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ABSTRACT

INGREDIENTS FOR ACCURATE SINIULENTIONS OF

CONVECTION IN STELLAR ENVELOPES

by

Regner Trampedach

I present the ingredients for high precision. 3D hydrodynamical sin‘iulations of

convection in stellar atmospheres, as well as a number of applications. I have devel—

oped a new scheme for evaluating radiative transfer, an improved equation of state

and I have investigated a number of directions for improving the numerical stability

of the convection simulations.

The equation of state (EOS) used "for the simulations. is updated by including

post-Holtsmark micro—field distrilmtions and relativistic electron—degeneracy as pre-

viously published. I have further included quantum effects. higher-order Coulomb

interactions and improved treatment of extended particles. These processes (except

relativistic degeneracy) have a significant effect in the solar convection zone. and most

of them peak at a depth of only 10 Mm. I also include a range of astrophysically sig—

nificant molecules, besides Hg and the I’I'zi—ion. This EOS will be used directly in the

convection simulations, providing the thermodynamic state of the plasma, and as a

foundation for a. new calculation of opacities for stellar atmospheres and interiors.

A new scheme for evaluating radiative transfer in dynamic and multi—dimensional

stellar atmosphere calculations is developed. The idea being. that if carefully chosen,

very few wavelengths can reproduce the full radiative transfer solution. This method

is based on a calibration against a full solution to a. ID reference atmosphere, and is

 



therefore not relevant for static 1D stellar atmosphere modeling. The first tests of the

method are very promising, and reveal that the new method is an improven‘ient over

the former opacity binning technique. The range of con\i'ective fluctuations is spanned

more accurately and not only the radiative heating. but also the first three angular

moments of the specific intensity, can be evaluated reliably. Work on implementing

the method in the convection—code. is in progress.

These developments will be employed in the future for a number of detailed simu—

lations of primary targets for the upcoming. space-based. astero—seismology missions.

and will include oz Cen A and B, nBoo. Procyon and ,13Hyi. \‘Vork on a 10 Mm deep

solar simulation was severely hampered by numerical instabilities. but investigating

the issue has revealed a number of potential solutions that will be tested in the near

future. The work on individual stars will soon be superseded by an effort to compute

a grid of convection simulations in Terr, logg and metallicity. [Fe/H]. in the spirit of

present—day, grids of conventional atmosphere models.

iii
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Chapter 1

Introduction

Understanding stars is a very multi—faceted endeavor. Stars are basically self—gravitating

“Great Balls of Fire” (Lewis 1957) with their cores having temperatures and densities

high enough for nuclear fusion to take place, and supply the star with energy. The

stability of the star is provided by the pressure of the gas counter-acting the inward

force of gravity, establishing a hydro-static equilibrium.

The equation of state (EOS), supplying the thermodynamical relations between

temperature, density and pressure, must be a key ingredient in our model of a star.

The energy produced in the core travels out through the star, in one of three ways;

either by conduction, radiation or convection. Simple conduction is only important

for very dense objects, where the gas begins to act as a metal. This happens for, e.g.,

neutron stars and white dwarfs, but also in the centers of gaseous planets. Radiative

transfer of energy takes place in all stars and is also a key ingredient for any stellar

model. The opaqueness, or opacity, of the gas determines the ease with which light

can travel through the star. With a higher opacity, the energy cannot escape as freely

 



and the interior will heat up, until the energy that escapes matches the energy that

is produced inside, setting up a. radiative equilibrium. The opacity is composed of

a number of interactions between light and matter. Cross—sections for the various

processes are evaluated from detailed knowledge of the quantrim—mechanical wave-

functions of all possible states of the particles involved. Calculation of these cross-

sections is a field of research in itself, and the vast calculations involved have only

been possible within the last two decades with the progress of computing-power.

To calculate the opacity, relevant for a stellar model, we need to multiply the

cross—sections of individual processes by the number-densities of the interacting par-

ticles, and add-up all the processes. The number—densities of the various particles,

and the population of the energy—levels of each kind of particle, are also results of the

equation of state, which therefore has a dual rdle.

The equation of state is also a major atomic physics project, as the interactions

between the particles constituting the gas, have to be accounted for. Although the

gas is electrically neutral on a whole, most of the particles will be charged, being

ionized due to the high temperatures. The particles therefore feel the presence each

others by their charges, especially at higher densities where close encounters will

be more frequent. In close encounters quantum effects will have an effect. The

particles will no longer be point—like, but “smeared out” according to Heisenberg’s

uncertainty principle (Heisenberg 1927), and encounters between identical particles

will be governed by Pauli’s exclusion principle (Pauli 1925). All of these effects (and

many more) determine the thermodynamics of the gas, as well as the ionization-

balances and the population of energy—levels, needed for opacity calculations.



The last mode of energy-transport is convection, which consists of macroscopic

bubbles or flows of warmer than average gas. moving out towards lower temperatures.

shedding their excess heat and sinking down to higher temperatures to be recycled.

If the opacity is very high and the energy has a hard time escaping via radiation, the

gas will become unstable towards convection and this will take over the transport of

energy.

Convection is inherently a dynamic process. involving a lot of non—linear phe-

nomena. As such, it is not amenable to simplified theories. and a good and relatively

simple description of convection suitable for stellar modeling has eluded us. The

so-called mixing-length-formulation of convection is simple and very suitable for use

in stellar structure codes. It is, however, fraught by its assumptions breaking down

where a theory of convection is most needed, and by free parameters that have to be

calibrated from outside the theory.

For envelope convection, i. (2., where the convection zone reaches all the way to the

surface, but does not necessarily reach the center. further complications arise at the

surface. Here radiative transport begins to become important again, as the distance

to the surface (where light can escape) becomes comparable with the mean-free-path

of photons. This region is called the stellar atmosphere, the modeling of which forms

its own field of research. As the gas becomes optically thin, and photons can begin

to escape freely, evaluation of radiative trai'isfer becomes much more complicated.

The radiative transport of energy can no longer be described by a single opacity,

but has to be evaluated at upwards of 104 wavelengths. Combine this transition

between optically thick and optically thin, with the transition between convective

  



and radiative transport of energy, and you have a very i1‘1tractable problem.

The best way of studying this region, is through three-dimensional (3D) hydro

dynamical simulations, for which a very small number of approximations have to b<

introduced. They are based on the same equation of state and opacities also user

in conventional (e.g., 1D) stellar models. but the hydrodynamics of the problem i:

solved explicitly, based on the fundamental laws of conservation of mass, momentun

and energy. Such simulations can be used for the same purposes as conventiona.

stellar atmosphere models, e.g., interpretation of observations including abundancc

analysis, and as upper boundary conditions for stellar structure and evolution models

The above sketch of stellar structure hopefully gives an impression of the inter-

relatedness of all the phenomena participating in making a star a star. and serves a:

the motivation behind the present dissertation.

In chapter 2, the hydrodynamical convection simulations are introduced, and z

stability problem is discussed. In chapter 3 I discuss the atomic physics entering botl

the convection simulations and the stellar structure models, presenting the curren‘

state of astrophysical equations of state in Sect. 3.2 and 3.3, and proposing some

improvements to one particular EOS-project, in Sect. 3.4. In Sect. 3.5 I give a short

overview of recent developments in opacity calculations, and expectations for the near

future.

Chapter 4, deals with the evaluation of radiative transfer in the convection sim-

ulations, and how to bring the problem down to tractable dimensions, and yet only

lose a little in accuracy compared to solutions including 2; 105 wavelength-points.

Chapter 5 presents a few applications of convection simulations in conjunctior



with stellar structure calculations. In Sect. 5.1. the convection simulations are used

as boundary conditions for stellar structure models, which are used in Sect. 5.2 for a

calibration of the main parameter, a, of the mixing—length formulation.

A summary and an outlook for the future. is offered in chapter 6.

 



Chapter 2

Hydrodynamics

The code for the convection simulations used in this work, was written by Nordlund

& Stein and is further described in Nordlund (1982), Stein (1989). Nordlund 8: Stein

(1990) and Stein & Norcllund (2003).

The simulations are of compressible convection, subjected to realistic radiative

transfer including the effect of line—blanketing. The boundaries are transmitting, with

the entropy of the in—fiow being adjusted, so as to result in the desired flux for the

given simulation. A state of the art equation of state, presented in Sect. 3.2, is used,

together with equally high quality opacities. The properties and morphology of the

convection in the simulations, is described by, 6.9., Stein & Nordlund (1989) and

Nordlund 85 Stein (1991).



2.1 The Navier-Stokes Equations

The conservative or divergence form of the Navier—Stokes equations is
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7% + V-(Q’u) =0
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where Q is the density, elm. = 5 + é-u'z is the total specific internal energy, It is tlr

velocity field, q is the heat-flux vector and fe is the external force per unit volume.

The stress—tensor, 0’, can be written

az—PgI+T, (4

where Pg is the gas pressure. I is the unity tensor with components I,-,- = 5,,- and C

is the viscous stress tensor with components Tij-

Expanding Eqs. (l)—(3). eliminating occurrences of Eq. (1) and substituting Eq

(4), we arrive at the following three equations: the equation of mass conservation

often referred to as the continuity equation,

8?
-:—-V—V-. 50,1199% (

x
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the equation of momentum conservation, also called the equation of motion,

a
Qfiz—pu-Vu+f0—Vpg+VT. (.

and the equation of energy conservation (with E = 95).

0E_
—5t—_—\7-(uE)+(T—P)V-u+V-q. (

Since the densities and pressures change by 4—5 orders of magnitude from the t(

to the bottom of the simulations, it is advantageous to precondition the equatior

for use in the highly stratified case of stellar atmospheres. This is done by rewritii

(5) — (7) in terms of logarithmic density, lng. velocity. u, and internal energy per un

 

 

mass, 5:
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where, for the external force, we use fe/Q :g, the gravitational acceleration, whi<

is assumed to be constant with depth. These equations are much more well behave

than Eqs. (5) — (7) and the various derivatives are also smoother.

As the gradient of a flux is the time—derivative of the quantity transported l:

the flux, we define de E 9—1V - q, where Qrad is the specific (radiative) heating.
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If the order of the numerical differencing is higher than 1, the derivatives wil

be oblivious to two-zone oscillations, as depicted in Fig. 1. It can easily be 8110“")

that the derivative of a smooth interpolating function will be zero at the peaks of:

two—zone oscillation.

For higher than first—order differencing schemes, it is therefore necessary to ex

pand Eq. (14) into

 

 

8f Off 014;,- 81119 8f ..

E—+;[V2Jal—j+ (001] +V2J().‘lj UJIJ' . (I)

We are using a first-order differencing scheme. but the expansion will nonetheles:

prove useful in the subsequent discussion.

The linear finite difference version of the second derivative is

.A2 . .. . .

(AFTfmfhn=Avsuvv+s—Anrs1=uw4w¢nv+uwar(w

 

If the quantity is a pure oscillatory signal with amplitude, 15, and a wavelengtl

of two grid-points (a so-called two-:0ne oscillation), as shown in Fig. 1, then we haw

fi—i = fi+1 = —f,' = id, and consequently

 
N1:_v; 07

A17,- Ar, 7

 

for a uniform grid. Adding to f, a term proportional to ATE/A13, will therefort

dampen a two~zone oscillation.

Similar to the derivation of Eq. (17), we find that the first—order first-derivatiw

10



 

  
Fig. 1. Schematic of a pure two—zone oscillation. The thin curve is an example of

a smooth interpolating function. illustrating the zero derivatives at the grid—points,

which are marked with x.

is twice the function, phase—shifted by half a grid-point. The second—derivative con-

tribution to the second—order diffusion will therefore in. general dominate, over the

first-order derivative term.

2.2.2 Fourth Order Diffusion

In order to minimize unduly damping of physical features. we can go to higher order

schemes, which will have a higher ratio of two—zone—oscillations to smoother features.

Fourth—order diffusion adds a contribution of the form

8f 1 a2 021*

the sign of which will be justified below.
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The corresponding dissipation is

. '2

Q (Flt; (19

,4 I 2: Mr T_:— .use ,- . J 032

z..] .7

The linear, finite differences version of the third— and fourth—derivatives on

uniform grid, are

 

Am3 5) Z A3f(1'— %) = Azffi) _ A2f(-,f_1)
(20(A103 [AW] (z- _1

:-4w—m+wa—n—wm+an> (m

 

and

4A4f. 4- 3~1 3-1 -

mm Afl(0==AfM=Afh+fl-Afihjl 02

_—_ f(z — ‘2) — 4f(z — 1) + 6f(z) — 4f(i + 1) + f(2. + ‘2). (‘23

In the case of a pure two—zone oscillation, we therefore have that A3fz- 2 8f,; am

A415,- : 16f“ or in general AN], : 2Nfz'. This is true for the linear difference scheme

and for third—order differences it can be shown that ANfi : 1‘2”,”qu

To destroy a two-zone oscillation with the pure fourth-order term, we therefor

need to subtract a term proportional to AU}. Using a linear difference scheme, two

zone oscillation will therefore be four times more prominent in fourth—order deriva

tives than in second—orcler derivatives. But What about physical features like shar]

gradients?
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Fig. 2. Schematic of the response to a step function (solid line with diamonds).

The dashed lined shows the corresponding linear second-order difference. and the

solid line is the linear fourth—orcler difference.

Fig. 2 shows the response of second- and fourth—order derivatives to a step

function — the ultimate in large gradients. From the figure, we see how second-

orcler diffusion simply smooths out the large gradient, spreading it over more zones.

Fourth—order diffusion does the same, and more efficiently, but it also introduces

some extra peaks on either side of the gradient. These extra peaks. coupled with the

(global) cubic-spline interpolations and differentiations used elsewhere in the simula—

tions, quickly and efficiently excite two—zone oscillations. This phenomenon is called

ringing, and it is excited by sharp edges, as well as localized peaks.

We want to keep the gradients as large as possible, and capture as much detail

as possible, with a finite resolution of the simulations. We therefore need a scheme

with a much larger response to two—zone-oscillations than to step—functions. For

linear second—order derivatives, this ratio is 4 / 1, and for fourth-order derivatives it is

13



16/3253. So we do gain a little going from second— to fourth-order derivatives, bu

at the expense of extra excitation of two—zone oscillations.

2.2.3 Quenched Diffusion

One way around the problem of two-zone oscillations, is the so—called quenched diffu

sion, introduced by Stein & Nordluncl in the early ‘90s (private communications). Th

quenching consists of using an expression for 1/4‘, that involves a (signed) first-orde

difference, scaled with the ratio of (unsigned) third—order differences to (unsigned

first-order differences,

A3f _ A; MI
A413]- _ A1“,- max3 IAfI 7

 (~24

centered on i — i' The maxg—operator takes the maximum value in a three-poin

neighborhood of i, that is, i — 1, i, i + 1. The third—order difference is defined by Ec

(20). By scaling the first—order difference in this way one obtains a diffusive flux tha

has the sign of the first—order difference, but the order of magnitude of the third~orde

difference. In smooth parts of the solution the diffusive flux will thus be quencher

(hence the name), and the effect of the diffusion operator will be of similar magnitud

as that of a fourth—order diffusion operator. In steep parts of the solution, on th-

other hand, the ratio of the third- to first-order difference will be of the order unit;

or larger, and the diffusion will be similar to normal second-order diffusion.

The diffusion contributions are combined into



where the first part is a second—order diffusion that is active mainly in shocks. Th

second part is qualitatively similar to a fourth-order diffusion, but has the advantag

that sharp edges and localized peaks do not give rise to the ringing that tends to de

velop with a normal fourth-order operator. In the combined second- and fourtl'l-orde

diffusion, enough second—order diffusion must be present to counteract the tendenc;

for ringing from the fourth—order operator. Since this tendency is not present. whei

(25) is used, one can remove the second—order diffusion altogether, except in shocks

where significant local diffusion is always needed.

With the quenched diffusion, only the shock capturing a2 term is kept in thl

pure second-order part of the diffusion, and all three terms: advection-, shock— anr

sound~wave-terms, are included in the quenched part (see Sect. 2.2.4.12).

The dissipation that corresponds to (‘25) is

811,,- Bu,-

Qvisc : Z 8'— VQ‘jf + V4jA3Ui - (‘26

23.7 .LJ 1,]

The diffusion at the top and the bottom are set to zero in both diffusion scheme

to avoid boundary effects. All of the non-local operators take advantage of th:

periodic properties in the horizontal directions and are skewed at the top and botton

boundary.

The quenched diffusion works very well, as long as the two—zone oscillations ii

the first derivative are larger than the broader features in the first derivative — tha‘

is, when the two-zone oscillations are centered around zero. Otherwise it fails to pick

up the two-zone oscillations. The latter is often the case deeper in the simulations

15



and was of less concern for the shallow simulations pursued so far, but during worl

on a 10 Mm deep solar simulation, this proved detrimental. These symptoms ha(

also been noticed higher in the atmosphere of a number of different simulations

introducing noise in the radiative transfer calculations and two-zone oscillations i1

temperature.

2.2.4 A Gallery of Diffusion Coefficients

The various forms of the diffusion coefficients all contain combinations of three term

with the following motivation: The

(L1 -term is proportional to the fluid velocity to prevent ringing at sharp change:

in advected quantities.

a2 -term is proportional to a finite difference velocity convergence (when positive)

and is necessary to prevent excessive steepening of shocks.

a3 -term is proportional to the sound speed, and is necessary to stabilize sounc

waves and weak shocks. Also needed to stabilize 2—zone oscillations.

2.2.4.1 The Original Mixed 2+4-Order Version

/_\.:rr _.

ng:((L1l'ltj|+ (LgAj'uj)—Ei , (2L

where the velocity convergence is defined as

k/2

A211”) 2 X [15,241 — 1th} > 0 . (28

iZI—k/2
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If the fluid in two adjacent volume-elements are approaching, Amity) is equal to tilt

relative velocity, in k volume-elements around the two.

The fourth-order diffusion coefficient is

I/4j:(~/1(L1(U.jl+ (13C5)#

where 05 is the adiabatic sound-speed.

2.2.4.2 The Original Form used with Quenched Diffusion

We use a diffusion suppression factor

to suppress unnecessary shock—diffusion in the deeper layers where there are no shocl

The second—order diffusion coefficient is

and the fourth—order diffusion coefficient is

As:-

1/4J- : —1—2]-[a1|uj|+ a-ng Afluj) + (L3CS:| . (3



2.3 Alternative solutions

Neither of the two diffusion-schemes outlined above, the second plus fourth orde

diffusion, or the quenched diffusion, are optimal for the convection simulations. Two

zone oscillations are excited by the cubic—spline interpolation employed, and these twl

diffusion schemes do not dampen them efficiently without also smoothing physica

features. We need another scheme for either dampening or avoiding these two—zonn

oscillations all together.

2.3.1 Subtracting a Smooth Average

One straight forward solution to the above problem. is simply to subtract out tlr

physical variation, to leave the undesired two-zone oscillations exposed:

i +N

f.’ = f — Z 10'ij . (33

j: Z- — 1N,

where the weights w]- clefine the functional form of the averaging procedure an<

2N +1 is the number of points involved in, the averaging. We have chosen a Gaussiar

averaging kernel

, apt-(170)?)

232%; €XP(—(J'/0)2) ’

 (34.w, I

where a is the width of the Gaussian and the denominator takes care of the nor

malization. Using a full—width—half—maximum of W : 30\/an of three points, ha:

proven optimal for getting a large signal from the two-zone oscillations. The facto;

of three in the expression for W' stems from the counting of grid points. Normall:

18



there would be factor of two to result in the width and not just the position. 2121?, c

half-maximum. In the discrete case. however. we also have to count the point in th

middle.

In choosing N there is obviously a trade—off between the computational expens

and the “smoothness” of the average. Rather surprisingly a three point. average i

very close to a five point average, and a seven point average is inclistinguishable fron

the five point average. These are the results for real case scenarios, simply goim

through a snapshot of a simulation in both horizontal and vertical directions. an<

comparing f’ for 2N + 1 :3, 5 and 7.

1

1
Usin W" = 3 and N = 1 therefore results in the wei )‘hts u: :— , .1. ‘1‘ . and

f) . 2 4

f, z —§./}-_1 + n — i <35

which has first-order differences

(36

From Eq. (20), we recognize this as the third—order difference of f. The procedun

is commutative, so whether subtracting the Gaussian average before or after tht

differencing, gives the same result. By subtracting out a Gaussian average, we merel;

change the first—order differences into third—order differences, immediately bringim

us back to the problems of Sect. 2.2.2. The extra peaks introduced around stee]

19



gradients (see Fig. 2), do not depend on the choice of N. This idea has therefore

been abandoned.

2.3.2 Monotonic Interpolation Schemes

In Fig. 3 we show how a cubic—spline interpolation across a ste1')-function, generates

oscillations in the derivatives on either sides of the step. A cubic spline, is a se—

ries of piece—wise cubic polynomials, connected by the requirement. that the second

derivatives be continuous (de Boor 1978). We see from Fig. 3 that the interpolating

function is not monotonic between grid—points, and that this is the reason for the

excitation of two—zone oscillations around sharp edges.

 

1.2

1.0-

0.8-:

0.6-

0.4-

 
   

Fig. 3. Cubic-spline interpolation (dashed line) across a step—function (diamonds).

The solid line shows a cubic interpolation where the derivatives have been forced to

be zero (not a spline).

There are a number of schemes for calculating monotonic interpolating functions,
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of which some are local and compact and others are global in nature. The princi]

of the requirement of monotonicity, is illustrated by the solid curve in Fig. 3. This

a piece-wise cubic interpolation where the derivatives on either side of the step ha

been set to zero. This results in a more visually pleasing behavior. This is admittec

a rather subjective criterion for the quality of an interpolant, but a valuable first te

The deciding test is how the scheme fares when applied to advection—, shock—tut

and wave—tests with analytical solutions.

There are a great number of monotonic interpolation schemes on the marl

(e.g., Fritsch & Butlancl 1984, and references therein). All of these schemes wor

qualitatively result in the same interpolating function in the case shown in Fig. 3, b

behave differently when presented with triangular functions, Gaussians, parabol:

multiple step functions and similarly challenging tests.

One monotonic scheme, which is rather pleasing for its simplicity, uses piece-w

cubic—splines, disconnecting two parts of the spline where the solution is not mor

tonic between grid—points. This obviously raises the question about the bounda

conditions on the two parts of the spline. The solid curve in Fig. 3 is an example

this scheme.

The total variation diminishing (TVD) schemes, as introduced by Harten (198:

use a measure of the overall amount of oscillation of a quantity u

N

TVIUflll = :11-¢i+1(tl* Mill ~. (3

and require this quantity not to increase with time, t. A good presentation. of TV

21



was recently written by Trac & Pen (2003).

In general, the order of the interpolation goes down across a discontinuity, but

this is a small price to pay for increased stability and a more physical solution in the

smoother parts of the simulation.

There are several promising ways of solving the problems of instabilities in the

convection simulations, and future investigations of these will reveal which is the best

solution to the problem at hand.

In parallel with this work, a new version of the code, specifically optimized for

massive parallelization, is being written by Nordlund, Stein, Carlsson & Hansteen

(private communications). This new version employs a staggered grid, with energy

and density defined at cell—centers and velocities on cell-boundaries, which will most

likely be stable against two-zone oscillations. Other problems are introduced with

this formulation, though, in particular regarding the stability of the upper and lower

boundaries of the simulation domain.
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Chapter 3

Input Physics

The atomic physics underlying a model of an astrophysical phenomena. is critical for

the quality of that model.

In Sect. 3.2 I present an analysis and comparison between two of the leading

equation of state projects; the so—called Mihalas—Hummer—Dappen (MHD) equation

of state (Hummer & Mihalas 1988; Mihalas e! (11. 1988; Dappen et a1. 1988) and the

OPAL equation of state pursued at Lawrence Livermore National Laboratory (Rogers

1986; Iglesias & Rogers 1995; Rogers et al. 1996, and references therein).

An artificial term, \11, in the MHD EOS that ensures pressure ionization in cold

and dense plasmas, has been suspected of contaminating this EOS under solar con—

ditions, and is examined in Sect. 3.3.

The close scrutiny of the MHD EOS in Sects. 3.2 and 3.3 paves the way for

the improvements, aimed at broadening the range of applicability and increasing the

accuracy of the MHD EOS, presented in Sect. 3.4. This work is equally aimed at the

convection simulations and the general stellar structure and evolution problem. All

23



of the improvements are important for the latter, but for the convection simulations

the addition of many more molecules will have the largest effect.

The improved MHD EOS, presented in Sect. 3.4 will in the future be used as

basis for a new opacity calculation, and in Sect. 3.5 I give a short review of recent

progress in the calculation of absorption coefficients.

3.1 Equation of State

The equation of state is essential in most astrophysical contexts. both for the ther-

modynamic relations it provides, and as the foundation for opacity calculations.

Exploring the differences between the main EOS projects, I found that the most

contested part of the solar EOS, the most uncertain and the most extreme plasma

conditions, occur very close to the surface~less than 10 Mm below the photosphere.

The deep 10 Mm solar convection simulation will get the full impact of the improve-

ments presented in this chapter, but even the shallow 3 Mm solar simulations will be

affected to an extent that can be measured by helioseismology (Christensen-Dalsgaard

el al. 1988; Basu & Christensen—Dalsgaard 1997; Di Mauro et a]. 2002).
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3.2 “A Synoptic Comparison of the

MHD and the OPAL Equations of State”

by

Trampeclach, R., Dappen, W. & Baturin, V A., 2004, .‘ApJ, (accepted)

The currently most widely used equations of state in the astrophysical com-

munity are the OPAL equation of state, pursued at Lawrence Livermore National

Laboratory (Rogers 1986; Rogers el (1!. 1996), and the MHD equation of state (Hum—

mer 85 Mihalas 1988; Mihalas et a]. 1988; Dappen 6! (LI. 1988), which is part of the

international Opacity Project (OP) (Seaton 1995; Berrington 1997).

The present paper (Trampedach 62‘ at. 2004C) compares these two equations of

state to set the stage for further developing the MHD EOS in Sect. 3.4.
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equations of state

R. Tra m pedachl

Department of Physics and Astronomy. .Mtc/ztgan Slate (Innersity, [Cast Lansing, Ml 48824, USA

trampedachOpa.msu.edu

W. Dappen1
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V. A. Baturin

Sternberq Astronomical Institute, Umrersttet‘sky Prospect 13, Moscow 119899, Russia

vabOsai.msu.su

ABSTRACT

A detailed comparison is carried out between two popular equations of state (FOS), the

Mihalas-Hummer-Dappen (MI-ID) and the OPA 1. equations ofstate, which have found widespread

use in solar and stellar modeling during the past two decades. They are parts oftwo independent

efforts to recalculate stellar opacities: the international Opacity Project (OP) and the Livermore—

basd OPAL project. We examine the difference between the two equations of state in a broad

sense, over the whole applicable ,9 — T range, and for three different chemical mixtures. Such a

global comparison highlights both their differences and their similarities.

We find that omitting a questionable hard—sphere correction, 7'. to the Coulomb interaction,

greatly improves the agreement. between the MHD and OPAL EOS. We also find signs ofdiffer-

ences that could stem from quantum effects not yet included in the MHD EOS, and differences

in the ionization zones that are probably caused by differences in the micro-field distributions

employed. Our analysis does not only give. a clearer perception ofthe limitationsofeach equation

ofstate for astrophysical applications, but also serves as guidance for future work on the physical

issues behind the differences. The outcome should be an improvement ofboth equations ofstate.

Subject headings: Atomic processes—ICquafion of state—Plasmas—Sun: interior

1. Introduction

Stellar modeling, and in particular helio- and

asteroseismology, require an equation of state and

corresponding thermodynamic quantities that are

smooth, consistent, valid over a large range oftem-

 

lTeoretisk Astrofysik Center, Danmarks Grundforsk—

mngsfond, Institut for Fysik 0g Astronomi, Aarhus Uni-

versrtet, DK-8000 Aarhus C, Den mark

26

peratures and densities, and that incorporate the

most important chemical elements ofastrophysical

relevance Christensen-Dalsgaard & Dappen (for a

review see 1992).

In astrophysics, the equation ofstate plays two

basic roles. On the one hand, it supplies the ther-

modynamics neccessary for describing gaseous ob-

jects such as stars and gas-planets. On the other

hand it also provides the foundation for opac-

 



ity calculations, in the form of ionization equi—

libria and level populations. Thanks to helioseis—

mology. the Sun has broadened this perspective.

The remarkable precision by which we have now

peered into the Sun, puts strong demands on any

physics going into a solar model. This, to such

a degree, that we can turn around the argument

and use the Sun as an astrophysical laboratory to

study Coulomb systems under conditions not yet

achieved on Earth.

Although the solar plasma is only slightly non-

ideal, the tight observational constraints prompts

the use of methods normally reserved for studies

of more stronglymoupled plasmas. In this way the

solar experiment addresses a much broader range

of plasmas, e.g., Jovian planets, brown dwarfs and

low-mass stars, as well as white dwarfs (Caul)le

et al. 1998).

The two equation—of-state efforts we compare

in this paper are associated with the two leading

opacity calculations of the eighties and nineties.

The MHD EOS (Hummer & Mihalas 1988; Mi—

halas et al. 1988; Dappen et al. 1988) was devel—

oped for the international Opacity Project (OP)

described and summarized in the two volumes

by Seaton (1995) and Berrington (1997). and the

CPA I. EOS is the equation ofstate underlying the

OPAL opacity project at Livermore (Rogers 1986:

Rogers et al. 1996, and references therein).

Another highly successful EOS address the ex—

treme conditions in low-mass stars and giant plan-

ets and include the transition to the fluid phase

(Saumon Xx, Chabrier 1989; Saumon et al. 1995).

In a trade-off between accuracy and range of va—

lidity, this EOS has so far only been computed for

H/He-mixtures, rendering it less suitable for he—

lioseismic investigations. Comparisons with this

EOS should, however, be an essential part of ef-

forts to further develop precise stellar EOS.

The OP and OPAL projects are based on two

rather different. philosophies; the chemical picture

and the physical picture, respectively, as detailed

in Sect. 2.1.1 and 2.1.2. The effect of Coulomb

interactions is reviewed in Sect. 2.2, and a cor—

rection, 1', to these, that seems to account for a

substantial part. of the differences between the two

formalisms, is explored in Sect. 2.2.2.

Detailed comparisons between the MHD and

OPAL EOS have proved very useful for discov-

27

ering the importance and consequences of several

physical effects (Dappen et al. 1990: Dapper] 1992,

1996). In Sect. 3. we extend these comparisons to

a systematic search in the entire 7‘—/) plane. and

in Sect. 4 we take a closer look at the EOS under

solar circumstances.

The consensus of the last few years has been

that in helioseismic comparisons the OPAL EOS is

closer to the Sun than the MHD ROS (Christensen—

l)alsgaard et al. 1996) although both are remark-

ably better than earlier theories. However. recent

helioseismic inversions for the adiabatic exponent

7] : Whip/(91119)“ (Basu et al. 1999: Di Mauro

et al. 2002) shows that the M HI) EOS fares better

than OPAL in the upper 7% of the sun includ-

ing the ionization zones of hydrogen and helium.

These new developments again highlights the im—

portance of competing equation-of-state efforts

and systematic comparisons such as the present.

2. Beyond Ideal Plasmas

The simplest model of a plasma is a non-

ionizing mixture of nuclei and electrons. obeying

the classical perfect gas law. However. an ideal

gas can be more general than a perfect gas. ldeal

only refers to the interactions between particles in

the gas. The interactions in any gas redistribute

energy and momentum between the particles, giv-

ing rise to statistical equilibrium. In an ideal gas

these interactions do not contribute to the energy

of the gas, implying that they are point interac—

tions. Since the Coulomb potential is not a (5—

function. real plasmas cannot be ideal.

Deviations from the perfect gas law, such as ion-

izat ion. internal degrees of freedom (excited states,

spin). radiation and Fermi—Dirac statistics of elec—

trons are all in the ideal regime. And the parti-

cles forming the gas can be classical or quantum,

material or photonic; as long as their interactions

have no range. the gas is still ideal. All such ideal

effects can be calculated as exactly as desired.

The ideal picture, is however, not adequate even

for the solar case. At the. solar center, an ideal-

gas calculation leaves about. 20% of the gas un—

ionized. On the other hand, the mere size of the

neutral (unperturbed) atoms, do not permit more

than 7% of the hydrogen to be unionized at these

densities, provided the atoms stay in the ground

state and are closely packed. At. the temperature

 



at the center of the Sun neither of these assump-

tions can possibly hold and the mere introduction

of size and packed immediately imply interactions

between the constituents of the plasma and it is

therefore no longer ideal.

In a plasma of charges, Z, with average inter-

particle distance (r), we define the coupling pa-

rameter, F, as the ratio of average potential bind—

ing energy over mean kinetic energy hBT

deg

P _ lmT(r) I (I)

Plasmas with r >> 1 are strongly coupled. eg. the

interior of white dwarfs, where coupling can be-

come so strong as to force crystallization. Those

with P << 1 are weakly coupled. as in stars more

massive than slightly sub-solar.

As one can suspect, P is the dimensionless cou—

pling parameter according to which one can clas-

sify theories. VVeakly-coupled plasmas lend to sys-

tematic perturbative ideas (eg. in powers of P).

strongly coupled plasma need more creative treat—

ments. Improvements in the equation ofstate be-

yond the model of a mixture of ideal gases are dif-

ficult, both for conceptual and technical reasons.

2.1. Chemical and Physical Picture

The present comparison is not merely between

two EOS-projects, but also between two funda-

mentally different. approaches to the problem. The

chemical picture is named for its foundation in the

notion of a chemical equilibrium between a set of

pre—defined molecules, atoms and ions.

in the physical picture only the “elementary"

particles ofthe problem are assumed from the out—

set, — that is, nuclei and electrons. (“omposite

particles appear from the formulation.

2].]. Chemical Picture: MHD F303

Most realistic equations of state that have ap—

peared in the last. 30 years belong to the chemical

picture and are based on the free—energy minimiza-

tion method. This method uses approximate sta-

tistical mechanical models (for example the non—

relativistic electron gas, Debye-Hiickel theory for

ionic species, hard—core atoms to simulate pressure

ionization via configurational terms, quantum me-

chanical models ofatoms in perturbed fields, etc).

From these models a macroscopic free energy is

28

constructed as a function of temperature T. vol

ume V, and the particle numbers N] ..... Nm 0

the m components of the plasma. At given T am

1". this free energy is minimized subject to the

stoichiometric constraints. The solution of thi:

minimum problem then gives both the equilibriun

concentrations and. if inserted in the free energ]

and its derivatives. the equation of state and the

thermodynamic quantities.

Obviously. this procedure automatically guar

antees thermodynamic consistency. As an exam

ple. when the ("oulonib pressure correction (set

Sect. 2.2) to the ideal-gas contribution originate:

from the free energy (and not merely as a correc

tion to the pressure). there will be corresponding

terms in all the other thermodynamic variables, a:

well as changes to the equilibrium concentrations

One major advantage of using the chemical pic

ture lies in the possibility to model complicatet

plasmas. and to obtain numerically smooth an(

consistent thermodynamical quantities.

1n the chemical picture. perturbed atoms mus

be introduced on a more-or-less ad-hoc basis tt

avoid the familiar divergence of internal partitior

functions (see eg. Ebeling et al. 1976). In othe

words. the approximation of unperturbed atom.

precludes the application of standard statistica

mechanics. i.e. the attribution of a Boltzmann

factor to each atomic state. The conventional rem

edy is to modify the atomic states. e.g. by cutting

off the highly excited states in function ofdensitj

and temperature.

The MHD equation-oftstate is based on an oc

cupation probability formalism (Hummer 8.: Mi

halas 1988). where the internal partition function

Zin" ofspecies s are weighted sums

Eis

hBT

 int _ . ,
2,, _E tt/,-,,g,;,,exp —

i

(2

Here. is label state i ofspecies s, and F]... is th-

energy and (Ii,q the statistical weight ofthat state

The coefficients 1127;... are the occupation probabil

ities that take into account charged and neutra

surrounding particles. In physical terms, 71:... give

the fraction ofall particles ofspecies s that can ex

ist in state i with an electron bound to the ator

or ion. and 1 — wig gives the fraction of thos

that are so heavily perturbed by nearby neighbor

that: their states are effectively destroyed. Per

taurbations by neutral particles are based on at



excluded-volume treatment and perturbations by

charges are calculated from a fit to a quantum-

mechanical Stark—ionization theory (for details see

Hummer 8'. Mihalas 1988).

The Opacity Project and, with it, the MHD

equation—of-state restricts itselfto the case ofstel-

lar envelopes, where density is sufficiently low that

the concept of atoms makes sense. This was the

mainjustilication for realizing the Opacity-Project

in the chemical picture and base it on the Mihalas.

