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ABSTRACT
RELATIONS AMONG CONDITIONAL ENTROPY, TOPOLO GICAL
ENTROPY AND POINTWISE PREIMAGE ENTROPY
By
Wen-Chiao,Cheng

Entropy was introduced as a conjugacy invariant for measure-preserving transforma-

tions and continuous transformations- However, in 1995 Hurley, Nitecki, and Przv-
tveki introduced several other entrOPY-like invariants for non-invertible maps. The
purpose of this dissertation is to d €fin€ and study two new invariants for non-invertible
maps. Our new invariants are m ©tivated by the some of those presented by Hurley-
Nitecki. and Przytycki.

In Chapter 2 and Chapter 3 we introduce the standard notions of measur:

theoretic entropy and topological entropy and we recall their basic propert'xes. Se.e\:d;\.

We also describe two of the preirnage entropy invariants studied by H‘“\e‘j’N: which

dy their

and Przytycki. After that we introduce new invariants of non-inpvertible m?
we call the upper pre-image entropy and the metric pre-image entropy and sty
properties. Among other things we obtain analogs of the well-k nown Vari ational Prin-
.Ciple for Topological Entropv and Shannon-McMillan-Breiman theorem for these new

invariants. The proofs require adaptation and modification of a numbe

r tEChnjqueg

in th e literature of ergodic theory and topological dynamics.
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Chapter 1
Introduction

. . and this
In 1958 Kolmogorov introduced the concept of entropy into ex- godlc theory,
n

has been the most successful invariant so far. For example,

that the two-sided (3, 3)-shift and the two-sided (3, 3 1)-shif¢ both have countable
Lebesgue spectrum and hence are spectrally isomorphic, but it ~~x,as not knowp whether

an 1942 it was known

they are conjugate. This was resolved in 1958 when Kolmo g o rov showeq that they
had entropies of log2 andlog3, respectively, and hence are xy ot Conjugate The o-
tion of entropy now used is slightly differently from that ased by Kolmogorov-

the
improvement was made by Sinai in 1959.

The topological entropy h(T) of a continuous map T of a <ompact mmetric space ¢

.tself is a measure of its dynamical complexity. It was first defined by Adler, Konheip

d McAndrew, and later given several equivalent definitionas by BOWen .
an

nd otherg
g topologjc
i al
and measure-theoretic entropies. Roughly speaking, the tOpOIOgiCa

easures the exponential growth rate with n of the number of djﬂ’erent
m

(see [2] for an exposition) and these definitions led to results connec tin
se

thI'Opy of T
fOI'Wa[d
T . orbj
segments of length n that can be distinguished to at least some finjy e tole it

When the mapping T under consideration is a homeomorphism_ then oy

endip

. i the future results in the ent
this procedure into the past instead of - ropy h(T~1) of
the inverse mapping, which equals h(T). However, when the map is poy inve

I'tible
i i " lead to se ’
different ways of “extending the procedure into the past” lea veral new g,

Opy_
like invariants for non-invertible maps.



: e
ently, the preimage relation emntropy h (T) of a compact metric Spac
More rec ) | for
by Langevin and Walczalkk (see [8].) and shown to be a new t00
was introduced by . fco ¢ L Hurley and
amics ol COmpact metric spaces. Later,
studying the topology and dyn . P e invariants
. [5] and [9].) introduced severa] other entropy-like
Nitecki, Przyty ki (see hich h entroPy hi(T)s
, Wnic i C
for non-invertik>le maps. One of these e call preimage bran d on how many
1 . . - ase
is closely related to h.(T). The other pair of entropy invariants is b  etingihe 4
. -n 13 n e
branches of the inverse of the iterated map 7-7 5¢ 4 point = ca ropies a0 d
. . . .mage .
by measurements of finite accuracy. We call them pointwise Pxel . lationships
In [5] and [9], Hurley established the fllowing
denote hy( KT) < hi(T"~y + he(T) < hr
mong these five invariants: hp(T) < h(T) < WT) < hi(T™
& i ce.
i i apping on a compact metric= spa
hm(T'), where T'is a continuous mapping . ce in the context of
In this dissertation we concentrate on hy(T) and h,(T), =sinc
n .
twise preimage entropy, the definitions of hy(T) and h,,, (T) are In some sense
intwise ’ ' .
" 1 s to (and were motivated by) Bowen’s notion of “loc =] entropy” (see [2]) In
analogou ) .
Chapter 2 and Chapter 3 we introduce measure-theoretic axy 3 topologicy] entropies
apte . '
d show the variational principle as conclusion. That is to S&Aay when Xisa compact
an .
etric space and T : X — X is continuous, the theorena showsg that the supre-
m 3 -
f measure-theoretic entropy hu(T) is equal to the t©pologica) entropy h(T)
um o . _ _ .
m T. After that, we investigate basic properties of point~wise Preimage entropies
fT. J . _
o) N (T), such as forward generator and metric p co Xnpatible with the topol-
h an m ) - ) ) ]
py Finally, we modify the definition of those two invariarats jn order ¢, show ¢he
ogy- ’
: ) preimage
and upper preimage entropy. The main technique used js ¢
entropy

) S-M-B theorem. We also show the relationship between ey,
preimage S-

e construction of
Variational Principle by M. Misiurewicz. Finally, we follow the mey
the Varniatio

hoq intrOduCed
Sh n. McMillan and Brieman and use it to show the ASympto;.
by Shannon,

. behavi or of
tric preimage entropy and ergodic decomposition.
metric



Chapter 2

Measure-Theoretic Entropy

In this chapter we discuss measure-preserving transformations , measure—theoretlc en-

tropy and some of their basic properties. Finally we will show ¢ ne existence of invari-

ant measures. We refer to Peter Walters’ book for this chapt e 3~ See[14].

2.1 Measure-Preserving ’I‘ransformatiOn

Definition 2.1.1 Suppose (X, Bl’ml)_’ Az, B2, ma) ave prObabthy SPaces.
(a) A transformation T : X; — X; is measurable if T~ (23,) < g,

i : X; = X, 1s measure-preservin i ;
(b) A transformation T 1 2 preservings if 7" g measurable ang

my(T~"(B2)) = ma(B2), VB2 € By.

(c) We say that T : X1 = X, is an invertible measure—preserving transf
SIo.

I'matjo
. . .s . -1 : n
if T is measure-preserving, bijective, and T~! is also measure~preservin |

Remarks:

(1) We should write T (X1, Bi,m;) = (X2, B2, m2) since the Meag,
/ ) re~preSerw.
property depends on the B's and m’s. n

(2) If T : X) = Xz and S : Xz = Xj are measure-preserving so is So7p . X
Xy

i tions are the structure preserv;
(3) Measure-preserving transformation preserving Maps (mop.

phisms) between measure spaces.

(4) Let (X;, B;,m;) denote the completion of (X;, B;,m1),i = 1,2. If T . (X,.B
Brmyy

3



(X2, B2, m2) is measure-preserving, then so is T : (X, B, # _

(5) We shall be mainly interested in thie case (g(lh:l,ml) - (X%B%mz):

1By, ma) = (X,, By, me) SiNCe we

wish to study the iterates T". When T' = X — ¥ i, measure-preserving transfor-
mation of (X, 3, m) we say that T preserves m or that 1, jg T-invariant.

In practice it would be difficult to check, using Definition 1.1, whether 3 given
transformation is measure-preserving or nNot since one usually does not have explicit
knowledge of all the members of B. However we often do have explicit knowledge of
a semi-algebra 7 generating B. (For example,when X is the u xjt interval T may be
the semni-algebra of all subintervals of X, and when X is a d & yect product sPac® T

may be the collection of all measurable rectangles.) The follows>-ing result is therefore

desirable in checking whether transformations are measure-pres gerving orf not.

Theorem 2.1.1 Suppose (X1,B1,m1), (X2, B2,m2) are prob» = bility spaces and T :
X; — X, is a transformation. Let T2 be a semi-algebra wh i «ph generates B, [f
- . If for
each A, € T we have T~'(Az) € By and mi(T7'(4y)) = ma(
o ) .
2), then T jg oo o

preserving.

Examples of Measure-Preserving Transformations
(1) The identity map I on (X, B, m) is obviously measure.preServing
(2) Let K be the unit circle and B be the o-algebra of Bore] Subse;s of i
let m be Haar measure. Let a be any fixed point in K and define . and
K g

The

by T(z) = a- 2 Then T is measure-preserving since m is Ha,
Meagy,
re.

transformation T is called a rotation of K.
(3) The transformation T(z) = a - = defined on any compact 2r
ou
is a fixed element of G) preserves Haar measure. Such transtrmat. G Where 4
long

rotations of G. a

Te calleq
(4) Any continuous endomorphism of a compact group onto itse]f Prese
measure. For example T'(z) = z" preserves Haar measure on the ypj¢ cir Ves Haa,
any non-zero integer. cle if is

(5) Any affine transformation of a compact group G preserves Haar
€asure, A
- An

4



affine transformation is a map of the form 77 (z) = q A(z) where a is any fixed slement

in G and A : G — G is a surjective endOmorphism. [t follows that 7' is measure
preserving beca.use it is the composition Of a rotatjop and an endomorphism- When
dealing with af¥ine transformations as measure—preseerg transformations W€ always

assume the me asure involved is normalised Haar measyre.

(6) Let k = 2 be a fixed integer and let (p, Py oens pk-z ) be a probablhty vec-

tor with non-zero entries (i.e, pi > 0 each ; and Y% _ 1). Let (Y, 2" )

.,k —1} and +he point i has T
sure pi. Let (X,B,m) = [[=,(Y,2",4). Define T : X - X by T({zn}) = {yn}

denote the measure space where Y = {0, 1

where 4 = Tn41. If F denotes the semi-algebra of all measim yable rec

tangles, then
m(T~ LA) =

m(A),VA € F. By Theorem 2.1.1, T is measure— Preserving. We call T
the two-sided (po,p1,- -+ ,pk—1)-shift. This is an example of zn invertible measure-
preserving transformation. We sometimes use the notation (- .

, 1%, ) for a
point of X (the”indicates the O-th position in the product) an then T can be writt
ritten

T((- - - ,Z_1%0T1, 7)) = (- ++, T1ToT1T2, ). The set Y is < alled the Stat
€ Spa
the shift. et

2.2 Partition and Entropy

Throughout this chapter (X, B,m) will denote a probability space.
Definition 2.2.1 A partition of (X,B,m) is a disjoint collectijop

eleme
whose union is X. nts of B

Here we shall be interested in finite partitions. They will be de
Note b

letters, e.g., ( = {41, A2, - -, Ac}. If ¢ is a finite partition of (X, B, Greek

™), the
Jection of all elements of B which are unions of elements of ( is a finjy, N the ¢,

sub_a_algeb
of B. We denote it by A(C). ra

Definition 2.2.2 Suppose ¢ and 7 are two partitions of (X, B, m). We wr; ¢
1te C

to mean that each element of ¢ is a union of elements of 7. We hay, ¢
<

A(¢) € A(n). RS



Definition 2.2.3 Let ¢ = {41, 42, An}.1 = {C,C,,...,C,} be two finite parti-
tions of (X, B, 7n). Their join is the partition

CVU——-{Aiﬂcj:l 525"71<J<k}

Definjtion 2-=.4 Suppose T: X — X is a measure-preserving -ansformation If ¢
={A,, Az, ---» Ak}, then T7"( denotes the partition (T4, T-nAx} and if Als 2
sub-g-algebra of B, then T—"A denotes the sub-g-algebra (T-7a:a cA}

a: :

Definition 2.2.5 Let ¢ = {4, A2, ...,Ax} be a partition of (=X.B m). The entropy
of ¢ is the value H(C) = — S, m(A:) log m(A)).

Remarks:

Mg = {Ay,..., Ay} where m(A;) = %,Vi then

k
1 1
H(() = - E ;'1210876‘ = log k.
i=1

We will find that logk is the maximum value for the entroy>~, of 4
Partition with k

sets.

(2) H() 2 0.

