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ABSTRACT
STUDIES OF SOME PROBLEMS RELATED TO ATOMIC ORDERING,
MOLECULAR MOTION AND PAIR DISTRIBUTION FUNCTION
By

Valentin A. Levashov

In this thesis the results of my work on three out of four projects on which I was
working during my Ph. D. under supervision of Prof. M.F. Thorpe are summarized.

The first project was devoted to the study of properties of a model that was
developed to reproduce the ordering of ions in layered double hydroxides. In the
model two types of positive ions occupy the sites of triangular lattice. The ordering
of ions is assumed to occur due to the long-range Coulomb interaction. The charge
neutrality is provided by the negative background charge, which is assumed to be
the same at every site of the lattice. General properties of the model in 1d and 2d
were studied and the phase diagrams were obtained. The obtained results predict
multiple phase separations in this system of charges that can, in particularly, affect
the stability of the layered double hydroxides.

Some properties of the atomic pair distribution function (PDF) were studicd dur-
ing my work on the second project. Traditionally PDF was used to study atomic
ordering at small distances, while it was assumed that at large distances PDF is fea-
tureless. Puzzled by the observation that PDF calculated for the crystalline Ni does
not decay at large distances we studied the behavior, in particularly the origin of
decay, of PDF at large distances. The obtained results potentially could be used to
measure the amount of imperfections in crystalline materials and to test instrumental
resolution in X-ray and neutron diffraction experiments.

During my work on the third project we were developing a technique that would

allow accurate calculation of PDF for the flexible molecules. Since quantum me-

w—







chanical calculations are complicated and computationally demanding in calculations
of PDF for molecules in liquid or gaseous phases, classical methods, like molecular
dynamics are usually emploved. Thus, quantum mechanical effects, like zero-point
atomic motion, are usually ignored. However, it is necessary to take into account
the effect of atomic zero-point motion if there is a desire to extract fine structural
details from the PDF. We developed a method that allows incorporation of the ef-
fect of atomic zero-point motion into the results of classical MD simulations without
performing full quantum mechanical calculations. This technique could be used to
correct classically calculated PDFs and thus to achieve better agreement between

modeled and experimental PDFs.
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monic approximation to the Morse potential. The black dashed curve
shows the CM solution for the Morse potential with correction (4.31)
that comes from the harmonic approximation to the Morse potential.
It is assumed that U, =0. . . . . . ... .. .. ... .. ... ....
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4.6

4.7

4.8

4.9

The dependencies of the heat capacities for the particle in the Morse
potential and its harmonic approximation on temperature. The red and
orange curves represent QM and CM solutions for the Morse potential.
The blue and green (dashed) curves show the QM and CM solutions
for the harmonic approximation to the Morse potential. The black
dashed curve shows the CM solution for the Morse potential with the
correction (4.31) that comes from the harmonic approximation to the
Morse potential. All these curves were obtained by the differentiation
(4.39) of the corresponding energy curves on Fig.4.5. . . .. . .. ..

The sketch of the CgH;4 molecule. The carbon atoms are shown as
black filled circles. The hydrogen atoms are shown as open circles.
The numeration of the atoms coincides with those used in the Fig.4.9
and Fig4.10,4.11,4.12 . . . . . . . ..

The geometry of the CsH 4 molecule in Long conformation. . . . . . .

The probability for finding a particular pair of atoms at a given distance
at temperatures 150K on the left and at 500K on the right. The blue
curves were obtained from the classical MD trajectories. The red curves
result from the convolution of the blue curves with the corresponding

correction Gaussian. Every pair of atoms has its own o2 (T). . . . .

The dependencies of the average distances between sowme pairs of atoms
on temperature obtained from MD simulations. In the beginning of ev-
ery MD run (at a particular temperature) the molecule was always in
equilibrium Long conformation. At low temperatures these distances
only slightly depend on temperature, as molecule remains in the Long
conformation. As temperature increases instantaneous distance be-
tween a pair of atoms can have significantly different values that occur
when the molecule can be in different conformations (or identical atoms
interchange their positions). Thus, as temperature increases, there oc-
cur sharp changes in the average distances for some pairs of atoms.

The dependencies of 0% on temperature T for some pairs of atoms.
The orange triangles show the results obtained from MD simulations,
the blue and green curves show the QM and CM results obtained from
the eigenfrequencies and eigenvectors of molecular vibrations. The red
circles show the MD results corrected by adding to the orange triangles
the difference between the blue and green curves. . . . . . . . .. ..
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4.12

4.13

4.14

4.15

4.16

4.17

The dependencies of 02 on temperature T for some pairs of atoms.
The orange triangles show the results obtained from MD simulations,
the blue and green curves show the QM and CM results obtained from
the eigenfrequencies and eigenvectors of molecular vibrations. The red
circles show the MD results corrected by adding to the orange triangles
the difference between the blue and green curves. . . . . .. ... ..

