty set until no improvement is possible. The feature is retained if the

criterion function is maximized by a subset. However, a feature cannot be discarded later.

Backward elimination starts with the set of all the features. At each step one feature is

deleted that maximizes evaluation value of the remaining features. In general, various

heuristics can be constructed by adopting of one of many know variants of hill-climbing.

For example, “plus l-take away r” methods on each step attempt to add 1 features and

then delete r features [123].

Floating search [106][107] is a modification of basic sequential search. These

algorithms do not have preset values of l and r but control them dynamically. Floating

methods update current subsets by both forward and backward selection if the action

results in better performance.

Sequential methods consider one solution at a time. In contrast, evolutionary

algorithms (EAs) operate on a population of candidate solutions. In a genetic algorithm

(GA) each solution is typically encoded in a binary vector of length d. Subsets of

features are represented by 1’s in the associated vector positions. Various crossover and

mutation operators support search through subsets over many generations. The GA

approach to feature selection was pioneered by Siedlecki and Sklansky [118]. GA search

performs well on large-scale problems, where it quick identifies promising feature

subsets. It could be further combined with hill-climbing to allow fine-tuning of candidate

solutions. GAS are certainly not sensitive to non—monotonicity of objective function and

not as prone as other methods to difficulties of finding hidden nested sets.

2.3 Filter methods

The evaluation criterion plays a key role in feature selection, since it Strongly influences

the overall Search complexity as well as generality of obtained results. It is rarely

completely dictated by the application. Preprocessing of features, before actual model

induction, can be done by filter methods. Filtering selects features by analyzing the data.

Interclass distances, consistency, information theoretic, and even auxiliary learning

algorithms often used as filter measures for feature selection and extraction.

Interclass distances can be estimated from data instances according to several

metrics. The search goal is to find a feature subset that provides maximum separation

between classes. Classical metrics are reviewed in detail in [26]. They fall into two major

categories: 1) deterministic, those that explicitly compute distances between instances

(points) of classes, and 2) probabilistic, those that compute distances between class-

conditional probability distributions of points. The first category includes such well-

18

known metrics as Euclidean, Minkowski, Chebychev, city block, quadratic, etc.

Probabilistic measures include mutual information, Chemoff, Bhattacharaya, Joshi,

Kullback-Leibler divergence, etc. Complexity of computing distances using probability

metrics is comparable to estimating error probability. In this case error probability

criterion is recommended. The main advantage of filter methods is their speed, since

classifier induction is not the part of the search algorithm.

2.4 Wrapper methods

Wrapper methods have access not only to the data but also to the classifier itself during

the search. The performance of a candidate solution is estimated during the search by

running a classification algorithm using the candidate feature’s subset. It usually results

in a tighter fit between the classifier and features selected. Fig. 2.1 shows overall wrapper

construction with a classifier within the search loop. A number of methods could be used

to estimate the performance of the classifier. An important goal of any classification

procedure is to achieve the highest possible accuracy with respect to previously unseen

individuals. This would mean access to the unknown individuals to evaluate such

accuracy, which we will call true or predictive accuracy. In practice we have only a

limited number of individuals in a baseline sample.

19

Training set

V

GA Value clustering

operations ‘—

Candidate fe atures

/ Induction of classifiers

Cross-validation loop Classifiers

Performance estimation

via cross -validation

Yes

Continue? V

No

Final classifier Estimated accuracy

Test set ——'> evalu ation

Figure 2.1. Feature extraction wrapper-type approach with GA search engine

Use of all the individuals from the baseline results in a better classifier as opposed to a

classifier built only from a subsample of individuals. At the same time, it is necessary to

have an accurate measure of classification accuracy even in the absence of independent

individuals. Several measures are available that can approximate true accuracy: cross-

validation accuracy, bootstrapping [23] and leave-one-out accuracy as a specific case of

cross-validation. Leave-one-out (jackknife) evaluation of a classifier is most commonly

used, since it is virtually unbiased. Absence of bias means that on average (over different

samples) we accurately estimate the true accuracy. A jackknife accuracy estimate is a

mean of accuracies of N classifiers, where each classifier is obtained from the original

20

sample (of size N) by removing a single individual. Each time the (N—l) individuals are

used for training and the remaining individual for testing. However, leave—one-out

estimates have quite a large variance Since estimated accuracy can vary widely for

different baseline samples. M-fold cross—validation estimates true accuracy via an

average of many classifiers. Each classifier is constructed using [N/M] disjoint subsets of

the original sample for testing and the rest of the data for training. Similarly, bootstrap

estimates of the true classification accuracy are computed as an average over many

bootstrap samples of the original baseline sample. Cross-validation and bootstrapping

may provide a better estimation of accuracy since they use more subsamples. However,

this increase in complexity gives little improvement in precision in practice. Most

researchers consider a jackknife accuracy estimator as the best available or, at least,

sufficient given practical constraints.

Jackknife estimation is regularly used in feature selection problems. However, it

is often overlooked that leave-one-out estimation itself may mislead feature selection

algorithms. In other words, if the search procedure employs a jackknife criterion to sift

through various subsets, this may result in a classifier that has a lower true predictive

accuracy but better jackknife accuracy. More often than not the selected subset has a

lower true accuracy when the jackknife criterion is used with smaller size samples. The

main reason for this is that search among classifiers finds a classifier that is overfitting.

That is, the classifier fits to the training data well but does not generalize. Jackknife

accuracy changes widely as the features vary. Naturally, the features subset having the

highest apparent accuracy will be picked during the search, but that does not guarantee

better predictive accuracy. Indeed, to prefer one classifier to another, we must make sure

21

that confidence intervals for their true predictive accuracy do not overlap at the required

confidence level. Unfortunately, for small sample size, the confidence intervals are not

tight enough and often overlap. As a result the search becomes ineffective. This over-

searching phenomenon is effectively equivalent to overtraining, which is well known for

classification algorithms with many degrees of freedom (adjustable parameters), e.g.,

neural networks.

2.5 Evolutionary feature selection

Evolutionary computing has shown itself to be a highly robust approach to solving

difficult optimization problems of structural or numeric nature. The current renaissance

of the whole family of evolutionary algorithms (EAS) is due to the new and improved

understanding of both strengths and limitations of the evolutionary paradigm [148]. New

findings in the theory are tightly coupled with progress in practical applications of

evolutionary computations. The No Free Lunch (NFL) theorem by Wolpert and

Macready [143] indicates that no single search algorithm is better than the other

algorithms for all problems on average. This also means that we can hope to design only

algorithms that perform well for certain problems instead of universally good algorithms.

It is generally acknowledged that evolutionary search must be careful tailored for the

objective function [32]. Still, little is known about how we select the best algorithm for

practical problems. Most theoretical results are derived for “toy” problems which are far

less challenging than real-world optimization. Optimization practitioners continue to be

among the strongest supporters of evolutionary algorithms. While few artificial

22

benchmarks demonstrate the superiority of Standard EAS with respect to conventional

optimization, many outstanding results have been obtained by EAS in practice. Every

successful EA takes into account distinctive characteristics of real-world problems

including:

0 Strong non—linear interaction between the parameters of the problem.

0 The evaluation function is non-differentiable. Only the value of the objective

function is available, but not the derivatives.

0 Many constraints exist for the problem (design) variables.

0 Scalability of the search algorithm is very important, since search Space of the

problem can increase in the future.

0 Parallel evaluation of several configurations is possible.

0 Multiple design criteria may be used simultaneously, thus requiring‘to consider

multiobjective search.

0 Robustness of the search algorithm with respect to changes of problem variables.

0 High computational complexity. Single objective function evaluation often may

take minutes.

Evolutionary algorithms, in particular genetic algorithms (GAS), are a unique kind of

optimization method as applied to feature selection/extraction. Unlike conventional

sequential search of feature subsets [26], a GA can overcome non-monotonicity of an

evaluation function and the difficulties involved in finding hidden, nested sets of features

[64]. Siedlecki and Sklansky [118] introduced conventional, direct representation of

feature sets. More sophisticated schemes were proposed in [135][136][142]. Building on

this seminal work [118], GAS were also applied to feature extraction coupled with k-

23

nearest neighbor classifiers in [108][112][ll3] and several other algorithms [85][88].

Typically new features are created through the learning of real-value weights applied to

the original features [112] or through a sequence of primitive operators encoded in the

chromosome [14]. Recent attribute construction algorithms successfully utilize GA for

data mining tasks [81][107]. A variety of relevant algorithms is reviewed in [88].

In the next chapter we introduce a different GA approach to dimensionality

reduction that does not explicitly operate with whole features, but instead operates on

individual values assumed by the feature variables. Features are extracted by clustering

several “old” values into a new meta-value which substitutes for the old values in the

feature vector. Therefore, new features are created by clustering the values of variables.

A GA is used as a search engine for this value clustering. If features assume nominal

values then clustering could be viewed as a grouping problem and there are numerous

known genetic algorithms that can be used [32].

Grouping and clustering GAS constitute an important research area. Scalability

and redundancy are two characteristic problems of grouping algorithms. Here we present

a grouping GA with an improved graph-based encoding that extends the work of Park

and Song [102]. The proposed cluster representation has lower redundancy while

preserving the simplicity of decoding and evaluation. This encoding is not limited to

value clustering and therefore applicable to other grouping tasks.

24

Chapter 3

Genetic Value Clustering

Data mining applications typically deal with instances represented as a set of input

attributes (features), where each attribute assumes one of several possible values. We are

primarily interested in data represented by nominal values. Throughout the text, the term

‘ “value clustering” refers to a method that replaces several original values of an attribute

by a new meta-value. This meta-value is completely artificial and simply a substitute for

all the values used in the cluster. Such a clustering affects the data model and

consequently the classification rule. This clustering of values represents a kind of

generalization or value abstraction that is used to improve accuracy of classification. We

consider important related work below. However, it is instructive to start with a simple

example illustrating the idea of value clustering.

3.1 Clustering in Na‘r’ve Bayes Model

Consider a naive Bayes classifier. The classifier learns the conditional probability P(Ai|C)

of each attribute A, given the class label C. Classification is then done by applying Bayes

25

rule to compute the probability of C given the particular instance of A1,..,An and then

predicting the class with the highest posterior probability (MAP hypothesis):

MAP 5 arg max P(c,.Ia1..-.a,,),

where c, is an instance of C (a class) and aj is an instance of Aj. There is one major

assumption behind this: all the attributes are conditionally independent given the value of

the class C. Therefore, by using Bayes rule:

P a .. a c.

P(c, |a1,..,a,,)= (1” "’ ')

P(a,,..,an)

 oc P(c,)HP(aj |c,.)

Let us assume a multinorrrial probability distribution for the values of each attribute.

Using the maximum likelihood principle one can estimate the class-conditional

probabilities {P(aj|ci)} from training samples as a ratio of number of instances with a

Specific value of aj within class c, to the total number of instances in the same class. For

example, if there are only three possible values of the first attribute a1 E {Ot,B,y}, one

would estimate the three terms P(a1=OL|ci), P(a1=[3|ci) and P(a1=y|ci). However, if values

or and [3 are merged into one cluster, the meta—value x is constructed x: (or or B), and only

two model parameters remain to be estimated: P(al=x|ci) and P(a1=y|ci). In the

multinomial model, the probability of the meta-value x obeys:

P(a1=x | Ci) = P(a1=0t | c,) + P(a1=B | ci).

As a result of this value clustering all the occurrences of or or [3 are replaced by x. Of

course, the estimation of parameters is classifier specific, and can take a different form if

another data model is assumed.

26

3.2 Background on Value Abstraction and Clustering

In traditional database research there is existing literature on the methods of finding an

approximate answer for a database query with no exact answer [92]. Automatic query

expansion systems offer approximations from a cluster of similar values, obtained by

term clustering [122]. Term clustering creates groups of related words by analyzing their

co-occurrence in a document collection. A hierarchy of values can either be garnered

from experts or obtained automatically. In the work [89], the attribute values are

clustered automatically by generating an attribute abstraction hierarchy. This hierarchy is

discovered using rules derived from database instances. For rules with the same

consequence, values found in the premise are clustered. This process is called pattern

based knowledge induction. However, information retrieval approaches cannot be easily

combined with arbitrary classifiers.

In machine learning studies we find a number of flexible value clustering

methods. Perhaps the most interesting method is the information bottleneck by Tishby et

al. [126]. The information bottleneck method replaces the original random variable X by

a compact representation X , which tries to keep as much information as possible about

the random variable Y. In particular, variablex could stand for feature values and

variable Y is a class label. The information bottleneck method maximizes mutual

information I(X;Y) between X and Y, conditioned on the information content 10? ;X)

resulting from the clustering X with respect to X. Most significantly, the optimal

solution of this information theoretic problem can be found in terms of probability

27

distributions p(i I x), p(y | 3c"), and p(f) with an arbitraryjoint distribution p(x, y).

The exact solution is given by a set of nonlinear equations [126]. An iterative solution

requires the user-defined cardinality of X . Unknown variables are usually initialized to

random values that potentially may lead to sub-optimal local solutions. The resulting

clustering is not “hard”, where each value of X belongs to a single cluster in if , but

rather “soft” with membership probabilities p(Sr' | x). However, hard clustering can be

achieved in the agglomerative information bottleneck method by Slonim and Tishby

[119]. The agglomerative information bottleneck method is a hierarchical process that

uses distance measures between distributions and greedy search by merging clusters pair—

wise. The multivariate information bottleneck method [45][120] further extends the

approach for multivariate distributions, maximizing mutual information between Y and

several “bottlenecked” variables Simultaneously.

Recently, the value abstraction approach (clustering in our terms) led to

considerable progress in linkage analysis for genetic mapping [98], and was expanded for

more general likelihood computations and faster Bayesian network inference in [44]. All

these works can be characterized as filter-type feature extraction, Since classifier accuracy

or induction step feedback is not used for value clustering.

The other relevant body of literature concerns the use of genetic algorithms for

clustering problems, and specifically for combinatorial optimization involving clustering.

Combinatorial grouping problems are rarely supplied with a definition of distance

between items. Advanced GA designs utilize graph-based solution encodings of the

clustering problems. Originally, a graph-based encoding was introduced by Park and

28

Song [102]. The main motivation of their study was to re—solve the problems of

traditional grouping encodings that use group numbers or permutations with separators.

In the simplest case a chromosome contains a group label (number) for each

object. Such a group-number encoding suffers from the incompatibility of labels between

two chromosomes that ultimately participatie in genetic recombination. In fact, by using

group numbers we are forced to solve an intractable correspondence problem between

different labelings each time a crossover operator is applied. In group-number

representation typical crossover cannot easily combine objects’ memberships from

parents to offspring. In addition, the number of groups must be known in advance.

Moreover, this encoding contains redundancy because it does not take into account the

symmetry of group label permutations. The GA community currently rejects such a

representation in its raw form [32]. However, some heuristics can certainly help in

adopting group—number representation [83][19], but their complexity leads to major

computation overhead to ensure meaningful inheritance.

Another popular encoding uses a permutation representation [32]. A chromosome

is created by an arbitrary permutation of the original objects. There is no cluster

information in the chromosome itself. Instead, the responsibility of constructing a

clustering from the chromosome lies on a Special decoder function, which is problem

specific. The decoder function is guided by the particular optimization criterion for the

given task. The drawback of the permutation representation is basically the same as that

of the group—number encoding: classical recombination of two chromosomes cannot

combine two clusterings by transferring cluster content, since clustering of the offspring

29

is exposed only by a decoder function. Membership of each individual item acquires its

meaning only in the context of labeling of other items.

More effective design of a grouping genetic algorithm (GGA) is due to Falkenauer

[31][32]; it operates with a permutation encoding with separators between groups. GGA

requires sophisticated repairs during the crossover to ensure valid offspring

representation. In GGA, the crossover operator must be domain dependent in order to

enable effective propagation of good building blocks (clusters) to the next generation.

3.3 Cluster Representation in Genetic Algorithm

We propose a novel genetic algorithm design for general clustering, and value clustering

' in particular. Value clustering can be regarded as a grouping problem, where a number of

objects (items) must be placed in several groups. Examples of grouping problems include

bin packing, graph coloring and line balancing, all of which are NP-hard. The search

space size for partitioning N objects into exactly M groups grows exponentially with N.

Stirling numbers of the second kind S(N, M) give the number of ways to partition N

‘ objects into M groups:

1 M M—i M -N

S(N,M)=—M—!;(—1) (i);

If the number of clusters is not known then M can assume any value between 1 and N.

Thus we get the total number of distinct clusterings, also known as the Bell number B(N):

B(N) = ismM)

30

For example, for N=1...lO we obtain Bell numbers B(N) = {1, 2, 5, 15, 52, 203, 877,

4140, 21147, 115975}.

The major difficulty encountered by typical GA approaches is in designing a

representation of a grouping as a chromosome. A good encoding must ensure the

complete coverage of the space of possible partitions with minimal redundancy. This

encoding should also allow meaningful inheritance of information from parents to

children. Finally, it is important that validity checks and chromosome repair have

insignificant computational overhead, if in fact such repair is necessary.

Several genetic algorithms are specifically known to solve grouping problems.

The most straightforward approach uses a standard GA with group-numbers, one gene

per object, where each gene contains a group-number for the object. Unfortunately,

standard n-point crossover fails to transmit grouping information between chromosomes,

since group—numbers do not carry meaning by. themselves and could be arbitrarily

permuted for any given grouping. This representation also requires knowing the correct

number of clusters in advance. Similar difficulties are encountered with permutation

encodings. In contrast, the GGA algorithm [31] guarantees meaningful inheritance using

permutation with separators and a sophisticated crossover operator with repairs.

31

Regular graph-based encoding:

chromosome with N genes

Compact graph-based encoding:

chromosome with N-1 genes

[112[3[...]N] [112]3|...|N-1|

r N N N N N N N N N

N-1 N-1 N-1 N-1 N-1 N-t N-1 N—1 N-1

possible values I

ateach gene 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2

I 1 1 1 1 1 1

Figure 3.1. Regular graph-based clustering GA selects N genes from the total of N2

edges, while compact encoding needs only N—l from N (N-1)/2 edges. GA search

space size is reduced from N” to N!.

Graph-based encoding is a different method for solving clustering problems

[102]. If there are N items to cluster then a solution is represented by a string with N

genes, one gene per item. Given that original items are numbered from 1 to N, then each

gene aSsumes a value between 1 and N. Thus if the i-th gene contains value j, then items

with numbers i and j belong to the same cluster and can be connected by a link in a graph

of all items. In this representation an arbitrary partitioning can be reached without pre-

defining a correct number of clusters. No special crossover is required for this

representation, Since even standard crossover both transfers the item’s link and preserves

information about the partitioning. However, the redundancy of the encoding is

extremely large, Since there are N” possible individuals. Many points in the GA search

space correspond to the same cluster partitioning, because a cluster can be formed by any

connected graph containing its items. The redundancy of the regular graph-based

encoding is given by the ratio of GA search space size to Bell number B(N):

NN

p(N):B(N)'

32

Redundancy ofregular graph-based encoding

1e+12§;.

1 8+1 1;;

le+1 0;;

1:909:25

le+08;;»

184437;;

18+UG§E

18+05-:g

10000;;

1000;;

10.;E
2 £1 a a 1'0 1'2 1'4 f6 1'8 20

Number of objects

Figure 3.2. Ratio of GA search Space Size to the true number of distinct partitions of

objects on logarithmic scale.

For example, for 20 objects we find ,0 (20) > 2 - 1012.

Park and Song have proposed a remedy to this redundancy problem, by limiting the

number of possible links based on domain knowledge [102]. For example, if the distance

between objects can be defined, then one may restrict the possible links for this object to

a set of nearest neighbors. Unfortunately, feature value clustering as well as the

combinatorial grouping problem in general do not allow introduction of meaningful

metrics or definitions of neighborhood for nominal values.

33

regular representation compact representation

chromosome: [4,3,1,2,5,7,8,6] chromosome: [2,3,4,4,5,8,8]

Figure 3.3. Sample chromosomes and corresponding clusterings are shown by

connected subgraphs for regular and compact encodings

Here we present an improved compact graph-based encoding, where redundancy is

reduced exponentially with respect to number of objects N, as compared to the original

idea discussed in [102]. The proposed representation keeps all the good qualities of the

raw graph-based encoding, without sacrificing its representation power, as we strictly

prove below.

First, we note that the regular graph-based encoding picks N links out of a total N2

available, because the chromosome has N genes with N possible values per gene.

However, even a complete graph on N vertices has only N(N-1)/2 edges. This results in a

major combinatorial explosion in the number of ways to encode the same cluster.

Furthermore, to represent any partition of items on a graph we need at most N—l edges.

Thus an arbitrary tree connecting all the objects within a cluster would be sufficient.

34

Reduction of GA space in compact encoding

Ie+07?

19+06?

i
1e+05+

10000?

1000.,-

100...

.

.

10..

.
2 4 es a 1‘0 12121 is 118 20

Number of Objects

Figure 3.4. Ratio of GA search Space sizes in non-compact and compact encoding

Indeed, the largest possible cluster contains N items that could be represented by a tree

with N-l edges.

We propose an enhanced encoding that draws gene values only from N(N-1)/2

edges and needs N—l genes. The main idea is to remove duplicated edges from a pool of

possible gene values. Retaining only values from N to i, for the i-th gene, does this

exactly. The first gene assumes values in { 1,. . .,N}, the second gene in {2,...,N}, etc. The

N-th gene is unnecessary, since it always is set to N, and can be omitted. If the gene value

happens to be equal to the gene’s number, it means that no edge is placed on the graph.

We cannot have less than N(N—1)/2 edges of a complete graph, because clusters with only

two objects must be obtained by a unique link between them. Figure 3.1 compares the

regular and compact graph-based encoding. Figure 3.2 shows graph representations of the

sample chromosomes.

35

In the compact encoding, each gene obtains its values from an alphabet of a

different cardinality. This raises a question as to how required clusters are formed. It is

easy to prove that any possible clustering is still attainable in the new encoding. For this

purpose, consider a cluster containing objects with arbitrary numbers. One can sort

objects in a cluster by their number. Any such cluster can be formed, by connecting an

object with next higher numbered object from the sorted list, because the required edges

are always available: any object has access to edges incident to any object with greater

number. Therefore, the proposed encoding has the same representational power at the

original encoding but has an exponentially lower space, as we approximately estimate

from:

where 8 is the ratio of Sizes of GA search space in old and new encodings. For example,

if N=20 we find that 5>43000000, a dramatic reduction!

The compact encoding has one problem, namely different genes carry different

information because of the different cardinalities. This could be an issue for a standard

crossover (e.g. 1- or 2-point) since lower numbered positions on the chromosome are

more important than the higher numbered positions. As an alternative, we offer a

modification of the compact encoding that equalizes the cardinality of alphabets for

different genes. The genes with the most available edges can transfer some of their edges

to other genes, so we still have the very same pool of N(N—1)/2 edges at our disposal. For

36

example, we can delete the value (N-I) in the alphabet of the first gene, and insert value 1

in the alphabet of (N-l)th gene, leaving us with the same edges. Equalization creates

alphabet of cardinality |A|=(l+N/2) for every gene. Equalization can be performed

exactly with even valued N, with minor deviation at some positions when N is an odd

number. In the equalized compact representation, the reduction in size of search space is

still greater than before, namely:

.- N” rare—i”(1+N/2)N" 2 1+2/N

Let us prove that it is possible to realize any clustering in the equalized compact

representation. We will Show that a cluster with an arbitrary number of objects can be

created. The alphabet of the genes (corresponding to any chosen objects) contains all

possible links between these objects, because equalization preserves the edges by simple

transfer. Now an auxiliary construction is necessary: imagine a complete graph on these

objects. In this complete graph we can assign direction to the edge from object I to J if

the alphabet of gene I contains value J, otherwise the edge goes in the opposite direction.

This directed graph is called a tournament since it is a complete and directed graph.

Graph theory provides us with this important fact: every tournament has a Hamiltonian

path [17]. A Hamiltonian path connects all the objects following the arcs and visits each

and every object only once. Therefore, arcs from such a directed path are equivalent to

valid assignment of edges to genes. Since arbitrary objects are connected, we can obtain

any partitioning. Figure 3.5 shows an example comparing compact and equalized graph-

based encoding for a set of 6 objects.

37

Compact graph-based encoding Equalized compact encoding

for a set of 6 objects for a set of 6 objects

I112l3l4l5l l1f2l3l4l5l

' 6 6 6 6 6 6 6 6 6 6

5 5 5 5 5 3 4 5 5 5

possible values < 4 4 4 4 2 3 4 4 1

ateach gene 3 3 3 1 2 3 1 2

2 2

I 1

Figure 3.5. An example of encoding alphabets at each chromosome position in compact

and equalized compact graph-based representations of a set of 6 items

For most of the experiments we used an equalized compact encoding and 2-point

crossover. The next section details several application domains for value clustering.

Redundancy of regular vs equalized encoding

1e+06?

1e+05é

10000%

1000é-

100g-

10..-

a
4 6 6 1'0 1214 16 1’8 20

Number or objects

Figure 3.6. Reduction of search Space size in equalized compact encoding as compared

to regular graph-based encoding.