3)UT: X — X is measure-preserving then H(T-!¢) = H ( ).
Conditional entropy is useful in deriving properties of entro>y, and We discuss j
before we consider the entropy of a transformation. 1t now

Let A and C be two partitions on (X, B, m) with

A={A1 ., A} and C = {Cyy s Cp}

Definition 2.2.6 The entropy of A given C is the number

p k
H(A|C)= - C; m(AiNG)),  m(Ainc,
(Al ) ;m( ]); m(Cj) log m(C’j) )

omitting the j-terms when m(C;) = 0.
So to get H(A | C) one considers C; as a measure space with normalizeq
zZe m
m(-) | m(C;) and calculates the entropy of the partition of the set C. casure
J

o induced },
and then averages the answer taking into account the size of C;. YA

6



Theorem 2.2.1 Let (X,B,m) be a probadbility space. If A C. D are partitions on
X, then:

(1)H(AVC’ID)=H(A\D)+H(C\A Vv D).

(2) HAV C) = H(A)+ H(C | A).

(3) H(A) = H(A| D).

(4) HAVC | D)< H(A| D)+ H(C|D).

(5) HAVC) < H(A) + H(C).

(6) If T is measure-preserving, then

H(T'A | T-C) = H(A| C), and H(T~14) = H(A).

Now we extend this conditional entropy to more general sit. yations: We let ¢ =

(A1, Az, ..., } be a countable partition of X into measurable =s ets. For each T € X,

denoted by ¢(z) the element of ¢ to which z belongs. Then tlm < information function
associated to ( is defined to be

I (z) = —logm(((z Zlogm

Ae¢

X _a (x),
so that I(x) takes the constant value — logm(A) on the cell A

of ¢. Clearly
H(() = /XI((CE) dm(z)

It is useful to consider conditional information and entr opy. Which fal
’ take 1
count information that may already be in hand. Let S be a sub_,. into gc-

algeb
can recall that for ¢ € L'(X), the conditional expectation Z(g | o ra of B, We

. . . ¢ gIVe
an S-measurable function on X which satisfies n 3 js

/’?E(¢|(\\S)dm=/p¢dm

forall FeS; E(o]| $)(z) represents our expected value for ¢ if we
re

foreknowledge . Thus we let m(A | S) = E(Xa | §) and define the . 8lven thq

Ondl
information function of a countable partition ¢ given a o-algebra & 3 oL tiong)
e

Ie(z) = — Y logm(A | 9)Xa(z) =-Y logm(4|S)m m(A | g)
A€ Ae(



The conditional entropy of ¢ given 3 is defined by

HEC19) = Lfcls(x) dm

Lemma 2.2-1 If @ and 3 are countable ¥measyrap)e partitions of X and S is & SUP"
o

o-algebra of B, then
Iovpis = lajs + 251 a(a)ve

where A(a) is the o-algebra generated by a.

2.3 Entropy of a Measure—Preserving Transforma-

tion

Definition 2.3.1 Suppose T : X — X is a measure-preservin €= transformat;jop fth
: oI the
probability space (X, B,m). If { is a partition of X, then

) 1 n—1 ~
h(T,¢) = lim ;H(i\z/oT 1)

is called the entropy of T with respect to .

This means that if we think of an application of T as = Passag
€ of one

_ : ] d
time, then V:‘zol T~( represents the combined experiment o £ perforrm ay of
Ming the ¢

experiment, represented by ¢, on n consecutive days. Themn 4 (T ) ; riginal
) is ¢
information per day that one gets from performing the origing] o he average
Xper.

imen daily

forever. Now we can give the final stage of the defintion of the entre

preserving transformation.
Definition 2.3.2 If T : X — X is a measure-preserving transfonnat-
probability space (X, B,m) then h(T) = sup (T, (), where the Suprefnu,:lo’f of the
over all finite partitions ¢ of X, is called the entropy of T. IS takep
If, as above, we think of an application of T' as a passage of one day of time, 1
» thep

h(T) is the maximum average per day obtainable by performing the sap,
: ® SXPerimen
daily.



Theorem 2.3.1 If {an}n>1 1S a sequence of real numbers such that an4p < dn + @p

. a
lim =2
n—oo N

for all n,p then

exists and equals
. o Qn
inf —.
non

Corollary 2.3.1 If T : X — X is measure-pr eserving and « is a finite partition of
o .3. .
n—1p—i ists.
Definition 2.3.3 Let T; be a measure-Presetvang transformation of the probability
space (X;, Ci,m;),i = 1,2. We s8¥ that Ty is conjugate to T, if there is a measure-
i Y 1/ ’

i Y afie)
algebra isomorphism ¢ : (C2, m2)

(C1,m1) suach that ¢7, — 6.
Theorem 2.3.2 Entropy is & €onjugacy imvariant and pepce an isomorphism

invariant. -
Theorem 2.3.3 Suppose A, C are finite partitions of (X, B, ;) 41,4 T is a measure-

preserving transformation of the probability space (X, B, m) Then

(1) h(T, A) < H(A).

(2) h(T, AV C) < h(T, A) + (T, C).
(3) h(T, 4) < h(T,C) + H(A).
(4) (T, T~' A) = h(T, A).

(5) If k > 1, (T, A) = h(T, VT~ A).
(6) 1If T is invertible and k > 1, then h(T, A) = h(T, sz_k T’A)_

Theorem 2.3.4 Let T be a measure-preserving transformation of ¢}, probability

space (X,8,m). Then:

(1) For k > 0, h(T*) = kh(T).
(2) If T is invertible then h(T*) = |k|MT),Vk € Z.



2.4 Some Methods for Calculating h(7)

It is difficult to calculate h(Z") from its definition because one would need to calculate
h(T, A) for every finite partition A. We consider what conditions on A are needed to
ensure h(T) = h(T, A). The result leads to methods of calculating h(T) for specific
examples of measure-preserving tr ansformations and they also lead to proofs of fur-
ther properties of h(T).

Lemma 2.4.1 Let r > 1 be a fixed integer. For each € > 0 there exists § > 0 such
that if £ = {41, 4},n = {Cv C:} are any two partitions of (X,B,m) into
sets with S°7_, m(4; A Cy) < 6, then HE[n) +~HnN|E) <e

Let C be a finite sub-o-algebra of B, 53¥ C={C:i=1,, ---,n}, then the non-empty

sets of the form By, N By... N Bn» where B; = C; or X\C;, form a finite partition of

X. We denote it by a(C) and We define h(T, C") = h(T,a(C))_ If D is another finite

sub-o-algebra, then H(C | D) = H(a(C) | a(D)).

Lemma 2.4.2 Let (X,B,m) bea probability space and B, be an algebra such that
the o-algebra generated by Bo(denoted by B(Bo)) satisfies B( By)=1. Let C be a finite
sub-algebra of B. Then for every ¢ >0, there exists a finite algebra 2D, DCB, such

that H(D\C)+H(C|D)< .

Lemma 2.4.3 If {A;} is an increasing sequence of finite Sub-algebl’as of B
C is a finite sub-algebra with CC \/_ A, then H(C| A,) = 0 as n — o, and
Thoerem 2.4.1 (Kolmogorov-Sinai Theorem)
Let T be an invertible measure-preserving transformation of the probabih’ty .
(X, B,m) and let ® be a finite sub-algebra of B such that \/7> c T"R=p ;:::
(T = h(T,R).
Leypma 2.4.4 If T is a measure-preserving transformation of the DProbability Space
(X) B,m) and if A is a finite sub-algebra of B with \/°2 T A= B then MT) =
h(Z, A).

10



We shall now calculate the entropy of our examples.
1) ITI:(X,8m) — (X, B, m) is the identity, then A(Z) = 0. This is because
h(I,A) =lim1H(A) = 0. Also, if T? = I for some p # 0, then 4(T) = 0. In particu-

lar any measure-preserving transformation of a finite space has zero entropy.

(2) Theorem 2.4.2 Any rotation,T'(z) = az, of the unit circle K has zero entropy.

(3) Theorem 2.4.3 Any rotation of a compact metric abelian group has entropy
zero.

Definition 2.4.1 Let (X,B,m) be a probability space. A measure-preserving
transformation T of (X,B,m) is called ergodic if the only members B of B with
T-'B = B satisfy m(B) =0 or m(B) = 1.

Corollary 2.4.1 Any ergodic transformation i th discrete spectrym has zero entropy-

(4) If A is an endomorphis™ of the n-torus K™, then h(A) = " log|A| where the
summation is over all eigenvalues of the matrixc [A] with absalyte value greater than
one.

(5) Theorem 2.4.4 The two-sided {po, ---» Pk—1 }-shift hag entropy — 2’:;3 p; 10g pi.

Remark: The 2-sided (3,3 )-shift has entropy log2; the 2_siqeq 1,1 % )-shift has

entropy log3. Thus these transformations can not be conjugate.

2.5 Bogolioubov Theorem

We call the members of M (X) Borel probability measures on X. Eacp,
zeEX
mines a member &, of M(X) defined by §,(A)=1 if z € A and &,(A) deter-

o = 0, otherwise
Lemma 2.5.1 Let m, p be two Borel probability measures on the Metric o .
ace X If

[ fdm=[x fduVf€C(X), thenm = p.
Wae define a map T : M(X) — M(X) give by (Tw)(B) = w(T'B). We somet;
2 mes
wrjte po T ! instead of 7. We shall have the following.

Lemma 2.5.2
/fd(Tu) = [1oTduvsecx).

We are interested in those members of M(X) that are invariant ypeasures for T

11



Let M(X,T)= {ne M(X)|Ty = 42}. This set consists of a® 1, ¢ y/(x) making 7" 2
measuré-preserving transformation of (X, B, ). The follow i ng gives us a method of

constructings members of M(X,T).

Theoréem 2251 (Bogolioubov Theorem) Let T : X — X be continuous.  If
{0n}521 1S a sequence in M(X) and we define a new sequence {pn}ezy bY bn =
Such limit

~1d .
,%2:';0 T*o,,, then any limit point p of {y,} is a member of M (X,T).(
points exist by the compactness of M (X))

Corollary 2.5.1IfT: X — X is a continuous map of a compact metric space

X, then M(X,T) is non-empty.

12



Chapter 3

Topological Entropy

Adler, Konheim, and McAndrew introduced topological entropy as an invariant of

topological conjugacy and alsO as an analogue of measure theoretical entropy. To each
continuous transformation T : X — X of a compact topological space a non-negative
real number or 0o, denoted by A(T), is assigned. Later Dinaburg and Bowen gave 2
new, but equivalent, definition and this definition led to proofs of the result connecting

topological and measure-theoretic entropies. For these materials we recommend Peter

Walters’ book. See [14].

3.1 Definition Using Open Covers

Let X be a compact topological space. We shall be interested in Op ep covers of X
which we denote by o, 5, ...
Definition 3.1.1 If a, 8 are open cOvers of X their join a Vv 3 is the OX>en cover by all
sets of the form A N B where A € ¢, B € B. Similarly we can define the join V", o
of any finite collection of open covers of X. =
Definition 3.1.2 An open cover 3 is a refinement of an open cover @, written o < 3
if every member of 3 is a subset of a member of . ’
Hence a < a V 3 for any open Covers a, 3. Also if 3 is a subset of @, then o < 4.
Definition 3.1.3 If o is an open cover of X and T : X — X jg continuous, then

T-1a is the open cover consisting of all sets T~'4 where A € q.

13



pefinition 314 1f o is 2n open cover of X, let X(a) demaote the number of S€S
in a finite subcover of a With smallest cardinality. We define the entropy of & by
H(e) = log R(a).
Remarks:

(1) 2 (a) >0

(2) H (o) =0iff R(a) =1 if X € a.

(3) If o < B, then H(a) << H(B).

(4) H(a Vv B) < H(e) + H (B)-
(5) If T : X —» X is a continuous map, then H(T 'a) < H(a). If T is also

surjective, then H(T 'ax) = H(a).

Theorem 3.1.1 If o is an ope€n cover of X and T . X —s X is continuous, then
limn— oo %H(V?z_ol T a) exists.
Definition 3.1.5 If a is an open cover of X and 7 : X — X is a continuous map,

then the entropy of T relative to a is given by

n—1

1 )
h(T, = lim — -t
(00 = lim ZH(V T™)

Remarks:

(6) h(T,a) > 0.

(7) If a < B, then h(T, @) < h(T,B).

(8) MT,a) < H(c).
Definition 3.1.6 If T : X — X is continuous, the t i

e OPOIOglCal entroDy of T is given
by:
h(T) = sup (T, @)

where a ranges over all open covers of X.
Remarks:

(9) K(T) = 0.
(10) In the defintion of h(T) one can take the supremum over finite ope
Nl covers

of X.
14



(11) h(I) = 0 where 4 is the identity map of X.
(12) If ¥ is a closed Subset of X and TY =Y then h(Z}¥) < 4(T).