PDF for the CsH;4y molecule in Long conformation at low tempera-
tures. The brown curves show the results of MD simulations before
the correction is applied. The blue curves show the results of MD
simulations corrected by convolution (4.33,4.34). . .. ... ... ..

The blue and green solid curves show total corrected PDFs for the
molecule in Long and Short conformations. The red dashed curve
shows Boltzman combination (4.70) of PDFs from Long and Short con-
formations. At all temperatures when the molecules remains in one or
another conformation the combined PDF basically coincides with PDF
in Long conformation due to the values of the Boltzman weights. . . .

The brown curves on both figures show MD results obtained on the
Long (top) and Short (bottom) conformations. The figure on top also
shows the corrected PDFs obtained by the correction of MD results
from the Long conformation with the set of o, from the Long (the
blue solid curve) and Short (the red dashed curve) conformations. The
bottom figure also shows the PDF's obtained by the correction of MD
results from the Short conformation with the sets of oo from Short
(blue solid curve) and Long (red dashed curve) conformations.

Corrected PDFs for the Cg {14 molecule at different temperatures. The
inset shows the region between 3 A and 6.5 A on a bigger scale.

The panel on top shows PDFs with respect to carbon atom number
1 created by the other carbon atoms only at 298K. Blue and green
curves were obtained from molecule in Long and Short conformations
correspondingly. The widths of peaks were calculated in QM approach
using eigenfrequencies and eigenvectors of molecular vibrations. As
distance increases there are peaks that correspond to the carbon atoms
number 2, 3, 4, 5 and 6. The red curve is a linear combination of
blue and green curves with corresponding Boltzman weights. The red
curve in the bottom panel is the same as the red curve in the top
panel. The grey curve, that also shows PDF with respect to the carbon
atom number 1 due to the other carbon atoms, was obtained from MD
simulations. The black curve was obtained fromn the grey curve using
our correction scheme. . . . . . ... ... L L.
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4.18

4.19

4.21

The top panel shows partial PDFs with respect to the carbon atom
number 1 calculated for the molecule in Long conformation from eigen-
frequencies and eigenvectors of molecular vibrations in the QM ap-
proach. The blue curve shows partial PDF due to the other carbon
atoms only (hydrogen atoms are ignored). The red curve is due to
all the other atoms (carbons and hydrogens). Thus, the difference be-
tween two curves is due to the hydrogen atoms. The bottom panel
shows the same curves as the top panel, but for the molecule in Short
conformation. . . . .. .. ...

The top panel shows partial PDFs with respect to the carbon atom
number 1 created by all other atoms (carbons and hydrogens). The
blue and green curves were calculated from eigenfrequencies and eigen-
vectors of molecular vibrations in Long and Short conformations cor-
respondingly. The red curve is the linear combination of the blue and
green curves with corresponding Boltzman weights. The red curve in
the bottom panel is the same as the red curve in the top panel. The
grey curve was extracted from MD simulations in which transitions
between conformations occur. The black curve was obtained from the
grey curve using our correction method. . . . ... ... ... ..

The blue and green curves in the top panel were calculated from eigen-
frequencies and eigenvectors of molecular vibrations for the molecule
in Long and Short conformations correspondingly. They show the total
PDFs of the molecule. The red curve is a linear combination of the blue
and green curves with corresponding Boltzman weights (w.(7T") = 0.79
and wg(T) = 0.21). The red curve in the bottom panel is the same
as the red curve in the top panel. The grey curve, that also shows
the total PDF of the molecule, was obtained from MD simulations.
The black curve was obtained from the grey curve using our correc-
tion/convolution method. . . . . . . ... ...

The blue and green curves in the top panel were calculated from eigen-
frequencies and eigenvectors of molecular vibrations for the molecule
in Long and Short conformations correspondingly. They show the total
PDFs of the molecule. The red curve is a linear combination of the blue
and green curves with corresponding Boltzman weights (w(T") = 0.62
and ws(T) = 0.38). The red curve in the bottom panel is the same
as the red curve in the top panel. The grey curve, that also shows
the total PDF of the molecule, was obtained from MD simulations.
The black curve was obtained from the grey curve using our correc-
tion/convolution method. . . . . . . . ..o o000
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4.22 The dependencies of the energy and the heat capacity on temperature

B.1

for the CgHy4 molecule. Blue and green curves represent the QM and
CM results for the harmonic approximation to the real potential. The
orange curves and circles represent the result of the MD simulations.
The red curves and circles show the corrected MD results. See more
detailed description of the figure in the text. . . . . . . . . .. .. ..

Dependencies of o3,-,,(T) on temperature (see Fig.4.4) for different
values of the upper cut off in the integrals (4.14, 4.17). Thus, if T <
10000 (K) any cut-off in the interval (1.5:3.0) Awould lead to basically
the same result. The inset shows how < Uprcar(T) > (in temperature
units) depends on temperature. Thus for the potential energy any
upper cut off (see (4.38)) in the interval (1.5:3.0) Ais also suitable.