38

.
—
-
-
-
'

3.4 Application Domains for Value Clustering

Text categorization

Text categorization attempts to automatically place documents into one of a set of

predefined classes. Training samples for the experiments were taken from the Reuters-

21578 documents collection. We use a classical “bag of words” data model using a naive

Bayes classifier. The number of features is equal to the number of words in a document

and each feature can assume any value from the observed dictionary of size N. The

dictionary is created from all the training data. The classifier is induced by estimating the

probabilities of words in the entire training documents collection. If a previously unseen

word appears during the inference phase, its probability is set. to a small value such as

0.1/N. Note that the number of features changes from document to document, while the

number of feature values is constant for a fixed training set. It is our goal to cluster the

values within features. The probability distribution for each feature is the same due to the

independence assumption used in naive Bayes. Therefore, the clustering of feature values

is the same for all features. Thus each GA chromosome represents a clustering of words

in the dictionary. The full dictionary of the Reuters data set contains tens of thousands of

words (values to be clustered). It is commonly acknowledged that preprocessing is

necessary to reduce computational costs to a reasonable level. We perform preprocessing

by retaining features having the highest mutual information within the category label.

Mutual information is assessed independently for each feature. Original baseline

documents from each class are split between training and holdout sets (for classifier

39

fitness evaluation), as well as a final test set to estimate the true accuracy of the best

solution found. After the search phase, the best classifier was induced from a

combination of training and holdout sets before the final testing. The comparison

between the three methods could be made, namely, a naive non-clustered approach, our

proposed clustering GA and a pure best—first hill climbing with the same number of

fitness evaluations.

DNAfingerprinting

Assignment of individuals to their putative populations of origin is a practical problem in

population genetics. In a classical framework (see, e.g. Waser and Strobeck [139]), to

assign an individual it is necessary to compute likelihood functions for each source

population. The population having the highest likelihood value is deemed. to be the most

probable population of origin. Genetic markers, taken from DNA samples, serve as

features and their values (allelic configurations) are assumed to be multinomially

distributed [53]. Classification is then performed using a naive Bayes approach, assuming

independence of features. The large number of possible alleles (e.g.10-20) for each

feature seriously complicates the assignment in many practical situations, because the

reliability of the estimated parameters is low, since a typical baseline sample consists of

only 50-100 individuals. Value clustering is quite promising for binning the alleles

together to improve the assignments.

Bayesian network classifiers

A Bayesian network, also known as belief network, is a directed acyclic graph, such that:

40

(l) A set of random variables makes up the nodes of the network.

(2) Each directed link in the network represents direct influence. An arrow from node

A to node B means that A has a direct influence on B.

(3) Each node has a conditional probability table that quantifies the effects that the

parents have on the node.

In theory, a belief network is very powerful because it can represent any joint probability

distribution of its node variables. However, in practice a probabilistic model matching the

data sets cannot always be found. Belief networks can inference about any probabilistic

quantity of interest because theoretically everything can be obtained from the joint

distribution. However, in practice, polynomial algorithms may not be available under the

condition of some values not being instantiated in the network. Good approximate

inference procedures do exist.

Our primary interest is to consider solving classification problems for discrete

data analysis. Discrete data is very common in genetics data. The reason that we prefer

belief networks is because

1. They can model joint probabilities with arbitrary accuracy, taking into account

dependencies.

2. Unlike neural networks, their representation of interactions between the variables

can be interpreted and understood.

3. Unlike decision tree or decision rules, they are not very sensitive to noise.

It is true that finding a general exact belief network for a particular set of data is a task of

exponential complexity. Therefore, some simplifications are necessary which would limit

the space of possible structures. For example, two of types of inductive bias could be

41

considered to simplify learning: naive Bayesian classifier (trivial), and tree—augmented

naive (TAN) Bayesian network.

Tree-augmented Naive Bayesian Network structure has the following defining

properties:

- Class variable (node) has no parents and each attribute (non-class node) has only one

or two parents and one of them has to be a class node.

- Edges representing relations between attributes are included.

- In TAN, graph structure among attribute nodes is a tree.

a Q 9 @

Figure 3.7. TAN structure with four attributes. Augmented edges are Shown among the

attribute nodes.

P(a1,..,a4,ci)

P(a,,..,a4)

P(Ci |a1,..,a4) = 0‘ P(allazaci)P(a1IC[)P(a3Ia29CI)P(a4Ia3’ci)

The TAN structure is preferred because it exploits dependencies between attributes,

which usually provide better accuracy than a naive Bayesian classifier. Moreover, this

structure can be learned in polynomial time. Structural learning can be done in 0(K2)

time using the mutual information algorithm [18], where K is number of nodes (variables)

in the Bayesian network.

42

4
8
0
3
K
)
~
I
L

1 2 3+4

1 p11 p12 p13+p14

Y 2+3 p21+p31 p22+p32 p23+p24+p33+p34

 4 p41 p42 p43+p44

Figure 3.8. Conditional probability table P(X,Y|C=c) before value clustering and after

the merging of values {3,4} of X variable and values {2, 3} of Y variable

Our goal is to use value clustering for learning conditional probability

distributions P(a, |a1,ck). Value clustering is viewed as merging various cells in

conditional probability tables. Again, it will reduce number of estimated model

parameters. Parameters themselves will be more reliable due to the increase in effective

sample size. Encoding of TAN node tables in a GA is possible in a number of ways, such

as graph-based representation. Value clustering in conditional probability tables can be

either in rows , columns, or both simultaneously. For example, if we have P(X,Y|C=c) for

X and Y variables, each assuming 4 possible values then initially we need to estimate 16

entries in the table P(X,Y|C=c) for some fixed class. Figure 3.8 shows the result of

clustering the values {3,4} of X variable and values {2, 3} of Y variable.

43

3.5 Closed form analysis of value clustering

In several Simple data models we can obtain exact expressions for the effect of value

clustering on classifier accuracy. One such data model in feature space is represented by

a one-dimensional multinomial variable. In this case one can calculate the change in error

rate of classification after clustering of two values, if Bayes classifier parameters are

estimated by the maximum-likelihood procedure.

Let X be a random variable that assumes one of M possible values {1, 2,..., M}

with probabilities {p1, p2, pM} in class 1, and with probabilities {q1, q2, cm} in

class 2. This is a two-class model, for which we apparently have p1+ p2+ ...+ pM = 1,

(11+ q2+ ...+ qM=1. Suppose we observe a data sample of size N, where data points are

drawn from the two source classes with equal prior probabilities 71127152. Each data point is

sampled according to the above class-conditional probabilities:

Prob(X=i |1)=pi.

Prob(X=i|2)=q,-.

Our first step would be to find an optimal decision rule, given the observed finite

sample, and estimate its error rate Eold- Next we will merge two of the values (characters)

from the alphabet of variable X, and estimate the error rate Enew of the resulting classifier.

And finally we can calculate the change in error rate AE= Eold - Enew . Obviously we are

ultimately interested in under what distributions of probability values one can obtain the

positive value of AE >0.

The gain (or loss) of accuracy AE is a function of many factors: observed data

sample (x1, x2, xN), class-conditional probabilities {p1, p2, ..., pM} and {q1, q2,

44

qM}, and sample size N. However, if we merge the characters 1 and 2, then it can be

proved that the value AE only depends on the values p], p2, qr, qz. To Show this we note

that for any given data sample D=(x1, x2, xN) the value of error eD of simple Bayes

classifier is an additive function of the parameters of the distribution:

60 =f1(.Dr)+f2 (P2)+ ---+fM(PM) + 81(611) + 82 ((12)+ ---+ 8M(qM),

where {f,~} and {g,} are certain functions whose exact value is determined by the actual

sample drawn. Clearly, when a difference is taken between the error values of

classification before and after merging the states 1 and 2 of X, we obtain:

60(01d) - €D(U€W) =f1(P1) +f2 (P2) + 81(41) + 82((12)-f’r(P1+P2)+ g'r(£11+ 612)-

Hence, for a given sample the number of relevant parameters is reduced to four -- {p1,

p2}and {q1, qz}. At this point we can evaluate the difference of error rates AE. Let us

recall that the error rate of classifier averaged over the possible training samples can be

calculated as the expected value of error on single data sample taken over the probability

distribution of data.

E[eD] = <eD>= I30 (x1 , x2,..., xN)p(x1 ,x2,...,xN) a'xldxz...de

For a multinomial samples the distribution is discrete and the integral must be replaced

by corresponding sums. For simplicity we will consider training samples with equal

number of points N from each class. In the two-class situation, this will mean the total

sample size will be 2N=N+N. The probability of any sample D=(x1, x2, X2N) is then

given by the multinomial:

N! n, 112 nM N! ml "'12 mM

p(x1,x2.....xN)=nl,n, n ,1). 102 mm. nt'm' m '61] Q2 qu
.,.... M. .,.... M.

where nl+n2+...+nM =N, ml+m2+...+mM =N

45

Here n,- and m,- denote the number of observations of value X = i in class 1 and class 2,

respectively.

The change in error rate is then computed as AE= Eold - Enew and can be written

(after some manipulations) as follows:

”“2 N "4‘2 61+ P
AE=£2 2 Z 2(q]6(k —m —l—)+p16’(m—k —l)+ ’——‘2ml(5(k)

2,712:—0 ml-=0 k2=0 k1=0

5] + P
+q2l9(k2 —m2 —l)+ p26(m2 — k2 —1)+—2—2—25(m2 —k2)

"(511+q2)6(k1 +k2 Tmi -—m2 T1)_(Pr + p2)6(ml +m2 Tkr "k2 "1)

+ + +
_ p1 p2 Q] ‘12 50C! +k2 _mr _m2)jx

2

N! kl k2 N—k-

x 1— — 1

klrk,r(N—k,—k,)rp' p2(17‘ p2)

N! ml "12 N—m

q. 612 (l-qr-qz) ‘"'2

k2X

 x

m1 !m2 !(N—ml —m2)!

Where 5(z)=1, if z=0, 5(z)=0 otherwise; and 0(z)=1, if z 2 0, 0(z)=0 otherwise.

This expression for AE can be evaluated in closed form for particular values of N.

Even in the case of fixed N the calculations of such combinatorial sums are quite

laborious. For this purpose I used a specialized computer algebra system ‘FORM’ by J03

Vermaseren [138], initially developed for Similar expressions arising from high-energy

physics calculations. Certainly, the asymptote of large values of N is less interesting than

small sample Size, because large sample size usually provides reliable estimates of

classifier parameters, thus leaving us with smaller room for improvement due to value

clustering.

46

We computed the change in error rate AE for total sample sizes (2N) equal to 10,

20, 30, and 50 for several different relations between the model parameters {p1, p2} and

{611, qz}. In order to represent the AE in tractable form we considered the following four

Special cases:

{P1,P2=P1}, {(11, Q2: 611}

{191,172: 45 P1}, {(11, 612: 5/4 611}

{p1.p2= 2/3 Pr }. {611. 612: 3/2 qr}

{P1,P2=1/2P1},{CI1,€12= 2 (11}

These assumptions cover many plausible situations, which reflect gradual increase in

discriminative power provided by the values/states {1, 2} selected for clustering from the

alphabet of variable X. For instance, configuration {[91, p2: p1} and {(11, q2 = q1}

corresponds to the case when having distinct values {1, 2} generally does not help in

classification. In contrast, when {p1, p2: ’1/2 p1} and {(11, qz = 2 ql}, one can expect

considerable contribution to accuracy from both values {1, 2} (not merged), given that

the maximum likelihood estimates of the distribution parameters {[21, p2}. {(11, 612} are

known with good precision.

To get an idea of the result of computing the value of gains/losses, consider the

following expression obtained for {p1, p2: p1}, {q1, qz = q1} and sample size 10 (N=5):

AE = E01d — Em: l/2'(5-35700p13q14-75p13 — 35700p14q13 +11430p14q12

+3577Op14q14-30p1 — 30q1+70p12+31p14+ 43180p13q13 + 8556p12q12

-l7010p12q13+11430p12q14—126Op1q14+31q14+420p1q1-75q13-1575p1q12

+2356p1q13-17010p13q12+70q12-1575p12q1-126Op14q]+2356p13q1) - (pr-q1)2

47

The number of terms in other similar results for AE would grow as O(N4), which makes

it difficult to interpret and analyze. Instead, we visualize the behavior of gains/losses AB

in expected error rate on the following plots shown in Figures 39-314.

48

E(old)-E(ncw), N=5, pZfirl, q2=q1'

“0.2 00

E(old)-E(ncw), N=5, p2'=4/5*p1, q2=5/4*q1

0.04--

0.03.-

0.02-—

,

0.01--

43.01-
0.4

0 o 0.1 ' p1"

Figure 3.9. Accuracy gain AE due to merging states {1,2} for sample size

2N=10: a) if {101pr p1 }, {(11, q2= qr}. b) if {p1,P2= 45 pl}. {(11, qz= 5/4 qr}

49

E(old)-E(ncw), N=10, p2=p1, q2=q1

U 035—-

0 325--

0015..

o .005:-

Figure 3.10. Accuracy gain AE due to merging states {1,2} for sample size 2N=20:

a) if {p1,P2=P1}. {(11, QZ= ‘11}, b) if {P1,P2= 4/5191}. {qb (12: 5/4 (11}

50

E(old)—E(ncw), N=15, p2=p1, q2=q1

0.03--

0.025:-

0.023.

0.0155.

0.01:-

0.005--

1

0.02-

0.01-

4101-

-0.02~ 0.4
Figure 3.11. Accuracy gain AE due to merging states {1,2} for sample size 2N=30:

a) if {p1.p2=pr}. {611, £12: 611}, b) if 1171.102: 45 P1}, {611, (12: 5/4 qr}

51

E(old)-E(ncw), N=5, p2=2/3*p1, q2=3/2*q1

E(old)-E(new), N=5, p2=1f2*p1, q2=2*q1

0 .02-

-0 .02-

0.06--

-0 .084-

.o_1__ «..—

 -o.12-: qr 0.1 0.3 0'4
0 o 0.1 0-2 p1

Figure 3.12. Accuracy gain AB due to merging states {1,2} for sample size 2N=10:

21) {p1.p2= 2/3 pr}. {41. q2= 3/2 qr} b) {p1.p2=1/2p1}. {q1.q2= 2 qr}

52

E(old)-E(new), N=10, p2=2/3*p1, q2=3/2*q1

0.02-

43.06-- 0.4

 02 05 0.6

‘11 0.3
. 0'2 p’l

00

Figure 3.13. Accuracy gain AE due to merging states {1,2} for sample size 2N=20:

a) {P1.p2= 2/3 P1}, {611. 612: 3/2 (11} 13) {P1,P2= 1/2pr}, {611, q2= 2 £11}

53

E(01d)-E(ncw), N=15, p2=2/3*p1, q2=3/2*q1

0.2 0.5

0.4
01 02 0.3

E(01d)-E(New), N=15, p2=1/2*p1, q2=2*q1

-0.14—
0.2 o 6

0.5 .
II1 0.1 0,3 0.4

02 P1
0 0 0.1

Figure 3.14. Accuracy gain AE due to merging states {1,2} for sample size 2N=30:

a) {P1.P2= 2/3 P1}, {611, 612: 3/2 q1}b){PI,P2=1/2p1}, {q1,q2= 2 611}

Several important conclusions follow from this analysis. First, we can generally confirm

an improvement in classification accuracy due to value clustering. For example, on

average over possible training samples of size 10-20 we can expect to get an

improvement of up to 3-4% for certain data models. Note that this is an improvement due

to merging of a single pair of states and in one-dimensional feature space. Potentially,

one can gain more from merging multiple pairs of states.

Second, the actual expected improvement decreases with large sample sizes. This

confirms our intuition that the positive effect of value clustering is mainly due to

improved estimates of the collapsed meta—states of the variables.

Third, most accuracy gains are achieved when we merge the X variable’s states

that contribute relatively little to discrimination between classes. Hence, the main

challenge of the developed genetic algorithm is to implicitly identify such values and

perform their merging into meta-values.

In the next section we consider the empirical results from the application domains

that we discussed earlier.

3.6 Experimental Study

The main goal of the empirical study is to compare the performance of select classifiers

with and without GA value clustering. Even though an overall accuracy improvement is

very valuable, we are also interested in reduction of measurement complexity.

55

3.6.1 Genetic Algorithm Details

The driver GA program included the following major steps:

1. Initialization. The population is initialized with random individuals using the equalized

compact graph-based encoding as described previously in section 3.3. Each individual

is created by selecting its genes from the alphabet of respective chromosome positions.

For the i-th position, the probability to select the value i is set to (N-1)/N, to prevent

formation of a single big cluster covering all the objects. If the value i is not generated,

we initialize this gene to one of the remaining available values (edges) for this position

using a uniform probability. Prevention of excessive clustering is motivated by a result

from graph theory on the critical probability of connectedness of random graphs [13].

Finally, we always seeded a chromosome [1, 2,. .., N], corresponding to N non-merged

objects (feature values).

2. Fitness evaluation of each individual in the population. Chromosomes are easily

decoded to the actual cluster partitioning of feature values as described above. Model

parameters are estimated according to the extracted clustering. Classifier accuracy is

evaluated using hold-out samples or lO-fold cross-validation.

3. Termination criteria check. The number of generations was the measure of

computational effort. The search was stopped after about 200 generations in each run

4. Toumgment selection of parents (tournament size = 2). Pairs of individuals are selected

at random with replacement and their number is equal to the population size. The better

of the two individuals becomes a parent at the next step.

5. Crossover and reproduction. Standard 2-point crossover is used. Each pair of parents

produces two offspring. Mutation with small probability pm = 0.01 is applied to each

56

position. In addition, elitism was always used and the best individual of the population

survives unchanged.

6. Continue to step 2.

3.6.2 Experimental Results

Text categorization. The full dictionary of the Reuters data set contains tens of

thousands of words (values to be clustered). It is commonly acknowledged that

preprocessing is necessary to keep reduce computational costs to a reasonable level. We

performed preprocessing by retaining features having the highest mutual information

within the category label. Mutual information was assessed independently for each

feature. In two different setups we selected 10 and 50 words respectively, corresponding

to chromosome lengths with 9 and 49 genes in the equalized compact encoding.

The first set of experiments was designed to distinguish between Reuters articles

on “acquisitions” or “earnings” with 2308 and 3785 non-overlapping documents in each

category respectively. The known expected accuracy is extremely high, so we made the

task more challenging by considering only the first two lines in the body of every

document. 1500 documents from each class were Split between training and holdout sets

(for classifier fitness evaluation); the rest of documents were used to estimate the true

accuracy of the best found solution. After the search phase, the best classifier was

induced from a combination of training and holdout sets before the final testing. The

comparison between the three methods was made, namely, a naive non-clustered

approach, our proposed clustering GA and a pure best-first hill climbing with the same

number of fitness evaluations. We performed 100 runs of each algorithm with different

57

sizes of splits between training and holdout sets. Our GA approach ran for 200

generations with a population of Size 100. The results for the estimated true accuracy and

percentage of runs with improvement are reported in Table 3.1. Last column shows

percentage of runs when GA found better than naive solution. Each row is the average

over 100 runs, with training and holdout sets sampled at random in each run from original

data.

Table 3.1. Comparison of test accuracy for the best solutions found by GA value

clustering and best-first hillclimbing with “naive“ non-clustered solution on

“acquisitions” or “earnings” classification problem. First two columns, are training and

holdout set sizes.

Tr. set Holdout "Naive" model Hill-climbing Clustering GA Best runs, %

10 words 400 1100 79.9 ‘ 79.9 82.3 87

600 900 79.8 80 81.6 81

800 700 79.7 79.9 81.5 78

1000 500 79.9 79.9 81.1 74

50 words 600 900 88.2 88.7 90.8 73

800 700 88.4 88.8 90.5 60

The results show that GA typically improves the predictive accuracy by 1-2% and

most runs are successful. Perhaps the main advantage of the GA was in dimensionality

reduction. The average number of clusters for the 10-words problem was 7.9 and 38.6 for

the 50-words problem.

Experiments with similar setup were performed to discriminate between the

documents in the gold and silver news categories (topics) on one side and gas and nat-

58

gas on the other side. To ensure that our baseline sample contains enough documents we

sampled three line subsets from large documents and considered them as individual texts.

The classification accuracy averaged over 100 independent runs of the GA is compared

to the results of hill-climbing search as well as simple Bayes classifier and reported in

Table 3.2.

Table 3.2. Comparison of test accuracy for the best solutions found by GA value

clustering and best—first hillclimbing with “naive“ non-clustered solution on “silver” and

“gold” versus “gas” and “nat-gas” topics classification problem.

Tr. set size Holdout size "Naive" model Hill-climbing Clustering GA

200 200 84.0 85.8 86.5

10 words

250 200 84.5 85.7 86.6

200 200 89.5 90.0 91.4

50 words

250 200 90.0 90.3 91.3

DNA fingerprinting. The experiments were done with multiple data sets. Each data set

contained individuals drawn from two populations. The data was collected from a

simulation program that can generate individuals from the source populations with a user—

chosen level of inter-population dispersal as measured by the Wright’s F—statistic values,

in particular, the value of PS}. We used 100 individuals per sampled population as training

data. Each individual is given as a set of two alleles per locus (feature) with 8 loci in

total. While most of the features had only 2-4 different alleles, there were 10 possible

alleles for one of the loci. We ran the GA value clustering only for the allelic values at

this particular locus. The classification step and GA search are very similar to what was

done for text categorization. However, the probabilities of individuals are computed

differently, because for Mendelian genotypes there are two alleles specified at each locus

59

(feature). Namely, the probability of allelic configuration (i,j) at each locus is estimated

as 2pipj, if alleles i and j are different, or as p,-2, if i=j, where p,- is an estimate of i-th allele

probability at a locus. This modification of the regular naive Bayes classifier is trivial and

is necessary only in computations of fitness for candidate solutions. Also the fitness was

estimated on completely independent test set of 100 individuals. As a main result, the

value clustering GA was able to improve classification accuracy (cross—validated) from

69% to 73% for low Fst data (considerably overlapping populations), from 91% to 92%

for high Fst data (populations with little overlap). In most runs, the best solution was

consistently represented by only 5-7 meta-values instead of the 10 original values

(alleles).

Bayesian Network Optimization by Value Clustering. The goal of value clustering as

applied to Bayesian network is to intelligently modify conditional probability tables in

order to improve accuracy of classification. In our experiments we followed these steps.

1. Learning the structure of Bayesian Network Classifier: the main purpose of

structural learning is to provide a tree of dependencies over attribute nodes. Class-

conditional mutual information (CMI) between attributes serves as major guiding

principle for better structure. Only links with highest value of CMI are kept. It means that

a maximal spanning tree is constructed from the complete graph, where edges are

weighted by CMI computed from training data. It was Shown in [18] that such a tree is

optimal among all other possible trees over attribute nodes. The proof shows that

maximum spanning tree maximizes the likelihood function for given data set.

60

2. Parametric training from the given training data. This includes estimation of all

required conditional probability tables (CRTs) for the nodes present in the given fixed

structure found. Every CPT is either three-dimensional P(x|y,c) or two-dimensional

P(xlc). If the only incoming link is from the parent class node then we have the usual

parameter estimation as in case for naive Bayes; i.e., we estimate assuming a multinomial

distribution for the values of x. Learning the values of the CPT table is straighforward

from the data provided, because it is done in linear time with respect to sample size.

During parametric training we compute the observed frequencies of values of the

required attribute conditioned on the combinations of values of other attributes as well as

class label. This gives us the maximum likelihood estimate of the parameters (CPT

entries) for a fixed network structure.

3. Genetic value clustering. We use a genetic algorithm described earlier to optimize

the performance of a BNC. The GA is applied to CPT tables at the nodes of the network.

Clustering of both rows and columns is done for one node at a time. We perform value

clustering for two nodes at most, sequentially.

4. Testing of trained BNC. At this phase we compute posterior probabilities for each

class according to the learned structure and CPTS. The maximum value of posterior

probability decides class membership for every test instance.

5. Editing of BNC can be done after training. Links can be deleted from the

maximum spanning tree. Essentially it means that we can consider an arbitrary forest

over attribute nodes. Usually we had one or two edges remaining after editing.

6. Smoothing control is achieved via combination values of weights for P(xlc) and

P(x|y,c). The idea is to mix the actual value of conditional probability with its prior value.

61

Though this method was first introduced in Bayesian statistics in the late eighties, we

rediscovered it for our application independently. The idea is to balance between full link

and absence of link in a TAN structure.

P(xl y,c) = aP(x|c)+(1—a)P(x|y,c),

where y is a parent of x and a is weight. If a = 1, this is equivalent to a naive Bayesian

classifier. Ifa = 0, it gives us a general TAN. In our experiments with smoothing below,

the value a = 1/2 is used to gain benefits from both.

Testing of the Bayesian Network classification algorithms with value clustering

was done using two types of datasets: 4 datasets from the Machine Learning UC Irvine

repository and 3 datasets generated by the population genotype simulator written by the

author. All data was discrete and had 3-6 features with 3-4 possible states per feature.

Instances were drawn from 2 or 3 'classes. Table 3.3 provides necessary details about the

datasets.