The next result shows that topological entropy is an invariant of topological conjugacy.

Theorem 3.1.2 If X;, X, are compact spaces and T; : X; — X; are continuous for

i = 1,2,and if ¢ : X; - X, is a continuous map with ¢X; = X2 and ¢T1 = T2,
then B(T1) > h(Tp). If ¢ is a homeomorphism, then h(T}) = h(T2)-

In the mext section we shall give a definition of h(T) that does not require X to

be compact and we give a defimnition of A(T) in this more general setting. However,

one result that is false when X is not compact is the following.

Theorem 3.1.3 If T : X —> X is a homeomorphism of a compact space X, then

h(T) = h(T1).

32 Bowen’s Definition

In this section we give the definition of topological entropy using separating and
spanning sets. This was done by Dinaburg and by Bowen, but Bowery also £3V€ the
definition when the space X is not compact and this will prove usexful later- We
shall give the definition when X is a metric space but the definitiory can easily be
formulated when X is a uniform space. See [3].

In this section (X,d) is a metric space, not necessarily compact . The open ball
centre z radius r will be denoted by B(z;r) and the closed ball by~ B(z,r). Our
definitions will depend on the metric d on X; we shall see later what t he dependence
on d is.

Throughout this section T will denote a fixed continuous function If 7 is a natyral
number, we can define a new metric d, on X by dn(z,y) = MaXogicn_, d(T(z), Tiy)
(The notation does not show the dependence on T.) The open bal] Centre 2 ang yra.

dius r in the metric d,, is ﬂ?;J T_iB(T"x; r).

Definition 3.2.1 Let n be a natural number, € > 0 and let K be g compact
Cl subset

15



of X- A subset Fof X is 53id toa (n,¢) span K with respe«ct ¢ 77if vie € £y € £
with @n(z,y) < ¢ ie.,
n—1
Kc [JNT BTy0.

yGF 1=0
If n is @ A tural number, ¢ > 0 and K is a compact subset of X let 7a(€, K') denote

the smallest cardinality of any (n, €) —spanning set for K with respect to T'-
Remark: Clearly 7,(¢, K) < oo because the compactness of K implies the covering
of K by the open sets 1y T~ *B(T"*%;¢),z € X, has a finite subcover.
Definition 3.2.2 If e > 0 and K is a compact subset of X, let
r(e, K , T) = limsup 1 log (€, K).

nsoo N

We write r (e, K, T, d) if we wish to emphasis the metric d.
Definition 3.2.3 If K is a compact subset of X, let (T, K) = limo7(e, K, T). The
topological entropy of T is W(T") = sup, h(T, ), where the supremum is taken over
the collection of all compact subsets of X. We sometimes write hy(T) to emphasis
the dependence on d.
Before giving any interpretations or explanations of this definition we shall give

an equivalent but “dual” definition. This definition will use the idea of Separated sets

which is dual to the notation of spanning sets.

Definition 3.2.4 Let n be a natural number, € > 0 and K be a Corxrypact subset of
X. A subset E of K is said to be (1, €) separated with respect to T if 2 y€E,z #Y,
implies dn(z,y) > ¢, i.e., for z € E the set N T7'B(Tiz;¢) containg p 4 other point
of E.

Definition 3.2.5 If n is a natural number, ¢ > 0 and K is a compa ¢ subset of X,
let s, (€, K) be the largest cardinality of any (7, €) separated subset of K with respect
to T. We write s,(e, K,T) to emPhasis T if we need to.

Remark: We have r, (e, K) < sn(€, K) < ra(5, K) and hence s, (e, K) < co.

16



Deﬁnitioh 3.2.6 Ife > 0 and K is a compact subset of X oy
1
s(e, K,T) = limsup = log s,(€, K)
n—oo T

We sometirmes write s(e, K, T, d) when we need to emphasis the metric d.

Remark: "The ideas for the definition come from the work of Kolmogorov ot the s1ze

of a metric space. If (X, p) is a metric space, then a subset F is said to an e-span of X

ifVr € XAy € F with p(z,y) < ¢, and a subset E is said to be e-separated if whenever
Y,z € E,y # z, then p(y,z) > €. The e-entropy of (X, p) is then the logarithm of the
minimum number of elements of an €-spanning set and the e-capacity 18 the logarithm
of the maximum number of elexments in an e-separated set. So in the definition 3.2.6,
we are considering the metric spaces (K,d,) and r,(¢, K) is the e-entropy of (K,d,)
and S, (¢, K) is the e-capacity Of (K,d,) where the e-entropy is the logarithm of the
mininnum number of elements Of an e-spanning set and the e-capacity is the logarithm

of maximum number of elements in an e-separated set. Therefore,

R(T, K) = limlimsup (e-entropy of (K, d,))

nsoo N

= li_x’ré lim sup 1 (e-capacity of (K, d,))

n—oo N

We shall now observe that the definition of A(T) in this section coincides with
that given in Section 3.1 when T is a continuous map of a compact m extrisable SP3¢®-
For the moment let us denote by A*(T) and &*(T, ) the numbers < gcuring in the
definition of topological entropy using open covers. In a metric space C X, d) we define
the diameter of a cover to be diam(a) = sup,¢, diam(A4), where diam( A) denotes
the diameter of the set A. If @, are open covers of X and diam(Q) is less than a

Lebesgue number for -y then y < c. The following result is often usefu ) for calculating

h*(T).

Theorem 3.2.1 Let (X,d) be a compact metric space. If {an}?o is a sequence
of open covers of X with diam(on) — 0, then if 2*(T) < oo, lim,, h*(T, @) exists
and equals A*(T), and if h*(T) = 00, then liMn—e0 h* (T, an) = oo.

The next result gives the basic relationship between the two ways of deﬁning
topological entropy.

17



tric space
Theorem 3.2.2 Let 7 : X — X be a continuous map of a compact M€

(X,d).
(1) If & is an o pen cover of X with Lebesgue number 4, then

N(\/ T~%a) < r(6/2,X) < n(6/2,%):

=0

(2)If ¢ > 0 and v is an open cover with diam(y) <6 then

n-1 )
ra(e, X) < sa(e, X) < RV T )-
1=0

ct .
f the comP? Co'mclde'

Theorem 3.2.3 If T: X — X is a continuous map © copY

(Xd), then h(T) = h*(T); i.e., the two definitions of tOP°

logical €

Theorem 3.2.4 o, b
- ]

(1) If (X, d) is a metric space, T 1s a continuous mMap and T

m:- hd(T) .

W
(2) Let (X, di), i = 1,2 be a compact metric space and T3 ¢

1S

(=1, y\\ ) d“lkm‘m\\.

fine a metric don X, x X, by d((z1,72), (¥1,y2)) = max{d,
hdkT\ ke T'Z) = hd\ (Tl) + hq, (T‘2)

3.3 Calculation of Topological Entropy

Theorem 3.2.1 provided the only method we have given so far for .. lewg
logical entropy of examples. The following is an analogue of ¢} Ko} tj"g the 4
. . op
theorem and provides a method of c alculating topological entropy f, Ogoroh .
Y 1or 4 o Sing;
Theorem 3.3.1 Let T : X — X TIbe an expansive homeomorphigp, of theexamples‘
C
metric space (X, d). “Mpac;
(1) If o is a generator for T' then A (77) = hT,a).
(2) If 4 is an expansive constant for 7> ¢hen h(T) =1(do, T) = $(60, T) for all b <
4.

Corollary 3.3.1 An expansive hom gomorphism has finite topologica) entropy.

Theorern 3.3.2 The two-sided shift on X = [1%.Y, where Y = {0,1,2,-- ,k = 1},
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has topological entropy log k. ~ y where
= %

Theorem 3.3.3 Let T : X - X be the two-sided shift on X
Y ={o,1,--- > £ —1}. Then llogOn(Xl)’

(1) If Xl isa ClOSed subset of X with TX] — Xl) then h(T,xl) = limp—oon

0 €
such that the set {{za}Zoo

where 6,(X1) is the number of n-tuples [ig, i1, ---» in—1]
ible
the

Xilzo = 1o, “*1Tnt1 = lny1} is non-empty. by an irreduc
in given
(2) Let T, : x A = X, denote the topological Markov chain 8! log A where
= lo
£k x k matrix A whose entries belong to {0,1}. Then A(TA) A is
largest iti i -
8 Positive eigenvalue of 4. ¢ @) polds alsO o theory of
The corresponding one-sided results are true. Par ™ w
- £0I
reducibl]e by arranging the matrix A in lower diagonal block gver
X0 any
Markov chains. q“a\

Remark: There is 3 transformation with topologicaﬂ entrop’ o
positive real number, nas 7010 1op
We already know that a rotation T of a compact metric grotP {aﬁt we now
logical entropy because there is a metric on G making T an isometry. In
show any homeomorphism of K has zero entropy where K jg the ynjt Cifde'
Theorem 3.34U7T: K 5 Kisa homeomorphism of the Unj, Circle, then /Z(T) _ 0

Corollary 3.3.1 Any homeomorphism of [0,1] has zero tOpojogical
e

Lropy,

3.4 The Variational Principle

In this section we describe the basic relationship between toPOlOgical .
) . Dtrqg
measure-theoretic entropy. If 7" is a. continuous map of a compact Metyi, o Py ang
1 i Qea t
h(T) = sup{hu(T)|u € M(X,T)}. “The inequality sup{h,(T)|, ¢ M(x, Ty, hep

- i S k(T
was proved by L.W. Goodwyn in 19gg. In 1970 E. L. Dinaburg Proveq equality i )
en

X has finite covering dimension anq later in 1970, T.N. T. GOOdman proved *qualig,

in the general case. See (3]

We sh 3]] need the following Simple lemma, where we use 9B to denote the bound.
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ary of a set B.

Lemma 3.4.1 Let X be 5 compact metric space and g € M(X)-

(DIfzeXands> there exists § < § such that p(8B(z;6)) = 0- "
diam{A;j

(2) If 6 > 0, there is  finjte partition £ = {A,, - , Ax} such that &1
/l(aAj) =0 f()r each ]

) <6 and

e al
he yariatio™?

the
d B(X)
ic space an

principle. In thig section X will always denote a compact metric Sp

o-algebra of Bore Subsets.
Remar ;.
(1) Ifﬂi € M(X)’ 1 <4 <mn, and p; > O’Zyzlpi =1, then

Hz:‘:l P-‘ll-‘(f) 2> Z piHl‘i(g)
i=1 ¢ q- 1 9\1\,
forany finite partition £ of (X, B(X)). )=

0= o facts
. 14 \\
(2) Suppose g,n are natural numbers and 1 < q < " Fo e{o\\()\‘“ %

(n—j) ave th

a(j) = [ n;”]- Here [b] denotes the integer part of b > 0. We b
’a(o)za(l)E'--Za(q—-l). 10<
*F1x 0 <j<qg-1 Then {0,1,2,..n —1} = {i+7q to<r< a(])’ o

1< q—1}US where S = {0,1,..,7—1,5 +a(j)J + Q(J)g+1 1}
] s e N —1fs
Since ]+0,(_])q 2] + [(S";—])) — 1](1 =n — q, we haVe th ’

€c
most 2q. ardlnalit}’ of §'1s at
eForeach0<j<g—1,(a(5) —1)g+j < [(@q;jl)"lh‘j =, _
{j+m9l0<j<qg-1,0<r =< a(y) — 1} are all distinct and g, ’ e’lurnbers
than n — g " &rea,
(3)If p€ M(X,T) and if p(8A;) = 0,0 < i <n—1, then
. n-1 n-1
u(d( ﬂl TA)) = O since B(QO T™4) c L_{ T 04,
i=0 = =

Theorem 3.4.1 (Variational Principle) Let T: X — X be a continuoug

Map of
a compact metric space X . Then

h(T) = sup{h,(T)|u € M(X,T)}.
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3.5 Measures with Maximal Entropy

The variational principle gives a natural way to pick out some members of M (X, T).

Definition 3.5.1 Let T : X — X be a continuous transformation on a compact
metric space X. A member y of M(X,T) is called a measure of maximal entropy for
T if h,(T) = h(T). And we let Mmax(X,T) denote the collection of all measures

with maximal entropy for 7.

