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ABSTRACT

RELATIONS AMONG CONDITIONAL ENTROPY, TOPOLOGICAL

ENTROPY AND POINTWISE PREIMAGE ENTROPY

By

Wen-Chiao,Cheng

Entropy was introduced as a conjugacy invariant for measure-preserving transforma-

tions and continuous transformations- However, in 1995 Hurley, Nitecki, and Przy—

tvcki introduced several other entTOPY‘like invariants for non-invertible maps. The

Purpose of this dissertation is to define and StUd)’ two new invariants for non—invertible

maps. Our new invariants are motivated by the some Of those presented by Hurley~

NitECki. and Przytycki.

In Chapter 2 and Chapter 3 we introduce the standard notions 0f measure'

theoretic entrOpy and t0pological entropy and we recall their basic properties. See\::\:.

We a\so describe two of the preimage entropy invariants StUdied by Hufle‘j‘fi:\flhiCh

y thell

and Przytycki. After that we introduce new invariants of nonqnvertibie ma

we call the upper pre-tmage entropy and the metric pre—z'mage entropy and Stud

PrOperties. Among other things we obtain analogs of the well—known Variational Prill-

Ciple f rTo olo ical Entro v and Shan - ' - '. o p g p‘ non McMillan Breiman theorem fOr these new

Invariants. The proofs require adaptation and modification of a numbe

r techniques

in the literature of ergodic theory and topological dynamics.
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Chapter 1

Introduction

‘ - (I this

In 1958 Kolmogorov introduced the concept of entropy into e1— godlC theory, an

has been the most successful invariant so far. For example, in 1942 it was known

that the two-sided (%,-§- -shift and the two-sided (é, %, %)-shift both have countable

Lebesgue spectrum and hence are spectrally isomorphic, but it. Vvas not knOWn Whether

they are conjugate. This was reSOI‘led in 1958 when KOImOgQI-OV Showed that they

had entropies of log2 and 1083’ respectively, and hence are nOt Conjugate. The no-

tion of entropy now used iS slightly differently from that 11 sed by KOImogorov-the

improvement was made by Sinai in 1959-

The topological entropy h(T) of a continuous map T of a compact, metric Space to

itself is a measure of its dynamical complexity. It was first defined by Adler, Konheim

and McAndrew, and later given several equivalent definitions by OWen an

. . l d Others

(see [2] for an exposition) and these definitions led to resu ts Connecu”

and measure-theoretic entropies. Roughly speaking, the topologica e::::010gical

measures the exponential growth rate with n of the number of different forWar: of ‘7‘

segments of length n that can be distinguished to at least some finite toleranCe Orbit

When the mapping T under consideration is a homeomorphjSm, then .

. e"tendin

this procedure into the past instead 0f the future results In the eIltrOpy h(T‘l)

. Of

the inverse mapping, which equals h(T). However, when the map 18 not hlVertibI

e,

different ways of “extending the procedure into the past lead to several new entrop

like invariants for non-invertible maps.



More recently, the preimage relation entropy hr(T) of a compact metric space

was introduced by Langevin and Walczak (See l8l) and Shown to be a new tool for

studying the topology and dynamics of compact metric Spaces. Later, Hurley and

Nitecki, Przytycki (see [5] and [9].) introduced several other entropy—like invariants

for non-invertible maps. One of these, which we Call preimage branCh entropy fit-(T),

is closely related to h.r (T). The other pair of entropy invariants is based on how map:

branches of the inverse of the iterated map T—n at a point :1: can be distingh‘s ed

by measurements of finite accuraCy. We call them pointwise preimage entropies :1 S

denote hp(T) and hm (T). In [5] and [9], Hurley established the following relationST)1:

among these five invariants: hp(T) S hm(T) g h(T) S Ill-(T) + hm(T) _<_ h,(

h (T) where T is a continuous mapping on a compact metric: Space.
m ’

In this dissertation we concentrate on hp(T) and hm(T), Since in the context of

pointwise preimage entrOpy, the definitions of hp(T) and hm (T) are in some sense

. In

Chapter 2 and Chapter 3 we introduce measure-theoretic and topOlogical entropjes

analogous to (and were motivated by) Bowen’s notion of “IOCa] entropy” (See [2])

and show the variational principle as conclusion. That is to Say When X is a compact

metric space and T : X —-> X is continuous, the theorem ShOws that the supre-

mum of measure-theoretic entropy h”(T) is equal to the topological entI‘Opy h(T)

of T. After that, we investigate basic properties of pointwise preimage entrOpies

hp(T) and hm(T), such as forward generator and metric p co Impatible With the t0p01_

ogy. Finally, we modify the definition of those two invarian ts in Order to Show the

preimage S-M-B theorem. We also show the relationship between metric Mel-m

entropy and upper preimage entrOpy. The main technique used is the ConstruCt. age

. . . . . . 1011 of

the Variational Pr1nc1ple by M. Misiurew1cz. Finally, we follow the method jutmd

by Shannon, McMillan and Brieman and use it to Show the asymptOtic uced

' ' ehaVior

metric preimage entropy and ergodic decomposmon.
of



Chapter 2

Measure-Theoretic Entrapy

In this chapter we discuss measure—preserving transformations, measure-theoretic en-

tropy and some of their basic properties. Finally we will show the existence of invari-

ant measures. We refer to Peter Walters’ book for this chapte r. Seei14l-

2.1 Measure-Preserving Transformati
on

Definition 2.1.1 Suppose (X1, Bl,m1), (X2,82,m2) are probability
8

-

Da ,

(a) A transformation
T : X1 ——> X2 IS measurable if T-1(B2) C B ces

1 .

(b) A transformation T : X1 —-> X2 iS measure-preserving if T is

measurable and

mliT—1(BZ))
-_- m2(B2),VB2

E 32.

(c) We say that T : X1 —-> X2 is an invertible measure-Dr‘eser ‘
' .. . 1 . vmg transformat'

if T is measure-preservmg, bijective, and T‘ 18 also measure~pregerv,
1011

L In .

Remarks:

(1) We should write T : (X1,Bl,m1) _, (X2132, m2) since the meas

Ute- r .

property depends on the 8’s and m’s.
p eservm

(2) If T : X1 —> X2 and S : X2 —+ X3 are measure-preserving so is SOT _

X1 fi

(3) Measure-preserving transformations are the structure preserving In X3.

3‘98

.
(mo -

phlsms) between measure spaces.
F

(4) Let (X,, 53,171,) denote the completion of (X,, 8,, m1),z’ = 1, 2. HT . (X
. 1,

31,m,)\)

3



(X2,B2,m2) is measure-preserving, then so is T: (X1 81 m1) _) (X B — )
’ ’ 2, 2im2 '

(5) We shall be mainly interested in the case (X1 [31 m1) (X B ) since we

, ’ = 23 2,7712

wish to study the iterates T". When T : X —_) X is a measu g tranSfor-

re-preservin

mation of (X,B , m) we say that T preserves m or that m is T-invariant-

In practice it would be difficult to Check, using Definition 11, whether a given

transformation is measure-preserving or not Since one usually does not have explicit

knowledge of all the members of 8. However We often do have explicit knowledge of

a semi-algebra T generating B. (For example,when X i8 the unit interval ’T may be

the semi—algebra of all subintervals of X, and when X is a d ijrect product space ’T

may be the collection of all measurable rectangles.) The following result is therefore

desirable in checking whether transformations are measure-pre Serving or not-

Theorem 2.1.1 Suppose (X1a812m1)1 (X2,32,m2) are probability Spa-ces and T .

X, —-—> X2 is a transformation. Let 7; be a semi-algebra which generates B Iff

2- or

each A2 6 7} we have T‘1(A2) E 81 and m1(T“1(A2)) 2 m2(
A .

2) ’ the" T 18 measure-

preserving.

Examples of Measure-Preserving Transformations

(1) The identity map I on (X, B, m) is obviously measure.preser
ving

(2) Let K be the unit circle and B be the a-algebra of Bore] Subsets of K

let m be Haar measure. Let a be any fixed point in K and define T , and

. K 1, K

The

by T(z) : a. . 2. Then T is measure-preserving since m is Haar

re.

transformation T is called a rotation of K.

(3) The transformation T(as) = a - a: defined on any compact gr

011

is a fixed element of G) preserves Haar measure. Such transformat. 0 (Where a

10118

rotations of G.
are Called

(4) Any continuous endomorphism of a compact group onto itSelf Preset

measure. For example T(z) = z" preserves Haar measure on the unit circl‘IeS. Haar

any non-zero integer.
e If n is

(5) Any affine transformation of a compact group G preserves Haar m
easure A

' n

4



affine transformation is a map of the form T (11:) = (1 Ala?) Where a. Is any fixed element

1n G and A G —+ G is a surjective endomorphism It follows that T 18 measure

preservrng because it is the composition of a rotation and an endomorphism- When

dealing w1th affine transformations as measure-preservmg transformatlons we alwayS

assume the measure involved is normalised Haar measure

(6) Let k > 2 be a fixed integer and let (p0 P1,- :17). 1) be a probability vec—

tor with non—zero entries (i.e., p,- > 0 each 2' and 21:01‘0

denote the measure space where Y—— {O 1

sure pi- Let (X. B. m) '—

) Let, (KY2 u)

‘ 1k — 1} and the point i has “‘33“

niooo(Y,2Y,#). Define T : X __) X by T({$n}) 2: {ya}

where ya -— rn+1. If f denotes the semi-algebra of all measu. Iable rectangles, then

m.(T—1 A) = m(A),VA E .7. By Theorem 2.1.1, T is measure‘ Preserving. We call T

the two-sided (110,111, ~ ~- ,pk 1) Shlft. This is an example of «an invertible measure-

preserving transformation. We sometimes use the notation (- .
a x’lfoxla' ") for a.

pomt of X (the indicates the O-th position in the product) and then T Can be tt

Wl'l en

T((. . . ’$_1f0$1, - . . )) : (. . . ,fE—lflioivliliza ) The SCt Y iS Called the St t

a e S

the shift.
pace 0f

2.2 Partition and EntrOpy

Throughout this chapter (X, B, m) will denote a probability Space,

Definition 2.2.1 A partition of (X, B, m) is a disjoint collectmn

Elem

whose union is X.

Guts of 5’

Here we shall be interested in finite partitions. They will be de

Date by

letters, e. g., (= {A1, A2,- ,.Ak} If CIs a finite partition of (X B m) d yG’reek

t

lection of all elements of B which are unions of elements of gis a finite b.6311 the c01

Su -

of B. We denote it by A(C).
a algebra

Definition 2.2.2 Suppose C and 17 are two partitions of (X, B, m) We w
rite C S7)

to mean that each element of C is a union of elements of 77. We have C

<

ACME/1(7))-
”r



Definition 2'2'3 Let C = {Ah/12’ "°’A"}’n = {011C2,...,Ck} be two finite parti-

tions of (X, B, m). Their join is the partition

<V"={A‘”Ci‘1 SiSn,l_<.j<lc}

Definition 2.2.4 Suppose T : X -> X is a measure-preserving transformation. If C

:{A1,A2, ...,Ak}, then T’"C denOteS the partitiOn {T-nAl . . T'"Ak} and if A is a,

sub-a-algebra of B, then T”"A denotes the SUb-U-algebra {T‘na
: 0. EA }

Definition 2.2.5 Let C = {A1,A2, ..., Ale} be a partition of (A, 3,111) The entropy

of C is the value H(C) = - 226:1 m(Ai)10gm(Ai).

Remarks:

(1) If C =2 {A1, ...,Ak} where m(A,-) = l,vz' then

’° 1 1

H“) : ‘ék'IOgE = logk.

We will find that logic is the maximum value for the entroD
y Of a part“. .

1011

sets.
With k

(2) H<<> .>. 0-

(3) If T : X -—> X is measure-preserving then H(T‘1() : H ( <).

Conditional entropy is useful in deriving properties of entr0py, and We d'

ISCUSS it now

before we consider the entropy of a transformation.

Let A and C be two partitions on (X, B, m) with

A :: {A1, ...,Ak} and C = {01, "'3Cp}

Definition 2.2-6 The entropy of A given C is the number

H<A I C) = -- 2mm.)2 T1223?” log ”$230)
j=1 J m j

 

i=1

omitting the j-terms when m(CJ-) = 0.

So to get H(A | C) one considers Cj as a measure space with normalized

. .
meas

m(-) I m(CJ-) and calculates the entropy of the part1t10n of the set C]. ”re
indUCed by A

and then averages the answer taking into account the size of Cj.

6



Theorem 2-2-1 La (X,B,m) be 3' pmba’bmty Space. If A,C, D are partitions on

X, then:

<1>H<AvCID1=H(A\D>+H(C\A
VD).

(2) H(AV C) = H(A) +H(C I A).

<3)H<A1_>. H(A|D).