Table 3.3. Characteristics of the datasets used in BNC experiments

Number of Number of

Datasets samples in samples In 2:253:er £3,213;3

training set test set

Hayes-Roth 1 32 28 3 3

Monk-1 124 432 6 2

Monk-2 169 432 6 2

Monk-3 122 432 6 2

Moderate 200 200 6 2

Strong 200 200 6 2

Weak 200 200 6 2

Monk’s test problems are often used in machine learning research. The instances of this

dataset describe robots by the following nominal features:

62

Head Shape E {round, square, octagon}, Body shape 6 {round, square, octagon}

Is smiling? 6 {yes, no}, Holding 6 {sword, balloon, flag}

Jacket colour 6 {red, yellow, green, blue}, Has tie? 6 {yes, no}

Monkl target hypothesis: (head shape = body shape) or (jacket colour = red).

Monk2 target hypothesis: Two and only two of the features assume their first listed value.

Monk3 target hypothesis: (jacket—colour = green and holding = sword) or (jacket-colour ¢

blue and body-shape ¢ octagon).

Another problem taken from Irvine repository is the Hayes-Roth dataset. The

target concept behind this dataset were described as following:

Class 1: (# of l's)>(# of 2's) for attribirtes 1—3

Class 2: (# of 2's)>(# of 1's) for attributes 1-3

Class 3: if 4 occurs for any attribute

Apparently, decision trees are appropriate in recovering such generation rules due to the

sirrrilarity of the hypothesis spaces. That is why we additionally ran all the tests through

the decision tree program C5. Three genetic data sets were created by the custom

program that sets the desired feature distributions (allelic frequencies) as well as degree

of correlation among the features. We created data sets with weak, moderate and strong

linkage. The features were pairwise correlated, namely each attribute was linked at most

to one more attribute. For example, the relations were 1-2, 3-4 and 5—6. Other, possible

pairs of features were considered independent. Therefore, we had good prior knowledge

of the distributions and were able to compare learned BN classifier structure with our

assumptions. Expected structure of classifiers for custom data sets is shown on Figure

3.15.

63

Figure 3.15. Underlying dependencies between the variables in the datasets “weak”,

“moderate” and “strong”.

Table 3.4. Classification accuracy of the compared classifiers over test sets (no

smoothing)

Data Set DT C50 Naive BNC-TAN I BNC-TAN 2

. Bayes with GA with GA

hayes-roth 92.9 88. 8 91.4 88.9

Monk-I 74.3 71.3 73.1 72.7

Monk-2 65.0 54.7 59.6 53.2

Monk-3 97.2 97.2 97.2 93.5

Strong 77.0 76 77.0 73.5

Moderate 77.0 72.5 76.5 71.0

Weak 66.0 70 70.0 67.5

Table 3.5. Classification accuracy on test sets with classifier smoothing (or='/2).

Data Set Naive Bayes BNC-TAN I

with GA

hayes-roth 88.8 90.3

monks-1 71.3 73.4

monks-2 54.7 59.1

monks-3 97.2 97.2

strong 76 76.5

moderate 72.5 73.0

weak 70 70.0

64

The experimental results indicate that value clustering has been able to improve on the

results of naive Bayes classifier for almost all datasets. Though the decision trees seem to

outperform probabilistic models on this data, this is to be expected Since their decision

rules match the target concepts very well. The genetic value clustering performed nearly

as well with probabilistically generated data with limited attribute dependencies.

3.7 Conclusions

The novelty of the approach is in adopting a genetic algorithm for clustering the values of

variables. In contrast, traditional genetic algorithm approaches for data mining operate on

the features as a whole by including/excluding them from a subset or adjusting the

appropriate weights. We take a further step and organize the search in the entire input

Space. The enhanced graph-based encoding has a much less redundant chromosome while

maintaining complete coverage of possible partitions, as we strictly prove. The

experiments performed demonstrate reduction in measurement complexity and

improvement in classification accuracy due to better reliability of meta-values.

It is possible to generalize and apply genetic clustering to a difficult problem of

parametric learning in the context of Bayesian networks. Bayesian network classifiers,

even augmented to trees over the feature nodes, require estimation of a much greater

number of parameters than a typical naive Bayes classifier. We demonstrate that the

conditional probability distribution in a Bayesian network can be considerably simplified

and learned from data with the help of GA value clustering.

65

Chapter 4

Genetic Programming with Local Learning

Data mining deals not only with discrete variables, but also with continuous values of

input and output variables. In this case a solution to a classification problem can be

obtained in the form of a model that relates continuous features in input and output.

Building a model, in fact, amounts to learning a function fitting given data samples,

which is an interpolation problem. Genetic programming is a modern tool for learning

arbitrary models from the given data using a special set of building blocks — node

functions.

The quest for more efficient Genetic Programming is an important research

problem. This is due to the fact that the high computational complexity of GP is among

its distinctive features [104]. Especially now, when variants of GP are being used on very

ambitious projects [78][127], the Speed and efficiency of evolution are very crucial for

such problems.

Numerous modifications of the basic GP paradigm [75] are currently known, e.g.

see [80] for a review. Among them, several researchers have considered GP

augmentation by hill climbing, simulated annealing and other stochastic techniques. In

66

[100] crossover and mutation are used as move operators of hill climbing, while

Esparcia-Alcazar and Sharman [30] considered optimization of extra parameters (node

gains) using simulated annealing. Terminal search was employed in [140], but due to the

associated computational expense it was limited to 2-4% of individuals. The presence of

stochasticity in local learning makes it relatively slow, even though some hybrid

algorithms yield overall improvement. Iba and Nikolaev [62] and Rodriguez-Vazquez

[115] considered least squares coefficient fitting limited to linear models. Apparently, the

full potential of local search optimization is yet to be realized.

The focus of this study is on a local adaptation of individual programs during the

GP process. We rely on gradient descent for improved generation of GP individuals. This

adaptation can be performed repeatedly during the lifetime of an individual. The results

of local learning may or may not be coded back into the genotype (reverse transcription)

based on the modified behavior, which is reported in the literature as Lamarckian and

Baldwinian learning, respectively. The resulting new fitness values affect the selection

process in both cases, which in turn changes the global optimization performance of a

GP. Such an interaction between local learning, evolution and associated phenomena

without reverse transcription is also generally referred to as the Baldwin effect.

67

Figure 4.1. Sample tree with a set of random constants. In hybrid GP all the leaf

coefficients are subjected to training.

We were motivated by a number of successful applications of hybridization to neural

networks [8][147][97]. Both neural networks and GP trees perform input-output mapping

using a number of adjustable parameters. In this respect, terminal values (leaf

coefficients) in a GP tree serve a Similar function to weights in a neural network. A form

of gradient descent is usually used to adjust weights in a neural net architecture. In

contrast, various terminal constants are typically random within GP trees and are rarely

adjusted by gradient methods. The reasons for this are twofold: the unavailability of

gradients/derivatives in some GP problems and the computational expense that is

assumed to exist in computing those gradients. However, the complexity of computing

derivatives is largely overestimated. In order to differentiate programs explicitly,

algorithmic differentiation [51] may be adopted. Algorithmic (computational)

differentiation is a technique that accurately determines values of derivatives with

essentially the same time complexity as found in the execution of the evaluation function

itself. In fact, gradients may often be computed as part of the function evaluation. This is

68

especially true for trees and at least potentially true for arbitrary non—tree programs.

Generalization of the algorithmic differentiation method for any program is possible,

given that the generated program computes numeric values, even in the presence of

loops, branches and intermediate variables. The main requirement is that the function be

piecewise differentiable. While not always correct, this is the case for a great majority of

engineering design applications. Moreover, it is also known that directional derivatives

can be computed with many non-smooth functions [51]. Knowledge of only gradient

direction, not its value, is often enough to optimize the values of parameters.

In this work we empirically compare conventional GP with a GP coupled with

terminal constant learning. The effectiveness of the approach is demonstrated on several

symbolic regression problems. Arithmetic operations have been chosen as the primitives

set in our GP implementation (for simplicity’s sake. While such functions make

differentiation easy, again, these techniques can be adapted to more difficult problems.

Our results indicate that inexpensive differentiation, along with Baldwin effect

learning, leads to a very fast form of GP. Significant improvement in accuracy is

achieved beyond that which could be achieved by either local search or more generations

of GP.

The Baldwin effect is known to change the inductive bias of the algorithm [134].

In the case of GP, where functional complexity is highly variable, it is expected that such

a change of bias can be properly quantified. Two manifestations of the learning bias were

observed in our experiments. Firstly, the selection process is affected by local learning

since the fitness of many individuals dramatically improves during their lifetime.

Secondly, changes in the functional complexity of individuals were observed in the

69

experiments. Both the length (number of nodes) of the best evolved programs and the

number of leaf coefficients were higher using local learning as opposed to regular GP.

4.1 Lamarckian versus Baldwinian Strategy in GP

Evolution rarely proceeds without phenotypic changes. As we are interested in digital

evolution, two dominating strategies have been proposed which allow environmental

fitness to affect genetic features. Lamarckian evolution, an alternative proposition to

Darwinian approaches of the time, claimed that traits acquired from individual experience

could be directly encoded into the genotype and inherited by offspring. In contrast,

Baldwin claimed that Lamarckian effects could be observed where no direct transfer of

phenotypic characteristic to the genotype occurred, in keeping with Darwinism. Rather,

Baldwin claimed that “innate” behaviors could be selected for (in a Darwinian sense)

which the individual originally had to learn. In Lamarckian evolution learning affects

fitness distribution as well as the underlying genotypic values, while the Baldwin effect is

mediated via the fitness results only. In our case, the question is whether locally learned

constants are copied back into the genotype (Lamarckian) or whether the constants are

unmodified while the individual’s fitness value reflects the fitness resulting from learning

(Baldwin).

Real algorithmic implementations of evolution coupled with local learning are much

richer than the two original strategies. The researcher, usually guided by the total

computational expense, may arbitrarily decide both the amount of and scheduling of

learning or local adaptation of solutions. Moreover, since local learning comes with a

70

price, it must be wisely traded off with genetic search costs. Several questions must be

answered:

0 What aspect of the solution should be learned beyond genetic search, as only a subset

of solution parameters may be chosen for adaptation?

0 Should learning be performed at every generation or should it be used as a form of

fine—tuning when genetic search is converged?

0 How many individuals and which of those individuals should have local learning

applied to them?

0 How many iterations of local learning should be done (really, how much

computational cost are we willing to incur)?

Accordingly, there are many ways to introduce local learning into GP. Evolution in GP is

both parametric and structural in nature. Two important features are specific to GP:

1. The fitness of the functional structure depends critically on the values of local

parameters. Even very fit structures may perform poorly due to inappropriate numeric

coefficients.

2. The fitness of the individual is highly context sensitive. Slight changes in structure

dramatically influence fitness and may require completely new parameters.

That is why we focus on learning numeric coefficients, so called Ephemeral Random

Constants or ERC [75], which are traditionally randomly generated as shown in Figure

4.1. As explained below, the local learning algorithm — gradient descent on the error

surface in the space of the individual’s coefficients, turns out to be a very inexpensive

approach, so much so that every individual can do local learning in every generation.

71

Formally we follow the Lamarckian principle of evolution since we allow the tuned

performance of individual to directly affect the genome by modifying numeric constants.

At the same time, the choice between Lamarckian and Baldwin strategies in our

implementation is not founded on the issue of computational complexity. In both cases

the amount of the extra work is approximately the same. The main issue arises when

considering the fitness values of the offspring with inherited coefficients vs. offspring

with unadjusted terminals. Our experiments indicate that there is little difference between

these two fitness values when crossover is the main operator. Two factors contribute to

this phenomenon:

1. Crossover usually generates individuals with significantly worse fitness than their

parents. The coefficients found earlier to be good for the parents are not appropriate

for the offspring structures. The subsequent local learning changes fitness

dramatically by updating the ERCS to more appropriate values.

2. Newly generated offspring are equally well adjusted starting from any values: earlier

trained, not trained or even random.

Hence, inheritance of the coefficients does not much help the performance of the

individuals created by crossover. However, if an individual is transferred to a new

generation as a part of the elitist pool, i.e. unchanged by crossover or mutation, then its

learned coefficients are also transferred. With respect to this structure, the use of the

Baldwinian strategy would be wasteful, Since it requires releaming the same parameters.

Thus, even though our implementation formally follows the Lamarckian strategy, we

effectively observe the very same phenomena peculiar to the Baldwin effect.

72

4.2 Hybrid Genetic Programming

The organization of the hybrid GP (HGP) in many respects is the same as that of the

standard GP. The only extra activity done by the HGP algorithm is to update the values

of numeric coefficients. That is, all individuals in the population are trained using a

simple gradient algorithm in every generation of the standard GP. Below we discuss the

exact formulation of the corresponding optimization problem.

The hybrid GP is intended to solve problems of a numeric nature, which may

include regression, recognition, system identification or control. We will assume

throughout that there are no non-differentiable nodes, such as Boolean functions. In

general, given a set of N input-output pairs (d,x),- it is required to find a mapping flx,c)

minimizing certain performance criteria, e. g. mean squared error (MSE):

Here, f is scalar function (generalization to multi-trees is trivial), x is vector of input

values, c is vector of coefficients and sum goes over the training samples. Of course, in

GP we are interested in discovering the mapping fix, c) in the form of a program tree.

That is, we seek not only coefficients c, but also the very structure of the mapping f,

which is not known in advance. In our approach, finding the coefficients is done by

gradient descent during the same time functional structures are evolved. Descriptions of

the standard GP approach can be found elsewhere (e.g. [80]), instead, we will focus

below on details of the local learning algorithm.

73

4.3 Learning leaf coefficients

Minimization of MSE is done by a few iterations of a simple gradient descent. At each

generation all numeric coefficients are updated several times using the rule:

a MSE (c)

d ck

where or is the learning rate, and k goes over all the coefficients at our disposal. Three

 ck —>ck—a'

important points must be discussed: how to find the derivatives, what the value of or

should be, and how many iterations (steps) of descent should be used.

From two previous equations we obtain:

dMSE(c) 2 N df(x.,c)
__._.___ d.— _, _r_

dck Nglx ' f(x, 0) dck

Thus, an immediate goal is to differentiate any current program tree with respect to any

of its leaves. The chain rule significantly simplifies computing of/dc. Indeed, if n,-(-)

denotes node functions, then:

df(n1(n2(n3(...),...),...)) 2 Of an, an2 man,(ck,...)

dck an1 an2 dn3 dck

Therefore differentiation of the tree Simply reduces to the product of the node derivatives

on the path which starts at the given leaf and ends at the root. It is clear that each term in

the product is a derivative of a node output with respect to its arguments (children). If the

paths from the different leaves share some common part, then corresponding sub—chains

in the derivatives are also shared. Computation of such a product in practice depends on

the data structure used for the program tree. In simple cases, differentiation uses a single

recursive postorder traversal together with the actual function evaluation. Derivatives of

74

the program tree with respect to all its leaves can be obtained simultaneously. As soon as

an entire sum in computing leaf coefficient correction becomes known, i.e. derivatives in

all training points obtained, one may need an extra sweep through the tree to update the

coefficients. In total, the incurred overhead depends on the complexity of node

derivatives and the number of leaves. For instance, in our implementation using only an

arithmetic functional set, the cost of differentiation was equal to the cost of function

evaluation, making the overall cost twice the standard GP cost for the same problem.

4.4 Program Differentiation in Detail

Let us consider details of on-the-fiy differentiation of programs represented by trees.

Potentially this technique can be generalized to programs of other structure as proved in

the area of algorithmic diflerentiation. We will assume that first-order derivatives for the

node functions exist. Program tree can be viewed as a complex nested

function: f (n,(n2(n3(...),...),...)), where n,(x,y) is a node function from a chosen

functional set. For example, the tree Shown in Figure 4.2 has equivalent representation as

a function:

f(x,y,z,c,,cz) = ((xxy)+cl)x((x—z)—(yxcz))

75

0 O O

x Y

Figure 4.2. Example of a function of 3 variables drawn as a tree. C1 and C2 are the leaf

coefficients

Here the node functions have two arguments. Nodes with only one argument can be

included too. Any node function with more than two arguments is trivial to decompose if

necessary. Though for the purpose of differentiation, it is only important to know the

derivatives of every function in the set with respect to each of its arguments (no matter '

what is the cOmplexity of the function).

The overall goal of GP is to find a function, which is the best fit for the training data.

Assuming that input is represented as x and desired output as y then it is required to find a

mappingf(x,c) minimizing mean squared error:

2

mInMSE:mIn (y,- —f(Xi,C))2

f’c f,C i=1

The sum goes over all given input-output pairs {y,-, x,}, and c is a set of parameters.

During GP search we are seeking both the structure and corresponding parameters. The

essence of the problem is how to find the best values of parameters c for a function f

which is not known in advance but is generated. In fact, we have many such functions,

because we work with the population of programs .If we are going to apply a gradient

76

descent then we have to be able to find the derivatives of this function. At first look, it

seems to be difficult, because the structure of f is not fixed, but created dynamically

during the search. However, algorithmic differentiation states that if one can compute the

value of a function, then we can compute a value of its derivative. The key, of course, is

that the programs are “computable”, i.e. comprised of elementary Operations. Therefore

this provides an opportunity to find the values of derivatives not approximately, but

exactly. This is important, since no estimation error is introduced, as it could be in case of

some sort of approximation, e.g. by finite differences. Also, the values of derivatives can

be found by essentially using the same code that represents the function. The only error in

the values is simply due to the nature of numerical computations.

For example, if we evaluate a function flx,y) = x2 + xy, at point x21, y=0, then we

hope to obtain the value of the derivate with respect to x: f,’(1,0)=2, or with respect to y:

fy’(1,0)=3, in addition to the value of the function itself: fl0,0)=l.

In general, in order to decrease the mean-squared error we have to adjust the value of

function’s parameter ck, by making a step in the direction opposite to gradient:

Such adjustments can be made for all or only some of the available parameters {ck}. AS

we already know, in order to compute an adjustment to the parameter ck it is required to

af(X.- ,C)

Ck

obtain and f(x,.,c). Note that the output of a function f(x,,c)iS computed for

af (xi ’c)
fitness evaluation anyway. Hence, it is desired to accomplish computation of ————at

dck

the same time.

77

Let us consider the simultaneous computation of function and its derivative with respect

to one parameter c. The free parameter c, is shown explicitly in Figure 4.3, while the rest

of the function is assumed to be sitting within the triangles and therefore is not relevant at

the moment. Differentiation by c gives:

9:: an,(n2(n3(n4(c,...),...),...),...) 2 an, an, dn3 dn4(c,...)

BC BC an2 dn3 an4 BC

This example shows that to compute a derivative of a function, one must multiply partial

derivatives on the path from c to the root. Let us work out the example in more details.

Consider the function f(x,y,c)= x*(c(x+y)-xy)+y. Suppose we would like to compute the

0

0A

.A

“A

 A
Figure 4.3. Example of a function for algorithmic differentiation with respect to a

parameter c.

3f(x. RC)
values flx=l,y=2,c=1) and

d c

. Again, we assume that

(1,2,1)

all the triangles are arbitrary subtrees not depending on parameter c.

Without the knowledge of analytical expression of a function f we compute it by

traversing the tree: if we store this function also as a tree, then we can evaluate it by

postorder traversal. However, it is required to introduce the auxiliary variable ‘df’,

78

associated with the parameter c, in which we will keep the value of the derivative. Hence

we obtain:

1. f=0, df=0, n4_left =1, n4_right=3

2. f=3 (=n4(n4_left=1, n4_right=3)), df=3, because we know that derivative of this ‘*’

node with respect to the left argument equals to the right argument. In general, we

make the distinction between the “left” and “right” derivatives, e. g. for “-”

(minus) or other asymmetric node functions.

3. f=1 (=n3(n3_left =3, n3_right=2)), df=3 (=3*1=df"l), because the “left”

“

derivative of “- node is 1.

4. f=1 (=n2(n2_left =1, n2_right=l)), df=3 (that is =3*1=df*1= df* n2_right)

5. as (=n1(n1_left =1, n1_right=2)), dfi3 (that is =3*l=df*1)

Therefore the result computed is: flx=1, y=2, c=1) = 3 and Qfl—S—X—fl (1 21) = 3. If there

C 9 9

is more then one point in the training set, then we- just found one term from the sum over

the dataset and need to repeat the same computations at other points (xi, yi), i=1..N. In this

situation we do not adjust the parameter c yet, but instead accumulate the value of

correction in some intermediate variable, say ‘delta’. Once, all terms in the sum over the

training set are found, then we finally update the parameter c.

Now it is clear how the general scheme works: we compute the value of the derivative

at the same time as we compute the function and using the same program flow as the

function itself.

There are many implementation dependent issues, which may influence how it is done

technically. E.g. how we allocated the ‘delta’ variable: if ‘delta’ is a pair (structure) of a

value and a pointer to c, then in order to update c, we don’t need to traverse tree again to

79

C1

o

o

0 c.

A

Figure 4.4. Example of a function for algorithmic differentiation with respect to 2

parameters C; and 6‘2.

find c. Also, the nodes now become pointers to structures, which keep pointers to not

only the node functions, but also to its derivatives (e.g. to “left” and “right” derivatives

for two-argument functions). Of course, we have to supply the GP with functional set and

corresponding set of derivatives.

Now let us consider a more complex example, where we have more than one

parameter. If we want to find derivatives with respect to several parameters than we also

can do it on the same pass through the tree. Suppose there are two parameters C] and cz.

In this case we have to carry three variables while traversing through the tree, f, df1, dfz.

We initialize the value of f at the very beginning of evaluation, and allocate df, only if

necessary.

There are some other potential savings because of the tree-specific structure. The

paths from c, and from C2 share common subpath to the root node. This means that the

values of some terms in the product of the chain derivative can be re-used for both

derivatives. Note that two terms 111—9’2.— are common in both derivatives. In fact, when

80

dfl and dfz are computed, their values will be multiplied by the same factors as soon as

their paths meet. For example, here the paths from cl and c; meet after the node n3. The

scheme can be generalized for any number of parameters - all the derivatives can be

computed on the same pass through the tree. It should work not only with trees but with

almost any program, because computations of derivatives mirror program flow. If, for

example, we have conditional control like “IF” or “FOR” then we only need to carefully

keep track of derivatives. In this case the implementation can be more complex, because

with “FOR” loops we could repeatedly go through the same “terminals” containing the

parameters, and therefore should avoid re-initializing the auxiliary variables like df.

In order to adjust the parameters c, sometimes we can sacrifice precision, because

we do not rely very much on the actual value of derivatives, but rather on their Sign. That

is, we mostly need to make a step in right direction, to either increase or decrease the

value of a parameter. Therefore, even if exact derivatives are not known (or don’t exist),

but only “directional” derivatives are known, we still can use them.

4.5 Learning rate and number of steps

In a Simple gradient descent algorithm, the proper choice of learning rate is very

important. Too large a learning rate may increase error, while too small a rate may

require many training iterations. It is also known that the simple gradient Cauchy rule

works better in the areas far from the vicinity of local minima [114]. Therefore we

decided to make the rate as large as possible without sacrificing the quality of learning.

After a few trials on the test problem of symbolic regression we fixed the learning rate to

81

M
S
E

o 2 4 6 8101214161820

iterations of gradient descent

Figure 4.5. Local learning strongly affects fitness of individuals. Typical learning

progress is illustrated using individuals from test problem f2.

the value 01:05. The same learning rate was used for all other test problems. If the

algorithm resulted in an increase in the error of an individual, the training was stopped

and no update to the individual's fitness was recorded. However, this problem did not

have any impact on overall quality of learning since it happened rarely, approximately 1

out of 10 successful individuals. Moreover, those individuals that had this problem

showed an error rate that was typically not reduced by any subsequent application of

gradient descent.

This simple local learning rule dramatically improved the fitness of individuals.

Figure 4.5 shows the decrease in MSE for typical individuals. It is important to note that

the most significant improvements happened after only the first few iterations of local

learning. Note that some individuals were improved by as much as 60% or more. We

decided that 3 steps of gradient descent was a good trade off between fitness gain and

82

effort overhead. Again, the number of iterations was never altered afterwards and is used

in all our experiments.

4.6 Experimental Design

The main goal of the empirical study is to compare the performance of the GP with and

without gradient-descent learning. Even though an overall Speed-up is very valuable, we

are also interested in other effects resulting from such learning. These effects have to be

properly quantified to Shed light on the internal mechanisms of the interaction between

learning and evolution. Three major issues are studied:

0 Improvement in search speed

0 Changes in fitness distribution and selection

0 Changes in the functional structure of the programs

The driver GP program included following major steps:

1. Initialization of the population using the “grow” method. Starting from a set of

random roots, more nodes and terminals are aggregated with equal probability until a

specified number of nodes are generated. The total number of nodes in the initial

population was chosen to be three times greater than the population size, which is

three functional nodes per individual on average.

2. Fitness evaluation and training (in HGP) of each individual. Mean squared error over

the given training set, as defined before, serves as an inverse fitness function since we

seek to minimize error. This stage includes parametric training in HGP given that the

individual has leaf coefficients.

83

7.