Theorem 3.5.1 Let T : X — X be a continuous transformation of a compact
metric space. Then

(1) Mmax(X,T) is convex.
(2) If h(T) < oo the extreme points of Mmax (X, T) are precisely the ergodic merm-
bers of Mmax(X,T). .
(3) I h(T) < o0 and Mmax(X,T) # 0 then Mmax(X,T) contains an ergodic
sure.

(4) If h(T') = oo then Mmax (X, T) # 0.

(5) If the entropy map is upper semi-continuous, then Mmay (X, T) is compact and

mea-

non-empty.

Definition 3.5.2 A continuous transformation T : X — X of a compac; metric spa
ce
X is said to have a unique measure with maximal entropy if M,

azx (Xa T) COHSists Of
exactly one member. Such transformations are also called intrinsicially ergodic

Remarks:

(1) If T is uniquely ergodic and M (X,T) = {u} then T has a unique measure wit},
maximal entropy, because the variational principle gives h,(T) = h(T) in this case.
(2) If h(T) = co and T has a unique measure with maximal entropy, then T is uniquely
ergodic, because if Mmax(X,T) = {u} and m € M(X,T), then h%+%(T) = 00 s0

m =

21
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(3) If Mmax(X,T) = {p} then pis ergodic. If A(T) = co this follows from (2) and if
h(T) < oo it follows from Theorem 3.5.1.

22
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Chapter 4

Pointwise Preimage Entropy

. : T
In this chapter we first introduce pointwise preimage entropies h,(T) and hm(T)
. . . i those
which are defined in [5] and [9]- After that, we investigate basic properties of .
. ible wit
two invariants, show the existence of forward generator and metric p compatl

the topology.

4.1 Definitions of Pointwise Preimage EntroPY

Definition 4.1.1 Suppose T : X — X and z € X. For k=1,2,3,..., th e k" preimage
set of x under T is the subset T~*(z) of X where T™*(z) = {z € X|Tlc(z) =z}. For
N=1,2,..., the N*» branch at z is denoted by By(z,T) c XV and is defined in the

following;:

Bn(z,T) = {(2n5, 2v-1, s 20)|T(2i41) = 2,0 < < N — 1 and 2p =

z}

To formulate a topological definition, we let O(X) be the collection of aj) OPen coyers
of this compact metric space X (finite or infinite). Given U € O(X), let Uy~ be the
open cover of X" by product sets U, x Uz x ... x Un, U; € U. For a subset Sy XN
define R(U, N, Sy) to be the least cardinality among subcollections of UM which can
cover Sn.

Definition 4.1.2 (Pointwise preimage entropies).

23
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Let T: X — X be a continuous mapping from a compact space X to itself, define

hy(T) = sup{ sup [limsup —

logN(U N, B T
z€X Ueo(x) N-soo IV ~(z T}

and

ha(T) = sup {llmsup—log[sup R(U, N, By(z,T))]}
veo(X) N—ooo IV

Remark 4.1.1 Continuity of T and compactness of X insure that By (z,T) is com-

pact, and hence that the numbers R(U, N, By(z,T)) are all finite and bounded for
fixed N over z € X.

. o, 3 3 t
Like the topological entropy, we can show the metric definitions of our invariants

i - ated
by reinterpreting the numbers R(U, N, Sy) in terms of e-spanning and e-separ
: r some
sets. Given any metric space (X,d), we say a subset S C X is ¢-separated fo -
d say tha
€ > 0 if distinct points of S are at least e-apart:s # t € S, = d(s,t) 26 an

) . Let
RC AC X espans A if for every a € A, there exists 7 € R with d(a,"‘)< €
r(€,d, A) = min{card(R)|R is e-spans A},
s(e,d, A) = max{card(S)|S is e-separated A}.

Theorem 4.1.1{9] If (X, d) is a compact metric space, for any positiv-e integer N let
d" be the metric on XV given by

dN((xh -eey IN), (yl, ey yN)) = 12122)1(\/ d(zzayt)

Then for T': X — X continuous, the invariants from definition 4.1.2 cap, be caley]
Culateq
via the following.

h,(T) = sup{llrn(hrnsupj—v—log( s(e,d", By(z,T))))},

zeX € N 00

and

hon(T) = lgrg){llmSUPjv-log(Sup s(e,d™, Bw(z,T)))}

In either formula,

s(e,d", Bu(z,T))
can be replaced by r(e,d", Bn(z,T))
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In topological entropy We define a new metric d, on X by

d,(z,y) max d(T(z),T'(y))

T o<i<n—1

A subset F of X is said to (n,¢€) span K if for all z € K, exist y € F with dn(z,y) < €
and let r, (e, K) denote the smallest cardinality of any (n, €)-spanning set for K. Simi-
lar definition for (n, €) separated set and s, (€, K). We denote R(U)|y to be the smallest

cardinality of subsets in U which covers Y. See [14].

Remark 4.1.2 Let U €0O(X), some easy consequences are the following
r(e,d", By(z,T)) = rn(e, T-N(2)), s(e,d", By (z,T)) = sn(6, TV (2))
and R(U, N, B(z,T)) = R(Vazo T"U)lr-n ).

Remark 4.1.3 If 7" is a homeomorphism, then hp(T) = hp(T) =0.

hp(T) =
Remark 4.1.4(7) and [8] If X is the circle or any closed interval, then T
h(T) = h(T).
Remark 4.1.5\4\ There exists T : X —»X continuous, X a Zero_dimens"onal comp

metric space, for which h,(T) = 0 and h,(T) > 0.

act

Theorem 4.1.29) If T} : X = X and T : Y — Y are topologically Conjugate, then
hp(T1) = hp(T2) and hp(Th) = hn(T3).

Remark 4.1.6 Like topological entropy property, the next one is txiviy) Also, in
section 4.3, we will concern another metric compatible with the tOPOIOgy of X ang

represent its pointwise preimage entropy with respect to this metric.

Theorem 4.1.3 If d is another metric on compact set X which defines the sam
e

topology as d, then the pointwise Preimage entropy with respect to d are equa) to the

pointwise preimage entropy with respect to d.

In theorem 4.1.2, if T; is a factor of T} then h(T3) < h(T1). However this inequality

can not hold for pointwise preimage entropy. The easiest example of increase under

25




factors for the pointwise preimage entropies is obtained via inverse Jimits. Recall that

the inverse limit of the map f : X — X is the shift o; defined on the sequence space

> ={{z:}2 | (=) =2imr,i=1,2, ..}
!

by
af(a;Oa Iy, ) = (f(x())a f(xl), "-) = (f(IO)’ Zo, T1, "')
The product topology on 3, C X ~ makes 3, compact and oy 2 homeomorphism.
Furthermore, if f is surjective, then it is a factor of its inverse limit via the projection
o({z:}2,) = xo.
By Remark 4.1.3, we have
hp(0y) = hm(og) = 0.

Thus, any map f with h,(f) = An(f) > 0 gives an example showing

. f gand
Remark 4.1.7 There exist maps f: X = X, g:Y — Y with f a factor ol &

hin (f) = hy(f) > hem(g) = hp(9).

An easy example is the standard expanding map of the circle:set .S'= R/ Z and
define f(x+2Z)=2x+Z. It is easy to check that

ho(f) = hm(f) = log2.

We turn now to Cartesian products and additivity. Subadditivity, of all ¢
WO in-
variants is relatively easy to prove:

Lemma 4.1.1 For any continuous maps T; : X; = X;,i = 1,2, we have
ho(T1 ¥ T3) < ha(Th) + ha(T2)

where o = p or m.
Topological entropy is multiplicative under iterates and we can show that the same

is true for pointwise preimage entropy.
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Lemma 4.1.2 Suppose 7 : X — X is continuous, wher-e y ,
15 & COrmpact metric

space. Then for every k € N, we have
ha(T*) =k - ho(T)

where @ = p or m.

4.2 Forward Generator

After finishing the first versiont of this section, we found that Fiebig, U.Fiebig and
.Fiebig, U.
7. Nitecki used the tool of graph theory to get similar byt ety ults. See 14
er results.

Definition 4.2.1 Let X be & compact metric space gpq T.x > X2 contin®”

ous function. A finite open COVer a of Xis a fo every
rward gen for T
erator
sequience (A,)F of members of @ theset (o 74, contas "
B n aing at MO

Lemma 4.2.1 Let T : X — X be a continuous functioyy th Compa(:t metric
w1l a

space (X,d). Let o be a forward generator f:
P ( ) g or T. Then fo, any >0 aN > 0 SUCh
. N —-n . bl
that each set in \/_, T "a has diameter less than e.
PROOF
Suppose the theorem does not hold. Then 3¢ > osuch that V5 ~. o
L - ‘ » I
¢ and 34;; € ,0<i <) with z;,y; € (Y_oT*Aj;i. There is a Subg >,z oz,
o
natural numbers such that Zjx = Z and y;x — y since X is compact W“'E‘HCe e}
. ) k 0
Consider the sets Ajko- Infinitely many of them coincide since o g 6 €
nit

e,

Zx, sk € Ao, say, for infinitely many k and hence =, y € Ao Similarly, g
) T eq,

oo e . . - ch
infinitely many Ajxn coincide and we obtain An, € @ with 2,y € T™"A,. Thyg ’

o0
x,y € ﬂT'"An,
0

contradicting the fact that cv is a forward generator. O

Defizit jon 4.2.2 Let T be a continuous function of a compact metric space (X,d)
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to itself is said to be forward expansive if 3>0 and x# y € X, then 3In € N with

d(T"z,T"y)> é. We call § a forward expansive constant.

Lemma 4.2.2 Let T be a continuous function of a compact metric space (X, d)
to itself. Then T is forward expansive iff T has a forward generator.

PROOF

Let 6 be a forward expansive constant for T and let a be a finite cover by open balls of
radius §/2. Suppose that z,y € (g T "A, where 4, € a. Then d(T"(z),T"(y)) <
4 for all n € N{J|[0] so, by assumption z = y. Then a is a forward generator.
Conversely, suppose a is a forward generator. Let § be a Lebesgue number for a,
If d(T™(z),T™(y)) < ¢ for all n €N|J[0], then for all n €N exists A, € a with
T"(z), T"(y) € A, and so, z,y € (g T "An.

Since this intersection contains at most one point we have £ = y. Hence T is forward

expansive. {
Example: {{1,2,..m}", 0o} where o is left-shift.

As section 4.1,we let O(X) be the collection of all covers on X. Let U € O(X)

and z €X, we denote
1
h,(T,U) = sup{limsup — log R(U, N, Bn(z,T))},
z€X N-—ooo N
and

1
hm(T,U) = limsup ¥ log{supR(U, N, Bn(z,T))}.

N-—ooo zeX
Let Y CX, R(U)|y be the smallest cardinality of subsets in U which covers Y. For

any fixed z in X, we have X(U, N, By(z,T)) = N(V:’___O T"U)|r-~(z)-

Theorem 4.2.1 Let T : X — X be a forward expansive continuous function of

the compact metric space (X,d). If a is a forward generator for T, then

hy(T) = hy(T, ) and hn(T) = hm (T, ).
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PROOF

Since @ is a forward generator, for any U € O(X), we can choose V. large enough
such that U < V T ",

k k N
log N(V T—"U)IT—I:(Z.) < log N(V T™" V T7"a)|r-*(z) for any k.

n=0 n=0 n=0
Then
1 k N
i sup 1?108 N[V T™"Ullr-+ @ < limsup 2 log R(\) T™"(\] T™"a)|r-s(,
n=0 n=0 n=0
k+N
=1 fnd -
umsupklogN V T-a),. K(z)
n=0
<1 k+N
< limsu —l -n
k—)oop k °& N( \/0 T a)'T-(#H")(z)
n=
: k + 7n 1 k+N N (x)
=] _ ek
el Tk kv loeR( VT ol
n.-o
) k+ N T~ )\ -t N ()
<1 i 1
S lim sup — hﬁsupm log‘&(\]
i 1 k+N
= 1ﬂi}pk+NlogN(7l\=/() T‘"Q)IT-(k-._N)(x)

So we can get h,(T,U) < hp(T, a) for any fixed z in X this i .
p -~

©s
T) = su h,(T,U)} <
W) = 2R 250, M) S s he(T )
Then hy(T) = h,(T, @)-
N
Similarly, since U < Voo T™Na, R(Vizo Dlr+@ < R(Vr=0 Vaso T*"QNT%( )

h (T, U) = hmsup P log[supN V T"U]|p-+()
n=0

<limsup + % log[sup &(\/ T( v T a)”T"'(r),

k—o0 =0 n=0

By asimjlar calculation, we can get hn,(T,U) < hm(T, @). Finally we get hn(T) =
tnllay O
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th #(7) < pppi Then
there isz & X WIth Ca.rd(T Z') 2 A" for aH n and in partlcula[ %

Theorem 4.2.2[4 Let 77 : X X pe forward expansive ~wy;
ho(T) = R (T) = h(T).