158



Chapter 1

Introduction

During my Ph.D. years I was working on several different projects all in the area
of cormputational/theoretical condensed matter phyvsics. Thus, it is somewhat difficult
to write an introduction to the thesis because, as it scems to me, it should unite all
these different projects under the roof of one idea. But it is hard to unite things that
are different. It also means that an introduction, if it has to be written, should be
rather general. So let it be...

Any object in this world interacts in one way or another with other objects. In
fact wwe know that an object exists from the way it interacts with us or from the way its
fOotsteps interact with us. Thus, objects are distinguished by their interactions. Due
to the interactions things in the world become organized. Thus, there are three words:
eXistence, interaction and organization that from my point of view, are inseparable
IN natyre and as follows in the essence of all sciences.

Generally speaking, all different sciences addresses the same questions: which
Ob jects exist, how they interact with each other and how objects are organized. We
leary about the objects from the way they interact with each other and from the
Way they are organized. Almost always when we want to learn about an object

We artificially put it in conditions that will reveal its ability to interact in one way



or another; i.e., reveal its properties. In other words we do experiments. On the

other hand, if we know about interactions, we use this knowledge to coustruct more
complicated objects or to predict the behavior of more complicated objects in some
new situation. For example, if the interaction between two masses is known, the
structures of solar systems and galaxies can be predicted.

May be the last statements are not true with respect to all sciences-there are so
many that I cannot think about all of themn. But it scems to be true in sciences like
physics, chemistry, biology and sciences that are directly related to them, like micro-
biology. Mathematics is somewhat different, because at first it states the existence of
different objects, like points, lines, angles. Then it establishes interactions between
therm - axioms. From these objects and interactions more complicated objects and
relations between them are constructed-theorems. Thus, from this point of view,
these three words are also applicable to mathematics.

Alll objects are immersed in space or space contains all the objects. It also allows
objects to interact with each other. Often. while studying properties of different
objects, we do not pay attention to the space in which they are immersed. However
Properties of the space and properties of the objects in space are as inseparable as
those three words. Thus, by learning about the objects we also learn about the space.

One of the properties of space that is always involved in the nature of interactions
and mpotion of objects is the dimensionality of space. Everyday observations of this
World suggest that it is 3-dimensional. Thus, in order to describe the position of an
Object in space we need 3 real numbers: z, y, z. However, often there is no need to
use all three coordinates. Thus. in order to find our location in the city we do not need
all three coordinates— two is enough. Because of it most city maps do not contain
Information about the height of a particular city point with respect to sea level. The

Properties of complex objects, even if they are constructed from objects with very

Simple interactions between them, can be rather complicated. These properties can



also drastically depend on the dimensionality of space, as in Ising model in which
features of phase transitions are different in different dimensions.

Evolution of sciences is basically the development of ideas and tools that are used
to study objects, to model their properties and to construct new objects.

From this extremely general point of view my thesis can be separated into two
parts.

The first part is devoted to the modeling of properties of an object that consists
of mamy objects with simple known interactions between them (Chapter 2).

"T"he second part is about a particular technique that is being used to study the
properties of complex objects: the ordering and interactions of simple objects from
which these complex objects are constructed. This second part, in its turn, can be
divided into smaller pieces.

Allthough this technique was used to study ordering of objects and their proper-
ties for almost a hundred vears, it turns out that it has some properties, related to
the general properties of space, that never were carefully discussed. The results of
the Study of these properties are presented in chapter 3.

Footsteps of more complicated objects sometimes are rather complicated. Thus,
it order to extract information about them from their footsteps it might be necessary
to model the possible footsteps. To the modeling of these footsteps, in the frame of a
Particular technique that is used to study objects properties, chapter 4 of this thesis
1s devoted.

Since, as it was written in the very beginning, I was working on several almost
independent projects, it is natural to write introduction for every project indepen-
delltly. Thus, every chapter in this thesis is about a particular project, it has its own
intI‘oduction that explains the motivation for this research project, describes direc-
tions of the investigation and methods that were used in the study. In the remaining

Part of this introduction there are short descriptions of every project/chapter with



the summaries of the main results.

1.0.1 Chapter 2: Charged Lattice Gas with a Neutralizing

Background

In this part of my thesis we consider a model that was first introduced by
Y.Xiao, M.F. Thorpe and J.B. Parkinson in [1] to describe the ordering of two
different types of positive ions in the metal planes of layered double hydroxides
Ni; 5 Al (OH)2(COs3)y/2 - yH20. The ordering is assumed to occur due to long-range
Coulomb interactions, and overall charge neutrality is provided by a negative back-

ground representing the hydroxide planes and CO;~ anions. The previous study [1]
was restricted to the ground state properties. Here we use a Monte Carlo technique
to extend the study to finite temperatures. The model predicts that at some values
of the concentration z, the system can exhibit an instability and phase separate. In
order to evaluate the precision of these Monte Carlo procedures. we first study a linear
chain with finite ranged intcractions where exact solutions can be obtained using a
trans fer matrix method. For a lincar chain with infinite-ranged interactions, we use a
devil’s staircase formalism to obtain the dependence of the energy of the equilibrium
configuyrations on x. Finally we study the two dimensional triangular lattice using the
Same Monte Carlo techniques. In spite of its simplicity, the model predicts multiple
first order phase transitions. The model can be useful in applications such as the
Modeling of the ordering of intercalated metal ions in positive electrodes of lithium

batteries or in graphite. The obtained results were published in Phys.Rev.B [2] and

the text in this chapter is basically identical to the text in this publication.