Termination criteria check. The number of function evaluations was the measure of

computational effort. For instance, every individual is evaluated only once in every

GP generation, but three times in every HGP generation if its parameters are trained

for three steps.

Tournament selection (tournament size = 2) of parents. Pairs are selected at random

with replacement and their number is equal to the population size. The better of the

two individuals becomes a parent at the next step.

Crossover and reproduction. Standard tree crossover is used. Each pair of parents

produces two offspring. Mutation with small probability pm=0.01 is applied to each

node. In addition, elitism was always used and the best 10% of the population

survive unchanged.

Pruning the trees with the Size exceeding predefined threshold value (24 nodes for

test problems described below).

Continue to step 2.

Test Problems

Five surface fitting problems were chosen as benchmarks.

rosy) = xy +sin(<x—1)<y+1>)

f2(x.y)=x4-x3+y2/2-y

f3(x. y) = 6sin(x)cos(y)

f4(x,y) = 8(2+x2 + fl“

f5(x,y)=x3/5+y3/2—y—x

84

For each problem 20 random training points (fitness cases) were generated in the range [—

3...3] along each axis. Figure 4.8 - 4.12 Show the desired surfaces to be evolved.

4.7 Experimental results

To compare the performance we made experiments with both hybrid and regular GP with

the same effort of 30,000 function evaluations in each run. All experiments were done

with a’population size of 100 and the arithmetic operators {+,-,*,%-protected} as the

function set with no ADFS. Initial leaf coefficients were randomly generated in the range

[-l...1]. Also, the pruning threshold was set to 24 nodes. If the number of nodes in an

individual grew beyond this threshold, a sub-tree beginning at some randomly chosen

node was cut from the individual. Each experiment was run 10 times and the MSE value

was monitored.

Our main results are shown in Figures 4.8-4.9 and also summarized in Table 4.1.

The success of the hybrid GP is quite remarkable. For all the test problems, the average

error of the best evolved programs was Significantly smaller (1.5 to 25 times) when

learning was employed. The first 20 — 30 generations usually brought most of these

improvements. The gap in error levels is wide enough to require the regular GP to use

hundreds more generations to achieve similar results. Certain improvements were also

observed for the average population fitness, but with lesser magnitude. The similarity of

each population’s average fitness indicates a high diversity and that not all offspring

reach small error values after local learning.

Another set of experiments included extra fine-tuning iterations performed only

after the regular GP terminates. Again, we run gradient optimization on the population

85

from the last GP generation. Each individual was tuned by applying 100 gradient descent

iterations. The results in Table 4.1 Show that this approach is not effective and did not

achieve the quality of result found in the HGP. This is a strong argument for Baldwin

effect, namely that another factor affecting search speed—up is a change in fitness

distribution that directly affects selection outcome. Learning introduces a bias that favors

individuals that are more able to adapt to local learning modifications. If we would

suppose that the selection bias does not occur, then the hybrid GP would be only a trivial

combination of genetic search and fine tuning. However, as we see from the results this is

not the case.

We attempted to measure some properties of HGP that would demonstrate this

synergy between local learning and evolution.

Table 4.1. Performance Comparison of Hybrid and Regular GP. All data collected after

30000 f.e. and averaged over 10 experiments.

Best MSE Ave. MSE Best MSE

Test

problem ,

HGP GP HGP GP GP + fine tuning

f, 0.009 0.26 0.47 0.80 0.233

f2 0.075 0.761 1.03 2.18 0.31

f3 2.32 6.22 5.98 6.59 6.21

f4 0.64 0.76 4.06 4.41 0.76

f5 0.097 0.36 0.27 0.78 0.30

First of all, a Baldwin effect in selection would mean that the results of some tournament

selections are reversed after local learning. Indeed, local learning adaptable individuals

86

 30_

25 ’ - Typical run __

: Ave. over 10 runs

20 : - -

15 :
II DI

t
o
u
r
n
a
m
e
n
t
s
r
e
v
e
r
s
e
d
,
%

till-“I‘M.

 0 llll Ill] lllJ [ll] llll 1L1! JJLI llll [All L_A_Ll

0 10 20 30 40 50 60 70 80 90 100

generations

Figure 4.6. Comparison of Selection Process in HGP and GP. Local learning changes

outcome of some tournaments used to select a mating pool.

win their tournaments due to improved fitness resulting from gradient descent. These

individuals would lose the same tournament in regular GP. Figure 4.6 shows both the

typical and average percentage of reversed tournaments in the problem f1. A sununary of

results for all the test problems is given Table 4.2.

It was found that the average percentage of selection changes remains the same

during the course of search for all test problems. Such a behavior would be expected if

selection pressure pushes offspring that are very adaptable, even when older elite

members are almost converged. An empirical measure of this degree of adaptability is

provided by the average gain in fitness achieved by newly generated offspring. The

values are given in Table 4.2. We do not include elite members in this statistic to

emphasize magnitude of learning from scratch. The average observed drop of MSE is

between 12% and 19% on all the test problems.

87

.
5

0
1

0
1

#
o
f
c
o
e
f
f
i
c
i
e
n
t
s
u
s
e
d

O

an

xxxxxxxxxx _m 1 IIKIKXKXI ‘13 m

cm Gd 0

en a; 0

mm ° Hybrid GP

' Regular GP -

mm W mm V”

- WW v'rvvvvvw vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv vwv

o I J l l J l l #1 l l l l l l l l l l l l l J l l l l l 1 l l l I 1 l l l l l l I.

0 10 20 30 40 50 60 70 80 90 100

generations

Figure 4.7: Typical dynamic of number of terminals (numeric coefficients) used

by the best program as a function of GP generations (for the test function fl).

What exactly makes one program more adaptable than the other? Clearly, it is the

functional structure of the program. For example, a program with no numeric leaves

cannot learn at all using the gradient local learning method described above.

Furthermore, a tree with no terminal arguments (inputs) containing only terminal

constants will always produce the same output and will not benefit from local learning.

Instead we have tried to understand what characteristics of adaptable programs are

unique.

Table 4.2. Effects of local learning

Difference in HGP Ave. MSE gain Complexity of the best programs,

Test selection VS. GP in for newly #coefficients / #nodes after the same

problems each generation on generated effort (30000 f.e.)

average, % offspring, % HGP GP

f, 7.7 16.5 16.0 / 22.4 12.2 / 21.2

f2 7.1 12.7 16.6 / 23.0 13.7 / 21.8

f3 8.4 15.1 17.5 / 23.5 11.8/20.4

f4 7.9 18.7 17.3 / 22.9 12.4 / 21.6

f5 7.4 15.0 17.0 / 23.1 12.9 / 21.8

88

f. (x, y) = xv + sin((x -1)(y + 1))

Regular GP

n
0
“
.

\
\

'r

‘
0
‘
:
\
‘
:
s

‘
5
‘
“

0

‘
\

\
n
k‘
1

\
\
‘

‘
\
‘
\
‘

F
"

11
.

9
:
5
" 6

‘
s

:1
0“

0

‘
0

\
\
e

‘
6

‘
5
‘
e

v
‘
g
‘

‘ .g
.

B

3
:
“

3
‘

‘
0 \ r \

Q
0 \
‘
.

‘
2
‘

\

"
.

\ a 6 8

i
O 5000 1 0000 1 5ND 20000 25000 30000

Iii]!

”If!”

irritating,

”IIII‘IIII

III“,

III
I] I

1,, (I‘ll

' O,,'I',’

' 33:32::
0 5WD 1 0000 15000 20000 25000 30000

functlon evaluatlons

Figure 4.8: Surface fitting test problems f1, f2 and respective learning curves

We have focused on the length (number of nodes) and on the number of coefficients in

the best evolved programs (remember, that length had an upper limit too). As Table 4.2

illustrates both values are noticeably greater for the programs evolved by HGP. This is

one illustration of the inductive bias of the hybrid algorithm. More adaptive programs use

more coefficients and consequently have lengthier representations. Also, the number of

the terminal inputs (x and y) in HGP results is Slightly less. Figure 4.7 shows typical

changes in the number of coefficients for a “best” individual on a generational scale for

both GP and HGP.

89

f3 (x, y) = 6 sin(x) cos(y)

0 \ . I

‘9\\\\\‘ sec/555'
\\ \\\\\§,s;o':ll

’. Q ‘\\‘ ‘\\‘9 0' ’I’

‘-2§\\\\\‘ v6%'I

\\‘§“‘i\‘:’:”

\}§\\‘.O.'

‘ \ \

‘ 9 \t
9 0 $“\\\““‘:~

,.,, . 0.. "6‘9‘3‘3‘3i‘ttfiiiiti:v~
“027.102" ‘0‘; \s‘é‘o“ ‘:~“‘ -

O ’ ‘
0’ :z:

2’“ o e e ‘4?»
0")... o a o\‘\0‘
0:”: O gy.

9:.

l

5:32”ng '1‘,I.
2,:3».,,’31:"!0’ O

o

o

o

~. “‘::“ ‘ -.

Saragossa:

Sesame. --
\\~\§§;:::o$;;:::}:§:i:£::s-

Reggae...
.. ‘::::O:o"¢,fia’a.

M

function evaluations

0.4

0.35

0.3

5000

1W0 15000 20000

functlon evaluations

10000 15000 20000

function evaluatlons

25000 30000

Figure 4.9. Surface fitting test problems f3, f4, f5 and respective learning curves.

90

4.8 Conclusions

We examined the effectiveness of gradient search optimization of numeric leaf values for

Genetic Programming. Genetic search for tree-like programs at the population level is

complemented by the optimization of terminal values at the individual level. Local

adaptation of individuals is made easier by algorithmic differentiation. We Show how

conventional random constants are tuned by gradient descent with minimal overhead.

Local learning in the form of gradient descent can be efficiently included into GP search.

Several experiments with symbolic regression problems are performed to demonstrate the

approach’s effectiveness. This learning provides a substantial improvement in both final

fitness and speed in reaching this fitness. Effects of local learning are clearly manifest in

both improved approximation accuracy and selection changes when periods of local and

global search are interleaved. Finally, the inductive bias of local learning is quantified.

The use of local learning creates a bias in the structure of the solutions, namely it prefers

structures that are more readily adaptable by local learning. This approach can have

significant impact on practical, engineering problems that are addressed by GP.

91

Chapter 5

Clustering Ensembles

In contrast to supervised classification, clustering is an inherently ill-posed problem,

whose solution violates at least one of the common assumptions about scale—invariance,

richness, and cluster consistency [72]. Different clustering solutions may seem equally

plausible without a priori knowledge about the underlying data distributions. Every

clustering algorithm implicitly or explicitly assumes a certain data model, and it may

produce erroneous or meaningless results when these assumptions are not satisfied by the

sample data. Thus the availability of prior information about the data domain is crucial

for successful clustering, though such information can be hard to obtain, even from

experts. Identification of relevant subspaces [2] or visualization [57] may help to

establish the sample data’s conformity to the underlying distributions or, at least, to the

proper number of clusters.

The exploratory nature of clustering tasks demands efficient methods that would

benefit from combining the strengths of many individual clustering algorithms. This is

the focus of research on clustering ensembles, seeking a combination of multiple

partitions that provides improved overall clustering of the given data. Clustering

ensembles can go beyond what is typically achieved by a Single clustering algorithm in

several respects:

92

I Robustness. Better average performance across the domains and datasets.

I Novelty. Finding a combined solution unattainable by any single clustering

algorithm.

I Stability and confidence estimation. Clustering solutions with lower sensitivity to

noise, outliers or sampling variations. Clustering uncertainty can be assessed from

ensemble distributions.

I Parallelization and Scalability. Parallel clustering of data subsets with subsequent

combination of results. Ability to integrate solutions from multiple distributed

sources of data or attributes (features).

Clustering ensembles can also be used in multiobjective clustering as a compromise

between individual clusterings with conflicting objective functions. Fusion of clusterings

using multiple sources of data or features becomes increasingly important in distributed

data mining, e.g., see review in [101]. Several recent independent studies

[29][35][38][39][109][124] have pioneered clustering ensembles as a new branch in the

conventional taxonomy of clustering algorithms [63][65].

The problem of clustering combination can be defined generally as follows: given

multiple clusterings of the data set, find a combined clustering with better quality. While

the problem of clustering combination bears some traits of a classical clustering problem,

it also has three major issues which are Specific to combination design:

1. Consensus function: How to combine different clusterings? How to resolve the

label correspondence problem? How to ensure symmetrical and unbiased consensus with

respect to all the component partitions?

2. Diversity of clustering: How to generate different partitions? What is the source

of diversity in the components?

93

3. Strength of constituents/components: How “weak” could each input partition be?

What is the minimal complexity of component clusterings to ensure a successful

combination?

Similar questions have already been addressed in the framework of multiple classifier

systems. Combining results from many supervised classifiers is an active research area

HIGH] 1] and it provides the main motivation for clustering combination. However, it is

not possible to mechanically apply the combination algorithms from the classification

(supervised) domain to clustering (unsupervised) domain. Indeed, no labeled training data

is available in clustering; therefore the ground truth feedback necessary for boosting the

overall accuracy cannot be used. In addition, different clusterings may produce

incompatible data labelings, resulting in intractable correspondence problems, especially

when the numbers of clusters are different. Still, the supervised classifier combination

demonstrates, in principle, how multiple outputs reduce the variance component Of the

expected error rate and increase the robustness of the solution.

From the supervised case we also learn that the proper combination of weak

classifiers [ll][43][59][71] may achieve arbitrarily low error rates on training data, as

well as reduce the predictive error. One can expect that using many simple, but

computationally inexpensive components will be preferred to combining clusterings

obtained by sophisticated, but computationally involved algorithms.

This research further advances ensemble methods in several aspects, namely, design

of new effective consensus functions, development of new partition generation

mechanisms and study of their clustering accuracy.

We offer a representation of multiple clusterings as a set of new attributes

characterizing the data items. Such a view directly leads to a formulation of the

combination problem as a categorical clustering problem in the space of these attributes,

94

or, in other terms, a median partition problem. Median partition can be viewed as the best

summary of the given input partitions. AS an optimization problem, median partition is

NP-complete [6], with a continuum of heuristics for an approximate solution.

This study focuses on the primary problem of clustering ensembles, namely the

consensus function, which creates the combined clustering. We Show how median

partition is related to the classical intra—class variance criterion when generalized mutual

information is used as the evaluation function. A consensus function based on quadratic

mutual information (QMI) is proposed and reduced to the k-means clustering in the space

of specially transformed cluster labels.

We also propose a new fusion method for unsupervised decisions that is based on a

probability model of the consensus partition in the space of contributing clusters. The

consensus partition is found as a solution to the maximum likelihood problem for a given

clustering ensemble. The likelihood function of an ensemble is optimized with respect to

the parameters of a finite mixture distribution. Each cOmponent in this distribution

corresponds to a cluster in the target consensus partition, and is assumed to be a

multivariate multinorrrial distribution. The maximum likelihood problem is solved using

the EM algorithm [25].

There are several advantages to QMI and EM consensus functions. These include:

(i) complete avoidance of solving the label correspondence problem, (ii) low

computational complexity, (iii) ability to handle missing data, i.e., missing cluster labels

for certain patterns in the ensemble (for example, when bootstrap method is used to

generate the ensemble).

Another goal of our work is to adopt weak clustering algorithms and combine their

outputs. Vaguely defined, a weak clustering algorithm produces a partition which is only

95

slightly better than a random partition of the data. We propose two different weak

clustering algorithms as the component generation mechanisms:

1. Clustering of random l-dimensional projections of multidimensional data. This

can be generalized to clustering in any random subspace of the original data space.

2. Clustering by splitting the data using a number of random hyperplanes. For

example, if only one hyperplane is used then data is Split into two groups.

Finally, this work compares the performance of different consensus functions. We

have investigated the performance of a family of consensus functions based on

categorical clustering including the co—association-based hierarchical methods

[39][40][41], hypergraph algorithms [124] and our new consensus functions.

Combination accuracy is analyzed as a function of the number and the resolution of the

clustering components. In addition, we study clustering performance when some cluster

labels are missing, which is often encountered in the distributed data or re-sampling

scenarios.

5.1 Related Work

Approaches to combination of clusterings differ in two main respects, namely the way in

which the contributing component clusterings are obtained and the method by which they

are combined. Fred [38] proposed to summarize various clustering results in a co-

association matrix. Co-association values represent the strength of association between

objects by analyzing how often each pair of objects appears in the same cluster. The final

clustering in [38] is determined using a voting-type algorithm applied to the co-

association matrix. Hence the co-association matrix serves as a similarity matrix for the

data items. Clusters are formed from the co-association matrix by linking the objects

96

whose co-association value exceeds a certain threshold. Further work by Fred and Jain

[38][39][40] also used co-association values, but instead of a fixed threshold, they

applied a hierarchical (single-link) clustering to the co-association matrix. These studies

use the k—means algorithm with various values of k and random initializations (for

selecting the k cluster centers) for generating the component clusterings. Specific

methods for combination of the k-means algorithm and agglomerative linkage algorithms

were proposed in [109].

Strehl and Ghosh [124] have considered three different consensus functions for

ensemble clustering: one is Similar to the evidence accumulation approach [39] [40], and

the other two methods are based on a hypergraph representation. All of them use various

hypergraph operations to search for a solution. The Cluster-based Similarity Partitioning

Algorithm (CSPA) [124] induces a graph from a co-association matrix and clusters it

using the METIS algorithm [69]. Hypergraph partitioning represents each cluster by a

hyperedge in a graph, where the nodes correspond to a given set of objects. Good

hypergraph partitions are found using minimal cut algorithms such as HMETIS [68]

coupled with the proper objective functions, which also control partition size. Hyperedge

collapsing operations are considered in another hypergraph-based Meta-Clustering

algorithm (MCLA) in [124]. The meta-clustering algorithm uses these operations to

determine soft cluster-membership values for each object.

A combination of partitions obtained from multiple bootstrap samples is

implemented in [29][35]. Both works pursued direct re-labeling approaches to the

correspondence problem. A re-labeling can be done optimally between two clusterings

using the Hungarian algorithm [103]. This was used in [29] to re-label each bootstrap

partition using a single reference partition. The reference partition is determined by a

97

single clustering of the entire data set. After an overall consistent re-labeling, voting can

be applied to determine cluster membership for each pattern.

Bagging of multiple k-means clustering results was done in [84] by clustering k-

means centers and assigning the objects to the closest cluster center. In fact, their

component clusterings do not keep information about the individual object labels but only

information about cluster prototypes. The k-means centers are “bagged” and clustered by

a hierarchical procedure. Such an approach is unique in that the components of the

combination and the final clustering are defined implicitly via prototypes rather than by

explicit labelings [84].

Kellam et al. [70] also combined clusterings through a type of co-association

matrix. However, this matrix is used only to find the clusters with the highest value of

support based on object co-occurrences. As a result, only a set of so-called robust clusters

- is produced which may not contain all the initial objects

A genetic algorithm is employed in [46] to produce the most stable partitions

from an evolving ensemble (population) of clustering algorithms along with a special

objective function. The objective function evaluates multiple partitions according to

changes caused by data perturbations and prefers those clusterings that are least

susceptible to those perturbations.

Dimitriadou et al. [24] proposed a voting/merging procedure that combines

clusterings pair-wise and iteratively. The cluster correspondence problem must be solved

at each iteration and the solution is not unique. Fuzzy membership decisions are

accumulated during the course of merging. The final clustering is obtained by assigning

each object to a derived cluster with the highest membership value.

The distributed clustering algorithm [67] constructs a global dendrogram for a set of

objects from multiple local models produced by single-link algorithms. Collective

98

hierarchical clustering combines dendrograms built on different subsets of features. The

global hierarchy uses a specific approximation of distance that is estimated based on

merging thresholds of component dendrograms. Recently, Fern and Brodley [34]

introduced random projections algorithm in the context of clustering ensembles similar to

one of the generation mechanisms considered in this paper. Generally clustering

ensembles approaches can be summarized as following:

Generative mech_anism_s (How to obtain different partitions?)

1. Apply various clustering algorithms [124]

2. Use a single algorithm

2.1. Different initialization and built-in randomness [38][39] [40] [41]

2.2. Different parameters [39]

2.3. Different subsets of data points

- Deterministic subsets [41][124]

- Resampling [29][35][94] without or with replacement (e.g., bootstrap)

2.4. Projecting data onto different subspaces [34] (and this study)

2.5. Different subset of features [124]

I Consensus functions (How to integrate multiple partitions?)

1. Using Co-association Matrix [38] [39] [40] [41]

- Single Link (SL)/ Minimum Spanning Tree (MST)

- Complete Link (CL)

- Average Link (AL)

- Ward, or other similarin based algorithms

2. (Hyper) Graph Partitioning [124][125]

- Hyper Graph Partition Algorithm (HGPA)

- Meta Clustering Algorithm (MCLA)

- Clustering Similarity Partition Algorithm (CSPA)

3. Information-theoretic methods, e.g. Quadratic Mutual Information (this study)

4. Voting Approach [29][35]

L 5. Mixture Model (this study)

Unique pIOperties of the space of cluster labels are exploited by several known consensus

functions that we briefly review.

99

Co-association Methods. Similarity between objects can be estimated by the number of

clusters shared by two objects in all the partitions of an ensemble. This similarity

definition expresses the strength of co-association of objects by a matrix containing the

values:

1 H

Si]. 2 S(x,,xj) 25,2160“ (xi),7rk (xj)), (5.1)

6(a,b)5{1, If azb

0, 1f a¢b.

Thus, one can use numerous similarity-based clustering algorithms by applying them to

the matrix of co-association values. It is also possible to construct more sophisticated

Similarity definitions when the ensemble II contains “soft” partitions. There are three

main concerns with this intuitively appealing approach. First, it has a quadratic

complexity In the number of patterns 0(N2). Second, there are no established guidelines

concerning which clustering algorithm should be applied, e.g. Single linkage or complete

linkage. The shapes of the clusters embedded in the space of clustering labels may or may

not reflect cluster shapes in the original space. Third, an ensemble with a small number of

clusterings may not provide a reliable estimate of the co-association values.

Hypergraph Methods. All the clusters in the ensemble partitions can be represented as

hyperedges on a graph with N vertices. Each hyperedge describes a set of objects

belonging to the same cluster. A consensus function is formulated as a solution to k-way

min-cut hypergraph partitioning problem. Each connected component after the cut

corresponds to a cluster in the consensus partition. Though the hypergraph partitioning

problem is NP-hard, efficient heuristics have been developed for its solution. However,

100

the cuts only remove hyperedges as a whole. Hypergraph algorithms seem to work the

best for nearly balanced clusters. For example, complexity of CSPA, HGPA and MCLA

is estimated in [124] as 0(kN2H), 0(kNH), and 0(k2NH2), respectively

Re-labeling and Voting Approach. If a label correspondence problem is solved for all

the given partitions, then a Simple voting procedure can be used to assign objects in

clusters. However, label correspondence is exactly what makes unsupervised

combination difficult. A heuristic approximation to consistent labeling is possible. All the

partitions in the ensemble can be re-labeled according to their best agreement with some

chosen reference partition. The reference partition can be taken as one from the

ensemble, or from a new clustering of the dataset. Also, a meaningful voting procedure

assumes that the number of clusters in every given partition is the same as in the target

partition. But this requires that the number of clusters in the target consensus partition is

known.

To summarize, existing consensus functions suffer from a number of drawbacks

that include complexity, heuristic character of objective function and uncertain statistical

status of the consensus solution. The next sections introduce new models of the clustering

combination that aim to overcome these drawbacks.

5.2 Representation of Multiple Partitions

Combination of multiple partitions can be viewed as a partitioning task itself. Typically,

each partition in the combination is represented as a set of labels assigned by a clustering

algorithm. The combined partition is obtained as a result of yet another clustering

algorithm whose inputs are the cluster labels of the contributing partitions. We will

101

assume that the labels are nominal values. In general, the clusterings can be “soft”, i.e.,

described by the real values indicating the degree of pattern membership in each cluster

in a partition. We consider only “hard” partitions below, noting, however, that

combination of “soft” partitions can be solved by numerous clustering algorithms and

does not appear to be more complex.

Suppose we are given a set of N data points X = {x.,. xN} and a set of H partitions

H={1t1,..., try} of objects in X. Different partitions of X return a set of labels for each

point x,, i=1,..., N:

x, ——> {n,(x,),n,(x,),...,n,, (x,)},

Here, H different clusterings are indicated and 75-09) denotes a label assigned to x,- by the

j—th algorithm. No assumption is made about the correspondence between the labels

produced by different clustering algorithms. Also no assumptions are needed at the

moment about the data input: it could be represented in a non—metric space or as an NXN

dissimilarity matrix. For Simplicity, we use the notation y,j =7rj(x,.) or y,- = rt(x,-). The

problem of clustering combination is to find a new partition rtC of data X that summarizes

the information from the gathered partitions H. Our main goal is to construct a consensus

partition without the assistance of the original patterns in X, but only from their labels Y

delivered by the contributing clustering algorithms. Thus, such potentially important

issues as the underlying structure of both the partitions and data are ignored for the sake

Of a solution to the unsupervised consensus problem. We emphasize that a Space of new

features is induced by the set TI. One can view each component partition IT,- as a new

feature with categorical values, i.e. cluster labels. The values assumed by the i-th new

feature are simply the cluster labels from partition 712,-. Therefore, membership of an object

102

x in different partitions is treated as a new feature vector y = 1t(x), an H-tuple. In this

case, one can consider partition TICJ-(x) as a feature extraction function. Combination of

clusterings becomes equivalent to the problem of clustering of H—tuples if we use only the

existing clusterings {m,..., fly}, without the original features of data X. Hence the

problem of combining partitions can be transformed to a categorical clustering problem.