4.3 Metric p Compatible with the Topology

Lermama 4.3.1 Let T : X — X be a continuoyg map of a compact metric space (X, d).

(1) If o is an open cover of X Wwith Lebesgue number 6, then for any z € X,
R(V7D T alr-n@) < 7nl6/2,T77(z)) < sn(8/2,T-n(z))
(2) Xfe> 0 and 7 is an open cover with diam () < they for any z €X,
—_n T—n n—l i
e 7)< 50T SNV Ty

PROOF (1) It's abvious that r,(e, T-7(z)) < Sn(e, Tn(y ).
Consider any T™"(z) of z and let F be a (n, 8/2) SPanning seq. ‘ (T
or
t(8/2,T7™(x)). Then

of car dinality

T (z) < ﬁ T~ B(T'z;5/2)

T€F i=0

and since for each i, B(T";6/2) is a subset of a membe, of o

o T ar-n(5)) < 7a(6/2,T7"(2)). RS Ve have N(\/
(2) Let E be a (n,e) separated set of cardinality sn(e,T™™(z)) for T,
ber of the cover \/"7; ' T~*y|r-n(z) can contain two elements of E so

RV T Yr=n(y). © =) <

Lemma 4.3.2 Let 7 : X — X be a forward expansive continuous functioy, for
compact metric space (X,d) with forward expansive constant e. Then

ho(T) = sup{lxmsup—logrn(éoa T™(z))}

rz€X n—oo

= sup{lim sup — 1 log sn(do, T7"(z))}

rz€X n-ooo
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and

hm (77) = limsup L

n—oo T2

log sup r,, (6,, T~
gSup ( (z))

n—o0

. 1
= limsup — log sup s,,(,, T""(z))
n TEX

for all &, < e/4.

PROOF

We can let §, < e/4. For all € X, choose Ty, T2, - T such that T™(x) C
Uie1 B(z:; € — 24,). This cover & = {B(zi;e/2)I1 < i <k} is a forward generator
with the Lebesgue number 28o- So by Lemma, 4.3.1,

. 1
hom(T,) < 1limsup = -
(10 S R O8 e e T2 ) < ()
Similar calculation for hy(T). <
AC
Lexmma 4.3.3 Let T be a forward expansive cOntinuoys £y, from compact metrn
. Ction ir0
space (X, d) to itself with forward expansive constant ¢ Then for all ¢ 0,3N > 0,
. . ’ en 10T
such that d(T*z,T'y) < e for all i with 0 < 5 < N, this impsy o ) e
ies x,Y) ="

PROOF
We may assume there exists € > 0. For all N = 1,2,3,.

> Wi
M fdg, g, €X

st. d(T™(za), T"(ys)) < &0 < n < N and d(z,, y,) > e cp

Yni = Y- Then d(z,y) > ¢, but d(T'z, T'y) < e for all ; — 1,2, 3, . OO&Q Ty < g anq

the forward expansive property of T'. ¢ s Contradg;
ictg

Lemma 4.3.4 Let X be a compact metric space and T : X — x ar
or“’ard
ex.

pansive with forward expansive constant e. Then for 0 < ¢ < e/2 and ¢
there

exists Cs,c such that for all positive integer n and all = in X, we have

Sn (6, T (z)) < Cé,esn(fi T—n(z))-

PROOF
Forl< ¢ < €/2and 0 <4, by Lemma 4.3 and uniform continuity of 7" on X there

exists g positive integer N and a > 0 such that
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if dy(z,y) < 2¢, then d(z,y) <4
and if d(z,y) < o, then dy(z, y) <6

Now fix z and let n be big enough, assume E is a maximal (n, 6)-separated set of
T7"(z) and F is a maximal (n, €)-separated set of T7"(z), then for # € E there
is a 2(£) € F such that dn(%,2(£)) < e. Let E, = {¢ € E : 2(#) = z}, then
card(E) < > .crcard(E,). But if T,y € E,, then d,(z,y) < 2 by definition of E,,
hence

d(T‘(:z),T‘(y)) <édfori=0,1,2,...,n— N.

Since 1,y € F,d,(z,y) > § and if d(T"N+1(z), Tr=N+1(y)) < @, this implies that
dn (T N+ (z), T"~N+1(y)) < §, then dn(z,y) < 6. This is a contradiction. So
d(T""N*1(z), T*~N+1(3)) > o and T"=N*1(z),T"¥*Y(y) € X, X is compact. This
implies that card(E,) is bounded by some constant Cse. Therefore, card(E,) <
Csccard(F). O

Remark: We can show Lemma 4.3.2 from Lemma 4.3.4.
During the remainder of this section we will assume that T is a forward expansive
continuous function of a compact metric space (X, d) onto itself with forward expan-

sive constant e >0.

Now for any integer n > 0, we define:
Wo={(z,9) € X x X :d(T'z,T'y) < efor0 < i< n}

It's obvious that (32, W,, = A where A = {(z,7) : z € X}.
Take € small enough such that 3¢ < e. Choose N from the above Lemma 4.3 with

respect to €. We define V;, = W,y for n=0,1,2,3,...

and (,y) € V,410V,410V, 1 means there exists u,v € X s.t (z,u), (u,v) and (v,y) €

Vn+l-

Lemma 4.3.5 The sequence V, is a nested sequence of symmetric neighborhoods

of A whose intersection is A and such that Vatr1o Va0V C V, for all n > 0.
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PROOF
Let (z,y) € Vo410 Va1 0 Vg, then exists u,v € X s.t

(z,u), (v,v) and (v,y) € V, 4,

ie. d(T'z,T'u) <e,0<i< (n+1)N,

d(T'u,T'v) <e,0<i< (n+1)N

and d(T*v,T'y) <e,0<i< (n+1)N
By Lemma 4.3.3,

d(T'z, T'u) < €,d(T"u, T') < € and d(T*v, T'y) < € for 0 < i < nN.
The triangle inequality can imply
d(T'z,T'y) < 3e < efor0<i<nN.

This implies that (z,y) € V,.

Metrization Lemma 4.3.6(6] Let V;, be a sequence of symmetric neighborhoods
of the diagonal, A , of Xx X with V5 = X x X such that V,,,,0V,;,0V,,, CV, for

each n and ();° Vo, = A. Then there is a metric D compatible with the topology of

such that the following condition holds for n> 1,
Vo C {(z,y): D(z,y) < 1/2"} C Vo

We define Ny(A4;¢) = {z;d(z, A) < €} where d is a metric on A.

There following consequence comes from Lemma 4.3.5 and Lemma 4.3.6

Lemma 4.3.7 There is a metric p compatible with the topology of X such that
N,(AD;1/2™) TV, C N,(A;1/27)

for all positive integer n.

Lemma 4.3.8 There is a metric p compatible with the topology of X and there
is A, 0 < A < 1, such that

N (LA™ 2N) € Wi © Ny(A;0™)
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for all positive integers m.
PROOF

Consider any positive integer m = nN + 7,0 <7 <N, it is easy to see that

Vart = Wiy = Wanin S Wong; = Win S Wy = V.

Therefore V, .1 C W,, C V... From Lemma 4.3 we can get N(A ;1/2"*2) C V4, and

1

Va © N(A;1/27). Now we let A = ()7,

N,,(A; Am+2N) C Np(A;/\m+2N—j) — NP(A;/\("+2)N)
= Np(A; (%)n+2) - Vn+1 cCWnC Va
C No(Bi55) = Np(&5 (3)"7)

=N, (A; A™N) = Ny(A; A™73) € N, (H; AmN)

This finished the proof of the Lemma. ¢

Theorem 4.3.1 Assume T is a forward expansive continuous function of a com-
pact metric space (X,d) onto itself with forward expansive constant e > 0. Then
there is a metric p compatible with the topology of X and there is A\, 0 < A < 1, such
that

hy(T) = sup{limsup % log i (A¥, T~*(z))}

TeX k—o00
and

hm(T) = limsup 1 log{sup ri (\¥, T7%(z))}

.

k— 00 zeX

with respect to this metric p.

PROOF

For any z €X we consider T7*(z). Let E be a (k,e)-spanning set of T-%(x) with
minimum cardinality. For any y € T~%(z), there exists z € E s.t. d(T'y,T"z) < e
for 0 < i < k. So (y,z) € Wi_;. From Lemma 4.8 we can find a metric p on X
and )\,0 < X < 1, such that (z,y) € N,(A;A*"1=V). This means that there exists
an F which is (1,A*~1~V)-spanning set with metric p and §(F) < {(E). Therefore
ri(A-1-N T-k(z)) < ri(e, T*(x)).

On the other hand consider F to be a (1,A¥~1+2¥)_spanning set of T~*(z) with respect
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to this metric p and with minimum cardinality. Thus for any y € T~*(z), there exists
z€ F such that (y,z) € N,(Q; M=1+2N) So (z,z) € Wy_, by Lemma 4.8. This means
d(T*y,T'z) < e,0 < i < k. and this implies that we can find E which is (k, e)-spanning
set of T*(z) with card(E) < card(F). Therefore ri(e, T7%(z)) < ri(M\~1+2" T-¥(z)).

Since p is fixed, let e be small enough and using Lemma 4.2, we have

h,(T) = sup{limsup % log i (MK, T7%(z))}

zeX koo
and

hn(T) = liin_’sogp % log :161)13 r(\E, T7%(x)).
¢
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Chapter 5

Mo dified Pointwise Preimage
entropy

. all it upPer
In this chapter we modify the original pointwise preimage entropy and ¢

Opy and

show the

ntr
preimage entropy. Then we show the relationship between conditiona! ©
o
upper preimage entropy. Finally, we follow the S-M-B method and use b

asymptotic behavior of metric preimage entropy and ergodic decompsimo“'

5.1 New Definitions

We continue to consider a continuous self-map T of the compact met

Cs
Given a subset X ¢ X, a § > 0, and an positive integer n, we set Pace (X, d).

r(n,6,K) = r(n, 6, K,T) = max{card(E) : EC K, Eis (n,6) ~ 5o
rated}.
Definition 5.1.1(Upper Preimage Entropy)

hio(T | £7) = 11m lim sup—log sup 7(n,d,T *z)

n—o00 k>0,ze X
n-1
= sup hmsup—log sup R( VT ‘a)|r-ks

a Open Cover n—oco T k>0z€X o

Remark 5.1.1 iy, (T) < hn(T) < heop(T | €7) < A(T)
Example: Consider § : {1,2}" — {1,2}¥ and T': {1,2}¢ - {1, 2}Z where S and T
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are left-shifts. Then we can get

hp(S X T) = hn(S XT) = hip(S x T | £7) =log2 < h(S x T) = 2log?2

Next, let £ denote the point partition of X which we also identify with the o0-

algebra B of Borel measurable sets.

For 2 > 0, we set
" =TT"¢
. . - - ; . ili let
Given a finite partition a, let a® = V*!T~%a. For a T-invariant probability #»

Hy (o™ | f—k)

) - 11 this the
denote the conditional entropy of a" given the o-algebra T-*B. We ca

entropy of a” given the preimage partition £~*.

- o . asing in the
Note that, since H,(- | -) is increasing in the first variable and decreasiné

second variable, we have n > m,l > k implies
Hy(o" | €7) 2 Hula™ | €7°):
Set
n - n —00 n - . -k
Hu(a™ | €7) = Hu(e" | €)= sup Hy(a" | €)= lim H,(a™ |€)
k>0 k— o0
Lemma 5.1.1 The function a, = H,(a" | £€7) is subadditjye.
PROOF

We need to show
Qnim < Ay + Q.