(4) H(A\/C\ D) _<_ H(A | D)+H(C I D)-

(5) H(A\/ C) s H(A) + 11(0).

(6) If T is measure-preserving, then

H(T—1A I T_1C) = H(A I C), and H(T‘1A): H(A)

Now we extend this conditional entropy to more general Situations. We 13, C =

{A1, A2, ...,} be a countable partition of X into measurable Sets. For each a: E X,

denoted by C (at) the element of C to which :1: belongs. Then the information function

associated to C is defined to be

IC(:1:) .—_ —1ogm<<(x)> = — ZIogm<A>><A (x),
Aec

so that [C(17) takes the constant value — log m(A) on the cell A

of C' CIlearly

Hm=Ahmam)

It is useful to consider conditional information and entropy, which t k

-
a 9 into _

count information that may already be 1n hand. Let 8‘ be a. Sub‘a'avlgeb
ac

ra

can recall that for (25 E L1(X), the conditional expectation E(¢ I OfB- We

8) of -

.
. .

¢ glven

an 8-measurable functlon on X wh1ch satlsfies

jFE(<z>I%)dm=/F¢dm

for all F E ‘3; E (¢ I 3X23) represents our expected value for ¢ if We
are give

foreknowledge ‘39. Thus we let m(A I S) = E(XA I S?) and define the mud

1

31's

n the

, . . . tional

information funct1on of a countable part1t1on C glven a o-algebra 8 CB to b

e

W.) ___ .. Z logm(A 1 sum) = — Dogma l emu I <3)

AEC AEC



The conditional entropy of C given 8 is defined by

H“ I <3) 2 £10243?) dm

Lemma 2.2.1 If a and fl are countable measurable partitions of X and g is a sub-

a-algebra of B, then

IaVflIS‘ = [ct/s + lfl!A(a)ve

where A(a) is the a-algebra generated by a.

2.3 Entropy of a Measure-Preserving Transforma-

tion

Definition 2.3.1 Suppose T : X —> X is a measure-preserving transformation of the

probability space (X, B, m). If C is a partition of X, then

1 "“1
= 1 —H —lh(T,C) 1.530 n (yo T g)

is called the entropy of T with respect to C.

This means that if we think of an application of T as a passage f d

'
.

0 one a

time, then VIZ; T"C represents the comblned experiment of performi y of

n
g the 011' '

experiment, represented by C, on n consecutive days. Then h(T C) 8111a}

isthe

information per day that one gets from performing the Original 9): average

P817

meat daily
forever. Now we can give the final stage of the defintion of the entrop

.
y Ofa

preserving transformatlon.
measum_

Definition 2.3.2 If T : X —> X is a measure-preserving transformatjo

probability space (X, B, m) then h(T) = sup h(T,C), where the Supremum n of the

over all finite partitions C of X, is called the entrOpy of T. 18 taken

If, as above, we think of an application of T as a passage of one day of time, t

h(T) is the maximum average per day obtainable by performing the Same eXp hen

eri
men

daily.

t



Theorem 2.3.1 If {an}n_>_»1 iS a sequence of real numbers such that an+p 5 an + ap

for all n, p then

li _"

n—)oo n

exists and equals

. an
Inf —,

n 7?.

Corollary 2 3.1 If T : X ——> X is measure-preserving and a is a finite partition of

n-1 -.- ' t .

Definition 2.3.3 Let T,- be a measure-preservlng transformation of the probability

Space (X. Ci: mi)1i = 1, 2. We say that T1 is conjugate to T2 if there is a measure_

) -—> (Cn'rrh) such that ¢T2 : Tub.

algebra isomorphism 975 : (C2, 7”?

Theorem 2.3.2 Entropy is a CODJUSaCy Invariant and hence an isomorphism

invariant.

Theorem 2.3.3 Suppose A, C are finite partitions of (X, 3, 7n) and T is a measure-

preserving transformation 0f the probability Space (X, B, m), Then

(1) MT, A) _<_ H(A).

(2) MT, A v C) _<_ h(T, A) + h(T, C).

(3) MT, A) g h(T,C) + H(A).

(4) h(T,T‘1A) = h(T, A).

(5) If k .>. 1. h(T. A) = h(T, v22: T“A).

(6) If T is invertible and k _>_ 1, then h(T, A) = h(T, vf:_k T'A).

Theorem 2.3.4 Let T be a measure-preserving transformation of the probab'ft

1 1 y

Space (X,B,m). Then:

(1) For k > 0, h(T") = kh(T).

(2) If T is invertible then h(T") = IkIh(T),Vk E Z.



2.4 Some Methods for Calculating h(T)

It is difficult to calculate h(T) from its definition because one would need to calculate

h(T, A) for every finite partition A. We consider what conditions on A are needed to

ensure h(T) = h(T, A) The result leads to methods of calculating h(T) for specific

examples of measure-preserving transformations and they also lead to proofs of fur-

ther preperties of MT)

Lemma 2.4.1 Let r _>_ 1 be a fixed integef- For each 6 > 0 there exists 6 > 0 such

that iff = {A1, ...,Ar},n = {C1,...,Cr} are any two partitions of (X,B,m) into 7'

sets with 2::1m(Ai A Ci) < (5, then H“ I 77) + 1“” I 0 < e.

Let C’ be a finite sub—a-algebra 0f 3’ say C = {Ci 5 i = 1, 2, ..., n}, then the non-empty

sets 0f the form BI 0 32m m B'“ where B‘ 2 C‘ or X\Cz', form a finite partition 0f

X. We denote it by 0(0) and we define h(T, C) = h(
T’ C“CV”. If D is another finite

sub-o-algebra, then H(C I D) = H(O(C) I “(Di)-

Lemma 2.4.2 Let (X, B, m) be a probability Space and 30 be an algebra such that

the o-algebra generated by Bo (denoted by 3(Bo)) satisfies 8(BO)=B. Let C be a finite

sub-algebra of 8, Then for every 6 > 0, there exists a finite algebra D DCBO SUCh

that H(’D\C)+H(C\Dl< 0

Lemma 2.4.3 If {An} is an increasing sequence of finite Snb‘algebr

'

38 of B

C is a finite sub-algebra W1th Cc VnAn, then H(CI An) _+ 0 as n ~+ 00 and

Thoerem 2.4.1 (Kolmogorov-Sinai Theorem)

Let T be an invertible measure—preserving transformation of the Dr . ,

fi b. Obablllty SpaCe

a n't su l b °°(X, 3,7”) and let 3? be 1 e a ge ra. of B such that V";00 Tnél‘223, Then

Lemma 2.4.4 If T is a measure-preserving transformation of the probability S
pace

(X, B, m) and if A is a finite sub-algebra 0f 3 with VEOT"‘A= B then h(T) —

h (221/1)-

10



We shall now calculate the entropy of our examples.

(1) If I : (X,[3,m) '9 (X, 13,771) iS the identity, then h([) = O. This is because

h(I, A) = lim%H(A) = 0- A130, if T” = I for some p 7t 0, then h(T) = 0. In particu-

lar any measure-preseI‘Ving t'1'3Jle01'HlatiOIl of a finite space has zero entropy.

(2) Theorem 2.4.2 Any rotation,T(z) = az, of the unit circle K has zero entrepy.

(3) Theorem 2.4.3 Any rotation Of a compact metric abelian group has entropy

zero.

Definition 2.4.1 Let (X, B, m) be 3 Probability Space. A measure-preserving

transformation T of (X, B, m) iS called ergodic if the only members B of B with

T‘IB = B satisfy m(B) = 0 0f m(B) -__—. 1‘

Corollary 2-4-1 Any ergodic transformation With discrete Spectrum has zero entroPY-

(4) If A is an endomorphism 0f the n—torus Kn: then h(A) = 210g \M where the

summation is over all eigenvalues 0f the matrix [A] With abSOIute value greater than

one.

(5) Theorem 2.4.4 The two-sided {190, ""a Pk—1}-Shift has entr0py __ 2:3 Pi 10g Pi-

Remark: The ‘2-sided (‘i’v %)-shift has entrOpy log 2; the 2-Sided (3} , :1; )-shift has
1

7'5

entropy log 3. Thus these transformations can not be conjugate

2.5 Bogolioubov Theorem

We call the members of M(X) Borel probability measures on X. Each

2: E X

mines a member 6,: of M(X ) defined by 63(A)=1 if :1: E A and 63(A) deters

. .
t 0’ otherWiSe

Lemma 2.5.1 Let m, p be two Borel probability measures on the metric s .

pace X. If

fX fdm :: fx fdn,Vf E C(X), then m = y.

We define a map T 1 M(X) ’i M(X) give by (TMXB) = Mfr—1B), we somet.

. 1m

write )1 o T‘1 instead of Ty. We shall have the following. es

Lgmma 2.5.2

[M(Tu) = from/1w 6 cm.

We are interested in those members of M(X) that are invariant measures for T

11



Let M(X, T) = {n E M(XilTp = fl}- This set conSists of all” 5/1/00 making T a

measure-preserving transformation of (X, B, ’u), The follow ,-11g gives us a method of

constrUCtmg members of M(X, T).

Theorem 2.5.1 (Bogolioubov Theorem) Let T : X —-> X be continuous.

by [in =

If

“”321 IS a sequence in M(X l and we define a new sequence {#nliozi

...1 A ‘

. .

fiizo T1032, then any limit point M Di {pm} is a member of M(X,T).(Such llmlt

points BXiSt by the compactness of M(X))

Corollary 2.5.1 If T : X ——> X is a continuous map of a compact metric Space

X, then M(X, T) is non-empty.

12



Chapter 3

Topological Entrepy

Adler, Konheim, and McAndreW introduced topological entrOpy as an invariant of

topological conjugacy and also as an analogue of measure theoretical entropy. To each

continuous transformation T : X —+ X of a compact t0pological space a non-negative

real number or 00, denoted by h(T), is assigned. Later Dinaburg and Bowen gave a

new, but equivalent, definition and this definition led to proofs of the result connecting

topological and measure-theoretic entropies. For these materials we recommend Peter

Walters’ book. See [14].

3.1 Definition Using Open Covers

Let X be a compact topologiCal space. We shall be interested in OD en covers of X

which we denote by a, fi,

Definition 3.1.1 If a, 3 are open covers of X their join av ,8 is the 01) cover by all
en

t fthefor AnB h A6Q,BE .Similarl
58 S O m W ere :6 y we can define the jOin vii-1:1 01'

of any finite collection of Open covers of X.

Definition 3.1.2 An open cover 5 is a refinement of an open cover Q wr. tt fl
3 1 en a < ,

if every member of [3 is a subset of a member of a.

Hence a < a V ,8 for any open Covers 0 fl. Also if 3 is a sub

Definition 3.1.3 If a is an open cover of X and T : X —> X is Continuous h

a t en

T—la is the open cover consisting of all sets T’IA where A 6 a.

13



Definiti‘m 3-1-41fa is an Open cover ofX. let We) denote .1... number «sets

in a finite Schover of a With smallest cardinality. We define the entmpy of a by

11(0) =10g N(a).

Remarks:

(1) H (a) _>_ 0

(2) H(a) =0iffN(a)= 1 '1er Ed.

(3)1f a < fl, then H(a) g H(B).

(4) H(C¥Vfl) SH(0)+ Hm)-

(5) If T : X —> X is a continuous map, then H(T‘la) S H(a). If T is also

surjective, then H(T’1C1) : 11(0).

Theorem 3.1.1 If a is an open cover of X and T :‘X ——> X is continuous, then

limnnoo 71EH (Vilgol T"a) exists.

Definition 3.1.5 If a is an open cover of X and T : X —+ X is a continuous map,

then the entropy of T relative to a is given by

11—1

1 .

h, T, : l ._ -1( a) "£210 H(V7 0)

i=0

Remarks:

(6) h(To) 2 0.

(7) Ifa < ,8, then h(T, a) S h(T, 5)-

(8) h(T, a) S H(a).

Definition 3.1.6 If T : X ——> X is continuous, the topological entropy of T is given

by:

h(T) = sup h(T, a)

where a ranges over all Open covers of X.

RemarkS:

(9) h(T) 2 o.

(10) In the defintion of h(T) one can take the supremum over finite open c
overs

ofX.

14



(11) h(I) = 0 where 1 is the identity map of X.

(12) If Y is a closed SUbset ofX and TY = Y then h(T/Y) _</2(T).

The 119’“ reSUIt Shows that topological entrOpy is an invariant of topological conjugacy.

Theorem 3.1-2 If X1,X2 are compact Spaces and T,- : X,- —-> Xi are continuous for

i :— 1,2, and if ¢ : X1 —> X2 is a continuous map with qle = X2 and ¢T1 = T2¢,

then h(Tl) 2 h(Tg). If a is a homeomorphism, then h(Ti) = has).

In the next section we shall give a definition of h(T) that does not require X to

be compact and we give a definition of h(T) in this more general setting. However,

one result that is false when X is not compact is the following.