Hummer. Dapper] equation of state (Hummer 8/,

Mihalas 1988; Mihalas et al. 1988; Dappen et al.

1988, hereinafter MHD). The Opacity Project is

mainly an effort. to compute accurate atomic data.

and to use these in opacity calculations. Plasma

effects on occupation numbers are ofsecondary in-

terest.

2.1.2. Physical Picture: OPA l. EOS

The chemical pictures heuristic separation of

the atomic-physics from the statistical mechan-

ics is avoided in the physical picture. It starts

out, from the grand canonical ensemble of a sys-

tem of electrons and nuclei interacting through

the Coulombpotential (Rogers 1981b. 1986, 1994).

Round clusters ofnnclei and electrons, correspond-

ing to ions, atoms and molecules are sampled in

this ensemble. Any effects of the plasma environ-

ment. on the internal states are obtained directly

from the statistical mechanical analysis, rather

than by assertion as in the chemical picture.

There is an impressive body ofliterature on the

physical picture. Important sources of informa—

tion with many references are the books by Ebel—

ing et al. (1976), Kraeft et al. (1986). and Ebeling

et. al. (1991). However, the majority ofwork on the

physical picture was not dedicated to the problem

of obtaining a high—precision equation of state for

stellar interiors. Such an attempt was made for

the first time by the OPA L—team at Lawrence Liv-

ermore National Laboratory (Rogers 1986; Igle-

sias 81. Rogers 1995; Rogers et al. 1996. and refer-

ences therein), and used as a. foundation for the

OPAL opacities (Iglesias et al. 1987, 1992: Iglesias

8K. Rogers 1991; Iglesias 8/. Rogers 1996; Rogers 8/.

Iglesias 1992).

The OPAL approach avoids the art-hoe cutoff

procedures necessary in free energy minimization

schemes. The method also provides a systen‘iatic
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procedure for including plasma effects in the 1

ton absorption coefficients. An effective po

tial method is used to generate atomic data w

have an accuracy similar to single configura

Hartree-Fock calculations (Rogers 1981a).

In contrast to the chemical picture. plague:

divergent partition functions, the physical pic

has the power to avoid them altogether. Parti

functions ofbound clusters ofpart icles (eg. at

and ions) are divergent in the Saha approach,

has a compensating divergent: scattering state

in the physical picture (Ebeling et al. 19761Ro

1977). A major advantage of the physical pic

is that it incorporates this compensation at

outset. A further advantage is that no assu

tions about energy-level shifts have to be mad

follows from the formalism that there are non

As a result. the Boltzmann sum appearin

the atomic (ionic) free energy is replaced by the

called Planck—Larkin partition function (PLl

given by (Ebeling et al. 1976: Kraeft et al. 1

Rogers 1986)

Eh

PLPF : :9” [exp (— 813T) - l +

is

His

erT

  

The PLPF is convergent without additional cu

criteria as are required in the chemical picture.

stress, however, that despite its name the PLP

not a partition function. but merely an auxil

term in a virial coefficient (see, e._q., Dappen e

1987).

The major disadvantage ofthe physical pict

is its formulation in density expansions. EX]

sions that first of all are very cumbersome to c

out, which means that only terms up till 3 in .

sity have been evaluated (Alastuey 8', Perez 1

Alastuey et al. 1994, 1995). Second, the slow

vergence ofthe problem, means that even this

traordinary accomplishment has a rather lin‘

range of validity. The chemical picture, on

other hand, do not need to rely on expansions.

complicated expressions, possibly with the cor

asyn‘iptotic behavior, can be used freely.

2.2. The Coulomb correction

The Coulomb correction, that is, the co

quence of an overall attractive binding force

neutral plasma deserves close attention, bec.

it. describes the main truly non—ideal effect.



der conditions as found in the interior of nor-

mal stars. Already in a number of early papers

(e.g. Berthomieu et al. 1980; Ulrich 1982; Ulrich

& Rhodes 1983; Shibahashi et a1. 1983, 1984) it

was suggested that improvements in the equation

of state, especially the inclusion of a Coulomb cor-

rection, could reduce discrepancies between com-

puted and observed p—modes in the Sun. Respond-

ing to this, Christensen—Dalsgaard et. al. (1988),

showed that. the MHD equation ofstate indeed im-

proved the agreement with helioseismology. That

the largest change was caused by the Coulomb cor-

rection was not immediately clear, since the MHD

equation of state also incorporates other improve—

ments over previous work.

From early comparisons between the MHD and

OPAL equations ofstate (Dappen et al. 1990), it

turned out, rather surprisingly, that. the net ef—

fect of the other major improvement, the influ—

ence ofhydrogen and helium bound states on ther—

modynamic quantities, became to a large degree

eclipsed beneath the influence of the Coulomb—

term. In the solar hydrogen and helium ionization

zones the Coulomlyterm is the dominant correc—

tion to the ionizing perfect gas. This discovery led

to an upgrade of the simple, but astrophysically

useful Eggleton et. al. (1973) (EFF) equation of

state through the inclusion of the Coulomb inter-

action term (CEFF) (see Christensen—Dalsgaard

1991; Christensen—Dalsgaard 8r. Dappen 1992).

The leading—order Coulomb correction is given

by the Debye-Hiickel (DI—I) theory, which replaces

the long-range Coulomb potential with a screened

potential, as outlined below.

2.2.1.

The Debye 8r. Hiickel (1923) theory of elec—

trolytes, describes polarization in liquid solutions

of electrons and positive ions. This description

also applies to ionizing gases. Assuming the parti-

cles can move freely, the electrons will congregate

around the ions, and the ions will repel each other

due to their charges. With their smaller mass and

higher speeds, the paths of electrons are deflected

by the ions increasing the chance of finding an

electron closer to an ion. This screening by the

electrons decreases the repulsion between the ions,

acting as an overall attractive force in the plasma.

The Debye- Hilclsrel approximation

The fundamental assumption of Debye and

I-Iiickel is that ofstatistical equilibrium, according

to which the local density of particles of type j

(including electrons) immersed in a potential 2,0

around an ion. 2', can be expressed as

77.71"?)=(W)PXPI-Zzifi'wtril/kBT) , (3)

where Zje and (DJ) are the charge and mean den—

sity of the particles and n_,-(r) are the perturbed

densities. y’=(r) is the plasma-potential or the ef—

fective (screened) inter—particle potential. Over—all

charge neutrality dictates that

Zamz-zo <:> (mazztnjvj. (4)

j #e

W'ith these perturbed densities, the corresponding

charge density is

PM = ZZeta->64”WW+zteatr.)
j

= 2 Mn.»[w_ (aw-WT] + 2

.719

resulting in the Poisson equation

Vgtt‘t’l‘t) = -47T€ ZZr<"7‘.j>€_7””i'(r‘)/k”flr + 21-502)

.7'

(6)

And now comes the most critical of Debye"s ap—

proximations: To make Eq. (6) more tractable,

the exponential is expanded in a power series, and

only terms up to first order are retained. The zero—

order term is the net-charge, Eq. (4). Solving Eq.

(6) with the remaining first-order terms results in

a screened Coulomb potential—the Dehye-Huckel

potential

Ze

r WAD” -+ (7)W) =

where /\DH is the Debye-length

The approximation of disregarding higher order

terms affects the low temperature and high den—

sity region where the inter-particle interactions be—

comes too large to be described by just the first or-

der term. This is a manifestation of the problems

with the classical, long-range part of the Coulomb

field in a plasma.



Investigations taking the physical picture point

ofview indicate that the original potential defined

in (6), is a good choice for a plasma potential

(Rogers 1981b), and only the truncation ofthe ex—

ponential resulting in the Debye-Hiickel potential

is oflimited validity (Rogers 1994)

At high densities the effect is in fact over-

estimated by using the l)ebye-l-liickel potential

(7). The relative Coulomb pressure in the Debye-

Hiickel theory, expressed in terms of the coupling

parameter. pDH/kBT : —f3/2/\/1—§, is a negative

contribution to the pressure. At very high densi—

ties, the over-estimation of the Coulomb pressure

can be so severe as to result in a negative total

pressure. The negative pressure differences seen

in the comparison plots in Sects. 3 and 4. sug~

gests that the amplitude of the Coulomb pressure

is larger in OPAL than in MHD. This statement

is true when the r-correction, mentioned below, is

applied to the MHD EOS.

To get a feeling for the behavior ofthe Coulomb

pressure, we use the perfect. gas law to obtain the

approximate expression

r a R1/3/,l-]/3<22>1/3, (9)

where [1 is the mean-molecular weight. This leads

us to anticipate differences between OPAL and

MHD, stemming from different treatments of the

plasma interactions, to increase with R, and that

such differences will be somewhat reduced when

we mix in helium and metals.

000
41- 4:- 41- The r correction in DH theory

As they were investigating electrolytic solutions

of molecules under terrestrial conditions, it was

natural for Debye and l-liickel to consider elec‘

trolytes made up of hard spheres. Assuming there

is a distance of closest approach, rm,n to the ion,

Eq. (7) is modified to

ZP. e—(T*Tmivi)//\rm

— l 'l’ rmin/ADH 7'

for r 2 rm," and constant, firm“), inside, remov—

ing the short range divergence. To obtain the free

energy, we apply the so—called recharging proce—

dure detailed in Fowler 81. Guggenheim (1956) to

Eq. (10), and get the result. without. rmin, multi-

plied by the factor

 wr) (m)

T(.’L') : 3[ln(1+ .1:) — .13 + %J721‘L'_3 , (11)
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where .L' : rmm/ADH. in short. the rechargin,

procedure consists of varying all charges in th

potential and integrating from zero to full charge

Equation (II) is the analytical result of this inte

gration and is based on the assumption that rm,

is independent. of the charge of any particles. Th

r-factor goes from one to zero as .1: increase. re

ducing the Coulomb pressure which was overesti

mated before. \Vith the r correction we can HVOlt

the negative pressures mentioned above.

Craboske et al. (1969) proposed to use

. -1

ha/atflel]

. (l'2

Fl/2i’le.)

T'mm Z (7)(2 [ART

for stellar plasmas, and it was later used in th

MHD EOS but not in OPAL. This choise of rmin i

merely the distance ofequipartition between ther

mal and potential energy of electrons approach

ing ions. Since the charges are opposite then

are, however, no classical limits to their approach

Also notice that since this choice of I’m'm depend.

explicitly on charge, the recharging procedure wil

result in a different form of T.

A thorough and critical review of the Debye

Hiickel theory can be found in Fowler & Cuggen

heim (1956). Chp. 1X. and a very clear presen

tation is found in Kippenhahn 8: \Veigert (1992)

though the latter does not mention 7'.

919.9. Other higher-order Coulomb corrections

Obviously, the r correction is just one particu

lar higher-order Coulomb correction. We can us

it as a model for developing more general expres

sions, by allowing some liberty in the choice c

rmin. Let us begin by asking about the distanc

of closest approach for quantum—mechanical elec

trons. Heisenberg"s uncertainty relation puts firr

limits on how localized particle can be — it. i

smeared out over a volume the size ofa de Brogli

wavelength A : h/p. This de-localization elim

nates the infinite charge densities associated wit

classical point—particles, and hence the short—rang

divergence of the Coulomb potential.

Based on that, we can tentatively suggest a dis

tance of closest approach which is the combine

radii of the electron and ion: {Me + %(/\ion). Th

diffraction parameter, Vii: between two particle

i and j, emerging from a more careful quantun'

mechanical analysis implies the use of the D6



Broglie wavelength in relative coordinates

rm,” = A.,- = (212/2)1,,tBT)"/? oc T’l/Q. (13)

where pi,- is the reduced mass. Comparing the

Tsfunction with the quantum diffraction modifica—

tion in Fig. 5 of (Rogers 1994), we see a similarity

in the functional form. The asymptotic behavior

differs though: ‘r(.1:) —> .1:-1 for .r —) 00 in the

hard-sphere model, whereas quantum diffraction

goes as 171/2. The two functions are very close

up to .’L‘ 2 1, though, suggesting that preliminary

investigations ofquantum diffraction effects in the

MHD EOS could be carried out by means of the

‘r-function and a new rm,“ as given by Eq. (13).

Dividing Eq. (13) by ADI—t. we find that the cor-

rection is now a function of 9 only. That is. going

from a hard-sphere model of interactions. to in-

cluding quantum diffraction, the factor alleviating

the short-range divergence of the Coulomb poten-

tial becomes a function of 9 instead of R.

Abandoning the hard—sphere ion correction for

the benefit of quantum diffraction, still leaves us

with only the first term of the Coulomb interac—

tions. Could the higher order terms be represented

by r in some form? It turns out that 7' would only

fit in a very limited range, and it would be more

fruitful to use proper expressions. The present

analysis however, shows that the effect of includ—

ing higher-order Coulomb terms, is much smaller

than has previously been estimated by the MHD

EOS. It therefore might be a fair approximation

to leave them out: for at least the solar case.

3. The EOS landscape in 0 and 7‘
‘-

For this comparison, we have computed MHD

EOS tables with exactly the same Q/T—g‘rid points

as the OPAL-tables (Rogers et al. 1996). to en-

sure that the equation-of—state comparison is not

influenced by interpolation errors. We do actually

use the respective interpolation routines to access

the table-values, but by interpolating on the ex—

act gridpoints for identical mixtures, we should

not lose precision in the process.

We compare tables with three different chem—

ical mixtures, successively adding more. elements

to the plasma: Mix 1 is pure hydrogen, mix 2 a

hydrogen-helium mixture and mix 3 is a 6-element

mixture that, besides hydrogen and helium, also

includes C, N, O and Ne. In Table l we list

32

the exact mixtures. both by mass abundance, X,-

of chemical element, 2', and as logarithmic num

ber fractions relative to hydrogen [Fv'i/NH]. The

choice of mixtures is that ofthe currently available

OPAL-tables, to avoid interpolations iti X and Z

in the comparisons of this section. we have omit

ted the radiative contributions.

The MHD equation of state now includes rel-

ativistically degenerate electrons. (Gong et al

2001b) as do the new version of OPAL (Rogers

Kz, Nayfonov 2002). This. of course. is significant

for stellar modeling and important for helioseismit

investigations ofthe Solar radiative zone (lClliot &'

Kosovichev 1998). For the present paper, however

it is irrelevant due to the lack of controversy or

the subject. and we will therefore limit ourselves

to dealing with non-relativistic electrons.

All plots ofdifferences in this paper present ab-

solute differences. Since the absolute quantities

span less than an order of magnitude and as they

have quite complicated behaviors. we found that

normalizing the differences would confuse more

than illuminate. The solar track (also presented

in Sect. 4) overlaid on the surface plots is not hid-

den behind the surface. so as to give an idea ofthe

behavior in otherwise obscured regions.

While the MHD tables and the pure—hydrogen

OPAL table have the same resolution. Mix-2 anc

Mix-3 OPAL tables have three times higher reso-

lution both in T and g. This can only affect the

comparisons ofthe solar Mix 2 and 3 cases, Sect. 4

where it might introduce some extra interpolation-

wiggles in the OPAL—MHD differences. The ta-

ble comparisons are all done on the low resolutior

grid.

For the case of pure hydrogen (Mix 1) we

plot the logarithmic absolute pressure, but for the

other mixtures we plot the logarithm of a reducec

pressure, P/(g’l‘), to make it easier to identify non-

ideal effects and the location of ionization zones

This choice will ofcourse not affect the differences

of the logarithms.

Apart from the actual pressure we also investi‘

gate the three derivatives

(amp cilnP t l
/ _ __ . / —' ‘8] A/ :

M alng T' M“ alnT 0' ( ’1

(14

where 71 is the adiabatic derivative often calle<

f]. These three derivatives form a complete se‘

 



TABLE 1

CHEMICAL MIXTURES '2 AND 3 (SEE TEXT)

 

 

 

element Ari (7(3) [.Ni / 1VH] X,‘ (9%) [.N,‘ / Nle

H 80.00 0.00000 80.00 0.00000

He 20.00 —1 .20098 I600 - I .29789

C 0.00 — 0.762643 —3.09693

N 0.00 — 0.223398 3.69693

0 0.00 — 2.171950 -2.76693

Ne 0.00 —- 0.842053 -3.27923

 

and fully describe the equation ofstate.

3.1 . Pure hydrogen.

we start with the simplest. mixture. that is,

pure hydrogen (Mix 1). The case of hydrogen is,

however, far from simple, not the least because of

its negative ion and molecular species. All in all

five species of hydrogen: H, H+, ll‘, Hg and H;

are included in both EOS.

The number of negative hydrogen ions does

never exceed a few parts in a thousand compared

to the other hydrogen species. Already at mod—

erate temperature, they dissociate into hydrogen

atoms. Despite its low abundance, H— does have

an impact on the electron balance since it. is the

only (significant) electron sink. The heavy ele—

ments with their low abundances are most affected

by this. Apart. from this indirect effect on the

heavy elements, the most. important feature of the

H'-ion is of course its bound—free and free—free

opacity, which is the primary source of opacity in

atmospheres of G, K and M stars.

The positive and neutral hydrogen molecules

can be seen in the low-temperature—high—density

corner of the tables, where their abundance

reaches up to 28% of hydrogen, by mass. At,

slightly lower densities, which is of greater as-

trophysical interest, these molecules only become

important at temperatures below those considered

here.

The most important feature in the hydrogen-

EOS landscapes of Figs. l—4 is, by far, the ioniza-

tion (from atom to positive ion), seen as a curved

rift. in all the derivatives. It is hardly visible in

the surface-plot of the full pressure (Fig. 'l), but
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becomes obvious in those of the reduced pressur

(Figs. 5 and 9).

The OPAL—team introduced the quantity

RzTé’g‘l. (15.

where T6 : T/IOG, as a convenient quantity t

describe the approximate g — T—stratification (

many stars. This is clearly seen in Fig. 1 WITH

we also plotted three iso-R tracks. bracketing th

solar track. In the lower panel of Fig. 1 these isc

R tracks also highlight. the main feature in th

differences: A sharply rising ridge. bell-shaped i

logT and centered around logT : 5.5, lying alon

logR 2 0. This ridge is a signature ofdifferences i

the pressure ionization. The sign of AP in Pig.

tells us that Mle has a more abrupt pressure ior

ization than the softer OPAL. The reason for tlti

difference is still not completely clear. It migl

be related to differences in the treatment: of th

short—range suppression of the Coulomb forces, a

mentioned in Sect. 2.2.2 and 2.2.3, or it could b

a result of differences in the mechanism of pre.c

sure ionization (Iglesias (Kr. Rogers 1995; Basu et a

l999; Gong et. al. 2001a).

We now turn to the logarithmic pressure derive

tives, X0 and X7“: displayed in Fig. 2 and 3, respec

tively. In both figures, the ionization zone is easil

recognized as the canyon or ridge starting in th

low-temperature-low-density corner, slowly bend

ing over to follow the solar track and disappear a

about logT : 6.

ln quite a. large region of the g — T plane bot

derivatives are equal to one reflecting that. the ga

is a perfect. gas. In this region the differences ar

very small (Le. less than 0.03%), confirming tha



both the chemical and the physical picture con—

verges appropriately to the perfect gas case.

At low temperatures X0 and XT are dominated

by temperature ionization, which is about an order

of magnitude more prominent in XT than in X9.

This region is a fairly well known regime and here

we can directly compare the two pictures. The dif—

ferences are indeed small in this region, less than

1% and less than a tenth of the differences in the

high—R ridge.

The rise of XT in the low-T—high—g corner is

due to Hg—molecules. About 28% by mass, of the

 
Fig. ].— Comparison of long in the two pure

hydrogen tables. The upper panel shows the ab—

solute value from the MHD EOS and the lower

panel shows the difference; OPAL minus MHD.

The strange boundaries of the surface simply re—

flects the shape of the tables. We also overlay the

solar track from Sect. 4 for comparison. On this

plot alone we also show iso—R tracks (dotted lines)

for long = —2,—1,0, going from low to high

densities.
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hydrogen atoms are bound in molecules in this

gion. but at higher densities they quickly press

dissociate. The fact that the differences incre

while the absolute value decreases indicates t

MHD is pressure dissociating faster than OPA

The differences are again dominated by

sharp ridge at high H, but in contrast to press

(Fig. 1), the differences in yo and XT return

zero for high temperatures and densities. As

pressure, the solar track falls over or climbs

H—edge in the middle of the ionization zone, a

is traversing the iso—R at log]? t: 0.

These high]? differences occur in a reg

where there is competition between the Coulo

terms and electron degeneracy. This makes

interpretation much more difficult. Two possi

reasons are the previously mentioned short—rat

 

L
or» ‘ .7~=

-‘.-.
        

Fig. 2.— The logarithmic pressure derivative w

respect to density X0 = (8|nP/81ng)T for p'

hydrogen in the upper panel, and its differen

(OPAL minus MHD) in the lower panel.



part of the Coulomb interactions and the changes

induced in the internal atomic states by the dense,

perturbing surroundings.

In the MHD EOS, all energy levels of internal

states are assumed to be unaltered by the plasma

environment. That is, the effect of the perturba-

tion by surrounding neutral and charged particles

on the internal state is restricted to a lowering of

the occupation probability ofthe given state only.

In the OPAL EOS, the net result looks similar, but

there the relative stability of energy levels to per-

turbations is not merely postulated but the result

of in-situ calculations of the Schrodinger or Dirac

equation for each configuration of nuclei and elec«

trons, based on parameterized Yukawa potentials

(Rogers 1981a), as mentioned in Sect. 2.1.2.

Looking at 71 in Fig. 4 we immediately no—

M“?

Fig. 3.— The logarithmic pressure derivative with

respect to temperature XT : ((91n P/aln T)(, for

pure hydrogen in the upper panel, and its differ—

ences (OPAL minus MHD) in the lower panel.
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tice how well this quantity displays the ionization

zones while leaving out everything else. This prop

erty is also reflected in the differences. which here

are of about the same magnitude in the ionization

zone as in the high—R ridge. The high}? differ-

ences have also changed characteristics, changing

sign periodically, while retaining the overall bell~

shape in logTofthe amplitude. We mention, how—

ever, that at least some of this behavior might be

due to the numerical differentiation scheme used

in the OPAL EOS (see Sect. 5 and Fig. 25).

3.2. Hydrogen and helium mixture

The effect of helium in the thermodynamical

quantities is revealed by the addition of 20% he-

lium and comparison with the pure—hydrogen case.

 
Fig. 4.— The adiabatic logarithmic pres—

sure derivative with respect to density '7] :

(fllnP/Bln g); for pure hydrogen in the upper

panel, and its differences (OPAL minus MHD) in

the lower panel.



The first thing we notice from Fig. 5 is how well

the reduced pressure P/(gT) reveals all the dis—

sociation and ionization zones (except H‘); The

Hg—formation in the low—T-high-g corner and the

prominent ionization of hydrogen together with

the two He ionization zones, the first eventually

merging with the H ionization. The effect of de—

generate electrons is evident in the high—T—high—g

corner.

We also notice another thing: while the pure

hydrogen OPAL—table was cutting the high—g, low-

T corner, leaving a little less for the comparison,

the mixture OPAL-tables allow a full comparison

since they have the same boundaries as the MHD

tables. The slightly larger table reveals a new fea—

ture in the differences. For pure hydrogen. the

pressure difference drops suddenly in the high—g,

low-T corner, due to faster molecule formation in

OPAL as compared to MHD. But in the slightly

larger tables used for the remainder ofthis section,

this difference suddenly goes to zero before it falls

down the high-R edge.

In the pressure differences, one can just barely

identify the first helium ionization zone, whereas

the second is too faint to be seen here. The high—R

differences are a little smaller than for pure hydro—

gen, as anticipated from Eq. (9) and the discussion

following it. This can be most clearly seen by com-

paring the dip in the hydrogen ionization zone.

The addition of helium is also evident in the

logarithmic pressure derivatives in Fig. 6 and 7.

First we see the deep rift (ridges in Fig. 7) of the

hydrogen ionization zone. Then comes a small

groove from the first helium ionization zone, a

groove which, when it widens and gets shallower

at higher densities, eventually merges with the hy—

drogen ionization zone, as is the case for the so-

lar track. Widely separated from the hydrogen

and first helium ionization zones, we find the sec-

ond helium ionization zone. It seems to disappear

at the low density edge of the table, but that is

only so because the ridge gets very sharp and is

unresolved in temperature, at low densities. Hot—

ter stars, that is, stars shifted towards lower R,

will clearly exhibit three, more distinct ionization

zones when compared with the Sun.

Apart from the two helium ionization zones, the

differences in the pressure derivatives are very sim—

ilar to the pure hydrogen case. The high-R dif—

ferences are somewhat smaller though, as are the
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differences in the hydrogen ionization zone. The

differences in h. also displays a very small ripple

along log}? 2 —4, which might be due to differ—

ences in the differentiation technique (see Sect. 5).

From the differences in AT (Fig. 7), we see

that the absolute differences in the three ioniza—

tion zones are just about the same. If we instead

compare the differences relative to the size of the

respective ionization ridges, we get 0.16% and 3%

relative differences for the hydrogen and helium

ionization zones respectively. That is, MHD and

OPAL have about 20 times better agreement on

hydrogen than on helium.

in Fig. 8, 7] appears like what We would antic—

ipate from the pure hydrogen case in Fig. 4. The

first helium ionization zone is only visible at low

densities. as it merges with the hydrogen ioniza-

 
Fig. 5.— The reduced pressure, P/(gT), for the H—

He mixture in the upper panel, and its differences

(OPAL minus MHD) in the lower panel.



tion zone shortly before the solar track is reached.

The differences, however, exhibit a much more

complicated structure, Along each of the ioniza—

tion zones, there is a deep valley in the differences.

and along the bottom of these valleys runs a very

sharp ridge, bringing the differences up to posi—

tive values. This is a clear sign of a broad neg»

ative peak minus a sharp negative peak, mean—

ing that MHD temperature ionize faster than does

OPAL. in the beginning of this section, we found

that MHD was also pressure ionizing faster than

OPAL, so all in all OPAL is the softer EOS ofthe

two. The ridge—in—the—middle—of—the—valley picture

is also found in the pure hydrogen case (Fig. 4).

but as the hydrogen ionization zone is not frilly

covered at low densities, the low—T side of the val—

ley is missing.

 
Fig. 6.—— x0, the logarithmic pressure derivative

at constant temperature, for the H-He mixture in

the upper panel, and its differences (OPAL minus

MHD) in the lower panel.
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3.3. H,He,C,N,O and Ne mixture

In this section we add the last four elements

considered, namely carbon, nitrogen, oxygen and

neon. Comparing Figs. 9—ll of this section with

the corresponding Figs. 5—7 of the previous sec—

tion, hardly any differences appear, neither in the

absolute values nor in the differences between the

two EOS.

For a few points on the high—R. boundary of

the tables, differences in M, and ‘71 have increased

dramatically. At least some of these odd points

are. the same for X? and '7]. This might indicate

that these points are spurious, possibly associated

with convergence problems in either EOS in this

difficult region.

The heavy elements are just barely discernible

in the differences of)“, (Fig. ll). However, for 71,

3414"

 
Fig. 7.7 X7“: the logarithmic pressure deriva-

tive at constant density, for the H—He mixture in

the upper panel, and its differences (OPAL minus

MHD) in the lower panel.



in Fig. 12, the heavy elements appear clearly both

in the absolute '71 and in the '71 differences. espe-

cially along the low—g edge of the table. Between

the first and second ionization zones ofhelium (cf.

Fig. 8), we notice some wiggles, which are likely

resulting from the third ionization zones of car—

bon and nitrogen, and the second ionization zones

of oxygen and neon. Above the second ionization

zone of helium, we can see all the ionization zones

from the fourth ionization zone. ofcarbon right up

to the tenth ionization of neon, although they are

not all resolved in this g—T—grid. A rough estimate

reveals that the relative difference between MHD

and OPAL for the heavy elements is of about the

same magnitude as the one for the helium ioniza‘

tion zones, i.e. 3%, or about 20 times worse than

the 0.16% agreement for hydrogen.

This unexpectedly large discrepancy for the

heavy elements might be a hint that these differ~

>414”

 
Fig. 8.—~ 71 for the H—f—fe mixture in the upper

panel, and its differences (OPAL minus MHD) in

the lower panel.

ences are primarily caused by differences in the

lower excited states. For hydrogenic ions, there

are analytical solutions for all states. This might.

explain the small discrepancy for hydrogen. For

ions with more than one electron there are no an-

alytical treatments, except for their higher states,

which become nearly hydrogenic. So it might

well be that the lower lying states of the non—

hydrogenic ions are responsible for the differences

noticed here. The Yukawa potentials (Rogers

1981a), which are used to describe bound electron

states in OPAL, are fitted to give the correct (ex—

perimental) ionization energies. MHD uses exper—

imental results for the energy levels. It is no sur—

prise therefore to get. quasi—perfect agreement on

the location ofthe ionization zones (confirmed by

the ridge—in—the—middle—of—the—valley picture in the

'71 differences), whereas the energies of lower ly—

ing excitation levels might differ These differences

 
Fig. 9.— Reduced pressure for mixture 3 (cf. Tab.

1) in the upper panel, and its differences (OPAL

minus MHD) in the lower panel.



propagate into the partition functions and affect

the course of ionization. In addition, the differ—

ences in the adopted micro—field distribution, and

the mechanism by which they ionize highly excited

states, might play a role in this region (Nayfonov

& Dappen 1998; Nayfonov et al. 1999). Since the

differences occur at the low—g edge of the table,

we expect however, that they mainly reveal dif—

ferences in the thermal ionization, not in pressure

ionization.

Let us return to pressure and have a closer look

at the non-ideal effects in the high-T-high-g cor-

ner. From the dotted iso—R lines in Fig. 9. it is

clear that the non-ideal effects are not functions of

R alone. Instead it turns out that they are largely

functions of 92/713. Comparing the perfect. gas

pressure and the fully degenerate, non—relativistic

electron pressure

 
Fig. 10,— X9: the logarithmic pressure derivative

at constant temperature, for the full mixture in

the upper panel, and its differences (OPAL minus

MHD) in the lower panel.
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we see that the two pressures compete along 92 (x

”Fa—lines. This means that relative to high-R

(Coulomb) effects, there are more degeneracy ef—

fects in the high—Tag corner of the table, which

reveals the nature of the sharp rise of both P

and Xe in this region. The correlation with larger

OPAL—MHD differences (See lower panel of Fig.

9) prompted us to perform a direct comparison

between the Fermi—Dirac integrals from the two

codes. We found non—systematic differences a re—

assuring eight orders of magnitude smaller than

the EOS differences we observe in this region.

_B

11111,,

An alternative explanation could be the lack of

electron exchange effects in the MHD EOS. This

is a combined effect of Heisenberg’s uncertainty

3414”

 
 

Fig. 11. XTY the logarithmic pressure derivative

with respect to temperature, for the full mixture in

the upper panel, and its differences (OPAL minus

MHD) in the lower panel.

 



relation (Heisenberg 1927) and Pauli‘s exclusion

principle (Pauli 1925): Due to the former, electron

wavefunctions are extended, but due to the latter,

the wavefunctions oftwo close electrons with same

spin cannot overlap. This results in the combined

wavefunction either having a bulge or a node at

the mid-point between the two electrons, giving

rise to two different kinds of contributions to the

Coulomb interactions. in the fully ionized, weak

degeneracy limit, the first—order e—e exchange pres—

sure (DeWitt 1961, 1969) is negative and propor—

tional to gz/T. Analyzing the differences in solar

solar case, we actually find in Sect. 4, that those

powers of g and T are the ones best describing the

differences above T 2 2 x 106 K

 
12,— The adiabatic logarithmic pressureFig.

derivative, 71, for the six element mixture in the

upper panel, and its differences (OPAL minus

MHD) in the lower panel.
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4. Comparisons in the Sun

To study the EOS under solar conditions,

have evaluated the MHD and OPAL EOS c

g —— T track that corresponds to the Sun u:

the respective interpolation routines. Obvim

this is a simplified comparison, not ofevolutior

models of the Sun, but merely of the equation

state for fixed solar—like circumstances. As den

strated elsewhere, such a simplified procedur

welljustified (See 6.9. Christensen—Dalsgaard e

1988).

We use the three chemical mixtures from T

1, bearing in mind that Mix 3 has about twice

lar metallicity. 1n contrast to the comparison

the previous section, we now include radiative<

tributions. This will ofcourse not change the

ferences of thermodynamic quantities, since I,

formalism use the well—known additive radia

contributions ((‘ox & Guili 1968).

In all the figures of this section, we notice I

the Mle and the OPAL EOS differs very littl

temperatures below 20 000 K and above 106 K,

they differ significantly in between. And tho

the differences are small, above 20 000 K they 1

intriguingly systematic.

The wiggles in the differences, most notice:

in the region between logT=4—4.5, are almost

tainly due to the interpolation schemes. T

become quite dominant in the 71 difference.

mentioned in Sect. 3, the tabular resolution of

OPAL tables for Mix 2 and 3 is about three ti

better than that ofthe corresponding MHD tal

This means that most of the interpolation wig

comes from MHD. The exception is the pure

drogen case (Mix 1), where the tables have

same (low) resolution and the respective inte‘

lation errors are of the same order.

4.1 . Pure hydrogen

lfwe take a look at the absolute pressure in

13 a), we notice a bend at log?" = 6.4. This m

the bottom of the convection zone. Inside the t

vection zone, that is below logT = 6.4, there is

abatic stratification of pressure and temperat

Le.

Vdz<5|ogT> :71—X0

a (9108]) ad 71XT I

When the gas is nearly fully ionized, essenti

Vad = 2/5, evidenced as the straight—line pal



the curve in Fig. 13 a). ln the ionization zones

(the outer 0.02RG), Vad is lowered to about 0.11

at logT 2‘: 4.], again clearly evidenced as a de—

pression in the pressure curve. Vad comes back

to '2/5 at. logT 2 3.76, but this happens at the

top of the convection zone where there is a down-

ward bend to a. radiative stratification. The depth

ofthe convection zone is about 0.28539. and just

slightly higher, at a depth ofOQSRG, hydrogen fi—

nally gets fully ionized (fewer than I in 105 are still
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Fig. 13* The logarithmic pressure along a solar

Q,T-tzrack for pure hydrogen. The upper panel

shows the absolute values of the MHD (solid line)

and the OPAL (dashed line) pressure. We also

plot the MHD pressure, using 1' : 1 to show the

effect. of omitting this correction (cf. Sect. 2.2.2).

These three pressures are indistinguishable unless

we look at the lower plot, showing the difference

OPAL minus MHD. Here we show, apart. from the

normal MHD, also the version with 1' : l, which

seems closer to OPAL, and a version where we

have halved the argument of 7'.

neutral). at a temperature oflogT : 6.3. For co

parison. hydrogen is 99.88% ionized in the mid

of the convection zone at logT : 6. So, althor

it is reasonable to say that the hydrogen ioni

tion zone is confined to the outermost 2% oft

Sun. one should also bear in mind the long tail

unionized hydrogen that is extending almost to I

This tail has

especially large effect on the opacity. since in 1

bottom of the convection zone.

visual and UV" only bound states can add opac.

to the constant “background opacity" from el

tron scattering.

hi the upper plot of Fig. 14 we can actually.

the differences between the absolute values of,

It is evident that OPAL has a much smoother a

broader ionization zone than the somewhat bun"

MHD. Turning off the T—correction (dashed line

almost centers MHD on OPAL, but the bumps

The Solar case
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Fig. 14.— The logarithmic pressure derivat

with respect to density, X0, along the solar tr;

for pure hydrogen. a) the absolute value, b) t

difference (OPAL minus MHD).



main the same. These bumps were also noticed

by Nayfonov 8x. Dappen (1998) and their analysis

showed that in the region where log’l’ : 42*52

the bumps are caused by excited states in hydro-

gen. In this part. of the Sun. hydrogen is 30% in—

creasing to 97.8% ionized. so even a small amount

of neutral hydrogen can have a significant effect

on the EOS.

At. logT 2 6.5 we see how degeneracy sets in.

increasing X0 towards it"s fully degenerate value

of 5/3. In the lower plot, we notice that degen-

eracy is accompanied by an increase in the differ-

ences. This could be attributed to the MHD EOS

not including electron-electron exchange effects, as

pointed out in Sect. 3.3.