We have
Gnsm = Jim Hy(a™ | €74
= lim Hy(@"VT"a™ | %)
= lim (Hy(e" | €7%) + Hu(T"a™ [ o v £7%))
< lim Hy(a™ [€7%) + lim Hy(T™"a™ | £7%)
= lim Hu(a™ | %) + lim Hy(a™ | £7)

=0an + am
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Definition 5.1.2(Metric Preimage Entropy)

- - 1 n | e- e 1 -
hu(T | €7,0) = hu(e | €7) = lim —H, (0" |€) = inf ~H,(a"|€)
and
hu(T | €7) = sup hy(a | £€7) = sup h, (T | €7, @)
Lemna 5.1.2 Metric preimage entropy h,(T | £7) is a measure-theoretic conju-
: jugac
gacy invariant and upper preimage entropy h,(7T | £7) is a topological conJugacy
invariant.
PROOF
he topo-

rove t
It is easy to show the measure-theoretic conjugacy invariant. Here we p

Xi
T+ X; N
logical conjugacy invariant. First we let X;, X, be compact spaces and 1 * 2

h
map wit
be continuous for i = 1,2 and ¢ : X; — X, be a hOmeomorphlsm

, we have
¢T, = T,¢. First we let o be an open cover of X2. Then if oy) =

for k£ > O,N(d)“‘a)lT]_k(y) = ()75
Hence,

n-1

hiop(T2 | £, @) = llmsup log sup N v T{ia)

—k
n—oo k>0,z€ X2 i=0 sz (z)

= limsup — log sup N((j)"\/T2—ia/)/r\l6
1

nsoo N k>0,y€ X, (y)
n—1
= llmsup—log sup R( \/qﬁ 'T;%a)|
nosoo N k>0peXy o, s (y)
n—-1
= lim sup—- log sup N(\/ T~ )| s
n—co k20yeXy 5, )

= hiop(T1 | €7,07 ')

Hence hup(T2 | §7) < hyop(Ty | €7)- If ¢ is a homeomorphism then ¢~ 'T2 = Ty -1
by the above, hy, (T | €7) < htop (T2 | £7). ©
Lemma 5.1.3 Let ¢ and 7 be two finite partitions of X, then

hu(C1€7) < h,(n1€7) + Hu(C I )
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PROOQOF

\/T"Cl€ ) <H(VT“<VVT"71)|€ )

=0
n—1

= H (v Tin| &™) +Hp(v T | \/T"nvf )
i=0 i=0
n-1

<H(VT-*n|5'°)+Hy(vT-*<|VT )

=0 i=0

Let k — oo, and H, (Vi IT_'C | V:-:ol T7'n) <n-H,|n)

This imuplies that H,((} | €7) S Hu(ng | €7) +n- Hy(C | n)-

Divide by n and let n go to infinity, then h,(¢ | £€7) < hu(n | £) + HulC m-©
Lemma 5.1.4 For any fixed k,

ho(T | € ,0) = hy(T 1 €7, \[ T ).

1=0

PROOF

k
h(T 167, T~0) = lim ~Hy((@*)) |€7)

1=0

=,}gg°; O 7 VT ‘@) &)

1=0
k+n-1
k+n—1 1 ktn—1
= lim H,( T~:
n—o0 n k+n-1 z\=/0 Q/f‘)
= h#(T | 5_,0)

%

Lemma 5.1.5 If {A,} is an increasing sequence of finite partitions of X and ¢
1S a

partition with C < \/%2) A;, then H,(C | A;) — 0 as n— oo.

Let C be a finite sub-g-algebra of B, say C = {C; : i = 1,2,...,n}, then the non-empty
sets of the form By N B,...N By, where B; = C; or X\C;, form a finite partition of X.

We denote it by a(C) and we define h (T | £7,C) = hu(T | £, a(C)).
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Theorem 5.1.1 (Kolxx20gorov-Sinai)
Let T be am.p.t. of (X, B,u) and R be a finite sub-o-algebra s.t. veo  T-"(a(R))=D5
then
h(T' 1 €7) = hu(T | €7, R)
PROOF Let C be any partition, we show that h,(T | ¢~,C) < hu(T | £, a®)
For n > 1, by Lemma 5.1.3 and Lemma 5.1.4,

ho(T | €,C) < hu(T | €7, Vo T a(R)) + H,(C | VioT "e(®)
= h,(T | €, a(R)) + H,(C | Vi T *aR))
Let A, = V* ,T'a(A) be Lemma 5.1.5, H,(C | A,) =0 as™ — 0. ©

a sub-algebra 0
A) where

. f B with
Lemma 5.1.6 Let (X, B,u) be a probability space. If Bo 18

B(Bo)=B then for m.p.t. T : X = X we have h,(T | §7) =sup hy(T | &
the supremum is taken over all finite sub-algebras A of Bo -

PROOF

Let € > 0. Let C CB be finite. Then there exists a finite D CBy s
D) <e.

Thus

uch that HC |

h’l‘(T I f—’C) S h’#(T | é_’D) + H#(C ’ D)
<hy(T |¢,D) +e

Therefore h, (T | £-,C) < € +sup{hu(T | €7,D) : D CBy, D fin;
_ . . Ite
hu(T | €) < sup{h,(T | £,D) : D CBy, D is finite}. The OPPOsit,
1

obvious. ¢

} and thus

Lemma 5.1.7 Let (X, B,n) be a probability space and let {An}‘;o be an in
Creasj
sequence of finite sub-algebras of B such that V72, 4, =B. If T : X — X i5 N
Pp-t.,
then

hu(T 1€7) = nlLIIgoh,,(T 1 €7, An).
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Lemma 5.1.8 Let o; be a finite partition and 3; be a sub-o-algebra of (X;,B;, mi),
for 7 = 1,2, then

E(Xaxp | Q) = E(Xa | S1) - E(X5 | ), a.e.
where & = 3| x 5,4 € a1, B € ay, S is a sub-o-algebra of B; and S is a sub-o-

algebra of B,.
PROOF

We have Inq(z,y) = — 2 4xBea 108 E(Xaxp | )X axp(x,y) and
since [ E(X4 | S1)dmy = [ Xadmy, [i, E(Xp | S2)dme = Jr, XBdmM2: for F €

let“—;mlxm2,

%1,F2 (S 3‘2.
Then

ffleF2 E(XAXB I %)d/,t = ffleFz XAde‘U,
=pu(ANF, x BNF,)=m(ANEF)-my(BN F2)

And
o E(Xa | 31)dmy - [, E(Xp | S2)dma = mi(ANF1) -my(BN Fy)

= ffleFz(E(XA | g1) : E(XB I %2))611_1,
This implies that E(Xaxp | $) = E(Xa | S1) - E(Xs | S2) a.e. o

Theorem 5.1.2 Let (X;,B81,m;) and (X2,B,,m;) be probability SPae.
€S and let 7, .
1:

X, — X1, T, : X, = X, be m.p.t. Then

h#(Tl X T2 l f_) = h‘ml (Tl I 6_) + hmz(T2 | f—)

where g = m; x m,.

PROOF
Let F, denote the algebra of finite unions of measurable rectangles. Thep B(Fy)=B B
=B, xB,.

By Lemma 5.1.6,
hu(Ty x Ty | &) = sup{hu(Th x T, | §7,C) : C CFo,C finite} .
But if C is finite and C CFo, then C C a; X ay for some finite oy cB;, a2 CB,,

Hence

41



hu(Ty x T | €7) = Sup{h,(Ty x Ty | €7, 01 X a3) : g CBy, 0y CBs, oy, finite}

Let a = a(a; x ap) = a(a1) X a(a),

//Ialg x(z,y)dp = E //logE(XAxB | € ") Xaxp(z,y) dp
AxBe€a

= 2 / / (log E(X4 | £7%) + log E(Xg | €7%))Xaxp(:¥) dmdmz

AxBe€a

== (fflogE(XAlé ") X ax 5z, y) dmadm2

AxBea

; / / log E(Xa | €)X 4y 5(x, y)) dmadm2)

= — E logE(XAlf_k)XAdml
Aca(ay)

- Z log E(Xp | £ %)X g dm2
Bea(az)

This implies
Hy(a| €7*%) = Hpy (o) | €7%) + Hmy (e () | £75)-

Then
HyTy x Ty | £ ,0) = Hp, (T | €7, a(1)) + Hoo (T | €7, 0 (cp))-
So that
hu(Ty X Ta | €7) = by (T1 | €7) + hm2 (T | £€7).
¢

Theorem 5.1.3 Let T; : X; = Xi,i = 1,2, be a continuous map, on ¢
the
metric space X;. Then Ruop(Ti X T2 | €7) = huop(Th | £7) + huop(T3 | €.

PROOF
Let d; be the metric on X;. We use the metric d((z, z2), (¥1,%2)) = max(di (z,, y ), da
»J1),dgy xz,yz))

COmpact

on X; X Xs.
If F; is an (n,€)-spanning set for T-*z; € X, then Fy X F; is an (n, €)- spanning set

for T *(z;) x T5* (z,). Hence
r(n,€, (T, x To) "*(z1,22)) < r(n,6, T(x1)) - T(n,€, T *(x5))
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which implies

r(n, €, (T1 X T2)"k(:1:1, :1;2)) <log sup T(n, €, Tl—k(zl))

log sup
kzo,zlx:cgexlxxz k20,11€X1
—k
+log sup r(n,e 75 (z2))-
k20,12€x2

Therefore
ha(Ty X T21€7) < hay(Th|€7, X)) + hay (T2|€7, X2)-

Now we show the other inequality. |
riational principle

For all 7 -invariant measure p; and Tp-invariant measure p2, by V&

(Theorem 5.2.1) we have
hdl (T1 I 5_,X1) > h,_“(Tl l 6_) and hd2(T2 l 6—,X2) P h'”(Tz \ g-)

Then
ha (Ty | €7, X)) + hay(T2 1 €7, X2) = hy (11 1€7) + hy,(T2 \ £
= hl-llxl‘2(T1 > T2 I 5_)

This implies
ha (Ty | €7, X1) + he, (T2 | €7, X2) 2 sup h;uxm(Tl x T, | f—)
Pl X p2
=h(Ti x T | £7)

So we can get the equality. ¢

Theorem 5.1.4 Let T be a measure-preserving transformation of the probar
space (X,B,u). Then the map p — h,(a,T) is affine where a is any fini, pait.n.hty
of X. Hence, so is the map u — h,(T | £7). Ition
PROOF(See [3].)

For any integer n, constant 0 < A < 1 and measures u, y;, fl2, wWith

B = ’\ll'l + (1 - ’\)#2,

we have
0 < Hu(a™)) = AH,, (o) — (1 - VHu(a™) <log?
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Hence,
hu(a) = Ahy, (@) + (1 = A)hy,(a).
Now, we proceed to h,(T,&7).

Fix a finite partition @ and an increasing sequence 8, < 3, < ... converging to ¢

as 7 — OO.

Then , for a positive integer n, we have
Hy(a | €7) = lim lim H,(a |T™™8;)
Next, consider the finite partition «, 8. For any measure [, W€ have
Hy(a|B) =Hy(aVv B) — Hu(B)-
Using the finite partitions o™ and T-™f;, we have
0< H,(a"VT™8)) — AH,, (" VT™™8) — (1 — N Hy, (@™ V T-mB;) < log? )
and
0> —[H,(T™™B:) — AH,,(T™™8:) — (1 = NV Hw(T™™5,)] > — 1082 (5:2)

The second term of (5.2) is non-positive, so adding it to the second texrm of (5'1) does

not increase the latter’s value, so

Hy(o" | T™8:) = AHy, (@™ | TT"6;) = (1 — A)Hy, (o™ | T3,
* S/og?
Similarly, adding the second term of (5.1) to that of (5.2) does not deCre

ase th
value, so € lattersg

- 10g2 < Hﬂ(an l T_mﬂi) - )‘HIM (an | T_mﬂi) - (1 - /\)Huz(a" | T‘mg.)

Putting these two inequalities together gives
—log2 < Hy(a™ |T™™B) — My, (" | T™"6) — (1 = \)Hy, (o™ | T7™Bi) < log2
Letting ¢ — 00 and then m — 00 gives
—log2 < H,(a™ | €7) = AH,, (o™ | €7) — (1 = N Hy,(a" | £7) < log2
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Now, dividing by n and letting n — oo gives that
hulx | €7) = Mrya (@] €) + (1= Ny (e [ £7)

as required. ¢

5.2 Variational Principle

Lemma 5.2.1 For each positive integer r, h, (7" | &) =r-h(T &)

PROOF
First show that h,(T" | E—,\/:;é TA)=r1-h,(T|&,A) for any finite partition A.