Theorem 3.1.3 If T : X —+ X is a homeomorphism of a compact space X , then

h(T) = h(T“1).

3.2 Bowen’s Definition

in this section we give the definition Of tOpOlogical entropy using separating and

spanning sets. This was done by Dinaburg and by Bowen, but Bowen also gave the

definition when the space X is not compact and this Will prove useful later. We

shall give the definition when X is a metric space but the definition can easily be

formulated when X is a uniform Space. See [3]

In this section (X, d) is a metric space, not necessarily compact
The Open ball

centre .7: radius r Will be denoted by B($§7‘) and the closed ball by fo r) Our

definitions Will depend on the metric d on X; we shall see later what, t he dependence

on d is.

Throughout this section T will denote a fixed continuous function, If n is a natural

number, we can define a new metric dn on X by dnfbi y) = maxogign‘i dfTiCT), Tied).

(The notation does not show the dependence on T.) The Open ball

dius r in the metric (in is (ls-=0 T”‘B(T‘:ic; 1').

Definition 3.2.1 Let n be a natural number, 6 > 0 and let K be a compact S b

11 set

15



of X' A Silbset F of X is Said to a (n, g) span K With respect tofjf V27 gKEy E F

with d" (139) S e, i.e.,

n——-l

K C U nT-iB(Tiy;c).

yeF i=0

If n is a na-tural number, 6 > 0 and K iS a compact subset of X let 1",,(6, K) denote

the smallest cardinality of any (n, e) “spanning set for K with respect to T.

Remarkz Clearly m(e, K) < 00 because the compactness of K implies the covering

of K by the open sets 0:01 T“iB(T‘:z:; 6), £13 6 X, has a finite subcover.

Definition 3.2.2 If e > 0 and K is a compact subset of X, let

'r(e, K, T) = limsup l logrn(e, K).

n—ioo 7?.

We write r(e, K, T, d) if we wish to emphasis the metric (1.

Definition 3.2.3 If K is a compact subset of X, let h(T, K) = limHo r(e, K, T). The

topological entropy Of T iS h(T) = SupK h(T, K), where the supremum is taken over

the collection of all compact subsets of X. We sometimes write hd(T) to emphasis

the dependence on (1.

Before giving any interpretations or explanations of this definition we shall give

an equivalent but “dual” definition. This definition will use the idea of separated sets

which is dual to the notation of spanning sets.

Definition 3.2.4 Let n be a natural number, 6 > O and K be a corhpact subset of

X. A subset E of K is said to be (12., 6) separated With reSpect to T if it y E E, :1: 7f y,

implies (1,.(33, y) > e, i.e., for a: E E the set 0:01 T_iB(Ti$; 6) contains 1710 other point

of E.

Definition 3.2.5 If n is a natural number, 6 > 0 and K is a compact subset of X

let 3n(e, K) be the largest cardinality 0f any (n, e) separated subset of K with respect,

to T. We Write 3,,(5, K, T) to emphasis T if we need to.

Remark: We have rn(e,K) S 372(5, K) _<_ Tn('§‘aK) and hence 8n(€, K) < 00.

16



Definition 3.2.61fe > 0 and K is a compact subset of X Pat

1

5(5, K, T) ZlimsuPfilogSn(€’K)
fl-‘)OO

We sometimes write 8(6, K, T, d) when we need to emphasis the metric d.

n the Size

Remark: The ideas for the definition come from the work of Kolmogorov 0

an of X

of a metr1C Space. If (X, p) is a metric space, then a subset F is said to an 45-81)

if Va: 6 X3y E F with p(:r, y) g e, and a subset E is said to be c-separated if whenever

y, z 6 E, y yé 2, then p(y, z) > e. The e-entropy of (X , p) is then the logarithm of the

minimum number of elements of an 6-Spanning set and the g-capacity is the logarithm

of the maximum number of elements in an c-separated set. So in the definition 3-2-5,

we are considering the metric spaces (K, (1n) and ”(6’ K) is the e—entropy of (K, d")

and 3,,(6, K) iS the 6-C3Paeiiy Of (Kids) where the e-entropy is the logarithm of the

minimum number of elements Of an e-Spanning set and the e-capacity is the logarithm

of maximum number of elements in an e-separated set. Therefore,

h(T, K) 2 £133 lim sup l(e-entropy Of (K, dn))

n-—)oo Tl

:: £14113 lim sup 1 (ecapacity 0f (K, dn))
71—)00 n

We shall now observe that the definition of h(T) in this section coincides With

that given in Section 3.1 when T is a continuous map of a compact metrisahie space-

For the moment let us denote by h“ (T) and h*(T,a) the numbers Docuring in the

definition 0f tOpological entropy using open covers. In a metric space ( .X, d) we define

the diameter of a cover to be diam(a) = SUP/tea diam(A), where diam(A) denotes

the diameter of the set A. If 01.7 are open covers of X and diam(Q ) is less than a

Lebesgue number for 7 then ’7 < a. The fOHOWing result is often useful for calculating

h‘(T).

Theorem 3.2.1 Let (X,d) be a compact metric space. If {an}? is a sequence

of open covers of X with diam(0£n) —+ 0, then if h*(T) < oo,1imrHO° h* (T a ) exists

and equals h*(T), and if h“ (T) = 00, then limnnoo h“(T, an) = 00.

The next result gives the basic relationship between the two Ways of defi .
nmg

tOpological entropy.
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t metric Space

Theorem 3-2-2 Let T : X —> X be a continuous map Of a compaC

(X, d)-

(1) If a is an Open cover of X with Lebesgue number 5, then

n—l

NV We) 3 nus/2. X) s Saw/2X)-
i=0

(2) If 5 > O and 7 is an Open cover with diam(’y) _<_ 6, then

11—1 ,

Tn(€, X) S 811(6) X) S N(V T'J’Y)’ trio Space

ornp . (16

Theorem 3.2.3 If T: X —+ X is a continuous map Of the C\entrop 0,1101

ca

(X’d)’ the“ h(T)—“‘ ”(T); i..,e the two definitions of topomgl \Tml /

Theorem 3.2.4
0‘ then M

7

(1) If (X, d) is a metric space, T is a continuous map and W X e.

m- hd(T). to \i 0“ ‘

0“ en
i?) Let (X1-, di), 1 = 1, 2 be a compact metric Space and T‘ IS C @2191“ T“

dz
tine a metric d on X1 x X2 by d(($1,$2),(y1,y2)) ,4 max{d1 ((131, you

haKTt X T2) = ha.(T1)+ hd,(T2).

3.3 Calculation of Topological EntI'Opy

Theorem 3. 2. 1 provided the only method we have given SO far for Ca10111

logical entropy of examples. The followmg 13 an analogue 0f the Ko01 ting the to
p

theorem and provides a method of calculating tOPOIOgiCal entropy f0 Ogoroks.
. r 80 e Inai

Theorem 3-3-1 Let T : X -+ X be an exPanSlve homeomorphism of th ethilrhl’lese .

metric Space (X161)-

(1) If a is a generator for T then I). (T) =2 h(T, a).

(2) If 6 is an expansive constant for T then h(T) = Two, T) = 8(50, T) for all 50 < 6/4

Corollary 33- 1 All expaDSiVe homeomorphism has finite topOIOEICal entropy

Theorem 3.3.2 The two-Sided Shift on X = “gooey, where Y = {0,1,1 ' H ,k ~ 1},
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has to 010 icaI e t

p g n mpy 10% k. :: I13°OOY whereTheorem 3.3-3 Let T ; X _, X be the twosided shift on X

Y={0,1,... , k~1}. Then
110g0(X1)a

(1) If X1 is a Closed subset ofX with TX1 2 X1, then h(TlXI) z limnaw "
°°

6

h that the set {{xn}.—o
o

Where 6710(1) iS the number of n—tuples [10, i1, min—ll suc

X1 [$0 = i0, ..., $n+1 = in+1} is non-empty. b an irreducible

. ' y

(2) Let TA -' XA —> XA denote the topological Markov chaln glven /\ where /\ 15 the

z; 1k X 1‘5 matrix A whose entries belong to {0,1}- Then h(TA) 0g A is

largest positive eigenvalue of A. 3‘50 when of

Th
t (2) holds 6 thect)’

e corresponding one-sided results are true. Par “1th.

(““3I‘Gducr b]e by arranging the matrix A in lower diagonal block {

Remark: There is a transformation with t0pologiced entrOP‘J

positive real number.
haS 'LQYO mpo’

We already know that a rotation T of a compact metric group {act we now

logical entrOpy because there is a metric on G making T an isometIY-

Show any homeomorphism of K has zero entrOpy where K is the unit cirCleo

Theorem 3.3.4 If T : K ——> K is a homeomorphism 0f the 1111 ' .

Corollary 3-3-1 Any homeomorphism of [0,1] has zero t0p01;;i:::le’ the” by? S 0

e

"012%

3.4 The Variational Principle

In this section we describe the basic relationship between topological

. . .
entrmeasure-theoretic entropy. If T 18 a. continuous map of a Compact metric on), and

S. Da
h(T) =2 sup{h#(T)],u E M(X, T)}. ' [‘he inequality sup{hu(T)|u E M(X T)}Ce, then

. . ’ S h

was proved by L.W. Goodwyn in 1968. In 1970 E. I. Dinaburg Proved equality (T)

. whe

X has finite covering dimensmn and later in 1970, T. N. T. GOOdman proved e n

(Illality

in the general case. See [3].

We Shall need the follOWing Simple lemma, where we use 53 to denote the bound-
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ary of a set B.

Lemma 3.4- 1 Let X be a compact metric space and It 6 M(X )°

(1) If a: E X and 5 > 0 there exists 5 < 6 such that p(68(z;5)) 1"" 0' (A

. m .
(2) If (5 > 0, there is a finite partition «5 = {A1, ' " ,Ak} sueh that dla J

#(aAj) = 0 for each j,

K631“

. 1
riatlona

. f of the V3

We now Collect tOgether some results we will use in the proo he

3(X) t
° ace and

principle, In this section X will always denote a comPaCt mettle sp

a-aIgebra of Borel subsets.

Remarks;

(1) If 'ui E M(X), 1 S i S n, and pi Z 0,2;1191 = 1’ then

HzglpiuJE) Z ZpiH#i(€)

i=1
q , \ pu’fi

for any finite partition .5 of (X, B(X)).
' e4 J

T(2) SUPPOSG q,” are natural numbers and 1 < q < n. F0 {0“}ng

e
.

:Ivelh

all” 2 [mg—3)]. Here [1)] denotes the integer part of b > 0' We h

oa(0)2a(1)2~-2a(q—1).

0<

0FiX 0 Si S q—l. Then {0,1,2,...,n — 1} fi “+711 \f— z'/0 <7. < (“fl-’1’ "'

is c — 1}USwhere S = {O,1,...,j — 1,j +a(j)q,j + QC]

79+1 1. . ”_l
, .., fl —- .Since 3 + a(])q 2 j + [($731) — 1]q : n _ g, we have the card. 7 }

112 . .
mo“ 2‘1‘

(“10’ 012915 at
. . . n- ‘) _

' ForeaCh 0 S] S q— 1, (62(3) -1)<I+J S [(L—qJ-FIJ—FJ l. n\?
. .

. _ H - . . T

{J + WW S J S q “ 1’ O S r S “(3) 1} are a dlStht and are 6211 enumbers
than n ”’ (I

greater

(3)1fu e M(X, T) and ifp(8A,-) : 0,0 g 2' _<_ n — 1, then

n—l "“1 _ n—l

#(Wfl T4140) = 0 since 3(fl 71—71:) C U TeaAi,
i=0 i=0 i=0

Theorem 3.4.1 (Variational Principle) Let T : X —) X be a Continuous
map of

a compact metric space X. Then

h(T) = Sup{hp(T)I,u e M(X,T)}-

20



3.5 Measures With Maximal Entr0py

The variational principle gives a natural way t0 piCk out some members of M(X, T)-

Definition 3.5.1 Let T : X -—> X be a continuous transformation on a compact

metric space X. A member {1 of M(X, T) is called a measure of maximal entropy for

T if hn(T) = h(T)- And we let Mmax(X, T) denote the collection of all measures

with maximal entropy for T.

Theorem 3.5.1 Let T : X —+ X be a continuous transformation of a compact

metric space. Then

(1) Mmax(X, T) is convex.

.
' m-

(2) If h(T) < 00 the extreme points of Mmax(X,T) are preCISely the ergodic me

bers of Mmax(X, T),
a

. dic me '

(3) 1f h(T) < 00 and Mmax(X, T) # (2) then Mmax(X, T) contains an ergo

sure.

(4) If h(T) :: 00 then NImax(X,T) # 0

(5) If the entrOpy map is upper semi-continuous, then Mmax(X, T) is COmPaCt and

non-empty.