The behavior of XT (Fig. 15) confirms the pic-

ture obtained from Fig. 14, that is. Mill) ionizing

The Solar case
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Fig. 15,—— The logarithmic pressure derivative

with respect to temperature, X7”: along the solar

track for pure hydrogen. a) the absolute value, b)

the difference (OPAL minus MHD).

faster and being more bumpy than OPAL. Hm

ever. since the dynamic. range of \T is much larg'

than that of \0. the bumps, which have still abm

the same size as those of \ 0. are now being dwarf}

by the much larger ionization peak in \T. (‘or

paring the differences shown in the lower plot

we notice that the overall differences are abor

twice as large as for \0- but the ionization per

in the respective upper plots is about 10 tim«

larger for x7 than for NO We also notice that f

XT- as a likely result of the higher dynamic rang

the interpolation-wiggles at logT S 4.6, are mm

more prominent than in No-

We can also distinguish MHD from OPAL i

the absolute values of 7] (Fig. 16 a)). althoug

they are much closer than in the y’s of Fig. l

and 15. This is confirmed in the differences show

The Solar case
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in panel b), which are overall smaller by an order

of magnitude compared to the P—, X0‘ and X7“—

differences. In contrast to our experience with P,

X9 and XT. here diminishing the r-correction in

MHD (dashed and dotted lines) does not lead to

any better agreement with OPAL. This is again

convincing evidence that 71 is a very efficient filter

for high-R effects. The differences that we see are

therefore due to the physics of ionizat ion, except at

low temperatures, where interpolation errors seem

to dominate.

4.2. Hydrogen and helium mixture,

The effect of helium is very hard to see in the

reduced pressure shown in Fig. 17 a), and in the

shape of the differences in Fig. 17 b). However. a

The Solar case
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comparison with the pure hydrogen case (Fig. 13

allows us none the less to see a few changes to tl

differences in the lower panels: The peak arour

logT : 4.7 gets considerable smaller by addir

helium. except for the r : 1 case. where the di

ference actually increases in this region. Also. tl

differences outside the high-R region decrease l

adding helium. independently of the choice of r

in general, adding helium does not alter tl

shape of the differences in P, x0 or X7“: and tl

changes due to composition are only manifest. l

a change of the amplitude of the peak arour

log7‘ : 4.7. This is surely due to the fact the

most of the ionization in the Sun takes place 5

the high-H. region. so that the first—order higl

H. differences due to the ionizations themselw

simply dwarf the second—order effects due to d.

tailed partition functions. among other. The sol:

track does follow the ionization zones to some (1'
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gree, and only enters the hydrogen ionization zone

“head on”. With the solar track curving along the

hydrogen ionization zone in this way the ionization

features will be smoothed out over a much larger

temperature interval than if we had examined an

iso-chore. This smoothing leads to more blending

of ionization zones from various elements, hamper-

ing analysis. The shape, merging and smoothing

of the ionization features is best seen in Figs. 9—1 1.

This behavior is clearly illustrated in. 6.9.. Xe

(Fig. 18 a), where we observe a rather sharp onset

of ionization followed by a much slower transition

to full ionization. The second ionization of helium

appears as part of the bump around IogT : 5. The

bump is somewhat more pronounced than in the

pure hydrogen case. A more careful comparison

with the pure hydrogen case (Fig. 14) reveals the

first ionization zone of helium as a slight extension

of the hydrogen peak. on the side towards higher

The Solar case
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temperatures. l-lelium gets almost fully ionize

at logT : 6.0. where 1.77% is singly ionized an

98.23% doubly ionized. it only ionizes slowly fu

ther at, higher temperature, until at. logT : 6.7

it. suddenly becomes fully ionized. This happer

at a depth of0.ti3R@, at the edge ofthe hydroge

burning core. At logT : 6.5, just slightly abm

the temperature where hydrogen gets fully ionize<

there is finally no more neutral helium left.

For X7“ (Fig. 19 panel a). the bump at logT 2

is a clear sign of the helium added. as opposed t

the similar but more entangled bump in Xe (c

Fig. 14 and 18). The second He ionization zone

very distinct in 71 (Fig. ‘20 a). and the first ioniz;

tion zone is manifested by a widening ofthe hydrt

gen ionization zone towards the high-T side. Tl

differences (panel b) are just as entangled as f(

pure hydrogen (Fig. 16) but with lower amplitudl

On the descending part . just above logT : 5, ther

The Solar case
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are some large interpolation errors, caused by the

change to the coarser grid. We also notice a pecu—

liar bump at. log?" : 6.6

Looking at. the various difference plots in this

section, we see a. correlation between a high am-

plitude in the differences and a high R-value, a

property we already inferred from the solar track

(Fig. 1). The minimum in R is found at the base

of the convection zone, where we also find a lo-

cal minimum in the magnitude of the differences

between the EOS. The location of this local min-

imum coincide for all four thermodynamic quan-

tities. This confirms our suspicion that: at least.

some of the discrepancy stems from T. The reason

for this conjecture is that. the differences between

MHD EOS with different 7' almost vanishes in this

region, whereas they increase in the same way as

The Solar case
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ized, perfect. gas pressure.
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the MHD—OPA L differences grow for intermediate

temperatures.

At high temperatures, above a minimum oc—

curring at logT 2 6.4, the MHD—OPAL differ-

ences grow, but the differences between the three

7' versions themselves remain small. On the solar

track, logR : —1.8 at the minimum of the MHD-

OPAL difference, and it only rises slightly to -1.4

at logT : 6.8 where the solar track bends to follow

more or less an iso-R line. The constant R value is

attained around logT : 6.15. The differences be

tween the T-versions are indeed the same in both

of these regions (this is best seen in the pressure

differences eg. Fig. 17), which explains why the

three curves with different 7' follow each other so

closely at high temperatures. The MHD—OPAL

difference in this region can therefore not be ex-

plained by the r—correction. it also turns out that
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in this region, the differences of the g-T plane are

mainly functions of 92/7“3 instead of R. In Sect.

3.3 we suggested that. this dependence might arise

from electron exchange effects or maybe from pos-

sibly different. evaluations of the Fermi~Dirac in—

tegrals. However, a third explanation might be

based on the quantum diffraction mentioned in

Sect. 2.2.3.

4.3. H,He,C,N,O and Ne. mixture

Adding C, N, O and Ne to the H-He mixture has

two main effects: first, it displaces 4%1—1e(cf. Tab.

1), thereby diminishing the helium features, and

second it leads to a slight decrease in the high—R

OPAL-MHD differences due to the increased mean

charge [see Eq. (9)]. Only in '7'] (Fig. 24), can the

heavy elements be observed directly. Comparing
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with the H—He case (Fig. 20), and going from low

to high temperatures, we first notice a slight di-

minishment ofthe feature associated with the first

ionization zone of helium due to the 4% decrease

ofthe helium content. This weakening of the l-le+

feature is counteracted by the second ionization

zone of carbon (24.38eV), as well as that of the

less abundant Ne (21.56eV) and N+ (29.60eV).

The feature of the second ionization zone of he—

lium is also diminished, but counteracted by the

third ionization zone of oxygen O++ (54.93eV).

the most: abundant heavy element. C++, 03+.

N++ and Ne++ adds further ionization in this tem—

perature region. Continuing towards higher tem—

peratures we notice a slight, straightening of the

“knee” around logT 2 5.3, due to the intermedi-

ate ionization stages of C, N and Ne with ioniza—

tion potentials between 47eV and 240eV. Finally,
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at logT 2 6.2, we find a broad dip supplied by the

two uppermost ionization stages ofC,N,O and Ne,

having ionization energies in the range between

400 eV and l 360 eV.

The only quantity in which the introduction of

heavy elements is manifested directly is '71, which

is an important key variable in helioseismology

(since it is closely related to adiabatic sound speed

cg = 71p/g). The promise of these features is that

the presence of heavy elements is well marked in

'71. Actually, this marking is so distinct (Gong

et al. 2001a), that in future solar and stellar appli—

cations of the MHD and OPAL equations of state

it might be worth to include more heavy elements

The influence due to our small quantity of heavy

elements is about three times larger than the dif—

ference between OPAL and MHD, though we has—

ten to add that our heavy element abundance of

Z : 4% is chosen too high in order to exhibit the

effects more clearly; they would ofcourse decrease

with a more solar metallicity around Z = 2%.

We have not discussed radiation pressure yet,

merely because of the lack of controversy about

it. However, it is worth a few notes. The ra—

tio between radiation pressure and gas pressure

is constant along iso—R lines the two being equal

around logR 2 —4.5. The largest radiation ef—

fects therefore occur at logT = 6.4 where there is

also the smallest discrepancy between OPAL and

MHD. The relative size of the effect of radiation

is: 0.0007, —0.001,0.003, —0.002 for logP. X9: X7“

and 71, respectively.

5. Discrepancies due to differentiation

A closer inspection ofthe derivatives in the per-

fect gas region reveals some discrepancies which

are likely due to the numerical differentiation per—

formed in the OPAL EOS. This is most noticeable

in 71, where the OPAL—MHD differences in the

perfect gas region are as large as 0.03%, which

admittedly is small indeed. Helioseismology will,

however, soon be dealing with such precision. This

difference most probably comes from problems in

the numerical calculation of an adiabatic change

as performed in OPAL (note that MHD uses es—

sentially analytical expressions for 7], X9 and XT

Since an adiabatic change is not rectangular in the

T — 9 plane, such an interpretation is consistent

with the fact that the differences in the derivatives

47

with respect to g and T (X0 and XT» respectively)

are about one order of magnitude smaller. This

also means. that in the ionization zones where

pressure and entropy are non—linear functions of

g and T, this differentiation noise must be much

larger. On the. other hand, the differences be—

tween OPAL and Mle are still at least an order

ofmagnitude larger than this differentiation noise.

We hope, however, that future improvements will

make OPAL and MHD converge to within that

level of the actual EOS, requiring higher numeri-

cal standards.

The differences in X0 and x7 have a tendency

to follow iso—R tracks. while the differences in 7]

follow isotherms. These two behaviors are still un—

explained. ln Fig. 25, the differences following

isotherms are pretty clear, but the iso-R differ-

ences are also visible, well below the rising moun-

tain at high R—values.

 

Fig. 25* This is a zoom—in on the fully ionized,

perfect gas region of a pure hydrogen plasma (cf.

Fig. 4), where 71 = 5/3. The upper panel shows

the results for the MHD EOS which uses analytical

expressions for all first— and second-order deriva—

tives. The lower panel shows the same for the

OPAL EOS, where derivatives are calculated nu—

merically on a grid that are much denser in g and

T though, than in the tables published.



6. Conclusion

The present comparison of the two MHD and

OPAL EOS has revealed the reasons of several dif—

ferences between these equations of state. They

can be summarized as follows (in order of impor—

tance):

a) We find the largest. differences at high den-

sities and low temperatures, or more pre-

cisely, at high R—values. From Sect. 2.2.1

and Eq. (9) we know that. this property is

indicative of differences in the treatment of

plasma interactions. Comparing the peaks

of the differences in (2.9. pressure (See Figs.

13, 17 and 21), we obtain Mix-l-to-Mix—‘Z

ratios of 0.797, and Mix-1—to-Mix-3 ratios of

0.788, which agrees very well with Eq. (9).

and thus further substantiates our interpre

tation. These differences are lowered dra—

matically when we put. 7' : l in MHD, indi-

cating that it is worthwhile to abolish 7' and

reconsider how to get. rid of the short-range

divergence in the plasma-potential (See Sect.

2.2.3).

b) 1n the higl'i-temperature—liigh—density corner

ofthe tables we observe how degeneracy sets

in. Along with degeneracy, we also notice

how some specific differences are growing.

This effect. could be due to quantum diffrac—

tion or exchange effects, both included in

OPAL but not in MHD. Quantum diffrac-

tion is the effect. ofthe quantum mechanical

smearing out of, primarily, the electron due

to it’s wave nature. The exchange effect is a

modification of the quantum diffraction aris-

ing from the anti-symmetric nature of two—

particle wavefunctions of fermions.

c) Differences also appear in the ionization

zones, and a great deal of them can be at-

tributed to the 1' correction, but not all of

it. The causes for the rest. of these differ—

ences are not easily identified. They might

be due to the basic differences between the

physical- and the chemical approach to the

plasma. The treatment of bound state en—

ergies and wave functions might have an

effect in this region. These are highly ac-

curate in MHD but. calculated in the iso—

lated particle approximation, whereas they
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are approximate (fitted to ground—state en-

ergies), but varying with the plasma. envi-

ronment in OPAL. We have also tried ex—

perimenting with the assumed critical field

strength used in MHD for the disrupt ion ofa

bound state [Eq. (4.24) of Hummer & Miha—

las (1988)]. However, this intervention had

only a very small effect. Earlier investiga—

tions by Iglesias 8'. Rogers (1995) indicated

that a change in the micro-field distribu—

tion might have a greater effect, and that

highly excited states are more populated in

the OPAL EOS, although the OPAL EOS

ionizes the plasma more readily than MHD

(Nayfonov 8.". Dappen 1998).

d) The evaluation of thermodynamic differen—

tials is done numerically in OPA L but ana-

lytically in MHD. For the quantities we have

examined here, the difference becomes most

apparent: in 7]. 1n the trivial perfect gas re—

gion of the g—T plane, OPAL is rugged on a

0.03% scale (see Sect. 5), as opposed to the

smooth MHD. These 0.03% may sound neg—

ligible, but helioseismology is approaching

that level. In ionization zones, the discrep-

ancies due to differentiation are most likely

larger. On the other hand, physical differ—

ences between the two EOS are still at. least.

an order of magnitude larger.

For helioseismic studies of the equation of state

it. is a very nice property of the Sun that high—

R conditions are found exclusively in the con-

vection zone, where the stratification is essen-

tially adiabatic, and therefore virtually decoupled

from radiation and the uncertainty in the opac—

ity (Cltristensen-Dalsgaard & Dappen 1992). As

opacity calculations are still subject to errors of

53—10%, we stress the importance of the fact that

opacity effects do not contaminate the structure

of the convection zone. This means that the solar

convection zone is a perfect. laboratory for investi-

gations ofthe most. controversial parts ofthe EOS.

The difference between 71 from and EOS and

that of the Sun can be inferred from helioseis-

mology, and that, with an accuracy that by far

exceeds the discrepancy between the two of the

best present. EOS for stellar structure calcula—

tions (Christensen—f)alsgaard et al. 1988). The

pursuit for a better EOS is therefore not at. all



academic, and we can improve both solar mod—

els and atomic physics in the. process (Rasu (KI.

Christensen-Dalsgaard 1997).
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3.3 Pressure Ionization in the MHD Equation of

State

In this section I elucidate the behavior and importance of an often quoted and ques-

tioned term in the Mihalas-H1.111‘1mer-Dappen (MHD) equation of state (EOS), the

so—called \Il—term, which provides pressure ionization of neutral plasmas in the high

density/low temperature region (Trampedach & Dappen 2004b).

3.3.1 Introduction

In stellar evolution computations. and in particular in the case of stars more massive

than the Sun, it is generally sufficient to use a simple equation of state. The plasma

of the stellar interior is treated as a mixture of perfect gases of all species (atoms,

ions, nuclei and electrons). and the Saha equation is solved to yield the degrees of

ionization or molecular formation. In the case of low mass stars, however, non—ideal

effects, such as Coulomb interactions, become important.

For such stars, the most useful equations of state. as far as their smooth real—

ization and versatility are concerned, are (i) the so—called Mihalas—Hummer-Dappen

(MHD) equation of state (Hummer & Mihalas 1988; Mihalas et al. 1988; Dapper]

et al. 1988), and (ii) the OPAL equation of state, the major alternative approach

developed at Livermore (Rogers 1986; Rogers ct al. 1996, and references therein). A

brief description of these two equations of state is given in Sect. 3.3.3.

Although the MHD equation of state was originally designed to provide the

level populations for opacity calculations of stellar envelopes, the associated ther-
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modynamic quantities of MHD can none the less be reliably used even for cores 0

low—mass stars (Chabrier & Baraffe 1997). Low—mass stars harbor the most extreml

plasma-conditions, the gas being far from ideal, due to the high densities and lov

temperatures. There the Coulomb interactions between particles are more impor

tant, as is the destruction of the more fragile excited states. This latter phenomenor

will eventually lead to pressure ionization, which in the MHD equation of state i:

achieved through an occupation probability formalism for bound species, as detailec

in Sect. 3.3.2. The neutral—neutral interactions employed are, however, not strong

enough to pressure—ionize a plasma consisting of mostly neutral particles (low tem

perature), and approximate higher-order terms are, therefore, included through the

\IJ—term, addressed in the present paper.

Since the MHD equation of state otherwise includes processes important for low-

mass stars and envelopes of white dwarfs (W. Stolzmann, private cormnunication)

6.9., Coulomb pressure and electron degeneracy, the question of the impact anc

validity of the \Il—term is more than academic.

3.3.2 Pressure Ionization in MHD

In the MHD equation of state pressure ionization is facilitated by occupation proba-

bilities, wi, truncating the otherwise divergent partition functions

2 : 2.0.9.6454“ . (38‘
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where i labels the levels and E,- and g, are the corresponding energies and statisti

weights. The occupation probabilities are then determined by the physical mode

the pressure ionizing interactions.

As described in Hummer & Mihalas (1983), the formalism incorporates pert

bations by fluctuating fields from charged particles, and a first—order approximat

to the hard-sphere interactions with neutral particles. It turned out that the apprc

mate neutral-neutral interaction alone is too weak to overcome the steeply increas

energy of the free, degenerate electrons, and thereby cause pressure ionization. Thi

hardly surprising. If, however, there are just a few charged particles present, the fl

tuating micro-fields take over, and pressure ionization occurs smoothly. The press1

dissociation of hydrogen molecules avoids this problem altogether, as no electrons .-

released, and pressure dissociation does occur in the MHD equation of state, unaic

by extra terms.

The hard-sphere model, or excluded volume model, has the free energy

:2.
1:, Z 487": N,ln 1— (3%) Z .N_,(R.: + 12,)3 (:

i i .‘i

where both sums extend over all states of all species of particles. Expanding 1

logarithm in

52' = (3%) ZNj1Ri—1— H.713» (.
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B :7: : [I 9 Z I 8 z. I if z. o o u .

The first-order term is already included in the expression for the occupation prob

bilities, 10,, apart from a factor of two.

As shown by Fermi (1924), occupation probabilities. 10,-, as used in the MH

formulation for partition functions, Eq. (38), are accompanied by a term in t1

Helmholtz free energy

Fm : f — Zn,- (8f/3n,) , (4‘

where lnw, E — (EU/872,) //cBT. In the case that the non-ideal term, f, is linear in t1

occupation numbers {72,}, the Fw-term vanishes identically, making Fw independe:

of the state of excitation. By confining effects that depend on the population

excited levels to such linear terms in the occupation probabilities, the equation

state is reduced to a [VI >< M~matrix problem, where 11"] 2 170 is the number

species (atoms, ions and molecules), instead of a N x N—matrix problem, whe

N 2 16 000 is the total number of states considered. The first term in the expansio

Eq. (41), of the hard—sphere free energy therefore result in no extra terms in the frc

energy.

Retaining the N X N-order of the problem, the second—order term can therefo

only be included in an approximate way, 6.9., assuming that all particles of a give
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species are in the same state. Using the ground—state, Eq. (40) simplifies to

4- .

€11 : (3%) Z Nlu1R1u ‘1' Rlulsv 1

' u

where 1/ and ILL label particle species. The second-order term is then of the form

F, : —,lJBTZfV,/(—Q€3)

: —1cBTZN.1n\II.. 111111.: -053. t

This artificial term was introduced to allow computation of numerically con:

tent results for very cold and dense plasmas. in order to compute tables of th

modynamical quantities in rectangular temperature-density grids with less regard

physical accuracy in this difficult region of limited astrophysical interest.

It is a legitimate concern that the presence of the artificial pressure ionizat?

mechanism, the so—called \II-term, might contaminate the results for less extre

conditions relevant for stellar interiors. The present analysis shows that this is I

the case, and that the pressure ionization in the MHD equation of state for st

lar conditions, is caused by the decreasing occupation prol')ali)ilities with increas?

density. The lIl-term only affects the high density low temperature corner of the

T)-plane, and was merely introduced to ensure numerical stability and convergei

in this region.

Before presenting the results of the study, which is based on a systematic SWltt

ing on and off of the 111—term, for the convenience of the reader, the specifications
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the MHD equation state and its relation to alternative formalisms is summarized ir

Sect. 3.3.3.

3.3.3 A brief review of the MHD equation of state

Historically, the MHD equation of state was developed as part of the internationa.

“Opacity Project” (OP, see Seaton 1987; Seaton et (ll. 1992). It was realized in the so-

called chemical picture, where plasma interactions are treated through modifications.

of atomic states, 216. the quantum mechanical problem is solved before statistica

mechanics is applied. It is based on the so-called free—energy minimization method

This method uses approximate statistical mechanical models (for example the non-

relativistic electron gas, Debye-Hiickel theory for ionic species. hard-sphere atoms tc

simulate pressure ionization via configurational terms, quantum mechanical model:

of atoms in perturbed fields. etc). From these models a macroscopic free energy

is constructed as a function of temperature T, volume V. and the concentrations

N1,...,NM of the [VI components of the plasma. The free energy is minimizee

subject to the stoichiometric constraint. The solution of this minimum problem ther

gives both the equilibrium concentrations and, if inserted into the free energy and its

derivatives, the equation of state and the thermodynamic quantities.

More specifically, in the chemical picture, perturbed atoms must be introducec

on a more—or-less ad-hoc basis to avoid the familiar divergence of internal partitior

functions (see 6.9., Ebeling et al. 1976). In other words, the approximation of un-

perturbed atoms precludes the application of standard statistical mechanics, i.e. the



attribution of a Boltzmann—factor to each atomic state. The conventional remee

of the chemical picture against this is a modification of the atomic states, 6.9., 1

cutting off the highly excited states as a function of density and temperature of t1

plasma. Such cut-offs, however, have in general dire consequences due. to the discre

nature of the atomic spectrum, t.€., jumps in the number of excited states (and tht

in the partition functions and in the free energy) despite smoothly varying extern

parameters (temperature and density). The occupation probability formalism er

ployed by the MHD equation of state, however. avoids these jumps and delivers ve:

smooth thermodynamic quantities. Specifically, the essence of the MHD equatic

of state is the Hummer & Mihalas (1988) occupation probability formalism, whie

describes the reduced availability of bound systems when immersed in a plasm

Perturbations by charged and neutral particles are taken into account. The neutr

contribution is evaluated in a first—order approxil‘nation to hard—sphere interaction

which is an adequate description for stars in which most of the ionization in the i:

terior is achieved by temperature. For colder objects (brown dwarfs, giant planets

higher-order excluded-volume effects become important (Saumon & Chabrier 199

Saumon et al. 1995). In the common domain of application of the Saumon et e

(1995) and MHD equations of state, Chabrier 8; Baraffe (1997) showed that the tv

developments yield very similar results.

Despite undeniable advantages of the physical picture, the chemical picture a

proach leads to smoother thermodynamic quantities, because they can be writte

as analytical (albeit complicated) expressions of temperature, density and partic

abundances. In contrast, the physical picture is normally realized with the unwiele



chemical potential as the independent variable, from which density and number abun-

dance follow as dependent quantities. The physical-picture approach involves, there—

fore, a numerical inversion before the thermodynamic quantities can be expressed in

their “natural” variables: temperature, density and particle numbers. This increases

computing time greatly, and that is the reason why, so far, only a limited number

of OPAL tables have been produced, and then only tables that are suitable for stars

more massive than N 0.8 [146).

3.3.4 Examination of the influence of the \11 term

To quantify the effects of the \II—term on the MHD EOS. two tables were calculated,

including and neglecting the 1Il-term, respectively. The pressure difference between

the two is plotted in Fig. 4.

The occupation probabilities in the MHD EOS are very dependent on the pres-

ence of charged particles in order to ionize. At sufficiently large densities and low

temperatures there are no such seed charges from temperature ionization, and pres—

sure ionization due to the occupation probabilities cannot occur. Even the slightest

amounts of metals, i.e., some elements with very low ionization potentials, will supply

seed-charges in a larger region than will a pure hydrogen plasma. Introducing helium

will, of course, work in the opposite direction due to its high ionization potential. To

investigate the most extreme case (fewest seed charges) of astrophysical relevance,

the calculations were performed for a hydrogen/helium mixture with Y = 20% (by

mass), including no metals.

58



1
0
g
(
,
0
/
1
g
(
r
m
—
3
]
)

Fig. 4.

lower left to upper right are tracks of stellar structure for stars in the mass range 0.6—

1.5]VIQ, as indicated above each track. The dotted contour lines mark the hydrogen

and second helium ionization zones respectively, with contour lines in steps of 10%.

Fig. 4 shows that the pressure in the 0.6 [111/1.3;, model is altered by less than 0.003%

by introducing \II. In the temperature range between logT = 4.3 and 5.2, it seems as

if the stellar tracks follow the iso—difference curves in a significant fraction of the star.

This, however, is the region just below the photosphere. and the large temperature

This figure shows contours of the difference in pressure between including

and ignoring the \lJ-term, in the sense logmlAP/PI. The dashed lines going from
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and density gradients there makes this region very thin. For the 0.61146, model, this

peak in the pressure-differences is centered around a. relative radius of r/R = 0.987,

and already at 0.975 and 0.995, difference has fallen by an order of magnitude from

its maximum.

The extent of the affected region in a star is indeed thin. and the location is below

the super-adiabatic uppermost part of the convection zone and far enough from the

photospheric transition zone, not to affect it. These transition regions are even more

shallow, but nevertheless very important for the stellar structure, as they act as upper

boundary conditions for the whole star (Trampedach 61‘ (ll. 2004(1). The thin region

affected by \I/ does not have a corresponding importance and the implications for the

star as a whole are insignificant.

The inner 94% of the star (by radius—99.8% by mass), on the other hand,

pressure ionizes perfectly by means of the occupation probabilities without any in—

tervention by the lII—term.

3.3.5 Conclusion

As can be seen from Fig. 4, the 111-term barely affects any stellar models. By ex-

trapolating the stellar model-tracks in the figure a little, it can be estimated that

the pressure in a 0.5 [149 star is at most changed by 0.01% and for a 0.41119 star,

about 0.03%. As explained in Sect. 3.3.4 the largest change introduced by the \IJ—term

occurs in a very thin layer, in a region of the star which responds linearly to such

changes, i.e., it hardly affects the remainder of the star.
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 The lIJ-term is not a cause for serious concern regarding the \l’alidity of the MHD

EOS for stars down to masses of 0.4/149.

 



3.4 MHD 2000

Prompted by helioseismic analysis and detailed comparisons with the principal com-

peting equation of state (EOS) project, I here present an updated MHD EOS in—

cluding a number of new phenomena, as well as the previously published updates

of improved electric micro-field distributions and relativistically degenerate electrons

(Trampedach & Dappen 2004a). The main new features include higher order den—

sity terms in the Coulomb interactions; quantum effects. including relativistic effects;

and a new formulation of interactions that. involve particles with zero net—charge,

abandoning the use of hard—sphere interactions. These changes expand the region

of validity towards higher temperatures and densities, to easily encompass normal

stellar cores. I also include di- and poly-atomic molecules (in addition to the already

present H2 and If;I molecules), in order to include stellar atmospheres in the domain

of the Mle EOS.

3.4.1 Introduction

The equation of state (EOS) is an integral part of most astrophysical analyses, having

the two r6les of supplying the thermodynamic state of the plasma, and of serving as a

foundation for opacity calculations by providing ionization- and dissociation—balances

and detailed populations of all electronic states.

In the late 19808 two very successful EOS emerged, both being parts of efforts

to improve on the opacities available to the astrophysical community: The Mihalas—

Hummer-Dappen EOS (Hummer & Mihalas 1988; Mihalas el al. 1988; Dappen el al.
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1988) as part ofthe international Opacity Project (OP) which is nicely summarized in

the two volumes by Seaton (1995) and Berrington (1997). and the OPAL EOS (Rogers

1986; Rogers et al. 1996), pursued at the Lawrence Livermore National Laboratory,

being the foundation for the OPAL opacities (Iglesias el al. 1987; Iglesias el al. 1992;

Iglesias & Rogers 1991; Iglesias & Rogers 1996; Rogers & Iglesias 1992a).

From detailed comparisons between these two, fundamentally di'lferent, approaches

to the EOS (Dappen el al. 1990; Trampedach el al. 2004c) and comparisons with he—

lioseismic inversions (Basu el' al. 1999), a number of problems with the MHD EOS

have been identified. In particular, experiments with the partition functions (Gong

et al. 2001a) suggested that the fluctuating micro-fields in the Mle EOS were too

efficient at destroying highly excited states. This result was supported by direct com-

parison between a number of formulations "for the micro—field distributions, including

those used in the MHD and the OPAL EOS (Iglesias &: Rogers 1995). Recent work

by Badnell & Seaton (2003) indicate, however, that the equivalent level-populations

in the OPAL EOS are improbably high at high densities. Nayfonov et al. (1999) in-

troduced an improved treatment of micro—field distributions, dubbed Q-MHD, which

also includes the effects of electrons screening the charges of the ions (and vice verse).

I have implemented my own version of Q—MHD, as detailed in Sect. 3.4.5.

Helioseismic investigations by Elliot & Kosovichev (1998) showed a clear sign

of the Solar radiative interior not only being slightly degenerate, but also slightly

relativistic. This motivated the inclusion of the work by Gong el al. (2001b) on

relativistically degenerate electrons, as well as a number of other relativistic effects,

as detailed in Sect. 3.4.3. In the Sun, relativistic effects become significant in the
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radiative zone, increasing towards the center. Another effect of about the same

magnitude at the solar center is the exchange interaction between identical particles,

which I include in Sect. 3.4.4.2.

Trampedach el al. (2004c) recommended introducing quantum diffraction (see

Sect. 3.4.4.1) and higher order terms in the Coulomb interactions (see Sect. 3.4.4.3)

to improve the agreement between the MHD and the OPAL EOS. Both these effects

were included in OPAL, but not in the MHD EOS.

In Sect. 3.4.4.2 I present the contributions from the exchange interactions be-

tween identical particles, and derive an expansion for the relativistic exchange integral

in terms of the generalized Fermi—Dirac functions.

In the original MHD EOS, perturbations by neutral particles (atoms) were i11—

cluded by means of the hard—sphere model. In order for the problem to remain

tractable this term was only treated up to first order in density, and second—order

terms were included in an approximate way, as discussed by Trampedach & Dappen

(2004b). The hard—core interaction model is inherently flawed, as it introduces a di-

vergence for high densities and is undefined for densities higher than the close-packing

density of the spheres.

The interactions involved when neutral particles interact are obviously still caused

by the charges of the particles constituting the atoms; in close encounters between

atoms, the electronic wave-functions will overlap and the nuclei will therefore no

longer be completely screened from each other, and net—forces arise. This phenomenon

is described through the introduction of the concept of effective charge in Sect. 3.4.4.4.

In Sect. 3.4.6 molecules (other than H; and H?) are introduced into the MHD
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EOS, through parameterized partition functions. Inspired by the original MHD EOS.

analytical approximations to the occupation probabilities of molecules are derived,

based on the two molecules, Hg and H; . that are treated in detail.

3.4.2 Chemical Compositions

Comparisons between the original MHD EOS and the present updates will obviously

depend on the chemical mixtures used in the calculations. and I therefore introduce

the reader to my choices of chemical compositions, before proceeding to the equation

of state issues.

To facilitate comparisons with earlier work (6.9., Trampedach el (Ll. 2004c) and

with the OPAL EOS, a H/He-mixture and a 6-element mixture are used, as listed

in Tab. 1. The logarithmic the table lists abundances relative to hydrogen, [N,-/NH],

which is normalized to 12. Mix 1 and 2 have helium mass—fractions of Y = 20% and

16%, respectively, and a. hydrogen mass-fraction of X : 80%. The right—most column

in Tab. 1 is the ionization potentials for the first ionization stage, X11 to indicate the

temperatures for which they start to add electrons to the plasma.

The 6—element Mix 2 has a metallicity more than twice that of the Sun, Z9 :

1.8% and a distinctly sub—solar helium abundance, Y9 = 0.245 (Basu & Antia 1995),

exaggerating metallicity effects with respect to most stellar applications. This is, of

course, useful for analyzing the effects of metals on the EOS.

Next, I need to address the issue of the best solar composition, i.e., metal—

mixture, to use for the final table calculations. The computational cost increases
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Table 1. Chemical mixtures in [N,/N1.1] (see text)

element Mix 1 Mix 2 GN96 Optimized xl/[eV]

H 12.00000 12.00000 —— 13.59844

He 10.79902 10.70211 —-— — 24.58741

C — 8.90307 8.55000 8.55884 11.26030

N _ 8.30307 7 97000 7.97000 14.53410

O # 9.23307 8.87000 8.87000 13.61806

Ne * 8.72077 8.08000 8 11100 21.56454

Na — — 6.32000 6.32895 5.13908

Mg W -— 7.58000 7.58000 7.64623

Si # A 7.56000 7.56000 8.15169

K h 7* 5.13000 5 13000 4.34066

Fe fl — 7.50000 7.65924 7.87052

0.4. . A I n L A l A . . . l 1 n . . I . A . . l n n A41

- truncated GN96 r

- - - _ optimized mix

0.2 " | _

:i ' ‘.

E '.
<1 , i x4000

0.0- ------ ,

—0.2   

Fig. 5. The relative difference in mean—electron-mass, he, as a function of tempera-

ture in a solar stratification. The solid line is for the GN96 mixture truncated from

30 to 11 elements, and the dashed line is the optimized 11 element composition, as

listed in Tab. 1.

dramatically with the number of elements and the complexity (atomic number) of the

elements considered, but the characteristics of the full mixture needs to be preserved.

4.0 4.5 5.0

long

5.5
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For the full mixture, I use the compilation by Grevesse et al. (1996) (GN96). As

measure of the characteristics of a particular composition, I use the average charge

Z = N. Za/ 1v... (4::<

where the sum is taken over all ionization stages of all metals. The population (

all ionization-stages of metals along a solar stratification, is estimated, using simpl

Saha-equations (Saha 1921), with ground—level statistical—weights for the partitior

functions. The approximations here should be immaterial, since only the location

and relative strength of ionization features are of importance, here.

The GN96-mixture is truncated, and the remaining elements are padded, to bee

reproduce the (Z) of the full mixture, as well as the average mass of particles in th

plasma. The optimization is performed on ln(Z) in order to capture the details c

ionization in the parts of stellar atmospheres where hydrogen is still only a mine

electron donor.

A good compromise between speed and precision can be struck with a ll—elemer.

mixture, comprised of the elements as listed in Tab. 1. The column labeled GN9

is the CN96—mixture truncated to 11 elements, and the last column is the optimize

version. The optimized mixture has a RMS—deviation from the full GN96—mixture c

3.8%. As is evident from Tab. 1, most of the padding has been added to iron, som

is added to neon, and the rest is shared between carbon and sodium. Potassiurr

with its ionization potential of 4.341 eV, the lowest of all elements up to 37Rb, whic.

is more than 300 times less abundant, is crucial for reproducing the details at 101
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temperatures. Leaving it out results in over—all discrepancies of 22% and differen

approachng 100% at low temperatures.

Optimizing just the four metals of Mix 2 results in an over—all RMS—deviatf

of 45%. Below 6300 K the deviation increases rapidly to 100%, i.e., this mixt‘

supplies none of the electrons donated by the low—ionization—potential elements 1

sodium and potassium of the 11 element mixture. As can be seen from Tab. 1, 1V

2 has no elements with ionization potential below 11.26 eV.

From here on, the optimized nine metal—mixture will be referred to as the so

(metal) composition.

3.4.3 Relativistic Electrons

This section is concerned with the consequences of an appreciable fraction of t

electrons having relativistic speeds, i.e., pe ,2 mec, where the masses of particles z

always understood to be rest—masses. I let the treatment of relativistic electrc

be dealt with prior to the other EOS improvements of the present analysis, as

influences most of these.

Due to their much larger masses, ions only become relativistic at temperatu:

exceeding 1012 K. These temperatures are four magnitudes higher than considered

the MHD EOS at present, and they can therefore be safely ignore for now.

For an ensemble of particles of species oz, I use

kBT

mac2
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as a measure of the importance of relativistic effects —— the ratio of kinetic- to r1

mass-energy. As mentioned above, only electrons are significantly relativistic, :

the sub—script can be dropped, to simplify notation; l3 2 [3... The present sect

is, however, kept general and applies to all fermions. Note that. there is a lacl-

consensus in the literature on the definition of 6; sometimes the inverse is used.

There are a number of effects arising from particles having relativistic spee

First of all, special relativity complicates the relation between momentum, p, 2

kinetic energy, E, changing the general distribution function

 

 

_. 871' p2dp

1(1). Eldl) = 5:3,- 1

from (p2 = 2mE)

, 1/21

ftp. E1du = 1‘; t

to (p2 = m2c2[(,3u -1— 1)2 — 1])

[3n +1 2 — 1

f(p, E)du : n" \/( 1+ 62:77 (flu +1)du . (

71.. : 4—(2'm/cBT) :
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The thermal de Broglie wavelength for particles of mass. m, is

/\0 = h/e/27rkaT , (52)

and the subscript indicates that the thermal average is evaluated at 7] = 0, 27.6., using

Boltzmann statistics.