We have
nr—1
. r i — —k
_ - A) = lim —supH T A | T~ (¢))
rohu(T 1€, A4) = Tim —Ceup "(,-\=/o | (
1 n—1 _ r—1 )
= lim —sup H,(\/ T (\/ T7*4) | T7"7*(£)))
00 N k>0 j=0 i=0
r—1
= h,(T7 | €, \/ T74)
1=0

ico T7iA)

Thus
r-h,(T|&)=r-supa hu(T | €7, A) = sup hu(T7 | €7,V
< sup, b, (T" | € ,¢) = hu(TT | £7) where c is any finite partition.

On the other hand,
h(T7 | €70 A) < hu(T7 1€, Vig TTHA) =7 - hy(T7 | €7, 4)

This implies that h,(T" | £7) =7 hu(T 1£7). ¢

Definition 5.2.1
1 _
limlimsup ~log_sup r(n,c,T7*(z))

htop(TIE—)ze_,o 00 £>0,z€X
1 n-—1

_ su limsup —log sup RN ~Blr-+@)

p p;log, sup (.-\=/0T Blr-+@

open COVer § n—»oo
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where r(n, e, T-*1) is the minimal cardinality of (n,¢) sparm njng set in7-4z) or th
Z) or e

max cardinality of (n,€) separating set in T-*(z) and R(B)] T ~4(;) is the minimal car-

dinality of subcover of 3 which can cover T—¥(z).

Lemma 5.2.2 hyo, (T™ | £€7) = m - heop(T | €7) for all positive integer m.

PROOF

Here we consider the spanning set-
Since for z € X, r(n, &, T™,T (%)) <r(mn,e, T, T~*(z)) forall k > 1

We have 1 logsup,>ozex r(n, 6 T, T (7)) < I Jog supg>o,ze x 7 (MM, € T,T~%(z))

Therefore hso,(T™ | €7) < 12 - heop(T | €7)
Since T is uniformly contirruous, Ve > 0,36 > 0 such that d(z,y) < 6 implies

mazocicm1d(Tx, T'y) < € Forallz,yin X.
So an (n,d, T *™x)-spannings set w.rt. T™ is also an (nm2,€)-spanning set for T~*x

w.r.t. T.
Hence r(n, 8, T™, T~*"z) 2 7(mn,, T, T *x), so

1
™ vog sup r(mn, e, T,T*(z)) < =log sup 7(n,é,T™ T *(z))
mn k>0,zeX n k>0,z€X ’

Therefore, 1+ higp(T | §7) < huop(T™ [ £7). O
Lemma 5.2.3 For all € there exists z and k > 0 such that E, is an (n, ¢) separated

set in T—*(x) with card(En) = SUPk>qzex T(n, €, T~*(z)).

PROOF
Because 7(n, e, T*(z)) < r(n, €, X), it’s a finite bounded positive integer for all in

X and positive integer k. We can easily find such E,,.

Lemma 5.2.4 Let E C T-"(x), then E C T~"~*(T*z) for all positive integer k.

Remark 5.2.1 [See [14], Remark 8.2.2JAssume 1 < ¢ < n, for 0 < J < qg-1,

put a(j) = [S";—jl],where [b] denotes the integer part of b. We have :

(1) Fix0< j <q-1. Then
{0,1,2,...,n—1}={j+rq+i|05r§a(j)_1,05iSq_l}us
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where S = {0,1,...d — 1,7 +a(j)g,j+a(G)g+1,...n — 1%} and g cardinality of S

is at most 2q.
(2) The numbers {j + 7¢|0 < j < ¢ — 1,0 < r < a(j) — 1} are all distinct and are all

no greater than n — gq.
Theorem 5.2.1 Assume pj — # with p(0a) = 0, then

q-1 A q-1
lim H, (\] T 1 €7%) = Hy(\/ T~ | £7)
J—00 i=0

1=0

for all finite partition c.

Lemma 5.2.5 Assume u; —> # With u(0cr) = 0, then

Jj-1 q—1 . q-1 s _
lim lim H,,(\/T ' £k = JL“L‘OH“(V T | e *) = HJ(\/ T |€7)
1=0

n—o0 k—oo im0 A
PROOF
By Lemma 5.3.6 we know that
q—1 q-1
tim lim H,.(V T7a |€7%) = lim H,,(\/ T | lim £7¥)
n—o0 k—oo i=0 n—o0 im0 koo
q-1 _
OGRS
q—-1
= Jlim H,(\/ T | ¢
1=0
g—1
= H(\/ T | €)
1=0
¢

Measurable decompositions are necessary to show the variational principle. See [12].

Let ¢ be an arbitrary decomposition of the Lebesgue space X and X |¢ be the factor

space. Let the factor map 7 : X — X |, be n(z) = C where x € C € (. Then

u(A) = /X (4N C) s

Where pc is the conditional measure on C.
Lemma 5.2.6 Let o be a partition of (X, B,u), consider the factor map 7k : X -
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X |r-x¢ and p is the conditional measure of y on T=%(x) - Thep

n-1 n—1
—1 —ky —1
BV T €)= JorpaHoesV T e

Lemma 5.2.7: Let n = {Bo, B1,..., B} be a partition of X such that 3 =
{ByU B,, ..., BoU By} is an open cover of X. Then

R\ Ty <%\ Tp)ly -2

1=0
for any subset Y of X.
PROOF:

Consider the subcover B of /3 with cardinality N(V::ol T-B)\v,
let A; = (BoUBi,) N (T*BoUT™'B,)N...N (T-(VBy UT " VB;,_,) € B
Now we decompose A; into the partition

A = {B;,NT'B;,N..nT~""YB;  :ji=00r i, 0<k<n—1}

Then R(A;) = 2" and we have

n—1 n-1
{\_/OT nny: yOT‘ nOY #6} CU, A

This implies that 1
n— n-—-1
R(V T7n)ly <R(\/ T78)|y - 2"
i=0 i=0
&

Now we are ready to show the relation between upper preimage entropy and metric
preimage entropy. Here, the main technique used is the construction made by M.
Misiurewicz.
Theorem 5.2.2 (Variational Principle)
Let T : X— X be a continuous map of a compact metric space X, then

hiop(T 1€7) = sup  hu(T[§7)

HEM(X,T)

PROOF
Let u € M(X,T). We show that hy(T | €7) < hop(T | £€7). Let ¢ = {Ay, ..., Ak}
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be a finite partition of X. Choose ¢ > 0 so that ¢ < To=x
Hep klogx- Then we can choose

compact sets B; C Aj, 1 < j < k, with u(A; \ B;) <eand B, NB; =gifi# j. Let
1 = {By, By, ... Bk} where By = X\U;":] B;. We have F"(BO) < ke, and

B;NA;
H(C | 7) = ZuB)Zﬂ(p(B, tog 4B )
—u(Bo);%lo M%_l since if 7 # 0, ﬁ(%(%,)é‘)_ Oorl

< 1(Bo) logk

< kelogk <1

So we have H,(¢ | n) < 1.
Then f = {ByU B,..., Bo VY B:} is an open cover of X. We have if n,k > 1,

H,. .V F T k) < logR(V} T “Nr- k(z)) Where fe4, 1S the conditional mea-
sure of y on T7*(z) and R(Vi5 Vi 77|T k(z)) denotes the number of nonempty set in
the partition Vi—g T-*n under T~*(z). Let m : X = X |7« be the facotr map, by

Lemma 5.2.6 and Lemma 9.2.7

nei n-—1
—i —ky _ —i
Hp,(iV:oT rn‘{ )_ AIT—kE H“"k(iyoT n'T‘-k(z))dﬂ'kt#
n-1
< log( sup N(v T" 77)|T k(z))
= n—1
<log sup x(\/ T78)lr-r(z) - 2")

zEr

Let k go to infinity, divide by 7 and n approach to infinity, therefore
h(n | €) < huop(T | €7, 8) +10g2 < heop(T | £7) + log2
So by Lemma 5.1.3

h(¢1€7) < hu(n | €7) + Hu(C I m)
< hip(T | €7) +1og2 +1

This gives hu(T | £7) < heop(T |€7) +1log2+1 for all p € M(X, T).
This inequality holds for Trson-h,(T|€7)<n-hop(T, €7) + log2 + 1. We divide
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by n and let n approach to infinity. Hence h, (T |€7) < htomn (T [€7).

Now we show the other inequality.
Let € > 0 be given. We should find some invariant measure y such that

1
h(T|€7) 2 llmsup—log sup r(n,€, T %(x))
z€X,k>0

Let s(e, X, T) be the right side of this inequality.
As in Lemma 4.5.4 let E, x(x) b€ Such an (n,¢) separated set for T7%(z) of maximal
cardinality s, (e, X). Let orkz € M(X) be the atomic measure concentrated uni-

formly on the points of Enx (z),ie oppy = T(lex) Y yeE, o(e) Ou- L€t pnk € M(X)
be defined by pnx = % oy, 10n ke o T7*. Since M(X) is compact we can choose a
subsequences {n;, k;} of natuiral numbers such that
1
lim —log sn,k; (6,X) =limsup —log sup 7 (n,6, T~ k(z))
=00 M nco N k>0,z€X
and {fin, k } converges in M (X) to some p € M(X). We know that p is an invariant

measure.
Now we choose a partition a = {4y, As, ..., Ac} of X so that diam(4;) < € and
p(A) =0 for1 <i<k. Since no member of \/?7) T"*a can contain more than one

member of Enk(z), then as in Remark 5.2.1

\Og Sn k(f X U'nkf(v T_la)

1=0
n-1
=H, .\ T a|™)
1=0
n—1
< Han_k'z(\/ T~ | €%~™) for all positive integer m
1——0
an k, z V T—'a I 6
1=0
a(j)—-1 .
<3 Ho,o (T (rq+1)(VT—ta |€)+> H,,,.(T")
r=0 3—0 lGS
a(j)-1 q-1 '
< Z Hdn,k,xOT—("7+j)(V T 'a , f—) + 2q 10g(l)
r=0 1=0
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Sum this inequality over j from 0 to ¢ —1 and by Remark 5.2, the
.1, n

n-1 q-1
qlogsaxle, X) < ZH”n,k,on_p(V T o | €7) + 2¢%log(1).
p=0 i=0

If we divide by n and use Remark 5.2.1 and the concavity of —zlogz we can get

q—1
e ey 2
%IOg sup(6, X) S Hyu ,(\/ T2 ) €7) + -Z—log(l) (5.3)
1=0

Since the members of /%, T’ —*a have boundaries of y-measure zero, by Lemma 5.2.5

we can claim that
q-1

. . _ g-1 .
lim Hy,, ,k,.(i\=/0T @l &) =H,(\/T al|€)

1=0
Therefore replacing (72, &) by (n;,k;) in (5.3) and letting j go to infinity we have

q-1

qs(e,X,T) < H#(V T™'a 1 §7) = H,,(ag_l | €7)-

1=0
where s(e, X,T) = limjoo 7-10g s, (e, X). We can divide by ¢ and let g g0 t©
infinity to get
s(6, X, T) S hu(T | € ,a) <h(T ] &)

5.3 Preimage S-M-B Theorem

For each finite partition o of X, let B(a) be the o-algebra generated by a.
Definition 5.3.1 We define

(1) o = Vi, T™*a
(2) limk—sooB(h V T7(€)) =aer Blimoolat v T7H()) = MLy Blat vV TT(E))

Now let (X,B,u) be a probability space, {(Bn)} be a sequence of sub-o-algebra of
B and {X.} be a sequence of random variables. Then {(X,, B,):n = 1,2,..}is2
martingale if

(1) Bn C Bn+1
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(2) X, is measurable w.r.t. B,
(3) E[|Xy|) < o0
(4) E[Xp41/Bn) = Xn ace.

Theorem 5.3.1[1] Every L' bounded martingale converges a.e.

{(X_a,B_,) i n = 1,2,3,...} is a reversed martingale if (1),(2),(3) and (4) hold

forn > 1.
Remark 5.3.1: For a reversed martingale, lim,, ., X_, = X exists and is integrable

Lemma 5.3.1[[1],Theorem 35.9] As above, we have for all A € a
lim E(Xs| ol ¥ T™H&) = E(Xa | lim (a7 v T())) 2

Lemma 5.3.2 Let g, = UMk Iyjanyr-k(e) for all n=1,2,3,... and g* = SUP;>1 gn>

then for each X > 0 and each A € o, we have
p{re A:g'(z) > A} <e™?