Definition 3.5.2 A continuous transformation T : X —+ X of a compact metri

0 space

X is said to have a unique measure with maximal entrOpy if Mm“(X T) co ,

’ IISISts of

exactly one member. Such transformations are also called intrinsicially ergod'
1c.

Remarks:

(1) If T is uniquely ergodic and M (X, T) = {p} then T has a unique measure With

maximal entropy, because the variational principle gives hu(T) = h(T) in this Case

(2) If h(T) = 00 and T has a unique measure with maximal entropy, then T is uniquely

ergodic, because if Mmax(X,T) = {,u} and m E M(X, T), then h%+%(T) 2 00 so

mzu.

21

 



(3) If Mmax(X,T) : {p} then ,u is ergodic. If h(T) = 00 this follows from (2) and if

h(T) < 00 it follows from Theorem 3.5.1.

22
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Chapter 4

Pointwise Preimage Entropy

In this chapter we first introduce pointwise preimage entropies hp(T) and hm(T)

which are defined in [5] and [9] After that, we investigate basic properties Of those

. .

. . 'th

two invariants, show the existence of forward generator and metric p compatible W1

the topology.

4.1 Definitions of Pointwise Preimage Entropy

Definition 4.1.1 Suppose T : X -—> X and :1: e X. For k=1,2,3,m, the kth preimage

set of a: under T is the subset T‘k(x) of X where T‘k(:z;) = {z E XITI:(Z) :__ 1.} For

N=1,2,..., the Nth branch at a: is denoted by BN(a:,T) C X” and is defin d . th

e m 8

following:

BN($) T) Z {(ZNazN—17 ...,ZO)‘T(Z¢'+1) : Zi,0 S ’t S N ~1al1d 2'0 2

1‘}

To formulate a topological definition, we let 0(X) be the collection of all Open covers

of this compact metric space X (finite or infinite). Given U E 0(X), let UN be the

open cover of X” by product sets U1 x U2 x x UN, U; E U. For a subset SN C XN

define R(U, N, SN) to be the least cardinality among subcollections of UN which can

cover SN.

Definition 4.1.2 (Pointwise preimage entropies).
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Let T : X ——> X be a continuous mapping from a compact space X to itself, define

1

hp(T) = sup{ sup [lim sup 7V- 10g NU, N, BN(1‘,T))]}
xeX UEO(X) N—+oo

and

1

hm(T) = sup {lim sup —— log[supN(U, N, BN(x, T))J}

U€0(X) N—roo N 36X

Remark 4.1.1 Continuity of T and compactness of X insure that BN (:17, T) is com-

Pact’ and hence that the numbers N(U.N.BN(2:,T)) are all finite and bounded for

fixed N over :1: E X.

Like the topological entropy, we can show the metric definitions of our invariants

by reinterpreting the numbers N(U, N, SN) in terms of 5-spanning and 6-separated

SQtS. Given any metric space (X, d), we say a subset S c X is 5—separated for some

6 > 0 if distinct points of S are at least e-apartzs 3,5 t E S, 2} (“3, t) Z 6, and say that

. . Let

R C A C X e-spans A if for every a E A, there exists 7‘ E R With dla,"'i< 6

Tl€a 61, Al = min{card(R)|R is c-spans A},

Sléa d» A) = max{card(S)|S is 6-separated A}.

Theorem 4-1-1l9l If (X, d) iS a compact metric space, for any positive integer N let

d” be the metric on XN given by

dN((-rlv "'3 xN), (y1,---,y1v)) : 122§d($iiyi)

Then for T : X —> X continuous, the invariants from definition 4.1.2 Can be cal 1

CU ated

via the following.

. . 1 N
hp(T) — 3161)}:{lg0112njgp l—V— 10g(b(€, d aBN($,T))))},

and

1
hm T =1' limsu —lo ,dN,B ,( ) 1m{ NaoopN mfg/138k ~(zc T)))}

e—+0

In either formula,

3(6) dN) Bil/($3 T))

can be replaced by 'r(c, d” , BN(:1:, T))
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In topological entropy we define a new metric dn on X by

dn(a:,y)= max d(Ti($)aTi(y))
ogign—l

A subset F ofX is said to (n, e) span K if for all m E K, exist y 6 F with dn (1:, y) _<_ 6

and let rn (e, K) denote the smallest cardinality of any (n, e)-spanning set for K. Simi-

lar definition for (n, e) separated set and 3,.(5, K). We denote N(U) [y to be the smallest

cardinality of subsets in U which covers Y. See [14].

Remark 4.1.2 Let U EO(X), some easy consequences are the following

r(6, d”, BN(.7:, T» = rN(e, T‘N(:c)), 3(6, d”, BN(2:,T)) == sN(e,T‘N(-’Ir))

and N(l/? N) BN(-z'2 T)) : N(V11:,=0 T—nU)lT—N(;c)-

Remark 4.1.3 If T is a homeomorphism, then hp(T) = hm (T) = 0-

Remark 4.1.4l7l and [8] If X is the circle or any closed interval, the“ MU) :=

hm(T) = h(T).

Remark 4.1.5l4l There exists T : X ——>X continuous, X a zero-dimensl0na1 CompaCt

metric space, for which hp (T) = 0 and hm(T) > 0.

Theorem 4.1.2l9] If T1 : X —-) X and T2 : Y -+ Y are topologically Conjugate, then

hp(T1) = hp(T2) and hm(T1) = hm(T2).

Remark 4.1.6 Like topological entropy property, the next one iS triviaL Also, in

section 4.3, we will concern another metric compatible with the tOpOIOgy ofX and

represent its pointwise preimage entrOpy with respect to this metric.

Theorem 4.1.3 If d is another metric on compact set X which defines the s
ame

topology as d, then the pointwise preimage entropy with respect to d are eqna1 to the

pointwise preimage entropy with respect to (i.

In theorem 4.1.2, if T2 is a factor of T1 then h(Tz) S h(Tl). However this inequality

can not hold for pointwise preimage entropy. The easiest example of increase under
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factors for the pointwise preimage entrOpies is obtained via inverse limits. Recall that

the inverse limit of the map f : X —+ X is the shift a, defined on the sequence space

2 = {{xi :0 I f(:13i) =1 $1-1,7; = 1,2,...}

I

by

0f(330,1131,m)=(f($0), f(x1),..)=(f(:r0),$o,$1,-~)

The product topology on E] C XN makes 2} compact and a, a homeomorphism.

Furthermore, if f is surjective, then it is a factor of its inverse limit via the PYOJeCtlon

<p({mi :0) = 330.

By Remark 4.1.3, we have

hp(0’f) = hm(0'f) = 0.

Thus, any map f with hp(f) = hm(f) > 0 gives an example showing

and

Rema
rk 4.1.7 There exist maps f : X —> X, g : Y —+ Y with f a factor 0i 9;

hm(f) = hp(f) > hm(g) = hp(g)-

An easy example is the standard expanding map of the circle:set .51 2: R/Z and

define f(x+Z)=2x+Z. It is easy to check that

h2:2(f) = hm(f) =1032-

We turn now to Cartesian products and additivity. Subadditivity of all t

. W0 in-

variants IS relatively easy to prove:

Lemma 4.1.1 For any continuous maps Ti : X, ——> Xi,z' = 1, 2, we have

ha(Tl X T2) S ha(T1) + ha(T2)

where a = p or m.

Topological entrOpy is multiplicative under iterates and we can show that the same

is true for pointwise preimage entrOpy.
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Lemma 4.1.2 Suppose T : X -+ X is continuous, where X .
15 a Compact metric

space. Then for every k E N, we have

ha(T") = k - ha(T)

where 0! = p or m.

4.2 Forward Generator

After finishing the first version of this section, we found that D.Fiebig, U.Fiebig and

Z. Nitecki used the tool of graph theory to get, Similar but better resultS- See [4].

Definition 4.2.1 Let X be a. Compact metric Space and T : X ..y X a continu'

ous function. A finite open COVer a of X is a forward generator {or T if for

sequence (Any? of members of a the set {1:020 TWA" Contai t most one

113 a

. . : X —> X ' .
tmettic

Lemma 4 2 1 Let T be a continuous funCtlon with a Compac

space (X, (1). Let a be a forward generator for T. Th

that each set in Vnzo T‘"a has diameter less than c.

PROOF

Suppose the theorem does not hold. Then 36 > 0 such that Vj > 0 3

, . . - .
’ ‘2'

e and 3A“ 6 a,0§1 SJ Wlth 333', yj G flLO TflAfi- There is a Subs 0339', 072.

Q J"

natural numbers such that :L‘jk —> a: and yjk -—> y since X is compact Hence { .

,
.

_ . W
‘7‘} Of

Con81del‘ the Sets Ajk,0- Infinitely many of them coincide smce Q is fl

.

_-
.

nit .

Jahyjk 6 A0, say, for infinitely many
I»: and hence x, y e A0. Similarly f0:

) ea

. .
, .

_ ch 77.

infinitely many AM," comelde and we obtain An E a Wlth 13,31 6 TWA". Thus

(X)

117,21} 6 (WT—11A",

0

contradicting the fact that a is a forward generator. 0

Definition 4.2.2 Let T be a continuous function of a compact metric space (X, d)
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to itself is said to be forward expansive if 36>0 and X76 y E X, then 312 E N with

d(T":1:,T"y)> 6. We call 6 a forward expansive constant.

Lemma 4.2.2 Let T be a continuous function of a compact metric space (X, (1)

to itself. Then T is forward expansive iff T has a forward generator.

PROOF

Let 6 be a forward expansive constant for T and let a be a finite cover by open balls of

radius 6/2. Suppose that :c,y E 08° T‘".4n where An E 0. Then d(T“(:r),T"(y)) _<_

6 for all n E NU[0] so, by assumption :1: = y. Then a is a forward generator.

Conversely, suppose a is a forward generator. Let 6 be a Lebesgue number for a,

If d(T"(x),T"(y)) g 6 for all n ENU[O], then for all n EN exists An E a with

T"(x),T"(y) E An and so, :r,y E 03° T‘"A,,.

Since this intersection contains at most one point we have a: = y. Hence T is forward

expansive. 0

Example: {{1, 2, ...m}N, a} where a is left-shift.

As section 4.1,we let 0(X) be the collection of all covers on X. Let U E 0(X)

and x EX, we denote

1

hp(T, U) = sup{lim sup — log NU, N, BN(:1:,T))},

:cEX Ill—+00 N

and

I

hm(T, U) = lim sup N log{sup MU, N, BN(:1:,T))}.

N—mo IEX

Let Y QX, N(U)|y be the smallest cardinality of subsets in U which covers Y. For

any fixed a: in X, we have N(U, N, BN(:r,T)) = m(vfzor-nU)|T-~(,,.

Theorem 4.2.1 Let T : X —> X be a forward expansive continuous function of

the compact metric space (X,d). If a is a forward generator for T, then

hp(T) = hp(T,a) and hm(T) = hm(T,a).
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...“:

PROOF

Since a is a. forward generator, for any U e 0(X)

SllCh that U < vrllV=0 T‘"a,

1 we can 0110056 /V large enough

I: k N

10s N(V T‘"U)lT——k(n) 5 log N(\/ T-n V T-"a)1T_.(,,, for any 1:.

11:0 71:0 11:0

Then

n
1 k N11111 Supfilog N[V T UllT‘k($)<1imsuP-10g R(V T-n(\/ T"at“l‘Tmy

k—>

fl:0 11:0 11:0

k+N

= lircrimsup E log N(V T‘na)

n=0

S 1im sup % 10g NIT/NT”,

k—mo

“Wm

CY) |T_(k+N)(a:)

n=o

 

. k +
: 11m sup 72 I k+N T/(Hmtxl

,Hoo k k+N10gN( V T’“a)\

k N "’0
Slimsup + lim 1

’HOO ’9 Ic—lsupm IoglihRS],

1"“ 0L)\T-U=+N 3 (I)

 

1' 1 lc+N

= 1m sup logN _

 

So we can get hp(T, U) S hp(T, a) for any fixed :15 in X this ,

, Imp] ‘

Q

am =sup{ ”to h,.(T H» < suphp(T a) S

Then MT) : h,,(T, a)-

Similarly. since U < szoTwaa NVLOUHT—ke) s NVLOVLOTWQMT-
k(:t),

hm (T, U) =1imsupk 10g[SUpN(VT"UHT—we)

1::0

k N

< lim supk110g[suP NV T"(VT—n0)]l—IT h(x),

Ic~+oo 11:0 73:0

BY asilhilar calculation, we can get hm(T, U) S hm(T,Cr). Finally we get hm(T) =

hmfliQ)’ O
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Theorem 42.2i4Le]t T X ——)X be forward expansive with é”)
Tb

\\~ /0g/I 5'”there is 2: e X With card(T"23) 2 A" for all n andin part1 cu/a,

MT) = mm = h(T).