The two distribution functions, Eqs. (48) and (49) have inspired the definition

of the (non—relativistic) Fermi-Dirac functions

00 qu'u.

F110) 2/0 W a (531

and the generalized Fermi-Dirac functions

00 ue/l + ifind-u.

)2/0 2 for 1/ > —1 , (54)
1+ 611—7}

1/ (773/8

neither of which have analytical integrals. I solve the generalized Fermi—Dirac func-

tions numerically, as described by Gong el (Ll. (2001), who also list all derivatives up

to order three. For convenience, I will list the two first—order derivatives, as they will

be needed in Sect. 3.4.4. The differentiation is straight forward, and gives

_7__,,a(7,fl)_/000 U(N ‘1‘ 73515 (In. (55)

1+ 621—77 1+ €72—u

and

_77,_(8F,,(fl)1/000 UV1 + $311 udu (56)

:4 1 + eu—n 1+ gel... '
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From Eqs. (49) and (54), I see that the number density of relativistically degen-

erate particles, is

n : [000f(p,E)(lp (57)

= n.[memematerial . (58)

which is needed for normalization of ensemble averaged kinetic quantities, as e.g. the

6- and O—factors discussed below.

The largest effect of the change of distribution function, is a change of the trans-

lational free-energy of electrons, F3. I follow the formulation of Gong el. al. (2001b)

for F3 and its derivatives.

The change ofdistribution function, also means that ensemble averaged momenta

and energies will change. This has an effect on the degeneracy factors, 06 and O...

modifying the electron screening contribution to the Debye—length, Eq. (61), and the

ensemble averaged De Broglie wavelength, Eq. (68), respectively. These factors will

be treated in detail below.

Yet another effect due to relativistic speeds, is that of retarded potentials, ac—

counting for the finite speed of propagation of electric fields. It can be shown (see,

e.g., Landau & Lifshitz 1989, Chapter 8) that the potential produced by a moving

charge, is

(59)

 

where R is the vector from the charge, to the point of observation.
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3.4.4 The Bee Energy of the Coulomb Interactions

In the original version of the MHD EOS (Hummer & I\="lihalas 1988; Mihalas el al

1988; Dappen et al. 1988), the Coulomb free energy, F11, is approximated by the

Debye-Hiickel free energy

 

 

ATBTI/

— -— A73 0

FDH 1271’ D (6

where AD is the Debye length

4aeg ~. .

A72 : N96,, No.22 61
D [CB 71"; _, + 0;; 0' 1 .

  

Since most expressions involving AD, do so in negative powers. I introduce the in-

verse screening length. RD : A51. In the summation in Eq. (61). 0 runs over al

particles with a net charge, except for the electrons, for which I also include effect:

of degeneracy through the 0.3-term.

The non-relativistic (NR) 0,, used in the original version of the MHD-EOS,

C6N7 = F—1/21711/2F1/‘2177l 7 (62:

is based on the interaction propagators, G2, for the electrons (Cooper & DeWitt

1973)

G; _ 87r V '00 p2dp 1

Ne _ 53 NC 0 6“"? + 1 1 + e"’“ i

  0, = (63‘
I

which can be generalized to the relativistic case by using Eq. (49). From Eq. (55) 1
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now recognize the integral as (917,,(77, [fl/an, so that.

6 : 8171/2191 51/871 71" (78173/20], mm?)

C I'll/2177.5) + l3F3/2(77. ,1'3) ”

 
(64)

which through the recursion relation, (1/ —1— 1)F,,(77) : 8F,,+1/c)7]. yields the previous

result in the non—relativistic limit. This new expression for 0... however, does not

account for other relativistic effects in the plasma interactions due to, e.g.. the retar—

dation of the potential. For lack of a better theory. I choose to limit ourselves to the

relativistic effect on 66.

In Fig. 6 I show the 06—factor in the non-relativistic limit (solid curve) and for 5 up

to 1.0 in steps of 0.1 (dashed curves). Degeneracy of electrons strongly inhibits them

from contributing to the screening of the ions, i.e., since they can hardly change state,

because none are available to them, the electrons will act more like a uniform, charged

background. Relativistic effects only make the electrons slightly more efficient at

screening.

In the following sections, I will present improvements to the Coulomb free en—

ergy, based on quantum mechanical effects, higher-order density effects, and efleclive

charges to account for extended particles. The final expression for F4 is summarized

in Sect. 3.4.4.5.

3.4.4.1 Quantum Diffraction

In the original MHD EOS, FD” was multiplied by a correction-factor to account for

limits on the distance of closest approach between two particles. This correction
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Fig. 6. The two degeneracy factors, (9,, Eq. (64), and 96 Eq. (78). The solid line

shows the non—relativistic case, for which 0.217710) : Gem, 0). The dashed lines display

the relativistic 6,, for [3 up to 1.0 in steps of 0.1, and the dash—dotted lines show the

same for O... The behavior in )3 is monotonic in both cases.

factor has since been disputed (rI‘rampedach et al. 2004c). and it was suggested to

abandon it for the more physical phenomenon of quantum diffraction.

Quantum diffraction removes the short range divergence of the Coulomb poten—

tial by means of Heisenberg’s uncertainty principle. The wave nature of the particles

results in finite charge densities at the position of particles, thereby leading to zero

potential at r = 0. This effect results in a suppression of the Coulomb interactions

at distances comparable to a deBroglie wavelength, which I accomplish with
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Fig. 7. The quantum diffraction term, as evaluated from Eq. (65) and (66),

compared with the Padé—formula given by Riemann el al. (1995) and with analytical

expansions for small and large 7.

where

_ b

.I' 2 (1’7 [1 -1'-w] (00)

with coefficients

a : 1.5393236 and l) : 02204-7583. (67)

As is evident from Fig. 7, this form of T and 1', makes a good fit to Eq. (10) of

Riemann el al. (1995), but without the singularity at 7 2 1570. From 7 ’2: 4 and

up to the singularity, the two fits differ by up till 0.6 %. but my fit is much closer to

the large y—expansion than to Riemann et al.’s fit in this region. I suspect that their

fitting coefficients are merely published with too little precision. The asymptotic

«
.
1

C
I
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behaviour of 7‘ for large, as well as for small A), is the same as given by Riemann et al.

(1995).

The argument, 7, is the center of mass de Broglie wavelength in units of a Debye

length. Defining the single particle de Broglie wavelength as A.,. = 73/1)... I can define

the thermally averaged, relative or center-of—mass de Broglie wavelength between two

particles, as

.13, 2 13+ 13. = t2? [<p.:2> + <pg2>1

  
52 O... 95 j

— 213377 1m.O + 551 (67)

where I use

1 for a 75 e

(90. = (69)

<p-2>/<p;.2> for = e

The general expression for (79—2) is

00 “2 ' E 1'(170—2) : A P ftp. 1(1) , (70)
 

16” f (I). E )4!)

Where E is the energy of the particle, 11 its momentum and f(p, E) is its distribution

function.

For the general case of relativistic Fermi—Dirac-statistics

_ 87r 792

_ 53 1 —1— e5"7
f0). E) . (71)

the usual dimension—less energy 11 2 E/kT is introduced, resulting in the relativistic
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expression for the momentum

 

p : mcfifiu —1— 1)‘2 — I (72)

 
dp :2 mc , . (73) 

 

Using \/(flu + 1)2 — 1 = «2611.01 + file/2, I can rewrite (1}), which is also the main

part of the integrand of the numerator of Eq. (70), as

r 1 1
szm.C(/g 73“ C” (74)

2(/1+,3u/2 fl.

Realizing that this is the /3—clerivative of the generalized Fermi-Dirac function, Eq.

(56, I obtain

 

 

dp 8F_3/2 8111/2

———-— : 2’ 2 3— . 7F

1 + eu-n m 7 1 8.6 +’ 8,6 1 3)

For the denominator of Eq. (70), 72(7),)3), I similarly obtain

PQdP 3 3/2

1 + 6%,, Z @0770) E [Fl/2 + flFB/Qj - (76)

Combining Eqs. (75) and (76), finally results in

2 8F. 0 8E. (713(7)—2 : , 3/2/ 5 ‘1‘ [3 1/2/ . . (77)

mekBT F1/2 + 3173/2

In the non-relativistic limit the terms in [i can be left out. The classical limit results

\
1

\
J

 



in (p52) 2 (mekBT)_1, and consequently

8113/2/06 + (3017—1/2/813

Oe : 2

171/2 + (3173/2

 

which accounts for the degeneracy of electrons. in the thermally averaged De Broglie

wavelength. It is trivial to also account for Fermi-Dirac statistics of ions, but because

of the mass difference I have chosen to ignore this, as also stated in Eq. (69). The

behaviour of 6),, is shown in Fig. 6. I notice that in the non—relativistic limit, 68(7), 0) :

Oe(n,0), which can easily be verified by setting )3 : 0 in Eq. (56) and compare with

the non—relativistic 6., in Eq. (62).

From Fig. 6 I see that the average cle Broglie wavelength of electrons decrease

both with increasing 7) and increasing )3. In both cases the momentuni-distribution

will be peaked towards higher values and hence decrease the average de Broglie wave-

length. For 6 = 1, quantrim-diffraction of protons will be equally important to that

of electrons at 7),, 9: 51. At the ,8 ,3 0.017 explored in the present paper, this does

not become a concern. even for an 77., which is orders of magnitudes larger than the

value above.

Dividing )10/3 with AD, I now get

(79)

_ r. e. g ”2

7”” _ AD./—_2chT 'm0. mg

In order to incorporate this one—component plasma (OCP) quantum diffraction

term into my multi—component plasma, I need to write out KID in the expression for
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the Debye-Hiickel free energy, Eq. (60), and relate T(70)3) to the pairwise interactions

between particles of species a and 6. I rewrite F4 as

 

2\/—e3

F NZQIYO 03+ \/. .. 80firs—WyeA): Wye-(A, {New (1

and note that the T’s have to be squared to agree with the one-component plasma.

case for which 7' was developed.

In order to save computing time, I define an average 7' that can be taken outside

the summation over elements

 

,_ 2 :0 1V0 Zz\//Ve 0e T211706?) + Z/BN32/37'21/06) (81)

Ea NO’ZCY \/N€6e + 213 A7213?

  

where the two sums in the denominator are decoupled, as in the classical expression

for the Debye—Huckel free energy, 3.6., Eq. (60).

A very good fit to the above expression can be made from only two contributions

t2/V1rt17)+(1—N1)T(2)1 (82)

where the first contribution is the combined electron—electron and electron—nucleon

contributions and the second is the nucleon-nucleon term.

The RMS deviations of the two—component fits are less than 0.25% throughout

the compositional X/ Y—plane.

The three new parameters, N1, ’yl/cyee and 72/7,... can furthermore be fitted to
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binomials of order 5 in the X/ l”'—plane, 6.9..

l = ZaleiY'l (83)

Tee ij

'7—2 : Zb,,-\”’i'l’ (84)

”Yer: ij

N1 = 2a,.x’l'i—7. (85)

20'

I carried out this fittin ‘ )rocedure. usin ‘ relative Inetal—abumlaiIces from Grevesse
8 l 8

& Noels 1992), and obtained the fitting coefficients listed in tables ‘2-7—11.
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Fig. 8. The RMS—deviations of the 7" evaluated from the fifth-order binomial fits,

from the exact expression, Eq. (81). The dotted contours are spaced 0.0125% apart

and solid contours are 0.05% apart.

Using the 7’s and Nl’s calculated from Eq. (83—c) results in overall RMS devi-



 

 

 

 

 

 

 

 

 

 

 

Table 2. Coefficients, (10‘, for Eq. (83).

’Yl/‘Yee 0 1 2 3 4 5

0 9.1782e-01 —1.1232e-02 1.7127e-03 -4.2358e—04 6.0588e—05 —2.4894e—0!

1 —4.7200€-02 4.3322e—03 -2.6263e—04 8.9617e—05 —1.12360-05 4.3540e-0‘

2 1.0418e—02 —8.7279e—04 1.6545e—04 —7.2533e—05 9.7177e-06 -4.1137e—0‘

3 -1.9114e-03 1.5821e—04 -4.6280e—05 2.2475(3—05 -2.9216e—06 1.1581e-0'

4 2.1899e-04 -1.2414e-05 4.4749e-06 -2.4821e-06 3.0554e—07 —1.1137e-0:

5 —8.6693e—06 2.1068e-07 -1.4091e-07 9.1226e-08 —1.0532e—08 3.4806e—11

Table 3. Coefficients, ()0. for Eq. (84).

72/7... 0 1 2 3 4. 5

0 5.0211e—03 1.7181e—04 -7.1055e-05 3.0452e-05 —4.5304e-06 2.6472e-0'

1 3.5494e-04 —1.1401e-04 2.4850e—05 -6.1806e-06 9. 74-1 7e-07 —4.4853e-01

2 —2.3679e-04 1.2572e—04 —1.4812e-05 3.5951e—06 —6.3073e-07 3.2206e—0:

3 1.0054e—04 —4.41.03e—05 5.8336e—06 —1.5860e-06 2.7030e—07 —1.3612e—02

4 -1.5879e—05 6.2142e—06 —7.6992e-07 2.2073e-07 —3.6915e—08 1.7905e-0!

5 9.5203e—07 296300-07 3.1661e—08 —9.4868e-09 1.5661e—09 -7.3255e—1i

Table 4. Coefficients, CU", for Eq. (85).

N] 0 1 2 3 4 5

0 1.42136—01 1.2357e-02 —9.3669e—04 6.5955e—04 —8.8170e-05 5.2504e-06

1 2.7666e—02 7.9054e-04 5.8247e—04 —1.9683e-04 2.8651e—05 —1.5253e—06

2 —1.8022e-05 8.3095e—05 —9.2704e—05 3.3238e-05 -4.1539e—06 1.5133e—07

3 5.6812e-04 —1.6656e—05 6.4215e-06 —3.4200e-06 1.6857e—07 7.5673e-09

4 —6.1064e—05 —2.9772e—07 —2.8268e-07 1.2400e—07 2.4253e—08 —2.7578e——09

5 3.00186-06 —8.9259e-08 7.8630e-09 1.6651e-09 —1.9424e-09 1.4887e-10
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ations of less than 0.25% and single T(’)’ee) deviations of less than 2%. The largest

deviations, as seen in Fig. 8, occur at 766 2 102 around X = 0.7, Y : 0 — a rather

rarely encountered region of the X-/Y—plane.

For the moment I have neglected electIon—degeneracy effects in the fitting of 1;,

but this can be remedied by using

fl (")9 "/1

~ —> ———,/—’ — 86

’1 Am/‘ZkT me (wee) ( l

h l “/2 > ..

—> ————,/ , 8f
,2 /\D V 257T 777%: (flee ( )

where the 7—1‘atios are the no-degeneracy fits, that can be fitted with the coefficients

  

from Tab. 2 and 3 respectively.

This whole procedure might seem a bit complicated, but bear in mind that

the three parameters, N1, "fl/“fee and 72/766, need only be calculated once for each

composition, and during the bulk of the calculations, the number of T—calculations

will be reduced by an order of magnitude.

3.4.4.2 The Free Energy of the Exchange Interaction

The free-energy of the first—order exchange interaction is

Fex : 2: Na_—_:_ [1070) + j(7707fl0)l (88)

(Kraeft et al. 1986), where the sum extends over all particle species. The thermal

de Broglie wavelength, )‘cyO [See Eq. (52)], is based on Boltzmann statistics, and all
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degeneracy effects are included in the exchange integrals, 1(770) and .7070, 60).

I reformulate Eq. (88) by collecting all rye-dependent terms in one factor, with

the relativistic effects included as a Taylor expansion

[1262 . 22

——— [V2 01 Jex ' as o - 89

16rr1«"'kBT g: “mo .(77 6 l l )

 
Fex:

In this form, it is easier to recognize the dependence on the independent vari-

ables, particle—mass and particle—densities, the latter of which indicates the binary-

interaction nature of the exchange-term.

The exchange integral, Jex, can be written

1(0) + .7071/3)
 

Jex , 3 E , , , 90

(77 / ) [111/207,3) + (3F3/2f77aflgll2 ( l

where

_ , _ 1(77)

'jeX(7790) — [MUD _ [Tl/2(7))? (91)

is the non-relativistic part. DeWitt (1961) derived an expression for 19x, amenable

to numerical integration

2 fl... 1’31/2(77’)d77’

F12/2l77) ’

 
[eX(77)

which is shown as the upper solid line in Fig. 9.
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I find that [eX can be approximated by the analytical expression

— B 1 — 3"“?

I... E 2x [CB + X8] 1/ X : —°_ (93)
.47]

using

_ 4

A = 1.0129034 , B = 1.5384386 and C = 9—4 . (94)

This fit agrees with a numerical integration, within 0.75 %. The difference between

 
-10 O 10 20 3O 4O 50

77

Fig. 9. The exchange integral, ch(7}, 6), as function of degeneracy parameter 7]. The

upper solid line shows the numerical integration of [6,.(77), indistinguishable from the

fit of Eq. (93). The dot—dashed line (right hand axis) is the relative deviation between

the numerical integration and the fit for [ex. The other lines show the behavior of

Jex with increasing 6 (in steps of 0.1) going from top to bottom. The fit of Eq. 103

is shown with dashed lines, but only discernible above 77 2 30.

my fit and the numerical integration is shown with the dashed line in Fig. 9, on
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the right—hand-side axis. The fit is constructed so as to give the correct asymptotic

behavior in the non—degenerate limit: lim [ex : 2. and in the completely degenerate
7}—>—c\3

limit: lip] Iex : 9/(277). This expression is an alternative to Eqs. (39) and (40) of
77 oo

Kovetz et al. (1972).

Following Kovetz (at al. (1972), I write the integrals as

.1"?qu “3 .rgdx'g

eul—n +1 0 6112—!) +1

[ 2 1 (9192 —1+J‘1J'2)]
X — ——lll

9192 1‘1.l/14l‘2'.1/2 yllJ'Z _ 1 _ 1'11‘2

where .r, : pi/mc, y,- = (/1 + .17? and u,- : ei/chT are the dimension-less momenta,

1+.7 : W] (95)

0

  

energies (including rest-mass) and kinetic energies for the two interacting (identical)

particles. I re—write in terms of u, and get in the general case

m (1111 m (la-2

I z / __ __
.

+ j 0 6111—7) + 1 .0 GHQ—77 + 1 (96)

 

>< [46,/u1u,-2\/l +%6ul\/1 + $621.2 — ln/I

where the argument of the logarithm is

 

A _ 611.111,? + u] + U2 + 2,/u1u2\/l +%6u1\/1+%6u2

_ ’7 ,. . (97)

6am? +111 + "(£2 — 2,/'u,1'u.2\/1+ %,13'll.1\/l + $6M

 

 

From Eq. (54), I recognize the first term in the square-bracket of Eq. (96) as 4F12/2(77, 6).
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In the non—relativistic case I get

I Z _ [“3 i; m ”(11me (9

0 61‘1“" +1 0 GHQ—77 +1

with

u1+ 21,-; + 2 11.1212

ul + 212 -— 2,/u1'u.2

 ANR : (9'.

Since the non-relativistic part has been solved through Eqs. (91) and (92). I on

seek the relativistic correction

dul 0° (lit-2 1 < A > (10'

eul‘?7 + 1 0 GHQ—77 + 1 ANR

.7 = 4flF12/2(n,fi) ~— /

This integrand lends itself to expansions in the non—relativistic Fermi-Dirac i:

tegrals, as carried out by Kovetz 61 (L1. (1972). Since my code already evaluates re

ativistic Fermi-Dirac integrals, I instead perform. the expansion in terms of FV(77,6

Taylor—expanding

A/ANR

\/1 —|— 15621.1\/1 + flhl’z i

 
 

in ul and U2.

After collecting terms with the same combinations of powers of ul and U2,

finally obtain

mm =—— 3.6Ff/2<n,m+gawuxmma/xn.m

1

+ $53 [7F§/2(n.m+15F1/2(n.mF5/2<n.m] (10:
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Table 5. Coefficients for .1“. Eq. (103)

 

 

'17 c,-

 

1.51561928

026835826

0.01595827

-0.06476090

0.00468264

5 —0.00243785

J
A
C
Q
I
C
J
t
—
‘
O

 

 

7681311 l95F3/‘2f’7’1‘311‘1‘3/20/«A’3l +
1051717267._1‘3)F.-/2(72..,z3)l

.

to the fourth power in 6.

This Taylor expansion is, however. only valid in a rather small regime. In order

to improve on this, with only a slight sacrifice of accuracy. I generalize Eq. 102 to

JUN?) = €03Fi2/2f’Zsf-3)+€1/32Fl/2f’17»/3)F3/2(77»(3)

+ .93 [62F§/,(n,s) + c;3F1/2(7}, .3) 175/207, 13)] (103)

_ 64 [6495113/207»(”Fa/2(7)- (3) + rim/2(7).fi)l"7/2(72./3)) a

and perform a X2—minii'nization fit for the coefficients. The result is listed in Tab. 5.
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3.4.4.3 Coulomb Interactions Beyond Debye-Hfickel

Going beyond the Debye—Hiickel theory is rather cumbersome, due to the long-range

nature of the Coulomb interactions. Density-expansions of the equation of state now

reach 72: (DeWitt et a]. 1995), but subsequent terms will take an even larger effort

to derive.

As an alternative, one can employ l\v-’Ionte—Carlo— and IIyper—Netted—Chain—simulations

of the one—component—plasma (OCP) to determine the deviations from the Debye—

Hiickel free—energy, FDH. The main result from these simulations, is the internal

energy, U, which can be integrated to give the free—energy: F(F) : for U(F’)dF’/F,

where F : (Ag/3)”3 and the plasma-parameter (for a particular particle species, a)

Z0562

A, _ .

L ADkT

 (104)

I express the free—energy as a harmonic average of the Abe cluster-expansion (Abe

1959) for low density and the free—energy of a fluid, Ffl, as found by Stringfellow et al.

(1990), plus a bridging—term and the zero-point, F0, of the fluid—term,

1 1 1
: +

105

90)) gAbe 911 + 90 + (Li/V“ ( )

   

where g1. 2 F,;(A)/FDI.1, with DH denoting the Debye-Hiickel-term. I differentiate this

expression with respect to F, to obtain the corresponding gm 2 U/UDH. This I then

fit to the Monte-Carlo results of Slattery et al. (1982) for F = [1,150], Stringfellow

et al. (1990) for F = [150; 200] and hyper—netted—chain simulations for F = [0.1; 0.9].
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Table 6. Coefficients for g(A), Eq. (106)

 

 

 

i f), 61'

1 187077570 —1/3

2 —4.53518904 -7/9

3 -0.18176156 -11/9

4 2.33750105 -1.72492706

5 359275987 ———

6 0.48894000 *—

 

For F < 0.06 I fit to the Abe-expansion.

The best fit of the fluid-phase by Stringfellow et (11. (1990) combined with my

fit, results in

by; + belnA

99 + 90 + 94A“ 2 b11161 + b21162 + 113.483 + bat“ + A
(106)

with coefficients as listed in Tab. 6.

I need to check for self-consistency of the plasma potential, in the sense that the

potential energy of ion m in the field around ion 72 has to be the same as that of n

in the field around m. This means that

awe) : mm) (107)
92... 82.. ’

  

Where n and m refers to single ions, not species of ions. Writing Vn(0) : 62,,KDg(/\n),
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Fig. 10. The effect of higher order correlations on the free energy. The solid line is

my fit to g : F/FDH, Eq. (105) and the dashed line is the corresponding 9U = U/UDH.

The long—dashed line diverging at —0.5, is the Abe Cluster expansion (Abe 1959), and

the dot—dashed line is the fit to the fluid-phase free—energy presented in Stringfellow

et al. (1990). The vertical dashed line shows the location of the transition to the

crystalline phase.

the derivative is

   

 

8Vn(0) ~ am ~ 09 (9A,,

f = 62,, ~ /\7, + ian .

02.. 02...“ l ( DaAnazm

~ ~ ~ Og 8A,,

o< Z,,.Zm( An + Zn— ~ . 108J( ) BAnazm ( )

Ifg contains powers of An different from 0 or 1, I see that An cannot depend explicitly

on Zn. Also the average charge, 2, from Eq. (104), needs to be a root—mean—square

average, in order for the differential to be proportional to Zn Zm, as in the Debye—case.
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Comparing with Eq. (104), I then obtain my choice for A,

V

Aa : A : -—

47fAftot

A133 . (109)

consistent with e.g., Graboske et (11. (1975). Using this A in the expression for the

Debye-Hiickel free energy, I can re—write Eq. (60)

Including the quantum diffraction from Sect. 3.4.4.1 just adds another term,

also proportional to 27,277,, as 7mm only depends on 2.", through RD [cf Eq. (79)].

This also means that both methods, an average 7" or explicit 7(7nm), will be equally

self-consistent.

The complete free energy of Coulomb interactions is then

R, : —%NtothTAg(/\)r + F6, . (111)

3.4.4.4 Shielding by Bound Electrons

2 refers to the effective charge, including the contribution from partly shielded core

Charges of atoms or incompletely stripped ions, shielded by the bound electrons.

Assuming a simple exponential (s—orbital) distribution of electrons in the atoms/ions,
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the effective charge felt at distance ‘r is

l ‘7‘ . , _

201(71) :: 20,0 + AZO <1 _ __‘_ TIZG-r /70Cl'l‘l>

(112)
_r/r 1 7. 2 7.

: ZQ’Q. ‘l" AZQE 0‘ 72‘ <_) + —' +1

where AZQ. is the atomic number of particle a minus its net charge, 20,0. I then

average this over the volume V and obtain the average effective charge. felt by ho—

mogeneously distributed particles,

 

Z 3 fig" 22( )1 (113)o. :2 —, 7‘ o, r (7*

RE, 0

r- . 3 36—1/po 1 2 . 3 '4
2 20,0 + Add >< 60p; — (5 + 3,001+10p0 + 20pa + 20100) (114)

where pa, : ra/Ra and R3, : 3V/(47rNa). The term inside the bracket, makes the

transition from 0 to 1 in the interval p 2 003—3.

In the previous version of the MHD EOS, the interactions with neutral particles,

were accounted for by means of a first—order approximation to hard sphere model.

As this could be done using the occupation probabilities, it was possible to include

the effect of highly excited atoms, having large radii.

The second—order term was also included, although assuming all particles to be in

their ground—state, through the \IJ—term, analyzed by Trampedach Sc Dappen (2004b).

This rather ad-hoc term can now be abandoned.

The hard—sphere model is an unphysical model, as the model is undefined for
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high densities. Apart from wrecking havoc with numerical schemes for solving the

equations, this is also unphysical, as the interactions at small distances should merely

approach the Coulomb interactions between the bare charges of the nuclei. This is

exactly what is described by using the effective charge, Z, from Eq. (112).

3.4.4.5 The New F4

I summarize my changes to the Coulomb free energy,

1~1= 9(1))me + F... (115)

where g(/\) accounts for the higher—order terms in the Coulomb interactions, arising

from the long-range nature of the Coulomb potential. The quantum diffraction-term,

?, accounts for the overlapping of particle wave—functions in close encounters, effec—

tively removing the short-range divergence of the Coulomb potential. The exchange

free energy, Fex, accounts for the interactions between wave—functions of identical

particles.

In addition to these changes, I have also Changed all occurrences of particle

charges from their net—charge, Z0, to an effective charge, Z0, of particles of species a.

This effective charge is the volume—averaged charge, assuming .5- wave-functions for

all electrons bound in species oz, going from Za at low density, to the charge of the

bare nucleus for inter-particle distances much smaller than. the extent of the electron

orbitals.

This effective charge supplies small seed-charges, which are needed for the pres—
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sure ionization to set in, via the occupation probabilities. Using just the fixed net—

charge, Z, the plasma cannot pressure ionize at low temperatures and the original

MHD EOS therefore included a hard—sphere—term in the occupation probabilities,

plus an ad—hoc approximation to higher-order hard-sphere interactions, \I’. The lat-

ter term was analyzed by Trampedach & Dappen (2004b) and found to be of very

little consequence for stars more massive than about 0.4 MG»-

3.4.5 Improved Micro-field Distribution

The occupation probabilities of the MHD EOS are based 011 the ionization of excited

atoms by fluctuating electric fields, as described by Pillet et (11. (1984). The proccess

is iterative and goes as follows: the Stark splitting of levels moves the electron up

while the next higher level is moved down, crossing the occupied level and allowing

the electron to cross over. The field then changes sign, moving the level with the

electron up to meet the next, down—shifted level, and the process continues until the

atom is ionized.

The effeciency and range of this process clearly depends on the distribution

of amplitudes of this fluctuating electric field. A higher probability for large fields

will make it less likely for even low lying states to survive, and will make pressure-

ionization very efficient and vice versa.

The original MHD EOS uses a linear approximation to the Holtsmark micro-

field distribution, which itself (Holtsmark 1924) is the result for an interaction free

plasma, 1.6., the low density limit. Nayfonov et al. (1999) implemented analytical
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fits to a higher order theory, and I, in turn, have implemented their work as part of

the new MHD EOS.

My implementation differs a little from that of Nayfonov et; al. (1999), in that

it is not optimized for speed, but for flexibility. My modular approach allows for

any formulations of the micro—field distribution to be employed in the occupation-

probabilities.

Following Hummer & Mihalas (1988), the probability of an electronic state i in

particles of species 5 to survive despite fluctuating electric fields, is

Flcsr

16,, =/ P(F)dF E Q(Ff,“) , (116)
0

where Ff; is the critical field—strength for ionization of this state, and P(F) is the

micro-field distribution-function, and Q(F) is the accumulated micro—field distribution—

function.

The field—strength is usually expressed in units of the field-strength due to pre—

turbers at the average ionic distance from the perturbed particle, F0, 1.6., ,8 : F/FO.

In the MHD EOS the approximation

 
16 2 ”3
7T) , (117)F0 : (13M, (9N-

is used, with Nion : 2095,, Na, and (10 being the Bohr radius.

The critical field-strength for ionization of level i of particle—species s with
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ionization—energy X“, is

, 2 4 ’2/3

fl. :16—2/3—1‘2'fxl'8/8zs Zi3+1 Z NoCo‘

agée

  

The quantum—correction factor, 113-3, as given in Hummer S; Mihalas (1988), i

 

16 < n )2 71+ 7/6 ,

‘— —(—————‘— 11 > .3

If), 2 3 n+1 72.2+n+l/2

l n g 3

where n is the principal quantum-number of state '2'.

(um

(um

The original MHD formulation used a rough fit to the Holtsmark distribution

—3/2

Qorig( r815) : 6_(315

whereas Nayfonov et al. (1999) introduced

: f(fi137 ZS) (L)

1 + f(flis~.Zssa/) ’

 
(26313)

 

with

1462,2321) = _ Cl<Z$"‘lfliB/z .
1+ 02(Z3Jtlflis

where

(maafidux+aaf>

and

Q=aX,X=n+aW%
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The coefficients were fitted to calculations based 011 the micro-field distribution func-

tions by Hooper (1966; 1968).

3.4.6 Including More Molecules

I wish to include more molecules in this EOS, in order to be able to use it as a

foundation for calculations of atmospheric opacities. The current calculations of

atmospheric opacities are often based on crude and old fashioned EOS, sometimes

lacking thermodynamic consistency. Also, the bound—free metal opacities are often

outdated, which I wish to remedy by merging the metal opacities from the Opacity

Project (OP) and the improved calculations carried out as part of the Iron Project

(IP) (Hummer et al. 1993) with those of modern molecular line databases (Parkinson

1992; .Iergensen 2003, and references therein).

Molecules other than T12 and its ion will necessarily exist in much lower con-

centrations, and will therefore have a smaller net effect on the thermodynamics. I

therefore relax my precision requirements a little, and settle for parameterized parti—

tion functions, instead of including a detailed treatment of all bound roto-vibrational

and electronic states.

The entropy associated with a partition function Q is

rs = E + NchTan (125)
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and therefore the Helmholtz free energy is

F : E — TS Z N [E0 — ATBTlllQ] .. (126)

where E0 is the dissociation energy of the molecule with respect to the zero-point of

the implicated elements. For CH2, for example, I have

EOICH2) : DOICH21+ E0(Cl + 2EO(H)

:- DQ(C1112)+ DO<P12) ,

as neutral atoms are the zero—point for carbon and Hg is the zero—point for hydrogen.

Sauval & Tatum (1984) give five—term expansions and coefficients for the parti—

tion functions of 300 diatomic molecules, expressed as

41

lOglo Q = 2 (57200310 0)“ (127)

11:0

where 0 : (klnlO)—l/T 2 5040 K eV-l/T. Irwin (1981) merged this list with the

JANAF list of poly-atomic molecules (Chase 61 al. 1982). By computing the EOS

and opacities with the full set of molecules, he determined which of these molecules

are significant for various stellar chemical compositions. Of these, I selected the 414-

molecules containing only one or two different chemical elements including, 6.9., H20,

H28 and CH3. Among the molecules I consider, 315 are diatomic.

I reformulate the fitting formula, Eq. (127) in terms of the natural logarithm,
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bn = (ln10)1_"an, to simplify the derivatives. This gives the bound state contribution,

F2, to the free energy from molecules of type 1;, as

172,),(Q): N), E0 — A237“ 2 6,.,,(166)" . (128)

n20

Pressure dissociation is modelled by multiplying the partition function at zero

density, Q0, by a density dependent term

3 —1

fQ : [(alg'l/B + (127761962) +1] , (129)

so that

Q = Q0 [1 - .f'QteaTll - (130)

This expression fits the pressure—dissociation of the HQ- and H'zf-molecules, which is

obtained from explicit accounting of 348 and 472 roto-vibrational levels, respectively,

treated in the same way as the atomic and ionic. species as described in the rest of

the present study.

In my approximate treatment of molecules, I neglect dependencies of the param-

eters a1,CL2,81 and 82 on chemical composition, and fit them to a table of Hg— and

Hg-partition functions calculated for my Z = 0.04—n‘1ixture (See Sect. 3.4.2). This

results in

61: —4.15 and e2 : -—0.117 (131)
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The dissociation reactions are

 

nXX + nyY <——% an 1",”, , (132)

which gives rise to the stoichiometric relations

0F 8F (9F , , .

————.. — 'n'.\"—,r — '71)". ,, = 0 . (133)

(NV/V.., 12,, 01")" X ()1) Y

The number conservation equations now read

Jk

2 ”km ]Vm + Z jvjk : akjvtot (134)

m j:1

where index 777., runs over all molecules containing atoms of species 16, and j runs over

all ionization stages of species 16.07,, is the normalized number fraction of species 16,

including all stages of ionization/dissociation.

In Fig. 11 I compare the molecular number-densities from the EOS of the

Uppsala-package (which is part of the MARCS stellar-atmosphere-code), with the

present calculations. The comparison is carried out along a solar stratification, us-

ing the six-element Mix 2 from Tab. 1, and the vertical dashed line marks the solar

The results of the two versions are fairly close, but it is noteworthy that the

Uppsala-package systematically under—estimates most of the molecules by 10—30%

and the NH-molecule by a full 100%. The electron— and I-I"—ion densities, on the

other hand, are over-estimated by about 5%, as seen in Fig. 11.
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Fig. 11. Ratios of molecular number—densities between the present EOS and those

obtained with the EOS in the Uppsala-package, which is part of the MARCS stellar

atmosphere-models. The thin, horizontal, dashed line marks a ratio of one.

The differences are mostly due to the update of molecular dissociation—energies

and partition-functions, going from those of Tsuji (1973) to those of Irwin (1981).

3.4.7 Energy Levels of the Hg- and Hg-molecules

In the original MHD EOS (Mihalas el al. 1988), the Hg-molecule was described by

the empirical anharmonic—oscillator and vibrating rotator constants of Herzberg &
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Howe (1959), resulting in 284 roto—vibrational levels of the ground electronic state (it

was found that excited electronic states would only have a marginal impact on the

EOS). For the present work I employ the 305 levels observed by Dabrowski (1984),

supplemented by 43 levels from the (1.!) 1711110 calculations by VVaech & Bernstein

(1967), as presented in Irwin (1987).

Energies for the 44-3 levels of the III—ion was based on the dynamical constants

evaluated by Vardya (1966), adjusted to obtain agreement with the adiabatic calcu-

lation by Hunter 61 al. (1974) for the higher levels. I presently use the actual, 472

levels from that calculation (Hunter 61 al. 1974).