Such a View gives insight into the properties of the expected combination, which can be

inferred through various statistical and information-theoretic techniques. In particular,

one can estimate the sensitivity of the combination to the correlation of components

(features) as well as analyze various sample size issues. Perhaps the main advantage of

this representation is that it facilitates the use of known algorithms for categorical

clustering [90][36] and allows one to design new consensus heuristics in a transparent

way. The extended representation of data X can be illustrated by a table with N rows and

(d+H) columns:

n1 nH

x1 x“ xld 1151(x1) nH(x1)

X2 3‘21 x2d 731062) 715rr(x2)

XN kle deJ k1t1(xN) “B(XNL

V

Original 0' features "New" H features

The consensus clustering is found as a partition rtc of a set of vectors Y = {y,} that

directly translates to the partition of the underlying data points {xi }.

5.3 A Mixture Model of Consensus

Our approach to the consensus problem is based on a finite mixture model for the

probability of the cluster labels y=1t(x) of the pattem/object x. The main assumption is

103

that the labels y,- are modeled as random variables drawn from a probability distribution

described as a mixture of multivariate component densities:

M

P(yi I6):Zaml)m(yllem)a (52)

m=l

where each component is parametrized by 0",. The M components in the mixture are

identified with the clusters of the consensus partition nc. The mixing coefficients 0;"

correspond to the prior probabilities of the clusters. In this model, data points {y,} are

presumed to be generated in two steps: first, by drawing a component according to the

probability mass function 0;", and then sampling a point from the distribution Pm(y|6’,,,).

All the data Y= {y 1}” are assumed to be independent and identically distributed. This
i=1

allows one to represent the log likelihood function for the parameters O={a1,..., cm,

91,..., 0M } given the data set Y as:

N N M

10gL<®IY>=logHP<y.I®>=ZlogZa.P.<y,-I9m>. (53>
i=1 i=1 m=l

The objective of consensus clustering is now formulated as a maximum likelihood

estimation problem. To find the best fitting mixture density for a given data Y, we must

maximize the likelihood function with respect to the unknown parameters O:

O’ = argmax log L(O|Y).

O

(5.4)

The next important step is to specify the model of component-conditional densities

Pm(y|6m). Note, that the original problem of clustering in the space of data X has been

transformed, with the help of multiple clustering algorithms, to a space of new

multivariate features y = 7t(x). To make the problem more tractable, a conditional

independence assumption is made for the components of vector y,-, namely that the

conditional probability of y,- can be represented as the following product:

104

H

Pm(Y,-I9m)=HP,,‘,j’(y,,-l9f,{’), (5'5)

“=1

To motivate this, one can note that ever: if the different clustering algorithms (indexed by

j) are not truly independent, the approximation by product in Eq. (5.5) can be justified by

the excellent performance of naive Bayes classifiers in discrete domains [34]. Our

ultimate goal is to make a discrete label assignment to the data in X through an indirect

route of density estimation of Y. The assignments of patterns to the clusters in RC are

much less sensitive to the conditional independence approximation than the estimated

values of probabilities P(y, | O), as supported by the analysis of naive Bayes classifier in

[27].

The last ingredient of the mixture model is the choice of a probability density

1Dnfif’(yij lofni’) for the components of the vectors y,-. Since the variables yij take on nominal

values from a set of cluster labels in the partition 79, it is natural to view them as the

outcome of a multinomial trial:

K(J')

‘ ' 5 ,k 5.6th)(yI9It{)):l—Izgjm(k) (Y I . (I

k=l

Here, without the loss of generality, the labels of the clusters in nj are chosen to be

integers in { 1,. ..,K(j)}. To clarify the notation, note that the probabilities of the outcomes

are defined as 19mm) and the product is over all the possible values of yij labels of the

partition IIj. Also, the probabilities sum up to one:

KU)

2:9,, (k) = 1, Vje {1,...,H}, vme {1,...,M}. (57)

For example, if thtlj-th partition has only two clusters, and possible labels are 0 and 1,

then Eq. (5.6) can be Simplified as:

(5.8)

p(1>r.,ln<1>\ — 4W /1_ 19 WI

105

The maximum likelihood problem in Eq. (5.3) generally cannot be solved in a closed

form when all the parameters O={a1,..., aM, 01,..., 0M} are unknown. However, the

likelihood function in Eq. (5.2) can be optimized using the EM algorithm. In order to

adopt the EM algorithm, we hypothesize the existence of hidden data Z and the

likelihood of complete data (Y, Z). If the value of z,- is known then one could immediately

tell which of the M mixture components was used to generate the point y,. The detailed

derivation of the EM solution to the mixture model with multivariate, multinomial

components is given in the Appendix. Here we give only the equations for the E- and M-

steps which are repeated at each iteration of the algorithm:

H

052.11 k . (durum k) (5 9)

Elam]: M FH =0) .

20411 (19;. ref”: "
n=1 j=l k=l

N

2 E [Zim]

a : 1:1 (5.10)

 19].," (k) = Ni=ll(, . (5.11)

2 6(yr'j’k)E[Zim]

i=1 k=l

The solution to the consensus clustering problem is obtained by a simple inspection of the

expected values of the variables E[z,-,,,], due to the fact that E[z,-,,,] represents the

probability that the pattern y,- was generated by the m-th mixture component. Once

convergence is achieved, a pattern y,- is assigned to the component which has the largest

Value for the hidden label z,-.

106

08 08

07- 1.2 .1 07» tOY tOY

06 . O1 06’ ON’

01 OY

0.4 - 0.4 ~

0.3 » 2 03~ OY

102 O 01'

0'21 .2 02 0.2» ox ex

01 OX

OJ » .22 01» O)(

0 0 4

o 01 02 03 04 05 0 01 02 03 04 05

08 08

07- 6E3 0E3 OYr 0(x 9(1

06- Ol\ 06» 0(1

.8 OP

0.5 - 03 .3 0.5» or .0,

04 . 04»

0.3 p A 0.3» .

6A O of, B

0.2 » OB QB 02» ’5 QB

0A QB

01 . Q/\ 01 ~ 6(1

0 0 4

o 01 02 03 04 0,5 0 01 02 03 04 05

Figure 5.1: Four possible partitions of 12 data points into 2 clusters. Different partitions

use different sets of labels.

Table 5.1 : Clustering ensemble and consensus solution

rtl It; It, 114 E [Zirl E [2,2] Consensus

yl 2 B X B 0.999 0.001 1

y2 2 A X or 0.997 0.003 1

y, 2 A Y B 0.943 0.057 1

y4 2 B X B 0.999 0.001 1

y5 1 A X [3 0.999 0.001 1

y6 2 A Y B 0.943 0.057 1

y7 2 B Y or 0.124 0.876 2

yg 1 B Y CI 0.019 0.981 2

y9 1 B Y B 0.260 0.740 2

ylo 1 A Y or 0.115 0.885 2

y” 2 B Y or 0.124 0.876 2

ylz 1 B Y or 0.019 0.981 2

107

It is instructive to consider a simple example of an ensemble. Figure 5.1 shows four

2-cluster partitions of 12 two-dimensional data points. The correspondence problem is

emphasized by the different label systems used by the partitions. Table 5.1 shows the

expected values of latent variables after 6 iterations of the EM algorithm and the resulting

consensus clustering. In fact, a stable combination appears as early as the third iteration,

and it corresponds to the true underlying structure of the data.

Our mixture model of consensus admits generalization for clustering ensembles

with incomplete partitions. Such partitions can appear as a result of clustering of

subsamples or resampling of a dataset. For example, a partition of a bootstrap sample

only provides labels for the selected points. Therefore, the ensemble of such partitions is

represented by a set of vectors of cluster labels with potentially missing components.

Moreover, different vectors of cluster labels are likely to miss different components.

Incomplete information can also arise when some clustering algorithms do not assign

outliers to any of the clusters. Different clusterings in the diverse ensemble can consider

the same point x,- as an outlier or otherwise, that results in missing components in the

vector y,. Yet another scenario leading to missing information can occur in clustering

combination of distributed data or ensemble of clusterings of non-identical replicas of a

dataset.

It is possible to apply the EM algorithm in the case of missing data [47], namely

missing cluster labels for some of the data points. In these situations, each vector y, in Y

Obs, yim’s). Incorporation of acan be Split into observed and missing components y,- = (y,-

missing data leads to a slight modification of the computation of E and M steps. First, the

expected values E[Zim lyiObS, O’] are now inferred from the observed components of vector

108

H

y,-, i.e. the products in Eq. (5.9) are taken over known labels: H ——> H . Additionally,

- ,obs
1:1 1:)

obs

one must compute the expected values E[z,-,,, yimjsl y, ,G’] and substitute them, as well as

E[z,~,,. l y,-°b’, O’], in the M-step for re-estimation of parameters r9,,,.(k). More details on

handling missing data can be found in [47].

Though data with missing cluster labels can be obtained in different ways, we

analyze only the case when components of y,- are missing completely at random [116]. It

means that the probability of a component to be missing does not depend on other

observed or unobserved variables. Note, that the outcome of clustering of data

subsamples (e.g., bootstrap) is different from clustering the entire data set and then

deleting a random subset of labels. However, our goal is to present a consensus function

for general settings. We expect that experimental results for ensembles with missing

labels are applicable, at least qualitatively, even for a combination of bootstrap

clusterings.

The proposed ensemble clustering based on mixture model consensus algorithm is

summarized below. Note that any clustering algorithm can be used to generate the

ensemble instead of the k-means algorithm shown in this pseudocode:

begin

for i=1 to H // H - number of clusterings

cluster a dataset rt (— k-means(X)

add partition to the ensemble 1'1: {11,11}

end

initialize model parameters O ={ a,,..., 0414, 01,. 0M }

do until convergence criterion is satisfied

compute expected values E[Zrm]. i=1..N, m=l..M

109

compute E[Zim yimis] for missing data (if any)

re-estimate parameters 19 (k), j=l..H, m=l..M, Vk
jm

end

rtc (xi) = index of component of z,- with the largest expected value, i=1..N

return rec // consensus partition

end

The value of M, number of components in the mixture, deserves a separate discussion

that is beyond the scope of this paper. Here, we assume that the target number of clusters

is predetermined. It should be noted, however, that the mixture model in unsupervised

classification greatly facilitates estimation of the true number of clusters [37]. Maximum

likelihood formulation of the problem specifically allows us to estimate M by using

additional objective functions during the inference, such as the minimum description

length of the model. In addition, the proposed consensus algorithm can be viewed as a

version of Latent Class Analysis (e.g. see [7]), which has rigorous statistical means for

quantifying plausibility of a candidate mixture model.

Whereas the finite mixture model may not be valid for the patterns in the original

Space (the initial representation), this model more naturally explains the separation of

groups of patterns in the space of “extracted” features (labels generated by the partitions).

It is somewhat reminiscent of classification approaches based on kernel methods which

rely on linear discriminant functions in the transformed space. For example, Support

Vector Clustering [9] seeks spherical clusters after the kernel transformation that

correspond to more complex cluster shapes in the original pattern space.

110

5.4 Information-theoretic consensus of clusterings

Another candidate consensus function is based on the notion of median partition. A

median partition O'is the best summary of existing partitions in II. In contrast to the co-

association approach, the median partition is derived from estimates of similarities

between attributes (i.e., partitions in II), rather than from similarities between objects. A

well-known example of this approach is implemented in the COBWEB algorithm in the

context of conceptual clustering [36]. The COBWEB clustering criterion estimates the

partition utility, which is the sum of category utility functions introduced by Gluck and

Corter [48]. In our terms, the category utility function U(0', m) evaluates the quality of a

candidate median partition TIC ={C1,...,CK} against some other partition II,- = {L‘1,...,

L‘K(,-)}, with labels Li,- for j—th cluster:

K K0) K0)

i 2 r 2

U(flC,7T,)=ZP(C,)ZP(LjIC,) ‘21)(10) , (5‘12)
r=l j=1 j=l

with the following notations: p(Cr) = |C,| / N, p(L'j) = IL‘J-I / N, and

p(L‘j |C,)=|L"j nC, |/|C, |.

The function U(rtc, It.) assesses the agreement between two partitions as the difference

between the expected number of labels of partition 7t,- that can be correctly predicted both

with the knowledge of clustering TLC and without it. The category utility function can also

be written as the Goodman-Kruskal index for the contingency table between two

partitions [49][93]. The overall utility of the partition Hg with respect to all the partitions

in II can be measured as the sum of pair-wise agreements:

lll

II

U(7IC,H) =2U(72C,7z,),
(5.13)

i=1

Therefore, the best median partition Should maximize the value of overall utility:

best

JZC =arg max U(7Z'C.H). (5.14)

C'

Importantly, Mirkin [93] has proved that maximization of partition utility in Eq. (5.13) is

equivalent to minimization of the square-error clustering criterion if the number of

clusters K in target partition TIC is fixed. This is somewhat suprising in that the partition

utility function in Eq. (5.14) uses only the between-attribute similarity measure of Eq.

(5.12), while the square-error criterion makes use of distances between objects and

prototypes. Simple standardization of categorical labels in {n1,...,7tH} effectively

transforms them to quantitative features [93]. This allows us to compute real-valued

distances and cluster centers. This transformation replaces the i-th partition 1:,- assuming

K(i) values by K(i) binary features, and standardizes each binary feature to a zero mean.

In other words, for each object x we can compute the values of the new features y, (x), as

follows:

53,306) = 5(Ejs7l,-(X))-p(L',-) , for j=l... K(i), i=1...H. (5-15)

Hence, the solution of median partition problem in Eq. (5.14) can be approached by the k-

means clustering algorithm operating in the space of features 53,]. if the number of target

clusters is predetermined. We use this heuristic as a part of empirical study of consensus

functions.

Let us consider the information-theoretic approach to the median partition

problem. In this framework, the quality of the consensus partition Inc is determined by the

112

amount of information I (it ,H) it shares with the given partitions in IT. Strehl and

Ghosh [124] suggest an objective function that is based on the classical Shannon

definition of mutual information:

H

a?" =argflmax [MOI—1),,“me I(rrC,II) =ZI(7IC,JI,), (5'16)

C i=1

K K(i) . C ,L‘.

[WC/[0:2 p(Cr,L’j)log p(' ll.) , (5.17)

r=l j=I p(C.)p(L,-)

Again, an optimal median partition can be found by solving this optimization problem.

However, it is not clear how to directly use these equations in a search for consensus.

We Show that another information-theoretic definition of entropy will reduce the mutual

information criterion to the category utility function discussed before. We proceed from

the generalized entropy of degree 5 for a discrete probability distribution P=(p1,...,pn)

[56]:

H5(P)=(21—S—1)"1[Zpis-l), s>0, s¢l (5.18)

i=1

Shannon’s entropy is the limit form of Eq.(5.18):

n

limHs (P) = —2 pi log pl. (5.19)

s—> 1 i=1 '

Generalized mutual information between O'and It can be defined as:

I‘(7z,7tC)=H‘(7r)-H‘(7r|7rc), (5.20)

Quadratic entropy (s = 2) is of particular interest, since it is known to be closely related to

classification error, when used in the probabilistic measure of inter-class distance. When

s = 2, generalized mutual information [(1tc, It,-) becomes:

113

K(i) . K K(i) .

p(L'j)2 -1]+ 22 p(C,)[Z p(L'j |C,)2 4)] 2

=1 r=l 1:] (5.21)J

12(7IC,7I,)=—2[

K(i) K(i)K

r 2 I
= 22 p(C,)Z p(L, lo) —22 p(Lj)2 = 2U(7rC,7r,).

r=l j=1 j=l

Therefore, generalized mutual information gives the same consensus clustering criterion

as the category utility function in Eq. (5.13). Moreover, the traditional Gini-index

measure for attribute selection also follows from Eqs. (5.12) and (5.21). In light of

Mirkin’s result, all these criteria are equivalent to within-cluster variance minimization,

after simple label transformation. Quadratic mutual information, mixture model and other

interesting consensus functions have been used in our comparative empirical study.

5.5 Combination of Weak Clusterings

The previous sections addressed the problem of clusterings combination, namely how to

formulate the consensus function regardless of the nature of individual partitions in the

combination. We now turn to the issue of generating different clusterings for the

combination. There are several principal questions. Do we use the partitions produced by

numerous clustering algorithms available in the literature? Can we relax the

requirements for the clustering components? There are several existing methods to

provide diverse partitions:

1. Use different clustering algorithms, e.g. k-means, mixture of Gaussians, spectral,

single—link, etc. [124].

2. Exploit built-in randomness or different parameters of some algorithms, e.g.

initializations and various values of k in k-means algorithm [39][40][84].

114

3. Use many subsamples of the data set, such as bootstrap samples [29][91].

These methods rely on the clustering algorithms, which are powerful on their

own, and as such are computationally involved. We argue that it is possible to generate

the partitions using weak, but less expensive, clustering algorithms and still achieve

comparable or better performance. Certainly, the key motivation is that the synergy of

many such components will compensate for their weaknesses. We consider two simple

clustering algorithms:

1. Clustering of the data projected to a random subspace. In the simplest case, the data

is projected on 1-dimensiona1 subspace, a random line. The k-means algorithm clusters

the projected data and gives a partition for the combination.

2. Random splitting of data by hyperplanes. For example, a single random hyperplane

would create a rather trivial clustering of d-dimensional data by cutting the hypervolume

into two regions.

We will show that both approaches are capable of producing high quality consensus

clusterings in conjunction with a proper consensus function.

5.5.1 Splitting by Random Hyperplanes

Direct clustering by use of a random hyperplane illustrates how a reliable consensus

emerges from low-informative components. The random splits approach pushes the

notion of weak clustering almost to an extreme. The data set is cut by random

hyperplanes dissecting the original volume of d—dimensional space containing the points.

Points separated by the hyperplanes are declared to be in different clusters. Hence, the

output clusters are convex. In this situation, a co-association consensus function is

115

I f 1

. ‘ ‘ ‘ ““““ pluster 2 "
A . ‘ l”: i,‘1'

A ”I, it o’.’.’ +

’I 3'. .J.’

. O 5 _ ’l’ :3: "I”

. ,I I." ------ 1 -plane
A l- ! .-' ,-

a I ,.. ’.

l,’ I." 2-p]gmes

A p I ..o' [,1'

L {1’53" ,-"’. -—-- 3-planes

cluster 1 _ 4-planes
a g I’ :' II."

0 I l J l I 1 A l L J L

0 0'5 distance x 1

Figure 5.2. Clustering by a random hyperplane: (a) An example of splitting 2-spiral

data set by a random line. Points on the same side of the line are in the same cluster. (b)

Probability of splitting two one-dimensional objects for different number of random

thresholds as a function of distance between objects.

appropriate since the only information needed is whether the patterns are in the same

cluster or not. Thus the contribution of a hyperplane partition to the co-association value

for any pair of objects can be either 0 or 1. Finer resolutions of distance are possible by

counting the number of hyperplanes separating the objects, but for simplicity we do not

use it here. Consider a random line dissecting the classic 2-spiral data shown in Figure

5.2(a). While any one such partition does little to reveal the true underlying clusters,

analysis of the hyperplane generating mechanism shows how multiple such partitions can

discover the true clusters.

Consider first the case of one-dimensional data. Splitting of objects in 1-

dimensional space is done by a random threshold in R1. In general, if r thresholds are

randomly selected, then (r+1) clusters are formed. It is easy to derive that, in 1-

dimensional space, the probability of separating two objects whose inter-point distance is

x is exactly:

116

P(split) =1—(1—x/L)’, (5.22)

where L is the length of the interval containing the objects, and r threshold points are

drawn at random from uniform distribution on this interval. Figure 5.2(b) illustrates the

dependence for L=1 and r=1,2,3,4. If a co-association matrix is used to combine H

different partitions, then the expected value of co-association between two objects is

H(1—P(split)), that follows from the binomial distribution of the number of splits in H

attempts. Therefore, the co-association values found after combining many random split

partitions are generally expected to be a non—linear and a monotonic function of

respective distances. The situation is similar for multidimensional data, however, the

generation of random hyperplanes is a bit more complex. To generate a random

hyperplane in d dimensions, we should first draw a random point in the multidimensional

region that will serve as a point of origin. Then we randomly choose a unit normal vector

u that defines the hyperplane. The two objects characterized by vectors p and q will be in

the same cluster if (up)(uq)>0 and will be separated otherwise (here ab denotes a scalar

product of a and b). If r hyperplanes are generated, then the total probability that two

objects remain in the same cluster is just the product of probabilities that each of

hyperplanes does not split the objects. Thus we can expect that the law governing the co-

association values is close to what is obtained in 1-dimensional space in Eq. (5.22).

Let us compare the actual dependence of co-association values with the function

in Eq. (5.22). Figure 5.3 shows the results of experiments with 1000 different partitions

by random splits of the his data set. The Iris data is 4-dimensional and contains 150

points. There are 11,175 pair-wise distances between the data items. For all the possible

pairs of points, each plot in Fig. 3 shows the number of times a pair was split. The

observed dependence of the inter-point “distances” derived from the co-association

117

1000 1000 . . . - 1 .

m m
o o
C C 4

59 i 59

1’ .2
'0 'U

c c

-9 .9.
H IO—i

52 .9
o o .

o o
m m
w m

m m
I I : J

O O ';.

o 4, o ,.

l O J 1

1000 1000

m ‘ m

U U

C > C

m m
4-1 4—0

.‘2 ‘ .9

'c _ '0

C C

.9 . .9
4—0 vo—l

-‘3 .9
o ' o

o o

(I) - U) .

U) (D

‘9 ~ . <9
0 .' o

O ' U 47.

O x l O i . I x 1 i 1 I 1

Figure 5.3. Dependence of distances derived from the co-association values vs. the actual

Euclidean distance x for each possible pair of objects in Iris data. Co-association matrices

were computed for different numbers of hyperplanes r =1,2,3,4.

values vs. the true Euclidean distance, indeed, can be described by the function in Eq.

(5.22).

Clearly, the inter-point distances dictate the behavior of respective co-association

values. The probability of a cut between any two given objects does not depend on the

other objects in the data set. Therefore, we can conclude that any clustering algorithm

that works well with the original inter-point distances is also expected to work well with

co-association values obtained from combination of multiple partitions by random splits.

However, this result is more of theoretical value when true distances are available, since

they can be used directly instead of co-association values. It illustrates the main idea of

118

the approach, namely that the synergy of multiple weak clusterings can be very effective.

We present an empirical study of the clustering quality of this algorithm in the

experimental section.

5.5.2 Combination of Clusterings in Random Subspaces

Random subspaces are an excellent source of clustering diversity that provides different

views of the data. Projective clustering is an active topic in data mining. For example,

algorithms such as CLIQUE [2] and DOC [105] can discover both useful projections as

well as data clusters. Here, however, we are only concerned with the use of random

projections for the purpose of clustering combination.

Each random subspace can be of very low dimension and it is by itself somewhat

uninformative. On the other hand, clustering in 1-dimensional space is computationally

cheap and can be effectively performed by k-means algorithm. The main subroutine of k-

means algorithm — distance computation — becomes d times faster in l-dimensional

space. The cost of projection is linear with respect to the sample size and number of

dimensions 0(Nd), and is less then the cost of one k—means iteration.

The main idea of our approach is to generate multiple partitions by projecting the data

on a random line. A fast and simple algorithm such as k—means clusters the projected

data, and the resulting partition becomes a component in the combination. Afterwards, a

chosen consensus function is applied to the components. We discuss and compare several

consensus functions in the experimental section.

119

1-d projected distribution

' ll total {

[3 class 1‘

30 i l

l ‘Cjclass 21

25 j

N O

r

#
o
f
o
b
j
e
c
t
s

a

 :_| 1‘“ i H
projected axis

U
!

(a) (b)

Figure 5.4. Projecting data on a random line: (a) A sample data with two identifiable

natural clusters and a line randomly selected for projection. (b) Histogram of the distribution

of points resulting from data projection onto a random line.

It is instructive to consider a simple 2—dimensional data set and one of its projections,

as illustrated in Fig. 5.4(a). There are two natural clusters in the data. This data looks the

same in any 1—dimensiona1 projection, but the actual distribution of points is different in

different clusters in the projected subspace. For example, Figure 5.4(b) shows one

possible histogram distribution of points in l-dimensional projection of this data. There

are three identifiable modes, each having a clear majority of points from one of the two

classes. One can expect that clustering by the k—means algorithm will reliably separate at

least a portion of the points from the outer ring cluster. It is easy to imagine that

projection of the data in Figure 5.4(a) on another random line would result in a different

distribution of points and different label assignments, but for this particular data set it will

always appear as a mixture of three bell—shaped components. Most probably, these modes

will be identified as clusters by the k-means algorithm. Thus each new l-dimensional

120

view correctly helps to group some data points. Accumulation of multiple views

eventually should result in a correct combined clustering.