1.0.2 Chapter 3: Absence of Decay in the Amplitude of Pair

Distribution Functions at Large Distances

In this chapter the behavior of pair distribution function (PDF) at large dis-
tances is addressed. Traditionally the PDF, that can be obtained from the Fourier
transform of powder diffraction data, was used to describe short-range correlations
in atomic positions. Amplitudes of peaks in experimental PDF decay as distance in-
creases. Thus, it was alwavs assumed that the PDF at large distances is featureless.
Puzzled by the observation that PDF calculated for crystalline materials does not de-
cay at large distances, if instrumental resolution is ignored, we studied the behavior
of PIDF at very large distances. To the best of our knowledge, the origin of the PDF
decay~ at large distances has never been carefully discussed. It turns out, surprisingly,
that the increase in the number of neighbors at large distances does not lead to the
decay  of the PDF independently from the type of the material. In other words, the
PDF calculated with respect to one atom does not decay at large distances not only
for the crystalline, but also for amorphous materials. We find that this behavior in
amor phous materials is caused by random fluctuations in the radial number density.
Thus PDF in amorphous materials decays due to ensemble averaging over different
fentra] atoms. We achieve an accurate quantative description of fluctuations for the
Case when atoms are distributed randomly in space. Differences with the amorphous
Case are discussed. The case of perfect, single component, crystals is the most inter-
€Sting because in it all atomic positions are equivalent and there is no need to average
OVer different atoms. Thus total measurable PDF for perfect crystals does not decay
At large distances if instrumental resolution is ignored. However, the origin of this
behavior in crystals is significantly more complicated. It turns out that this behavior
Of the PDF is related to the still unsolved problem that C.F. Gauss formulated more
than a hundred fifty years ago and that has give rise to the whole area in mathematics

Called lattice point theory. Further investigation of this case is obviously needed. For



generality we discuss the case of the PDF in d-dimensional space. Our results can
be used to measure the amount of dislocations in crystalline materials and to test

instrumental resolution in scattering experiments.

1.0.3 Chapter 4: Quantum Correction to the Molecular Pair

Distribution Function Calculated Classically

In this chapter we present some ideas and the developed technique that may
significantly improve precision of PDF calculations for complex molecules. This tech-
nique allows, in particularly, the incorporation of the purely quantum effect of zero-
point motion into the pair distribution function calculated classically for molecules
using Monte Carlo or Molecular Dynamics simulations. This correction may sig-
nificantly improve agreement between modeled and experimental data, especially at
small distances. Thus it may allow more definite conclusions about inter- and intra-
molecular motion, including flexibility, and also about mutual orientations of different

molecules.



Chapter 2

Charged Lattice Gas with a

Neutralizing Background

2.1 Introduction

This chapter is devoted to the study of a model that was introduced earlier[1]
by Y.Xiao, M.F. Thorpe and J.B. Parkinson, to describe the possible ordering of
metal ions that can occur in aluminum substituted nickel layered double hydroxides
Nij_;Al;(OH),(COs3)./2 - yH20[3, 4, 5, 6, 7].

The Ni ions in Ni(OH), occupy the octahedral holes between alternate pairs of
OH planes and thus form a triangular lattice identical to that adopted by the OH
ions, as shown on Fig.2.1. The two planes of OH ions, with the plane of Ni atoms
between them, form a brucite like layer of the host structure[8].

Ni(OH), can exist in two polymorphous crystal structures denoted as o and 3.
Both structures consist of brucite-like layers, that are well ordered in the 3-phase
and randomly stacked in the a-phase. The interlayer spacing (gallery) in the a-phase
usually is significantly larger than in the §-phase due to the large number of water

molecules and anionic species that can penetrate into the galleries[9].



Ni,Al

OH

Figure 2.1: The sketch of the structure of aluminum substituted nickel layered double
hydroxides Ni; Al (OH),(CO3), /2 - vH,O

Nickel hydroxide Ni(OH), in the 3-phase has been extensively used as a material
for the positive electrode in rechargeable alkaline batteries[10]. However it has been
shown that electrodes based on the a-phase hydroxide have a bigger charge capacity,
lower charge and higher discharge voltages (11, 12]. Unfortunately the a-phase reverts
to the (-phase in the alkaline media (KOH-for examnple) which is used in batteries.
Thus the stabilization of the a-phase of Ni(OH), in an alkaline media is an important
goal for potential applications. To enhance the Ni(OH), stability many studies of
the partial substitution of metal ions (Al-for example) for Ni in the lattice of nickel
hydroxide have been carried out [13, 11, 15, 16].