These changes have a rather marginal effect 011 the EOS in the solar case—even

on the scale of helio-seismology. The effect on pressure and \Q is to lower them by

less than 10‘5 with the largest effect around temperatures of 5000 and 25000 K, and

XT is increased in a similar fashion, by up to 5 X 10’5. The adiabatic exponent, 71,

is lowered by 5 X 10‘5 in the solar atmosphere, below 7000 K, and displays some ten

times smaller fluctuations around zero, up to 70000 K.

3.4.8 Conclusion

The improvements to the MIID equation of state, presented in the present paper,

extend the range of applicability, compared to the original domain of stellar envelopes.

In Sect. 3.4.6 I include 315 diatomic and 99 poly-atomic molecules and molecular

ions, extending the range of this EOS to also include stellar atmospheres. Both in

itself, and as the foundation for calculation of new atmospheric opacities, this will
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have implications for stellar atmosphere modeling. It also opens up the possibility of

using the exact same EOS (and later also opacities) for detailed atmosphere modeling

as for stellar structure and evolution calculations.

The treatment of quantum effects, 1.6., quantum diffraction (See Sect. 3.4.4.1)

and exchange interactions (Sect. 3.4.4.2) improve the performance of the EOS for

higher densities and in stellar cores. Of the two quantum effects, the exchange terms

has the largest effect on a solar stratification, changing both the pressure and the

adiabatic exponent in the radiative core.

I include relativistic effects, in the spirit of Gong e! al. (2001b), but I also include

relativistic effects in the degeneracy factors 1% and Ge affecting the screening length

and the de Broglie wavelength of electrons, respectively. Relativistic effects are also

included in the exchange integral, presented in Sect. 3.4.4.2. These changes only

affect the high—temperature region, and have a measurable effect in the solar core.

The key ingredient in the MHD EOS is the occupation probabilities, determining

the probability that a given state of an atom or ion is so heavily perturbed by colli-

sions with other particles that it is destroyed. The original occupation probabilities

(Hummer 85 Mihalas 1988) included perturbations by charged particles, through the

distribution of amplitudes of the fluctuating electric micro—field, approximated by a

linear fit to the Holtsmark distribution. In Sect. 3.4.5 I include the work by Nayfonov

et al. (1999) on a micro—field distribution that also accounts for correlation effects

from the screening of ions by electrons. This introduces much new structure in the

EOS along a solar stratification, and will have consequences for inversions of solar

p-modes (Christensen—Dalsgaard 85 Dappen 1992; Basu 85 Thompson 1996).
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The original occupation probabilities also included a hard-sphere term, to ac-

count for perturbations by neutral particles. Since this term was only linear in density,

an approximate second—order term, \11, was included to ensure pressure ionization in

cold plasmas. I have abandoned both of these terms for the more physical concept

of effective charges (See Sect. 3.4.4.4); a neutral atom is not a hard-sphere, but a

nucleon with a fixed charge, and a “smeared-out” distribution of electrons around it,

resulting in a zero net-charge. Interactions between neutral atoms arise from close

proximity, causing the electron wave—functions to overlap and only partially screen

the nuclear charge. By introducing this concept, all particles can be treated on an

equal footing in the MHD EOS. This has a rather small effect in the Sun, close to the

top of the convection zone, but changes the EOS at lower temperatures and higher

densities.

The single most important change is the incorporation of higher—order terms

in the Coulomb interactions, which extends the validity of the EOS towards higher

R, and brings the EOS in the solar convection zone closer to that of the OPAL

EOS. There are still differences, however, and it will be interesting to see how the

present work and the newly updated OPAL EOS (Rogers & Nayfonov 2002), fare in

helioseismological inversions.

This new version of the MHD EOS will have a direct effect on stellar and solar

structure calculations. If the changes cause an improved agreement with a helio—

seismological structure inversion, it might be relevant to re-visit the seismological

determination of the solar helium abundance (Basu 85 Antia. 1995) and convection—

zone depth (Christensen-Dalsgaard et al. 1991; Basu 85 Antia 1997).
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3.5 Opacity

In the early 19908 the astronomical community witnessed a quantum-leap in atomic

physics. The OPAL-team (Rogers & Iglesias 1992a; Rogers 8' Iglesias 1992b) and

the “Opacity Project” (OP) (Seaton 1995: Berrington 1997) published independant

calculations of opacities for astrophysical applications. They were based on the OPAL

EOS and the MHD EOS, respectively, which are compared in detail in Sect. 3.2. The

level of sophistication in the calculations were hitherto unheard of—no more semi-

classical approximations and l‘1ydrogen-like ions.

The two decades since then have seen an explosion in research in this field,

both theoretical and experimental: Aguilar cf (11. (2003) have measured the absolute

photo-absorption by the Mg+- and Al2+ ions. Kjeldsen ct (1!. (2002b) that by the Fe+

ion, Kjeldsen et (11. (2002a) that by the N+- and O+ ions and Kjeldsen et al. (2001)

that by the C+ ion. These measurements are very in‘ipressive. and once and for all

demonstrate that the very complicated and intricate structures in photo-absorption

coefficients that we have been treated to since the OP— and OPAL—opacies were

first published, are actually real—not a mere figment of imagination of a quantum

mechanic.

One of the main improvements in the ab initio calculations of absorption coeffi—

cients is the inclusion of relativistic effects. The calculations are performed by means

of the close—coupling [if—matrix method (Seaton 1987), as was implen‘iented in the OP

work. As part of the Iron Project (IP) (Hummer el al. 1993), these calculations were

extended to also include relativistic effects in the so-called Breit-Pauli (BP) approx-
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imation and this combination is called the Breit—Pauli R-matrix method (BPRM).

The BP approximation includes spin-orbit interactions, which breaks the LS sym-

metry and gives rise to fine—structure and can even cause resonance lines below the

ionization—treshold.

A detailed comparison between BPRM—calculations and experiment has been

carried out by Nahar (2003) for the first four ions of oxygen. The agreement between

theory and experiment is in general very impressive. The various resonances are not

only in qualitative, but most often also in quantitative agreement, both with respect

to position and strength.

Badnell 85 Seaton (2003) present a comparison between the original OP Rosse-

land opacity and a new calculation also including inner—shell absorption by C, O, S

and Fe (a mixture chosen for comparison with OPAL). The comparison shows up to

a. 25% increase of the Rosseland opacity around T = 4 x 106 K and is largest for high

densities. These opacities are based on the Q—MHD (Nayfonov el (1.]. 1999) formula-

tion for the micro-field distribution, P(F), as is also the case with the improvements

to the MHD EOS presented in Sect. 3.4, the two therefore being compatible and

consistent with each other. In the opacity work, P(F) is used both for evaluating the

occupation probability and hence the populations of the electronic levels of atoms

and ions (See Sect. 3.4.5), as well as for computing the Stark broadening of lines of

hydrogenic ions.

Since the updated MHD EOS also includes molecules (see Sect. 3.4.6), we here

have a. chance to compute the first set of consistent, unified opacities, with monochro-

matlc opacities at low temperatures, suitable for detailed atmosphere calculations,
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as well as Rosseland opacities for stellar structure calculations. The former will, of

course, be a valuable improvement for the convection simulations too.

The last decades’ opacity improvements also include a. number of density effects.

Allard et al. (1994; 1998) evaluated the electric dipole moment of two hydrogen atoms

passing close to each other, and found that interactions with the bound states in the

HZ—molecule introduced resonances in the wings of the Lyman lines of hydrogen,

as well as provided a natural cut-off of the line—wings. The resonances are density

dependent, some linear and some quadratic in density, and were soon found in the

spectra of white dwarfs (Koester et (Ll. 1996).

The dipole moments from hydrogen molecules, or a helium atom and a hydrogen

molecule passing each other, results in broad continous opacity (Borysow el al. 1989;

Borysow 85 Frommhold 1989) dubbed collision—induced absorption (CiA).

Both of these density dependent opacity sources should be fairly trivial to include

in the final opacities, greatly broadening the range of applicability, and matching the

range of the underlying EOS.

In light of the improvements to the high-density EOS and corresponding opac-

ities, it would be interesting to continue the work by Ludwig el (1!. (1994) on sim-

ulations of convection in white dwarfs. The convection zone in white dwarfs is so

thin that it can be fully contained in the simulation domain, including convective

overshoot at the base of the convection zone. Since there are several categories of

pulsating white dwarfs, such convection simulations could be coupled with a seismo-

logical analysis to further constrain models of white dwarf structure, as well as their

cooling history.
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As work on the improved MHD EOS is not yet completed, the calculation of

corresponding opacities is a project that will be organized in the near future.
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Chapter 4

Radiative Transfer

4.1 Opacity sampling for 3D convection simula-

tions

I present a method for performing opacity sampling on a very small number of wave—

lengths, applicable for multi-dimensional and dynamic cases such as 3D simulations

of convection (Trampedach 85 Asplund 2004). I show that the number of sampled

wavelengths can be reduced by a factor of 2000 and still be within a percent of the

result With 105 wavelength-points.

4.1.1 Introduction

In rad1ation—hydrodynamical 3D sin‘iulations of convection in stellar atmospheres,

the coupling with radiation is crucial in determining the efficiency of convection

(Nordlund 1985; Nordlund 85 Dravins 1990; Stein & Nordlund 1998). A realistic
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treatment of radiation is therefore important, and should as a minimum include the

effects of spectral lines in some way. So far this has been done by binning the total

(continous+lines) opacity according to strength and using as a. source function, the

accumulated source function of the wavelengths belonging to each bin (Nordlund

1982). I explain this opacity binning in more detail in Sect. 4.1.2.

Solar simulations show good agreement with line—profiles and bi—sectors, with—

out the need for the usual macro- and micro—turbulence parameters (Asplund el: al.

2000a). Also the use of a horizontally— and temporal]y—averaged simulations, matched

with a 1D solar model for the interior, greatly improves the agreement with observed

high—degree p—modes (Rosenthal et al. 1999). There is also at least a superficial agree—

ment with the granulation structure, although a more quantitative analysis has yet

to be carried out. Simple Fourier—analysis is not adequate, as shown by Nordlund

el‘ al. (1997).

There is, however, still some disagreement with limb-darkening data, hydrogen

Balmer—line profiles and the cores of strong lines. There is also a little too much flux in

the ultra-violet. These minor, but significant remaining problems have prompted me

to look into improvements to the scheme for solving the radiative transfer problem.

The most direct way of evaluating radiative transfer is to discretize in wavelength

and use enough wavelength—points, N,\, to capture the physics of the full calculation.

This is the brute—force method, but it also is the only way to ensure convergence to-

wards the complete calculation. The method is called opacily sampling (OS) (Sneden

et al. 1976) and is elaborated on in Sect. 4.1.3.

Since NA ,2 105 are needed for randomly distributed wavelength—points to repro—
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duce the full calculation, opacity sampling is prohibitive for multi—dimensional and

dynamic cases. This has led me to investigate whether a small number of wavelength-

points can be carefully chosen so as to reproduce the main—effects of the full radiative

transfer. In Sect. 4.1.4 I describe my method for choosing wavelengths and I compare

(in 1D) the NA ~ 105 OS—case, with my new N), N 50 case in Sect. 4.1.5. I call my

new method sparse or selective opacity sampling (SOS).

The motivation behind this work, is the anticipation that a more direct method

for evaluating the radiative transfer, 27.6., using actual Opacities and source functions

instead of binned quantities, will more accurately span the range of a convective

atnlosphere. I address this issue in Sect. 4.1.6 where the opacity sampling, the opacity

binning and my new method, are compared for a vertical slice of a solar simulation.

Direct evaluation of the radiative transfer, at a small number of actual wave—

lenghts, will also pave the way for including velocity-effects in the radiative transfer;

As light of a given wavelength travels out through the atmosphere, the velocities of

the intervening plasma will shift. spectral lines in and out of that wavelength. This

renders the opacity a much more rapidly and erratically varying function of position

(for given wavelenght), and has the potential to significantly effect the solution. For

the S un, the effect will most likely be largest in the high atmosphere, where a few very

Strong lines dominate the radiative transfer and shocks are common—place (Carlsson

& Stein 1997). This is a continuation of work presented in Trampedach 85 Asplund

(2003).
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4.1.2 Primer on Opacity Binning

Currently the simulations employ an opacity binning, or multi—group scheme, as de-

scribed in detail by Nordlund (1982; 2003). This scheme relies on a monochromatic,

forward calculation performed 011 the average structure of the simulation; the cal-

ibration stratification. Wavelength-points are then grouped together depending on

their opacity and the result of the of the ID radiati\x'e—transfer calculation performed

on the calibration stratification.

The discretized version of the radiative heating is

. (VA

/ NJ.) — B,\)d/\ 2 1.; 2.84.1,— 8,)16, , (135)
.\ ,-

where I have defined the relative opacity

r) : KA/K. , (136)

With respect to n, the standard opacity, which is defined in Eq. (142) below.

The next step is a reordering of the wavelength points into groups, i, where j(i)

is the set of wavelength points that fall in bin i. The bins of relative opacities are

chosen to be logarithmically equidistant

(r, = 10C”, (137)

with i = 0,1, 2,3 and a = 1. A wavelengthj belongs to bin i if T), reaches unity
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within the interval i — g < log'r < i + ,1: of the standard optical—depth, dT : pads.

The weight of bin i is simply

w,- : Z 10),] . (138)

JO)

The approximation inherent to the opacity-binning scheme, consists of assuming the

:rj of all members, j(i) of bin i, to display the same behavior with depth. In that case

the average opacity, .73), and the average source function of the bin, can be de-coupled

to yield the pseudo—Planck functions

Bill), I 2 BMW)! . (139)

1(1)

This approximation is obviously rarely fulfilled. If the members of a. given bin, cor-

reSpond to lines of ions/atoms with similar excitation/ionization characteristics, the

8approximation. will likely be valid. With a mix of molecular, and high- and low-

eXCitation—potential atomic and ionic lines the approximation will not. hold.

The pseudo-Planck functions are functions of temperature only through the tem-

Pel‘ature dependence of B), since the bin—membership of a wavelength is fixed for the

Whole temperature-/density-area covered by a given simulation.

To calculate the standard opacity, I observe that in optically thick layers the

diffusion approximation holds and radiative transfer can be described in full. by a
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single opacity, the Rosseland mean opacity

00 1 BB\

__ o m+ai 0‘7
(140)
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where scattering, 0),, is included. For T ——> 0, on the other hand, the intensity

weighted mean

(15).] = [7 1.1.1141 (141)
0

without scattering, reproduces the fluxes of the monochromatic solution (Mihalas

1978, Chapter 3.2). An ad-hoc bridging function is used to interpolate between the

two cases, resulting in the standard opacity

_3 T. —\ T. I”: b

azc OT (H)*+(l—e 307 )5. (142)

The >1< furtermore indicates that Eq. (14-0) is evaluated from the continuous opacity

only, excluding lines, and

—T ‘2

2: NA] .13) 6 AJ/ IDA]

.7

—T), /2

E . .. J *. [\Jc 10y)
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is Weighted towards optically thin wavelengths.

The (pseudo) source functions and the interpolated opacity are then used for

the radiative transfer in the 3D simulations. The angular integration to obtain the

Inean intensity is evaluated by keeping the simulation box fixed and interpolating it
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to a tilted grid, exploiting the periodic horizontal boundaries. Only the rectangular

part of the box having standard optical depth 7' < .300 is used for the radiative

transfer calculations, and this part is furthermore rescaled to optimally resolve the

temperature structure.

For each angle, the radiative transfer is thus solved Nb," times; typically Nbin : 4

is used, and N9 = 2 and NC, = 4 for the latitudinal and azimuthal angular resolution,

respectively.

There are a number of weak points in the method, as implemented. The bin-

mernbership is determined from the 1D average structure of the simulation, which

will most likely not correspond to the stratification experienced by any of the rays

of light going through the simulation. Since radiative transfer is a highly non-linear

problem, the heavy reliance on this reference stratification is troublesome.

The choice of bridging function between the optical deep and the optically thin

opacities is rather arbitrary. The right limits are of course ensured with this expres-

sion, but the details of the transition are not.

Instead of the actual opacities of each bin 2112') .ryjufyj, the log-equidistant opac-

ities, 55,, are used. This approximation was used to minimize the size of the table, in

the early days of these sin'lulations, and can be abandoned now (Skartlien 2000).

Another weakness of the implementation of the opacity binning, is the calculation

0f Rosseland mean—opacities. The bf— (bound-free) opacities are calculated for the

Whole table, whereas the bb (bound—bound, or line-) contribution is only included in

the 1D calibration stratification. The effect of lines is then extrapolated to the rest

Of the table, assuming the same ratio between opacities with and without lines along
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iSO-T contours. It turns out that points in the simulations that have the same optical

depth, are highly correlated in g and T, and fall along a. narrow line.

There is no reason that the factor correcting for lines. should depend in any

simple way on the optical depth, but the bridging function between optically thick

and thin, should, and I simply employ the same extrapolation scheme for both.

I abandon most of these. approximations in my SOS method, except for the

reliance on a 1D calibration stratification. I show that the SOS method depends

Inore weakly on the calibration model, than does the opacity binning, thus resulting

in a more accurate local radiation field in the simulations. This will be addressed in

Sect.416.

4.1.3 Primer on Opacity Sampling

Opacity sampling (OS) consists of performing monochromatic radiative transfer for

a large number of random wavelengths. It is a statistical method because of the

random selection of wavelengths (in practice. equally spaced in. e.g., logA). Due to

the extremely complicated behavior of stellar opacities, more than 104 wavelengths

are needed before the procedure converges. For early type stars and metal-poor stars

a larger number of wavelengths is needed, in order not to miss the rather few but

ilnportant lines in their spectra. Full OS is therefore prohibitively expensive for 3D

hydrodynamical simulations.

Conventional 1D stellar atmospheres have been modeled with opacity sampling

by, e.g., Plez et al. (1992), Kurucz (1995) and Asplund el; al. (1997).
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4.1.4 SOS

My aim is to reproduce the N198 ~ 105 OS solution, with orders of magnitude smaller

number of wavelengths, NEOS ~ 50. The straight-forward method. of going through

all combinations of NASOS wavelengths, and finding the set with the smallest RMS

deviation from the full solution, is rather prohibitive; It would require the computa-

tion of (NSSVVASOS RMS-differences. A pre—conditioning of the problem, by dividing

it into smaller sub-problems, can make it more tractable. This is done by dividing

the spectrum into Nreg regions and each region into Nb,” bins. and then choose one

wavelength that best represents the total of the bin. The Rl\*’IS fitting is then carried

out only within a bin or between two bins, reducing the dimension of the problem to

the order of lV/{DS/NEOS or (1 [IPS/N/(SOSV, with N308 : Nreg >< ."Vbin.

My scheme for selecting the NEOS wavelengths is performed on the ID reference

stratification, and proceeds as follows:

1) I divide the spectrum into [\7reg regions, by requiring each region to radiate

the same amount of energy at 7' : l.

2) In each region, the member—wavelengths are grouped together, or binned,

according to the position of the minimum of the monochromatic radiative heating,

(1,\ = MU.) — BA) 7 (144)

where J,\ is the usual zeroth moment of the monochromatic intensity and By and K.)

are the monochromatic Planck function and opacity, respectively. Note that this ex-

Pl‘essmn includes scattering despite the absence of the actual source function (Mihalas
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1978).

The location ofthe maximum cooling (minimum of qy) is calculated as the cen‘

of-mass of all cooling above Ty : 1 (i.e., Ty g l), and wavelengths with no cool

above that, are counted as continuum bins, i.e., having a cooling peak around Ty e

The limits of the bins are determined for each region, depending on the dis

bution of loci of heating minima. With equidistant bins. some bins will invaria

turn up empty, but I also want to make sure that even sparsely populated region:

the T—scale are represented well.

My solution is to fit Nb,” Gauss—functions, to the logarithm of the distribut

function, substituting -2 for log(0), to make any non-zero regions of the distribut

function stick out prominently against the background. I also add in a small repuls

potential between the Gaussians, in order to avoid degeneracy. The limits of the l:

are evaluated as the mid-point between the centers of the Gaussians. The wh

procedure has proven very robust in real applications.

3) I have now chosen the Nreg regions and the Nb," bins, and need to decide on

criteria for choosing the NEOS wavelengths representing these bins. The key quant

for the simulations, is the radiative heating/cooling, (1, which directly determines

effect of the radiation field on the hydrodynamics. I also need to ensure a physicz

Ineaningful connection to the equilibrium state and observables, in this case the ‘11

In principle the radiative flux can be determined from integration of the heating, 7

since the spatial deviation of (1,3315 from (18,8, will in general fluctuate wildly, a separ

Constraint on the flux is important. Secondarily, I also want to be able to calcul

COHSIStent radiative contributions to the pressure and internal energy of the ste

118



plasma. For this, the zeroth and second moments of the radiation field; J and [1

respectively, are needed. I also find it useful to demand that the total Planck functio

is close to the nominal B = 0T4/7r. A sixth quantity that could prove useful, is th

Rosseland averaged opacity. This turns out to result automatically for 7' 2, l whe

the five previous quantities have been fitted for, as is evident. from Fig. 12.

I consequently fit for

 f (145
{ (1(7) MT) 3(7) «1(7) 1(0)}

|min(q)la [[efl' 1.](102)1J(102)711(102) l

Where Hefl' : aTe4ff/(47r) and a is Stefan—Boltzmann’s constant. The normalizatior.

in Eq. (145) are necessary in order for the different quantities to carry similar weigh

in the fitting. The use of J, [1" and B at 7' = 100 is somewhat arbitrary, but it seem

to result in a. fair weightng compared to H and q.

4) I define the weight of bin j of region i, as

a)”: Z 20y (14-6

/\ EbinU

and

fifl-Uij = Z fxwi, (147

AEbinU

and I similarly define w,- and f; of region i.

5) For each region, I find the two bins with the most members and fit the Nbin —

C“Sher bins individually, minimizing RMS(f,-j — fy), and using the weight, wij, on th

*resulting representative of that bin, ,j.
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6) The two remaining bins, jl and jg, of region i, are optimized jointly to repr

duce the remainder of the region

Nbin

fi,12wz',12 = fl? — Z fijk’lt’z'jk 7 ”—‘1’ Iéfifl ‘l‘ (1 _ €)f,-’:211L’i,12 (14

k=3

where wmg : wil—twig and c = {0, 0.2, 0.4, 0.6, 0.8,1}. For each combination, {j1,j;

I compute the RMS deviation for the six values of 5, find the interpolated minimt

and the associated emin(j1,j2). The smallest of these interpolated minima. then (I

termines jl and jg and is used with em,“ to finally find f2”.

7) This ends the task of finding the Nb," wavelengths /\(i,j;,.), lc : {1, . . . , Nb,“

reproducing region i, and the whole procedure is simply repeated for the other regior

8) In the end, I refine the fit by optimizing the weights, wij —> 103, by means

a Xz-minimization performed on the logarithmic weights (to ensure positive defini

weights) and enforcing conservation of the total weight, Z,J-'10;‘j : XXV" wyl. This la

. q q . .

step does improve the agreement between fog and f”O", and I prefer to leave 1t 1

despite the weakening of the definition of the weights.

4.1.5 1D radiative transfer

I have carried out the wavelength selection procedure, detailed in Sect. 4.1.4, on

number of MARCS models (Gustafsson et al. 1975; Asplund el' al. 1997), as shown

Fig. 12. The atmosphere parameters are listed at the top of the plot. I have plotti

both the full 105 wavelength MARCS results and my corresponding results with ju

50 wavelengths, but the differences are only immediately visible in KROSS for W111le
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Fig. 12. Heating q, flux H, J, B, 311' and Rosseland opacity for four of the test

Cases (horizontally). 111 the three upper panels, the dashed lines (right axis) are the

differences in the sense (SOS — monochron'iatic). In the lower panel the dashed line

is the Rosseland opacity from my method. The horizontal dotted lines are the zero—

points for the differences, and the vertical ones show the location of T = 1. From

left to right, the columns represent a red giant, a cool solar-type star, a metal—poor

“Sun” and Procyon—a sub—giant.
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did not fit. For the other quantities I also plotted the differences (dashed lines, right

hand axis). The photospheric dip in the heating, (had, arises from the transition from

convective to radiative transport of the flux. In the second panel from the bottom.

311" is larger than B, which is larger than J, only diverging above the photosphere.

In this panel I only plot the J—differences. which are representative of the B- and

K—differences too. Fig. 12 shows that my method is successful in reproducing the

full radiation field to within a percent. The metal—poor atmosphere (middle—right)

is easiest reproduced with few wavelengths, whereas the red giant. (left) causes more

problems due to the many molecular lines in the relatively cool atmosphere.

Notice that this situation is opposite that for pure opacity sampling (see Sect.

4.1.3). The reason being that with SOS. I have the freedom to choose my \lvavelengths

to cover the few but prominent lines, whereas with OS the wavelengths have to be

chosen randomly. The SOS method is obviously not applicable to conventional 1D

stellar atmosphere models, as it relies on a full OS evaluation of the radiative transfer

in the reference stratification, as detailed in Sect. 4.1.4.

4.1 . 6 Spanning convection

In Fig. 13 I test the old and the new method on the heating in a vertical slice of a

solar simulation snapshot (Stein 85 Nordlund 1989; Stein & Nordlund 1998; Asplund

et al. 1998). I plot deviations from the “monochromatic” calculation, averaged over

the horizontal dimension of the slice. Solid and dashed lines denote plain- and RMS—

averages respectively, the old opacity binning is shown with thin lines, and the new
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Fig. 13. Comparison of the heating from the opacity binning (bin, thin lines)

and my new method (SOS, thick lines), with the “monochromatic” case (see text). A

<. . .) denotes horizontal averages over a 1.5><6 Mm, 82X200 point vertical slice from a

Solar simulation (solid). RMS denotes the corresponding horizontal root-mean-square

averages (dashed lines).

SOS method is shown with thick lines. The reference (“monochromatic”) model in

this case is based on the ODFs used in the ATLAS atmosphere-models of Kurucz

(1992c), with 230 ODFs of 12 points, corresponding to 2760 “wavelength”-points.

This is a far smaller set of wavelengths to choose from, and the fit for the 1D average

of the slice is about 10 times worse than what is shown in Fig. 12 for the MARCS

models (Note that this does not say anything about the accuracy of MARCS or

ATLAS models). In the future, the plan is to base my wavelength selection on an OS

calculation for the 1D average stratification of the simulation with 105 wavelengths,
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but for now, I can test my new method on the ODF case. The accuracy should

increase with more choices of wavelengths.

Fig. 13 shows that my wavelength selection is more stable against convective

fluctuations than the opacity binning method—both the average— and the RMS—

deviations over the slice are smaller with my new method. Some of that is due to my

new method explicitly fitting for q(T) of the average structure, whereas the opacity

binning is a forward calculation, with no feed—back mechanisms (i.e., no iterative

fitting scheme).

The transition from convective to radiative transfer of the flux, is accompanied

by a radiative cooling—dip. Fig. 12 displays the difference between the monochromatic

and the binned case, exhibiting both a positive and a negative “bump” around logT ~

1. This is the tell-tale sign that the cooling-dip in the binned solution is located (on

average) a little higher in the atmosphere, than is the case in the full OS solution.

Such a feature is not present in the SOS solution.

4. 1.7 Conclusion

This first feasibility analysis has shown that

1. It is indeed possible to find 50 wavelengths that can represent the radiative

transfer of a full OS calculation with 105 wavelengths.

2. Both the heating and the first three moments of the intensity J, H, K are well

reproduced.

3. Although the Rosseland opacity does not enter into my fitting criteria, it is
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reproduced to within 1% in the optical deep layers.

4. The proposed selective opacity sampling method is more stable against the

convective fluctuations than the opacity binning.

I have yet to implement the new method in the 3D convection simulations, but these

first tests are very promising.
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Chapter 5

Improvements to stellar structure

models, based on 3D convection

simulations

As a part of the grander scheme, to better understand stars, improved models of

stellar structure and evolution are obviously key ingredients.

In chapter 3, I presented an analysis of one of the leading equation of state

projects, as well as some improvements aimed at broadening the range of applicability

and increasing the accuracy of the MHD equation of state. This work is equally aimed

at the convection simulations and the general stellar structure and evolution problem.

These equation of state improvements are to be followed up by new calculations

of opacities, as outlined in Sect. 3.5, which likewise has implications for both the

convection simulations and stellar structure models.
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With the progress in the evaluation of atomic physics, by far the most un—

certain aspects of stellar structure models, are those involving dynamical processes

which typically lead to mixing. Convection is the most important of the dynamical

processes, as it not only is the most efficient mixing mechanism, but also directly

affects the stratification of the star. This has been realized for almost a century,

but the preferred formulation of the problem is still the rather simplified picture of

the mixing—length formulation (MLT) (Bohm—Vitense 1953; Béhm—Vitense 1958). In

Sect. 5.2 I explore some of the reasons why MLT, after all, does a pretty good job

at describing convection, and I point out some of the differences between MLT and

what we have learned from 3D simulations of convection. Since the MLT formula-

tion has a (principal) free parameter, a, a first. step towards a better description of

convection in stellar models, is a calibration of 0 against the convection simulations,

as undertaken in Sect. 5.2.

In order to be able to perform this calibration of c1, exerything other than the ac-

tual convection, has to be the same in the stellar structure models and the convection

simulations, including the equation of state, opacities and the atn'iospheric boundary

condition. The problem of stellar atmospheres is computationally very expensive,

and cannot be incorporated directly into stellar structure calculations. Instead, the

results from atmosphere calculations can be used in the form of T—T relations; tern-

perature as function. of optical depth, as confirmed in Sect. 5.1. T-T relations are

derived from the simulations and applied to the stellar structure models, to facilitate

the calibration of a in Sect. 5.2. The T-T relations from the simulations have also

been fitted in the atmosphere parameters so that they can readily be used in stellar
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modeling.

One of the short-comings of conventional stellar atmosphere models is their re—

striction to 1D space, with. some dynamical effects included after the fact, e.g., micro—

and macro—turbulent velocities. These atmosphere models also use the MLT for de-

scribing convection, but as the largest deviations between the MLT picture and the

3D simulations occur in the atmosphere, the structure of an atmosphere that incor—

porates MLT-type convection, is unlikely to resemble a real stellar atmosphere in any

detail.

Using the combination of the oz—fitting and the T-T relations in stellar structure

and evolution calculations, carries the promise of more reliable stellar models, at least

in the solar neighborhood of the HR—diagram. The implications for stellar evolution

will be studied in a future paper (Trampedach el al. 2004b).
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5.1 T-T relations from convection simulations

T-T relations are normally used for describing the photospheric transition from op—

tically thick to optically thin in stellar models. This is well justified, but the impor—

tance of the T-T relation as an upper boundary condition for stellar envelops seems

not to have been fully appreciated. I assess the effects of employing often used as-

sumptions about T—T relations on stellar models and illustrate the interplay between

atmospheric stratification and the depth of an outer convection zone. Convection

in the stellar structure models is described by the mixing-length theory (MLT). I

present calculations of T—T relations based on 3D radiation—conpled hydrodynamical

(RI-ID) simulations and give simple fits to my results for easy use in stellar structure

calculations.

5.1.1 Introduction

The calculation of stellar atmospheres is so complex that it has formed its own

sub-discipline. Most complications arise because radiative transfer in the transition

from optically thick to optically thin is hard to treat in a simplified manner without

losing essential features. To treat this region properly, the radiative transfer has to

be solved for hundreds of thousands of wavelength points. This obviously renders

atmosphere calculations time consuming and impractical to incorporate directly in

stellar evolution codes.

A solution to this problem is to use the results of stellar atmosphere modeling

(semi—empirical or fully theoretical) as upper boundary conditions for stellar struc—
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ture models. Since T-T relations can be derived from limb-darkening observations,

the use of semi-empirical models based on such observations often has been consid—

ered the safest choice. Knowing pressure and opacity as functions of Q and T, and

assuming hydrostatic equilibrium, the system of equations can be closed by the T-T

relation without having to solve the frequency dependent radiative transfer — i.e.,

the stratification of the detailed atmosphere calculation can be recovered with a grey

opacity, as described in Sect. 5.1.2. I proceed by giving a short overview of the 1D

structure calculations in Sect. 5.1.3, where I also elaborate on the implementation of

T—T relations.

Theoretical T—T relations from 1D stellar atmosphere models have been published

in connection with, e.g., the ATLAS (Kurucz 1992c; Kurucz 1995), the MARCS

(Gustafsson et al. 1975; Asplund et al. 1997) and the NEXTGEN (Hauschildt et al.

1999a; Hauschildt et al. 1999b) grids of stellar atmospheres. These are grids in

effective temperature, surface gravity and metallicity and dense enough that simple

interpolation is safe. The level of sophistication is very impressive, the only weak

point left, being the treatment of convection.

In late type stars the modeling of photospheres is further complicated by convec—

tion. Not only are the atmospheres no longer one—dimensional, but the fluctuations

are also well outside the regime of linear perturbations. So far, the only way to deal

with the combined problem of radiation—coupled convection in stellar photospheres, is

to perform realistic radiation l‘1ydrodynamic (RHD) simulations. I describe such 3D

convection simulations in Sect. 5.1.4 and go through the various ways of extracting

the average structure from the simulations in Sect. 5.1.5. In Sect. 5.1.6, I compare the
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results of my “high-precision” solar simulation with T-T relations from the literature.

In Sect. 5.1.7, I present a single fitting formula for T(T), which works well for all

the simulations. I furthermore give a list of fits, linear in logTeH and loggsurf, of all the

coefficients, for use in stellar structure calculations. I apply the T-T relations, derived

from the simulations, to stellar structure calculations in Sect. 5.1.9. I compare the

effects of using some of the most common combinations of T—T relations and opacities,

and point out some of the often encountered inconsistencies. I also explore how

changes to the physics in the atmosphere changes the depth of the outer convection

zone.

This paper is the first in a series dedicated to the improvement of stellar structure

and evolution calculations. These improvements are based on lessons learned from 3D

radiation—coupled hydrodynamical simulations of convection in the atmospheres of a

handful of solar-like stars. Here I present results on the radiative part of the mean—

stratification of the simulations in the form of T-T relations. Paper 11 (Trampedach

el' al. 2004a) deals with the convective part of the mean—stratification by calibrating

the mixing-length and presenting results easy to implement in stellar structure codes.

The radiative and the convective parts of the problem are strongly interdependent, as

discussed in the two papers, but I also show that separating the two parts is possible

and has a significant effect on stellar structure models. Paper 111 (Trampedach el‘ al.

2004b) will address the consequences of applying the above improvements to stellar

evolution calculations.

The effect of T—T relations on stellar evolution, has also been studied by Chabrier

85 Baraffe (1997) for low-mass stars with solar composition. They argue that the use
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of T-T relations imply grey radiative transfer in the atsmophere. From my analysis in

Sect. 5.1.2.2 I show that this is not the case; a T—T relation can fully describe a non-

grey atmosphere, but the zeroth, Eq. 153, and first, Eq. 154, moments of the transfer

equation are modified. These modifications imply the use of Rosseland opacities, also

being the natural choice for the stellar modeler. Chabrier 85 Baraffe are rightfully

concerned about the proper implementation and interpretation of the T-T relation

in the transition between radiative and convective zones—an issue which is often

overlooked. I hope that my discussion in Sect. 5.1.2 below will clarify matters, and

justify the use of T—T relations, even in this region.

Ludwig et al. (1999) have performed a similar calibration of the mixing—length

based on 2D simulations of convection, , but employing a completely independent

method. Their T—T relations are computed and implemented in a way similar to

what I present here. Paper 11 provides further comparisons between the two methods

and the results.

5.1.2 The Basis for T-T relations

I describe the 1D, plane-parallel, radiative transfer in terms of the usual moments of

the radiation field

1

It”) : %/_1,Llnly(pl)tl,u , (149)

Where the intensity, Iy, only depends on the angle with the surface normal, )1 = cos 0.

Dependence on optical depth, T, is implied throughout this section. Extension to the

3D case is dealt with in Sect. 5.1.5.
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The first three moments are also called

 

 

Fra r ‘

JA 2 [10), 47rd = Hy : [1(1) and [\y = [1(2) . (150)

The transfer equation is

d], ,

11 C122”) : Iy(,u.) —— .Sy , (151)

where the source—function, Sy, is isotropic.

The corresponding radiative heating (cooling when negative) is

Q1585) = 47FQH,\(JA — SA) a (152)

where the 47r comes from the angular integration of an isotropic quantity and Qrad

is the extensive version (per volume) and qmd : de/Q is the intensive quantity. A

solution in radiative equilibrium obviously obeys de : f6” Qrad,,ycl)\ 2: 0.