PROOYF

For each A € a, and n=1,2,...
g = Jim Lapvr-sie = = Jim log E(X4 | o v T74(6))

Consider

= —log E(X4 | kli_?go(a’{ v T7*(€)))

This shows that g? exists and consider

={z: 91(2), ..., 901 (z) < A, gi(z) > A}

Since B{* eB(anoo(a‘l v T*(€)))
uBAnA) = [ Xads
BA

1

— /;A E(Xa |k11’1:1°(ai VT—k(f))) dp

B / e~ dy < e u(B{')
Bp
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Therefore

preAign(@) >N =D uBENA) e uglh <o
k=1 k=1
<o

Lemma 5.3.3 [[10],Corollary 6.2-2 g* € L.

Lemma 5.3.4 limy_,o0 It r—*+(5) €XiSts.
PROOF
Since Iy ir-k) = — 2= ach 08 E(Xa | T75(€))X4,
And B(T*(€)) >B(T —*(¢)) for all k > 1
We also have E(E(Xa | T75Y(€)) |r-x¢y) = E(Xa | T7*(€))
And E(E(X4 | T7%(£))) < oo for all positive integer k.

by reversed martingale theorem, the limit exists. ¢

Lemma 5.3.5 Let gn = limy_,, Lajanvr-*(g),

then

= lim = lim i —k i ; 1
Jim gn = Jig, 100, Tajapur v exists ae in L1

PROOF
Since B (a} v T7*(£)) cB(at' vV T*()) for all k > 1,

then B(limg_,o_(a” VT *(£))) CB (limesoo(aft! vV T7(€)))

And
gn = Jim Tajapvr-x(e)
= I|lime— oo (@ VT (€)) by Lemma 4.6.1
= =Y log E(x4 | Jim (af v T™*(€)))X.4
A€a
with

E(E(Xa | klg{.lo o

93

TV T7(E) imgs oo apvr—+9) = E(X4 | Jim o} V T7%(¢))



. \V4 k
Also, EKEKXA\\““D:—%OO =1V T"7%(£))) < oo for all n by Lex®my, 533

exace Th ; o
By Martingale CO™ & eorem, g =N, o gn exiStS a.e. in L. ¢

t 6 - n 1Y .
Lemma 5.3.6 We le *® v _1 Af {B.,} is an increasing sequence of sub-0-

B, if {3 .
algebras of X and let Boo =11 {B.}is a decreasing sequence, and a is a finite

partition, then

n—00

lim Ho(@1B0) = 27, (o | Ba)

PROOF

We show the decreasing case and a similax discussion for the incr
({10, proposition 5.2.11]

Let A € a, because E(E(Xa |Bn-1) \Br) = £ (X4 |By),

by reversed martingale theorem and Billingsley [1], Theop o 3591
limy o0 E(Xa |Ba) = F (X4 |Boo) m\ct\o“aby
And IaB. = "era‘ogE(XA |Bn)- E(Xa\Bn) is a bound d (:ontlﬂ‘l

the bounded convergence theorerm, we can get

1IMp—oo H(a \ Bn) = limuc0 f Iaan dll
= J‘“mn—»oo Iaan dlj' = H(a \ BO")

¢

Lemma 5.3.7 Let o be 2 finite partition, then

hu(a | éf) = h#(T \ 6—’0‘) 1520 1_‘_)m Hp(a | \_/ T v
1=1 —k

n—1 (6))
=H,,(a\ lim lim VT lavT~ (5))

n—oo k—+oo

PROOF

v Tav v T a | THE) = -
Since limg—oo u(a ‘ Mk~ o Hy(a \VL‘T o v
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T4(€)) + limkoroo He (V71 T4 | T5(€)),
Then

limy oo Hu(e | VIZX 71 vV T5(£))
= hmk—boo Hu(a \Y% Tala V...V T —0- 1)a | T- (f)) — limMg—oo H,‘(vl_l T_[ I

T=*(¢))
= limpoo Hu(Vi T | T75E) ) — i, f, (\VI2 T e | T-*70(0)

We can get,
i—1 _
S limgsoo Hale | Vi 1T e v Tk(g))

= limgyoo Hu(Vig T | T7HO) — limy 0 Hou(a | T-X(€))

By, Cesaro theorem and Lemma 5.3.6,

hu(a | £7) = lim lim H, (x| v T 'a v T"‘({))
=1

n—o00 k—oo

n—00 k— o0

= H,(a| lim lim v T o\, T"‘(g)),
=1

Now we are ready to show the following theorem whjc)p js st Jar o Shann()n
McMillan-Breiman theory-
Theorem 5.3.2 (preimage S-M-B theorem)
Let T : X =X be an ergodic m.p.t. on the probability space (X,

) and ¢ , fin
partition of X. Nte
Then !

lim lim -——"’I\/ T—‘alT“‘(ﬁ)(x) =h,(T | & ,a) ae,
n—oc k=00 T +
PROOF

Let gn = limk o0 Topyr, T-1(@)VT~k(g) for n=1,2,3,...
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Then we can find that

l}l_{glolagw—"(f) =kliglo Ir—1qv.vr na|T—k(¢)

+kll'n;1° IQ|T lav.vT—-navT—*(€)
kkg;] lT(kU“)OT
+ lim r

k—oo  T-lqyv. yT-nevT- k()
=9ntIn_10T 4 . 4+g 0T 4+ goT"

= Eggn—s © T° where go = hm Ia,T k(€)
s§=

. . . 1
Let g = limpoo liMk—oo Loz T-lavT-+(e) By Lemma 5.3 5, g exists a.e. in L
Then we can write

1
n+1k

llm IoniT-%(8) =

—sO©

s TS
n+1§g0 +n+1 Z(gns g)°
S=0

By Birkhoff Ergodic Theorem, Proposition 5.3.6 and 5, 3.7

oT*® = d
n—»oo'n,—\-lxg Lg H

im

= / Jim Nm oy penie) dae
= h#(aaT l ‘5_) a.e.

Therefore, we must show the following to prove the Theorem

n
'}an}o‘_lﬁz_:lgn—s—gloTs =0a.e
=0 (5‘4)
For each N=1,23,...]let Gy = Sup,>n Ig, — g|. Then
S S n
;—rglgns gloT* = )3 —gloT +— > ons—gloge

-’-n—N+1
n

s ——
oT" + +1 Z lgn—s — 9l o T,
8=n-N41

I/\

s=0
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We fix N and let n 80O to infinity. Since |gn-s — 9| < g* —+ g € ', the second ter™

above tends to 0 a-€- S1 milarly, Gv < g* + g € L' ;50 we may apply Birkhoff Er&
Theorem to the first tex Xt

odzc

1
im —/ Z Ign—s — gl oT* < lim

T°
n—oo T ""‘ nooo 7+ 1 SZO GN

X

5.4)- Q
by~ the dominated convergence theorem and that G — 0a.e. then we can get (

L emma 5.3.8 h,(T | £7) = hu(T).
P ROOF L o pa)
For any finite partition o, Hula| Vi, T'av T %)) < Hyle | Vi=t

n-— 1 —1

By Lemma 5.3.7, £, (T |¢€7) <h (T) %

5.4 Ergodic Decomposition of Me iric PT e’nnage En-
tropy

Lemma 5.4.1:([14], Lemma 4.15) Let 7 > 1 be a fixed integer. Fo,

Or
exists 8 > 0 such that if ¢ = {Ay, ..., A },n = {Cy, ~C,} are a €ach ¢ > 0 there

Yy
X into 7 sets with T, w(AiACy) < 6, then Hu(C | n) + H u(m | Q) < " partitions Oof
Lemma 5.4.2:(cf. [14), Theorem 8.3) Let T: X 5X be g con
ting

compact metric space. Let (¢2)22., be a sequence of partitions such ¢ Ous p ap of
at dj

Then lam(¢ ) o

hu(T 1€7) = lim hu(T'] £, o)

Proof:

Let € > 0. Choose a finite partition { = {A), A,, LA} such that (1
h,.(T\E')"fifhu(Tlﬁ')<00 or hy(T | €7,¢) > 1/e if b (T |6 )_olﬁ <) >
5 >0to correspond to e and I in Lemma 5.4.1. Choose compact, e Ko C A Choose

hl <
- with u(Ai\ K;) < 6/(r+ 1). Let 6 = infiy; d(K;, K;) and choose n With (t <
1am(§&,, )
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<§/2

Forl<i<rlet E,(;i) b e the union of a]] the elements of (,, that intersect A and
let EM be the union of the remaining elements of ¢,. Since diam(¢,) < §/2 each
C€ (¢, can intersect at rx10st one K. Then ¢, = {ESV, .. E} is so that (, < Cn and
H(EYAA) < 8. By Lemma 1 we have H,(¢ | ¢.) < e. Therefore if 7 is such that
diam(¢,) < 5/‘2, then

hp(T I f-’ C) < hp(T ’ f—: C;l) +e€ by Lemma 523

Shu(T €6 ,¢) +e

, . . )
T hen diam((,) < 8/2 implies hu(T | €7,¢) > hu(T | £7) — 2¢if hu(T | €
—_ . h
P pu(T, ) > (1/e)— € if hu(T" 1 €7) = 0o. Therefore we show that limn—e ™
e<ists and equals 72, (T | £7)-

&

Eregodic Decomposition of Inmvariant Measures

Let T : X — X be a measurable map. We define y~ (77) oo ¢he set of points

£ € X such that, for every continuous f : X — R, the Vi mit

(=

f = lim
n—oo
j

f %"— f(T’(z))

0

Il

exists. Further, let C°(X) be the space of continuoyg functions

with the norm ||£Il = subsex I/ (@) For = € S0(T) we define ;. = & endowg,
n-1 s Q¢ X) d
L = li ! ' = R by,
(f) = ng&;zof(TJ(l.))
i=
Then L. is a positive linear functional and L;(f) = 1, 5o that by Riesy
Sr
theorem there exists a unique probability measure 4, ®Presengyy;

on X such that
f fdps = Ly(f)
b's

We define ZI(T) as the set of z € 20(T)

h .
such that u ig T-invariant, Then,
define ¥,(T) to be the set of z €y, we

Tt . .
(T) for which p, is €rgodic, and 22(T) to be
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the set of z € Lo(T7) FOT Which z belongs to the suppoTt of 4,. Now jet 4 be 38
z: ow /et /¢

invariant measure. T he€TI: every integrable function f is p,-integrable for u-almost
n -

every ¢ € 3.(T) and
‘/){(4 fdﬂz)dyzf fdu
X

Theorem 5.4.1: Ergo dic Decomposition of measure-theoretic entropy

Let (X,T) be a compact dynamical system and o a finite partition: Let # €

i e
M (X,T) and {pz : T € E} with £2(E) = 1. Then 7 - h,. (T, ) and h,,,(T) ar
m easurable functions with

hu(T, a) = /X h#: (T, a)du

axd
h“(T) = / hyu. (T) dp
X
T heorem 5.4.2: Ergodic D ecomposition of Metric Preitnage Enn:op‘]
Let p €

Let (X,T) be a compact dynamical system and o o fnite pa,rﬁ\‘\o“'
: E} wi = L
M(X,T) and {ps = T € } with p(E) = 1. Then & _, R, (T | g‘,a) andz —

hy., (T \ £7) are measurable functions with

hT V€)= [ hulT 16, a) g,
and
hu(T | €7) = /X hee(T | €7) dp

Proof:
By Lemma 5.3.7, we have

n—oo k—oo

h(T 1€ ,0) = H,(a| lim lim aP~1y T_k(§))

= lim lim I
x n—00 k—00 al

afIvT-k(g) A

= 1‘ :
L( an;rgokllglolalal-lv'r—k(f) d/-l-z)d/,t
=/);huz(T|§—,Ot)dp,
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By Lemma 5.4.2,We cho ose a sequence of finite partitions (| $m) such that diam(6m ) —

0. Then
R (T1ET) = Jim Au(T €7, ()
= Jim lim lim H,(Gn | (Gn)7! v T*(€)
) . ) B —k
= Jiog, Hulim lim (G | (Gt VT
= ﬂ{i/l;{l?o( X nli)l'?o kli)ngo I(m'(Cm)?—lVT_k(e)) dy'
= 5 x(/x Am Hm I nypmivr-©
prmend lim h#z (T I 6_1 Cm) dﬂ
m—)OO X
= / lim huz (T l E—a Cm) d/‘
X m—00
= / by (T |€7)du
X
Q
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