The major steps for combining the clusterings using random l-d projections are

described by the following procedure:

begin

for i=1 to H //His the number of clusterings in the combination

generate a random vector u, s.t. |u|=1

project all data points {xj}: {yj}(—{uxj}, j=l...N

cluster projections {yj}: 1t(i)<——k—means({Yj})

and

combine clusterings via a consensus function: 0' <—{1t(i)}, i=1...H

return 0' // consensus partition

and

The important parameter is the number of clusters in the component partition it,-

returned by k-means algorithm at each iteration, i.e. the value of k. If the value of k is too

large then the partitions {m} will overfit the data set which in turn may cause

unreliability of the co-association values. Too small a number of clusters in {m} may not

be enough to capture the true structure of data set. In addition, if the number of

clusterings in the combination is too small then the effective sample size for the estimates

of distances from co-association values is also insufficient, resulting in a larger variance

of the estimates. That is why the consensus functions based on the co-association values

are more sensitive to the number of partitions in the combination (value of H) than

consensus functions based on hypergraph algorithms.

121

5.6 Empirical study

The experiments were conducted with artificial and real-world datasets, where true

natural clusters are known, to validate both accuracy and robustness of consensus via the

mixture model. We explored the datasets using five different consensus functions.

5.6.1 Datasets

Table 5.2 summarizes the details of the datasets. Five datasets of different nature have

been used in the experiments. “Biochemical” and “Galaxy” data sets are described in [1]

and [99], respectively.

Table 5.2. Characteristics of the datasets.

No. of No. of No. of Total no. Av. k-means

Dataset features classes points/class of points error (%)

Biochem. 7 2 21 38-3404 5542 47.4

Galaxy 14 2 2082-2110 4192 21.1

2-spirals 2 2 100-100 200 43.5

Half-rings 2 2 100-300 400 25.6

Iris 4 3 50-50-50 150 15.1

We evaluated the performance of the evidence accumulation clustering algorithms by

matching the detected and the known partitions of the datasets. The best possible

matching of clusters provides a measure of performance expressed as the misassignment

rate. To determine the clustering error, one needs to solve the correspondence problem

between the labels of known and derived clusters. The optimal correspondence can be

obtained using the Hungarian method for minimal weight bipartite matching problem

with 0(k3) complexity for k clusters.

122

5.6.2 Selection of Parameters and Algorithms

Accuracy of the QMI and EM consensus algorithms has been compared to six other

consensus functions:

1. CSPA for partitioning of hypergraphs induced from the co-association values.

Its complexity is 0(N2) that leads to severe computational limitations. We did not

apply this algorithm to “Galaxy” [99] and “Biochemical” [1] data. For the same

reason, we did not use other co-association methods, such as single—link clustering.

The performance of these methods was already analyzed in [38][39].

2. HGPA for hypergraph partitioning.

3. MCLA, that modifies HGPA via extended set of hyperedge operations and

additional heuristics.

4. Consensus functions operated on the co-association matrix, but with three

different hierarchical clustering algorithms for obtaining the final partition, namely

single-linkage, average—linkage, and complete-linkage.

First three methods (CSPA, HGPA and MCLA) were introduced in [47] and their code is

available at http://www.strehl.com.

The k—means algorithm was used as a method of generating the partitions for the

combination. Diversity of the partitions is ensured by the solutions obtained after a

random initialization of the algorithm. The following parameters of the clustering

ensemble are especially important:

i. H — the number of combined clusterings. We varied this value in the range [550].

ii. k — the number of clusters in the component clusterings {n1,. . ., RH} produced by

k-means algorithm was taken in the range [2.. 10].

123

iii. r — the number of hyperplanes used for obtaining clusterings {rtl,. . ., fly} by

random splitting algorithm.

Both, the EM and QMI algorithm are susceptible to the presence of local minima of

the objective functions. To reduce the risk of convergence to a lower quality solution, we

used a simple heuristic afforded by low computational complexities of these algorithms.

The final partition was picked from the results of three runs (with random initializations)

according to the value of objective function. The highest value of the likelihood function

served as a criterion for the EM algorithm and within—cluster variance is a criterion for

the QMI algorithm.

5.6.3 Experiments with Complete Partitions

Main results for each of the data sets are presented in Tables 5.3-7. The tables report the

mean error rate (%) of clustering combination from 10 independent runs for the relatively

large biochemical and astronomical data sets and from 20 runs for the other smaller data

sets.

First observation is that none of the consensus functions is the absolute winner. Good

performance was achieved by different combination algorithms across the values of

parameters k and H. The EM algorithm slightly outperforms other algorithms for

ensembles of smaller size, while MCLA is superior when number of clusterings H > 20.

However, ensembles of very large size are less important in practice. All co-association

methods are usually unreliable with number of clusterings H < 50 and this is where we

position the proposed EM algorithm. Both, EM and QMI consensus functions need to

estimate at least kHM parameters. Therefore, accuracy degradation will inevitably occur

with an increase in the number of partitions when sample size is fixed. However, there

was no noticeable decrease in the accuracy of the EM algorithm in current experiments.

124

+ +4 ‘ T

7 J * + * t 4

tr . t ’9 .

++ +*

. 9 . . + +

Z 9 . ” *** H. ’

2 . . 4 + + t «he... 3

¥ ' 4*
. 'ill :1”, +‘l‘ + 1"

.. ’91 {4. ~1 Jul] . 4* . + *-

o 3.5, ' I gr .0 * i} O C d“. I r

(l . 35%“; ‘ ‘ " * (Ck ’ ‘4‘ m ‘ (I

41:31?" ‘ + ‘)5 ‘ (be
’3 .9 I 4

v Q Q‘

C o o 9‘. .:' fig do I‘ ‘1

_ .“90999'” ‘f' .
"B(C' "Q.

:r . “ . ' ' -‘

T H 7 ' 313$. 51%?
[r . o

._n V

’) .L1 ’ o
(g: k C O p . (?0

.
I? <3 i .O ‘1 ,' “O

o o c ‘ i
Q? N m) (9 3

. - . “ r

00 ’
l 1 J

Figure 5.5: “2 spirals” and “Half-rings” datasets difficult for any centroid-based clustering

algorithms.

The EM algorithm also should benefit from the datasets of large size due to the improved

reliability of model parameter estimation.

A valuable property of the EM consensus algorithm is its fast convergence rate.

Mixture model parameter estimates nearly always converged in less than 10 iterations for

all the datasets. Moreover, pattern assignments were typically settled in 4-6 iterations.

Clustering combination accuracy also depends on the number of clusters M in the

ensemble partitions, or more precisely, on its ratio to the target number of clusters, i.e.

k/M. For example, the EM algorithm worked best with k=3 for Iris dataset, k=3,4 for

“Galaxy” dataset and k=2 for “Half-rings” data. These values of k are equal or slightly

greater than the number of clusters in the combined partition. In contrast, accuracy of

MCLA slightly improves with an increase in the number of clusters in the ensemble.

Figure 5.7 shows the error as a function of k for different consensus functions for the

galaxy data.

It is also interesting to note that, as expected, the average error of consensus clustering

was lower than average error of the k-means clusterings in the ensemble (Table 5.2) when

125

k is chosen to be equal to the true number of clusters. Moreover, the clustering error

obtained by EM and MCLA algorithms with k=4 for “Biochemistry” data [1] was the

same as found by supervised classifiers applied to this dataset [112].

5.6.4 Experiments with incomplete partitions

This set of experiments focused on the dependence of clustering accuracy on the number

of patterns with missing cluster labels. As before, an ensemble of partitions was

generated using the k-means algorithm. Then, we randomly deleted cluster labels for a

fixed number of patterns in each of the partitions. The EM consensus algorithm was used

on such an ensemble. The number of missing labels in each partition was varied between

10% to 50% of the total number of patterns. The main results averaged over 10

independent runs are reported in Table 5.8 for “Galaxy” and “Biochemistry” datasets for

various values of H and k. Also, a typical dependence of error on the number of patterns

with missing data is shown for Iris data on Figure 5.6 (H=5, k=3).

One can note that combination accuracy decreases only insignificantly for

“Biochemistry” data when up to 50% of labels are missing. This can be explained by the

low inherent accuracy for this data, leaving little room for further degradation. For the

“Galaxy” data, the accuracy drops by almost 10% when k=3,4. However, when just 10-

20% of the cluster labels are missing, then there is just a small change in accuracy. Also,

with different values of k, we see different sensitivity of the results to the missing labels.

For example, with k=2, the accuracy drops by only slightly more than 1%. Ensembles of

larger size H=10 suffered less from missing data than ensembles of size H=5.

126

Table 5.3: Mean error rate (%) for the “Galaxy” dataset.

Type of Consensus Function

H k EM QMI HGPA MCLA

5 2 18.9 19.0 50.0 18.9

5 3 11.6 13.0 50.0 13.5

5 4 11.3 13.0 50.0 11.7

5 5 13.9 18.0 50.0 14.3

5 7 14.5 21.9 50.0 15.6

5 10 13.4 31.1 50.0 15.4

10 2 18.8 18.8 50.0 18.8

10 3 14.9 15.0 50.0 14.8

10 4 11.6 11.1 50.0 12.0

10 5 14.5 13.0 50.0 13.6

15 2 18.8 18.8 50.0 18.8

15 3 14.0 13.3 50.0 14.8

15 4 11.7 11.5 50.0 11.6

15 5 12.9 11.5 50.0 12.9

20 2 18.8 18.9 50.0 18.8

20 3 12.8 11.7 50.0 14.3

20 4 11.0 10.8 50.0 11.5

20 5 16.2 12.1 50.0 12.3

18 _.___fi- j

17 —

16 —

CITOI' 15

rate 14

(%) 13

12

11

10

9 r r r r
0 ‘I O 20 30 4O 50

% of patterns with missing labels

Figure 5.6: Consensus clustering error rate as a function of the number of missing

labels in the ensemble for the Iris dataset, H=5, k=3.

5.6.5 Results of random subspaces algorithm

Let us start by demonstrating how the combination of clusterings in projected 1-

dimensional subspaces outperforms the combination of clusterings in the original

multidimensional space. Figure. 5.8(a) shows the learning dynamics for Iris data and k=4,

127

using average-link consensus function based on co-association values. Note that the

number of clusters in each of the components {n1,..., rtH} is set to k=4, and is different

from the true number of clusters (=3). Clearly, each individual clustering in full

multidimensional space is much stronger than any l-dim partition, and therefore with

only a small number of partitions (H<50) the combination of weaker partitions is not yet

effective. However, for larger numbers of combined partitions (H>50), 1-dim projections

together better reveal the true structure of the data. It is quite unexpected, since the k-

means algorithm with k=3 makes, on average, 19 mistakes in the original 4-dimensional

space and 25 mistakes in l-dimensional random subspace. Moreover, clustering in the

projected subspace is d times faster than in multidimensional space. However, the cost of

computing a consensus partition 0' is the same in both cases.

The results regarding the impact of value of k are reported in Figure 5.8(b), which

shows that there is a critical value of k for the Iris data set. This occurs when the average-

linkage of co-association distances is used as a consensus function. In this case the value

k=2 is not enough to separate the true clusters.

Table 5.4: Mean error rate (%) for the “Half-rings”

Type of Consensus Function

H k EM QMI CSPA HGPA MCLA

5 2 25.4 25.4 25.5 50.0 25.4

5 3 24.0 36.8 26.2 48.8 25.1

10 2 26.7 33.2 28.6 50.0 23.7

10 3 33.5 39.7 24.9 26.0 24.2

30 2 26.9 40.6 26.2 50.0 26.0

30 3 29.3 35.9 26.2 27.5 26.2

50 2 27.2 32.3 29.5 50.0 21.1

50 3 28.8 35.3 25.0 24.8 24.6

128

Table 5.5: Mean error rate (%) for the “Biochemistry” dataset.

Type of Consensus Function

H k EM QMI MCLA

5 2 44.8 44.8 44.8

5 3 43.2 48.8 44.7

5 4 42.0 45.6 42.7

5 5 42.7 44.3 46.3

10 2 45.0 45.1 45.1

10 3 44.3 45.4 40.2

10 4 39.3 45.1 37.3

10 5 40.6 45.0 41.2

20 2 45.1 45.2 45.1

20 3 46.6 47.4 42.0

20 4 37.2 42.6 39.8

20 5 40.5 42.1 39.9

30 2 45.3 45.3 45.3

30 3 47.1 48.3 46.8

30 4 37.3 42.3 42.8

30 5 39.9 42.9 38.4

50 2 45.2 45.3 45.2

50 3 46.9 48.3 44.6

50 4 40.1 39.7 42.8

50 5 39.4 38.1 42.1

Table 5.6: Mean error rate (%) for the “2-spirals”

Type of Consensus Function

H k EM QMI CSPA HGPA MCLA

5 2 43.5 43.6 43.9 50.0 43.8

5 3 41.1 41.3 39.9 49.5 40.5

5 5 41.2 41.0 40.0 43.0 40.0

5 7 45.9 45.4 45.4 42.4 43.7

5 10 47.3 45.4 47.7 46.4 43.9

10 2 43.4 43.7 44.0 50.0 43.9

10 3 36.9 40.0 39.0 49.2 41.7

10 5 38.6 39.4 38.3 40.6 38.9

10 7 46.7 46.7 46.2 43.0 45.7

10 10 46.7 45.6 47.7 47.1 42.4

20 2 43.3 43.6 43.8 50.0 43.9

20 3 40.7 40.2 37.1 49.3 40.0

20 5 38.6 39.5 38.2 40.0 38.1

20 7 45.9 47.6 46.7 44.4 44.2

20 10 48.2 47.2 48.7 47.3 42.2

129

e
r
r
o
r
r
a
t
e
(
%
)

Figure 5.7: Consensus error as a function of the number of clusters in

19.0 —

17.0 —

15.0 .

13.0 ~

9.0 —

7.0 —
5.0

3

k - number of clusters

4

the contributing partitions for Galaxy data and ensemble size H=20.

Table 5.7: Mean error rate (%) for the Iris

Type of Consensus Function

H k EM QMI CSPA HGPA MCLA

5 3 11.0 14.7 11.2 41.4 10.9

10 3 10.8 10.8 11.3 38.2 10.9

15 3 10.9 11.9 9.8 42.8 11.1

20 3 10.9 14.5 9.8 39.1 10.9

30 3 10.9 12.8 7.9 43.4 11.3

40 3 11.0 12.4 7.7 41.9 11.1

50 3 10.9 13.8 7.9 42.7 11.2

130

Table 5.8: Clustering error rate of EM algorithm as a function of the number of missing labels for

the large datasets

Missing "Galaxy" "Biochem."

H k labels (%) error (%) error (%)

5 2 10 18.81 45.18

5 2 20 18.94 44.73

5 2 30 19.05 45.08

5 2 40 19.44 45.64

5 2 50 19.86 46.23

5 3 10 12.95 43.79

5 3 20 13.78 43.89

5 3 30 14.92 45.67

5 3 40 19.58 47.88

5 3 50 23.31 48.41

5 4 10 11.56 43.10

5 4 20 11.98 43.59

5 4 30 14.36 44.50

5 4 40 17.34 45.12

5 4 50 24.47 45.62

10 2 10 18.87 45.14

10 2 20 18.85 45.26

10 2 30 18.86 45.28

10 2 40 18.93 45.13

10 2 50 19.85 45.35

10 3 10 13.44 44.97

10 3 20 14.46 45.20

10 3 30 14.69 47.91

10 3 40 14.40 47.21

10 3 50 15.65 46.92

10 4 10 1 1.06 39.15

10 4 20 1 1.17 37.81

10 4 30 11.32 40.41

10 4 40 15.07 37.78

10 4 50 16.46 41.56

131

k=4

-O- 4—d k—means

#
m
i
s
a
s
s
i
g
n
e
d
o
b
j
e
c
t
s

N O

\ \ —°— l-d k-rneans

18 — \

‘~ -' ~0- - —* — —

16 — -'.~ § __ fi

14 1 I I 1 l l

0 5 10 50 100 500 1000

H, number of combined clustererings

44

39 ‘

#
m
i
s
a
s
s
i
g
n
e
d
o
b
j
e
c
t
s

H, number of combined clustererings

Figure 5.8. Performance of random subspaces algorithm on Iris data. (a) Number of

errors by the combination of k-means partitions (k=4) in multidimensional space and

projected 1-d subspaces. Average-link consensus function was used. (b) Accuracy of

projection algorithm as a function of the number of components and the number of

clusters k in each component.

The role of the consensus function is illustrated in Figure 5.9. Three consensus

functions are compared on the his data set. They all use similarities from the co-

132

association matrix but cluster the objects using three different criterion functions, namely,

single link, average link and complete link. It is clear that the combination using single-

link performs significantly worse than the other two consensus functions. This is

expected since the three classes in Iris data have hyperellipsoidal shape. More results

were obtained on “half-rings” and “2 spirals” data sets in Figure 5.5, which are

traditionally difficult for any partitional centroid-based algorithm. Table 5.9 reports the

error rates for the “2 spirals” data using seven different consensus functions, different

numbers of component partitions H = [5..500] and different numbers of clusters in each

component k = 2, 4, 10. Similar results were obtained for the “half-rings” data set under

the same experimental conditions and same intermediate values of k. As we see, the

single-link consensus function performed the best and was able to identify both the ‘half-

rings’ clusters as well as spirals. In contrast to the results for Iris data, average-link and

complete-link consensus were not suitable for these data sets.

133

Table 5.9. “2 Spirals” data experiments. Average error rate (% over 20 runs) of

clustering combination using the random l-d projections algorithm with different

number of components in combination H, different resolutions of components k and

seven types of consensus functions.

Type of Consensus Function

H, # of k, # of CI. in Co-association methods Hypergraph methods Medan partition

corrrponents component Single Average Corrplete CSPA HGPA MCLA QM

link link link

5 2 47.8 45.0 44.9 41 .7 50.0 40.8 40.0

10 2 48.0 44.3 43.1 41.6 50.0 40.4 40.0

50 2 44.2 43.5 41.6 43.1 50.0 41.1 39.3

100 2 46.2 43.9 42.1 46.2 50.0 43.2 42.6

200 2 44.5 42.5 41 .9 43.3 50.0 40.1 40.7

500 2 41 .6 43.5 39.6 46.4 50.0 44.0 43.3

5 4 48.6 45.9 46.8 43.4 44.9 43.8 44.7

10 4 47.4 47.5 48.7 44.1 43.8 42.6 44.0

50 4 35.2 48.5 46.2 44.9 39.9 42.3 44.2

100 4 29.5 49.0 47.0 44.2 39.2 39.5 42.9

200 4 27.8 49.2 46.0 47.7 38.3 37.2 39.0

500 4 4.4 49.5 44.0 48.1 39.4 45.0 43.4

5 10 48.0 42.6 45.3 42.9 42.4 42.8 45.3

10 10 ‘ 44.7 44.9 44.7 42.4 42.6 42.8 44.2

50 10 9.4 47.0 44.3 43.5 42.4 42.2 42.8

100 10 0.9 46.8 47.4 41.8 41.1 42.3 44.2

200 10 0.0 47.0 45.8 42.4 38.9 44.5 40.0

500 10 0.0 47.3 43.4 43.3 35.2 44.8 37.4

This observation supports the idea that the accuracy of the consensus functions based

on co-association values is sensitive to the choice of data set. In general, one can expect

that average-link (single-link) consensus will be appropriate if standard average-link

(single-link) agglomerative clustering works well for the data and vice versa. Moreover,

none of the three hypergraph consensus functions could find a correct combined partition.

This is somewhat surprising given that the hypergraph algorithms performed well on the

his data. However, the Iris data is far less problematic because one of the clusters is

linearly separable, and the other classes are well described as a mixture of two

multivariate normal distributions.

134

59 .

54L

3 49 r“,
n . , «6..

$44 L x .,e‘ 9," "~49

in 9. .. . ' . ' s‘ ,’

g 39 » o .‘ ,'

5: 34 r “ ,’

a o -—o-— Aver.Link

,g 29 ' - «v - Single Link

,5 24 ‘k —=~—-Compl.Link

19 l

14 "

5 10 50 100 200 500 750 1000

H , number of combined clusterings

Figure 5.9. Dependence of accuracy of the projection algorithm on the type of

consensus function for Iris data set. k=3.

Perfect separation of natural clusters was achieved with a large number of partitions

in clustering combination (H > 200) and for values of k > 3 for “half-rings” and “2

spirals”. Again, it indicates that for each problem there is a critical value of resolution of

component partitions that guarantees good clustering combination. This further supports

the work of Fred and Jain [40] [41] who showed that a random number of clusters in each

partition ensures a greater diversity of components. We see that the minimal required

value of resolution for the Iris data is k=3, for “half-rings” it is k=2 and for “2 spirals” it

is k=4. In general, the value of k should be larger than the true number of clusters.

The number of partitions affects the relative performance of the consensus functions.

With large values of H (>100), co-association consensus becomes stronger, while with

small values of H it is preferable to use hypergraph algorithms or the k-means median

partition algorithm.

It is interesting to compare the combined clustering accuracy with the accuracy of

some of the classical clustering algorithms. For example, for Iris data the EM algorithm

135

has the best average error rate of 6.17%. In our experiments, the best performers for Iris

data were the hypergraph methods, with an error rate as low as 3%, with H > 200 and k >

5. For the “half—rings” data, the best standard result is 5.25% error by the average-link

algorithm, while the combined clustering using the single-link co—association algorithm

achieved a 0% error with H > 200. Also, for the “2 spirals” data the clustering

combination achieves 0% error, the same as by regular single-link clustering. Hence, with

an appropriate choice of consensus function, clustering combination outperforms many

standard clustering algorithms. However, the choice of good consensus function is

similar to the problem of choice of a good conventional clustering algorithm. Perhaps a

good alternative to guessing the right consensus function is simply to run all the available

consensus functions and then pick the final consensus partition according to the partition

utility criterion in Eq. (5.21). We hope to address this in future applications of the

method.

136

120

100 ~

80 ~

60 ~

40 ~

20 ~

0 ,_ a—

10 50 100 200 500 750

of clusterings

120

100

80

60 -I— r=3 Single Link

+ r=3 Av Link

40 -n- r=3 Complete Link

20

0 I l l I 4

1O 50 100 200 500 750

of clusterings

Figure 5.10. Number of misassigned points by random hyperplanes algorithm in

clustering of “2 spiral” dataset: (a) for different number of hyperplanes (b) for different

consensus functions.

Another set of experiments was performed on the “Galaxy” dataset, which has a

significantly larger number of samples, N = 4192, and number of features, d = 14. The

task is to separate patterns of galaxies from stars. We used the most difficult set of

“faint” objects from the original data [99]. True labels for the objects were provided

manually by experts. Even though computation of component partitions is d times faster

137

due to projection, overall computational effort can be dominated by the complexity of

computing the consensus partition. Quadratic computational complexity effectively

prohibits co-association based consensus functions from being used on large data sets,

since 0(N2) factor arises when the co-association matrix is built for all the objects.

Therefore, for large datasets we do not use the three hierarchical agglomerative methods

or the CSPA hypergraph algorithm by Strehl and Ghosh [124]. The k-means algorithm

for median partition via QMI is the most attractive in terms of speed, with a complexity

0(kNH). In addition, we also used two other hypergraph-based consensus functions, since

they worked fast in practice. Table 5.10 reports the achieved error rate using these

consensus functions. Also we limited the number of components in combination to H=20

because of the large data size. The results show that the k-means algorithm for median

partition has the best performance. HGPA did not work well due to its bias toward

balanced cluster sizes, as also happened in the case of the “half-rings” data set. We see

that the accuracy improves when the number of partitions and clusters increases.

It is important to note that the average error rate of the standard k-means algorithm

for the “Galaxy” data is about 20%, and the best known solution has an error rate of

18.6%. It is quite significant that the k-means median partition algorithm and MCLA

obtained a much better partition with an error rate of only around 13% for k>3.

5.6.6 Results of random splitting algorithm

The same set of experiments was performed with clustering combination via splits by

random hyperplanes as in Section 5.1. Here we would like to emphasize only the main

and the most interesting observations, because the results in many details are close to

what has been obtained by using random subspaces. There is a little difference in terms

138

Table 5.10. Average error rate (%, over 20 runs) of combination clustering using random

projections algorithm on “Galaxy/star” data set.

Type of Consensus

H , # 0f k , # 0f Cl. Hypergraph methods Median partition

component component HGPA MCLA QMI

5 2 49.7 20.0 20.4

10 2 49.7 23.5 21.1

20 2 49.7 21.0 18.0

5 3 49.7 22.0 21.7

10 3 49.7 17.7 13.7

20 3 49.7 15.8 13.3

5 4 49.7 19.7 16.7

10 4 49.7 16.9 15.5

20 4 49.7 14.1 13.2

5 5 49.7 22.0 22.5

10 5 49.7 17.7 17.4

20 5 49.6 15.2 12.9

of absolute performance: the random hyperplanes algorithm is slightly better on the

“half-rings” data using te single-link consensus function, about the same on “2 spirals”,

and worse on the Iris data set.