5.1.2.1 Grey Radiative Transfer

In a grey atmosphere, the opacity is independent of wavelength, and all the A—

subscripts can be dropped. Integrating the transfer equation over angle then gives

Elf—{— __ idFrad

dT _ 47r dT

 =J—s, (an
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whereas the first moment of the transfer equation gives

  

 

d1" Frad 0T4fl ( Ifconv)

—— : ['1 Z : —€_ 1 _
1'1'4

dT 47r 47r Ftot ( J )

01'

T4» T Fconv ’ ;. .. (._ / 4.2.1.) (155)
"71' 0 F101

where the integral contains the convective effect. The convective flux is the sum of

the enthalpy and the kinetic energy fluxes.

It turns out that only AI\'(T) : I\'(T) — [{(0) is needed, and the value of the

constant, l\'(0), from the integration of Eq. (154) is immaterial.

Assuming local thermodynamic equilibrium (LTE), as I do in both the simula—

tions and the stellar structure calculations, S = B : 0T4/7r. l\-"Iultiplying both sides

of Eq. (155) by 47rS'/(3AI\'UT:H) therefore results in the T—T relation

 
4 T 4 5' T EonvtT')

— —- = — +1 ’ . 175

3 (T...) sax IT ./0 F... ”l ( 3 l

The T/AK—factor is convergent, since Alf increases approximately linearly in T and

I can therefore describe finite temperatures. Using If instead of AH, would have

introduced an extra term for the temperature at T = 0.

All subsequent references to the T-T relation will only deal with the radiative

part,

  

4

§(T) =,S_T, an)
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unless otherwise noted.

5.1.2.2 Average Radiative Transfer

If, on the other hand, the opacity does depend 011 wavelength, integrating Eq. (154)

over wavelength gives

   

oo 1 11' F...
f f ”(n = H = 4 d, (158)
0 iny dz 7r

where I substituted dTy : QRyClZ. Fwd and H are just the results of direct integration

over wavelength. As Jy ——> Sy and [\ry —> %Jy for Ty —> 00 and .S'y : By in LTE, Eq.

(158) leads to the usual definition of the Rosseland opacity

 

~00 1 dB

1 — ——————°57TH” (159)
. _ 00 dB ' '

h‘Ross 0 TTTTdA

The differentiation with respect to z and T can be freely interchanged, as they are

monotonic functions of each other.)

From this, I can now define

  

dli' 00 1 dK Fm

E 153%,] — A (n = H = J, (160)
CITROSS 0 Ky CITROSS 47r

where CITROSS 2 QKROSSCIZ defines the Rosseland oplical depth. The tilde refers to

quantities that are averaged over wavelength in a. way that makes them obey the

grey transfer equations, Eqs. (153) and (154). In a similar way, the zeroth moment
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of the transfer equation gives

  M E HROSS/Ooi dH" (1.) = J— s. (161)
OdTROSS K’ ,\ C17.13055

where I again substitute 3 = B.

In the non—grey case, the tight link between the zeroth and first moments of the

averaged radiative transfer is broken, as H 7E H in general. The expression for the

T-T relation, Eq. (156), is, however, unchanged when sul‘)stituting If and T3035.

With the radiative temperature being given by Eq. (157), and the temperature

from the simulations by Eq. (156), I can reduce the temperatures from the simulations

to the purely radiative ones by

. F....1—' ‘1“
ITrad : TTl/4 [T —/0 #dTl] . (162)

This is the stratification in the case of no convective flux. Deriving TradfT) from the

simulations does, however, retain secondary convective effects, ie, the radiative equi-

librium, as influenced by convection. As mentioned earlier, Trad is the temperature

to be used in T—T relations.

5.1.3 The 1D-envelopes

The T—T experiments have been performed on models of stellar envelopes (Christensen-

Dalsgaard 85 Frandsen 1983), that each cover the range from a relative radius of

T/R = 0.05 and out to an optical depth of T : 10‘4.
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All time dependent and composition altering processes, e.g., nuclear reactions,

diffusion and settling of helium. and metals. have been left out. This renders the

envelopes functions of the atmospheric parameters. Teff and gsurf (and composition)

only, but it also rules out any abundance gradients. Helium and metals slowly drop—

ping out of the convection zone build up an abundance gradient, just. below the

convection zone, which is counteracted by diffusion. As diffusion and settling only

generate abundance gradients below the convection zone, my results on the T-T re-

lation and the a—calibration should be independent of these processes, whereas the

depth of the convection zone might be affected slightly. Radiative levitation of high-

opacity elements, on the other hand, would have the largest effect in the photosphere

and the change in composition would alter the opacity and equation of state so as

to change the efficiency of convection. The 3D simulations, however, show that the

convective overshoot sustains velocity-fields. at least out to T 2 10‘4, that would

immediately wipe—out any chemical gradients in the atmospheres of the stars I have

explored here.

For the envelopes, l have used the same equation of state (EOS). chemical compo-

sition, and, for T S, 104 K, the same opacities as for the simulations (cf. Sect. 5.1.4).

For higher temperatures, I used the OPAL opacities (Rogers 85 Iglesias 1992a). The

difference between the two opacities is generally small at this temperature, and the

transition is smoothed and always takes place in the adiabatic part of the convection

zone, minimizing the impact on the structure of the model.

Convection is treated using the standard MLT as described in Bohm—Vitense
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(1958), using the standard mixing length

I 05H}? (163)

and form factors 1 = :1, and 1/ = 8.

The T-T relations are supplied through Eq. (169) (see Sect. 5.1.7), and different

choices for the coefficients then constitute the various cases listed in Tab. 7 below.

5.1.3.1 Implementation of the T-T relation

The Hopf function, q(T), introduced by Henyey el’ al. (1965), is part of the T-T

relation

4 T 4

§<T—ff) : (1(7) ‘1' T + (Iconv(T) ' (164)

In the spirit of Eq. (156) I distinguish between the convective Hopf function, qcom,(T),

which is the integral from Eq. (156), and the purely radiative Hopf function, q(T).

The radiative part is convergent, q(T) ——> (100 for T ——> 00, and recovers the diffusion

approximation.

In deriving the T—T relation in Sect. 5.1.2 I make the transformation from actual

to radiative T-T relation by changing T, as shown by Eq. (164). In the envelope

calculations I need to re—introduce convection in the T—T relation, this time described

by MLT. This is done with the inverse transformation, which is accomplished through

a modification of the optical depth

dT : f,,dT , (165)
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so that

(1(T)+ T 2 (1(7) '1' T ‘1' qc011x'fT) - (166)

Differentiating both sides 0qu. (166) with respect to T, I get

(1’0) + 1 + 61$...(T)

q’tt) +1 ’ (167)

 

fH:

where primes indicate differentiation with respect to the argument and T is found

from solving Eq. (166).

Employing hydrostatic equilibrium and, as usual, defining the radiative gradient

as the gradient that would be caused by radiative transport of energy alone, i.e.,

assuming that ‘T is given by q(T) + T, I find

  
dlnP Hp 3Ftot

V.., E = — 1 ’ . 1 '

d (amt/“1a,, g 160T4( T (1) ( 68)

The actual gradient, V, can similarly be found by using Eq. (166) and the transfor—

mation to T, resulting in f. = V/de.

With these relations the T-T relation can be used throughout the stellar envelope

model, without the (common) artificial transition between atmosphere and interior.

5.1.4 The 3D-simulations

The fully compressible, transmitting boundary, RHD simulations are described by

Nordlund 85 Stein (1990; 1989). Since the matching to 1D envelopes demands a high

degree of consistency between the simulations and the envelopes, I found it necessary
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to bring the micro—physics up to the same level as that used for the envelopes. Direct

comparison to observations of the Sun also necessitated an update. I therefore revised

most of the opacity sources and added a few more sources, as described in detail in

Trampedach (1997). The line opacity is supplied by the opacity distribution functions

(ODFs) of Kurucz (1992a; 1992b), and the EOS is changed to the Mihalas-Hummer-

Dappen (MHD) EOS (Hummer 85 Mihalas 1988; Dappen el al. 1988).

Table 7. Parameters and derived convection zone depths for the seven simulations.

 

 

name Star A 02 Cen B Sun a Cen A Star B 77 B00 Procyon

Spectral class M 5 IV K 1 V G 2 V G 2 V F 8 V G 0 IV F 5 IV-V

Teff 4851 K 5362 K 5801 K 5768 K 6167 K 6023 K 6470 K

loglo gsurf 4.095 4.557 4.438 4.295 4.035 3.753 4.035

[VI/[149 0.600 0.900 1.000 1.085 1.240 1.630 1.750

a 1.8705 1.8313 1.8171 1.8032 1.7360 1.7383 1.7193

(lcz 0.5600 0.3063 0.2861 0.3070 0.1966 0.2087 0.1035

dcz solar 0.5616 0.3085 0.2861 0.3057 0.1870 0.1927 0.0925

(lcz 5000 A 0.5505 0.2971 0.2647 0.2795 0.1552 0.1618 0.0639

([02 HSRA 0.5498 0.3016 0.2705 0.2866 0.1579 0.1623 0.0692

 

I have performed simulations for seven sets of atmospheric parameters, five of

which correspond roughly to actual. stars, as listed in Tab. 7. The Star A-simulation

was added to get a better coverage in the Tea/gsurf—plane and Star B was a simulation

of Procyon that turned out too cool (they therefore have the same gsurf).

Mostly for historical reasons, I used a hydrogen fraction by mass of X : 70.2960 %

and a metal fraction by mass, Z 2 1.78785 %. Each of the simulations was performed

on a 50 X 50 X 82—point grid and covers about 4—6 granules horizontally and 13

pressure—scale—heights vertically, with 20% being above (T) : Teff' After relaxation

to a quasi-stationary state, I calculated mean models as described in Sect. 5.1.5.
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5.1.5 Averaging procedures

I evaluated T-T relations for both the Rosseland optical depth, TROSS, and the 5000 A

monochromatic optical depth, T5000, each with three different averaging procedures.

The convective fluctuations in density and especially temperature are so large

that the opacity and the EOS (e.g., gas pressure, Pg) are non—linear in the fluctu—

ations, which has the consequence that (Pg) 7% Pg((g), (T)). This means that the

average gas pressure is, in general, not related to the average density and temper—

ature through the EOS. The relative difference amounts to about 5% in the solar

photosphere. This effect is much larger for the opacity where the relative difference

reaches more than 90%. This has led me to evaluate the three averaging procedures

compared in Fig. 14, and detailed below.

Case a): Calculate optical depth—averaged models by interpolating temperature,

T, onto iso-T surfaces, equidistant in log10 T, and averaging over these surfaces. These

T-averages were then subjected to temporal averaging and 1 denote this procedure

(. . .)..

The radial p—modes, which are excited 111 the simulations, are to a large extent

filtered out by this method because of the dependence of opacity on density and

temperature. With increased temperature and density, the opacity and optical depth

increase, moving the T—scale outwards with respect to the z-scale, in much the same

way as the column mass scale. The temporal RMS-fluctuations of gas-pressure on a

T-scale are about 10 times smaller than on a fixed height—scale. This effect is also

clearly seen in the results of Georgobiani el al. (2003a), where the p—modes excited
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Fig. 14. The effect of various averaging techniques applied to a solar simulation

(see text for details). Notice how cases a) and b) follow closely in the atmosphere

down to (T) : Terr. at long 2 —0.2.

in a solar simulation are very prominent in temperature, sampled at a fixed height,

but almost vanish when sampled on the undulated iso—T surface.

This averaging procedure is motivated by the form of the radiative transfer

equation, Eq. (151). Since T is the only quantity entering the radiative transfer

equation in a non—linear way (a division), this is also the only quantity that cannot

merely be replaced by its horizontal average. I therefore recommend this averaging

method for use in conventional 1D stellar models, and it is the method used for the

rest of my analysis. This averaging procedure corresponds to observations of the
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“radial” or disk-center T(T) in the sense that it is the average of T(T) along radial

rays. Also, looking at disk center, it is not possible to “observe” the height—scale—

only the T-scale.

Case b): Calculate geometrically averaged models by mapping the horizontal

averages onto a column mass scale and performing the temporal averaging on this

scale instead of on a direct spatial scale. This approach filters out the main effects

of the pmodes excited in the simulations. I refer to this procedure as Lagrangian

averaging, (. . .)L.

This Lagrangian averaged T as a function of the Lagrangian averaged T corre-

sponds in a sense to limb observations, observing the Sun “horizontally”, instead of

“radially” on an optical depth-scale. Real limb observations would also contain a

case a) component due to the Sun’s sphericity. As noted above, this method is not

compatible with the radiative transfer equation.

Case c) Calculate (T)L as function of a T, based on integration of n((T)L, (Q)L) #

(a). The non—linearity of the opacity is taken into account by this method. If Pturb

and the non—linear effects on Pg were known, the correct g,T, P-structure could be

recovered with such a T-T relation. This method mixes the convective and. optical

parts of the problem, though, making it more difficult to improve their treatment in

stellar structure calculations in a consistent way.

Fig. 14 shows that the T—T relation can be derived fairly unambiguously from

limb-darkening observations, for (T) g Teff. There the inhomogeneities are small

enough for the opacity to be linear on the scale of the fluctuations, rendering the

three averaging procedures equivalent. At greater depth this is no longer the case as
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the inefficient convection at the top of the convection zone causes large and non—linear

fluctuations, splitting case a) and b) apart. The T—T relation still has a significant

effect on the envelope model at these depths, though, requiring a specific choice to

be made. Based on Sect. 5.1.2.2 I choose case a), as also advocated by Ludwig (:1; al.

(1999).

5.1.6 The solar T-T relation

Apart from the simulations of the seven stars presented in Tab. 7, I also made a sim—

ulation for direct comparison with solar observations. This simulation has a slightly

different composition: YES. : 0.245 in accordance with helioseismology (Basu 8 Antia

1995), and ZQ/XQ = 0.0245 in agreement with meteoritic and solar photospheric

metal to hydrogen ratios (Crevesse 85 Noels 1992). This ratio results in the hydrogen

mass-fraction, X = 73.6945% and the helium-hydrogen number ratio, He/H:0.0837,

instead of the often assumed lie/H: 0.1. The latter ratio is what I, for historical

reasons, used for the seven other simulations, listed in Tab. 7.

The Z/X ratio is reduced by about 4% from the other simulations, primarily

decreasing the line—blocking by metals, resulting in a decreased (1. Helium, being

an inert element, contributes little to the opacity. Its own opacity is very small

in the solar atmosphere, and the high ionization potential means that no electrons

are donated for the formation of H‘—ions, which is the most important source of

continuum opacity in the Sun. The larger X (lower Y) therefore leads to increased

opacity and the lower Z leads to less line—blocking. These changes to the composition

144



also alter the mean molecular weight, ,a, which enters both in Eq. (178) for the

convective flux and in the hydrostatic equilibrium through its effect on the pressure.

Sun: Te”: 5770 and 9“,,22.74e+04
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Fig. 15. Comparison of the T—T relation from the simulation, with some often

used solar T-T relations. a) The difference in Rosseland T-T relations between the

simulation and an Atlas9 atn'iosphere model (Kurucz 1993; Castelli et al. 1997’). b)

Differences, 011 a T5000—scale, between the simulation and an Atlas9 model, and four

semi—empirical atmosphere models: The model by Holweger 8: Miiller (1974), the

classical fit by Krishna Swamy (1966a; 1966b), the HSRA model (Gingerich el al.

1971) and the VAL model (Vernezza el al. 1981).

The effective temperature of the solar simulation is Teff = 5777 j: 9K, which
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is in excellent agreement with irradiance observations (Willson 85 Hudson 1988):

5 777 :1: 2.5 K. The horizontal spatial resolution of this simulation is twice that of the

seven other simulations ie, 100 X 100 X 82 points.

I compare the resulting T-T relations with various 1D models, in Fig. 15. Panel

a) shows temperature differences 011 the moss—scale and panel b) is for the T5000-

scale. The vertically hatched area around the zero-line (in both panels) shows the

temporal RMS-scatter of the T—T relation of the simulation, confirming that all the

differences are statistically significant. Panel a) also shows the difference between

the temperature measured on the two T—scales for the simulation (dot—dashed curve),

the sign of which means that we can see deeper into the Sun at 5000A than on

(a Rosseland) average, and therefore that the Rosseland opacity is larger than the

5000 A opacity.

The past decade or so of work on compiling and computing line—data for atoms

and molecules has added a lot of line—opacity in the UV, which has increased the

Rosseland opacity with respect to the 5000 A opacity. This in turn has increased the

difference between TROSS and T5000. This is clearly expressed in the 200 K difference at

T 2 g. This difference is two times larger than the corresponding differences among

modern atmosphere models (cf. Fig. 15b), so it is no longer justified to assume the

two T-scales to be equal.

For stellar structure calculations, it has been common practice to use a T-T5000

relation combined with a Rosseland opacity. With the current opacities and today’s

demand for accuracy, this no longer seems a valid approximation and I recommend

not using it.
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For the theoretical Atlas9 atmosphere models (Kurucz 1993), both monochro-

matic and Rosseland T—T relations can be obtained, illustrated as the dashed line in

both panels of Fig. 15. The peculiar wiggles in these curves are features from the

Atlas9 model. Using the “overshoot”-option, later rejected by Castelli el al. (1997),

these wiggles combine to a larger but smoother dip, compared to the simulation.

The rather close agreement in the radiative part of the atmosphere is expected, since

the same line-opacities were used, and since the convective fluctuations have only a

small effect on the averaged T-T relation above the convection zone (i.e., all averaging

methods give the same results, cf. Fig. 14).

The model by Holweger 85 Miiller (1974) presented in Fig. 15 (solid line) is about

100 K warmer than the simulation above the photosphere, on both T-scales. For this

model the T—difference between the two T-scales is, however, less than 60 K, so below

T 2 0.5 the behavior in the two panels differ by the (TROSS — T5000)-difference for the

simulation. The Holweger—Muller model is hotter by up to 300 K on the moss—scale,

but is very similar in the photosphere and getting increasingly cooler with depth on

the TsOOO-scale.

The two other semi—empirical atmosphere models presented in Fig. 15, VALC

for the quiet Sun (Vernezza at al. 1981) and the Harvard-Smithsonian solar reference

atmosphere (HSRA) (Gingerich et al. 1971), differ significantly and essentially in the

same way from the simulation results. High in the atmosphere, the differences can

most likely be attributed to non—LTE effects, heating from a hot corona and possibly

also magnetic fields in the atmosphere, none of which is included in the simulations.

It could, however, also be due to misinterpretation of temperature proxies. Since
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the UV Planck-function, ionization balances and level populations in atoms and ions

involve exponential terms in T, the temperature derived from spatial and temporal

averaged quantities will be higher than the correspondingly averaged temperature,

as shown by Carlsson 85 Stein (1995) in the (:lynamic 1D case. This is irrespective

of my finding from Fig. 14, that the convective fluctuations have little effect 011 the

average T-T relation above the photosphere. Individual lines and the UV brightness

can still behave non-linearly.

The immediate outcome of this would be larger T, but as the opacity increases

strongly with T, the T—scale could easily change enough so as to result in a lower T-T

relation than the actual, as found from Fig. 14.

The differences between the HSRA, the Holy-veger-h’liiller and the VAL models

may be due to temporal variations in the solar atmosphere between the observa-

tions, ten years worth of improvement in the handling of non-LTE effects, as well as

differences in the opacities used for the T-scale.

At intermediate optical depths, from T 2 0.1 down to (T) : Terr. the agreement

between both theoretical and semi-empirical atmospheres and the simulation is very

good. Differences are also smaller than the difference between the 5000A and the

Rosseland T—T relation from the simulation. This agreement is reassuring, as all four

approaches to the solar atn'iosphere should be about equally valid in this region: 3D~

effects are small, the velocity—field only contributes a small turbulent pressure to the

hydrostatic equilibrium, the convective flux is less than a percent of the total flux,

non—LTE effects are small and the hot corona is too far up to have a significant effect

here.
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With the onset of convection, the T-T relations in Fig. 15 diverge, with the

various 1D—models, sharing the MLT—formulation of convection, all differing from the

simulation in more or less the same manner. Below (T) : Terr. 3D—effects become

important and the turbulent pressure contributes up to 14% of the total pressure,

rendering the simulation the best choice for an atmosphere model. The validity of

the simulations in this region has to be assessed from comparisons with more direct

observations of the Sun, e.g., measurements of the flux—spectra, limb-darkening and

line—profiles. This serves to stress that T—T relations from semi-empirical models

are not observations and are only unambiguous with respect to the underlying limb—

darkening observations above the point where (T) : Teff' This, of course, rests on the

assumption of complete knowledge of the opacities in the atmosphere, which, despite

the last decades progress (Kurucz 1992b), still seems a rather unrealistic assumption

(Kurucz 1992e; Lester 1996).

The last T—T relation presented in Fig. 15 is the one by Krishna Swamy (1966a;

1966b), which is still used as an upper boundary in some stellar model codes. It is

interesting to note that the behavior below the photosphere is opposite that of the

ITIOI'C ITIOCIGI‘II T-T relations.

5. 1 . 7 Fitting formulas

T-T relations for seven individual stars are of rather limited value when concerned

with stellar structure calculations in general, unless there is a way to interpolate

between these individual stars.
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I have therefore fitted the individual T-T relations, through the corresponding

Hopf functions, Eq. (164), to expressions of the form

(it?) = (11+ (126—(”)7 (108 T - (151+7'71(16 - (1771] . (169)

where

 

_(Iconv(T)

170

(MT) ‘1’ T ‘l‘ qconv(7-) ( i )

,7 =

is the negative ratio of convective to total Hopf function (cf. Eqs. (156) and (164)].

This definition makes 77 increase with increasing convective ratio of the total flux.

The first term serves to give the limit of optical deep layers with radiative energy

transport. At large optical depths, the Rosseland opacity suffices to describe the

transport of radiation and the stratification is therefore that of a grey atmosphere,

provided all the energy is transported by radiation. In terms of the Hopf function,

q(T), this means that q(T) —> (100, mimicked by the q1 + T term in Eq. (169).

In optically thin layers, the transport of radiation can no longer be described by

a single opacity, and the T—T relation deviates from the grey case. The c12(log10 T — q5)

part of the second term provides the asymptotic behavior for T —> 0, and the e‘fq3flq4-

factor interpolates smoothly between the two cases. None of the simulations show any

sign of leveling off to an isothermal atmosphere, which must be due to the cooling by

very strong lines, extending further out than the simulation domains. Therefore, Ie

have not included an isothermal term, as is normally done. I still, however, encourage

the use of an isothermal boundary condition at T = 0 in stellar structure models.
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Proper non—LTE calculations would most likely produce temperature minima. for all

seven atmospheres, which would be closer to the photosphere than the transition to

an isothermal atmosphere, but the global influence on stellar structure models will

be small.

If some of the energy is transported by convection, the T—T relation will be

cooler than the grey case at large optical depth, which is described by the last term

in Eq. (169). This term therefore describes the transition from radiative to convective

energy transport. It should not be used with normal stellar models, as these often

assume a purely radiative T-T relation (set (16 : q7 = 0 in that case), and incorporate

convection subsequently.

It might seem natural to use the same method as in the envelope models, and

use the effective optical depth, T, as given by Eq. (165). This, however, turns out to

underestimate the effect of the transition to convection. The reason is that, as pointed

out by Nordlund 85 Stein (2000), the high temperature sensitivity of the opacity hides

the warm up-flows (granules) from our view, thereby cooling the T—T relation in the

convection zone. This is a pure 3D effect due to the large in-homogeneities at the

top of the convection zone, which are maintained by the sharp increase in opacity

with temperature. The horizontal average of the temperature in the simulation is

therefore higher than in the 1D—models, although it is lower on a T—scale. That this is

actually the case for the Sun has been supported by comparison with helioseismology

(Rosenthal et al. 1999). 111 1D models, the n—terms should be considered part of

qconv. Whether they could be included with 7] calculated from the 1D fluxes, without

compromising consistency, is not resolved.
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Table 8. Coefficients for Eq. (171).

 

(17.9 am (ing dang, /dY

0.87029 —0.78450 0.17643 0.00256

-1.14200 —0.24250 0.06275 -2.28313

0.44612 —0.94208 —0.70312 4.71555

0.75131 -3.25925 0.21293 —3.29934

2.38410 —11.25957 1.44532 33.49655

1.30317 —82.75698 5.98615 2.66277
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5.1.8 Results and Discussion

The T- and time-averaged temperatures for each of the sin‘iulations were fitted to

Eq. (169) with standard deviations of 3-7 K (except for Procyon which could not be

fitted to better than 14 K—I comment 011 this below). yielding the coefficients qnfit.

Each of these coefficients were then fitted to expressions

gsurf da 7161
  (r — 1:.) (171)

ff

"1' an2 10gfn = a... + (17.1 10g ,
CITJj) gsurf‘fi: ClY

where the fn’s are related to the coefficients in Eq. (169) through

(171.111 for n. = 1, 4,5, 6

log (1mm for n = 2, 3, 7 .

The numerical values of the coefficients are given in Tab. 8, and the standard deviation

between the actual T—T relations and the global fit is 10K. The relative deviations

are everywhere less than 40 K (cf. Fig. 16).

With 10 parameters, it is not trivial to make unambiguous fits to Eq. (169).
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A lot of effort has therefore gone into splitting degeneracies in parameter-space. I

furthermore performed the fitting in two different ways: first by fitting the individual

T-T relations and then fitting the resulting 70 parameters to Eq. (171), and second by

fitting the T—T relations directly from Eq. (171), i.e., making global fits that assume

the fins to be linear in Teff and gsurf. I iterated between the two methods, using the

results from the first method in the second method and vice versa, until the two sets

of results converged. I used four iterations. The accuracy of the fits is illustrated

in Fig. 16, from which it is seen that the deviation from the actual T-T relations

lies mostly within the shaded area of the temporal RlVIS—fluctuations. A Comparison

with Fig. 15 shows that the deviations are smaller than the differences between the

current range of solar atmosphere models and smaller than the differences between

the T—T relations from the seven simulations, as shown in Fig. 20.

From Fig. 16 it is noticed that Procyon fits the worst. Allowing for a change

in position and slope of the zero—line, the n'1ain-component of the disagreement is

recogniced as a sharp dip at T slightly smaller than one. Looking at the panels for

7'; B00 and Star B, similar features are noticed, although less pronounced. In an earlier

paper, Trampedach el al. (1998) presented a fitting formulae that also contained a

negative Gaussian in T. This expression was very good at fitting the above mentioned

features, and brought down the RMS deviations to below 8 K, for the individual fits.

It proved difficult, however, to parameterize the coefficients for the Gaussian in T93

and gsurf in a way that both fit the simulations and resulted in physically plausible T—

T relations outside the immediate Tea/gs...f-r‘a11ge of the simulations. I have therefore

abandoned the Gaussian—term in the present work, and obtain improved global fits
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Fig. 16. Plot of the differences between the actual T—T relations and the global

fit (solid line) and the individual fits (dashed line). The horizontal solid and dashed

lines are the corresponding RMS deviations from the fits. The shaded areas show the

RMS of the temporal variation of the temperature.

and a more widely applicable fit.

The coefficients of the global and the individual fits of the last iteration are

compared in Fig. 17. The coefficients listed in Tab. 8 are the results of the last global

fit.

The coefficients in Tab. 8 are based 011 the seven simulations with X = 70.2960 %

and Z 2 1.78785 %. Assuming that a different composition offsets all the coefficients

independently of Teff and gsurf, the ands have been changed to correspond to the

solar simulation of Sect. 5.1.6 with the more modern abundances X = 73.6945% and

Z = 1.8055%.

The dq,/dY—term in Eq. (171) is derived from this difference in composition

and is therefore only valid for helium changes accompanied by the rather unusual
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metallicity change, Z — Z6 2 —(Y — YQ)/193.6. This probably proves less useful,

but, nonetheless, gives an idea of the changes with composition. Changes along

more normal composition-change vectors would of course be very illuminating, but

is beyond the scope of the present paper.

Notice that my fitting expression, Eq. (169) differ from that presented in Trampedach

et al. (1998) in a number of ways. First, as mentioned above, I have abandoned the

Gaussian term in order to improve the global fits and making applicable in a wider

Tefi/gSUFf—range. Second, I have changed the formulation of the transition from. op—

tically thick to thin, to make the coefficients more linearly independent, and third,

I have improved the separation of the convective effect on the T-T relation (the last

term in Eq. (169)). The standard deviations of the old fits were in most cases larger

than those for the present fits.

In Fig. 18 I present the behavior of the T—T relation with stellar mass on the

zero-age main-sequence (ZAMS). The atmospheric parameters for the ZAMS were

derived from the stellar structure models by Christensen-Dalsgaard (1982; 1983),

which are also shown in Figs. 1 and 3 in Paper 11. The higher mass stars have steeper

T-T relations in the photosphere, but they also have a larger curvature, making them

shallower further out, as compared to the low—mass stars. The low—mass and higher

mass T—T relations, cross at T 2 0.05.

Fig. 19 illustrates the gravity dependence of the T—T relation. Going to lower

gravity, the T-T relation gets steeper in the photosphere and shallower further out—a

similar effect as when going towards higher masses on the ZAMS.

In both Figs. 18 and 19 I also show the atmosphere with a grey opacity, i.e.,
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156

 

 





 

 

 

1.40

M = 0.85 Mo“

0 90 Mo\\\

1.30 1.00 M.\\\

1.10Mo\\\ ..

e? 1.20 1.20 Me\\\\\

> 133%\ ..
l~

0 \

L“ 1.10 1.50 MOEQS
1.60 Mo.\\ \\_\

1 00 ................LIME........... /

0.90 ””””

Fig. 18. The change of the T—T relation with stellar mass, on the zero-age main—

sequence. The horizontal dotted line indicates the effective temperature, and the

vertical dotted line, optical depth unity. The dashed line shows the grey atmosphere.

T
(
T
)
/
T
e
r
r

   

~3.0 —2.5 —2.0 -1.5 -1.0 -0.5 0.0 0.5

log(TRou)

 

Fig. 1.9. The change of the T-T relation with gravity, for fixed, solar TelT = 5777 K.

The horizontal dotted line indicates the effective temperature, and the vertical dotted

line, optical depth unity. The dashed line shows the grey atmosphere.

157



§(T/Tefi‘)4 2 g + 7' (dashed curves). The T-T relation are seen to approach the

grey case, when going to larger masses on the ZAMS. This is consistent with hotter

stars having fewer spectral lines. The gravity sequence in Fig. 19 is a little more

complicated. The steady decline of temperature in the high atn'iosphere, irrespective

of gravity, is a sign of strong spectral lines that decouple (have monochromatic T/\ ’2:

1) very high in the atmosphere. Explaining the behaviour at intermediate optical

depth, in terms of radiative effects alone, is not possible.

Comparing the gravity sequence in Fig. 19 with 1D atmosphere models (Asplund

2003, private communications), rather large differences are found. In 1D the change

with gravity is more than a magnitude smaller than in Fig. 19. This might be due

to the factor of five extrapolation of the gravity, beyond the range of the seven

simulations. Of the five parameters, (11 — ([5, for the radiative T-T relation, only (12

and q3 have their logarithms fitted linearly to logTeq and logg. At closer inspection,

(12 is increasing with g and is therefore bounded at small 9 by 0 and around the

ZAMS the fit is guided by the simulations. The other parameter, ([3, is decreasing

with g and therefore unbound towards the giants. The difference between fitting

logqg and (13 itself, is less than a factor of two at loggz3.0, so even with this large an

extrapolation, the result is not diverging. I keep the logarithmic version, since q3 is

required to be positive definit.

The fit in the gravity-direction is mostly guided by the 77 Boo—simulation, having

the lowest gravity and being only 220 K hotter. The fit at the gravity of 77 B00, but

solar Terr, is indeed very close to 77 Boo’s T—T relation. The main difference between

the two simulations is the much stronger convection in 771300; The turbulent— to
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total—pressure ratio is about 20% in the photosphere of the nBoo—simulation and

only about 12% in the solar simulation.

As pointed out by Asplund et al. (1999), in realistic. convective stellar atmo—

spheres the radiative heating and cooling is competing with the adiabatic cooling of

rising plasma, expanding from the large density gradient in the atmosphere. The

adiabatic stratification is typically more than 1000 l\' cooler than the radiative equi—

librium solution. A stratification in-between these two extremes. will therefore ex-

perience radiative heating and convective cooling. From Eq. (152) for the radiative

heating, it is seen that a larger Planck-mean opacity and a larger density results in

more efficient radiative heating. In stars of lower gravity the density will be lower,

and the (per mass) opacity red—ward of the Balmer jump will be lower, due to fewer

free electrons (from H~ionization) and hence, fewer Hiions. On the other hand, the

convective velocities, overshooting into the stably stratified layers, are larger and the

adiabatic cooling therefore more efficient. All in all. three effects (density, opacity

and velocities) work in the same direction, cooling the atmospheres of stars with

lower gravity.

With each heating mechanism there is an associated flux F. related to the heating

rate Q through

dF

d z

 , (173)

6]., Eqs. (152) and (153).

The two processes, radiation and convection, produce heating which is propor-

tional to the deviation from their respective equilibria stratifications, i.e., the ra—



diative equilibrium with J = S and the adiabatic equilibrium with V : Vad. The

stratification which is closest to the adiabatic equilibrium will therefore have the least

convective cooling and and the smallest convective overshoot flux (which is negative).

This is precisely what is observed in the simulations, with the 77 Boo-simulation dis—

playing less than half the overshoot flux of the solar simulation. A detailed analysis

will be presented in a future paper.

On the backdrop of the analysis above, I therefore feel confident in the T—T rela—

tions presented in Fig. 19. The reason that the ZAMS sequence in Fig. 18 approaches

the grey atmosphere and not the adiabatic stratification is that the continuum opac—

ity increases (as higher levels of hydrogen become more populated) as the lines fade

away. The radiative heating therefore remains stronger than the convective cooling

and the equilibrium state is determined by the radiative transfer.

It is worth noting here that the “approximate overshooting” introduced by (Ku—

rucz 1993; Kurucz 1992c) entails a positive overshooting flux, which is at odds with

the convection simulations, as well as the basic expression for the convective flux;

Fconv o< (V — Vad), as also discussed by Castelli et al. (1997).

5.1.9 The depth of outer convection zones

The depth of an outer convection zone depends in a complex way on the surface

boundary conditions. With some simplifications, however, a rough idea of the mecha-

nisms involved can still be obtained. 1 convert the equation of hydrostatic equilibrium
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to an optical depth scale

(1P
__3_ = Q 3 (174)

(17' K.

and integrate from 7' : 0 and inwards

Pg 2 9: , (175)
K,

where R and 7" are some appropriate averages. This results in a first~order estimate of

the effects of changing various parts of the physics. The precise form of the averaging

is immaterial to the present discussion as it is only concerned with the differential

response to changes in the physics.

Using some average of the inverse T-T relation for 1;, a relation between T and

Pg is obtained. An increase in T(T) will decrease T(T), as the T-T relation is mono-

tonically increasing, and will therefore have the same effect on Pg as will an increase

in the Opacity.

I will now assume that a change in the atmospheric opacity will change the

pressure by the same factor in the whole convection zone. The change in depth of

the convection zone can be derived from the response to such a pressure change at

the bottom of the convection zone. The Schwarzschild criterion for convection to

OCCUI‘

Vrad > Vad a (176)

is mainly governed by de, as the adiabatic gradient is very close to the ideal— and

fully ionized—gas value of Vac; : g at the bottom of deep convection zones.
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The radiative temperature gradient

3% HFmd Pg

160 9T4

 de = (177)

will decrease by a decrease in pressure and the bottom of the convection zone will

therefore move outward a little. Since \7rad depends strongly 011 temperature, and

has a very steep gradient at the bottom of the convection zone, the pressure-change

hardly affects the location of Vrad : Vac) 011 the temperatLire-scale. The largest

effect is therefore due to the (almost unchanged) temperature at the bottom of the

convection zone occurring at a smaller pressure. If on the other hand (11 is changed,

the decrease in pressure is accompanied by a decrease in temperature, more or less

counteracting the effect of the smaller pressure.

This trend is confirmed by the experiments. 1 calculated envelope models with

small changes (0.001) to o, (11 and the atmospheric 11th in order to find the differential

changes to the relative depth of the convection zone (Table 9). The magnitude of

%elz is smaller than 83—31% and may even have the opposite sign. From Tab.

refenvlist it is noticed that ”7192* and gill? have the same sign, except for StarB and

77 B00, which have opposite and rather small responses to changes in ql and opacity.

These same two stars also react the strongest to changes in a.

The convective flux in the MLT formulation may be written as

5 (Sp/v1, P2 , _
Fconv : E I/k.‘ 0’2 T3g/2(V — v )3/27 (178)
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Table 9. Response to changes in ([1, 11m. and o.