4.3 Metric ,0 Compatible with the TOpology

Lemma 4.3.1 Let T : X —+ X be a continuous map of a compact metric Space (X, 61)-

(1) If a is an open cover of X With Lebesgue number 5, then for any £6 E X,

N(v::olT-ia1T—nm)s rn(5/2,T‘"(x)) s saw/arm»

(2) If 6 > O and 7 is an open cover With diam (’7) < 6, then for any 2: Ex,

me, T“"(x)) < sueT"<$>><N<V?=‘l—o 7’Wm).

PROOF (1)1t’s abvious that Tn(e,T‘" (:1: )) < Sn“T‘n($))

Consider any T‘" (as) of a: and let F be a (n, 6/2) Spanning Set for T4101;

rnt5/2,T“”(a:)). Then

oi catdummy

T‘"(:I:) Q U {—1 T—‘B(T"x;5/2)

xEF £20

and since for each 2 B(T’$ 5/2) IS a SUbset 0f a member Oka

-T—alT.m) _<_rn(5/2T"(20)
Q We have WV

(2) Let E be a (n e) separated set of cardinality 8,, (e, T"($)) fOr T\

(.2:

). NO Them

"My

ber of the cover V":01T’YlT "(33) can contain two elements of E so

WV;01T_z’7l’1‘~n(x))- O

8'1(€,2»\

Lemma 43.2 Let T: X -) X be a forward expansive continuous function fOr

compact metric space (X,d) with forward eXpansive constant 6. Then

hp(T)~:-_ sup{lim supn-1log Tn(5oa T‘"($))}
36X n—)OO

1
:: sup{lim supn— 108 Sumo, T"(17)”

xEX 11—100
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and

1
hm T :1 — ~72( ) 1:2:an Egg/i3 rn(6o,T (2))

. l

= 11m sup — 10g sup 3,1050, TWO?»
n—>oo 72 sex

PROOF

We can let 6° < 6/4- For all x E X, choose $13$2anw$k such that T403) Q

Uik=1 30%; g — 260). This cover Oz 2
. {B (311-; e/ 2M1 S ’i S k} is a forward generator

Wlth the Lebesgue number 260. So by Lemma, 4.3.1

- 1

hm T,a Sllmsu —1 _

< ) Moopn Ogi‘é}? ""0501 "(m 5 MT)

Similar calculation for hp(T)- <>

Lemma 4.3.3 Let T be a forward expansive Continuous function from c pact metric

space (X, (1) to itself with forward expansive COHStant 6. Then for a“ e7 (LEN > 0:

such that d(T‘x,T‘y) _<_ e for all z' with 0 g i S N, this implies (1(33 y) g 6'

PROOF
’

We may assume there exists 6 > 0. For all N = 1, 2 3

fl.

3 We C

s-t- d<T WWW s :20 s n _<_ N and d(xn,yn) 2 6. Q, a” Emmy" EX

3”" -+ y' The“ WW) > 6’ b‘” d(T‘x,T‘y) s e for all 2' = 1 0%
2’ 3) - .

the forward eXpansive property of T. 0 ‘

Q
2"”. ‘7‘ .Z' and

1'

s contradicts

Lemma 4.3.4 Let X be a compact metric space and T : X ~> X

. , a for“,

pansive Wlth forward expanswe constant 6. Then for 0 < e < 8/2 and 6 > a

. . - . h

ex1sts 05,5 such that for all posrtlve integer n and all :1: in X, we have ere

3n (5, T‘" (312)) s Cé,esn(€’ T‘"(z)).

PROOF

For 0 < 6 < e/2 and O < 6, by Lemma 4.3 and uniform continuity of T on X there

exists a. positive integer N and a > 0 such that
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if dN(:r, y) g 26, then d(a:, y) S (5

and if d(:z:, y) S a, then dN(:z:, y) g 6

Now fix a: and let n be big enough, assume E is a maximal (n, 6)-separated set of

T‘"(:I:) and F is a maximal (n, e)-separated set of T‘"(a:), then for :t’: E E there

is a z(:1:) E F such that d,,(a':,z(a’:)) < e. Let E; = {2'3 6 E : z(a’:) = 2}, then

card(E) S Ezep card(Ez). But if 3:,y E E2, then dn(x,y) S 26 by definition of E2,

hence

d(Ti(:r),Ti(y)) S 6 for 2' : 0, l, 2, ..., n — N.

Since any E E, dn(:r, y) > 6 and if d(T"‘N+1(z),T"‘N+1(y)) g a, this implies that

dN(T"‘N+1(:1:),T""N+1(y)) g (5, then dn(:c,y) S 6. This is a contradiction. So

d(T"‘N+1(2:),T"“N+1(y)) > a and T”"N+1(:r),T""+1(y) E X, X is compact. This

implies that card(Ez) is bounded by some constant 06‘. Therefore, card(Ez) g

06,5card(F). 0

Remark: We can show Lemma 4.3.2 from Lemma 4.3.4.

During the remainder of this section we will assume that T is a forward expansive

continuous function of a compact metric space (X, d) onto itself with forward expan-

sive constant 6 >0.

Now for any integer n 2 0, we define:

Wu 2 {(cc,y) E X x X : d(Tix,Tiy) g e for 0 g 2' S 72}

It’s obvious that ”:0 W}, = A where A = {(1:, :r) : :1: E X}.

Take 5 small enough such that 36 _<_ 8. Choose N from the above Lemma 4.3 with

respect to e. We define Vn = WnN for n=0,1,2,3,...

and (1:, y) E Vn+10Vn+10Vn+1 means there exists u, v E X st (:13, u), (u, v) and (v, y) E

Vn+1-

Lemma 4.3.5 The sequence Vn is a nested sequence of symmetric neighborhoods

of A whose intersection is A and such that VH1 o V,,+1 o Vn+1§ Vn for all n 2 O.
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PROOF

Let (11:,y) E Vn+10 Vn+1 o Vn+1, then exists 22,2) 6 X st

(2:, 22), (22,22) and (22,31) 6 Vn+1

i.e. d(T‘:r,T‘u) 3 8,0 3 2 S (n +1)N,

d(T‘u,T‘v) g 8,0 g 2' g (n +1)N

and d(Tiv,T‘y) S 6,0 3 2' S (n +1)N

By Lemma 4.3.3,

d(Ti:r, Tiu) S e,d(Tiu,Tiv) S 6 and d(Tiv,Tiy) S e for 0 5 2 S nN.

The triangle inequality can imply

d(Tia:,Tiy) S 36 S e for 0 g 2 g nN.

This implies that (2:,y) 6 Va. 0

Metrization Lemma 4.3.6[6] Let V, be a sequence of symmetric neighborhoods

of the diagonal, A , of Xx X with VI) = X x X such that Vn+1 o Vn+1 o Vn+1 C Vn for

each n and fl? V, = A. Then there is a metric D compatible with the topology of

such that the following condition holds for 112 1,

Vn C {(II:,y) : D(x,y) < 1/2"} C Vn_1

We define Nd(A; c) = {:r; d(:r, A) < e} where d is a metric on A.

There following consequence comes from Lemma 4.3.5 and Lemma 4.3.6

Lemma 4.3.7 There is a metric p compatible with the topology of X such that

Np(A;1/2"+1) g V" <_: N,,(A;1/2")

for all positive integer 72.

Lemma 4.3.8 There is a metric p compatible with the t0pology of X and there

is A, 0 < /\ < 1, such that

Np(A; AM”) 2 W... C; Np(A;A'""”)
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for all positive integers m.

PROOF

Consider any positive integer m = nN + j, 0 S j < N, it is easy to see that

Vn+l = W(n+1)N = WnN+N g WnN+j : Wm g VVnN = Vn-

Therefore Vn+1 g Wm g V". From Lemma 4.3 we can get N(A ;1/2"+2) g Vn+1 and

l

Vn Q N(A;1/2"). Now we let A = (5-)?

Np(A; Am+2N) g NP(A;Am+2N-‘j) : NP(A; ,\("+2)N)

: p(A; (%)n+2) g Vn+1 g Wm g V12

2 Npm; 3.1;) = Npm; (amt)

=Np(A; W) = Npm; ,...-.) 9 NM: W”)

This finished the proof of the Lemma. 0

Theorem 4.3.1 Assume T is a forward expansive continuous function of a com-

pact metric space (X, (1) onto itself with forward expansive constant e > 0. Then

there is a metric p compatible with the topology of X and there is A, 0 < /\ < 1, such

that

1

hp(T) : sup{lim sup E log 7‘1(/\k, T"k(:r))}

xEX [ft—’00

and

1

hm(T) = lim sup 7 log{sup r1(/\",T_k(:1:))}

lc—roo IEX

with respect to this metric p.

PROOF

For any .27 EX we consider T‘k(2:). Let E be a (k,e)-spanning set of T""(:r) with

minimum cardinality. For any y E T‘k(:1:), there exists 2 E E s.t. d(T‘y,T‘z) S e

for 0 S 2' < k. So (y,z) E Wk_1. From Lemma 4.8 we can find a metric p on X

and A,0 < A < 1, such that (2:, y) E NP(A;Ak'1’N). This means that there exists

an F which is (1,/\"‘1"N)-spanning set with metric p and 11(F) S ME). Therefore

r1(x\"‘1‘N,T"‘(x)) S rk(e,T"‘(:c)).

On the other hand consider F to be a (1,/\"‘1+2N)-spanning set of T‘k (1:) with respect
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to this metric p and with minimum cardinality. Thus for any 2; E T‘k(:c), there exists

26 F such that (y, z) E Np(A; A"‘1+2N). So (2:, z) E Wk_1 by Lemma 4.8. This means

d(T‘y, T1'.Z) S e, 0 S 2 < k. and this implies that we can find E which is (k, e)-spanning

set ofT’k(.2:) with card(E) S card(F). Therefore rk(e, T‘k(:c)) S r1(x\"’1+2", T‘k(:1:)).

Since p is fixed, let 6 be small enough and using Lemma 4.2, we have

hp(T) = sup{lim sup % log m(Ak, T“k(:1:))}

xEX k—mo

and

hm(T) 2 lim sup 1 log sup r1(Ak,T'k(:1:)).

k—mo xEX

O
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Chapter 5

Modified Pointwise Preimage

entropy

. . all it upper

In this chapter we modify the original pointwise preimage entropy and c

. . . - “$109), an

Preimage entropy. Then we show the relationship between cond1t10n3\ e h the

. O S OW

upper preimage entropy. Finally, we follow the S-M-B method and use W t

asymptotic behavior of metric preimage entropy and ergodic decompSililon'

5.1 New Definitions

We continue to consider a continuous self-map T of the compact met .
IC 8

Given a subset K C X, a (5 > 0, and an positive integer n, we set Pace (Ax, 0').

7.0175, K) : THUS, K, T) :2 max{card(E) : E Q K,E is (71,6) \ Sep

{Hated}-

Definition 5.1.1(Upper Preimage Entropy)

1

htop(T l g“) = limlim sup — log sup r(n, 6,T"‘:r)

1 "-1

— SUP lim sup - log sup N T‘i _

a Open Cover 71—900 77; kZO,-'17EX (g) a)iT k3

Remark 5.1.1 hp (T) S hm(T) S htop(T | 5") S h(T)

Example: Consider S; {1,2}N —> {1, 2}” and T: {1,2}Z —) {1, 2}Z where S and T
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are left-shifts. Then we can get

 

M5 X T) = hm(5' X T) = hiop(S x T I F) = log2 < h(S x T) = 210g2

Next, let 6 denote the point partition of X which we also identify with the 0-

algebra B of Borel measurable sets.

For n > 0, we set

5‘" = T-"g

- . ' ' , let

Given a finite partition 01, let an 2 VzlgolT‘Qy, For a T-invarlant pI'Obablhty ’1’

H11 (0" l é—k)

'
~k call this the

denote the conditional entropy of a" given the a-algebra T B- We

entropy of a" given the preimage partition 5"“.
. ' the

- . .
.

easlng 111

Note that, since H,,(- I ) is mcreasmg 1n the first variable and deer

second variable, we have n 2 m,l 2 12 implies

HM l 5') 2 Hue“ I 6"“)-

Set

Hp(a" |g‘) : Hp(oe" | 5“”) 2:11:13 HAG" l 64:) ‘2 [£1220 H,,(an ‘64:)

Lemma 5.1.1 The function an = H,,(oz" | f‘) is subadditive.

PROOF

We need to show

an+m S an + am.

We have

an+m : £320 H“(an+m i €_k)

= klim HAG" V Twam l g—k)

._—. um ulna" | U) + HAT—"01’" l a" v m)
Ic—mo

g klim H,.(a" I 6"“) + gig, Hu(T‘"a’" I 6"“)

= klim Hum” | g-k) + klggoHuam I 5"“)

Zan+am
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0

Definition 5.1.2(Metric Preimage Entropy)

1

hu(T I 510) = M(a I 6—) = 111320 EH,,(o" | g‘) = "13:0 %H#(a" 15—)

and

hu(T l €_) 2 Slip 12,,(05 l g.) = SUP h#(T l {101)

.
' 1].“...