It is important to distinguish the number of clusters k in the component partition

and the number of hyperplanes r, because hyperplanes intersect randomly and form

varying numbers of clusters. For example, 3 lines can create anywhere between 4 and 7

distinct regions in a plane.

The results for the “2 spirals” data set also demonstrate the convergence of

consensus clustering to a perfect solution when H reaches 500 and for the values of r =

2,...,5. See Figure 5.10(a). A larger number of hyperplanes (r=5) improves the

convergence. Figure 5.10(b) illustrates that the choice of consensus function is crucial for

successful clustering. In the case of the “2-spirals” data, only single-link consensus is

able to find correct clusters.

139

5.7 Adaptive Clustering Ensembles

As we previously discussed, several methods to create partitions for clustering ensembles

are known. For example, one can use: (i) different regular clustering algorithms [124], (ii)

different initializations, parameter values or built-in randomness of a specific clustering

algorithm [38], (iii) weak clustering algorithms, (iv) data resampling [29][35][91]. All

these methods generate ensemble partitions independently, in the sense that the

probability to obtain the ensemble consisting of H partitions {7a, 7t2,...,7rH} of the given

data D can be factorized:

p({rtl,7z2,...,7r,, } | D) = H [902, | D)

:=1

Hence, the increased efficacy of an ensemble is mostly attributed to the number of

identically distributed and independent partitions, assuming that a partition of data is

treated as a random variable 7:. Even when the clusterings are generated sequentially, it is

traditionally done without considering previously produced clusterings:

p(flt |flt—l’”t—2"°"7Z-1;D) : p(flr |D)

However, similar to the ensembles of supervised classifiers using boosting algorithms

[43], a more accurate consensus clustering can be obtained if contributing partitions take

into account the solutions found so far. Unfortunately, it is not possible to mechanically

apply the decision fusion algorithms from the supervised (classification) to the

unsupervised (clustering) domain. New objective functions for guiding partition

generation and the subsequent decision integration process are necessary.

140

We propose an adaptive approach to partition generation that makes use of

clustering history. In clustering, ground truth in the form of class labels is not available.

Therefore, we need an alternative measure of performance for an ensemble of partitions.

We determine clustering consistency for data points by evaluating a history of cluster

assignments for each data point within the generated sequence of partitions. Clustering

consistency serves for adapting the data sampling to the current state of an ensemble

during partition generation. The goal of adaptation is to improve confidence in cluster

assignments by concentrating sampling distribution on problematic regions of the feature

space. In other words, by focusing attention on the data points with the least consistent

clustering assignments, one can better approximate (indirectly) the inter-cluster

boundaries. To achieve this goal, we address the problems related to estimation of

clustering consistency and of finding a consensus clustering. Then we evaluate, the

performance of adaptive clustering ensembles on a number of real-world and artificial

data sets in comparison with more conventional clustering ensembles of bootstrap

partitions

5.7.1 Adaptive sampling and clustering

While there are many ways to construct diverse data partitions for an ensemble, not

all of them easily generalize to adaptive clustering. Our approach extends the studies of

ensembles whose partitions are generated via data resampling [29][35]. Intuitively,

clustering ensembles generated by other methods can be also boosted. It was shown [91]

that small subsamples generally suffice to represent the structure of the entire data set in

141

the framework of clustering ensembles. Subsamples of small size can reduce

computational cost for many exploratory data mining tasks with distributed sources of

data [101].

Let D be a data set of N points that is available either as an Nxd pattern matrix in d-

dimensional space or an NXN dissimilarity matrix. Suppose that X = {X1,...,X,,} is a set

of H subsamples of size N drawn with replacement from the given data D. A chosen

clustering algorithm is run on each of the samples in X that results in H partitions H={ 7:1,

7:2,..., 7Z'H}. Each component partition in H is a set of non-overlapping and exhaustive

clusters with 7;: {C1, 21,.” C12“) }, X, = Cli U...UC,2(,-), V7;- and K(i) is the number

of clusters in the i-th partition.

The problem of combining partitions is to find a new partition 0'={C1,...,CM} of

the entire data set D given the partitions in H, such that the data points in a cluster of 0'

are more similar to each other than to points in different clusters of 0'. We assume that the

number of clusters M in the consensus clustering is predefined and can be different from

the number of clusters k in the ensemble partitions. In order to find this target partition 0',

one needs a consensus function utilizing information from the partitions {75-}. Several

known consensus functions [41][124] can be employed to map a given set of partitions

I'I={ 7:1, 7t2,..., 7221} to a target partition Gin our study.

The adaptive partition generation mechanism is aimed at reducing the variance of

inter-class decision boundaries. Unlike the regular bootstrap method that draws

subsamples uniformly from a given data set, adaptive sampling favors points from

regions close to the decision boundaries. At the same time, the points located far from the

142

Figure 5.11. Two possible decision boundaries for a 2—cluster data set. Sampling

probabilities of data points are indicated by gray level intensity at different iterations (to

< t1< t2) of the adaptive sampling. True components in the 2-class mixture are shown as

circles and triangles.

boundary regions will be sampled less frequently. It is instructive to consider a simple

example that shows the difference between ensembles of bootstrap partitions with and

withoUt the weighted sampling. Figure 5.11 shows how different decision boundaries can

separate two natural classes depending on the sampling probabilities. Here we assume

that the k-means clustering algorithm is applied to the subsamples. Initially, all the data

points have the same weight, namely, the sampling probability p,- = %v, ie[l,...,N].

Clearly, the main contribution to the clustering error is due to the sampling variation that

causes an inaccurate inter-cluster boundary. In contrast, solution variance can be

significantly reduced if sampling is increasingly concentrated only on the subset of

objects at iterations t2 > t1>to, as demonstrated in Figure 5.11.

The key issue in the design of the adaptation mechanism is the updating of

probabilities. We have to decide how and which data points should be sampled as we

collect more and more clusterings in the ensemble. A consensus function based on the co-

association values [38] provides the necessary guidelines for adjustments of sampling

143

probabilities. Remember that the co-association similarity between two data points x and

y is defined as the number of clusters shared by these points in the partitions of an

ensemble II:

A consensus clustering can be found by using an agglomerative clustering

algorithm (e.g., single linkage) applied to such a co—association matrix constructed from

all the points. The quality of the consensus solution depends on the accuracy of similarity

values as estimated by the co-association values. The least reliable co-association values

come from the points located in the problematic areas of the feature space. Therefore, our

adaptive strategy is to increase the sampling probability for such points as we proceed

with the generation of different partitions in the ensemble.

The sampling probability can be adjusted not only by analyzing the co-association

matrix, which is of quadratic complexity 0(N2), but also by applying the less expensive

0(N+K3) estimation of clustering consistency for the data points. Again, the motivation is

that the points with the least stable cluster assignments, namely those that frequently

change the cluster they are assigned to, require increased presence in the data

Table 5.11: Consistent re-labeling of 4 partitions

1t, n2 n3 7:4 nl' 112' 113' 714' Consistency

X1 2 B X 01 2 1 2 1 0.5

X2 2 A X 0t 2 2 2 1 0.7

X3 2 A Y B 2 2 1 2 0.7

x. 2 B X l3 2 1 2 2 0.7

x5 1 A x B 1 2 2 2 0.7

X6 2 A Y B 2 2 1 2 0.7

X7 2 B X a 2 1 2 1 0.5

X8 1 B Y (1 1 1 1 1 1

x9 1 B Y B 1 1 1 2 0.7

X10 1 A Y 0‘ 1 2 1 1 0.7

X11 2 B Y 0‘ 2 1 1 1 0.7

X12 1 B Y <1 1 1 1 1 1

144

subsamples. In this case, a label correspondence problem must be approximately solved

to obtain the same labeling of clusters throughout the ensemble’s partitions. By default,

the cluster labels in different partitions are arbitrary. To make a correspondence problem

more tractable, one needs to re-label each partition in the ensemble using some fixed

reference partition. Table 5.11 illustrates how 4 different partitions of twelve points can

be re-labeled using the first partition as a reference.

At the (t+1)-st iteration, when some t different clusterings are already included in

the ensemble, we use the Hungarian algorithm for the maximum weight bipartite

matching problem in order to re-label the (t+1)st partition.

As an outcome of the re-labeling procedure, we can compute the consistency

index of clustering for each data point. Clustering consistency index CI at iteration t for a

point x is defined as the ratio of the maximal number of times the object is assigned in a

certain cluster to the total number of partitions:

C100 2 %max{i 6(7z, (x), L)}

L 6 cluster labels

The values of consistency indices are shown in Table 5.11 after four partitions were

generated and re-labeled. We should note that clustering of subsamples of the data set D

does not provide the labels for the objects missing (not drawn) in some subsamples.

The clustering consistency index of a point can be directly used to compute its

sampling probability. In particular, the probability value is adjusted at each iteration as

follows:

p,+1 (x) = Z(a’p, (x) + CI(x))

where 0t is a discount constant for the current sampling probability and Z is a

145

normalization factor. The discount factor was set to Ot=0.3 in our experiments. The

proposed clustering ensemble algorithm is summarized in pseudocode below:

Input: D — data set of N points,

H — number of partitions to be combined

M — number of clusters in the consensus partition 0',

K — number of clusters in the partitions of the ensemble,

F — chosen consensus function operating on cluster labels

p — sampling probabilities (initialized to UN for all the points)

Reference Partition (— k—means(D)

for i=1 to H

Draw a subsample X,- from D using sampling probabilities p

Cluster the sample Xi: 71(i) (— k—means(X,-)

Re-label partition 721i) using the reference partition

Compute the consistency indices for the data points in D

Adjust the sampling probabilities p A

end

Apply consensus function I‘ to ensemble H to find the partition 0'

Validate the target partition 0' (optional)

return 0' // consensus partition

5.7.2 Empirical Study of Adaptive Ensembles

The experiments were conducted on artificial and real-world data sets (“Galaxy”,

“half-rings”, “wine”, “3-gaussian”, “Iris”, “LON”), with known cluster labels, to validate

the accuracy of consensus partition. A comparison of the proposed adaptive and previous

non-adaptive ensembles is the primary goal of the experiments. We evaluated the

146

performance of the clustering ensemble algorithms by matching the detected and the

known partitions of the datasets. The best possible matching of clusters provides a

measure of performance expressed as the misassignment rate. To determine the clustering

error, one needs to solve the correspondence problem between the labels of known and

derived clusters. Again, the Hungarian algorithm was used for this purpose. The k-means

algorithm was used to generate the partitions of samples of size N drawn with

replacement, similar to bootstrap, albeit with dynamic sampling probability. Each

experiment was repeated 20 times and average values of error (misassignment) rate are

shown in Figure 5.12.

147

550

35

- _ 540 ~
in Wine data set, MI consensus, k_3 ‘0

c 30 ~ E _
s. 530

a g g

E 25 — 5520 ~ — :. ; _;

0- °‘51o —

320» a .
c g,500 ' + Non—Adaptive

.%15 -
E 490 ~ Ad .

«n + a trve

33,10 2 -I—Non—adaptive g 430 r p

g 5 , —¢-—Adaptive , €223 : Galaxydata set, MCLAconsensusilunction, k=6

:1:
t o 1_ r r r r 450 r 1 r

25 50 75 100 125 150 25 50 75 100

of Partitions, H # of Partitions, H

110
9 ‘3-Gaussran data set, CSPA k=4

"’ 108 » . "’ 8 i
g -I—Non-Adaptrve E 7 _

o
1: _ . ,

g1 06 —a— Adaptive Es _

3104 - '3 5 -

c c

.9102 ~ .214 ~ _

a fi- 3 -'-Non-Adaptrve

8100 _ ,-, , . “3 b .

E Halt-rings data set, CSPA consensus, k=3 g 2 _ +Adaptrve

'06 98 - < ._

* O 1 " - - .

96 ‘ ' ‘ ' 5 i": 0 . , '—* . . —\I—4
25 50 75 100 125 150

of Partitions, H

25 50 75 100 125 150

of Partitions, H

Figure 5.12. Clustering accuracy for ensembles with adaptive and non-adaptive sampling

mechanisms as a function of ensemble size for some data sets and selected consensus

functions.

Consensus clustering was obtained by four different consensus functions:

hypergraph-based MCLA and CSPA algorithms [124], quadratic mutual information and

EM algorithm based on the mixture model. The main observation is that adaptive

ensembles slightly outperform the regular sampling schemes on most benchmarks.

Typically, the clustering error decreased by 1-5%. However, accuracy improvement

depends on the number of clusters in the ensemble partitions (K). Generally, the adaptive

ensembles were superior for values of K larger than the target number of clusters, M, by 1

148

or 2. With either too small or too large a value of K, the performance of adaptive

ensembles was less robust and occasionally worse than corresponding non-adaptive

algorithms. A simple inspection of probability values always confirmed the expectation

that points with large clustering uncertainty are drawn more frequently.

Most significant progress was detected when the combination consisted of 25-75

partitions. Large numbers of partitions (H>75) almost never lead to further improvement

in clustering accuracy. Moreover, for H>125 we often observed increased error rates

(except for the hypergraph-based consensus functions), due to the increase in complexity

of the consensus model and in the number of model parameters requiring estimation.

To summarize, we have extended the clustering ensemble framework by an

adaptive data sampling mechanism for generation of partitions. We dynamically update

sampling probability to focus on more uncertain and problematic points by on-the—fly

computation of clustering consistency. Empirical results demonstrate improved clustering

accuracy and faster convergence as a function of the number of partitions in the

ensemble.

149

5.8 Conclusions

We advanced previous research on clustering ensembles in several respects. First, we

have introduced a unified representation for multiple clusterings and formulated the

corresponding categorical clustering problem. Second, we have proposed a solution to the

problem of clustering combination. A consensus clustering is derived from a solution of

the maximum likelihood problem for a finite mixture model of the ensemble of partitions.

An ensemble is modeled as a mixture of multivariate multinomial distributions in the

space of cluster labels. The maximum likelihood problem is effectively solved using the

EM algorithm. The EM-based consensus function is also capable of dealing with

incomplete contributing partitions. Third, it is shown that another consensus function can

be related to the classical intra-class variance criterion using the generalized mutual

information definition. A consensus solution based on quadratic mutual information can

be efficiently found by the k-means algorithm in the space of specially transformed

cluster labels. Experimental results indicate good performance of the approach for several

datasets and favorable comparison with other consensus functions. Among the

advantages of these algorithms are their low computational complexity and well-

grounded statistical model.

We have also considered combining weak clustering algorithms that use data

projections and random data splits. A simple explanatory model is offered for the

behavior of combination of such weak components. We have analyzed combination

accuracy as a function of parameters that control the power and resolution of component

150

partitions as well as the learning dynamics vs. the number of clusterings involved.

Empirical study compared effectiveness of several consensus functions applied to weak

partitions.

It is interesting to continue the study of clustering combination in several

directions: 1) design of effective search heuristics for consensus functions, 2) a more

precise and quantifiable notion of weak clustering, and 3) an improved understanding of

effect of component resolution on overall performance. This research can be extended in

order to take into account non-independence of partitions in the ensemble. The consensus

function presented here is equivalent to a certain kind of Latent Class Analysis, which

offers established statistical approaches to measure and use dependencies (at least pair-

wise) between variables. It is also interesting to consider a combination of partitions of

different quality. In this case one needs to develop a consensus function that weights the

contributions of different partitions proportionally to their strength. We hope to address

these issues in our future work.

151

Chapter 6

Summary

This dissertation addresses three information-processing problems, which are central to

modern data mining, and advances their solution by using evolutionary computation and

ensemble approaches.

Feature Extraction. The goal is to find the best subset of original variables or

their transformation relevant to a computational model. In general, new variables can be

synthesized from existing data features. Generalization or predictive classification

accuracy of the model is the main evaluation criterion in feature selection and extraction.

Our contribution to this problem is evolutionary feature extraction and dimensionality

reduction based on genetic search of optimal combinations of feature values. Accuracy-

driven construction of new features uses intelligent value clustering. We offer feature

extraction methods for improved pattern classification using genetic algorithms. New

features are synthesized by merging the values of original variables during the search

process. In this study, we introduce a different GA approach to dimensionality reduction

that does not explicitly operate with whole features, but instead operates on individual

values assumed by the feature variables. Features are extracted by clustering several

“old” values into a new meta-value which substitutes for the old values in the feature

vector. Therefore, new features are created by clustering the values of variables. A GA is

152

used as a search engine for this value clustering. If features assume nominal values then

clustering could be viewed as a grouping problem. Scalability and redundancy are two

characteristic problems of grouping algorithms. Here we present a grouping GA with an

improved graph-based encoding. The proposed cluster representation has lower

redundancy while preserving the simplicity of decoding and evaluation. Compact

solution representation with minimal redundancy of search space is designed for a wide

class of grouping problems, including clustering of variable values. This encoding is not

limited to value clustering and therefore applicable to other grouping tasks. The genetic

search of (sub-) optimal combinations of values is performed in graph-based encoding of

candidate solutions. Genetic value clustering is applied to text categorization, DNA—based

assignments of individuals in population genetics and parametric learning of Bayesian

network classifiers. It is shown that such feature extraction results in better predictive

accuracy of classification decisions.

Data model identification. Prediction of output variables is based on learning of an

unknown function for a given training sample and a set of elementary functional

components. We propose fast genetic programming for data-driven induction of

predictive models with real-valued input-output mappings. We develop genetic

programming algorithms for modeling of input-output relations of continuous variables

that incorporates dynamical fitting of free parameters of evolved models. Traditional

genetic programming is extended by gradient descent optimization of leaf coefficients of

tree-like programs during the evolutionary search that is made possible using algorithmic

153

differentiation. Experimental results show significant improvement in both computational

requirements and modeling accuracy for a set of symbolic regression problems.

Data clustering. Partitioning of a data set must be done into a number of meaningful

groups of data points. Clustering criteria use available data features and a variety of prior

knowledge about data distribution properties. We propose generic and robust methods to

combine multiple clusterings of data including the use of novel fast algorithms for

consensus clustering as well as inexpensive and weak clustering components.

Ensembles of partitions of data sets are studied in two respects: combination of

multiple clusterings and generation of clusterings for an ensemble. We develop two

efficient consensus functions for finding a combined partition of good quality. First

consensus function uses information-theoretic principle based on maximal generalized

mutual information. Second function finds a consensus clustering by estimation of a

probabilistic mixture model from the observed ensemble. It is demonstrated that

ensemble’s partitions can be generated by the weak clustering algorithms, in particular,

by clusterings in random low-dimensional subspaces of original feature space.

Experiments indicate that ensemble of weak partitions can be more accurate than a single

sophisticated clustering algorithm. Finally, we consider how partition generation process

can adapt to provide better decisions for the patterns near the boundaries between the data

clusters.

The main results of this dissertation were published in [52][53][66][91]

[128][129][130][13l][132].

154

Appendix

EM Algorithm for Consensus Solution

Here we provide detailed derivation of the EM algorithm for estimation of parameters of

the mixture model proposed in Section 5.3.

The distribution of hidden variable z should be consistent with the observed values Y:

log P(Y | o) = log ZP(Y,z | 9),
(A1)

ZEZ

If the value of z, is known then one could immediately tell which of the M mixture

components was used to generate the point yi. It means that with each observed data point

y,-, we associate a hidden vector variable z,- = {Zi1,...,ZiM} such that Zim =1 if y,- belongs to

the m-th component and Zim = 0, otherwise. It is convenient to write the complete data

likelihood as:

N N M z-

lOg L (QIY’Z) :logl—IP(yi’zi '8):10gHH(am‘Pm(yr 10771)) 1m

i=1 i=1 m=1

i

1:] m

(A2)

M
:

Zim 10g am Pm (yi 19m)'

11
fl

According to the general EM approach, we have to define an auxiliary function Q((~);O’)

that serves as a lower bound on the observed data likelihood in Eq. (5.3):

Q(@;6’) = Zlog(P(Y,Z l 9))p(z | Y,@')- (A3)

155

Classical convergence analysis of EM algorithm [25][28] establishes that the

maximization of the function Q(®;(~)') with respect to O is equivalent to increasing the

observed likelihood function in Eq. (5.3). Evaluation of Q(O;(~)’) is the first step of the

EM algorithm. Substitution of Eq. (A2) in the definition of Q function gives:

Q<®;®’>= Z Zz.malog..P.....<yl0 >p<zIY®’>

(A4)

7";

N M

222 El:[Zim] logaum(yi|0m)°

i=1 m=1

The last expression depends on the previous estimate of parameters (9’ only via the

expected values of the hidden variables E[z,-ml, which are defined as:

(mfinlfl)

ZameGIO.)

 E[z,m]= zm (z Y,®)=MZ: . p l (A5)

Here, the current guess about the parameters 6’: {al’ ,...,aj, ,,..0;.,0:w } is used to

compute the expectations. Taking into account the concrete form of the component-

conditional densities P (yi [0,") from Eqs. (5.5) and (5.6), we obtain the E—step of the
m

algorithm:

Etz]= F‘ k“ . (A6)

The M—step consists of maximizing the Q function in Eq. (A4) by the parameters 9, given

the expected values of the hidden variables E[Zim] from E-step in Eq. (A6):

156

2 K

8* = argmaxQ(O;®') = argmax ZZ(E[zim]logam +E[z,m]logP”10’1" |0m)).

G) {ainafij’n} i=1 m=l
(A7)

The two terms on the right hand side can be optimized independently. The expression for

the coefficients am is easily found using a Lagrange multiplier along with the constraint

261:1:
m "I

 8%:®)=a: (22512111111082... +/l(m2=o:m —1))=0 (A8)

m ‘1 "F1

ZElzml

a = . (A9)
m N M

ZZElzz-ml
i=1 m=1

Similarly, obtaining the optimizing values of z9jm(k), is facilitated by the independence

assumption for the component-conditional densities of variables yij as described by Eq.

(5.3). Again, natural constraints 2,, 191-",(16) 1 and Lagrange multipliers xljm are

utilized:

60(00)_ 0 N M K...

- l . . . -1 =
a19 (k) 7819. (k)(121211;kaogR"(y'|9m)+/1""(k§11

9’m(k)
)) 0 (A10)

1m 1m

N

Z§(yij’k)E[Zim]

19. (k): 5‘ (A11)
jm N K(j)

Z 5(y.,~,k)E[z,-,,.l

i=1/(=1

To summarize, the EM algorithm starts with an initial guess for the values of the

parameters {a,’ ,...,aju,0’ .,0M } of the mixture density. After this, E and M steps are
9‘

repeated until a chosen convergence criterion is satisfied. The E-step computes the

157

expected values of the hidden variables E[z,~m] according to Eq. (A6). The M-step

maximizes the likelihood by computing new best parameters estimates according to Eqs.

(A9, A11). The convergence criteria can be based on the increase in the amount of the

likelihood function between two consequent M-steps or on the stability of the assignment

of points from Y, or equivalently from X. In fact, it is the stability criterion that is more

relevant to the clustering task. Intuitively, each E—step is essentially equivalent to the

naive Bayes computation procedure. However, the M-step uses “soft” real-valued cluster

memberships to determine pattern contributions to the component-conditional densities,

in contrast to conventional supervised maximum likelihood estimation.

158

Bibliography

[1]

[2]

13]

[4]

15]

[6]

[71

E. E. Abola, F. C. Bernstein, S. H. Bryant, T. F. Koetzle, and J. Weng, Protein

Data Bank, In Crystallographic Databases—Information Content, Software

Systems, Scientific Applications (F. Allen et al. eds), Data Commission of the

Intl. Union of Crystallography, Bonn/Cambridge/Chester, 107—132, 1987.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic Subspace

Clustering of High Dimensional Data for Data Mining Applications, In

Proceedings of ACM-SIGMOD 1998 Int. Conf. on Management of Data: 94-105,

1998.

H. Almuallim, and T.G. Dietterich, Learning with many irrelevant features. In

Proceedings of the Ninth National Conference on Artificial Intelligence, 547-552.

Menlo Park, CA: AAAI Press, 1991.

H. Almuallin, and T.G. Dietterich, Efficient algorithms for identifying relevant

features. Proceedings of the Ninth Canadian Conference on Artificial Intelligence

(pp. 38-45). Vancouver, BCzMorgan Kaufmann, 1992.

PG. Angeline, G. Saunders, and J. Pollak, An Evolutionary Algorithm That

Constructs Recurrent Neural Networks, IEEE Trans. On Neural Networks, Vol. 5,

No. 1, 54-65, 1994.

J.-P. Barthelemy and B. Leclerc, The median procedure for partition, In

Partitioning Data Sets, 1.]. Cox et al eds., AMS DIMACS Series in Discrete

Mathematics, 19: 3-34, 1995.

D. J. Bartholomew and M. Knott, Latent variable models and factor analysis, 2nd

ed, Kendall’s Library of Statistics 7. London: Arnold, 1999.

159

[8]

[9]

[10]

[11]

[12]

[13]

114]

[15]

[16]

117]

[18]

119]

[20]

R.K. Belew, J. McInemey, and N.N. Schraudolph, Evolving networks: Using the

Genetic Algorithm with connectionist learning. In Proceedings of the Second

Artificial Life Conference, 511-547, Addison-Wesley, 1991.