 

adcz adcz adcz

8a aql @1111:

Star A 0.0965 —0.0878 0.2404 0.5600

0 Cen B 0.0616 —0.0542 —0.1430 0.3063

Sun 0.1171 —0.1064 -0.2264 0.2861

a Cen A 0.1414 —0.1220 —0.2630 0.3070

Star B 0.2479 0.0192 —0.0684 0.1966

77 B00 0.2763 0.0577 —0.0617 0.2087

Procyon 0.1706 —0.2766 -0.2836 0.1035

 
(fez/R.11211116

 

 

where k is Boltzmann’s constant, M'u is the atomic mass unit, 6 : —(8lnp/BlnT)p,

and it is the mean molecular weight, both of which are fairly unaltered with changing

conditions in the atmosphere. The average temperature gradient is called V and

V’ is the gradient in the convective cells. Their difference is almost equal to the

super-adiabatic gradient, V — Vad. Based on Eq. (178), an increase in temperature

and /or a decrease in pressure (brought about by changes to the T—T relation or the

atmospheric opacity) will therefore be accompanied by an increase in V — Vad in

order to maintain the total flux (and the fixed Teff of the model). This increase of

V — Vad corresponds to a decrease of the efficiency of the convection, which will

lead to a smaller convection zone. The effect can be counteracted by increasing 0,

increasing the efficiency by increasing the distance traveled by convective elements.

An increase in the efficiency of convection will enlarge the convection zone, as also

seen from. Tab. 9.

As far as global observables are concerned, uncertainties in the atmospheric

opacities, line—blocking and mismatches between the T-scale and the grey opacity
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may be hidden in 0 together with pure convection effects. This is one reason that so

many values for the solar oz can be found in the literature (Another reason being the

lack of concensus on the values for the auxilliary MLT parameters). As illustrated

by Tab. 9, such flaws in the treatment of the photosphere will not have the same

effect on all stars and an incorrect differential behavior would be expected, possibly

masking real convection effects.

In Tab. 7 I compare the convection zone depths obtained from envelope models

with different choices for the T-T relation but constant, individual as (as found in

Paper 11). The first row of (1C2 is for the individual T-T relations, derived from the

simulations as described in Sect. 5.1.5 and using the same Rosseland opacities in

the envelope model as in the computation of the T—T relation. This is the proce-

dure I recommend and which separates the radiative contribution to the efficiency

of the convection from intrinsic convection effects. The individual T-T relations are

compared in Fig. 20.

The next three rows of Tab. 7 give the convection zone depth for some of the

commonly used approximations. The first uses the solar T—T relation for all the stars,

where I use the T-T relation from Sect. 5.1.6, which is based on a simulation with

higher resolution and lower Teff than the one listed as “Sun” in Tab. 7. The next

approximation uses individual T-T relations based on the monochromatic, 5000 A, T-

scale but still using the Rosseland opacity for the grey opacity in the envelope. The

opacities, [$5000 and H3038 are calculated with the same code, physics and abundances.

Last I use the T-T relation from the Harvard—Smithsonian reference atmosphere (Gin—

gerich et al. 1971). Fig. 15 shows that (1%0200 and (11531“ for the solar simulation differ
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Fig. 20. Scaled T—T relations for the seven simulations, relative to the solar simu—

lation in the sense: T, X (Egg/Tea.) — lb. The more vigorous the convection, the

flatter the T-T relation.

from (lcz, approximately in proportion to the corresponding differences in the T-T

relation around 7' = 1. This also confirms the trends of the linear analysis listed in

Tab. 9, as the various convection zone depths listed in Tab. 7 stem from changes to

the T-T relation only.

5.1.10 Conclusion

I confirm that the use of T-T relations is indeed a. reasonable way of incorporating

the effects of full radiative transfer in stellar structure computations—even in the

non—grey case.

Based on that I proceed to compute T-T relations for a small number of 3D simu—

lations of radiation—coupled convective stellar atmospheres. Each of the T-T relations

were fitted to analytical expressions, the coefficients of which were fitted to linear
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expressions in the atmospheric parameters, Teff and gsurf, for easy implementation in

stellar structure codes.

I have investigated how changes to the radiative part of the outer boundary af—

fects the structure of a star, using the depth of the outer convection zone as a global

measure. I evaluated the linear response of the change in depth of the convection zone

caused by changes in atn'iospheric opacity, T-T relation and mixing length, respec-

tively. My analysis shows that the convection zone is about equally sensitive to the

three kinds of changes and, consequently, different parameter—triplets can easily result

in the same global properties of a stellar model. References to a particular mixing

length are therefore less useful unless accompanied by references to the atmospheric

opacity and T-T relation.

I also compare the effects of various commonly used assumptions about the T~T

relation, and conclude that scaled solar T-T relations introduce systematic effects,

while the use of an 5000 A T-T relation with a Rosseland opacity has an even larger

effect and should be avoided.

To separate the effects of convection from those of the radiative transition in

the photosphere, and to avoid unnecessary systematic effects, I recommend a consis—

tent usage of T-T relations and their corresponding opacities in stellar structure and

evolution calculations.

Extrapolation of the parameterized T—T relations towards lower gravity (see Fig.

19) prompted a closer investigation of the interplay between convection and radiation,

above the convection zone. I have gained new insights into the physics governing

the overshoot of convective flows into the stably stratified parts of the atmosphere;
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when radiative heating is inefficient, the temperature will approach the adiabatic

stratification and the (negative) overshoot flux will diminish. A more detailed analysis

will be presented in a future paper. The effect on atmospheric stratification is,

however, included in my fit to the T-T relations as presented in Eqs. (169), (171),

(172) and Tab. 8, and it is ready to be implemented in stellar structure and evolution

codes.

As precision and scope of modern observations of stars steadily improve, and as

we are entering the age of astero—seismology, higher demands are placed on the mod-

eling of stars. With improved understanding and treatment of the interplay between

radiation and convection, it will be possible to isolate other effects that so far have

been shrouded in the uncertainty of the atmospheric part of stellar models. With

improved outer boundary conditions, combined with the mixing—length calibration in

Paper II, we can have more confidence in predictions about the depth of convective

envelopes. This, in turn, will allow the study other mixing processes, such as convec—

tive overshoot at the base of the convection zone, rotational mixing, g-mode mixing,

etc, and compare with observations of chemical enrichment from dredge—ups and the

destruction of volatile elements such as Li.
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5.2 Calibrating the mixing-length

The mixing—length parameter a is calibrated using realistic 3D radiation hydrody—

namical (RHD) simulations of seven stars in the solar neighborhood of the HR-

diagram. The calibration indicates a small variation of o with surface gravity, qurr.

and a larger variation with effective temperature, Terr- I give a simple fit to these

results.

5.2.1 Introduction

Due to the lack of a better theory of convection in stars, the mixing—length the—

ory (MLT) has been used for almost 60 years. By far the largest part of the so—

lar convection zone is very close to adiabatic, and the stratification in the bulk of

the convection zone is therefore determined by the adiabatic temperature gradient,

Va.) 2 (alnT/BInP)ad. Convection is so efficient that only a very small excess gra—

dient, or super-adiabatic gradient, V, = V — Vac) is sufficient for transporting the

entire energy flux. In most of the convection zone the super—adiabatic gradient is

tiny, V, S, 10’5, which hardly adds up to anything significant even integrating over

the whole convection zone. We therefore have no need for a theory of convection

here.

This picture changes dramatically near the boundaries, especially near the up—

per boundary of an outer convection zone. Here convection becomes exceedingly

inefficient in transporting the energy flux, as radiative energy transport takes over.

For the sun, this layer of appreciable superadiabaticity only takes up the outermost
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1Mm, just. below the photosphere, in the region where the gas becomes optically

transparent and the radiation escapes. This layer, however thin, is crucial for the

star as a whole, as it is the stars insulation against the cold of space.

With the advances in atomic physics as applied to astrophysics, i.e., the EOS

(Hummer 85 Mihalas 1988; Nayfonov et al. 1999; Gong et al. 2001b; Rogers & Nay-

fonov 2002; Saumon et al. 1995) and opacities (Seaton 1995; Berrington 1997; Iglesias

& Rogers 1996; Kurucz 1992b; Alexander & Ferguson 1994), by far the most uncertain

aspects of stellar models are associated with dynamical phenomena: semi-convection,

rotational mixing, mixing by g—modes, convective over—shooting and the most promi-

nent; convection itself.

The present paper is part of an effort to improve on stellar structure models,

by using results from a number of 3D convection simulations of stars in the solar

neighborhood of the IIR—diagram. The first paper in this series, deals with the

radiative part of the stellar surface problem, and presents T—T relations derived from

the simulations (Trampedach et al. 2004d, paper I). The present paper is Paper 11.

Paper III will address the consequences, of the results from the first two papers, for

stellar evolution (Trampedach et al. 2004b).

This paper is not a justification of the MLT, nor is it aimed at describing the

structure of the surface layers of stars. Rather, I provide a way to use MLT and a non-

constant a to correctly model the depth of outer convection zones. MLT in general,

and my calibration of a in particular, has limited relevance to stellar atmosphere

calculations.

The present paper is also a continuation of the work presented in Trampedach
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et al. (1997), which unfortunately turned out to be flawed by inadequate T—T relations.

5.2.2 Mixing-length vs. 3D convection

The conventional interpretation of the mixing—length formulation of convection, is

that of bubbles, eddies or convective elements, that are warmer than their surround-

ings, rising due to their buoyancy. The Schwartzschild criterion for stability against

convection: Vlad < Vad, is equivalent to the statement that convection will occur,

QC

when gas which is warmer than its surroundings, is buoyant. The rad” and “ad”

subscripts indicate the V : dlnT/dlnP in the case of radiative and adiabatic strati—

fications, respectively.

These bubbles of gas are then envisioned to travel for one mixing-length—hence

the name of the formulation—before they dissolve more or less abruptly (Béhm—

Vitense 1958). This picture has conceptual problems at the edges of convection zones

or in small convective cores, where the distance to the edge is only a fraction of a

mixing-length. Most often, the convective elements are also ascribed an aspect—ratio

around unity, confounding the problem.

The mixing-length is typically chosen to be A : GHQ or o'Hp, where a is the main

free parameter (of order unity) of the formulation, and H is the density— or pressure—

scale-height for locally exponential stratifications. It has also been suggested to use

I : CYZ, where z is the distance to the top of the convection zone (Canuto & Mazzitelli

1991; Canuto & Mazzitelli 1992). This choice would solve the conceptual problems

listed above, but it introduces physical problems since there are strong reasons for
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real convection to have a stratification similar to an MLT model with A 2: GHQ, as

mentioned below.

There is also a notion of these convective bubbles travelling in a background

of the average stratification. A little like the bubbles rising in a glass of beer, for

instance; The cOncept of a. background liquid is rather obvious, with isolated and

distinguishable bubbles rising in it.

The 3D simulations of convection, on the other hand, display a very different

phenomena (see also Stein & Nordlund 1989; Nordlund & Stein 1997). The convection

consists of continuous flows; the warm gas rising almost adiabatically, in a background

of narrower and faster down—drafts, forced by sheer mass—conservation. A fraction of

the Lip—flows is continuously overturning in order to conserve mass on the back—drop

of the steep and exponential density gradient.

Locally, the density can be approximated by

pocez/HC’. (179)

When a vertical “slice” of the up-flow has traveled AZ, the slice would therefore be

over—dense by a factor of eAZ/Hé’ , if the up-flow was confined horizontally. There is

of course no such confinement, and the fraction, (eAZ/HQ — l) ——> Az/HQ for AZ —> 0,

will overturn into the down—drafts.

The up-flow will therefore be “eroded” with an e—folding scale of H9. The result

of this concept is actually the same as that for the mixing-length picture described

above (with A = ozHQ), but without the same conceptual problems, since the flows

171



are continuous and the overflow from the up-flow and into the down-drafts, likewise

happens on a continuous basis.

Renaming it the erosion- or dilution-length formulation, it could be a first-order

approximation to convection, as observed in the 3D simulations. This is probably

the reason that the MLT formulation has worked so well despite its short-comings;

It is based on simple mass conservation.

The above argument neglects vertical velocity gradients. A positive gradient

outwards would accommodate more of the up-fiow and result in a smaller fraction of

the up—flow overturning. With some assumptions on the velocity-gradient, this could

be included by means of a factor on the erosion-length, and various geometrical

conversions could be included here as well. This is the or being calibrated in the

present paper.

The 3D simulations also display a nearly laminar up-flow, due to the density

gradient smoothing out most of the generated turbulence. The down-flows are nar-

rower and faster, and since they work against the density gradient, they are also more

turbulent. The down-drafts are not compressed adiabatically, since there is continu-

ous entrainment of hot plasma from the neighboring up-flows. The down~drafts are

therefore super—adiabatic much further in than the up-flows which mainly become

super—adiabatic from radiative loss of energy around the local T 2 1. There is also a

lateral exchange of energy, extending the super—adiabatic peak in the up—fiow to larger

depth than would have been the case with a purely vertical loss of radiative energy.

The super—adiabatic peak produced by the combination of these three phenomena is

difficult to reproduce within the MLT frame-work (See Sect. 5.2.6.1).
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The convective motions in the 3D simulations, are prolific above the convection

zone, with the velocity decreasing with a scale—height which is larger than the pressure

scale—height. This introduces a new contestant in the atmosphere, and radiative

transfer will have to compete with adiabatic cooling for the equilibrium stratification,

as discussed in Paper I.

The asymmetry in the up—flows and the clown—drafts have some profound effects:

In the photosphere, for example, the highly non-linear opacity coupled with the large

temperature contrast, results in a T = 1 surface which is very undulated; Over the hot

granules, the photosphere is located at larger geometrical height than the cooler inter—

granular lanes, and the observed (disk—center) temperature contrast is therefore much

smaller than in a horizontal cross—section. This introduces a convective back-warming

on the geometrical scale, which has no counterpart on the optical depth—scale.

In the convective layers, the density and velocity differences between the up-flows

and the down—drafts, give rise to a net kinetic energy-flux

Fkin I —Q‘U21)Z , (180)

which amounts to about a tenth of the total flux. The assumption of symmetry in the

MLT formulation, precludes such a kinetic energy-flux, and is probably the biggest

cause for disagreement with the simulations in the deeper, almost adiabatically con—

vective layers.

As convection quickly approaches the adiabatic stratification, an actual theory

of convection is hardly necessary in the bulk of a convection zone that encompasses
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more than a few pressure—scale—heights. There I only need to determine which adiabat

the star is following. Since o is not fixed by the MLT formulation, the answer has

to come from “outside” calibrations, e.g., through matching of the radius of a solar

model evolved to the present age (Gough & Weiss 1976), or as performed in the

present paper.

5.2.3 The simulations

The fully compressible RHD simulations are described by Nordlund & Stein (1990),

and general properties of solar convection, as deduced from the simulations, are

discussed by Stein & Nordlund (1998). Among the code features, important for the

present analysis, are radiative transfer with line-blanketing (Nordlund 1982; Nordlund

& Dravins 1990), and the transmitting top and bottom boundaries. The bottom is

kept at a uniform pressure (but not constant in time), to make a node in the radial

pmodes and minimize wave generation by the boundary conditions. The entropy of

the in-flowing plasma is adjusted to result in the desired effective temperature, and

the outflow is left unchanged.

The convection in the simulations, consists of a warm, coherent rip—flow, with its

entropy virtually unaltered from its value near the bottom of the convection zone.

Because of the density gradient, mass conservation forces overturning of the up—

flows, on distances of the order of the density scale height. The overturning plasma

is entrained into narrow, fast and turbulent, entropy deficient down-drafts, generated

by the abrupt cooling in the photosphere. Since only a small part of the convection
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zone is simulated, open boundaries are necessary for obtaining realistic results.

Another requirement for comparison with observations is a realistic treatment of

the radiative transfer in the atmosphere, and a corresponding quality of the atomic

physics behind the opacities and the equation of state (EOS). Compared to the

simulations cited above, I have therefore employed the so-called MHD EOS (Hummer

& Mihalas 1988; Dappen et at. 1988), updated most of the continuous opacity sources

and added a few new ones, as described in detail in Trampedach (1997). The line

opacity is now supplied by opacity distribution functions (ODF) by Kurucz (1992a;

1992b).

Each of the simulations were performed on a 50 X50 X 82 grid. After relaxation to

a quasi—stationary state, I calculated mean models for the envelope fitting (cf. Sect.

5.2.5). The temporal averaging was performed on a horizontally averaged column

density scale, instead of a direct spatial scale, to filter out the main effect of the

p—modes excited in the simulations.

The seven simulations investigated are listed in Tab. 10. Five of them correspond

roughly to actual stars. The chemical composition is, mostly for historical reasons,

X : 70.2960 % hydrogen by mass and Z : 1.78785 % metals by mass.

In Fig. 21 I have plotted the seven simulations in an HR-diagram together with

evolutionary tracks (Christensen—Dalsgaard 1982; Christensen—Dalsgaard & Frandsen

1983), for stars with masses between 0.85 and 1.7 A/IQ, as indicated. The two fictitious

stars, Star A and B, can of course be shifted up or down in luminosity, depending on

what mass actually corresponds to the given atmospheric parameters.
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Table 10.

depths, dcz.

Parameters for the simulations, and derived as and convection zone
 

 

 

 

 

   

name a Cen B Star A Sun a Cen A Star B 7) B00 Procyon

Spectral class K 1 V K 2 G 2 V G 2 V F 8 G 0 IV F 5 IV—V

Teff 5362K 4851 K 5801 K 5768K 6167 K 6023K 6470 K

loglo gsurr 4.557 4.095 4.438 4.295 4.035 3.703 4.035

.M/[l/IG 0.900 0.600 1.000 1.085 1.240 1.630 1.750

max(Pturb/Ptot) 7.8% 8.2% 10.7% 11.2% 15.5% 19.5% 21.0%

a 1.8313 1.8705 1.8171 1.8032 1.7360 1.7383 1.7193

dcz 0.3063 0.5600 0.2861 0.3070 0.1966 0.2087 0.1035

A5 F0 F5 G0 G5 K0

1 l l L I l

f ‘ 77 B00 7

1.0 — ‘ a —

‘ M=1.7MO .b ~

1.6 Procyon -

i 1.5 I 7

.40 0.5 _ 1.4 star B _

S _ _

g 1.3
no . _
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‘ 1.2 r
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q Sun _
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logic Terr

Fig. 21. The position of the seven simulations in the l-IR—diagram. The size of the

symbols, reflects the diameter of the star. I have also plotted evolutionary tracks,

with masses as indicated, to put the simulations in context.
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5.2.4 The envelope models

The simulations were fitted to 1D, spherically symmetric envelope models (Christensen-

Dalsgaard & Frandsen 1983), which extend down to a relative radius of r/R : 0.05,

and up to an optical depth of T 2 10‘4.

I used the same MHD EOS, and in the atmospheric part of the envelopes I

used the same opacities, as in the convection simulations. These atmospheric opac—

ities are smoothly joined with the OPAL opacities (Rogers & Iglesias 1992a.) in the

temperature interval, T = 2.6—4.1 X 104 K.

Convection is treated using the standard MLT as described in Bohm-Vitense

(1958), using the standard mixing length

[ZO’HP (181)

and form factors y = % and z/ = 8. I use the notation introduced by Cough (1977),

in which the form-factors are (I) : z//4 = 2 and 77 = 4y/(3\/17) = \[2/9.

The photospheric transition from optically thick to optically thin is treated by

means of T—T relations derived from the simulations. I calculated temporal and

TROSS (Rosseland optical depth) averaged temperatures, and fitted these to analytical

expressions which were used in the envelope models. The fitting formula and the

coefficients are given. in Paper I. The point that I use individual T—T relations instead

of scaled solar T-T relations is crucial for the present calibration, as discussed in

Paper I.

The pressure in the simulations is not purely thermodynamic; turbulent pres—
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sure also contributes to the hydrostatic equilibrium. I therefore include a turbulent

pressure in the envelopes, based on the MLT convective velocities

[JtuerD : fivgomé) 7 (182)

where )3 is a constant. adjusted as part of the calil‘n'ation procedure. as described

in Sect. 5.2.5. I suppress the turbulent pressure in the envelopes with a smooth

cutoff just above the matching point. to avoid spurious effects on the structure of

the envelope model. This has two reasons: The practical one, is that most stellar

structure calculations do not include such a turbulent 1_)ressure, and a calibration of (1,

including 13“,“,le in the whole convection zone. would not apply in these cases. The

second, and more physical reason, is that econ, in M LT models has a very unphysical

behavior, and gives rise to an even less physical Pturl),lD- The turbulent pressure in

the part of the envelope above the matching point would change the outer boundary

condition for the envelope, which can have a significant global effect on the model.

The velocity drops from an unrealistically high, supersonic maximum. down to zero,

in a. fraction of a pressure scale height, giving rise to a devastating pressure gradient.

To enable integration of hydrostatic equilibrium, it is necessary to introduce some

cutoff, which undoubtedly will introduce an unphysical differential behavior of this

MLT turbulent pressure.

In the. simulations on the other hand, turbulent pressure peaks about half a

pressure—scale-height below the top of the convection zone, drops off smoothly both

above and below and is non-zero everywhere.
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I recommend not including a 1D-turbulent pressure which is confined to the

convection zone, i.e., do not incorporate an overshoot region.

Well below the super—adiabatic top of the convection zone, Pturb,1D does however

match the turbulent pressure of the simulations rather well, giving an almost differ—

entiable match. I take this as evidence, that envelope models including PtuerD, with

[3 and a fitted as described in Sect. 5.2.5, gives a realistic extension of the simula—

tions towards the center of the star. This fact was exploited in an investigation of

convective effects on the frequencies of solar oscillations (Rosenthal et at. 1999) by

analyzing eigenmodes in a model combining the simulation and a matched envelope

model. I can now proceed with the matching, with confidence.

5.2.5 Matching to envelopes

In order to derive as from the simulations, I matched horizontal and temporal av-

erages of the 3D simulations to 1D envelope models at a common pressure point

deep in the simulation. The matching is performed by adjusting [3 till the 3D- and

1D-turbulent pressures agree, and or till the temperatures agree.

This method demands a high degree of consistency between the simulations and

the envelope models at the matching point, which is the reason for using the exact

same EOS (and chemical composition) in both cases, and for including a turbulent

pressure in the deep part of the envelope models. The matching is furthermore per-

formed at a depth in the simulation, where boundary effects are small and fluctuations

in the thermodynamic quantities are small. The latter to ensure that the mean Q, T
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and Pgas are related by the EOS, i.e., that direct 3D-effects are negligible, as is of

course always the case in the envelope models.

In order to filter out non-convective effects from this calibration of a, I also

demand consistency in the treatment of radiative transfer at the top of the convection

zone. I accomplish this by using the Rosseland opacities from the simulations, in the

atmospheres of the envelopes, and using T—T relations derived from the simulations,

based on this opacity (See Paper I for details).

The combination of the average stratification of the simulations in the atmo—

sphere, and the matched envelope in the interior, have recently been used by Geor-

gobiani et al. (2003b), as a basis for computing the excitation of stellar p—modes for

the stars listed in my Tab. 10.

5.2.6 Results and discussion

The results of this envelope matching is listed in Tab. 10 where I list both a for

the matched envelope, and the relative depth of the convection zone, dcz. The

simulations are listed in order of increasing vigor of the convection, translating into

decreasing a’s (decreasing efficiency of convection) and decreasing relative depth of

the convection zone. As a measure of how vigorous the convection is, I use the

maximum of the turbulent to total pressure ratio, as listed in the fifth row of Tab.

10.

In Fig. 22 I show the as from the envelope matching as function of Teff) as *—

symbols. Those values are plotted with error-bars, corresponding to the RMS scatter
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Fig. 22. A plot of the 0’s found from the matching procedure (stars), compared

with the linear fit from Eqs. (183) and (184) (triangles). The (lower) diamonds show

the 2D calibration by Ludwig et al. (1999), which I have also multiplied by 1.14 to

agree with my result for the Sun (upper diamonds). The line-segments show the local

LogT—derivative of the fitting expressions.

in a derived from envelope matching to individual time-steps of the simulations. This

scatter is rather small; 1—3><10—3, and is hard to see in the figure.

I fit the derived Oz’s to a simple function of the form

 
7:3 (sur (la ,

“’fitrl‘eelJr/“Osr. fl +Blog—J—‘+—/(Y_r@) (183)
CINE) gsurf,® (I)
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and find

1 .

QC.) 21.81795 . L“, = —1.32012.
(11

A = —1.11208 and B = 0.07454

which is shown as triangles in Fig. 22, with the log T—gradient indicated with line—

segments. This linear fit has a. standard deviation of 0 = 0.012, whis is more than an

order of magnitude less than the variation of a over the seven stars. It is also an order

of magnitude larger than the RMS scatter in a from envelope matching to individual

time—steps. This indicates that the variation of (1' is not optimally described by a

plane. I find it prudent, however, to keep the fit linear in order to avoid divergences

outside my rather limited fitting region of the seven simulations.

A similar calibration of 0 against 2D RHD simulations has been performed by

Ludwig (I, (1.1. (1999, from here on LFS), using a. method completely independent of

ours. In Fig. 22 1 have displayed their fit to their results. as applied to the atmospheric

parameters of my simulations (lower set of 0’3, with line—segments indicating local

logT-derivatives). Based on the requirement of matching the radius of the present

age Sun, they allow for a scaling of their results by 1.1—1.2 to translate from 2D to

3D.

My results do indeed agree in the solar vicinity. after a scaling by 1.14, as shown

by the upper set of <>—sy1nbols in Fig. 22. The disagreement for Star A is most likely

due to differences in the opacities. They base their opacities on the Atlasfi line—
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Fig. 23. This figure shows ol’s behavior with Toff and gsurf. The surface is the fit

given in Eq. (183). The dashed lines shows evolutionary tracks for stellar masses as

indicated. The stars show the 0’s as listed in Tab. 10 and the little circles, connected

by lines, show the projection onto the fitting—plane.

opacities whereas I use the newer Atlas9 line—opacities (in the form of opacity dis—

tribution functions). The difference, as outlined by Kurucz (1992d). consists of the

addition of molecular opacity (hydrides and (N, Cg and T10) and improved calcula-

tions for the iron—group elements —-*— all in all a. factor of 34 more molecular, atomic

and ionic lines.

These opacity changes should affect the hotter stars the least, but they still

have an effect on the solar model—that was, after all, the main motivation behind
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the opacity updates (Kurucz 1992b). I therefore suspect that the factor translating

LFS7 results from 2D to 3D should be closer to 1.21. to bring the Procyon results

into agreement. The differences for the other simulations would then be due to the

opacity update. LFS used grey radiative transfer in the bulk of the 58 2D simulations

going into their analysis, adding another systematic difference (also decreasing with

Teff) between my results.

The fit by LFS have more degrees of freedom. as warranted by the much larger

set of simulations. They also cover a larger area of the 'R.ff/gsurf-(liag1'a1n making

non-linear behaviour more pronounced. It is, however, interesting to note that my

results are rather well described by a bi—linear fit in logTefr and logg. In the future,

the present analysis will be extended to larger temperatures and lower gravities.

It seems natural to expect that quantities other than Teff and gsurf, would be more

relevant for describing the efficiency of convection. The optical depth at the top of

the convection zone. for example, seems much more relevant and directly related to

the issue. This quantity, and other related ones, appear to give worse fits, than the

one presented above. The reason for this is still unclear.

It can be argued that the set of atmospheric parameters I have chosen for my

simulations lies close to a line, instead of delineating an area, and therefore only the

change of 0' along this line can be significant. Again I refer to the relative agreement

with the findings of Ludwig el (1,]. (1999), who explored a larger area in the Teff/gsurf'

plane. Also the 77 B00- and Star A-simulations are rather far away from that line and

yet they both lie very close to the fitting—plane.

In Fig. 2.3 I show the linear fit of Eqs. (183) and (184), as function of both

184





effective temperature and gravity. Contours, in grey, are shown for every 0.01 and

labelled for every 0.02. I have also plottet values found from the envelope matching

procedure (*—symbols), and connected them to the corresponding points on the plane,

with small vertical line—segments. The dashed lines show the evolutionary tracks by

Christensen-Dalsgaard (1982) also shown in Fig. 21, with masses decreasing upward

as indicated.

Fig. 23 shows a very interesting trend; The evolutionary tracks show that the

stars on the zero age main sequence have 01’s that depend strongly on mass (0 :5

2.11 — 0.27/VI/fl/IQ), but their a’s converge towards a :3 1.82 going up the Hayashi

track at the low—T/low—g corner of the plot. Fig. 23 also shows that the oz Cen binary

system has kept an only slightly increasing a—difference between the two components

(as the B—component evolves slower), of about 0.03. In a recent calibration of the

azCen—system, Morel 6t (11. (2000) find GAB = (186,197), which is a bit larger

difference than what I find, but it has the same sign. Using individual a’s and T-T

relations, evolving with time, might help solve the longstanding problems with the

modeling of this system (Fernandes & Neu‘forge 1995; Lydon et‘ al. 1993).

5.2.6.1 Depth of the Solar convection zone

I have also run a simulation for direct comparison with solar observations. This

simulation has a. more modern composition: a helium mass-fraction of Y@ = 0.245

in accordance with helioseismology (Basu & Antia 1995), and ZQ/XQ = 0.0245 in

agreement with meteoritic and solar photospheric metal to hydrogen ratios (Grevesse

& Noels 1992). This ratio results in the hydrogen mass-fraction, X : 73.69% and the
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helium—hydrogen number ratio, He/H=0.0837. I have also increased the resolution to

100 X 100 X 82, to better capture the granulation structure, and I have carefully ad—

justed the entropy of the inflowing gas (a constant) to obtain an effective temperature

of 5777 31: 14K, in agreement with that derived from solar irradiance observations:

Ten“ 2 5777 i 2.5K, (Willson & Hudson 1988).

Matching this simulation to an envelope—model, gives a : 1.8670. [3 :2 0.75237

and a depth of the solar convection zone, dcz : 0.2869 :l: 0.0009 R5,. This is in

good agreement with that inferred from inversion of helioseismic observations: ([02 2:

0.287 i 0.003 RC.) (Christensen-Dalsgaard et al. 1991). The uncertainty 1 quote for

my result is merely the RMS scatter resulting from performing the full fitting of T-T

relations and envelope-matching for the individual time-steps of the simulation.

As indicated below Eq. 181, there are two more parameters to standard MLT.

The two form-factors, the aspect ratio of convective elements, (I), and 7}, which is

related to the radiative exchange of energy between the up- and down—flows, are,

however, not linearely independant and I therefore limit my discussion to 7]. Fitting

77 with respect to the height of the super—adiabatic peak, I get a = 1.9618, 13 : 0.72792

and 7} = 0.065948, resulting in a. convection zone of depth 0.2872 Hg. This value is

still safely within the uncertainty of the helioseismic result. The height of the peak

in the super-adiabatic gradient is increased from 0.5 in the model above, to 0.7 with

the new value of 7}.

If on the other hand I adjust the form—factor, 7], so as to obtain the same log-

arithmic temperature gradient, V, at the matching point, then I get of = 3.8545,

/3 : 0.46403 and 77 : 6.3943 X 10'4, and a convection zone of depth 0.2894 HQ. This
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result is not within the uncertainty of the helioseismic result. Furthermore, the peak

of the super-adiabatic gradient becomes unphysically large, reaching a value of 2,

about 100 km below the photosphere.

That T, Q and V cannot be simultaneously matched at a. common pressure-point

(with plausible parameters), indicates that the MLT formulation converges rather

slowly, if ever, towards the super-adiabatic gradient, V — Wad, of a. real convective

envelope. This might be due to the neglect of kinetic—flux in the MLT formulation,

as detailed in Sect. 5.2.2.

Notice that the depth of the solar convection zone, as found above, results from ab

initio calculations, from the E08 and opacity calculations, to the RHD simulations.

The adjustable parameters that enter the simulations are the resolution, the viscosity

coefficients, and the size of the time step relative to the Courant time. These are

tuned to resolve the thermal boundary layer at 7' = 1 and the convective structures,

to minimize numerical diffusion, and to minimize the computing time. Nothing is

adjusted to fit solar observations.

5.2.7 Conclusion

I have calibrated the MLT parameter a, by matching 1D envelope models with 3D

RHD simulations, and established a significant variation of a with stellar atmospheric

parameters Teff and gsurf. My results point to a common value of oz ’1 1.82 at the

beginning of the ascend up the I—Iayashi track and a decreasing with mass on the

zero-age main-sequence.
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There is of course still the possibility that 1, despite my efforts, have overlooked

a source of systematic errors in my calibration, but the absolute agreement with the

seismologically inferred depth of the solar convection zone, found in Sect. 5.2.6.1,

strengthens my confidence.

Although various values of a have been considered in the modeling of stellar

evolution, an or varying during the evolution of a star has, to my knowledge, not

been tried yet. Results of such evolution calculations are presented in Paper 111.

I stress that the choice of a depends on the choice of atmospheric physics, 27.6.

T-T relation and atmospheric opacity. Employing a scaled solar T-T relation will

alter the effect of oz, as shown in Paper I. I recommend that my fitting formula, Eq.

(183) be used with individual T-T relations.

As ground—based and soon also space-borne, asteroseismology is beginning to

provide strong constraints on the structure of stars, other than the Sun, stronger

demands are placed on the theoretical models.

An absolute calibration of the mixing-length parameter, a, is the first step to-

wards improving the treatment of convection in stellar structure models. A funda—

mentally improved formulation of convection is of course desireable, but has proven

rather difficult to come by. Various attempts have been made to rectify this sit—

uation. Canuto (1993) present a formulation based on fully developed turbulence,

which however, does not account for the steep density gradient and the inherent as-

symetry between up- and down—flows. (Lydon et al. 1992) base their model on 3D

hydrodynamical simulations of convection, and this is probably the most promising

way forward. A number of approximations render their results less than optimal for
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the next generation of convection models, however.

With the connection between MLT and the 3D convection simulations, found

in Sect. 5.2.2, I believe a properly calibrated mixing-length formulation, with the

mixing—length being proportional to the density or pressure scale-height, to be the

best choise for the time being.
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Chapter 6

Conclusions

6.1 Summary

Numerical instabilities first discovered in a deep solar simulation, have severely ham—

pered progress in production runs. The reasons and possible remedies are explored

in chapter 2.2, but no conclusions have been reached yet. The research has led to a

small number of possible solutions that will be implemented and explored in the near

future.

The two equation of state projects, most popular with the astrophysical com—

munity, were compared in much detail in Sect. 3.2. This analysis revealed a number

of differences and considering the success of the OPAL EOS, there seems to be room

for improvements on behalf of the MHD EOS.

Analyzing the \IJ—term in the MHD EOS, which is an approximation to the

second—order (in density) hard-sphere interaction between neutral particles, it was

found that it has very little effect under solar circumstances, and was not the main
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reason for the very successful pressure-ionization in the .\'III D EOS. The term is still

suspicious, however, as hard-sphere interactions. at best, can be a crude approxima-

tion to the real phenomena at play.

In Sect. 3.4 the lessons learned from the EOS comparisons, were applied to im—

provements of the MHD EOS. In particular, the previously published improvements

of post—Holtsmark micro—field distributions (Nayfonov (:1 al. 1999) and relativisti—

cally degenerate electrons (Gong el al. 2001b). were incorporated. together with the

two quantum effects; exchange interactions between identical particles and quantum

diffraction. For a solar stratification of density and temperature. the largest effect

turned out to stem from a proper treatment of higher order Coulomb interactions,

beyond the Debye-Hiickel theory.

111 order to extend the validity of the MHD EOS to the domain of stellar at—

mospheres. provisions for including molecules by means of parameterized partition-

function, was added. We presently use a data-base containing 315 (Ii-atomic and 99

poly-atomic molecules.

A new EOS will also have consequences for opacities, through changed popula—

tions of the energy levels, and changes to the dissociation and ionization equilibria.

From the OP—team (Seaton 2003, private communications) it has been confirmed that

there has been significant improvements to the atomic physics and time is getting

ripe for a new opacity calculation.

The improvements to the equation of state and the opacities, are accompanied

by a comparable improvement to the method for evaluating the radiative transfer.

By carefully selecting a small number of wavelength points, it is possible to reproduce
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the result of the full radiative transfer to within a. percent. A robust algorithm for

selecting the wavelength points is presented, and tested on a handful of conventional

1D stellar atmosphere models. The new method is shown to be more stable against

the convective fluctuations, i.e., when applied to a vertical slice of a snapshot of a

solar simulation, the overall agreement with the full calculation is improved compared

to the opacity—binning scheme currently employed.

In chapter 5 a set of convection simulations for stars in the (larger) solar neigh-

borhood of the HR—diagram, are analyzed in order to improve conventional 1D stellar

structure models. It is found that T-T relations can indeed describe stellar atmo—

spheres correctly, with just a single (Rosseland) opacity—even in the case of dis—

tinctly non-grey atmospheres. It is found that there are significant adiabatic cooling

and radiative heating, taking place, when convective overshoot is present (as is always

the case in the simulations). The stratification of an atmosphere is not necessarily in

radiative equilibrium.