When Ni*' ions are substituted by AP ions in the metal sheets, [CO3)? an-
ions accumulate in the galleries in such an amount that total charge neutrality
is preserved. T'he amount of water in the galleries depends on the preparation

method: the general formula of the aluminum substituted lavered nickel hydroxide is



Nil—xAlx(OH)2(C03)x/2 -yH,0.

It is natural to expect that the stability of these compounds is coniposition
dependent and also depends on the preparation technique. Different authors were
able to synthesize lavered hydroxides with different concentrations of aluminum. In
particular the range 0 < @ < 0.4 has been reported [8]. Not all ranges of composition
z are accessible due to the limited number of [CO3)*~ ions and water molecules that
can penetrate into the gallery.

Possible orderings of the Ni and Al ions in the metal planes can also affect the
stability of the compound. Several authors have reported observations of in-plane
ordering of metal ions (3, 4. 5, 6, 7]. Ordering of ions was observed near the values
of z equal to 1/4 and 1/3 that are in registry with the host geometry of triangular
lattice. However, it seems that there are no detailed experimental studies of the
ordering as a function of composition z.

The ordering of metal ions in alloys is often considered within the framework of
a lattice gas model where only interactions between neighbors that are not separated
by large distances is taken into account because of the relatively short screening
length([17, 18, 19] caused by free electrons.

It is generally accepted that in layered hydroxides the Coulomb interaction be-
tween positively charged metal planes, negatively charged hydroxide planes and neg-
atively charged anions [CO3)?~ in the galleries are important. The screening length
in layered hydroxides should be significantly larger than in metal alloys, because di-
electric screening caused by water and other polar molecules is weaker than screening
caused by free electrons. Thus a model that takes into account long range Coulomb
interaction and interaction between positive metal ions in the plane with negative
hydroxides layers and negative anions in the galleries might be more suitable than a
lattice gas model to describe the ordering of metal ions in layered double hydroxides.

The role of ordering due to Coulomb interactions has been discussed previously by



Thompson[20].

We have previously suggested a simple model to describe the ordering of metal
ions in layered hydroxides[1]. In this model two kinds of positively charged metal
ions occupy the sites of a triangular lattice. The lattice is immersed in a negatively
charged background which represents the hydroxide layers and negative anions in the
galleries. It was assumed that the background charge is the same at every site of the
triangular lattice. Thus the total charge at every site is formed by the positive charge
due to the metal ion and the negative background charge. The interaction potential
between sites was assumed to be a long ranged 1/r Coulomb type.

In the previous work[1] the dependence of the ground state encrgy of this model
system on the concentration of Al was studied assumning a homogeneous concentration
of metal ions in the plane. Equilibrium ordering configurations of ions that can occur
at each concentration in the range 0 < r < 1 were calculated and compared with
corresponding X-ray diffraction patterns.

In this study a new interpretation of the previous results is suggested. It will be
shown that at some concentrations x the system is unstable with respect to phase sep-
aration into phases with concentrations x; and x, such that ry < x < 4. The phase
diagram of the system is calculated in the (7, z) plane using the grand canonical
ensemble by introducing a chemical potential u. In the case of the layered hydrox-
ides, the chemical potential under consideration is not related to the voltage on the
electrodes and represents only a useful way to obtain the phase diagram.

The model is quite general and can be employed to describe ordering and first
order phase transitions in ionic systems with long range interactions. It may have
some application to the ordering of intercalated Li ions in rechargeable Li-batteries
[20, 21, 22]. Predicted phase separations can lead to the staging when homogenous
planes with different concentrations of metal ions will form. In plane long range

interaction in this case can be similar to that occuring in staged graphite intercalation
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compounds|[23, 24].

The chapter is organized as follows. In section 2.2 the model is defined. Then in
section 2.3 the discussion of the details of the Monte Carlo (MC) method that was
used to obtain the phase diagrams is presented. Section 2.4 describes an application
of the method to the linear chain. Subsections 2.4.1 and 2.4.2 are devoted to the case
of finite ranges of interaction where an exact solution can be obtained using transfer
matriz techniques. The case of a linear chain with infinite range Coulomb interaction,
in which the energies of equilibrium configurations can be calculated exactly using
the deuvil’s staircase method, is discussed in subsection 2.4.3. Finally in section 2.5
the case of the two dimensional triangular lattice is studied. Results are summarized

in the conclusion.