A. Ben-Hur, D. Horn, H.T. Siegelmann, and V.Vapnik, Support vector clustering,

Journal of Machine Learning Research, 2: 125 - 137, 2001.

L. Breiman, Bagging Predictors, Machine Learning, Vol. 24 (2), 123 - 140, 1996.

L. Breiman, Arcing classifiers, The Annals of Statistics, 26 (3): 801 - 849, 1998.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression

Trees. Wadsworth International, California, 1984.

B. Bollobas, Random Graphs, Academic Press, London, 1985.

SP. Brumby, J. Theiler, S.J. Perkins, N.R. Harvey, J.J . Szymanski, J.J . Bloch, and

M. Mitchell, Investigation of Feature Extraction by a Genetic Algorithm, Proc.

SPIE 3812, 24-31, 1999.

T. Cai, N. Cercone, and J. Han, Attribute-oriented induction in relational

databases. In Gregory Piatetsky-Shapiro and William J. Frawley, editors,

Knowledge Discovery in Databases, 213-228. AAAI Press/The MIT Press, 1991.

C. Chang, Dynamic Programrrring as applied to Feature Subset Selection in a

Pattern Recognition System, IEEE Transactions on Systems, Man and

Cybernetics, No. 3, 166 - 171, 1973.

G. Chartrand, and O. R. Oellermann, Applied and Algorithmic Graph Theory.

McGraw-Hill, Inc., New York, 1993.

C. K. Chow and C. N. Liu, Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, 14: 462-467, 1968.

D. Cristofor and DA. Simovici, An information-theoretical approach to clustering

categorical databases using genetic algorithms. In Proceedings of 2nd SIAM

ICDM Workshop on clustering high dimensional data, 2002.

T. M. Cover, The Best Two Independent Measurements are Not the Two best,

IEEE Transactions on Systems, Man, and Cybernetics, pp. 116-117, 1974.

160

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[321

T. M. Cover and J. M. Van Campenhout, On the possible orderings in the

measurement selection problem. IEEE Transactions on Systems Man and

Cybernetics, SMC-7: 657-661, 1977.

R. Cucchiara, Genetic algorithms for clustering in machine vision. Machine

Vision and Applications, 11: 1 — 6, 1998.

AC. Davison and D.V. Hinkley, Bootstrap Methods and their Application,

Cambridge University Press, second edition, 1997.

E. Dimitriadou, A. Weingessel and K. Homik, Voting-merging: An ensemble

method for clustering, In Proc. Int. Conf. on Artificial Neural Networks, Vienna,

217-224, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood From

Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical Society

B, 39: 1-22, 1997.

P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach,

Prentice-Hall International, 1982.

P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier

under zero-one loss, Machine Learning, 29: 103—130, 1997.

RD. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd Ed, John Wiley

& Sons Inc., 2001.

S. Dudoit and J. Fridlyand, Bagging to improve the accuracy of a clustering

procedure, Bioinformatics, 19 (9): 1090-1099, 2003.

A. Esparcia-Alcazar and K. Sharman, Learning schemes for genetic

programming, In Proceedings Late Breaking Papers at the 1997 Genetic

Programming Conference, 57- 65, Stanford University, CA, 1997

E. Falkenauer, A New Representation and Operators for GAs Applied to

Grouping Problems, Evolutionary Computation, Vol.2 (2), 123-144, 1994.

E. Falkenauer, Genetic Algorithms and Grouping Problems, John Wiley & Son

Ltd., 1998.

161

[33]

[34]

[35]

[36]

[37]

[381

[39]

[40]

[41]

[42]

SE. Fahlman and C. Lebiere, The cascade-correlation learning architecture. In D.

Touretzky, editor, Advances in Neural Information Processing Systems, Vol. 2,

pages 524-532. Morgan Kaufmann, 1990.

X. Z. Fern and C. E. Brodley, Random Projection for High Dimensional Data

Clustering: A Cluster Ensemble Approach, Proc. of 20th Intl. Conf. on Machine

learning, 2003.

B. Fischer, J.M. Buhmann, Path-Based Clustering for Grouping of Smooth

Curves and Texture Segmentation, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25 (4): 513-518, 2003.

D. H. Fisher, Knowledge acquisition via incremental conceptual clustering,

Machine Learning, 2: 139-172, 1987.

M. Figueiredo and AK. Jain, Unsupervised learning of finite mixture models,

IEEE Transaction on Pattern Analysis and Machine Intelligence 24: 381-396,

2002.

A.L.N. Fred, Finding Consistent Clusters in Data Partitions, In Proc. 3d Int.

Workshop on Multiple Classifier Systems. Eds. F. Roli, J. Kittler, LNCS 2364:

309-318, 2001.

A.L.N. Fred and AK. Jain, Data Clustering using Evidence Accumulation, In

Proc. of the 16th Int]. Conference on Pattern Recognition, ICPR 2002 ,Quebec

City: 276 - 280, 2002.

A.L.N. Fred and AK Jain, Evidence Accumulation Clustering based on the K-

means algorithm, In T.Caelli et al., eds, Structural, Syntactic, and Statistical

Pattern Recognition, LNCS 2396, Springer-Verlag, 442-451, 2002.

A. Fred and A. K. Jain. Robust data clustering, In Proc. of IEEE Computer

Society Conf, on Computer Vision and Pattern Recognition, CVPR 2003,

Wisconsin, USA, June 2003.

AA. Freitas, Data Mining and Knowledge Discovery with Evolutionary

Algorithms. Springer-Verlag, 2002.

162

[43]

[44]

[45]

[46]

[47]

[48]

[49]

150]

[51]

[52]

Y. Freund and RE. Schapire, Experiments with a New Boosting Algorithm, in

Proc. of the Thirteenth Intl. Conference on Machine Learning, Morgan

Kaufmann, 148-156, 1996.

N. Friedman, D. Geiger, and N. Lotner, Likelihood Computation with Value

Abstraction, In Proc. Sixteenth Conf. on Uncertainty in Artificial Intelligence

(UAI), 2000.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby, Multivariate Information

Bottleneck, in Proceedings of the Seventeenth Conference on Uncertainty in

Artificial Intelligence, 2001.

W. Gablentz, M. Koppen, and E. Dimitriadou, Robust Clustering by Evolutionary

Computation, In Proc. 5th Online World Conf. on Soft Computing in Industrial

Applications (WSCS), 2000.

Z. Ghahramani and M. Jordan, Supervised learning from incomplete data via an

EM approach, In Proceedings of Advances in Neural Information Processing

Systems (NIPS 6): 120-127, 1993.

MA. Gluck and J.E. Corter, Information, uncertainty, and the utility of

categories. In Proc. of the Seventh Annual Conference of the Cognitive Science

Society, Hillsdale, NJ: Lawrence Erlbaum, 283-287, 1985.

LA. Goodman and W.H. Kruskal, Measures of association for cross-

classifications. Journal of Am. Stat. Assoc.; 49: 732 - 764, 1954.

J. Ghosh, A. Strehl, and S. Merugu, A consensus framework for integrating

distributed clusterings under limited knowledge sharing. In Proc. NSF Workshop

on Next Generation Data Mining, pages 99-108, 2002.

A. Griewank, Evaluating derivatives: Principles and techniques of algorithmic

differentiation, SIAM, Philadelphia, 2000.

B. Guinand, K.T. Scribner, A. Topchy, K.S. Page, W. Punch & M.K. Burnham-

Curtis, Sampling issues affecting accuracy of likelihood-based classification using

genetical data, Environmental Biology of Fishes, vol. 69: 245—259, 2004.

163

[53]

[54]

[55]

[56]

157]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

B. Guinand, A. Topchy, K. S. Page, M. K. Bumham-Curtis, W. F. Punch, and

KT. Scribner, Comparisons of likelihood and machine learning methods of

individual classification. Journal of Heredity 93(4), 260-269, 2002.

M. Halkidi,Y. Batistakis,and M. Vazirgiannis, Clustering algorithms and validity

measures. In Proceedings of the SSDBM conference, Virginia, USA, July 2001.

H. J. Hamilton, R. J. Hilderman, and N. Cercone, Attribute-oriented induction

using domain generalization graphs. In Proceedings of the Eighth IEEE

International Conference on Tools with Artificial Intelligence (ICTAI'96), 246-

253, Toulouse, France, 1996.

J. Havrda and F. Charvat, Quantification Method of Classification Processes:

Concept of Structrual a-Entropy, Kybernetika, 3: 30-35, 1967.

A. Hinneburg, D. A. Keim, and M. Wawryniuk, Using Projections to visually

cluster high-dimensional Data, Computing in Science and Engineering, 5 (2): 12-

25, 2003.

G. E. Hinton and S. J Nowlan, How learning can guide evolution, Complex

Systems, 1, 495-502, 1987.

T. K. Ho, The random subspace method for constructing decision forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8): 832-844, 1998.

G. E. Hughes, On the mean accuracy of statistical pattern recognition. IEEE

Transactions on Information Theory, IT-14 (1): 55 - 63, 1968.

M. Hutter, Distribution of Mutual Information, in Advances in Neural

Information Processing Systems, 14, 399-406, 2002.

H. Iba and N. Nikolaev, Genetic Programming Polynomial Models of Financial

Data Series," in Proceedings of the Conference on Evolutionary Computation,

CEC-2000, IEEE Press, pp. 1459-1466, 2000.

AK. Jain and RC. Dubes, Algorithms for Clustering Data, Prentice—Hall, New

Jersey, 1988.

AK. Jain, R.P. Duin and J. Mao, Statistical pattern recognition: a review, IEEE

Transactions on Pattern Analysis and Machine Intelligence 22: 4 - 37, 2000.

164

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

175]

[76]

A.K. Jain, M. N. Murty, and P. Flynn, Data clustering: A review, ACM

Computing Surveys, 31(3): 264 - 323, 1999.

A.K. Jain, A. Topchy, M. Law, Landscape of Clustering Algorithms, In Proc. Int].

Conf on Pattern Recognition, ICPR 2004, Cambridge, UK, Aug 2004.

E. Johnson and H. Kargupta, Collective, hierarchical clustering from distributed,

heterogeneous data, In Large-Scale Parallel KDD Systems. Eds. Zaki M. and Ho

C., Volume 1759 of LNCS, Springer-Verlag, 221—244, 1999.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel Hypergraph

Partitioning: Applications in VLSI Design, In Proc. ACM/IEEE Design

Automation Conf., 526-529, 1997.

G. Karypis and V. Kumar, A fast and high quality multilevel scheme for

partitioning irregular graphs, SIAM Joumal of Scientific Computing, 20(1): 359 -

392, 1998.

P. Kellam, X. Liu, N]. Martin, C. Orengo, S. Swift, and A.Tucker, Comparing,

contrasting and combining clusters in viral gene expression data, Proceedings of

6th Workshop on Intelligent Data Analysis in Medicine and Pharmocology, 56-

62, 2001.

EM. Kleinberg, Stochastic Discrimination, Annals of Mathematics and Artificial

Intelligence, 1: 207-239, 1990.

J. Kleinberg, An Impossibility Theorem for Clustering, In Proceedings of

Advances in Neural Information Processing Systems (NIPS 2002) 15, 2002.

J. Kittler, Feature set search algorithms, in Pattern Recognition and Signal

Processing, ed., CH. Chen, pp. 41-60, Sitho and Noordho, 1978.

R. Kohavi, G. John, Wrappers for Feature Subset Selection, Artificial Intelligence

journal 97 (1-2), 273-324, 1997.

J.R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA: The MIT Press, 1992.

J.R. Koza, Genetic Programming H: Automatic Discovery of Reusable Programs.

Cambridge, MA: The MIT Press, 1994.

165

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

J .R. Koza, Bennett HI, Forrest H, Andre, David, and Keane, Martin A.. Genetic

Programming 1H: Darwinian Invention and Problem Solving. San Francisco, CA:

Morgan Kaufmann Publishers, 1999.

J.R. Koza, F. H Bennett 11], D. Andre, M.A. Keane, and F. Dunlap, Automated

synthesis of analog electrical circuits by means of genetic programming, IEEE

Transactions on Evolutionary Computation, 1(2), 109-128, 1997.

P. Langley, W. Iba, and K. Thompson, An analysis of Bayesian classifiers, In

Proc. of the Tenth National Conf. on Artificial Intelligence, San Jose, CA, AAAI

Press, 399—406, 1992.

W. B. Langdon, Data Structures and Genetic Programming: Genetic

Programming + Data Structures = Automatic Programming, Kluwer, Boston,

1998.

O. Larsen, A.A. Freitas and J.C. Nievola, Constructing X-of-N attributes with a

genetic algorithm. Proc. 4th Int. Conf. on Recent Advances in Soft Computing,

326-331, 2002.

E. L. Lawler and D. E. Wood, Branch and Bound Methods: A Survey. Operations

Research 14, 699-719, 1966.

G. von Laszewsski and H. Muhlenbein, Partitioning a graph with a Parallel

Genetic Algorithm. In Proceedings of Parallel Problem Solving from Nature,

PPSN 1, H.-P.Schwefel and R.Manner (Eds.), Springer-Verlag, Berlin, Germany,

165-169, 1990.

F. Leisch, Bagged clustering, Working Papers SFB "Adaptive Information

Systems and Modeling in Economics and Management Science", no.51, Aug.

1999, Institut fiir Information, Abt. Produktionsmanagement, Wien,

Wirtschaftsuniv, 1999.

C. Lin and J.Wu, Automatic facial feature extraction by genetic algorithms, IEEE

Trans. Image processing, vol. 8, 6, 834-845, 1999.

H. Liu, H. Motoda, and M. Dash, A monotonic measure for optimal feature

selection. In Proceedings of European Conference on Machine Learning, pages

101 - 106, 1998.

166

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

J. Mao, K. Mohiuddin, and A. K. Jain, Parsimonious network design and feature

selection through node pruning. In Proceedings of 12th ICPR, Jerusalem, 622 -

624, 1994.

M. Martin-Bautista and M.-A. Vila, A survey of genetic feature selection in

mining issues, in Proceedings of the Congress on Evolutionary Computation

(CEC 99), 13-23, 1999.

M. Merzbacher and W. W. Chu, Pattem-based clustering for database attribute

values. In Proceedings of AAAI Workshop on Knowledge Discovery in

Databases, Wash., DC, 1993.

RS. Michalski and RE Stepp, Automated construction of classifications:

Conceptual clustering versus numerical taxonomy, IEEE Trans. Pattern Analysis

and Machine Intelligence, 5, 396-410, 1983.

B. Minaei, A. Topchy, and W. Punch, Ensembles of Partitions via Data

Resampling, Proc. Int]. Conf. Information Technology, ITCC 2004, Las Vegas,

2004.

J. Minker, G.A. Wilson, B.H. Zimmerman, An evaluation of query expansion by

the addition of clustered terms for a document retrieval system, Information

Storage and Retrieval 8(6), 329-48, 1972.

B. Mirkin, Reinterpreting the Category Utility Function, Machine Learning,

45(2): 219-228, 2001.

S. Monti, P. Tamayo, J. Mesirov, and T. Golub, Consensus Clustering: A

Resamlping Based Method for Class Discovery and Visualization of Gene

Expression Microarray Data, Journal on Machine Learning, 52 (1-2), 2003

CA. Murthy and N. Chowdhury, In search of optimal clusters using genetic

algorithms. Pattern Recognition Letters, 17:825—832, 1996.

P. M. Narendra and K. Fukunaga, A branch and bound algorithm for feature

subset selection. IEEE Transactions on Computers, C-26: 917—922, 1977.

S. Nolfi, J. Elman, and D. Parisi, Learning and evolution in neural networks,

Adaptive Behavior, 3(1), 5 - 28, 1994.

167

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

J.R. O'Connell, D.E. Weeks, The VITESSE algorithm for rapid exact multilocus

linkage analysis via genotype set-recoding and fuzzy inheritance, Nature Genetics

11, 402-408, 1995.

SC. Odewahn, E.B. Stockwell, R.L. Pennington, R.M. Humphreys, and WA.

Zumach, Automated Star/Galaxy Discrimination with Neural Networks,

Astronomical Journal, 103: 308-331, 1992.

U-M. O'Reilly and F. Oppacher, A comparative analysis of GP, In Peter J.

Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, ch.

2, 23-44. MIT Press, Cambridge, MA. 1996.

B.H. Park and H. Kargupta, Distributed Data Mining, In The Handbook of Data

Mining, Ed. Nong Ye, Lawrence Erlbaum Associates, 2003.

Y-J. Park and M-S. Song, A genetic algorithm for clustering problems, In Proc.

3rd Annual Conf. on Genetic Programming, (1998) 568-575.

CH. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, 1982

R. Poli and J. Page, Solving high-order boolean parity problems with smooth

uniform crossover, sub-machine code GP and demes, Genetic Programming And

Evolvable Machines, 1(1/2), 37-56, 2000.

C. Procopiuc, M. Jones, P. Agarwal, and T. M. Murali, A Monte Carlo algorithm

for fast projective clustering. In Proc. 2002 SIGMOD Conference, 418-427, 2002.

P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler, Floating search methods for

feature selection with nonmonotonic criterion functions. 12th International

Conference on Pattern Recognition, 279-283, 1994.

P. Pudil, J. Novovicova, Feature Subset Selection Using a Genetic Algorithm in

Feature Extrac-tion, Construction and Selection: A Data Mining Perspective,

Huan Liu, Hiroshi Motoda (Eds.), Kluwer, 1998.

W.F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun, P. Hovland and R. Enbody,

Further Research on Feature Selection and Classification Using Genetic

Algorithms, In Proc. 5th International Conference on Genetic Algorithms,

Urbana-Champaign, 557-562, 1993.

168

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Y. Qian and C. Suen, Clustering Combination Method, International Conference

on Pattern Recognition, ICPR’00, Volume 2, 2000.

J. R. Quinlan, Bagging, boosting, and C45. In Proceedings of the 13th AAAI

Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA, 725-30,

1996.

NJ. Radcliffe and PD. Surry, Formal memetic algorithms, in “Evolutionary

Computing: AISB Workshop", Ed: T. Fogarty, Springer-Verlag, 1994.

M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain,

Dimensionality reduction using genetic algorithms, IEEE Transactions on

Evolutionary Computation, 4(2): 164-171, 2000.

M. Raymer, W. Punch, E. Goodman, P. Sanschagrin, and L. Kuhn, Simultaneous

Feature Extrac-tion and Selection using a Masking Genetic Algorithm, In

Proceedings of ICGA-97, pp. 561-567, San Francisco, CA, July, 1997.

G.V. Reklaitis, A. Ravindran and KM. Ragsdell, Engineering Optimization:

Methods and Applications, Wiley, New York, 1983.

K. Rodriguez-Vazquez, Identification of Non-Linear MIMO Systems Using

Evolutionary Computation, Late Breaking Papers of Genetic and Evolutionary

Computation Conf., 411-417, 2000.

DB. Rubin, Inference with Missing Data, Biometrika, 63: 581-592, 1976.

J. C. Schlimmer, Efficiently inducing determinations: A complete and systematic

search algorithm that uses optimal pruning. In Proceedings of the Tenth

International Conference on Machine Learning, pages 284-290, 1993.

W. Siedlecki and J. Sklansky, A note on genetic algorithms for large-scale feature

selection, Pattern Recognition Letters, vol. 10, pp. 335-347, 1989.

N. Slonim and N. Tishby, Agglomerative Information Bottleneck, In proceedings

of NIPS-12, MIT Press, 617-623, 1999.

N. Slonim, N. Friedman, and N. Tishby, Agglomerative Multivariate Information

Bottleneck, In advances in Neural Information Processing Systems, NIPS-l4,

2001.

169

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

P. Somol, P. Pudil, F.J. Ferri and J. Kittler, Fast branch and bound algorithm in

feature selection. World Multiconference on Systerrrics, Cybernetics and

Informatics (SCI), Proceedings of SCI/ISAS 2000, Volume VII, (B. Sanchez,

J.M. Pineda, J. Wolfmann, Z. Bellahsene, y F]. Ferri, eds.), 646-651, 2000.

K. Spark-Jones and D.M. Jackson, The use of automatically-obtained keyword

classifications for information retrieval, Information Processing and Management

5, 175—201,1970.

S.D. Stearns, On Selecting Features for Pattern Classifiers. In Proc. 3d

International Conference on Pattern Recognition, Coronado, CA, 678 - 686, 1978.

A. Strehl and J. Ghosh, Cluster ensembles - a knowledge reuse framework for

combining multiple partitions, Journal of Machine Learning Research, 3: 583-

617, 2002.

A. Strehl and J. Ghosh, Cluster ensembles - a knowledge reuse framework for

combining partitionings. In Proc. Conference on Artificial Intelligence (AAAI

2002), Edmonton, 93-98. AAAI/MIT Press, 2002.

N. Tishby, F.C. Pereira, and W. Bialek, The information bottleneck method, In

Proc. of the 37-th Annual Allerton Conference on Communication, Control and

Computing, 368-377, 1999.

A. Thompson, Hardware Evolution: Automatic Design of Electronic Circuits in

Reconfigurable Hardware by Artificial Evolution, Springer-Verlag: London,

1998.

A. Topchy, B. Minaei, A.K. Jain, W. Punch, Adaptive Clustering Ensembles, In

Proc. Intl. Conf on Pattern Recognition, ICPR 2004, Cambridge, UK, Aug 2004.

A. Topchy, A.K. Jain and W. Punch, A Mixture Model for Clustering Ensembles,

in Proc. SIAM Conf. on Data Mining, pp. 379-390, Orlando, 2004.

A. Topchy, A.K. Jain and W. Punch, Combining Multiple Weak Clusterings, in

Proceedings IEEE Int]. Conf. on Data Mining 2003, Melbourne, Fl, pp. 331-338,

2003.

170

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

A. Topchy and W. Punch, Dimensionality Reduction via Genetic Value

Clustering, Genetic Algorithms and Evolutionary Computation — GECCO 2003,

Springer, LNCS 2724, 1431-1443, 2003

A. Topchy and W. Punch, Faster Genetic Programming based on Local Gradient

Search of Numeric Leaf Values, Genetic Algorithms and Evolutionary

Computation - GECCO 2001, Morgan Kaufmann, pp. 155-162, 2001.

G.V. Trunk, A problem of dimensionality: a simple example. IEEE Trans. Patt.

Anal. Mach. Intell. 1, 306-307, 1979.

P. Turney, How to shift bias: Lessons from the Baldwin effect, Evolutionary

Computation, 4 (3), 271 - 295, 1996.

H. Vafaie, K. DeJong, Feature Space Transformation Using Genetic Algorithms.

IEEE Intelligent Systems 13 (2): 57 - 65, 1998.

H. Vafaie, and K. DeJong, Robust feature selection algorithms, In Proc. of the 5th

IEEE International Conference on Tools for Artificial Intelligence, Boston, MA,

356-363, 1993.

J. M. Van Campenhout, On the peaking of the Hughes mean recognition

accuracy: the resolution of an apparent paradox. IEEE Trans. on Systems, Man

and Cybernetics, 8 (5): 390-395, 1978.

J.A.M. Vermaseren, Tuning FORM

Nucl.Phys.Proc.Suppl. 116, 343-347, 2003.

with large calculations,

P.M. Waser and C. Strobeck, Genetic signatures of interpopulation dispersal.

Trends Ecol. Evol. 13, 43 - 44, 1998.

A. Watson and I. Parrnee, Systems Identification using Genetic Programming, In

Proceedings of Int. Conf on Adaptive Computing in Engineering Design and

Manufacture, 248 - 255, ACEDC'96, University of Plymouth, UK, 1996.

D. Whitley, S. Gordon and K. Mathias, Lamarckian Evolution, The Baldwin

Effect and Function Optimization. In Proceedings Parallel Problem Solving from

Nature, PPSN 111, 6-15. 1994.

171

[142]

[143]

[144]

[145]

[146]

[147]

[148]

D. Whitley, R. Beveridge, C. Guerra, and C. Graves, Messy Genetic Algorithms

for Subset Feature Selection. International Conference on Genetic Algorithms. T.

Beck, ed. Morgan Kaufmann, 1997.

D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization,

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, 67 — 82, 1997.

S. Wright, The interpretation of population structure by F-statistics with special

regards to system of mating. Evolution 19: 395 — 420, 1965.

J. Yang, and V. Honavar, Feature Subset Selection Using a Genetic Algorithm,

In: Feature Extraction, Construction, and Subset Selection: A Data Mining

Perspective. Motoda, H. and Liu, H. (Eds) New York, Kluwer, 1998.

B. Yu and B. Yuan, A more efficient branch and bound algorithm “for feature

selection. Pattern Recognition, 26: 883 — 889, 1993.

B. Zhang and H. Muhlenbein, Evolving Optimal Neural Networks Using Genetic

Algorithms with Occam's Razor, Complex Systems, 7(3), 199 —220, 1993.

A.Y. Zomaya, J.A. Andreson, D.B. Fogel, G.J. Milbum, and G. Rozenberg, Non-

conventional Computing Paradigms in the New Millennium, IEEE/AIP

Computing in Science and Engineering, November/December, Vol. 3, No. 6, 82 -

99, 2001.

172

i
w
e
.
“

.
1
!

.
.
3

1
:
.