Having isolated the radiative effects through a properly defined radiative T-

7' relation we proceed to present a calibration of the main free parameter, oz, of the

mixing-length formulation of convection. A small but significant change with Teff and

gsurf is found, and for the solar case, the calibration results in a very good agreement

with the depth of the solar convection zone—an absolute calibration, with no free

parameters to adjust.
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6.2 Future Work

6.2.0.1 The convection simulations

The various improvements out-lined in the present work are now ready for implemen—

tation. The new MHD EOS is coded and is ready to run production runs. During

the production of EOS tables, I will continue the newly opened negotiations with the

OP-team and the molecular line database-team, based in Copenhagen and Uppsala.

My goal is a compilation and computation of “unified” opacities, that are equally

relevant for stellar structure-, and for stellar atmosphere—research. At least in the at—

mosphere, this EOS and opacity combination should be valid for stars ranging from

cool, late type stars and all the way to white dwarfs.

The issue of stability in the convection simulations, as explored in chapter 2.2,

will also be addressed in the near future, to facilitate early resumption of production

runs. There are a number of potential solutions to explore, of which the piece-wise

cubic—spline interpolation will probably be the first one to be tested. A candidate

solution will have to prove its worth in a number of tests with analytical solutions,

such as simple advection tests of different shapes, as well as sound—waves and shocks

of varying amplitude. As soon as a solution has materialized, the simulations can be

restarted, and that probably with the new EOS.

The next step is implementation of the SOS radiative transfer—scheme and direct

comparison between that and the current opacity-binning scheme and various stages

in between. When properly tested, this will be applied in the production runs.

The last update will probably be the opacity calculations, since the computation

193

 





of absorption coefficients of the last 11 elements included in the OP and IP projects,

is still work in progress.

With all the improvements in place, and validated by a handful of convection

simulations of individual stars, work on the grid of 3D convection simulations can

begin. This will pave the way for many new insights, much improved analysis and

interpretation of observations, and the possibility for performing “measurement” on

the simulations that are not (yet) possible for real stars.

6.2.0.2 Applications

There are a great number of pressing issues, concerning the remaining space-based

astero-seismology missions. One issue is the amount of convective “noise” that can be

expected from other stars, potentially drowning a p—mode signal. Another issue is the

damping of modes, broadening the profiles of the eigen—modes. Preliminary results

(Kjeldsen & Bedding, 2003 private comnuinications) points to higher than expected

damping, and maybe even to the point of splitting the line into several independent

random components.

The convection simulations will also be useful for simulating the signal that will

be observed, to improve on the understanding and interpretation of exactly what

the instruments observe. This also applies to the identity, or global parameters, of

the observed stars, as the convection simulations are excellent tools for abundance

determinations (Asplund 2000; Asplund 615 (1!. 2000b) and for determining Tefl' and

gsurf from spectral line—shapes.

When the atmospheric parameters have been determined, the interior of the star
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can be investigated by means of matching 1D envelope models to the bottom of the

convection simulations, and e.g., evaluating the eigen—modes for the combined model,

as has previously been done for the Sun (Rosenthal 61. al. 1999). As shown in chapter

5, 1D stellar models can be calibrated against the simulations, 7.6. the atmospheric

structure and mixing-length. which can then be fed into stellar evolution calculations,

to gain further insights into the lives of stars.

The possibilities are as many, and as far—reaching, as our imaginations can take

195





Bibliography

Abe, R. 1959, “Giant cluster expansion theory and its application to high temperature

plasma”, Prog. Theor. Phys. 22(2), 213

Aguilar, A., West, J. B., Phaneuf, R. A., Brooks. R. L., Folkmann, F., Kjeldsen, H.,

Bozek, .1. D., Schlachter, A. S., Cisneros, C. 2003, “Photoionization of isoelectronic

ions: Mg“r and A12“, Phys. Rev. A 67. 12701

Alastuey, A., Cornu, F., Perez, A. 1994, “Virial expansion for quantum plasmas,

diagrammatic resummations”, Phys. Rev. E 49, 1077

Alastuey, A., Cornu, F., Perez, A. 1995, “Virial expansion for quantum plasmas,

maxwell-boltzmann statistics”, Phys. Rev. E 51, 1725

Alastuey, A., Perez, A. 1992, “Virial expansion of the equation of state of a quantum

plasma”, Europhys. Lett. 20, 19

Alexander, D. R., Ferguson, J. W. 1994, “Low-temperature Rosseland opacities”,

ApJ 437, 879

Allard, N. F., Kielkopf, J., Feautrier, N. 1998, “Satellites on the Lyman 13 line of

atommic hydrogen due to H—I-I+ collisions”, A&A 330, 782

Allard, N. F., Koester, D., Feautrier, N., Spielfiedel, A. 1994, “Free—free quasi—

molecular absorption and satellites in Lyman—alpha due to collisions with H and

H+”, A&AS 108,417

Asplund, M. 2000, “Line formation in solar granulation. III. The photospheric Si and

meteoritic Fe abundances”, A&A 359, 755

Asplund, M., Gustafsson, B., Kiselman, D., Eriksson, K. 1997, “Line—blanketed model

atmospheres for R Coronae Borealis stars and hydrogen—deficient carbon stars”,

A&A 318, 521

Asplund, M., Nordlund, A., Trampedach, R., Allende Prieto, C., Stein, R. F. 2000a,

‘ I o c a I c I

‘Line formation 1n solar granulation. 1. Fe line shapes, shifts and asymmetries”,

196

 





A&A 35.9. 729

Asplund, M., Nordlund, A., Trampedach, R., Stein, R. F. 1999, “3D hydrodynamical

atmospheres of metal-poor stars. Evidence for a low primordial Li abundance”,

A&A 346, L17

Asplund, M., Nordlund, A., Trampedach, R., Stein, R. F. 2000b, “Line formation in

solar granulation. II. The photospheric Fe abundance”, A&A 359, 743

Asplund, M., Trampedach, R., Nordlund, A. 1998, “Confrontation of stellar surface

convection simulations with stellar spectroscopy”. In (Ciménez et al. 1998), 221

Badnell, N. R., Seaton, M. J. 2003, “On the importance of inner—shell transitions for

opacity calculations”, J. Phys. B: At. Mol. Opt. Phys. (submitted)

Basu, S., Antia, H. M. 1995, “Helium abundance in the solar envelope”, M.N.R.A.S.

276,1402

Basu, 8., Antia, H. M. 1997, “Seismic measurement of the depth of the solar convec-

tion zone”, M.N.R.A.S. 287, 189

Basu, S., Christensen-Dalsgaard, J. 1997, “Equation of state and helioseismic inver-

sions”, A&A 322, L5

Basu, S., Dappen, VV., Nayfonov, A. 1999, “Helioseismic analysis of the hydrogen

partition function in the solar interior”, ApJ 518, 985

Basu, S., Thompson, M. J. 1996, “On constructing seismic models of the Sun”, A&A

305, 631

Berrington, K. A. (ed.) 1997. The opacity project, Vol. 2. Institute of Physics

Publishing

Berthomieu, (3., Cooper, A., Cough, D., Osaki, Y., Provost, J., Rocca, A. 1980,

“Sensitivity of five minute eigenfrequencies to the structure of the sun”. 111: H. A.

Hill and W. Dziembowski (eds), Nonradial and Nonlinear Stellar Pulsation, Vol.

125 of Lecture Notes in Physics, IAU C011. 38, Springer Verlag, Berlin, 307

Bohm—Vitense, E. 1953, “Die Wasserstofikonvektionszone der sonne”, Zs. f. Astroph.

32,135

Bohm-Vitense, E. 1958, “Uber die Wasserstoffkonvektionszone in Sternen ver—

schiedener Effektivtemperaturen und Leuchtkrafte”, ZS. f. Astroph. 46, 108

Borysow, A., Frommhold, L. 1989, “Collision—induced infrared spectra of 112-He pairs

197

 





 at temperatures from 18 to 7000 k. 11. Overtone and hot bands”, ApJ 341, 549

Borysow, A., Frommhold, L., Moraldi, M. 1989, “Collision-induced infrared spectra

of Hg-He pairs involving 0 H 1 vibrational transitions and temperatures from 18

to 7000 k”, ApJ 336, 495

Canuto, V. M. 1993, “Turbulent convection with overshooting: Reynolds stress ap—

proach. ii.”, ApJ 416, 331

Canuto, V. M., Mazzitelli, I. 1991, “Stellar turbulent convection: A new model and

applications”, ApJ 370, 295

Canuto, V. M., Mazzitelli, I. 1992, “Further improvements of a new model for tur—

bulent convection in stars”, ApJ 389, 724

Carlsson, M., Stein, R. F. 1995, “Does a nonmagnetic solar chromosphere exist?”.

A p] 440, L29

Carlsson, M., Stein, R. F. 1997, “Formation of Solar Calcium H and K Bright Grains”,

ApJ 481, 500

Castelli, F., Gratton, R. G., Kurucz, R. L. 1997, “Notes on the convection in the

ATLAS9 model atmospheres”, A&A 318(3), 841

Cauble. R., Perry, T. S., Bach, D. R., Budil, K. S., Hammel, B. A., Collins, G. W.,

Gold, D. M., Dunn, J., Celliers, P., Silva. L. B. D., Foord, M. E., Wallace, R. J.,

Stewart, R. E., , Woolsey, N. C. 1998, “Absolute equation-of—state data in the

10-40 Mbar (1—4 TPa) regime”, Phys. Rev. Letters 80, 1248

Chabrier, G., Baraffe, I. 1997, “Structure and evolution of low—mass stars”, A&A

327, 1039

Chase, M. W., Curnutt, J. L., Downey, J. R., McDonald, R. A., Syverud, A. N.,

Valenzuela, E. A. 1982, “JANAF thermochemical tables, 1982 supplement”,

J. Phys. Chem. Ref. Data 11, 695

Christensen—Dalsgaard, J. 1982, “On solar models and their periods of oscillation”,

M.N.R.A.S.199, 735

Christensen-Dalsgaard, J. 1991, “Solar oscillations and the physics of the solar inte-

rior”. In (Cough & Toomre 1991), 11

Christensen-Dalsgaard, J., Dappen, W. 1992, “Solar oscillations and the equation of

state”, A&AR 4(3), 267

198





Christensen-Dalsgaard, J., Dappen, WK, Ajukov, S. V.. Anderson, E. R.. Antia, H. M.,

Basu, S., Baturin, V. A., Berthomieu, C., Chaboyer, B., Chitre, S. M., Cox, A. N.,

Demarque, P., Donatowicz, J., Dziembowski, W. A., Gabriel, M., Cough, D. O.,

Cuenther, D. B., Cuzik, J. A., Harvey. J. W., Hill, F., Houdek, C., Iglesias, C. A.,

Kosovichev, A. C., Leibacher, J. W., Proffitt, P. M. C. R... Provost, J., Reiter, J.,

Rhodes Jr., E. J., Rogers, F. J., Roxburgh. I. W., Thompson, M. J., Ulrich, R. K.

1996, “The current. state of solar modeling”, Science 272(5266), 1286

Christensen—Dalsgaard, J., Dappen, \N., Lebreton, Y. 1938. “Solar oscillation fre-

quencies and the equation of state”. Nature 336. 634

Christensen-Dalsgaard. J., Frandsen. S. 1983. “Radiative transfer and solar oscilla—

tions”, Sol. Phys. 82, 165

Christensen—Dalsgaard. J.. Cough. D. 0.. Thompson. M. J. 1991, “The depth of the

solar convection zone”, ApJ 378. 413

Cooper, M. S., DeWitt, H. E. 1973, “Degeneracy effects in gases in the near—classical

limit”, Phys. Rev. A 8(4), 1910

Cox, J. P., Cuili, R. T. 1968, Physical principles. Vol. 1 of Principles of Stellar

Structure. Gordon and Breach, Science Publishers

Dabrowski, I. 1984-, “The Lyman and Werner bands of H2”, Canadian .1. Phys. 62,

1639

Dappen, W'. 1992. “The equation of state for stellar envelopes: Comparison of theo—

retical results”, Rev. Mex. Astron. Astrofis. 23. 141

Dappen, W. 1996, “Helioseismic diagnosis of the equation of state”, Bull. Astr. Soc.

India 24, 151

Dappen, W., Anderson, L., Mihalas, D. 1987, “Statistical mechanics of partially

ionized stellar plasmas: The Planck-Larkin partition function, polarization shifts,

and simulation of optical spectra”, ApJ 319, 195

Dappen, W., Lebreton, Y., Rogers, F. 1990, “The equation of state of the solar

interior: A comparison of results from two competing formalisms”, Solar Physics

128, 35

Dappen, W., Mihalas, D., Hummer, D. C., Mihalas, B. W. 1988, “The equation of

state for stellar envelopes. III. Thermodynamic quantities”, ApJ 332, 261

de Boor, C. 1978, A practical guide to splines. Springer Verlag

199



 



Debye, P., Hiickel, E. 1923, “Zur Theorie der Electrolyte”, Physic. Zeit. 24(9). 185

DeWitt, H. E. 1961, “Thermodynamics functions of a partially degenerate, fully

ionized gas”, J. Nucl. Energy, Part C: Plasma Phys. 2, 27

DeWitt, H. E. 1969, “Statistical mechanics of dense ionized gases”. In: S. Kamar

(ed.), Low Luminosity Stars, Cordon and Breach. New York. 211

DeWitt, H. E., Schlanges, M., Sakakura, A. Y., Kraeft, W. D. 1995, “Eos”, Phys.

Lett. A 30. 326

Di Mauro, M. P.. Christensen-Dalsgaard. J., Rabello—Soares. M. C., Basu, S. 2002.

“Inferences on the solar envelope with high degree—modes”. A&A 384, 666

Ebeling, W., Férster, A., Fortov, V. E.. Cryaznov. V. K.. Polishchuk, Y. A. 1991,

Thermodynamic properties of hot dense plasmas. Teubner, Stuttgart, Germany

Ebeling, W., Kraeft, W., Kremp, D. 1976. Theory of bound states and ionization

equilibrium in plasmas and solids. Akademie Verlag, Berlin, DDR

Eggleton, P. P., Faulkner, J., Flannery, B. P. 1973, “An approximate equation of

state for stellar material”, A&A 23, 325

Elliot, .1. R., Kosovichev, A. C. 1998, “Relativistic effects in the solar equation of

state”. In: S. C. Korzennik (ed.), Structure and Dynamics of the Interior of the

Sun and Sun-like Stars, SOHO 6/CONC 98 Workshop. ESA, Noordwijk, The

Netherlands, 453

Fermi, E. 1924, “Hejsa”, Zeits. f. Phys. 26, 54

Fernandes, J., Neuforge, C. 1995. “a Centauri and convection theories”, A&A 295,

678

Fowler, R., Guggenheim, E. A. 1956, Statistical thermodynamics. Cambridge Uni-

versity Press

Fritsch, F. N., Butland, J. 1984, “A method for constructing local monotone piecewise

cubic interpolants”, SIAM J. Sci. Stat. Comput. 5, 300

Ceorgobiani, D., Stein, R. F., Nordlund, A., Trampedach, R. 2003a, “What causes

p-mode asymmetry reversal?”, ApJ (in preparation)

Ceorgobiani, D., Trampedach, R., Stein, R. F., Ludwig, H.—C., Nordlund, A. 2003b,

“Excitation of stellar p-mode oscillations”, ApJ (in preparation)





Ciménez, A., Cuinan, E. F., Montesinos, B. (eds) 1998. Theory and tests of convec-

tion in stellar structure, ASP conf. series, First. Cranada Workshop

Cingerich, O., Noyes, R. W., Kalkofen, W. 1971. “The Harvard—Smithsonian reference

atmosphere”, Sol. Phys. 18(3), 347

Cong, Z., Dappen, W., Nayfonov, A. 2001a, “Effects of heavy elements and excited

states in the equation of state of the solar interior”. ApJ 563, 419

Cong, Z., Dappen, W., Zejda, L. 2001b, “Mhd equation of state with relativistic

electrons”, ApJ 546, 1178

Cong, Z., Zejda, L., Dappen, \‘V.. Aparicio, J. M. 2001, “Ceneralized Fermi—Dirac

functions and derivatives: properties and evaluation”, Comp. Phys. Comm. 136,

294

Cough, D. O. 1977, “hi-fixing-length theory for pulsating stars”. ApJ 214, 196

Cough, D. O., Toomre, J. (eds) 1991. Challenges to theories of the structure of

moderate—mass stars. Vol. 388 of Lecture Notes in Physics. Berlin, IAU Coll. 38.

Springer Verlag

Cough, D. O., \A/eiss, N. O. 1976. “The calibration of stellar convection theories”,

M.N.R.A.S. 176. 589

Craboske, H. C., Harwood, D. J., Rogers, F. J. 1969, “Thermodynamic properties

of nonideal gases. 1. Free—energy minimization method”, Physical Review 186(1),

210

Craboske, II. C., Olness, R. J., Crossman. A S. 1975. “Thermodynamics of dense

hydrogen—helium fluids”, ApJ 199. 255

Crevesse, N., Noels. A. 1992, “Cosmic abundances of the elements”. In: N. Prantzos,

E. Vangioni—Flam, and M. Cassé (eds), Origin and Evolution of the Elements,

Cambridge University Press, 15

Crevesse, N., Noels, A., Sauval, A. .1. 1996, “Standard abundances”. In: S. S. Holt

and C. Sonneborn (eds), Cosmic Abundances, ASP, 117

Custa'fsson, 13., Bell, R. A., Eriksson, K., Nordlund, A. 1.975, “A grid of model

atmospheres for metal-deficient giant. stars I”, A&A 42, 407

Harten, A. 1983, “High resolution schemes for hyperbolic conservation laws”, J.

Comp. Phys. 49(3), 357

201





Hauschildt, P. H., Allard, F., Baron, E. 1999a, “The NEXTGEN model atmosphere

grid for 3000 S ten 3 10,000k”, ApJ 512, 377

Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E., D. R. A. 19991), “The NEXTGEN

model atmosphere grid. 11. Spherically symmetric model atmospheres for giant

stars with effective temperatures between 3000 and 6800 K”, ApJ 525, 871

Heisenberg, W. 1927, “Uber die grundprinzipien der quantenmechanik”, Forsch. und

Fortschr. 3(11), 83

Henyey, L., Vardya, M. S., Bodenheimer, P. 1965, “Studies in stellar evolution. III.

The calculation of model envelopes”, ApJ 142(3), 841

Herzberg, C., Howe, L. L. 1959, “The Lyman bands of molecular hydrogen”, Cana-

dian J. Phys. 37, 636

Holtsmark, J. 1924, “Hejsa”, Phys. Z8. 25, 73

Holweger, H., Muller, E. A. 1974, “The photospheric barium spectrum: Solar abun—

dance and collision broadening of BaII lines by hydrogen”, Sol. Phys. 19, 19

Hooper, C. F. 1966, “Electric microfield distributions in plasmas”, Phys. Rev. 149,

77

Hooper, C. F. 1968, “Low—frequency component electric microfield distributions in

plasmas”, Phys. Rev. 165, 215

Hubeny, 1., Mihalas, D., Werner, K. (eds) 2003. Stellar atmosphere modeling, Vol.

288 of ASP conf. series, San Francisco

Huebner, W. F. 1986, Physics of the sun, Vol. 1, 33. D. Reidel Publishing Co.,

Dordrecht

Hummer, D. C., Berrington, K. A., Eissner, W., Pradhan, A. K., Saraph, H. E.,

Tully, J. A. 1993, “Atomic data from the IRON project. 1: Goals and methods”,

A&A 279, 298

Hummer, D. C., Mihalas, D. 1988, “The equation of state for stellar envelopes. I.

An occupation probability formalism for the truncation of internal partitition

functions”, ApJ 331, 794

Hunter, C., Yau, A. W., Pritchard, H. O. 1974, “Rotation-vibration level energies

of the hydrogen and deuterium molecule-ions”, Atomic Data and Nuclear Data

Tables 14, 11





Iglesias, C. A., Rogers, F. J. 1991, “Opacity tables for Cepheid variables”, ApJ 371,

L73

Iglesias, C. A., Rogers, F. J. 1995, “Discrepancies between OPAL and OP opacities

at high densities and temperatures”, ApJ 443, 460

Iglesias, C. A., Rogers, F. J. 1996, “Updated opal opacities”, ApJ 464, 943

Iglesias, C. A., Rogers, F. J., Wilson, B. C. 1987, “Reexamination of the metal

contribution to astrophysical opacity”, ApJL 322, L45

Iglesias, C. A., Rogers, F. J., Wilson, B. C. 1992, “Spin-orbit interaction effects on

the Rosseland mean opacity”, ApJ 397, 717

Irwin, A. W. 1981, “Polynomial partition function approximations of 344 atomic and

molecular species”, ApJS 45, 621

Irwin, A. W. 1987, “Refined diatomic partition functions. I. Calculational methods

and Hg and CO results”, A&A 182, 348

Jergensen, U. C. 2003, “Molecules in stellar and star—like atmospheres”. In (Hubeny

et al. 2003), 303

Kippenhahn, R., VVeigert, A. 1992, Stellar structure and evolution. Springer Verlag.

Chp. 18.4

Kjeldsen, H., Hansen, J. E., Folkmann, F., Knudsen, H., West, J. B., Andersen,

T. 2001, “The absolute cross section for L-shell photoionization of C+ ions from

threshold to 105 eV”, ApJS 135, 285

Kjeldsen, H., Kristensen, B., Brooks, R. L., Folkmann, F., Knudsen, H., Andersen,

T. 2002a, “Absolute, state-selective measurements of the photoionization cross

sections of N+ and O+ ions”, ApJS 138, 219

Kjeldsen, H., Kristensen, B., Folkmann, F., Andersen, T. 20021), “Measurements of

the absolute photoionization cross section of Fe+ ions from 15.8 to 180 eV”, J.

Phys. B: At. Mol. Phys. 35, 3655

Koester, D., Finley, D. S., Allard, N. F., Kruk, J. W., Kimble, R. A. 1996, “Quasi—

molecular satellites of Lyman beta in the spectrum of the DA white dwarf Wolf

1346”, ApJ 463, L93

Kovetz, A., Lamb, D. Q., Horn, H. M. V. 1972, “Exchange contribution to the

thermodynamic potential of a partially degenerate semirelativistic electron gas”,

ApJ 174. 109

203



 



Krae'ft, W., Kremp, D., Ebeling, W., R6pke, C. 1986, Quantum statistics of charged

particle systems. Plenum, New York

Krishna Swamy, K. S. 1966a. “Profiles of strong lines in C and K dwarfs”, Ph.D.

thesis, University of California at Berkeley. Presented in Henyey et al. (1965)

Krishna Swamy, K. S. 1966b, “Profiles of strong lines in K-dwarfs”, ApJ 145, 174

Kurucz, R. L. 1992a, “Atomic and molecular data for opacity calculations”, Rev.

Mex. Astron. Astrofis. 23, 45

Kurucz, R. L. 1992b, “Finding the ”missing” solar ultraviolet opacity”, Rev. Mex.

Astron. Astrofis. 23, 181

Kurucz, R. L. 1992c, “Model atmospheres for population synthesis”. In: B. Barbuy

and A. Renzini (eds), The stellar population of galaxies, IAU, 225

Kurucz, R. L. 1992d, “Model Atmospheres for Population Synthesis”. In: B. Bar-

buy and A. Renzini (eds), The Stellar Populations of Galaxies, IAU Symp. 149,

Springer Verlag, Dordrecht, 225

Kurucz, R. L. 1992e, “Remaining line opacity problems for the solar spectrum”, Rev.

Mex. Astron. Astrofis. 23, 187

Kurucz, R. L. 1993. Atlas9. Kurucz CD-ROM No. 13. Stellar atmosphere programs

and 2km s"1 grid

Kurucz, R. L. 1995, “A new opacity—sampling model atmosphere program for arbi—

trary abundances”. In: K. C. Strassmeier and J. L. Linsky (eds), Stellar surface

structure, IAU Symp. 176, Kluwer Academic Publishers, 523

Landau, L. D., Lifshitz, E. M. 1989, The classical theory of fields, Vol. 2 of Course

of theoretical Physics. Pergamon Press, Oxford, England, 4th edition

Lester, J. B. 1996, “The status of continuous opacities”. In: S. J. Adelman, F. Kupka,

and W. W. Weiss (eds), Model atmospheres and spectrum synthesis, ASP, 19.

Conf. Series, Vol. 108

Lewis, J. L. 1957, You win again. Sun Records

Ludwig, H.—C., Freytag, B., Steffen, M. 1999, “A calibration of the mixing-length for

solar—type stars based on hydrodynamical simulations. 1. Methodical aspects and

results for solar metallicity”, A&A 346, 111

Ludwig, H.-C., Jordan, 8., Steffen, M. 1994, “Numerical simulations of convection at

204





the surface of a. ZZ Ceti white dwarf”, A&A 284, 105

Lydon, T. J., Fox, P. A., Sofia, S. 1992, “A formulation of convection for stellar struc-

ture and evolution calculations without the mixing-length theory approximations.

I. Application to the sun”, ApJ 397, 701

Lydon, T. J., Fox, P. A., Sofia, S. 1993, “A formulation of convection for stellar struc-

ture and evolution calculations without the mixing-length theory approximations.

11. Application to a Centauri A and B”, ApJ 413, 390

Mihalas, D. 1978, Stellar atmospheres W. H. Freeman and Company, 2nd edition

Mihalas, D., Dappen, W., Hummer, D. G. 1988. “The equation of state for stellar

envelopes. II. Algorithm and selected results”, ApJ 331, 815

Morel, P., Provost, J., Lebreton, Y., Thévenin. F., Berthomieu, C. 2000, “Calibra—

tions of alpha. Centauri A & B”, A&A 363, 675

Nahar, S. N. 2003, “Photoionization cross sections of 011, 0111, OIV and OV:

benchmarking R—matrix theory and experiments”. Phys. Rev. A (submitted)

Nayfonov, A., Dappen, W'. 1998, “The signature of the internal partition function in

the thermodynamical quantities of the solar interior”, ApJ 499, 489

Nayfonov, A., Dappen, W., Hummer, D. G., Mihalas, D. 1999, “The MHD equation

of state with post—Holtzmark microfield distributions”, ApJ 526, 451

Nordlund, A. 1982, “Numerical simulations ofthe solar granulation. I. Basic equations

and methods”, A&A 107, 1

Nordlund, A. 1985, “Solar convection”, Sol. Phys. 100, 209

Nordlund, A., Dravins, D. 1990, “Stellar granulation. III. Hydrodynamic model at-

mospheres”, A&A 228, 155

Nordlund, A., Spruit, H. C., Ludwig, H.—G., Trampedach, R. 1997, “Is stellar granu—

lation turbulence?”, A&A 328, 229

Nordlund, A., Stein, R. F. 1990, “3—D simulations of solar and stellar convection and

magnetoconvection”, Comput. Phys. Commun. 59, 119

Nordlund, A., Stein, R. F. 1991, “Granulation: Non-adiabatic patterns and shocks”.

In (Cough & Toomre 1991), 141

Nordlund, A., Stein, R. F. 1997, “Stellar convection; General properties”. In (Pijpers

205

 





et al. 1997), 79

Nordlund, A., Stein, R. F. 2000, “3—(1 convection models: Are they compatible with

l-d models?”. In: L. Szabados and D. Kurtz. (eds), ASP Conf. Ser. 203: The

Impact of Large-Scale Surveys on Pulsating Star Research, IAU Coll. 176, Springer

Verlag, Berlin, 362

Parkinson, W. H. 1992, “Summary of current molecular databases”. In: P. L. Smith

and W. L. VViese (eds), Atomic and Molecular Data for Space Astronomy: Needs,

Analysis and Availability, Vol. 407 of Lecture Notes in Physics, 2lst IAU general

assembly, Springer Verlag, Berlin, 149

Pauli, W'. 1925, “Uber den zusammenhang des abschlusses der elektronengruppen im

atom mit der komplexstruktur der spektren”, Zeits. f. Physik 31, 765

Pijpers, F. P., Christensen-Dalsgaard. J., Rosenthal, C. (eds) 1997. Solar convection

and oscillations and their relationship, Dordrecht, Kluwer

Pillet, P., van Linden van den Heuvell, H. B., Smith, W. W., Kachru, R., Tran, N. H.,

Gallagher, T. F. 1984, “Microwave ionization of Na Rydberg atoms”, Phys. Rev.

A 30(1), 280

Plez, B., Brett, J. M., Nordlund, A. 1992, “Spherical opacity sampling model atmo—

spheres for M—giants. 1. Techniques, data. and discussion”, A&A 256, 551

Riemann, J., Schlanges, M., DeWitt, H. E., Kraeft, W. D. 1995, “Equation of state

of the weakly degenerate one—component plasma”, Physica A 219, 423

Rogers, F. 1981a, “Analytic electron—ion effective potentials for Z S 55”, Phys. Rev.

A 23(3), 1008

Rogers, F. 1994, “Stellar plasmas”. In: G. Chabrier and E. Schatzman (eds), The

Equation of State in Astrophysics, IAU Coll. 147, Cambridge University Press, 16

Rogers, F. .1. 1977, “On the compensation of bound and scattering state contributions

to the partition function”, Phys. Lett. 61A, 358

Rogers, F. .1. 1981b, “Equation of state of dense, partially degenerate, reacting plas—

mas”, Phys. Rev. A 24, 1531

Rogers, F. J. 1986, “Occupation numbers for reacting plasmas — The role of the

Planck-Larkin partition function”, ApJ 310, 723

Rogers, F. J., Iglesias, C. A. 1992a, “Radiative atomic Rosseland mean opacity ta—

bles”, ApJS 79, 507

206





Rogers, F. J., Iglesias, C. A. 1992b, “Rosseland mean opacities for variable composi-

tions”, ApJS 401, 361

Rogers, F. J., Nayfonov, A. 2002, “Updated and expanded OPAL equation of state

tables: Implications for helioseismology”, ApJ 576, 1064

Rogers, F. J., Swenson, F. J., Iglesias, C. A. 1996, “OPAL equation-of—state tables

for astrophysical applications”, ApJ 456, 902

Rosenthal, C., Christensen~Dalsgaard, J., Nordlund, A., Stein, R. F., Trampedach,

R. 1999, “Convective contributions to the frequencies of solar oscillations”, A&A

351, 689

Saha, M. N. 1921, “On a physical theory of stellar spectra”, Proc. Royal Soc. London

99(A 697), 135

Saumon, D., Chabrier, G. 1989, “A new hydrogen equation of state for low mass

stars”. In: G. VVegner (ed.), \Nhite Dwarfs, IAU Coll. 114, Springer Verlag,

Berlin, 300

Saumon, D., Chabrier, G. 1991, “Fluid hydrogen at high density: Pressure dissocia-

tion”, Phys. Rev. A. 44, 5122

Saumon, D., Chabrier, C., Horn, H. M. V. 1995, “An equation of state for low—mass

stars and giant planets”, ApJS 99, 713

Sauval, A. J., Tatum, J. B. 1984, “A set of partition functions and equilibrium

constants for 300 diatomic molecules of astrophysical interest”, ApJS 56, 193

Seaton, M. 1987, “Atomic data for opacity calculations: 1. General description”, J.

Phys. B 20, 6363

Seaton, M. J. (ed) 1995, The opacity project, Vol. 1. Institute of Physics Publishing

Seaton, M. J., Zeippen, C. J., Tully, J. A., Pradhan, A. K., Mendoza, C., Hibbert,

A., Berrington, K. A. 1992, “The opacity project — computation of atomic data”,

Rev. Mex. Astron. Astrofis. 23, 19

Shibahashi, H., Noels, A., Gabriel, M. 1983, “Influence of the equations of state and

of the 2 value on the solar five-minute oscillation”, A&A 123, 283

Shibahashi, H., Noels, A., Gabriel, M. 1984, “Influence of the equations of state and

of the 2 value on the solar oscillations”, Mem. Soc. Astron. Ital. 55, 163

Skartlien, R. 2000, “A Multigroup Method for Radiation with Scattering in Three—

207



 



Dimensional Hydrodynamic Simulations”, ApJ536, 465

Slattery, W. L., Doolen, C. D., DeWitt, H. E., Slattery, W. L. 1982, “Equation of

state of the one-component plasma derived from precision Monte Carlo calcula—

tions”, Phys. Rev. A 26, 2255

Sneden, C., Johnson, H. R., Krupp, B. M. 1976, “A statistical method for treating

molecular line opacities”, ApJ 204, 281

Stein, R. F. 1989, “Convection and waves”. In: R. J. Rutten and G. Severino (eds),

Solar and stellar granulation, Kluwer Academic Publishers, 381

Stein, R. F., Nordlund, A. 1989, “Topology of convection beneath the solar surface”,

ApJ 342, L95

Stein, R. F., Nordlund, A. 1998, “Simulations of solar granulation. I. General prop—

erties”, ApJ 499, 914

Stein, R. F., Nordlund, A. 2003, “Radiation transfer in 3D numerical simulations”.

In (Hubeny et al. 2003), 519

Stringfellow, G. S., DeWitt, H. E., Slattery, W. L. 1990, “Equation of state of the

one—component plasma derived from precision Monte Carlo calculations”, Phys.

Rev. A 41(2), 1105

Trac, H., Pen, U. 2003, “A primer on eulerian computational fluid dynamics for

astrophysics”, PASP115, 303

Trampedach, R. 1997. “Convection in stellar atmospheres”, Master’s thesis, Aarhus

University, Arhus, Denmark

Trampedach. R., Asplund, M. 2003, “Radiative transfer with very few wavelengths”.

In: ASP Conf. Ser. 293: 3D Stellar Evolution, 209

Trampedach, R., Asplund, M. 2004, “Opacity sampling for 3D convection simula—

tions”, A&A (in preparation)

Trampedach, R., Christensen—Dalsgaard, J., Nordlund, A., Stein, R. F. 1997, “Near—

surface constraints on the structure of stellar convection zones”. In (Pijpers et al.

1997),?3

Trampedach, R., Christensen—Dalsgaard, J., Nordlund, A., Stein, R. F. 2004a, “Im-

provements to stellar structure models, based on 3D convection simulations. II.

Calibrating the mixing—length”, A&A (in preparation)

208

 





Trampedach, R., Christensen—Dalsgaard, J., Nordlund, A., Stein, R. F. 2004b, “Im-

provements to stellar structure models, based on 3D convection simulations. 111.

Stellar evolution with a varying mixing-length parameter”, A&A (in preparation)

Trampedach, R., Dappen, W. 2004a, “MHD 2000”, ApJ (in preparation)

Trampedach, R., Dappen, W. 2004b, “Pressure ionization in the MHD equation of

state”, ApJ (in preparation)

Trampedach, R., Dappen, W., Baturin, V. A. 2004c, “A synoptic comparison of the

MHD and the OPAL equations of state”, ApJ (accepted)

Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund,.A.1998, “Stellar

evolution with a variable mixing—length parameter”. In (Giménez et al. 1998), 233

Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, A. 2004d, “1m—

provements to stellar structure models, based on 3D convection simulations. 1.

T-T relations”, A&A (in preparation)

Tsuji, T. 1973, “Molecular abundances in stellar atmospheres. 11.”, A&A 23, 411

Ulrich, R. 1982, “The influence of partial ionization and scattering states on the solar

interior structure”, ApJ 258, 404

Ulrich, R., Rhodes, E. 1983, “Testing solar models with global solar oscillations in

the 5—minute band”, ApJ 265, 551

Vardya, M. S. 1966, “Pressure dissociation and the hydrogen molecular ion”,

M.N.R.A.S. 134, 183

Vernezza, J. E., Avrett, E. H., Loeser, R. 1981, “Structure ofthe solar chromosphere.

111. Models of the EUV brightness components of the quiet sun”, ApJS 45, 635

Waech, T. C., Bernstein, R. B. 1967, “Hejsa”, J. Chem. Phys. 46, 4905

Willson, R. C., Hudson, H. S. 1988, “Solar luminosity variations in solar cycle 21”,

Nature 332, 810

209





  



 

 

 

 



..
1
.

.
.
.
l
l

.
.
.
I

l
l
.

.
1
7

.
.
l
.

l

 

  

 

vflIbix

.
.
.
.
n
fi
fi
;

.
3
1
1
.

)Dubh‘v.. i

 

\
:
3
1

”
F
t
.
.
.

5
.
2
.
.
.

r
.

.5...
.

t
w
e
e
n
.
.
.
“

4)..
.

.
.

.
,

.
a

.
.

..
.

.
s
t
e
w
.

..
1

[
T
u

 

.
.
p

.
.
L
.
.
.

3....
:

a
w
.

 