2.2 Model

Consider a system composed of two types of positive ions which occupy the sites
of some lattice. Every site of the lattice is occupied either by a black ion with charge
Q@ or by a white ion with charge Q.. The concentration of black ions is x and the
concentration of white ions is 1 — x. In addition to these two types of positive ions
there is also a negative compensating uniform background charge ¢, at every site of
the lattice, that ensures charge neutrality in the system. Hence at any site i a total
charge is equal to either A, = Qp+¢ or A, = @ +¢q. The Hamiltonian of the system

of charges can be written in terms of the pairwise interactions V;;:

H=> VAl (2.1)

<J

For the Coulomb interaction Vi; = 1/R;;, where R;; is the distance between sites i
and 7. In the following the case of truncated Coulomb interaction, for which there is

interaction only between neighbors that are in some range, also will be considered.
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The value of the background charge depends on the values of @y, Q,, and on the

concentrations of those ions. The average charge per site due to the positive ions is
q = "I‘Qb + (1 - ‘T)qu (22)

The value of the charge that provides the uniform background with overall charge
neutrality is then given by ¢ = —¢. Thus Ay, = Qp + ¢ = (Qp — Qu)(1 — &) and
Aw = Qu+q=(Qy— Q.)(—x). Introducing J;; = V;;(Qy — Q.)* we rewrite Eq.

(2.1) as:
H= Z Jy(n, —2)(n, —x). (2.3)

1<y
where n; = 1 if site i is occupied by a black ion and n, = 0 if site ¢ is occupied by
white ion. Thus the precise values of the positive charges do not change the general

Properties of the model. From Eq. (2.3) follows that at a fixed concentration x

H= ZJ,Jn,-nJ - 1‘22 Jij - (2.4)

i<j i<y

Thus at fixed concentration the model is essentially a lattice gas model because in
this case the second term in Eq. (2.4) is the same for all configurations of ions. This
terrn s due to the neutralizing background and cancels the divergence of the energy
aASso ciated with the Coulomb repulsion when the interactions are of infinite range.

It is easy to estimate the values of the constants J;; if the lattice constant and
Clla-I‘ges Qb and Q,, are known. For the aluminium substituted nickel layered double
hy g roxide a = 3.032 A[8], @, = 3¢ and Q,, = 2e. For the nearest neighbors we have:

J= V(@ — Qu)? =< (2.5)

ca

Tllus if we use a dielectric constant appropriate for water ¢ = 80, then J ~ 60 meV

T about 500 K. Short range screening, due to the presence of water and other ions,

12



can effectively decrease the values of the J,;.

In order to use the grand canonical ensemble to study the equilibrium properties
of this system of charges a chemical potential term —p Y n; should be added to
the Hamiltonian. Now the concentration x can fluctuate and hence the background

charge will also fluctuate. The grand canonical Hamiltonian can be written as:

H = Z Ju(ni+q)(n; +q) - #Z"h’ ; (26)

<ij>
where ¢ describes the uniform background charge which is adjusted to be equal to
q = — < n,>=—I.

Although the primary goal is to study the two-dimensional triangular lattice with
infinite range Coulomb interactions, it is worth at first to consider the linear chain as
an example to gain a better understanding of the model since there are exact analyt-
ical rmethods that can be used in two limiting cases: finite range interactions can be
Studied exactly using transfer matrix methods [25] and infinite range Coulomb inter-
actioms can be described in terns of a Devil's staircase formalism[17]. The study of
the 1linear chain will also give an insight into the precision of the numerical techuiques
that will be used for the triangular lattice with Coulomb interactions.

In the following sections the following questions are addressed. What is the
€quiljbrium structure of the charges for a given concentration of the ions? How
does the equilibrium energy of the system depend on the concentration of the ions?
How does the chemical potential depend on the average concentrations of the ious

At i fferent temperatures. Do phase transitions occur in the system and what is the

b lrla-Se diagram of the system at finite temperatures?
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2.3 Monte Carlo Method for Simulations of the
System

In Monte Carlo simulations a Metropolis algorithm[26] will be used to accept or
reject elementary moves that will be performed on the charges to bring them into an
equilibrium configuration. Two different types of moves will be used: A interchange
the positions of black and white ions in the lattice. B change the color of the ion at
a padrticular site.

The simulations can be carried out with either constant values of the concen-
tration or with constant values of the chemical potential. In case of simulations at
a constant value of concentration only moves of type A were used. In case of simu-
lations at a constant value of the chemical potential both types of moves A and B
were used. The A-move does not change the value of the background charge since
it does not change the concentration. The B-move changes the concentration and
thus the background charge has to be changed at every site in the lattice. In order to
decide whether to accept or reject the move it is necessary to calculate the energy of
the system before and after the move. A lattice of size N in case of the linear chain
and MV x M for the triangular lattice are considered. Standard periodic boundary
conditions are applied with respect to this central zone. Thus the central zone occurs
In the center of bigger lattice surrounded by surrounding zones. In order to calculate
theenergy of the system we calculate the energy of interaction between all sites inside
the central zone and the energy of interaction between the sites in the central zone