Lemma 5.1.2 Metric preimage entrOpy hu(T | 6-) is a measure-theoretic co J

'
°

. ° 'u ac

gacy invariant and upper preimage entropy htop(T l f) 15 a topological con) g y

invariant.

PROOF

. ve the topo—

It is easy to show the measure-theoretic conjugacy invariant. Here we pro X a X-
T' 1 . 1

logical conjugacy invariant. First we let X1, X2 be compact spaces and . 2 With

- map

be continuous for 2' = 1,2 and 45 1 X1 —> X2 be a homeomorphlsm have

. g x) We

¢T1 = T2¢. First we let a be an Open cover of X2- Then If (M?!)

for k 2 0, N(¢“1a)lTl—k(y) = N(QHTflm'

Hence,

12—1

1

h T ‘,a =limsu —log su N T” _..,.( 2‘6 > ,.-..P. ,._,.P;. V 2 any. kt)

n~1

= lim sup-l- 10g Slip N(Cb—l V T2“a)/

n—mo n k20,y€X1 i=0 T}\lc(y)

1 12—1

2 lim sup — lo su N ”T”

n——)oo n ngOyEX; (>__/0¢ 2 aNTerI)

1 n—l '

=1imsup—lo su R T" *0;

n—>oo n gk20,yIE)X1 (i\:/() 1 ¢ )lTl‘kQI)

= htop (T1 IF, 45—10:)

Hence ht0p(T2 | 5‘) _<_ hm,,(T1 | g“). If gb is a homeomorphism then ¢-1T2 2 (pm—1 SO

by the above, htop(T1 '6‘.) S htap(T2 '€—). 0

Lemma 5.1.3 Let g and 77 be two finite partitions of X, then

hMC l E‘) S hum l E‘) + HAG l n)
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PROOF

H,,(V'T"C|€P) <H(VT“<VVT"77)|€)
2:0

H(VTnlék)+H..(VT‘iCI VT"r/V€)

i=0

<H.(VTnltPl+H(VT"'C|VT2)
i=0 i=0

Let k -> 00, and H).(V:'_0' T_'C l Vii—:01 T477) S 22 ° Hu(< l TI)

This implies that H.(<o I 6 ) S H.073 151+ 72 . Hu(( | n).

Divide by n and let 72 go to infinity, then mg I g-) g h..(n \ E”) + HP“ ‘ 7” 0

Lemma 5.1.4 For any fixed k,

h,,(T l £',a) = h,,(T | g-,\/T-Pa).

izo

PROOF

k

MT l «5‘.VT"'a) = lgnlacuna") lé’)
i=0

gigg- u(\/'T“(VT0016)

 

i=0 i=0

k+n— 1

= lim —H,.( V T"a))lé)

i=0

k+n —1 1 1....-.
= lim Hp( T\i

n—+oo n k-l-TL-l iZVO Q/€~)

: h#(T i E—va)

0

Lemma 5.1.5 If {An} is an increasing sequence of finite partitions of X and C
Is a,

partition with C S V20 A,, then HH(C | A") —> 0 as n—> 00.

Let C be a finite sub—a—algebra of 3, say C = {Ci 3 1' = 1, 2, "'2n}, then the non-empty

Sets of the form Bl n B2...r1 Bm Where B.- = 02' 01‘ X\Ci, form a finite partition of X.

We denote it by (1(0) and we define hp(T | 620) = M(T l €-,a(0)).
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Theorem 5.1.1 (KolmOgorov-Sinai)

Let T be a m.p.t. of (X, 3,22) and if? be a finite sub-a-algebra s.t. Vf=0T’"(a($i))—‘=Ba

then

h.(T I r) = h.(T I613?)

PROOF Let C be any partition, we show that h,,(T I '5”, C) S M(T I g", a(§R))

For 12 Z 1, by Lemma 5.1.3 and Lemma 5.1.4,

hu(T | £1 C) _<_. h..(T l 6‘, vg'ZOT-P'aaln) + HA0 I vysoT‘pGo)

= MT l t“. a(§R)) + H,,(C' I vaOT"a(§R))

Let An = V?=0T“a(A) be Lemma 5.1.5, H,,(C I An) ——> O as n --> 00- 0

Lemma 5.1.6 Let (X, B,p) be a probability space. If Bo is a sub-algebra

3(Bo)=B then for m.p.t. T : X ——> X we have hp(T I 6‘) = sup hpr I g 2

of 8 With

A) where

the supremum is taken over all finite sub—algebras A of 30 -

PROOF

Let c > 0. Let C _C_B be finite. Then there exists a finite 1) £30 such tb

D) < 6.

Thus

at. HILXC \

h#(T I 6-20) S h#(T I 6—21)) + H#(C I D)

_<_ hu(T I €_,D) +5

Therefore h,,(T I EZC) S C + sup{h“(T I §_,D) 3 D CBo,D fin'
Ite

h,,(T I E") S sup{h,,(T I 5“,D) : D CBO,D is finite}. The Opposite _

1

obvious. O

} and thus

”equality is

Lemma 5.1.7 Let (X, 3.11) be a probability Space and let {An}?0 be an inc

I"Basin

sequence of finite sub-algebras of B such that V211 An :8. If T : X _+ X is m p t8

then

' "

hu(T I 6—) = "lgghAT I €_,An)-
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Lemma 5.1.8 Let a,- be a finite partition and S}.- be a sub-a-algebra of (X, 8,, mi),

for 2' = 1,2, then

Em... | 8) == E(XA I%1)-E(XB | 32),”,

where S? = (351 x (352, A E 021, B 6 (12, 2‘31 is a sub-o-algebra of I31 and 32 is a sub—a-

algebra of 82.

PROOF

We have 109cm?!) 2 " ZAXBEO 10g E(XAXB I %)XAXB($3 y) and let # : on X m2,

'

E

SlnCe fFl E(XA I %I)dm1 = fFl XAdml, fF2 E(XB I (32)de :2 sz XBde’ for F1

81) F2 6 82.

Then

ffleFz E(XA><B I $)d/L : ffFlXFz XAdeH

= ..(A (1le BnF.) = m1(AFlF1) - m2(Bo F2)

And

IF, E(XA I sodm. .sz E(XB I (392)de = m1(A 0F.) .m2(B 0 Fa)

: ffleF2(E(XA I (31) ' E(X3 I C332))dp.

This implies that E(XAxB I 3) 2 E001 I (31) 'E(XB I 82) 21.6. O

Theorem 5.1.2 Let (X1,Bl,m1) and (X2,B2,m2) be Probability Sp
C:

X1 —-> X1,T2 : X2 —-> X2 be m.p.t. Then es and let 7i :

h,.(T1>< T2 I §_) 2" hm1(Tl I 6—) + hm2(T2 I {_I

where p = m1 >< m2.

PROOF

By Lemma 5.1.6,

Let f0 denote the algebra of finite unions of measurable rectangles. Then [3(fo)

=B1X82.

h,,(T1 x T2 I g") : sup{h,,(T1 x T2 I £‘,C) : C C.7-'o,C finite},

Hence

But ifC is finite and C CFO, then C C 01 X 02 for some finite Ol1 C812 012 C32.
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(T1 X T2 I 6—) = sup{hll(Tl X T2 I €_aal X 0’2) :01 C81,02 C82, (11,02 finite}

Let a = a(a1 x 02) = 0(01) X 0(02),

ff]aI§—k(a:,)duy -Z
fflogEOchBIg-

k)XAxB($ 30d”

AxBEa

— - Z / [(‘OgEIIXA Iék)+10gE(XBIE‘kDXAxBISUI-y) dmldmz

AxBEa

= — (if/1031“(XA I5k)XAxB($ y)dm1dm2

AxBEa

+//10g
E(XB Ié—k)XAxB

(x,y))dm1
dm2)

—— Z logE(XA If‘k)XAdm1

1460401)

_ Z IOgEIXB I E—k)XB dmz

B€a(a2)

This implies

Hm I t") = Hamel) | £4“) + Hm<a<a2> I 6"“)-

Then

Hu(T1 X T2 I 5a):m(T I 5 ,Ot(011)) +Hm2 (T I §‘,a(QQII.

So that

hu(T1x T2 I 5’) = hm1(T1I§")+ hm2(T2 I f-)-

0

Theorem 5.1.3 Let T,- ; X. —+ X,,z' : 1,2, be a continuous map 0n th

e

metric space X,_ Then hmp(T1 x T2 I 5*) = ht0p(T1 I 6") + htop(T2 I f‘). Compact

PROOF

Let d,- be the metric on X, We use the metric d((:1:1, $2), (311, 312)) = max(d1(x1,y1) d2“:
1 2, y2))

On X1 X X2-

If F is an (n (3)-Spanning set for T‘kxi E Xi then F1 X F2 is an (n, e)- Spanning set

for T141331) X T241162). Hence

T(n1€a (T1 X T2)—k(xlix2)) _<_ T(n’€’T—n($1)) . T(TL,€,T-k($2))
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which implies

T(n7 6) (Tl X T2)-k($1) $2)) S 10g sup T(n1 £3 Tl—k(xl))10g sup

k20,xixx2€X1XX2 kZOJIEXi

—k
+log sup r(n,6,T2 (1132))-

1:20,:L‘26X2

Therefore

hd(Tl X T2I€_) S hd1(T1I€—aX1) + hd2(T2I€_,X2)‘

Now we show the other inequality.
- 1

. . ' ' al final) 6

For all Tl-invariant measure [11 and Tg-mvariant measure #2, by varlatlon p

(Theorem 5.2.1) we have

hdl(T1I£—3X1)_>.
hu1(T1 I 6—) and hd2(T2 I €_,X2) Z hp2(T2 ‘6 )

Then

hd,(T1 I £1 X1) + we I 52X» 2 h... (T1 I 6‘) + h,,,(T2 I a”)

= hmxp2(Tl >< T2 I g—)

This implies

hd1(Tl I €_)X1)+ hd2(T2 I €—,X2) 2 sup h/11x#2(T1 x T2 I {-7

mxm

: hd(T1 X T2 If‘)

So we can get the equality. 0

Theorem 5.1.4 Let T be a measure-preserving transformation 0f the prob . .

space (X, 8,”). Then the map it —~) h,,(oz,T) is affine where a is any finite paiélhty

of X. Hence, so is the map H —+ h,,(T I 5‘). ""011

PROOF(See [3].)

For any integer n, constant 0 < /\ < 1 and measures [1, pl, #2, with

I“ = A#1+(1 _ ”#2,

we have

0 S Hu(an)) — AIIM1((1n)-_(1 "' A)Hu2(an) S 10g2
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Hence,

(Ma) = MIMIC!) + (1 - AWAGO-

Now, We proceed to h,‘ (T, €_)-

Fix a finite partition (1 and an increasing sequence ,81 < 52 < converging to 5

ash—+00.

Then , for a positive integer n, we have

HI,(a I 6—) = lim lingo H,,(oz I T‘mfli)
14m m

Next, consider the finite partition 0, fl. For any measure Ha We have

Hu(a I 5) = H#(0 V ,3) " Hum)-

Using the finite partitions a" and T‘mfi,, we have

.1)

n - . <log‘2 (5

0 3 Hum" v T-ma» — AHm(a" VT‘mfi,) _ (1 .. A)H,,2 (a v T “(3.) ,—

and

_ ._ a 2 (5.2)
0 Z —IHu(T mfii) "— )‘Hp1(T mfii) — (1 ‘_ A)HH2(T 771,80] Z -— 10%

The second term of (5.2) is non-positive, so adding it to the second term Of (5'1) does

not increase the latter’s value, so

HAO!" I T—mfli) — AHMUI" I T—mfii) — (1— ”Hm (an I T_m;6-)

z SIOgQ

Similarly, adding the second term of (5.1) to that of (5.2) does not degre

389 the

value, so
latter,s

__ log2 g H,,(an I T‘mfl,) — AH“, (an I T“’"fl,~) — (1 — /\)H#2(Qn I T‘mfia

Putting these two inequalities together gives

— log? 3 Hm“ IT—mfi.) —— AHMa" l rm.) — (1 - A)Hm(a" I T—mfi.) _<_ log2

Letting z' ——+ 00 and then m —-> 00 gives

~Iog2 3 HM I 6‘) — AHmIa" I E") — (1 — A)H...Ia" I g-I _<_ Iogz
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Now dividing by n and letting n ——> 00 gives that

“(a I 6‘) = My. (a I 6‘) + (1 — A>ha<a In

as required. 0

5.2 Variational Printiple

Lemma 5 2 1 For each positive integer 7', hu(Tr I '5 ) — 7‘ h (T I 5 )

PROOF

First Show that h (T'r I {TVZIi TflIA) = 7‘ ' h). (T I 5‘, A) for any finite partition A

We have

nr— 1

_ — 1' __ H“( ——iA T—rn——k

7‘ M(Tlé ,A)== "31,30”ng(V T I (6))

r— l

_- lim -supH,, ("\/ T’rj(\/T iA))IT—mk(€)))
n

fimnk— 3:0 i=0

= h,,(:rr I g: \/1 T“A)

i=0

Thus

7‘ h,(T I g )-—- r SUP/l h#(T I {214) = sum M(T’ I EZVZJ T"A)

S SUPc hu(TT I g c) :: hu(T' I 5‘) where c is any finite partition,

On the other hand,

(7" I 51/1) 3 MT" I 52%;; T“A) -—- r - MT” I §-,A)

This implies that MATT I 5’) Z T ‘ hp(T I 5 ) 0

Definition
5.2.1

T _ su 1l Tk a:
ht0p( If) Ilnglirtn P— ngziufs r(n 6 ( ))

limsup—log SUP N(rVT_iflIT-”‘(I))sup

k>0,JIEX
i=0

open COVCI‘ I6 n—yoo n

_—

.—
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where r(n,e,T’k$) is the minimal cardinality of (n, 6) spam 11ng set in 7, 7 j b
' .2' or t e

. . - - —k .

max cardmahty of (HIE) separating set In T (33) and N(fi) ’ Twin) 13 the minimal car-

dinality of subcover of fl which can cover T‘k(:1:).