With sites ip all surrounding zones. Since the systemn is charge neutral, the contribu-
tion to the energy from surrounding zones that are far away from the central zone
are much smaller than the contribution from surrounding zones that are close to the
central zone_ Ip fact, it was found that if N and M are of the order of 10, then it is

e . . . . .
T10Ugh to copsider the lattice of size 5N x 5M in order to calculate the energy with
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sufficient precision for almost all concentrations. In other parts of this chapter we

refer to the size of the central zone as to the sample size, with the periodic boundary

conditions described above.
The total energy of the system given by Eq. (2.3) can be separated into three
parts which represent interaction between black-black, white-white and black-white

sites
E = Ebb + Euvw + Ebw . (27)

It follows from Eq. (2.3) that Ey, can be written as

Ey=(1-1)° Z J,jnf-’ng .
1<

In the sum above, the index 7 runs over all sites in the central zone and the index j

over all sites in the central and surrounding zones (i # j). The quantity n® is unity if

a black ion occupies site i and zero otherwise. Using the notation oy (j) = ), Jynb

Eq. (2.8) can be rewritten as:

Ew = (1 - 1’)22"?01)1»(17) =(1—2) 0.

T

(2.9)

In the same manner we can write E,. = 22040 and Ep, = 2r(1 — x)oy,. Then the

energy of the system per site can be written as:
1 )2 . 2
m[(l—l) o+ 22(1 — T)0py + T°0wu] (2.10)

Where the first term in square brackets comes from the interaction between black-

black sites, the second from black-white sites and the third from white-white sites.

It is €asy to see from Eq. (2.10) that the equilibrium energy of the system is a

Symmetric fynction, E(r) = E(1 — x), with respect to z = 1/2. The ground states

corr . . .
®SPonding to concentrations = and 1 — z can be obtained from each other by
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Figure 2.2: Dependence of the concentration Z on MC sweeps at a fixed values of
the chemical potential p at temperature (T/J) = 0.08 for the triangular lattice with
30 x 30 sites in the sample. The values of 1 are shown near their corresponding curves.

changing all white sites into black sites and all black sites into white sites. In this
case T «— 1 —Z, 0pp < Owuw. Opw < Oby and it follows from Eq. (2.10) that the energy
remains the same. In order to accept or reject the move we calculate the change in
AE — puAZ%. For calculation of AE it is necessary to take into account that if we turn
a white site 7 into a black site then charges at the sites corresponding to the site i
but situated in the surrounding zones should be changed also. When an elementary
move is performed, then values of o, 0. 0w, can be updated by calculating the
SUmS 04,,(2), 04, (i), ouww(i) for the particular site i that participate in the move. This
Signiﬁca.ntly reduces the calculation time since it is not necessary to recalculate the
€nergy of the whole lattice again after every move.
We say that one MC step was performed if one attempt to perform operation A
or B was made. We say that one MC sweep was made if as many MC steps were

ade as there are sites in the sample. In simulations at a constant u we initially tried
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to vary the frequency with which operations A and B were performed, but we found
that 1: 1 ratio was close to the optimum value. For every value of the concentration
or the chemical potential, simmulations start at a relatively high temperature 7' ~ J.
If simulations are to be performed at constant x then in the initial configuration
black and white ions in amounts corresponding to x are randomly distributed over
the lattice sites. If simmulations are to be performed at a constant value of pu, the
initial configuration is less important.

We used the following criteria to check the equilibration of the system at a
given temperature. Let E, will be the average value of the energy in the last 10
MC sweeps and F; will be the average value of the energy in the previous 10 MC
sweeps. Let o, and og, be the average fluctuations of energy in those two cycles. If
|Ey — E)| < ﬁ) min(og,,og,) then we say that the system is sufficiently equilibrated
in order to collect the data. If this condition is not fulfilled another 10 MC sweeps
are made until this condition is et and so on.

After the equilibration, in order to obtain statistics, we calculated and stored
the values of parameters of interest after every MC sweep. Their convergence to
equilibrium values was verified by plotting them versus the number of the MC sweep.
The number of required MC sweeps varied depending on the size of the system, type
of interaction and temperature. When the necessary data at a temperature T were
collected, the temperature was decreased by a small amount 67. For smaller values
of the temperature 7', a smaller value of 67" was used.

It will be shown below that first order phase transitions occur in these systems.
Inother words ions on the lattice should separate into two parts with different concen-
trations of the black ions in each part. Parts with different concentrations of the black
1ons shoulq also have different values of the background charge. But it is assumed
In our mode] that the value of the background charge is the same everywhere. Thus

th . . . . .
€ ba'Ckgl‘ound in our simulations does not allow the systems to split into parts with

17




different concentrations and thus does not allow the phase separation to be observed
directly.

When we perform simulations at a constant value of average concentration 7, it
is possible that we may choose some particular average value T that can not occur
inn a homogeneous system. The energy curve E(T) obtained in this case does not
really give the dependence of energy on concentration, but rather shows when phase
separation should occur. This will be demonstrated explicitly in the next section
using the linear chain as an example.