Lemma 5.2.2 ht0p(Tm I ,5) = m ° htop(T I g‘) for all positive integer m.

PROOF

Here we consider the spanning Set-

Since for a: e X, r(n,e,T"‘,T"kml1‘)) _<_ r(mn, e, T, T‘k(a:)) for all k 2 1

We have i log supkzmex 7‘(n 7 €,Tm,T—km (513)) S % log supkzoflex 'r(mn, 6, T, T_k(~73))

Therefore ht0,,(Tm I F) S 777’ 'htOPIT I 5-)

Since T is uniformly continuous, Ve > 0,36 > 0 such that d(:r,y) < 6 implies

max05,3m_1d(Tix,T‘y) < 6 for all 21:,y in X.

So an (n.6, T—km$)-spanning set W.r.t. Tm is also an (nm,e)-spanning set for T“":1:

w_1°.t. T.

Hence r(n, 6,Tm,T“°ma:) Z 'r(mn, e, T, T’kcc), so

m _k 1

————— log sup TURN, 6, T, T :1: g — 10 su r 771 ’km /

m'n. kZO,r€X
( )) n g kZOp’tiX (n, 67 T a T (1.))

Therefore, m - hmpIT I 6’) S htop(Tm I 5“). 0

Lemma 5.2.3 For all 6 there exists a: and k > 0 such that E1, is an (71,6) separated

SBL in T—k($) With card(En) = supk20,xex T(n, C, T_k($))

PROOF

Because r(n, e, T'k(:r)) g r(n, 6, X), it’s a finite bounded positive integer for all :1: in

X and positive integer k. We can easily find such En. 0

Lemma 5.2.4 Let E C T_"(£L‘), then E C T_"—k(Tk.’13) for all positive integer k.

Remark 5.2.1 [See [14], Remark 8.2.2]Assume 1 < q < n, for 0 g j 3 q — 1,

put a(j) == [917—3)],where [b] denotes the integer part of b. We have :

(1) FixOSqu—
l. Then

{0,132
1-.-,n

—1}= {j+r
q+zI

OSTS
a(j)

—1,O
SZ'S

q_1}
US
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where S : {0,1, ...,j " 1,j + a(j)qij +a(j)q + 1: ...,n _ 1} and the Cardjljaljty ofS’

is at most 2q.

(2) The numbers {j + rqIO S j _<_ (I “ 1, 0 S T S 0(3) " 1} are all distinct and are all

no greater than n — q.

Theorem 5.2.1 Assume p]- ——> )1 With Mad) 2 0, then

(1’1 . 9‘1 _

_lim H,j(\/ TTQ I 6"“) = Hu(\/ T"a | 6"“)
]-+oo

£50
i=0

for all finite partition 01.

Lemma 5.2.5 Assume [13' ——> I‘ With M30) = 0, then

j-l q_1 . q—l -i __

lim lim Hfln(\/ T"a I 5"“) = 3530an Tea I 5*) = HuIV T a IE >
n—mo k—mo i=0

i=0
i=0

PROOF

By Lemma 5.3.6 we know that

0—1

q__1

“m lim H#n(v IMO I {_k) = “In H "(VT—'0 I lim (k)
“rt—>00 k—ioo i=0

n—>oo i=0 [It—>00

q-l .

: HuIX/(f—‘a' .‘iaé‘ki

q—l

= £1.12. Hu(_\_/0T“'a I 5"“)

q—l

= ”(VT—'01 I 5")

i=0

0

Measurable decompositions are necessary to show the variational principle. See [12]_

Let C be an arbitrary decomposition of the Lebesgue space X and X I; be the factor

space. Let the factor map
71' I X ‘9 X IC be 7T(J,‘) = C

where IE E C E C. Then

M(A) = [meow (7 C) Kim/1

Where MC is the conditional measure on C.

Lemma 5.2.6 Let a be a partition of (X, 8,“), consider the factor map 7r,c : X ——+
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X IT-kg and pm), is the conditional measure of ,u on T""(:r;) - The”

n—1
n—1

Hu(\/ T—‘a I 6—16) 3 / ~ H”’I*(V T_'aIT~k($)) d717,,”

Lemma 5.2.7: Let 77 = (30,31....,Bk} be a partition of X such that ,8 =

{Bo U 31,...,Bo U Bk} is an open cover of X. Then

N(n\-/ TAMI)» S N(n\_/ T“fi)IY . 2"

{:0

for any subset Y of X.

PROOF:

Consider the subcover 3 0f 16 With cardinality N(V?;01 T_iB)IYI

let A.- = (Bo U Bio) n (fr—130 UT‘IB,,) n n (T-("-1)Bo uT’In'llBin_,) 65

Now we decompose A, into the partition

{’11 :3 {Bio flT—lBji fl fl T_(n-1)Bjn_lijk 1‘ 0 or ik,0 _<_ k _<_ n *1}

Then I‘M/A1,) 2’ 2" and we have

n—1 n—1

{\l T“n n Y: V T‘in n Y aé as} g (1,6,.4,

i=0i=0

This implies that ”—1 1

N(V T‘in)Iy s N(V T"fi)IY . 2n

i=0 i=0

0

Now we are ready to show the relation between upper preimage entrOpy and metric

preimage entropy. Here, the main technique used is the construction made by M.

Misiurewicz.

Theorem 5.2.2 (Variational Principle)

Let T : X—+ X be a continuous map of a compact metric space X, then

htop(T | 6“) = 811p (MT I 6')
uEM(X,T)

PROOF

Let p 6 M(X,T). We Show that hu(T I 6—) S hton(T I €_). Let C = {A1,---,Ak
}
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be a finite partition of X. Choose 5 > 0 so that e < ——"',c1013:. Then W6. can choose

compact sets Bj C Aj. 1 .<_. j _<_ (C, With #(Aj \ Bj) < 6 and ‘8: H15}, =¢jfz'7éj, Let

k

77 = {BO,B,, ...,Bk} where Bo = X\U,-=1 Bj- We have ”(130) < Ice, and

k Bin/13' Bi Aj

H..(<In>=—ZnIBt->Zfl;(§5‘)‘°gfl( I; )

 

z: j=l

k
”(Boo/11')1 M(BoflAj) . . . p(B,-flA,-)

:_ B —————/"0g srnce1f2#0,———————=OOI‘1

M 0) 32:; M30) Bo “(8.)

S #(Bo) logk

< kelogk <1

SO we have H,,(C I 77) < 1.

Then fl = {Bo U 31,..., Bo U Bk} is an open Cover of X. We have if n, k 2 1,

Hug; k(V?:01 T—inIT-k(x)) S 108N(V?;.‘T"an—k
(,,) where #3,). is the conditional mea—

sure Of “ on T4: (33) and N(Vilz—ol T—inIT"“(2)) denotes the number of nonempty set in

the partition V22] T"n under T‘k(a:). Let me : X ——> X IT-I.E be the facotr map, by

Lemma 5.2.6 and Lemma 5.2.7

n—1
n—1

H,(\/ cram-k): / . H..,.(VT"nIT—n.)>d7rk.u
11:0 XIT- 5 i=0

n—l

S 10g(sup N( V T—in)IT—k(x))
16X i=0

n—l

S 10 su N T‘i -., -2"flag. I_\_/ mIT I) )

Let k go to infinity, divide by n and n approach to infinity, therefore

hm I é“) _<_ hiop(T | £15) +10s2 S hmp(T I E“) +10g2

So by Lemma 5.1.3

hu(C | 5‘) S hu(77 I 5') + HMC I 77)

S htop(T I 6—) + log2 +1

This gives hpIT I 5’) .<_ htop(T I 5‘) + log2 + 1 for all ,u e M(X, T).

This inequality hows for T" SO " ' MT | 6‘) S n - hwp(T. 6‘) +10g 2 + 1. We divide
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by n and let n approach to infinity. Hence hfl(T I 5‘) g htop (37¢)-

Now we show the other inequality.

Let c > 0 be given We should find some invariant measure ,u such that

1

_>_1imSUp—lo su rnHeTkxnew) ., g..xi’>. ( ())

Let 8(6, X, T) be the right Side Of this inequality.

As in Lemma 4 5 4 let En,k(:r:) be SUCh an (n, 6) separated set for T (:12) of maxrmal

cardinality 3,, ,.(6 X) Let O'n,k.:c G M(X ) be the atomic measure concentrated uni-

6 . LBt [1111,]: E M(X)

formly on the points of E.I. (I), i.e. any... 2mZyeEn,k($) y

be defined by p"k —— -"2:131 On,1... 0 T4. Since M(X) is compact we can choose a

subsequences {nj, kj} of natural numbers such that

1

lim ilog 8.1,ch (6 X)—— limsup —log sup r(n, e,Tk($))

n—mo k_>_0,:rEXj——)oo ”j

and {#11 k } converges in M (X) to some n E 11/! (X) We know that It IS an invariant

measure.

Now we choose a partition (1 = {A1,A2, ...,A.} of X so that diam(A,~) < e and

MBA) _— O for 1 < i S k- Since no member 0f V?:01T_ia can contain more than one

member of En,k($), then as in Remark 5.2.1

1Ogsnk(€ X)—_H0'n,.kx(v T—ia)

= H..,...<V T—ia I 5*)
i=0

n—l

< Han k I V T‘ioz I {_k“m) for all positive integer in

i==01

=H...,(V T—‘a I 6)
i=0

a(J’)-1 q-1

s E H..- (T-IWIIV T-‘a I 5*) + 2: H.-. (T400

r=0 i=0 (ES

a(j)-1 q-l .

S E: Han.k'xoT"('¢l+j)(V T-‘Ia I C”) + 2q10g(l)

r=0 i=0
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Sum this inequality over «7 from 0 to q _ 1 and by Remark 5‘21 til en

n—l 0—1

qlog ancIé, X) S ZHan,k..oT-P(V Tfla I 5-) ‘I‘ 27210g(/).

i=010:0

If we divide by n and use Remark 5-2-1 and the concavity 0f —.’L' Ing we can get

q—l

_,- _ 2 2
fiIog..,.(.,x> .<. H..,.(VT a I€ )+ 73—10%)

i=0

(5.3)

Since the members of V3; T40! have boundaries of n-measure zero, by Lemma 5.2.5

we can claim that

9‘1 q_1

_lim H .1. ,..,(V T“‘a | 5‘) = H.(\/T—"a I 5‘)
.raoo i=0 .20

Therefore replacing (n, [C ) by (nj, [6,) in (5.3) and letting j go to infinity we have

0-1 .

qs(e. x. T) s H.(V T“'a I 5‘) -—— Was“ I 5)-

i=0

where 8(6, X,T) = llmjaoo ”flog snj,kj(c,X). We can divide by q and let q go to

infinity to get

8(6.X, T) S M(T I €30) S (MIT I 6‘)

5.3 Preimage S-M-B Theorem

For each finite partition a of X, let 8(a) be the U-algebra generated by 0.

Definition 5.3.1 We define

(1) 0": : i:iT’ka

(2) mammal, v we» =..f8(1im._...Iaa v We» = mamas v T"‘(€))

Now let (X,B,n) be a probability space, {(Bn)} be a sequence of sub—a-algebra of

B and {Xn} be a sequence of random variables. Then {(Xn, B") : n ::= 1,2, ...} is a

martingale if

(1) B7; C Bn+1
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(2) Xn is measurable w-r.t. Bn

(3) EIIXnI] < oo

(4) EIXn+1/Bn]
= X. a.e.

Theorem 5.3.1I1] Every L1 b0unded martingale converges a.e.