In simulations with a fixed value of the chemical potential the phase transitions
are more pronounced. At high temperatures (T/J) > 1 changes in the chemical
potential lead to the smooth changes in average concentration . However, at low
temperatures (T//J) <« 1 there are discontinuities in the (u) curve. We assume that
the borders of the discontinuity region are the borders of the phase separation region.

T he situation at intermediate temperatures is more complicated. As an example,

Fig.2.2 shows the concentration as a function of the number of MC sweeps for a
30 x 30 triangular lattice for three values of u at (7'/J) = 0.08. The sharp jump in
concentration from z ~ 0.88 to & = 1 that occurs at u/J = 0.606 shows that both
concentrations Z ~ 0.88 and T = 1 lead to the same minimum value of Helmholtz
free energy and thus are stable. Homogeneous equilibrium configurations in the range
of concentrations 0.88 < & < 1 have higher values of the Helmholtz free energy and
thus are unstable with respect to phase separation into two parts with concentrations
T =088 andz=1.

Fig.2.3 shows the histogram of the distribution of concentrations corresponding
to those in Fig.2.2. Peak positions give us the values of average concentrations. For
SOme particular values of u the system migrates between two significantly different
Concentrations, as for example for 4 = 0.606. We assume in this case that there

is . . . . .
Phase Separation and relative areas under two peaks give us the relative sizes of
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Figure 2.3: Histograms that show distributions of concentrations for the curves from
Fig.2.2. Data were collected over 10000 MC sweeps. The sharp peak corresponding
to (/J) = 0.315 has height 4000. The peak corresponding to (u/J) = 0.606 has a
height 1700.

the two phases. Thus the appearance or disappearance of a peak tells us about the
appearance or disappearance of a phase. We will use the positions of the peaks when
they appear or disappear as the borders of the two phase coexistence region.

At low temperatures (T'/J) < 1 our MC procedure becomes less effective and the
System can become frozen in some configurations. One of the reasons for this is the
local character of the moves A and B that we use to search for a new configurations
€.g. every MC move involves only one or two sites. To study the properties of the
System at very low temperatures and critical behavior of the model (when simulations
of the large systems are required) it might be useful to implement other simulation

methOds[Q'?], but that is not the objective of the present work.
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2.4 Linear Chain

There are two exact analyvtical methods to study the model in the one dimensional
case of the linear chain. In particular, if the Coulomb interaction is truncated at some
distance then a transfer matriz[25] technique can be applied to calculate the free
energy as a function of chemical potential and temperature. Then the dependence
x(p,T) can be studied and the phase diagram can be obtained.

In case of the infinite range Coulomb interaction at T = 0, a devil’s staircase[17)
forralisin can be used to predict the equilibrium structure for any concentration and
calculate the ground state energy of the system. In both cases exact results will be
compared with the results of simulations to establish the precision of the numnerical

methods.

2.4.1 Nearest Neighbors Interaction

If we restrict the range of interaction to nearest neighbors only, the Hamiltonian

becomes

H=JY i+ q)(ns+q) —py n. (2.11)

Initially we assume that ¢ is a constant and is not connected with concentration.

Then the grand partition function Zy for a cyclic chain of N sites can be expressed
In terms of the largest eigenvalue of the 2 x 2 transfer matrix as Zy = AN with
e~BJa?

2

/\maf =

[1 +r+V( - 12+ 476”] : (2.12)

Where v — 8u+2Ja-J) a4 g = 1 /(kgT). The grand potential per site is given by
Q2 = ~kpTIn [Amaz]. Using the fact that & = (n;) = 9Q/0u, we can find 7 as a
function of the independent variables T" and p. The resulting expression can then be

inv . . . _ . . _
erted Using the charge neutrality requirement, ¢ = —I, to obtain p in terms of T
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and T with the following result:

(x = 1/2)e?/?

#(1-1) (213)

uw=J-2Jr+ %sinh‘l

Fig.2.4 shows the transfer matrix predictions for the u versus T curves for various
values of T/J and also the results of numerical siinulations. The upper left frame
shows the results of the transfer matrix calculations at various temperatures.

Note that p = 0 corresponds to & = 1/2. At high temperatures, g is a monoton-
ically increasing function of r but at low temperatures, u has regions where the slope
is negative. This behavior is thermodynamically unstable and indicates that phase
separation occurs. The upper right frame shows transfer matrix predictions and the
results of simulations at (T'/J) = 0.50. Simulation points lie on top of the exact
curve. The lower left frame shows the results at temperature (7'/J) = 0.20 which is
just above the maximum temperature for which phase separation occurs. The regions
with a low density of simulation points indicate the appearance of the regions of phase
separation that occur at lower temperatures. The concentration 7 in this region is the
average over the two peaks that occurs at the intermediate temperatures as shown
in Fig.2.2 and in Fig.2.3. The lower right frame at (7/J) = 0.10 clearly shows the
sharp jumps in concentration that occur at low temperatures.

In the simulations, phase separation manifests itself as a discontinuity in the
dependence #(y). In contrast, a second order <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>