{(X_,,,B_n) ; n = 1,2,3,...} iS a reversed martingale if (1),(2),(3) and (4) hold

for n 2 1.

Remark 5.3.1: For a reversed martingale, limnfioo X_,, = X exists and is integrable.

Lemma 5.3.1II1],Theorem 35-9] As above, we have for all A 6 oz

lim E(XA I 0‘71l V T_k(§)) = E(XA I klingoM? V T’k(€))) a.e.

k—ioo

Lemma 5.3.2 Let 9,, == limit—+00 IaIa'lth-k(§) for all n=1,2,3,.. and g“ — supnzlgm

then for each A Z 0 and each A 6 a, we have

uh: E A:g*(:1:) > A} S e")

PROOF

For each A E a, and n=1,2,... Consider

9A : £320 IAIagvT-Hg) = — .132. logE(XA I a? V T”‘(€))

= — log E(XA I [33250711 V T—k(€)))

This shows that 91’] exists and consider

Bf? = {:13 = 91%), -..,/H.) _<_ A,g::(x) > A}

Since BIA eB(1im,.....(aI v T"‘(€)))

MB? 0 A) =/ XA (#1

BIA

._= LA E(XA “132m: VT_k(f))) d#

=/ 8’9? dnge’AMBlA)

3:"
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Therefore

Ha: e A = 9*(rc) > A} = ZHIB: n A) s .—»\ 2 3.5;) S.-.

k=l k:1

0

Lemma 5.3.3 [[10],Corollary 6-2-2l 9* 6 L1.

Lemma 5.3.4 hm.-- 106...-..) exists.

PROOF '

a... 1.3.-..) = —— 22...... 10sE(XA I T"°(€))XA,

And B(T"° (5)) 33(T’(k+1)(€)) for all k 2 1

We also have E(E(XA I T'_k+1(§)) IT‘k(§)) = E(XA I T—k(§))

And E(E(XA I T""c (é) )) < 00 for all positive integer k.

by reversed martingale theorem, the limit exists. 0

Lemma 5.3-5 Let 9.. == llmk—m IaIa'l‘VT‘k(£)i

then

= lim 9n = lim lim IQIQWTHIEI exists a.e in L1.
"400 n—>oo k—>oo

PROOF

Since B (011 V T’k(€)) CBW?“ V T_k(€)) for all k 2 1.

then B(limk_,oo(a? V T_k(€))) CB (“Ink—onO/f+1 V T_k(§)))

And

9" = .152. IOIOI‘VT-Hé)

= aIlimk_.OO(a?vT-k(§)) by Lemma 4.6.1

= -2 log EIXA I grew? v T-kmnx.
Aea

with

E(E(XA I 1:15:10 a?“ V T4(5) Ilium... a?VT—k(£)) = E(XA I 1.112,]. a? V T—k(§))
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AIso‘ EK
E(XA \ Emit—

~00

1‘ v T—’ca 1. (5)» < 00 for all n by Leflflm 533a . . .

By Martingale Comet

gel’lce Theorem, 2 ' °
9 hm.H00 9., exists a.e. in D. o

Lemma
5.3.6 W

e let 60° = V°°= B i .

mg n .E {"3 f {811} is an increaSlng
sequence

of SUb‘U"

: l -

algebras oi X and let Boo
n "} 1s a decreasing sequence, and a is a finite

partition,
then

n——)OO

‘
3

1"“ Hem"
n) = H..(a I 3...).

PRO
OF

We show the decreas
ing case an

“10],
propos

ition
5.2.11]

Let A
e 01, becaus

e E(E(X
A IBn—i)

I3...) =
E' (XA I3”),

. .
'

.
uenCe

-

d a Simil
ar (llSCll

ssi0n for the incre
asmg seq

by reverse
d marting

ale theore
m and Billing

sley [1], Th
eorem

35.9,

mm...
E(XA I8.) = E(XA I3...)-

. b

B )-E(X
IB -

Smash
. Y

And IaIBn 7‘ —:AEa
lOgE(X

A I " A '1) IS a bound
ed contin

uofi

the bounde
d converg

ence theorem
, we can get

limna
oo HIC!

I B”)
:2: limit—

+00 I IaIBn
d”

: Ilimn
-aoo IaIBn

d” z: H(O.' I 800)
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T—klgl) + limk—mo H11 (Vi—:11 T_la I T—k(€))a
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= nmk... HAVE}? T40 ‘ T“‘<€>> - “mmHm | Two)

By Cesaro theorem and Lemma 5.3.6,
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1:1

-n-—+oo k—>oo
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Now we are ready to Show the following theorem Which is Simil t Sh

at 0 an

McMillan-Breiman theory.

"011-

Theorem 5.3.2 (preimage S-M-B theorem)

Let T : X -+X be an ergodic m.p.t. on the probability space (X, B a)
3 and a a fi .

111

partition of X. t9

Then

. . 1 1

31.12.23; 571' VI‘=oT-‘aIT-k(o($) = MT I 51a) a.e.

pROOF

Let g" = limkqoo IalV?=1 T-l(a)\/T‘k(§) fOI' ”21,2,3,...
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Therefore, we must show the following to prove the Theorem
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n—N
n

/Zl9n—s—g|oT"_
gloTs+j: lgn‘s‘glOTs

3:0
8:013=n-N+1

n

3

—<n+1IZ:GNoOT + n+1 Z lQn—s—9|0T’.

s=n-N+1

56   



We fix N and let 7" go to infinity. Since lgn—s * 9| _<_ 9* +9 6 £1, thesecond term

above tends t
0 0 a.e. Slmflarly, 0'” S g" + g E Li’so we may apply BirldzoffEI‘gOdic

Theorem to the first term:
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by the dominated convergence theOI‘em and that GN __, O a.e. then we can g
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By Lemma 5.3.7, h,,(T l 5’) S hp(T)- <>

.
o n—

5 4 Ergodic Dec
omposition

ofMQtriC
PrelmageE

tropy

Lemma 5.4.1:([14], Lem
ma 4.15) Let r 2 1 be a fixed integer F

.
I‘ each

exists 6 > 0 such that if C ={A1,...,Ar},17 = {01, .. MC} are an 6 > 0 there

X into 1' sets with EiziM(AAC.) < 5 then Hp(< l 77) + H#07 I C)< Wopartitions 0f

Lemma 5.4.2(cf.[14L Theorem 8.3) Let T: X fix be a Conti

111
“Cu

compact metric space. Let (Cali:1be a sequence of partitions SUch t at 8 map Of

mama.
Then

J“ 0.

MT ‘ 5') ._. .332.”u<T I {14.)

Proof:

Let 6 > 0. Choose a finite partition C = {Ah/12’ A} Such that h(T l gC

h,(T\§-)——eifh..(T|§‘)<oo,
orh“W>1/6ifh(Tlé‘)_

)>

00' ChOOSe

5 > 0 to correspond to e and r in Lemma 5.4.1. Choose compact Sets K C A

ii 1 < i <

T With “(‘4' \ K’) < 6/” + 1) Let 6_ int?! (“Kb Kj) and choose 11 Wlth diam(€n)
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< 6 /2.

POT 1 S. i < 7” let E?) be the union Of all the elements of C}. that intersect If} and

let ES) be the union Of the remaining elements of Cu. Since diam(Cn) < 51/2 9361’

CE G; can intersect at most One Ki. Then (5 = {129), ..., Erir)} is so that C; 5 Cu and

#(ES)AA,-) < 6' By Lemma 1 We have HpiC l Cn) < 6. Therefore ifn is such that

diam(Cn) < 5/2, then

hu(T [6-, C) S h#(T I 61¢) + 6 by Lemma 5.2.3

S Mme—.e.) +6

(T \ 5’)
Then diam(Cn) < 5/2 implies hu(T "5—1Cn) > h,‘(T l f“) -— 26 if hp (T \ 51%)

_
. h

hP(T, C") > (1/6)-—€ ifh,‘(T I E ) = 00. Therefore we Show that hmnaw ”

exists and equals h# (T l 5’)-

<7

Ergodic Decomposition of Invariant Measures

W“ T ‘ X —> X be a measurable map' we define EMT) as the set of POints

a: E X such that, for every continuous f : X -——> R, the limit

~

n—l

f =1im lZf(Tj(x))

1:0

n—mo'n.

exists. Further, let C0 (X ) be the space of continuous functions

with the norm llfll = Supxex Hf($)ll- For 5’3 e 20 (T) we define L X 5‘ R endows”—1
~73 . CO(X)

d

, 1 . s R bL.(f) = 331;; 2f(T3010)
3,

i=0

Then Lgc is a positive linear functional and L3(f) = 1, so that by Riesz’

theorem there exists a unique probability measure [it on X SUch th t

a

[X fdu. = Lz(f)

We define EAT) as the set 0f 35 E EMT) Such that

define 22(T) to be the set of a: e 21(T)

entatio11

Ma: is T-invariant. Then wef . .
or wh1ch pt IS ergodic, and 2(T) to be
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the set of a: 6 22C?) for Which 17 belongs to the support of #1. Now let/1 be an

invariant measure- Then every integrable function f is [tr-integrable for [1-311110%

every 6 ZCI‘) and

x
[((Lfdflxmiiz/

defl

Theorem 5.4.1: Ergodic Decomposition of measure-theoretic entropy

'

6

Let (X,T) be a compact dynarnICaI system and a a finite partition. Let ,u

‘

are

M(X’T) and {11.3122 6 E} with ”(E) = 1- Then a: —> h#z(Taa) and :13 z) MAT)

measurable functions with

hu(T, C!) = A h”: (T) a) dfl

arid

h#(T) = All”; (T) dp

r[‘heorem 5.4.2: Ergodic Decompositio
n of Metric Prei

mage Entropy
L t e

Let (X,T) be a. compact dynamical system and a a finite pattmm' e 11

Mom ...“... - . e E} withuw) =1- Then a: .., t. (T 1 :30) am .4

hpxtT \ E’) are measurable functions with

T - = ‘m IE ,a) thufllé .045.

and

h (T g- =/ h I T -

Proof:

By Lemma 5.3.7, we have
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BY Lemma 5.4.2, we choose a sequence 0f finite partitionS (Cm) SucIJ that (flam{(m) ’7‘

0. Then

pumawiring"(TIECm)

a: 4:13; 31,"; 33g}! (cm I Km)?” v TWO)

: lingo HMlim lim((m](§m)'1"1vT"k(§))
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3 #13100 :/ nllrrgoklggolquCm )"‘vT*(é’dfi)

:: 121100 hi4: (T l 6-, Cm)d/1'

m x

2: / Iim MT l sacrum
Xm—mo

z] h#I(T|€‘)du
X

o

60  



Bibliography

[1] P.Billingsley;Probabz'
lz'ty “Nd Measure; WileY-Interscience Publicationa0994)

'

1972)

[2] R.Bowen; Entropy-exp
answe "MIPS, Trans. Amer. Math. Soc. 1 331’(64,323‘

t Space-9
7

[3} M.Denker,C.G
rillenberg€

r and K.Sigmund; Ergodic Theory on Comp“C

Spring Lecture Notes in Math. 527, Spring: New York, (1976)

. .
rim»

[4] D.Fiebig;U.Fiebig and Z.N1teck1; Entropy and Preimage Sets» ‘6?

'

102A

\5\ MHuriey; On topologzca
l entropy of maps, Ergodic Theory and Dynam

Systems,15,557
-568,(1995)

ifil J.L.Keiiey; General Topology, Van Nostrand, PrinCe

m RLangevin and P.Wa1czaki; Entropz'e de l’z’mage in .
272087198

1

””6 app/z‘catz'onBull.Soc.Math.France.120,237-250,(1992)

[8] R.Langevin and P.Walczak; Entropz'e d’une dynamique, GR

312141444 ,(1991)
' Acad SC.

1' Paris.

[9] Z.Nlteck1 and F.Przytyck1; Prezmage entrapy of muppings,

I

' f ' and Chaos V019 N
nternv'sltion

of B11‘ urcation , . , 0.9, 1815-1843 (1999) a] Journ
,

a1

[10] K. Petersen;Ergodic
Theory; Cambridge University Press (19

r 81)

[11] C.Robinson; Dynamical Systems; stability,symbolz-CS and Ch CRC

aos,

(1995)

Press Inc.,

61  



12 V.A.Rohl' -
l l . 111,. On the Fundamental Ideals of Measure Theory, American Mathe-

matical Soc1ety, Translation Number 71 (1952)

[13] T.Romeo; some d -fun amental propertzes of continuous functions and topological

entropy, Pacific Journal of Mathematics,Vol.141 No.2 (1990)

14 P.Walte
- A 1

-
.

[ l ( r8) n ntT‘O
dUCt2

0n t0 BTQOd
ZC theor

y Sprin
ger LeCt

ure NOteS
, V01.

458,

1982)

62



  n(111911111311((1111:


