

2 2005 1225-5668

This is to certify that the dissertation entitled

A STUDY FOCUSED ON THE RISK OF ILNESS FROM E. COLI IN RECREATIONAL-USE WATER, USING THE RED CEDAR WATERSHED AS A MODEL

presented by

MICHAEL J. LANG

has been accepted towards fulfillment of the requirements for the

Doctoral

degree in

Environmental Toxicology-Resource Development

Major Professor's Signature

Date

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

<u>DATE DUE</u>	DATE DUE	<u>DATE DUE</u>
NOX 2 7 2010 1		
U1 04		

6/01 c:/CIRC/DateDue.p65-p.15

A STUDY FOCUSED ON THE RISK OF ILLNESS FROM E. COLI IN RECREATIONAL-USE WATER, USING THE RED CEDAR WATERSHED AS A MODEL

By

Michael J. Lang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Resource Development

Institute of Environmental Toxicology

ABSTRACT

A STUDY ON THE RISK OF ILLNESS FROM E. COLI IN RECREATIONAL-USE WATER, USING THE RED CEDAR WATERSHED AS A MODEL

By

Michael J. Lang

With news reports of deaths from the ingestion of *E. coli* over the past few years, there is heightened public awareness of the risk of illness from *E. coli* from swimming and other recreational uses of surface water. Locally, the *State News* has run stories on the high *E. coli* levels that have been occasionally reported from the weekly sampling of the Red Cedar on the MSU campus. In addition, high *E. coli* levels have lead to unsafe conditions in the Clinton River and Lake St. Clair and cost the State of Michigan \$2.5 million in testing to determine the sources of the contamination. Nationwide, a majority of bodies of water that are used for recreational purposes, are considered to have *E. coli* counts above acceptable levels. In developing nations, 90% of untreated sewage from urban areas is dumped into streams and oceans causing unsafe conditions in both recreational-use water and drinking water due to high *E. coli* levels. The sources of *E. coli* are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow.

Runoff from heavy rains may impact *E. coli* levels in nearby surface water.

In this study, data collected through a collaboration of State agencies, county health departments and MSU resources were analyzed and linked to land use and physical characteristic of the watershed, such as rainfall and nutrient concentrations, using statistical methods. In addition, a small number of samples from the Red Cedar

were analyzed for both total *E. coli* and pathogenic *E. coli* levels using the traditional methods, as well as, a new innovative method.

Copyright by Michael J. Lang 2003

ACKNOWLEDGEMENTS

I would like to thank my graduate committee consisting of Drs. Daniel Bronstein, Scott Witter, Jon Bartholic and John Kaneene for their support and guidance. With out meetings and discussions with them, this dissertation could not have been completed.

I would like to thank Bob Godbold of Ingham County Health Department, Don Heyduke of Livingston County Health Department, and Betty Wernette-Babian of the MSU physician's office for collecting samples from the Red Cedar River and allowing me the use of the data generated from the sampling. In addition, I must thank the Michigan Department of Environmental Quality and the Michigan Department of Community Health for analyzing samples and communicating data.

I would like to thank Dr. Evangelyn Alocilja, Zarini Muhammad-Tahir, and the members of the Biosensor Lab in the Agricultural Engineering Department for the use of the biosensor.

I would like to thank Dr. Sasha Kravchenko for help with the statistical analysis used in this dissertation. I would like to thank Dr. Don Penner for his help, guidance and support in finishing this dissertation.

Finally, I must thank my lovely wife Sarah for her support and patience during my journey through this degree. If I had not been completing this degree, we would not have met while we were both in graduate school at MSU. This journey has been intellectually, spiritually, and emotionally fulfilling.

TABLE OF CONTENTS

LIST OF TABLESvii
LIST OF FIGURESviii
LIST OF ABBREVIATIONSx
CHAPTER 1 INTRODUCTION AND OVERVIEW1
CHAPTER 2 A REVIEW OF THE IMPACT OF E. COLI AND E. COLI 0157:H7 ON HUMAN HEALTH IN A WATER SHED: RISK FACTORS, RISK ASSESSMENT TOOLS EPIDEMIOLOGICAL EVIDENCE, AND PUBLIC POLICY
CHAPTER 3 THE EFFECT OF RAINFALL, RIVER FLOW, AND OTHER METEOROLOGICAL ASPECTS OF E. COLI LEVELS IN THE RED CEDAR RIVER
CHAPTER 4 THE EFFECT OF RAINFALL, NUTRIENT LEVELS, AND LAND-USE ON E. COLLEVELS IN THE RED CEDAR RIVER
CHAPTER 5 A LINKAGE BETWEEN TECHNOLOGY AND POLICY IN EVALUATING THE RISK OF MICROBIAL SAFETY I RECREATIONAL-USE WATER118
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS
APPENDIX148

LIST OF TABLES

Table 1-1. E. coli O157:H7 major outbreaks in the news	:
Table 1-2. Collaborators on Research	5
Table 2-1. Categories of Pathogenic E. coli	1
Table 2-2. Definition of a Concentrated Animal Feeding Operation (CAFO)1	9
Table 2-3. The Nine Minimum Controls for Combined Sewer Overflows4	5
Table 3-1. Number of Weeks that <i>E.coli</i> Concentration Over Full (1000 CFU/ml) or Partial (300 CFU/ml) Body Contact8	7
Table 3-2. Statistical Analysis of <i>E. coli</i> Concentration vs. River Flow, Rainfall, Air Temperature, Humidity, Soil Moisture, Ground Temperature, Solar Radiation, Wind Speed, Water Temperature, and Duck Count. (n = 96)	8
Table 4-1. Statistical Analysis of <i>E. coli</i> Concentration vs. Rainfall, Ammonia Nitrate, Total Phosphorus, and Total Suspended Solids (n = 221)10	9
Table 5-1. E. coli Concentration, Rainfall, River Flow, and E. coli O157:H7 Concentration from the Sampling Sites in the Red Cedar River Watershed	2
Table 5-2. Statistical Analysis of <i>E. coli</i> Concentration vs. Rainfall, River Flow, and <i>E. coli</i> O157:H7 Concentration	4
Table 5-3.E. coli O157:H7 Analyzed by Traditional Methods and by the Biosensor13	7
Table A-1. Farm Lane Three Years of Data	9
Table A-2. Yearly Mean of E. coli Concentration, Flow and Rainfall15	3
Table A-3 Nutrients E coli and Land-use Data	4

LIST OF FIGURES

Table 1-1. E. coli O157:H7 major outbreaks in the news
Table 1-2. Collaborators on Research
Figure 2-1. Risk Assessment Model
Figure 3-1. View of the Farm Lane Bride over the Red Cedar River from the USGS Gauging Station on the Campus of Michigan State University
Figure 3-2. Locations of where measurements were taken for this study
Figure 3-3. The Red Cedar River Watershed with The Michigan State University campus outlined
Figure 3-4. E. coli Concentration from April to November in the Red Cedar River81
Figure 3-5. Flow Rate from April to November in the Red Cedar River82
Figure 3-6. Mean Values of the Log-transformed <i>E.coli</i> Concentrations in Spring, Summer and Fall of the Studied Years
Figure 3-7. Mean Values of the Log-transformed Flow Rates in Spring, Summer and Fall of the Studied Years
Figure 3-8. Yearly Mean and Standard Deviation of E. coli Levels and Flow85
Figure 3-9. Yearly Mean of E. coli Levels, Flow, and Rainfall
Figure 3-10. Probability of <i>E.coli</i> >300 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall91
Figure 3-11. Probability of <i>E.coli</i> >300 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall and Low Air Temperature92
Figure 3-12. Probability of <i>E.coli</i> >1000 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall94
Figure 4-1. The Red Cedar River Watershed with The Michigan State University campus outlined
Figure 4-2. Means E. coli vs. Land use for 17 Selected Sampling Points105
Figure 4-3. Mean Ammonia Nitrate vs. Land use for 17 Select Sampling Points106

LIST OF FIGURES

Figure 4-4. Mean Total Phosphorus vs. Land use for 17 Select Sampling Points	s107
Figure 4-5. Mean Total Suspended Solids vs. Land use for 17 Select Sampling	Points.108
Figure 4-6. Mean E. coli Levels vs. Land use for all 38 Sampling Points	111
Figure 5-1. Red Cedar River Watershed with Locations of Sampling Sites	125
Figure 5-2. Schematic diagram of the immunosensor	129
Figure 5-3. Resistance drop of the biosensor tested in distilled water samples in with <i>E. coli</i> O157:H7.	

LIST OF ABBREVIATIONS

AFO Animal Feeding Operations
AGNPS Agricultural Non-Point Source

AU Animal Units

BEACH Beach Environmental Assessment Closure and Health Act

BMP best management practices

CAFO Concentrated Animal Feeding Operation

CFU Colony Forming Unit
CSO Combined Sewer Overflow

CWA Clean Water Act

DAEC Diffusely Adherent E. coli DMF N, N Dimethylformamide

E. coli Escherichia coli

EAEC Enteroaggregative E. coli
EHEC Enterohemorrhagic E. coli
EIEC Enteroinvasive E. coli

EPA Environmental Protection Agency

EPEC Enteropathogenic E. coli ETEC Enterotoxigenic E. coli

g grams

GIS Global Information Systems
HUS Hemolytic Uremic Syndrome
ICHD Ingham County Health Department
IMS Immunomagnetic separation

MDCH Michigan Department of Community Health
MDEQ Michigan Department of Environmental Quality

ml milliliters

MSU Michigan State University

NC Nitrocellulose

NLCD National Land Cover Data

NPDES National Pollution Discharge Elimination System

NRDC National Resources Defense Council

NWS National Weather Service
PBS phosphate buffer saline
PCR Polymerase Chain Reaction
PFGE Pulsed-field gel electrophoresis
POTW Publicly Owned Treatment Works

SSO Sanitary Sewer Overflows TMDL Total Maximum Daily Load

USDA United States Department of Agriculture

USEPA United States Environmental Protection Agency

USPHS United States Public Health Services
USGS United States Geological Services

WHO World Health Organization
WWTP Waste Water Treatment Plant

Chapter 1

Introduction and Overview

Introduction

With news reports of deaths from the ingestion of E. coli over the past few years, there is heightened public awareness of the risk of illness from E. coli from swimming and other recreational uses of surface water. Locally, the State News has run stories on the high E. coli levels that have been occasionally reported from the weekly sampling of the Red Cedar on the MSU campus (Johnson 2003; Cynecki 2003). In addition, high E. coli levels have lead to unsafe conditions in the Clinton River and Lake St. Clair and cost the State of Michigan \$2.5 million in testing to determine the sources of the contamination (Morris 2002). Nationwide, a majority of bodies of water that are used for recreational purposes, are considered to have E. coli counts above acceptable levels (Dorfman 2002). In developing nations, 90% of untreated sewage from urban areas is dumped into streams and oceans causing unsafe conditions in both recreational-use water and drinking water due to high E. coli levels (Crossette 1996). The sources of E. coli are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow (USEPA 1986 and 2000). Runoff from heavy rains may impact E. coli levels in nearby surface water.

A causal connection between fecal coliform and gastrointestinal sickness was first identified in 1953. (Stevenson 1953). In the late 1970s, in a landmark prospective cohort study, reported a linear relationship between the incidence of gastroenteritis among swimmers and marine bacterial counts (Cabelli 1982). There has a large body of

literature involving the epidemiology of illness from the use of recreational water. An excellent review of this body of literature has been published which included 37 studies. This review concluded that a causal dose-related relationship between gastrointestinal symptoms and recreational water quality measured by bacterial indicator counts exists (Pruss 1998).

E. coli O157 was first reported in the United States in 1982, when it was associated with a multi-state outbreak of hemorrhagic colitis that was traced to hamburger from a restaurant chain (Riley 1983; Tarr 1995). Exposure through ingestion of E. coli O157:H7 can cause severe bloody diarrhea and abdominal cramps although in some cases the infection causes non-bloody diarrhea. Usually little or no fever is present, and the illness resolves in 5 to 10 days. The clinical diagnosis of this illness is haemorrhagic colitis. In some people, particularly children under 5 years of age and the elderly, the infection can also cause a complication called hemolytic uremic syndrome (HUS), in which the red blood cells are destroyed and the kidneys fail (Moake 1994; CDC 2001).

Table 1-1. E. coli O157:H7 major outbreaks in the news.

Timeframe	Location	Company	Vector for Infection
1982	Washington State	Jack in the Box	Hamburger
1982	Michigan	Small cider mills	Cider
June 1997	Nationwide	Hudson Meats	Hamburger
May 2000	Walkerton, Ont.	Municipal water	Drinking water
August 2000	Washington, NY	State Fair	Drinking water
July 2002	Nationwide	ConAgra	Hamburger

The original intent of the research was to perform a risk assessment for illness from E. coli O157:H7 to humans when using the Red Cedar River for recreational purposes. Since there are no dose response data for illness caused by E. coli O157:H7 in recreational use water or even from ingestion via contaminated food, epidemiological studies on illness from E. coli O157:H7 in recreational use water were to be collected and meta-analysis used to determine the dose response for E. coli O157:H7 in recreational use water. Unfortunately, there is not enough data from the few epidemiological studies that have been reported (see Chapter 2). Since the data that was collected in this study was E. coli concentration levels, a relationship between E. coli concentration and E. coli 0157:H7 concentration was necessary. In an extensive literture search, no such relationship has been reported or estimated. Since the original goals of the research were not possible, the research questions were changed so that some of the identified holes in the reported literature could possibly be filled by this study. Results from this study may provide mechanisms for improved identification of potential risk factors for illness from E. coli in recreational-use water and may provide a solution for the real-time communication of such risks.

Research Questions

- 1. Are there physical measurements that are taken in a watershed that maybe indicators of an increased risk to humans using recreational water from exposure form *E. coli*?
- 2. Does of the type of land use surrounding the sampling point impact change in the reported physical measurement that are taken in the Red Cedar River watershed?

- 3. Do the levels of *E. coli* O157:H7 in recreational water in the Red Cedar River follow the levels of the indicator organism that is monitored and regulated?
- 4. What is the risk to humans using in recreational water from pathogenic *E.coli* O157:H7 in the Red Cedar River?

Overview

In this study, data collected through a collaboration of State agencies, county health departments and MSU resources were analyzed and linked to land use and physical characteristic of the watershed, such as rainfall and nutrient concentrations, using statistical methods. In addition, a small number of samples from the Red Cedar were analyzed for both total *E. coli* and pathogenic *E. coli* levels using the traditional methods, as well as, a new innovative method. This dissertation is set up so that chapters 2 through 5 are stand-alone manuscript written for submission to appropriate journals.

Chapter 2 entitled "A Review of the Impact of E. coli and E. coli O157:H7 on Human Health in a Watershed: Risk Factors, Risk Assessment Tools, Epidemiological Evidence, and Public Policy" is an extensive literature review of E. coli contamination in recreational use water and the effect on human health. Many of the references in this review are also used in later chapters. This chapter is written with the intent to submit it as a manuscript to Epidemiological Reviews.

Chapter 3 entitled "The Effect of Rainfall, River Flow and other Meteorological Aspects on *E. coli* Levels in the Red Cedar River" has the following objectives. An objective of this study is to determine if there is a seasonal effect on the concentration levels of *E. coli* in the Red Cedar River watershed. Another objective is to determine if

there is relationship between the flow rate of the river and concentration levels of *E.coli*. In addition, an objective of this study is to determine the statistical significance of concentration levels of *E.coli* as related to the watershed physical characteristics of rainfall, air temperature, water temperature, intensity of the sun, humidity, soil moisture, ground temperature, wind speed, duck population, as well as river flow. Finally, an objective of this study is to use the statistical data to model risk factors to so that water safety can be determined by the changes in physical characteristics which maybe determinable in real time. It is hypothesized, based on the results reported in the literature, that the model risk factors are directly related to rainfall and associated factors. This chapter is written with the intent to submit it as a manuscript to Journal of Environmental Quality.

Chapter 4 entitled "The Effect of Rainfall, Nutrient Levels, and Land-use on E. coli Levels in the Red Cedar River" has the following objectives. The objective of this study is determine if the type of land-use around a sampling point is associated with elevated E. coli concentration levels. Another objective of this study is to determine if the type of land-use around a sampling point is associated with elevated levels of nutrients. In addition, an objective of this study is determine if there is any association between the concentration levels of nutrients and the concentration levels of E. coli. It is hypothesized that agricultural land-use has the highest discharges of E. coli and nutrients and therefore has a greater negative impact to the Red Cedar River than other types of land-use. This chapter is written with the intent to submit it as a manuscript to Journal of American Water Resources.

Chapter 5 entitled "A Linkage between Technology and Policy in Evaluating the Risk of Microbial Safety in Recreational-use Water" has the following objectives. The main focus of this project is to improve the safety of recreational-use water through better communication of the actual risk. An objective is to determine if rain or river flow has an influence on the concentration of *E. coli* and *E. coli* O157:H7. Another objective is to evaluate if total *E. coli* measured maybe used as an indicator of pathogenic *E. coli* O157:H7 contamination. In addition, an objective is to evaluate if a biosensor maybe employed to measure quickly the presence of *E. coli* and *E. coli* O157:H7. It is hypothesized that a linear relationship will exist between *E. coli* concentrations and *E. coli O157:H7* concentrations. This chapter is written with the intent to submit it as a manuscript to Environmental Health Perspectives

Table 1.2. Collaborators on Research.

- •Ingham County Health Department
- •Livingston County Health Department
- •Michigan Department of Environmental Quality
- •Michigan Department of Community Health
- •MSU Physician's office
- •MSU Biosensor Lab
- •MSU WATER Human Health Subcommittee
- •MSU Department of Crop and Soil Sciences
- •East Lansing WWTP

References

Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. 1982. Swimming-associated gastroenteritis and water quality. Am J Epidemiol 115:606-616.

Cabelli VJ. 1989. Swimming-associated illness and recreational water-quality criteria. Water Science and Technology 21(2): 13-21.

CDC. 2001. *Escherichia coli O157:H7*. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm

Crossette B. 1996. Hope and pragmatism, for U.N. cities conferences. New York Times, 3 June A3.

Cynecki K. 2003. Area river safe after sewage leaks. The State News. 25 Aug.

Dorfman M. 2002. Testing the waters XII: A guide to water quality at vacation beaches. NRDC, 211pp.

Johnson A. 2002. Ingham county seeks source for bacteria in Red Cedar River. The State News. 1 Apr.

Moake JL. 1994. Hemolytic Uremic Syndrome: Basis Science. Lancet 343:393-397.

Morris I. 2002. Water tests to cost \$2.5M. The Detroit News. 4 Aug. B5.

Pruss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol. 27(1): 1-9.

Riley LW, Remis RS, Helgerson SD. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med;308:681-685.

Stevenson AJ. 1953. Studies of bathing water quality and health. American Journal of Public Health 43:529-538.

Tarr PI. 1995. Escherichia-Coli O157-H7 - Clinical, Diagnostic, and Epidemiologic Aspects of Human Infection. Clinical Infectious Diseases 20(1): 1-10.

USEPA Human Health Risk Assessment Guidelines (1986), and supplement (August 2000)

Chapter 2

A Review of the Impact of E. coli and E. coli 0157:H7 on Human Health in a

Watershed: Risk Factors, Risk Assessment Tools, Epidemiological Evidence, and

Public Policy

Table of Contents

Introduction

Escherichia coli

Risk Factors for Illness in Recreation-use Water
Physical Characteristics of a Watershed
Agricultural Animals and Activities
Other Animals Reservoirs

Causal Connection of Illness and Agriculture
Human Sewage
Causal Connection of Illness and Sewage

Tools for *E. coli* Risk Assessment

Modeling of the Watershed

Detection Methods for *E. coli*Risk Assessment Models

Epidemiological Evidence Indicator Bacteria E. coli O157:H7

Public Policy

Conclusions

References

Introduction

Beach closings and illness after exposure to marine water may be increasing in frequency (Harvell 1999; Harvard Med School 1998)). In the United States from 1988 to 1994, there were over 12,000 coastal beach closings and advisories (an increase of 400% over that period), with over 75% of the closings due to microbial contamination (Barton 1995). A recent report compiled by the Natural Resources Defense Council (NRDC), which surveyed more than 200 waterfront communities, found that during 1999 there were at least 6,160 beach days of closings and advisories at beaches (Dorfman 2000). According to NRDC's twelfth annual beach report, at least 13,410 closings and advisories were issued across the country in 2001, a 19 percent jump over the previous year (Dorfman 2002). Although not all cases can be traced to anthropogenic discharges, the belief that marine pollution has no significant impact on health (Carson 1951; Moore 1959) must now be challenged. Infectious diseases and toxin-related illness may be caused by enteric pathogens or chemicals that enter the marine environment from terrestrial ecosystems (e.g., through fecal contamination from a number of point and diffuse sources) (Weiskel 1996). Alternatively, indigenous organisms and their associated biotoxins that may have increased in number or virulence as a result of ecological imbalance (Epstein 1993; Smayda 1993) can cause negative health effects. Anthropogenic inputs to the coastal environment may be contributing to both terrestrial and marine stress (Epstein 1993).

There is a large body of literature involving the illness caused by *E. coli* strains in water. In the early 1980s, *E. coli* 0157:H7 was recognized as a pathogen (Riley 1982).

The pathogenicity to humans from this pathogen has been reported to be as low as 10 cells (Phillips CA 1999). There are an estimated 73,000 cases of *E. coli O157* infections per year in the United States, of which approximately 62,000 are food-borne and 11,000 are waterborne (Mead PS et al.1999). These estimations consider waterborne cases from ingestion of water as food not from recreational use of a waterbody. Examples of waterborne cases include Walkerton, Ontario, where the town's water supply was contaminated by *E. coli O157:H7* (not included in the estimations because it happened in Canada in the year 2000) (Nikiforuk 2000; Brooke 2000; Wickens 2000) and Washington County fair in the state of New York (Bopp 2003). Although there are an estimated 73,000 cases of *E. coli O157* infections per year in the United States since 1982 (CDC 2000), reports of clinical cases from *E. coli O157:H7* are less than ten worldwide.

Escherichia coli

Escherichia coli (E. coli) is the type species of the genus Escherichia, which contains mostly motile rod-like gram-negative bacilli within the family Enterobacteriaceae and the tribe Escherichia. E. coli bacteria live in the digestive systems of humans and other warm-blooded animals. E. coli can be found in the fecal flora of a wide variety of animals including cattle, sheep, goats, pigs, cats, dogs, chickens, and gulls (Hancock 2001; Niemis 1991).

The organism typically colonizes the infant gastrointestinal tract within hours of life, and, thereafter, *E. coli* and the host derive mutual benefit (Drasser 1974). *E. coli* usually remains harmlessly confined to the intestinal lumen; however, in the debilitated or immunosuppressed host, or when gastrointestinal barriers are violated, even normal

"nonpathogenic" strains of *E. coli* can cause infection. Most strains of the *E. coli* bacteria are not dangerous, but they can indicate the presence of other disease-causing bacteria.

There are a variety of sources that contribute bacteria and other pathogens to the surface water. These sources include illicit waste connections to storm sewers or roadside ditches, septic systems, combined and sanitary sewer overflows, storm (rain) runoff, wild or domestic animal waste, and agriculture runoff.

E. coli O157 was first reported in the United States in 1982, when it was associated with a multi-state outbreak of hemorrhagic colitis that was traced to hamburger from a restaurant chain (Riley 1982; Tarr 1985). The current teachings suggest that there are six categories of pathogenic E. coli as described in Table 2-1.

Table 2-1. Categories of Pathogenic E. coli (adapted from Nataro and Kater 1998)

			Examples of
Acronym	Name	Associated Clinical Syndromes	Serotypes
ETEC	Enterotoxigenic E. coli	Traveler's diarrhea	
EPEC	Enteropathogenic E. coli	Watery diarrhea of infants	
		Hemolytic-uremic syndrome	
EHEC	Enterohemorrhagic E. coli	N	O157:H7
EAEC	Enteroaggregative E. coli	Persistent diarrhea	O127:H2
EIEC	Enteroinvasive E. coli		
DAEC	Diffusely Adherent E. coli		

Of these six, two categories, EIEC and DAEC, are considered "emerging pathogens." There is very little documentation on these categories and the identification of these strains has been limited to infants in less developed countries. In addition, these emerging strains have not been identified in the developed countries. For the other categories, three of these, ETEC, EPEC, and EAEC, have doses that cause illness in

humans that are far above the standards of total *E. coli* that is acceptable for "safe" human recreational use of surface water. If the waterbody has levels of *E. coli* below the regulated standard then there is no risk from these three categories of pathogenic *E. coli*. The final category of pathogenic is EHEC which includes the famous serotype *O157:H7*. The infectious dose for this strain has been estimated in the literature to be anywhere from 1000 organisms to just 10 organisms (Philips 1999). These levels are far below the total *E. coli* standard that is acceptable for "safe" human recreational use of surface water. No literature references are available for what the percentage of EHEC in a total *E. coli* measurement from surface water may be, therefore, a huge gap in the literature exists and research is necessary to help answer these questions.

Among the most important virulence characteristics of *E. coli O157* is its ability to produce one or more Shiga toxins also called verocytotoxins and formerly known as Shiga-like toxins. The first of these, Shiga toxin 1 (Stx1) is indistinguishable from Shiga toxin produced by Shigella dysenteriae type 1 (Nataro and Kaper 1998). The second, Shiga toxin 2 (Stx2) is a more divergent molecule with only 56% amino acid homology with Stx1. Most *E. coli O157* strains produce Stx2 with the percentage that also produce Stx1 ranges from less than 25% in series from Europe (Thomas 1996) to greater than 80% in a series from North America (Cimolai 1994; Slusker 1997) and Japan (NIH 1996).

Shiga toxin infection often causes severe bloody diarrhea and abdominal cramps although in some cases the infection causes non-bloody diarrhea. Usually little or no fever is present, and the illness resolves in 5 to 10 days. The clinical diagnosis of this illness is haemorrhagic colitis. Ground beef and other bovine products have often been

implicated as sources, along with other food products (Ackers 1998, Besset 1993; Hilborn 1999; Michino 1999; Tamblyn 1999; Watanabe 1996) and person-to-person transmission (Pavia 1990; Bender 1997). Occasional outbreaks have also been associated with public drinking water (Swerdlow 1992) and swimming in contaminated water (Friedman 1999).

In some people, particularly children under 5 years of age and the elderly, the infection can also cause a complication called hemolytic uremic syndrome (HUS), in which the red blood cells are destroyed and the kidneys fail (Riley 1983; Wells 1983; Moake 1994). About 2%-7% of infections lead to this complication. In the United States, HUS is the principal cause of acute kidney failure in children, and most cases of HUS are caused by *E. coli O157:H7*. HUS is a life-threatening condition usually treated in an intensive care unit. Blood transfusions and kidney dialysis are often required. With intensive care, the death rate for HUS is 3%-5% (CDC 2001). About one-third of persons with HUS have abnormal kidney function many years later, and a few require long-term dialysis. Another 8% of persons with HUS have other lifelong complications, such as high blood pressure, seizures, blindness, paralysis, and the effects of having part of their bowel removed (CDC 2001).

Human infection with *E. coli O157* has been reported from over 30 countries on six continents. Annual incidence rates of 8 per 100,000 population or greater have been reported in regions of Scotland (Rielly 1997; Coia 1998; Licence 2001), Canada (Waters 1994), and the U.S. (Griffin 1991). High rates may be present in regions of South America, especially in Argentina where HUS has an incidence 5-10 times higher than North America (Lopez 1989; Rivas 1998). Infection rates appear to be rather low in Australia (Fegan 2002).

Risk Factors for Illness in Recreation-use Water

Ever since fecal contamination of water was determined a human health risk, there has always been a great deal of concern regarding the level of coliform bacteria counts in water. Many bodies of water throughout the world are considered to have counts above acceptable levels. The sources of these coliforms are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow (EPA 2000).

Physical Characteristics of a Watershed

Physical characteristics of the watershed are potential risk factors to the levels of E. coli and its various strains. The physical factors that will be reviewed in this section include seasonal variability, rainfall, river flow, nutrient, and the rate of survival of bacteria in water.

Over a twelve-year period (1984-1995) a study examined admissions for HUS in Scotland and determined that seasonality was present with the highest amount of admissions in July and August (Douglas 1997). It should be noted that this study was not limited to recreational use of water and showed the seasonal pattern only for patients under 15 years old. In contrast, a study in Florida showed that concentration of fecal indicator organisms during the late fall and early winter months which corresponds to the wet-weather months in Florida (Lipp 2001). In addition the study determined that the levels of fecal indicators were significantly associated with rainfall, stream flow, and temperature. Moreover, a study of two steams in Arkansas over a three year period concluded that concentrations of indicator bacteria increased with increasing flow rates

and seasonal effects were observed on the indicators with the highest levels occurring during the summer months (Edwards 1997). Furthermore in a study of a dairy herd reported that *E. coli O157:H7* was found in 4.3% of the herd and peaked during the May to July timeframe but was not found in the herd from November to May (Mechie 1997). However a study in northwest England reported that bacteria indicators showed no seasonal variations over a two-year period (Obiri-Danso 1999).

Other studies support the association of the levels of fecal indicators in a water body and rainfall events. In a study that examined 99 samples from three tributaries that contributed to different drinking water reservoirs showed that E. coli levels along with other bacteriological parameters increased considerably during extreme rainfall events (Kistemann 2002). In a related study on Delaware River, increased concentrations of Giardia, Cryptosporidium and other microorganisms were associated with rainfall (Atherholt 1998). In a prospective study on waterborne disease outbreaks in the U.S. for 1948 to 1994, analyzed 548 reported outbreaks as documented by the USEPA database. This results from this study showed that 51% of waterborne disease outbreaks were preceded by precipitation events above the 90th percentile and 67% by events above the 80th percentile (Curriero 2001). This study concluded that there is a statistical significance association between rainfall and waterborne disease outbreaks. Other studies also conclude that E. coli levels increase with rainfall (Briski 2000; Ferguson 1996; Atherholt 1998; Pettibone 1996; Niemi 1991; Mallin 2001). A recent study suggests that an increase in rainfall or snowmelt increases the impact of diseases caaused by microbiologic agents (Rose 2001).

Increased river flow has been related to increases in the levels of *E. coli* in the river. Early studies in Idaho and Oregon found that fecal coli concentrations were higher during periods of high flow than during period of lower flow (Stephenson 1978; Tiedemann 1988). These finding were confirmed in a study of two rivers in Arkansas which concluded that concentrations of indicator bacteria increased with increasing flow rates (Edwards 1997).

As far as nutrients and their relation to *E. coli* there has not been many reports in the literature. Total suspend solid were strongly correlated to indicator bacteria when flow rates were the highest (Pettibone 1996). In another study, a statistical analysis showed that there was a significant correlations between levels of nitrate as well as levels of phosphate with the indicator bacteria faecal coliform (Daby 2002).

In a recent study, model systems were used to determine the persistence of $E.\ coli$ O157 in river water, cattle faeces, and soil cores (Maule 2000). Survival of the organism was found to be greatest in soil cores containing rooted grass. Under these conditions viable numbers were shown to decline from approximately 10^8 /g soil to between 10^6 and 10^7 /g soil after 130 days. When the organism was inoculated into cattle faeces it remained detectable at high levels for more than 50 days. In contrast the organism survived much less readily in cattle slurry and river water where it fell in numbers from more than 10^6 /ml to undetectable levels in 10 and 27 days, respectively (Maule 2000).

The survival characteristics of a mixture of five nalidixic acid-resistant *E. coli* 0157:H7 strains innoculated at 10³ CFU/ml in filtered and autoclaved municipal water, in reservoir water, and in water from two recreational lakes were determined for a period of 91 days and stored at three different temperatures of 8, 15, or 25 degrees C. Greatest

survival was in filtered autoclaved municipal water and least in lake water. Regardless of the water source, survival was greatest at 8 degrees C and least at 25 degrees (Wang 1998).

In study *E. coli O157* was investigated to determine if it would multiply in a medium containing 5% NaCl and in sterilized marine water. Results indicate that *E. coli O157* could survive in unsterilized marine water for at least 15 days. On the basis of these results, it was postulated that *E. coli O157* may survive in natural marine water (Miyagi 2002).

Environmental survival of *Escherichia coli O157* may play an important role in the persistence and dissemination of this organism on farms. The survival of culturable and infectious E, coli *O157* was studied using microcosms simulating cattle mater troughs. Culturable E, coli *O157* survived for at least 245 days in the microcosm sediments (LeJeune 2001). In a study aimed to investigate the survival characteristics of *Escherichia coli O157:H7* in farm water, and in sterile distilled municipal water reported that the organism survived in farm water for over 31 days and in the distilled water for 17 days (McGee 2002).

The survival characteristics of *Escherichia coli O157:H7* in private drinking water wells were investigated to assess the potential for human exposure. A non-toxigenic, chromosomally lux-marked strain of E coli *O157:H7* was inoculated into well water from four different sites in the North East of Scotland. These waters differed significantly in their heavy metal contents as well as nutrient and bacterial grazer concentrations. Grazing and other biological factors were studied using filtered (3 and 0.2)

mum) and autoclaved water. The survival of *E. coli O157:H7* was primarily decreased by elevated copper concentrations (Artz 2002)

Escherichia coli O157:H7 was inoculated at final concentrations of 10³ or 10⁶ /ml into natural non-carbonated mineral water (MW), sterile natural mineral water (SMW) and sterile distilled deionized water (SDDW) and stored at 15 degrees C for 10 weeks. Samples were examined every 7 d for the presence of E. coli O157:H7. There was a significant difference in the survival of E. coli O157:H7 (10³ /ml inoculum) between the MW and the SDDW and between the MW and the SMW with the pathogen surviving longest in the MW samples. In contrast, at 10⁶ /ml, no significant differences in the survival of E. coli O157:H7 were observed between the water types (Kerr M 1999).

In addition studies have reported that *E. coli* survives and even grows in freshwater and marine sediment (Gerba 1976; Hood 1982; LaLiberte 1982). Sediments may contain 100 to 1000 times as many fecal indicator bacteria as the overlaying water (Ashbolt 1993; Van Donsel 1971). *E. coli* survived over 28 and as long as 68 days in sediment (Davies 1995).

Agricultural Animals and Activities

Animal Feeding Operations (AFOs) are agricultural operations where animals are kept and raised in confined situations. AFOs generally congregate animals, feed, manure, and production operations on a small land area. Feed is brought to the animals rather than the animals grazing or otherwise seeking feed in pastures. Animal waste and wastewater can enter water bodies from spills or breaks of waste storage structures (due to accidents or excessive rain), and non-agricultural application of manure to cropland. AFOs that

meet the regulatory definition of a Concentrated Animal Feeding Operation (CAFO) have the potential of being regulated under the NPDES permitting program. A facility is an AFO if animals are stabled/confined, or fed/maintained, for 45 days or more within any 12-month period, and the facility does not produce any crops, vegetation or forage growth (40 CFR 122.23(b)(1).

Table 2-2. Definition of a Concentrated Animal Feeding Operation (CAFO)

A CAFO is an AFO which:

- Has more than 1,000 animal units (AU), or
- Has 301 to 1,000 AU and wastes are discharged through man-made conveyance or directly into US waters, or
- Is designated a CAFO by the permitting authority on a case-by-case basis

Animal units ("AUs") are defined in EPA's current regulations at 40 CFR 122 and vary by animal type. An AU is equivalent to one beef cow or 2.5 mature swine or up to 100 chickens. Winter-feeding of animals on pasture or rangeland is not normally considered an AFO.

USDA reports that there were 1.2 million livestock and poultry operations in the United States in 1997 (USDA 1999). This number includes all operations that raise beef or dairy cattle, hogs, chickens (broilers or layers), and turkeys, and includes both confinement and non-confinement (i.e., grazing and rangefed) production. Of these, EPA estimates that there are about 376,000 AFOs that raise or house animals in confinement, as defined by the existing regulations.

AFOs (including CAFOs) produce and manage large amounts of animal waste, most in the form of manure. USDA estimates that 291 billion pounds (132 million metric tons) of "as excreted" manure were generated in 1997 from major livestock and poultry

operations (USDA 1999). The scale of this unprecedented outpouring of animal waste is staggering: 130 times the waste generated by humans in this country each year (US Senate Comm. Report 1997).

Recent trends across the U.S. livestock and poultry sectors are marked by a decline in the number of operations due to ongoing consolidation in the animal production industry (MacDonald 2000; McBride 1997). Increasingly, larger, more industrialized, and highly specialized operations now account for a greater share of all animal production. This concentrates more animals, and thus more manure and wastewater, in a single location, and raises the potential for significant environmental damages unless manure is properly handled. USDA reports that there were 1.1 million livestock and poultry farms in the United States in 1997, about 50 percent fewer than the 2.3 million farms reported in 1974 (USDA 1999 and 1976). Since the 1970s, the combined forces of population growth and re-location of operations closer to consumer markets and processing sectors have resulted in more AFOs located near densely populated areas. Surface waters in these areas face additional stresses from urban runoff and other point sources. The proximity of large AFOs to human populations thus increases the potential for human health impacts and ecological damage if manure and wastewater at AFOs is improperly discharged.

The most important animal species in terms of as a vextor for human infection is cattle. High rates of colonization of *stx*-positive *E. coli* have been found in bovine herds in many countries (Burens 1995; Clarke 1994; Griffin 1991; Hancock 1994; Wells 1991). These rates are as high as 60% but are more typically in the range of 10 to 25%. Stx-producing *E. coli* strains are usually isolated from healthy animals but may be associated

with an initial episode of diarrhea in young animals followed by asymptomatic colonization. The isolation rates of *O157:H7* are much lower than those of non-*O157:H7* serotypes. Surveys of U.S. dairy and beef cattle have found *E. coli O157:H7* in 0 to 2.8% of animals, with the highest isolation rates reported from younger rather than older animals (Hancock 1994; Wells 1991). In 1986, *E. coli O157* was recovered from healthy dairy cows, suggesting that dairy and beef herds could serve as a reservoir (Martin 1986). Subsequent studies have confirmed that *E. coli O157* and other EHEC strains are commonly found in beef and dairy cattle (Martin 1986) as well as animals associated with farm as well as sheep, pigs, goats and chickens (Ogden 2002; Kariuki 1999; Griffin 1991; Strachan 2001).

Environmental survival of *Escherichia coli O157* may play an important role in the persistence and dissemination of this organism on farms. The survival of culturable and infectious *E. coli O157* was studied using microcosms simulating cattle mater troughs. *E. coli O157* strains surviving more than 6 months in contaminated microcosms were infectious to a group of 10-week-old calves (LeJeune 2001). Fecal excretion of *E. coli O157* by these calves persisted for 87 days after challenge. Water trough sediments contaminated with feces from cattle excreting *E. coli O157* may serve as a long-term reservoir of this organism on farms and a source of infection for cattle.

E. coli has been identified in cattle on all continents with the exception of Antarctica. In Asia, the pathogen has been identified in Chinese and Japanese cattle (Zhou 2002; Elliot 2001; Dundas 2000; Tanaka 2000) In Europe E. coli O157 has found in cattle in the Netherlands, Norway, Finland, Britian, Germany, France, Chezsolvokia, (Beutin 2000; Chalmers 2000; Geue 2002; Heuvelink 1999; Heuvelink 1998; Jones 1999;

Lahti 2001; Osek 1999; Osek 2002; Vermozy-Rozand 2002; Vold 2001). In North America, *E. coli O157* has been identified in cattle and other farm animals in the United States and Canada, as well as South America (Bielaszewska 2000; Hancock 2001; Hoar 2001; Joseph 2002; Laegreid 1999; License 2001; Mariani-Karkdjian 1999; McClure 2000; Mead 1998; Padhye 1992; Philips 1999; Notario 2000; Rasmussen 2001; Samadpour 2002; Sargeant 2000; Verweyen 2000; Wang 1996; Whipp 1994). *E. coli O157:H7* is least prevalent in Australia (Elliot 2001; Fegan 2002).

Other Animal Reservoirs

Some studies suggest that elk, deer, ducks, birds and other wild animals may also be a source of *E. coli O157* (Niemi 1991; Wallace 1997; Feldman 2002; Olson 2002; Samadpour 2002; Rice 2003). Companion animals including cats, dogs, reptiles, and birds have been reported to have *E. coli* and/or *E. coli O157:H7* in their feces (Beutin 1993; Wallace 1997; Synge 2000; Hancock 2000; Enriquez 2001). In addition fecal samples from 300 zoo animals have been analyzed and only six animals, a horse and five species of primates, were positive for *E. coli O157:H7* (Bauwens 2000).

Causal Connection of Illness and Agriculture

In 1999, an *E. coli* outbreak occurred at the Washington County Fair in New York State. This outbreak was possibly the largest waterborne outbreak of *E. coli O157:H7* in U.S. history. It took the lives of two fair attendees and sent 71 others to the hospital. An investigation identified 781 persons with confirmed or suspected illness related to this outbreak. The outbreak is thought to have been caused by contamination of the Fair's

Well 6 by either a dormitory septic system or manure runoff from the nearby Youth Cattle Barn (Bopp 2003; Ackman 1997). More recently, in May 2000, an outbreak of E. coli O157:H7 in Walkerton, Ontario resulted in at least seven deaths and 1,000 cases of intestinal problems; public health officials theorize that one possible cause was floodwaters washing manure contaminated with E. coli into the town's drinking water well; an investigation is currently underway (Brooke 2000). An outbreak of E. coli 0157:H7 was reported in Walkerton, Ontario, Canada from well water potentially contaminated by manure runoff (Kluger 1998). Cow manure has specifically been implicated as a causative factor in the high bacteria levels and ensuing swimming restrictions on Tainter Lake, Wisconsin (Behm 1989). Among the many outbreaks reports, studies have been published from outbreaks in Scotland (Coia 1998; License 2001), Missouri (Swerdlow 1992) and Idaho (Vane Every 1995). This is only a small sample of such reports. Investigations in Ontario on well water from a farm has shown a relationship between the indicator in the well water and illness (Jackson 1998; Raina 1999). Finally, studies have been published on the presistance of E. coli in a farm environment and the risks of contact and the relation with illness (Rahn 1997; Jones 1999; O'Brien 2001; Locking 2001; Ogden 2002; Strachan 2002).

Human Sewage

Population growth in coastal areas is increasing at a rate double that of population growth worldwide. It is estimated that billions of gallons of treated and untreated wastewater are discharged daily into the world's coastal waters. In developing nations, 90% of untreated sewage from urban areas is dumped into streams and oceans (Crossette

1996). In addition, runoff from heavy rains can worsen water quality. Increased bacterial, viral, and toxin contamination may be associated with watershed pollution, loss of wetlands (which naturally filter out pollutants), and overfishing (which decreases predation). Heavy loadings of organic and inorganic nutrients change the ecological balance, stimulating nuisance organisms (Burkholder 1997) and in some cases affecting the virulence of indigenous species (Bates 1991).

Combined sewer systems are sewers that are designed to collect rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. Most of the time, combined sewer systems transport all of their wastewater to a sewage treatment plant, where it is treated and then discharged to a water body. During periods of heavy rainfall or snowmelt, however, the wastewater volume in a combined sewer system can exceed the capacity of the sewer system or treatment plant. For this reason, combined sewer systems are designed to overflow occasionally and discharge excess wastewater directly to nearby streams, rivers, or other water bodies. These overflows, called combined sewer overflows (CSOs), contain not only storm water but also untreated human and industrial waste, toxic materials, and debris. They are a major water pollution concern for the approximately 772 cities in the U.S.that have combined sewer systems. CSOs may be thought of as a type of "urban wet weather" discharge. This means that, like sanitary sewer overflows (SSOs) and storm water discharges, they are discharges from a municipality's wastewater conveyance infrastructure that are caused by precipitation events such as rainfall or heavy snowmelt. Properly designed, operated, and maintained sanitary sewer systems are meant to collect and transport all of the sewage that flows into them to a publicly owned treatment works (POTW). However, occasional unintentional

discharges of raw sewage from municipal sanitary sewers occur in almost every system, also known as SSOs. SSOs have a variety of causes, including but not limited to severe weather, improper system operation and maintenance, and vandalism. EPA estimates that there are at least 40,000 SSOs each year (USEPA 2002d). The untreated sewage from these overflows can contaminate our waters, causing serious water quality problems. It can also back-up into basements, causing property damage and threatening public health. CSOs and wet weather SSOs contain a mixture of raw sewage, industrial wastewater and storm water, and have resulted in beach closings, shellfish bed closings, and aesthetic problems.

Causal Connection of Illness and Sewage

The possible transmission of infectious disease via primary contact with domestic sewage has been the subject of many published epidemiological studies (including: Stevenson 1953; Moore 1959; Cabelli 1982; Seyfield 1985; Fattel 1987; Ferley 1989; Cheunk 1990; Balarajan 1991; Alexander 1992; Fleisher 1993; Corbett 1993, Fleisher 1996; Butler 1997; Haile 1999; Prieto 2001; Bonadonna 2002; Dwight 2002). In addition, CSOs have been identified as a source of bacteria including *E. coli* (Burm 1966; Burm 1967). In a study of recreational water, it was reported that 34.5% of the gastroenteritis infection were directly linked to domestic sewage in the swimming waters and there was illness even though that water was within the EPA levels as acceptable (Fleisher 1998).

Tools for E. coli Risk Assessment

Modeling of the Watershed

Global Information Systems (GIS) have been around since the 1960s but this was mainly a research tool used by the federal government and large research universities. However, this has changed and GIS is available to a much larger audience and has become easier to use. This change was made possible by other technology trends such as increased computer power and graphics in personal computers, improved and robust databases, and increased computer savvy in our current society. Now, GIS is a tool not only for scientists at NASA or a major research institution but rather, is also a tool used by municipal planners on a local level and a skill learned by many at the undergraduate level at many colleges across the country. In addition, the general public can access environmental and watershed data in easy to use GIS formats through the EPA webpages.

GIS combines layers of information about a place to give the researcher a better understanding of that place. What layers are combined depends on the researchers purpose such as: finding the best location of a new store, analyzing environmental damage, viewing similar crimes in a city to detect a pattern, or understanding land use in a watershed. Many examples of watershed GIS data exist on the web such as: the Red Cedar hosted by Michigan State University (MSU 2002), and the Kalamazoo River hosted by Western Michigan University (WMU 2002). The USEPA hosts the "Surf your Watershed" system (USEPA 2002) on which any who accesses this system can find GIS information on any watershed in the United States. These watershed GIS databases, like most, on based on USGS topological data (USGS 2000) to define the area of the

watershed and micro-watersheds with it. In addition, theses GIS databases have layers that include waterbodies, roads, cities, and in some cases land use coverage data.

There are many examples of GIS used as a tool in the analysis of watersheds. Moreover, GIS has been used to model the activities and systems of a watershed. Nonpoint pollution in a watershed has been a natural to model using GIS tools. BASINS designed by the EPA (USEPA 2002b) STREAM (Spatial Tools for River basins, Environment and Analysis of Management options) (Schepel 1998), and SIMPLE (Spatially Integrated Models for Phosphorus Loading and Erosion) (Kornecki 1999) are examples of popular models that have designed for the evaluation of non-point pollution. Agricultural land-use has been studied for non-point run-off. AGNPS (Agricultural Non-Point Source) is a model designed by the USDA (Grunwald 2000, USDA 2002) for use in determining the impact of agricultural activities on a watershed. AGNPS has been used to determine the agricultural impact on coastal and estuarine ecosystems (Choi 1999) and has been modified to integrate ARC/INFO databases in order to evaluate non point source problem areas (Liao 1997). In addition, models have been designed to study impact of the use of buffer strip on the water quality (Tim 1994). GIS tools have been used to evaluate non-point pollution of surface waters with phosphorus and nitrogen (Carpenter 1998, Robinson 1993). Additional GIS methods have been employed to help understand sediment loading from agricultural land use (Rudra 1999).

Of course agricultural lands have not been the only areas studied. Urban systems also have an impact on a watershed and GIS tools have been employed to study these impacts. Storm-water management systems and their impacts have been modeled using

GIS (Shamsi 1996). Estimations of mass loading from these types of systems evaluated (Wong 1997, Adamus 1995).

Larger scale studies have used the entire watershed in order to determine problem areas and what corrective actions could be implemented. The optimization the mix of Best Management Practices (BMP) to reduce the loading on a waterbody has been the goals of some research (Sample 2001, Wang 2000). GIS has been used to manage the ecosystems of a watershed (Crawford 1998).

The impact of land use on a watershed is an obivious use of GIS tools but only recently have studies on this subject have been published. Correlation between water quality using conductivity as the measure and urban land use was identified (Wang 1997). Other assessments of water quality and land use have determined with out surprise that land use does impact water quality (Wang 2001, Bhaduri 2000). There is very little in the literature on using GIS in a watershed to determine risk from microbial pathogens based on land use. There are published results investigating septic systems as potential pollutant but this study used nitrate as its measure (Stark 1999). In Ontario geographic distribution of *E. coli O157:H7* infection and was compared to cattle population (Michel 1999). The results indicate that cattle density had a positive and significant association with the incidence of reported cases. GIS has been used to model and predict pathogen loading from livestock (Fraser 1998).

The U.S. Environmental Protection Agency's water programs and their counterparts in states and pollution control agencies are increasingly emphasizing watershed and water quality-based assessment and integrated analysis of point and nonpoint sources. Better Assessment Science Integrating point and Non-point Sources

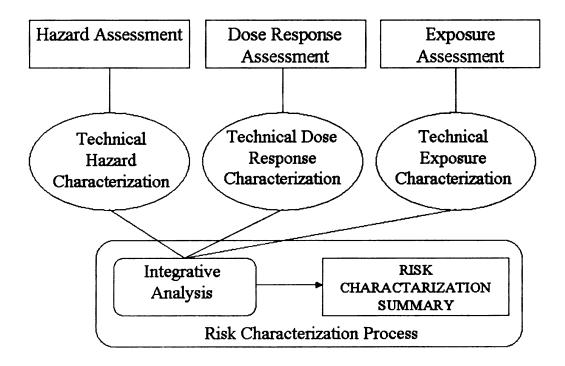
(BASINS) is a system developed to meet the needs of such agencies. It integrates a geographic information system (GIS), national watershed and meteorologic data, and state-of-the-art environmental assessment and modeling tools into one convenient package. Originally released in September 1996, with a second release in 1998 BASINS, addresses three objectives: (1) to facilitate examination of environmental information, (2) to provide an integrated watershed and modeling framework, and (3) to support analysis of point and non-point source management alternatives (USEPA 2002b) BASINS supports the development of total maximum daily loads (TMDLs), which require a watershed-based approach that integrates both point and nonpoint sources. It can support the analysis of a variety of pollutants at multiple scales, using tools that range from simple to sophisticated.

The Bacterial Indicator Tool is a spreadsheet that estimates the bacteria contribution from multiple sources. Output from the tool is used as input to the water quality model in BASINS. The tool estimates the monthly accumulation rate of fecal coliform bacteria on four land uses (cropland, forested, built-up, and pastureland), as well as the asymptotic limit for the accumulation should no washoff occur. The tool also estimates the direct input of fecal coliform bacteria to streams from grazing agricultural animals and failing septic systems (USEPA 2002b).

E. coli Detection Methods

The original mTEC Agar enumeration method (Dufour 1981) for *E. coli* was introduced by EPA in 1986 (USEPA, 1986b). A revised method was developed in 1998

by the EPA and has been designated as the modified mTEC method. Both the mTEC and modified mTEC Agar methods use the membrane filter procedure. The two membrane filter methods provide a direct count of *E. coli* in water based on the development of colonies that grow on the surface of the membrane filter (Difco Labs, Detroit MI).


The PCR is a rapid and reliable tool for the molecular-based diagnosis of a variety of infectious diseases (Fredricks 1999). PCR analysis for screening drinking water and environmental samples has been reported (Tsen 1998; Campbell 2001) and has been utilized to identify E. coli in primary water specimens (Fricker 1994; Juck 1996; Noble 2001), stool specimens (Paton 1993; Yavzori 1998; Sinton 1998), and outbreaks (Huerta 2000; Lodge 2002). In contrast, isolation of E. coli O157:H7 from water and other environmental samples is laborious. Culture is problematic due to large numbers of other flora that either overgrow or mimic the non-sorbitol-fermenting E. coli O157:H7 (de Boer 2000). PCR methods are preferred to the traditional culture assays because the E. coli 0157:H7 grows poorly or not at all at 44.5°C (Doyle 1984). Recently, immunomagnetic separation (IMS) has helped improve recovery by providing an antibody-based concentration procedure that uses magnetic beads coated with antibody against E. coli 0157. Although many report the usefulness of IMS for testing artificially contaminated samples, few reports have documented the use of IMS with naturally occurring. epidemiologically linked specimens (Cubbon 1996; Wright 1994). Furthermore, there are no reports documenting the use of IMS in support of a waterborne outbreak investigation. Pulsed-field gel electrophoresis (PFGE) is useful for subtyping E. coli O157:H7 isolates during outbreak investigations (Akers 1998; Ammon 1999; Bender 1997). PFGE is reproducible and has sufficient discriminatory power to allow detection of minor genetic

variations among isolates (Willshaw 1997; Gouveia 1998). New technologies such as biosensors have been studied for use with pathogenic bacteria (Stokes 2001; Leonard 2003; Lang MJ in process). Several reviews on detection methods have published (including: Grif 1998; Baker 1999; Lejeune 2001; Theron 2002; Leonard 2003)

Risk Assessment Models

The following model (Figure 2-1) is for risk assessment, which was developed by

Figure 2-1. Risk Assessment Model (EPA 2000).

the National Academy of Science and since adopted by the EPA and is the standard for assessing risk in the environment (USEPA 2000). The standard model for risk that is used for a chemical contaminant or a carcinogenic material can not be used for a microbial. Both chemical compounds and carcinogenic materials have a defined amount of material that is plugged into the risk assessment model. This defined amount will only change if one or more the following conditions exist: the contaminant of concern is continuing to enter the environment, or natural attenuation is breaking down the contaminant of concern, or the contaminant of concern is being removed by remediation. Any of these condition the rate of increase or decrease of the contaminant of concern can be calculated. Therefore, the amount of the contaminant of concern can be determined fairly accurately. Based on these accurate calculations, models of mass transfer and transport, as well as, the risk assessment are useable tools. However, microbial substances such as E. coli are living material. Microbes live, multiply, or die based on the environmental conditions and nutrients that are available. Microbes can be passed or transmitted from person to person or from animals to people. In addition to the many vectors from which a microbe can enter a person or host, once in the host a small amount of microbes, which would not cause illness, can multiply into thousands or more if the conditions are right and then cause infection. None of these factors that are unique to microbes are considered in standard risk assessment models and such models will not accurately predict the risk from a microbe.

Models have been introduced to determine the risk from *E. coli* in water (Gofti 1999; Gale 2001; Balbus 2002). Models for estimating the incidence from of swimming related illness have been presented (Wymer 2002). Other models for estimating risk have

included long-term exposure and microbial densities (Haas 1996; Pinsky 2000). Still other models have concentrated on the vector pathway (Strachan 2001). Risk assessment models using complicated mathematical equations, Monte Carlo simulations, and calculus have been devised to mathematically describe the unique factors of micobes such as secondary infection and microbe survival (Eisenberg 1996; Chick 2001). For such complicated models, software will need to be developed that is user friendly, in order to have a wide acceptance of these models. Finally dose-response models have attempted to determine infectious doses of pathogenic microbes (Holcomb 1999; Teunis 1999; Haas 2000). All of these dose-response models conclude that more data and studies are needed and that statistical fit of the models to all data sets does not exist.

Epidemiological Evidence

Indicator Bacteria

A causal connection between fecal coliform and gastrointestinal sickness was first identified in 1953. (Stevenson 1953). In the late 1970s, in a landmark prospective cohort study, reported a linear relationship between the incidence of gastroenteritis among swimmers and marine bacterial counts (Cabelli 1982). Between 1973 and 1978, participants were recruited at beaches from three U.S. locations--New York, Lake Pontchartrain, Louisiana, and Boston, Massachusetts--and were contacted by telephone days after going to the beach. Swimming status was self-selected, not randomly assigned, and symptoms were self-reported. The mean proportion of swimmers with gastrointestinal symptoms was 6.8% versus 4.6% in non-swimmers. When enterococcal concentrations were above 1/100 ml, relative risk increased linearly, reaching 4.0 with

concentrations of 1,000/100 ml (p < 0.001). In addition, the frequency of gastrointestinal symptoms was inversely related to the distance from known sources of municipal wastewater (Cabelli 1982).

E. coli is an important cause of bacterial waterborne infection in untreated and recreational water (Cabelli 1982). Infection can be life-threatening, especially in the young and in the elderly. It can cause bloody diarrhea and, if not treated promptly, can result in kidney failure and death. In particular, E. coli O157:H7 is emerging as the second most important cause of bacterial waterborne disease after Shigella species, which is associated with human feces. E. coli O157:H7 was unknown until 1982, when it was associated with a multistate outbreak of hemorrhagic colitis (Riley 1983; Tarr 1985; Mead 1999).

There has a large body of literature involving the epidemiology of illness from the use of recreational water (including: Schroeder 1968; Rosenbarg 1977; Favero 1985; Seyfield 1985; Fattel 1987; Ferley 1989; Cheunk 1990; Balarajan 1991; Jones 1991; Alexander 1992; Corbett 1993; Kay 1994; Fleisher 1998; Haile 1999; Lopez-Pila 2000; Prieto 2001; Dwight 2002). These studies have been conducted all over the globe including Africa, the Medetranian, South America, New Zealand, China, and Australia (Cheung 1991; Vonschimding 1992; Corbett 1993; Harding 1993; Butler 1997; Mcbride 1998; Mourino-Perez 1999; Bonadonna 2002; Dionision 2002; Daby 2002). An excellent review of this body of literature has been published which included 37 studies. This study concluded that a causal dose-related relationship between gastrointestinal symptoms and recreational water quality measured by bacterial indicator counts (Pruss 1998). Athletes, including tri-athletes, white-water canoeists, and surfers, have been

studied and these studies also show a causal dose-related relationship between gastrointestinal symptoms and recreational water quality measured by bacterial indicator counts (Fewtrell 1992; Harrington 1993; Medema 1995; Medema 1997; van Asperen 1998).

The indicator bacteria to determine risk for recreational use in freshwater is E. coli (EPA 1989, WHO 1998, EEC1994). There has been debate on the use and accuracy of indicator bacteria level to determine the risk of the use of a waterbody (Haas 2001; Griffin 2001; Mugglestone 2001; Leclerc 2001; Efstratiou 2001; Edberg 2000; Figeras 1997). There is evidence of interference of other serotypes that cause inaccuracies in reported E. coli levels using the traditional EPA mandated plate culture methods (McLellan 2001). Studies have investigated the original EPA risk analysis and determined bias errors under-estimate the risk (Fleisher 1991; Fleisher 1990). However another study reports contrary results and that the bias in this original studies have bias that over-estimates the risk (Wymer 2002). Other measures such a beta glusicomase levels (an enzyme that E. coli produces), RNA bacteriophages, amino acid sequences as determined by PCR, and a matrix of indicators have been studied for use as replacements to the current indicators (Lee 1997; Lopez-Pila 2000; Conboy 2001). The underlying barrier to implementing these newer methods which have been shown to be more accurate, is that the current EPA mandated method is very inexpensive. The cost of equipment, materials and training that is needed for these new methods is too expensive for cash strapped health department and will not implement unless it mandated by the EPA.

E.coli O157:H7

In contrast to the numerous studies, cases and reports of health effects from exposure to indicator bacteria in recreational-use water, there are a limited number of such findings in literature in regards to pathogenic *E. coli O157:H7*. One of the reasons for this that *E. coli O157:H7* was first identified in 1982 (Riley 1983; Tarr PI 1985) and food was typically identified as the transmission route for illness (Griffin 1991, Philips 1999, Coia 1998). In addition it is very difficult to identify in surface water and was first identified in water in 1989 (McGowan 1989). Since *E. coli O157:H7* may have infection dose of as low as 10 cells (Mead 1999; Philips 1999) this may be impossible to detect. That being said there are a few epidemiological studies that report *E. coli O157:H7* as the pathogen that caused illness in swimmers.

The first case of illness caused by *E. coli O157:H7* was reported in 1991 and occurred in a lake near Portland, Oregon. In a case control study 21 persons were identified with *E. coli O157:H7* infections by stool or serum samples and 7 of these persons required hospitalization (Keene 1994, Van Ess 1999). All of the affected persons were children with the median age of six years old and all illnesses were not associated with food or beverage but all of the affected persons reported they had been swimming. It was concluded in the case control studies that swimming was strongly associated with infection (p < 0.015) and the affected persons were more likely than controls to have reported swallowing water while swimming (Keene 1994). The reported levels of the indicator bacteria revealed substantial fecal contamination during the time period of the study, in addition, *E. coli O157:H7* was identified in the lake. Even though as many as 10,000 visitors a weekend would use the park in the lake was located, no studies or

calculations to determine prevalence, odds ratio, or relative risk were carried out during the 7 week study period. A rough estimate of the incidence of illness based on seven weeks of weekend visitors would be less than 0.03% (Keene 1994).

In 1993, six children were identified with illness caused by *E. coli O157:H7* in a 1.5-mile radius in southwest London. One of the children later died from the illness. The affected children had play in a paddling pool in which levels of *E. coli* were identified but *E. coli O157:H7* was not identified in these pools (Brewster 1994; Hildebrand 1996).

In 1993, 4 children, aged 1.5 to 3.5 years, all living in one town in the Netherlands, were admitted to our hospital with the diagnosis hemolytic uremic syndrome within one week. All 4 patients bathed in the same, shallow, recreational lake within a period of 5 days. *E. coli O157:H7* was demonstrated in the fecal samples of 2 index patients (Cransberg 1996).

In 1994, an *E. coli O157:H7* outbreak was reported in Dutchess County, New York. There were 12 confirmed cases of illness and all of the affected persons were under the age of 14 years old. The case control study concluded that the illness was not associated with food or beverage but with swimming and the affected children were more likely than the controls to have ingested lake water (Ackman 1997). *E. coli O157:H7* was confirmed in affected children by bacterial subtyping. Samples taken from the lake both before and after the outbreak were analyzed for *E. coli* and all results from these samples were below 70cfu/100ml which is considered safe for full body in the water (Ackman 1997).

In 1995, a cluster 12 confirmed cases in children of *E. coli O157:H7* induced illness was reported in northern Illinois (JAMA 1996). All of the affected children had

been swimming in a lake in a state park. The case control study concluded that the illness was not associated with food or beverage but with swimming (Mudgett 1998). In addition the case control study determined that taking water into the mouth, swallowing water, and time spent swimming all were risk factors for illness. Water samples that were tested during the study showed elevated levels of *E. coli* but were not tested for *E. coli* 0157:H7. Water samples and sediment samples tested after the exposure did not reveal any *E. coli* 0157:H7 in any of the nearly 100 samples (Mudgett 1998).

In 1996, in Georgia it was reported that a two-year girl who was attending a party was diagnosed with *E. coli O157:H7* that was confirmed by cultured analysis. Upon further investigation 18 persons out of a total of 51 people who attended the party, developed gastrointestinal illness and 10 of these met the case definition of *E. coli O157:H7* infection as identified by elevated IgM or IgG levels (Friedman 1999). Swimming in the pool significantly increased the risk of *E. coli O157:H7* illness and no other exposures were identified with illness. Although the pool had little to no chlorine in it, no *E. coli O157:H7* was identified in the pool.

In 1997, five cases of *E. coli O157:H7* induced infection were identified in Finland. The affected children were between the ages of 3 and 8 years old, all had swum in a swallow, and had ingested lake water (Paunio 1999). An additional eight secondary cases were reported and all of these cases were either family members or caretakers of the affected children. The secondary cases were transmitted via person to person from the affected children. All cases were confirmed for *O157:H7* via the analysis of stool samples. Samples of the lake water did not yield any *E. coli O157:H7*.

In 1998, the CDC reported that 42 confirmed cases of *E. coli O157:H7* infection nationwide and of that number, only 7 cases were connected to swimming pool in Marietta Georgia (CDC 1999). Of the 7 swimming related illnesses unfortunately one of the illnesses resulted in a death. In 1999, an outbreak of *E. coli O157:H7* infection was reported involving children at a day care in California. Seven cases were identified and in a cohort stud the cause was determined as swallowing water in a freshwater lake (Feldman 2002).

Also in 1999, it was reported that 36 patients developed *E. coli O157:H7* infection in the State of Washington. Of the 36 patients, 28 were swimmers and 8 patients were infected via person-to-person transmission (Samadpour 2002). Although E.coli levels were with in acceptable levels for swimming, *O157:H7* was identified in the lake and is suggested to have come from a duck. This shows that the indicator organism, *E. coli*, may have limitations in determining the real pathogenic risk of the water that is to be used for swimming. The researchers used a PCR enriched method to detect the pathogen. This method was used instead of the traditional culture assays because the *E. coli O157:H7* grow poorly or not at all at 44.5°C (Doyle 1984).

In all these reports or studies that have identified *E. coli O157:H7* illness related to swimming, only one identified *E. coli O157:H7* in the water that was the exposure. In addition, prevalence, risk, and incidence could not be calculated. Although *E. coli O157:H7* infection from swimming is very rare and the reports indicate that children are at much higher risk that adults. This higher risk may be from weaker immune systems of children as compared to adults but more likely it is due to the facts that children are more likely to ingest water while swimming and that children are more likely than adults to

defecate while swimming. One study estimated that about 8 percent of U.S. outbreaks of *Escherichia coli O157:H7* between the years 1982 and 1996 among children occurred as a result of swimming (Griffin 1991). All of these studies suggest that the source of the *E. coli O157:H7* came from a person who was swimming and left behind the pathogen. The use of sealed rubber swimming trunks on children maybe have the greatest impact in lowering the risk of *E. coli O157:H7* infections when swimming.

Public Policy to Reduce Risk in Recreational Water

There has world-wide debate in regards to public policy and public safety for recreational-use water (Figueras 1997; Bluemnthal 2000; Henrickson 2001; Efstratiou 2001). This review will focus on domestic (United States) public policy and leave the discussion of EEC and WHO policy to the above-mentioned articles.

One of the major goals of the Clean Water Act of 1972 and its amendments (CWA) is to ensure that U.S. waters are safe for fishing and swimming (33 U.S.C.A. §§ 1251 to 1387). The use of water quality indicators that accurately reflect "safety" is essential for this goal. The CWA mandates the use of indicator organisms to determine safe levels and CWA section 303(d) requires the reporting of "impaired waters." In addition, section 303, establishes the water quality standards and Total Maximum Daily Load (TMDL) programs. The TMDL program is required by the rules that amended the CWA issued in 1985 and then subsequently amended in 1992 (USEPA 2002).

TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive while still meeting water quality standards, and then determines an allocation of that amount to the pollutant's sources. Water quality standards are set by States,

Territories, and Tribes and must meet or exceed the Federal standards set forth in the CWA. These entities identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and non-point sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the State has designated. Additionally, the calculation must also account for seasonal variation in water quality.

The indicator organism mandated for the monitoring of pathogens in fresh water is *E. coli*. If the level of this organism is consistently elevated from the standard, then the waterbody is declared an "impaired water" as defined in CWA 303 (d) and a TMDL is required to be developed and implemented for that waterbody. As of 2001, there are 5,512 reported "impaired waters" due to pathogens (over 13% all impairments reported and this is the second highest impairment behind sediment which is first at just below 14%) (USEPA 2001).

The Beach Environmental Assessment Closure and Health (BEACH) Act was signed into law in October 2000 and amended the CWA (USEPA 2002c). This legislation directs the EPA Administrator to conduct studies to review health risks; to develop indicators to detect the presence of pathogens; to offer guidance for state-to-state application of the revised water quality criteria; to publish and revise regulations requiring the monitoring of coastal waters; to provide technical assistance to states for uniform assessment and monitoring procedures; and to establish a national coastal

recreation water pollution occurrence database and a listing of communities complying with regulations published pursuant to this legislation. In addition, the Beach Act authorizes \$30 million annually for grants that would help states, local governments and Indian tribes to monitor beach waters and notify the public when beach water exceeds the established criteria. Moreover, some of these grants are designated for the development of improved detection of pathogens in water, both freshwater and marine water.

It is mandated that consistent national health standards for beach water be established by 2004. Currently, the EPA has determined that *E. coli* level is the best indicator of risk to swimmers in fresh water. An *E. coli* concentration of less then 126 CFU/100ml, calculated as a geometric mean over 30 days, is considered to be safe for full body contact recreational use of water (USEPA 1986). If a waterbody has a designated use of full body contract recreational use and the *E. coli* levels are consistently elevated from the above described standard, then the waterbody is declared a "impaired water" as defined in CWA 303 (d) and a TMDL is required to be developed and implemented for that waterbody. Protocol for developing pathogen TMDL EPA Office of Water January 2001

Many county health departments in the State of Michigan routinely collect water samples at beaches to determine if the water is safe for swimming. Samples are generally taken one foot below the surface in water that is between three and six feet in depth. The analysis is performed in a laboratory using standard methods. *E. coli* bacteria are counted and judged against standards established by state rules. Results from the method are

available after approximately 28 hours; so the results from this analysis are reported the following day.

County health departments take a minimum of three samples each time a beach area is monitored. The <u>daily</u> geometric mean calculated from these samples must be below 300 *E. coli* per 100 milliliters for the water to be considered safe for swimming. One or two of the samples may be above 300, but if the daily geometric mean is below 300, the beach is not in violation of the water quality standard. A minimum of five sampling events (consisting of at least three samples per event) must be collected within a 30-day period for the results to be considered a reliable indication of water quality. After 30 days, a geometric mean is calculated for all the individual samples collected within that time frame. This <u>30-day</u> geometric mean must be below 130 *E. coli* per 100 ml for the water to be considered safe for swimming. Although the method yields results that are very accurate, the results are not reported in less that 24 hrs. Officials close beaches based on old information that may or may not be the actual condition of the water at the time of closure and leave prior groups exposed.

EPA in both its 1992 National Water Quality Inventory and its Report to Congress noted that pollution from wet weather discharges is cited by many states as the leading cause of water quality impairment. Based on their reports and other assessments, the EPA has concluded that wet weather discharges from both point and nonpoint discharges are one of the largest threats remaining to water quality, aquatic life, and human health that exist today. Areas of needed research and interest include but are not limited to:

- Development of technologies for preventing toxic substances and pollutants from entering the downstream storm or combined sewer/drainage systems.
- Development of monitoring methodologies to measure the characteristics and impacts of wet weather flows.
- Development of high-rate and high-efficiency WWTP treatment technologies.

While not subject to secondary treatment requirements, CSOs must nevertheless meet water quality-based and technology based standards under NPDES permits to comply with the Clean Water Act. Based upon U.S. EPA's 1989 CSO strategy and 1994 National CSO Policy, CSO communities are required to implement nine minimum control technologies, and develop a long-term CSO control plan to meet water quality standards. The nine minimum controls are generally met through management of the existing CSS, while the long term controls will involve capital improvements such as the retention and treatment, or sewer separation.

EPA's CSO Control Policy, published April 19, 1994, is the national framework for control of CSOs. The Policy provides guidance on how communities with combined sewer systems can meet Clean Water Act goals in as flexible and cost-effective a manner as possible. EPA's Report to Congress on implementation of the CSO Control Policy assesses the progress made by EPA, states, and municipalities in implementing and enforcing the CSO Control Policy. "Wet weather discharges" refers collectively to point source discharges that result from precipitation events, such as rainfall and snowmelt. Wet weather discharges include storm water runoff, combined sewer overflows (CSOs),

and wet weather sanitary sewer overflows (SSOs). Storm water runoff accumulates pollutants such as oil and grease, chemicals, nutrients, metals, and bacteria as it travels across land. CSOs and wet weather SSOs contain a mixture of raw sewage, industrial wastewater and storm water, and have resulted in beach closings, shellfish bed closings, and aesthetic problems.

Properly designed, operated, and maintained sanitary sewer systems are meant to collect and transport all of the sewage that flows into them to a publicly owned treatment works (POTW). However, occasional unintentional discharges of raw sewage from municipal sanitary sewers occur in almost every system. These types of discharges are called sanitary sewer overflows (SSOs). SSOs have a variety of causes, including but not limited to severe weather, improper system operation and maintenance, and vandalism. EPA estimates that there are at least 40,000 SSOs each year. The untreated sewage from these overflows can contaminate our waters, causing serious water quality problems. It can also back-up into basements, causing property damage and threatening public health.

Table 2-3. The Nine Minimum Controls for Combined Sewer Overflows

- 1. Proper operation and regular maintenance programs for the sewer system and the CSOs
- 2. Maximum use of the collection system for storage
- 3. Review and modification of pretreatment requirements to assure CSO impacts are minimized
- 4. Maximization of flow to the publicly owned treatment works for treatment
- 5. Prohibition of CSOs during dry weather
- 6. Control of solid and floatable materials in CSOs
- 7. Pollution prevention
- 8. Public notification to ensure that the public receives adequate notification of CSO occurrences and CSO impacts
- 9. Monitoring to effectively characterize CSO impacts and the efficacy of CSO controls

Since 1994, the USEPA has enforced these stringent new rules concerning wet weather issues. Under the NPDES permit program, there are three program areas that address each of the wet weather discharges described above. NPDES requirements from runoff from concentratrated animal feeding operations (CAFOs) are described in an earlier section of this paper. These programs share a range of cross-cutting issues and affect a similar group of stakeholders. EPA believes that wet weather discharges should be addressed in a coordinated and comprehensive fashion to reduce the threat to water quality, reduce redundant pollution control costs, and provide State and local governments with greater flexibility to solve wet weather discharge problems. To identify and address cross-cutting issues and promote coordination, EPA established the Urban Wet Weather Flows Federal Advisory Committee in 1995.

EPA is proposing to clarify and expand permit requirements for 19,000 municipal sanitary sewer collection systems in order to reduce SSOs. The proposed SSO Rule will help communities improve some of the Nation's most valuable infrastructure - our wastewater collection systems - by requiring facilities to develop and implement new capacity, management, operations, maintenance and public notification programs.

The nation's federal and state regulatory systems for protecting environmental health have failed to keep pace with the rapid growth of factory farms. When Congress passed the Clean Water Act (CWA) (33 U.S.C.A. Sections 1251 to 1387) 30 years ago, it had the foresight to identify feedlots as an industrial source of pollution and to require that feedlots be regulated as strictly as other industries. However, EPA has failed to

enforce these statutory requirements and the implementation of the regulations has been pockmarked with loopholes. According to a 1995 General Accounting Office Report, in 1992 only 30 percent of the 6,600 farms that were large enough to be subject to federal permit requirements actually obtained a permit under the Clean Water Act (US GAO 1995). To a greater or lesser extent, states have attempted to step into the void created by an ineffective federal approach. Unfortunately, the states as a whole have also been ineffective in regulating AFOs (USGAO 1995). Pennsylvania, Colorado and Alabama have no permitting program, though programs are in the works. Illinois regulates only livestock operations with animal waste lagoons but not those with underground manure storage tanks, which are now the norm in Illinois. Some of these have leaked. California's Central Valley issues permits only after an operation is caught polluting (NRDC 1999) EPA's proposed regulatory changes affect the existing NPDES provisions and the existing ELG for "feedlots." The NPDES provisions define and establish permit requirements for CAFOs and the ELG establish the technology-based effluent discharge standard that is applied to CAFOs. Both of these existing regulations were originally promulgated in the 1970s. The EPA proposed revision of the CAFO regulations would affect operations that confine cattle and calves, milking cows, hogs and pigs, and poultry, including broilers, egg laying chickens, and turkeys. Businesses that contract out the raising or finishing phase of production might also be affected by the proposed copermitting requirements in the proposed CAFO regulations. Affected businesses may include meat packing plants and poultry processing firms. The EPA has proposed two alternatives on defining CAFOs that will be regulated. The two co-proposed alternatives include the "two-tier structure" that would define as CAFOs all AFOs with more than

500 AU and the "three-tier structure" that would define as CAFOs all AFOs with more than 1,000 AU and any operation with more than 300 AU, if they meet certain "risk-based" conditions, as defined in the in the proposed rules (USEPA 2002). EPA estimates that both proposed alternative structures would regulate about 12,660 operations with more than 1,000 AU, accounting for operations with more than a single animal type. The two-tier structure would also regulate an additional 12,880 operations with between 500 and 1,000 AU, for a total of 25,540 operations. Under the three-tier structure, an estimated 39,330 operations would be subject to the proposed regulations (10 percent of all AFOs), estimated as the total number of animal confinement operations with more than 300 AU (US EPA 2001). These have completed the comment period and the final rules will be promulgated in the near future.

Conclusions

Ever since fecal contamination of water was determined a human health risk, there has always been a great deal of concern regarding the level of coliform bacteria counts in water. Many bodies of water throughout the world are considered to have counts above acceptable levels. The sources of these *E. coli* are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow. Physical factors, such as seasonal variability, rainfall, river flow, nutrient and the survival of bacteria in water, have an impact on *E. coli* levels in a waterbody. Tools exist to assist in determining the risk to swimmers of bacteria illness in a watershed. Although risk assessment models have been

studied, an accurate dose-response model for illness to swimmers of bacteria illness in a watershed is not available.

There has a large body of literature involving the epidemiology of illness from the use of recreational water. Elevated *E. coli* levels have been identified as the cause of the illness and *E. coli* levels have been mandated as the indicator bacteria for the determination of water safety for swimmers. The validity of *E. coli* as an indicator of risk has been debated and *E. coli* may not be an accurate indicator of pathogenic risk.

In contrast to the numerous studies, cases and reports of health effects from exposure to indicator bacteria in recreational-use water, there are a limited number of such findings in literature in regards to pathogenic *E. coli O157:H7*. In all these reports or studies that have identified *E. coli O157:H7* illness related to swimming, only one identified *E. coli O157:H7* in the water that was the exposure. Although *E. coli O157:H7* infection from swimming is very rare and the reports indicate that children are at much higher risk that adults. This higher risk may be from weaker immune systems of children as compared to adults but more likely it is due to the facts that children are more likely to ingest water while swimming and that children are more likely than adults to defecate while swimming. The use of sealed rubber swimming trunks on children maybe have the greatest impact in lowering the risk of *E. coli O157:H7* infections when swimming.

Public policy in both the United States and around the world has addressed the risk to swimmers of illness from bacteria in water. Levels of indicator bacteria that are acceptable as to the risk for swimmers have been established by USEPA, EEC, and WHO. In addition to these policies, laws and guidelines have been established to decrease the microbial input in a waterbody from sewage sources and agricultural

facilities. Many of these laws and guidelines are being reviewed and revised in order to improve the public health of swimmers.

References

Ackers M L, Mahon BE, Leahy E, Goode B, Damrow T, Hayes PS, Bibb WF, Rice DH, Barrett TJ, Hutwagner L, Griffin PM, Slutsker L. 1998. An outbreak of *Escherichia coli* 0157:H7 infections associated with leaf lettuce consumption. J. Infect. Dis. 177:1588-1593

Ackman DS, Marks, et al. 1997. Swimming-associated haemorrhagic colitis due to *Escherichia coli O157:H7* infection: Evidence of prolonged contamination of a fresh water lake. Epidemiology and Infection 119(1): 1-8.

Adamus CL, Bergman MJ, 1995, Estimating non point source pollution loads with GIS screening, Water Res. Bull. 31(4): 647-655.

Alexexander LM, Heaven A, Tennant A, Moore R. 1992. Symptomatology of children in contact with sea water contaminanted with sewage. Journal of Epideiologic Community Health 46:340-344.

Ammon AL, Petersen R, Karch H. 1999. A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of *Escherichia coli O157:H7*. J. Infect. Dis. 179:1274-1277.

Artz RRE, Killham K. 2002. Survival of *Escherichia coli O157*: H7 in private drinking water wells: influences of protozoan grazing and elevated copper concentrations. Fems Microbiology Letters 216(1) 117-122.

Atherholt TB, LeChevallier MW, Norton WD, Rosen JS. 1998. Effects of rainfall on *Giardia* and *Crypto*. J. Amer. Water Works Assoc. 90(9): 66-80.

Baker KH, Herson D S. 1999. Detection and occurrence of indicator organisms and pathogens. Water Environment Research 71(5): 530-551.

Balarajan R, Raleigh VS, Yuen P. 1991. Health risks associated with bathing in sea water. British Medical Journal 303:1444-1445.

Balbus JM. Embrey MA. 2002. Risk factors for waterborne enteric infections. Current Opinion in Gastroenterology 18(1): 46-50.

Barton K, Fuller D. 1995. Testing the waters V: Politics and pollution at U.S. beaches. New York: Natural Resources Defense Council.

Bates SS, de Frietas ASW, Pocklington R, Quilliam MA, Smith JC, Worms J. 1991. Controls on domoic acid factors influencing production by the diatom *Nitzschia pungens* f. multiseries: nutrients and irradiance. J Fish Aquat Sci 48:1136-1144.

Bauwens L, De Meurichy W, Vercammen F. 2000. Isolation of *Escherichia coli O157* from zoo animals. Vlaams Diergeneeskundig Tijdschrift, 69(2): 76-79.

Behm, D. 1989. Ill waters: The fouling of Wisconsin's lakes and streams. The Milwaukee Journal Sentinel. Special report: a series of articles published November 5-10.

Bender JB, Hedberg CW, Besser JM, Boxrud DJ, MacDonald KL, Osterholm MT. 1997. Surveillance by molecular subtype for *Escherichia coli O157:H7* infections in Minnesota by molecular subtyping. N. Engl. J. Med. 337:388-394.

Besser RE, Lett SM, Weber JT, Doyle MP, Barrett TJ, Wells JG, Griffin PM. 1993. An outbreak of diarrhea and hemolytic uremic syndrome from *Escherichia coli O157:H7* in fresh-pressed apple cider. JAMA 269:2217-2220.

Beutin L, Geier D, Steinruck H, Zimmerman S, Gleier K. 1994. Virulence factors and phenotypic traits of verotoxigenic strains of *Escherichia coli* isolated from human patients in Germany. Medical Microbiology Immunology 183:13-21.

Beutin L, Bulte M, Weber A, Zimmerman S, Gleier K. 2000. Investigation of human infections with verocytotoxin-producing strains of *Escherichia coli* (VTEC) belonging to sergroup O118 evidence for zoonotic transmission. Epidemiology and Infection 125(1): 47-54.

Bhaduri B, Harbor J, Engel B, Grove M. 2000. Assessing water-scale, long-terrm hydrilogic impacts of land-use change using GIS_NPS model. Enviro. Manag, 26(6): 643-658.

Bielaszewska M, Schmidt H, Liesegang A, Prager R, Rabsch W, Tschape H, Cizek A, Janda J, Blahova K, Karch H. 2000. Cattle can be a reservoir of sorbitol-fermenting Shiga toxin-producing *Escherichia coli O157*:H-strains and a source of human disease. Journal of Clinical Microbiology, 38(9): 3470-3473.

Blumenthal UJ, Mara D D, Peasey A, Ruiz-Palacios G, Stott R. 2000. Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bulletin of the World Health Organization 78(9): 1104-1116.

Bonadonna L, Briancesso R, Coccia AM, Semproni M, Stewardson D. 2002. Occurrence of potential bacterial pathogens in coastal areas of the Adriatic Sea. *Environ*. Monitor and Assess. 77(1): 31-49.

Bopp DJ, Saunders BD, Waring AL, Ackelsberg J, Dumas N, Braun-Howland E, Dziewulski D, Wallace BJ, Kelly M, Halse T, Musser KA, Smith PF, Morse DL,

Limberger RJ. 2003. Detection, isolation, and molecular subtyping of *Escherichia coli* 0157:H7 and *Campylobacter jejuni* associated with a large waterborne outbreak. Journal of Clinical Microbiology 41(1): 174-180.

Briski F, Dsipos L, Petrovic M. 2000. Distribution of faecal indicator bacteria and nutrients in the Krka River in the region of the Krka National Park. Periodicum Biologorum 102(3):273-281.

Brooke, James. 2000. Few left untouched after deadly E. coli flows through an Ontario town's water. The New York Times. July 10.

Burkholder JM, Glasgow HB. 1997. *Pfiesteria piscicida* and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol Oceanogr (5 Part 2) 42:1052-1075.

Burm RJ, Vaughan RD. 1966, Bacteriological comparison between combined and separate sewer discharges in southeastern Michigan. Journal of Water pollution Control Federation 38(3): 400-409.

Burm RJ. 1967. The bacteriological effect of combined sewer overflows on the Detroit River. Journal of Water pollution Control Federation 39(3): 410-424.

Burnens AP, Frey A, Lior H, Nicolet J. 1995. Prevalence and clinical significance of Vero-toxin-producing *Escherichia coli* (VTEC) isolated from cattle in herds with and without calf diarrhoea. J. Vet. Med. 42:311-318.

Butler T, Ferson MJ. 1997. Faecal pollution of ocean swimming pools and stormwater outlets in eastern Sydney. Australian and New Zealand Journal of Public Health 21(6): 567-571.

Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. 1982. Swimming-associated gastroenteritis and water quality. Am J Epidemiol 115:606-616.

Cabelli VJ. 1989. Swimming-associated illness and recreational water-quality criteria. Water Science and Technology 21(2): 13-21.

Campbell GR, Prosser J, Glover A, Killham K. 2001. Detection of *Escherichia coli* 0157:H7 in soil and water using multiplex PCR. Journal of Applied Microbiology 91(6): 1004-1010.

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharply AN, Smith VH. 1998. Non-point pollution of surface waters with phosphorus and nitrogen. Ecological Appl. 8(3): 559-568.

Carson RL. 1951. The Sea Around Us. New York: Oxford University Press.

Centers for Disease Control and Prevention. 1999. Letter to State and Territorial Epidemiologists and Public Health Laboratory Directors, March 18, 1999.

CDC. 2001. *Escherichia coli O157:H7*. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm

Chalmers RM, Aird H, Bolton FJ. 2000. Waterborne *Escherichia coli O157*. Journal of Applied Microbiology 88:124S-132S.

Cheung WHS, Chang KCK, Hung RPS, Kleevens JWL. 1990. Health-effects of beach water-pollution in Hong-Kong. Epidemiology and Infection 105(1): 139-162.

Cheung WHS, Chang KCK, Hung RPS. 1991. Variations in microbial indicator densities in beach waters and health-related assessment of bathing water-quality. Epidemiology and Infection 106(2): 329-344.

Cheung WHS, Hung RPS, Chang KCK, Kleevens JWL. 1991. Epidemiologic-study of beach water-pollution and health-related bathing water standards in Hong-Kong. Water Science and Technology 23(1-3): 243-252.

Chick SE, Koopman JS, Soorapanth S, Brown ME. 2000. Infection transmission system models for microbial risk assessment. The Science of the Total Environment 274:197-207.

Chinyu Su MD, Brandt LJ. 1995. *Escherichia coli O157:H7* infection in humans. Annals of Internal Medicine 123(9):698-714.

Choi KS, Blood E. 1999. Modeling developed coastal watersheds with the agricultural non-point model. J. AM. Water Res. Ass. 35(2) 233-244.

Cimolai N, Basalyga S, Mah DG, Morrison BJ, Carter JE. 1994. A continuing assessment of risk factors for the development of *Escherichia coli O157:H7*-associated hemolytic uremic syndrome. Clinical Nephrol 42:85-89.

Clarke RC, Wilson JB, Read JC, Renwick S, Rahn K, Johnson RP, Alves D, Karmali MA, Lior H, McEwen SA, Spika J, Gyles CL. 1994. Verocytotoxin-producing *Escherichia coli* (VTEC) in the food chain: preharvest and processing perspectives, p. 17-24. In Karmali MA, and Goglio AG (ed.), Recent advances in verocytotoxin-producing *Escherichia coli* infections. Elsevier Science B.V., Amsterdam, The Netherlands.

Coia, JE. 1998. Clinical, microbiological and epidemiological aspects of *Escherichia coli* 0157 infection. FEMS Immunology and Medical Microbiology 20(1): 1-9.

Coia JE, Sharp JCM, Campbell DM, Cunnow J, Ramsay CN. 1998. Environmental risk factors for sporadic *Escherichia coli O157* infections in Scotland: Results of a descriptive epidemiology study. Journal of Infection 36(3): 317-321.

Conboy MJ, Goss MJ. 2001. Identification of an assemblage of indicator organisms to assess timing and source of bacterial contamination in groundwater. Water Air and Soil Pollution 129(1-4): 101-118.

Corbett SJ, Rubin GL, Curry GK, Kleinbaum DG. 1993. The health-effects of swimming at Sydney beaches. American Journal of Public Health 83(12): 1701-1706.

Cransberg K, vandenKerkhof Jhct, Banffer JRJ, Stijnen C, Wernars K, vandeKar Ncaj, Nauta J, Wolff ED. 1996. Four cases of hemolytic uremic syndrome - Source contaminated swimming water? Clinical Nephrology 46(1): 45-49.

Crawford IM, Tim US, Jain DK, Liao H. 1998. Managing ecosystems in a watershed context: Progress made and emerging role of integrated spatial information technologies. GIS 98 GIS Technologies and their Environmental Applications WIT Press. Southampton, Boston.

Crossette B. 1996. Hope and pragmatism, for U.N. cities conferences. New York Times, 3 June A3.

Cubbon MD, Coia JE, Hanson MF, Thomson-Carter FM. 1996. A comparison of immunomagnetic separation, direct culture and polymerase chain reaction for the detection of verocytotoxin-producing *Escherichia coli O157* in human faeces. J. Med. Microbiol. 44:219-222.

Curriero FC, Patz JA, Rose JB, Lele S. 2001. The Association between extreme precipitation and waterborne disease outbreak in the United States, 1948-1994. Am. J. of Pub. Health, 91(8): 1194-99.

Daby D, Turner J, Jago C. 2002. Microbial and nutrient pollution of coastal bathing waters in Mauritius. Environmental International 27(7): 555-566.

Davies CM, Long JAH, Donald M, Ashbolt NJ. 1995. Survival of fecal microorganisms in marine and freshwater sediments. Applied and Environmental Microbiology 61(5): 1888-1896.

de Boer E, Heuvelink AE. 2000. Methods for the detection and isolation of Shiga toxin-producing *Escherichia coli*. J. Appl. Microbiol. 88:133S-143S.

Dionisio LPC, Garcia-Rosado E, Lopez-Cortes L, Castro D, Borrego JJ. 2002. Microbiological and sanitary quality of recreational seawaters of southern Portugal. Water Air and Soil Pollution, 138(1-4): 319-334.

Dorfman M. 2002. Testing the waters XII: A guide to water quality at vacation beaches. NRDC, 211pp.

Dorfman M. 2001. Testing the waters XI: A guide to water quality at vacation beaches. NRDC, 276pp.

Dorfman M. 2000. Testing the waters X: A guide to water quality at vacation beaches. NRDC, 166pp.

Dorfman M. 1999. Testing the waters IX: A guide to water quality at vacation beaches. NRDC, 153pp.

Douglas AS, Kurien A. 1997. Seasonality and other epidemiological features of haemolytic uraemic syndrome and *E. coli O157* isolates in Scotland, Scott Med J. 42(6):166-71.

Doyle MP and Schoeni JL. 1984. Survival and growth characteristics of *E. coli* associated with hemorrhagic colitis. Applied Environmental Microbiology, 48(4): 855-856.

Drasar BS, Hill MJ. 1974. Human intestinal flora. p. 36-43. Academic Press, Ltd., London, United Kingdom.

Dwight RH, Semenza JC, Baker DB, Olson BH. 2002. Association of urban runoff with coastal water quality in Orange County, California. Water Environment Research 74(1): 82-90.

Edwards DR, Coyne MS, Daniel TC, Vendrell PF, Murdoch JF, Moore PA. 1997. Indicator bacteria concentrations of two northwest Arkansas streams in relation to flow and season. Transaction of the ASAE, 49(1): 103-9.

Edwards DR, Coyne MS, Vendrell PF, Daniel TC, Moore PA, Murdoch JF. 1997. Fecal coliform and Streptococcus concentrations in runoff from grazed pastures in northwest Arkansas. Journal of the American Water Resources Association 33(2): 413-422.

Efstratiou MA. 2001. Managing coastal bathing water quality: The contribution of microbiology and epidemiology. Marine Pollution Bulletin 42(6): 425-432.

Eisenberg JN, Seto EYW, Olivieri AW, Spear RC. 1996. Quantifying water pathogen risk in an epidemiological framework. Risk Analysis 16(4): 549-563.

Enriquez C, Nwachuku N, Gerba CP. 2001. Direct exposure to animal enteric pathogens. Reviews in Environmental Health 16(2): 117-131.

Epstein PR, Ford TE, Colwell RR. 1993. Marine ecosystems. Lancet 342:1216-2219.

Fattal B. Pelegolevsky E, Yoshpepurer Y, Shuval HI. 1986 The association between morbidity among bathers and microbial quality of seawater. Water Science and Technology 18(11): 59-69.

Fattal B, Pelegolevsky E, Agursky T, Shuval HI. 1987. The association between seawater pollution as measured by bacterial indicators and morbidity among bathers at mediterranean bathing beaches of Israel. Chemosphere 16(2-3): 565-570.

Favero MS. 1985. Microbiologic indicators of health risks associated with swimming. American Journal of Public Health 75(9): 1051-1054.

Fegan N, Desmarchelier P. 2002, Comparison between human and animal isolates of Shiga toxin-producing *Escherichia coli O157* from Australia. Epidemiology and Infection 128(3): 357-362.

Feldman KA, Mohle-Boetani JC, Ward J, Furst K, Abbott SL, Ferrero DV, Olsen A, Werner S. 2002. A cluster of *Escherichia coli O157*: Nonmotile infections associated with recreational exposure to lake water. Public Heath Reports 117(4): 380-385.

Ferley JP, Zmirou D, Balducci F, Baleux B, Fera P, Larbaigt G, Jacq E, Moissonnier B, Blineau A, Boudot J. 1989. Epidemiological significance of microbiological pollution criteria for river recreational waters. International Journal of Epidemiology 18(1): 198-205.

Fewtrell L. Godfree AF. Jones F, Kay D, Salmon RL, Wyer MD. 1992. Health-effects of white-water canoeing. Lancet 339(8809); 1587-1589.

Figueras MJ, Polo F, Inza I, Guarro J. 1997. Past, present and future perspectives of the EU bathing water directive. Marine Pollution Bulletin 34(3): 148-156.

Fleisher JM. 1990. The effects of measurement error on previously reported mathematical relationships between indicator organism density and swimming-associated illness - a quantitative estimate of the resulting bias. International Journal of Epidemiology 19(4): 1100-1106.

Fleisher JM. 1991. A reanalysis of data supporting United States federal bacteriological water-quality criteria governing marine recreational waters. Research Journal of the Water Pollution Control Federation 63(3): 259-265.

Fleisher JM, Jones F, Kay D, Stanwellsmith R, Wyer M, Morano R. 1993. Water and non-water-related risk-factors for gastroenteritis among bathers exposed to sewage-contaminated marine waters. International Journal of Epidemiology 22(4): 698-708.

Fleisher JM, Kay D, Salmon RL, Jones F, Wyer MD, Godfree AF. 1996. Marine waters contaminated with domestic sewage: Nonenteric illnesses associated with bather exposure in the United Kingdom. American Journal of Public Health 86(9): 1228-1234.

Fleisher JM, Kay D, Wyer MD, Godfree AF. 1998. Estimates of the severity of illnesses associated with bathing in marine recreational waters contaminated with domestic sewage. International Journal of Epidemiology 27(4): 722-726.

Ferguson CM, Coote BG, Ashbolt NJ, Stevenson IM. 1996. Relationships between indicators, pathogen and water quality in an estuarine system. Water Research 30(9): 2045-2054.

Fraser RH, Barten PK, Pinney DAK. 1998. Predicting pathogen loading from livestock using a Geographical Information System-based delivery model. J. Environ Qual 27(4): 935-945.

Fredricks DN Relman DA. 1999. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29:475-486.

Fricker EJ, Fricker CR. 1994. Application of the polymerase chain reaction to the identification of *Escherichia coli* and coliforms in water. Lett. Appl. Microbiol. 19:44-46.

Friedman MS, Roels T, et al. 1999. *Escherichia coli O157: H7* outbreak associated with an improperly chlorinated swimming pool. Clinical Infectious Diseases 29(2): 298-303.

Gale P. 2001. Developments in microbiological risks assessment for drinking water. Journal of Applied Microbiology 91(2): 191-205.

Geue L, Segura-Alvarez M, Conraths FJ, Kuczius T, Bockemuhl J, Karch H, Gallien P. 2002. A long-term study on the prevalence of Shiga toxin-producing *Escherichia coli* (STEC) on four German cattle farms. Epidemiol. Infect. 129(1):173-185.

Gofti L, Zmirou D, Murandi FS, Hartemann P, Potelon JL. 1999. Waterborne microbiological risk assessment: a state of the art and perspectives. Revue D'epidemiologie et de Sante Publique 47(1): 61-73.

Grif K, Karch H, Schneider C, Daschner FD, Beutin L, Cheasty T, Smith H, Rowe B, Dierich MP, Allerberger F. 1998. Comparative study of five different techniques for epidemiological typing of *Escherichia coli O157*, Diagnostic Microbiology and Infectious Disease 32(3): 165-176.

Griffin PM, Tauxe RV. 1991. The epidemiology of infections caused by *Escherichia coli* 0157:H7, other enterohemorrhagic *Escherichia coli*, and the Associated Hemolytic Uremic Syndrome. Epidemiologic Reviews 13: 60-98.

Griffin PM, Ostroff SM, et al. 1988. Illnesses associated with *Escherichia coli O157:H7* infections - a broad clinical spectrum. Annals of Internal Medicine 109(9): 705-712.

Griffin DW, Lipp EK, McLaughlin MR, Rose JB. 2001. Marine recreation and public health microbiology: Quest for the ideal indicator. Bioscience 51(10): 817-835.

Gouveia S, Proctor ME, Lee MS, Luchansky JB, Kaspar CW. 1998. Genomic comparisons and Shiga toxin production among *Escherichia coli O157:H7* isolates from a day care center outbreak and sporadic cases in southeastern Wisconsin. J. Clin. Microbiol. 36:727-733.

Gunwald S, Norton LD. 2000. Calibration and validation of a non-point source pollution model. Agr. Water Mana. 45(1): 17-39.

Haas CN. 1996. How to average microbial densities to characterize risk. Water Research 30(4): 1036-1038.

Haas CN, Thayyar-Madabusi A, Rose JB, Gerba CP. 2000. Development of a doseresponse relationship for *Escherichia coli O157*: H7. International Journal of Food Microbiology 56(2-3): 153-159.

Haile RW, Witte JS, Gold M, Cressey R, McGee C, Millikan RC, Glasser A, Harawa N, Ervin C, Harmon P, Harper J, Dermand J, Alamillo J, Barrett K, Nides M, Wang G Y. 1999. The health effects of swimming in ocean water contaminated by storm drain runoff. Epidemlology 10(4): 355-363.

Hancock DD, Besser TE, Kinsel ML, Tarr PI, Rice DH, Paros MG. 1994. The prevalence of *Escherichia coli O157:H7* in dairy and beef cattle in Washington State. Epidemiol. Infect. 113:199-207.

Hancock DD, Besser TE, LeJeune J, Davic M, Rice D. 2001. The control of VTEC in the animal reservoir. International Journal of Food Microbiology 66(1-2): 71-78.

Harding WR. 1993. Fecal-coliform densities and water-quality criteria in 3 coastal recreational lakes in the SW Cape, South-Africa. Water SA 19(3): 235-246.

Harrington JF, Wilcox DN, Giles PS, Ashbolt NJ, Evans JC, Kirton HC. 1993. The health of Sydney surfers - an epidemiologic study. Water Science and Technology 27(3-4): 175-181.

Harvell CD, Kim L, Burkholder JM, Colwell RR, Epstein PR, Grime DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM. 1999. Emerging marine diseases--climate links and anthropogenic factors. Science 285:1505-1510.

Health Ecological and Economic Dimensions of Global Change Program. Marine Ecosystems: Emerging Diseases as Indicators of Change. Boston, MA:Center for Health and the Global Environment, Harvard Medical School. 1998.

Henrickson SE, Wong T, Allen P, Ford T, Epstein PR. 2001. Marine swimming-related illness: Implications for monitoring and environmental policy. Environmental Health Perspectives 109(7): 645-650.

Heuvelink AE, van den Biggelaar F, de Boer E, Herbes RG, Melchers WJG, Huis In 'T Veld JHJ, Monnens LAH. 1998. Isolation and characterization of verocytotoxin-producing *Escherichia coli O157* strains from Dutch cattle and sheep. Journal of Clinical Microbiology, 36(4): 878-882.

Heuvelink AE. 1999. The occurrence of Shiga toxin-producing *Escherichia coli* in humans and animals. Tijdschrift Voor Diergeneeskunde, 124(22): 671-678.

Hilborn ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski C, Swartz M, Mshar R, Lambert-Fair MA, Farrar JA, Glynn MK, Slutsker L. 1999. A multistate outbreak of *Escherichia coli O157:H7* infections associated with consumption of mesclun lettuce. Arch. Intern. Med. 159:1758-1764.

Hildebrand JM, Maguire HC, Holliman RE, Kangesu E. 1996. An outbreak of *E. coli* 0157 infection linked to paddling pools. Commun Dis Rep CDR Rev 6(2):R33-36.

Hoar BR, Atwill ER, Elmi C, Farver TB. 2001. An examination of risk factors associated with beef cattle shedding pathogens of potential zoonotic concern. Epidemiology and infection 127(1): 147-155.

Holcomb DL, Smith MA, Ware Go, Hung YC, Brackett RE, Doyle MP. 1999. Comparison of six dose-response models for use with food-borne pathogens. Risk Analysis 19(6): 1091-1100.

Huerta, M., I. Grotto, M. Gdalevich, D. Mimouni, B. Gavrieli, M. Yavzori, D. Cohen, and O. Shpilberg. 2000. A waterborne outbreak of gastroenteritis in the Golan Heights due to enterotoxigenic *Escherichia coli*. Infection 28:267-271.

Jackson SG, Goodbrand RB, Johnson RP, Odorico VG, Alves D, Rahn K, Wilson JB, Welch MK, Khakhia R. 1998. *Escherichia coli O157:H7* diarrhoea associated with well water and infected cattle on an Ontario farm. Epidemiologic Infection 120: 17-20.

JAMA. 1996. From the Centers of Disease Control and prevention lake associated outbreak of *E. coli O157:H7*-Illinois 1995. JAMA 275(24):1872-1873.

Jones F, Kay D, Stanwellsmith R, Wyer M. 1991. Results of the 1st pilot-scale controlled cohort epidemiologic investigation into the possible health-effects of bathing in seawater at Langland Bay, Swansea. Journal of the Institution of Water and Environmental Management 5(1): 91-98.

Jones DL. 1999. Potential health risks associated with the persistence of *Escherichia coli* 0157 in agricultural environments. Soil Use and Management, 15(2): 76-83.

Joseph SW, Ingram DT, Kaper JB. 2002. The epidemiology, pathogenicity and microbiology of foodborne *Escherichia coli O157*: H7. Reviews in Medical Microbiology 13(2): 53-62.

Juck D, Ingram J, Prevost M, Coallier J, Greer C. 1996. Nested PCR protocol for the rapid detection of *Escherichia coli* in potable water. Can. J. Microbiol. 42:862-866.

Karch H, Bielaszewska M, Bitzan M, Schmidt H. 1999. Epidemiology and diagnosis of Shiga toxin-producing *Escherichia coli* infections. Diagnostic Microbiology and Infectious Disease 34(3): 229-243.

Kariuki S, Gilks C, Kimari J, Obanda A, Muyodi J, Waiyaki P, Hart CA. 1999. Genotype analysis of *Escherichia coli* strains isolated from children and chickens living in close contact. Applied and Environmental Microbiology 65(2): 472-472.

Kay D, Fleisher JM, Salmon RL, Jones F, Wyer MD, Godfree AF, Zelenauchjacquotte Z, Shore R. 1994. Predicting likelihood of gastroenteritis from sea bathing - results from randomized exposure. Lancet 344(8927): 905-909.

Keene WE, McAnulty JM, et al. 1994. A swimming-associated outbreak of hemorrhagic colitis caused by *Escherichia coli O157:H7* and *Shigella-Sonnei*. New England Journal of Medicine 331(9): 579-584.

Kerr M, Fitzgerald M, Sheridan JJ, McDowell DA, Blair IS. 1999. Survival of *Escherichia coli O157*: H7 in bottled natural mineral water. Journal of Applied Microbiology, 87(6) 833-841.

Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M. 2002. Microbial load of water reservior tributaries during extreme rainfall and runoff. App and Environ, Microbio. 68(5):2188-97.

Kluger J. 1998. Anatomy of an outbreak, Time 152(5): 56-62.

Kornecki TS, Sabbagh GJ, Storm DE. 1999. Evaluation of runoff, erosion, and phosphorus modeling system-SIMPLE. J. AM. Water Res. Ass. 35(4): 807-820.

Lacey RF, Pike EB. 1989. Water recreation and risk. Journal of the Institution of Water and Environmental Management 3(1): 13-21.

Laegreid WW, Elder RO, Keen JE. 1999. Prevalence of *Escherichia coli O157: H7* in range beef calves at weaning. Epidemiology and Infection, 123(2) 291-298.

Lahti E, Keskimaki M, Rantala L, Hyvonen P, Siitonen A, Honkanen-Buzalski T. 2001. Occurrence of *Escherichia coli O157* in Finnish cattle, Veterinary Microbiology, 79(3): 239-251.

Law D, Kelly J. 1998. Use of heme and hemoglobin by *Escherichia coli O157* and other Shiga-like-toxin-producing *E. coli* serogroups. Infect Immun 63:700-702.

Leclerc H, Mossel DAA, Edberg SC, Struijk CB. 2001. Advances in the bacteriology of the Coliform Group: Their suitability as markers of microbial water safety. Annual Review of Microbiology 55: 201-234.

LeJeune JT, Besser TE, Hancock DD. 2001. Cattle water troughs as reservoirs of *Escherichia coli O157*. Applied and Environmental Microbiology 67(7): 3053-3057.

Lee JV, Dawson SR, Ward S, Surman SB, Neal KR. 1997. Bacteriophages are a better indicator of illness rates than bacteria amongst users of a white water course fed by a lowland river. Water Science and Technology 35(11-12): 165-170.

LeJeune JT, Besser TE, Hancock DD. 2001. Cattle water troughs as reservoirs of *Escherichia coli O157*. Applied and Environmental Microbiology, 67(7) 3053-3057.

Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O'Kennedy R. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 32(1): 3-13.

Liao HH, Tim US. 1997. An interactive modeling environment for non-point pollution control. J. AM. Water Res. Ass. 33(3): 591-603.

Licence K, Oates KR, Synge BA, Reid TMS. 2001. An outbreak of *Escherichia coli* 0157:H7 infection with evidence of spread from animals to man through contamination of a private water supply. Epidemiology and Infection, 126(1) 135-138.

Lipp EK, Kruz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries 24(2): 266-76.

Locking ME, O'Brien SJ, Reilly WJ, Wright EM, Campbell DM, Coia JE, Browning LM, Ramsay CN. 2001. Risk factors for sporadic cases of *Escherichia coli O157* infection: the importance of contact with animal excreta. Epidemiology and infection 127(2): 215-220.

Lodge FJ, Thompson DE, Call DR. 2002. PCR detection of specific pathogens in water: a risk-based analysis. Environmental Science and Technology 36(12): 2754-2759.

Lopez EL, Diaz M, Grinstein S. 1989. Hemolytic uremic syndrome and diarrhea in Argentine chilren: the role of Shiga toxins in children. Journal of Infectious Disease 160: 469-475.

Lopez-Pila JM, Szewzyk R. 2000. Estimating the infection risk in recreational waters from the faecal indicator concentration and from the ratio between pathogens and indicators. Water Research 34(17): 4195-4200.

MacDonald IAR, Gould IM, Curnow J. 1996. Epidemiology of infection due to *Escherichia coli O157*: a 3-year prospective study. Epidemiological Infection 116: 279-284.

MacDonald JM, Ollinger ME, Nelson KE, Handy CR. 2000. Consolidation in U.S. meatpacking. AER 785. Washington, DC: U.S. Department of Agriculture, Economic Research Service. May 22.

http://www.ers.usda.gov/whatsnew/issues/meatpacking/index.htm

Mallin MA, Ensign SH, McIver MR, Shank GC, Fowler PK. 2001. Demographic, landscape, and meteorlogical factors controlling microbial pollution of coastal waters. Hydrobiologia 460:185-193.

Mariani-Kurkdjian P, Bingen E. 1999. *Escherichia coli O157*: H7, an emerging pathogen. Presse Medicale, 28(37) 2067-2074.

Martin ML, Shipman LD, Wells JG, Potter ME, Hedberg K, Wachsmith IK, Tauxe RV, Davis JP, Arnoldi J, Tilleli J. 1986. Isolation of *Escherichia coli O157:H7* dairy cattle associated with two cases of haemolytic uraemic syndrome. Lancet ii:1043.

Maule A, 2000, Survival of verocytotoxigenic *Escherichia coli O157* in soil, water and on surfaces. Jouornal of Applied Microbiology 88:71S-78S.

McBride GB, Salmond CE, Bandaranayake DR, Turner SJ, Lewis GD, Till DG. 1998. Health effects of marine bathing in New Zealand. International Journal of Environmental Health Research 8(3): 173-189.

McBride WD. 1997. Changes in U.S. livestock production, 1969-92. AER 754. Washington, DC: U.S. Department of Agriculture, Economic Research Service. July.

McClure PJ, Hall S. 2000. Survival of *Escherichia coli* in foods. Journal of Applied Microbiology 88 61S-70S.

McGee P, Bolton DJ, Sheridan JJ, Earley B, Kelly G, Leonard N. 2002. Survival of *Escherichia coli O157*: H7 in farm water: its role as a vector in the transmission of the organism within herds. Journal of Applied Microbiology, 93(4) 706-713.

McGowan KL, Wickersham E, Strockbin NA. 1989. Escherichia coli O157:H7 from Water letter to editor. Lancet, 1(8644) 967-968.

McLellan SL, Daniels AD, Salmore AK. 2001. Clonal populations of thermotolerant *Enterobacteriaceae* in recreational water and their potential interference with fecal *Escherichia coli* counts. Applied and Environmental Microbiology 67(10): 4934-4938.

Mead PS, Griffin PM. 1998. Escherichia coli O157: H7. Lancet, 352(9135): 1207-1212.

Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe PV. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:1-32

Mechie SC, Chapman PA, Siddons CA. 1997. A Fifteen Month Study of *E. coli O157:H7* in a Dairy Herd. Epidemiol. Infect. 118(1): 17-25.

Medema GJ, Vanasperen IA, Klokmanhouweling JM, Nooitgedagt A, Vandelaar MJW, Havelaar AH. 1995. The relationship between health-effects in triathletes and microbiological quality of fresh-water. Water Science and Technology 31(5-6): 19-26.

Medema GJ, vanAsperen IA, Havelaar AH. 1997. Assessment of the exposure of swimmers to microbiological contaminants in fresh waters. Water Science and Technology 35(11-12): 157-163.

Michel P, Wilson JB, Martin SW, Clarke RC, McEwen SA. 1999. Temporal and Geographical Distributions of Reported Cases of *E. coli O157:H7* Infection in Ontario. Epdemiol. Ifect. 122: 191-200.

Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M, Ono A, Yanagawa H. 1999. Massive outbreak of *Escherichia coli O157:H7* infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 150:787-796

Minority Staff of the U.S. Senate Committee on Agriculture, Nutrition and Forestry, Animal Waste Pollution in America: An Emerging National Problem, Washington, D.C. (December 1997), p3.

Miyagi K, Omura K, Ogawa A, Hanafusa M, Nakano Y, Morimatsu S, Sano K. 2002. Survival of Shiga toxin-producing *Escherichia coli O157* in marine water and frequent detection of the Shiga toxin gene in marine water samples from an estuary port. Epidemiology and Infection 126(1) 129-133

Moake JL. 1994. Hemolytic Uremic Syndrome: Basis Science. Lancet 343:393-397.

Moore B. 1959. Sewage contamination of coastal bathing waters in England and Wales: a bacteriological and epidemiological study. British Journal Hygiene 57:435-472.

Mourino-Perez RR. 1999. Studying the risks of ocean swimming. Epidemiology 10(4): 351-352.

Mudgett CC, Ruden R, et al. 1998. A beach-associated outbreak of *Escherichia coli* 0157: H7. Journal of Environmental Health 60(9): 7-13.

Mugglestone MA, Stutt ED, Rushton L. 2001. Setting microbiological water quality standards for sea bathing - a critical evaluation. Water Science and Technology 43(12): 9-18.

Nataro JP, Kaper JB. 1998. Diarrheagenic *Escherichia coli*. Clinical Microbiology Reviews 11(1): 142-176.

National Institute of Health and Infectious Disease. 1996. Verotoxin-producing *Escherichia coli*, January 1991-November 1995, Japan. Infectious Agents Surveillance Report 17:1-2.

Niemi RM, Niemi JS. 1991. Bacterial pollution of waters in pristine and agricultural lands. J. Environ. Qual. 20:620-627.

Nikiforuk A. 2000. When Water Kills. Maclean's 113(24) 18-21.

Noble RT, Fuhrman JA. 2001. Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels. Hydrobiologia 460: 175-184.

Noel JM, Boedeker EC. 1997. Enterohemorrhagic *Escherichia coli*: A family of emerging pathogens. Digestive Diseases, 15(1-2) 67-91.

Notario R, Fain JC, Prado V, Rios M, Borda N, Gambande T. 2000. Animal reservoir and genotipic characterization of Enterohemorrhagic *Escherichia coli* (EHEC) in Argentina, Revista Medica De Chile 128(12): 1335-1341.

Obiri-Danso K, Jones K. 1999. Distribution and seasonality of microbial indicators and thremophilic campylobacters in two freshwater bathing sites on the river lune in northwest England. Journal of Applied Microbiology 87(6): 822-832.

O'Brien SJ, Adak GK, Gilham C. 2001. Contact with farming environment as a major risk factor for Shiga toxin (Vero cytotoxin)-producing *Escherichia coli O157* infection in humans. Emerging Infectious Diseases 7(6): 1049-1051.

Ogden ID, Hepburn NF, MacRae M, Strachan NJC, Fenlon DR, Rusbridge SM, Pennington TH. 2002. Long-term survival of *Escherishia coli O157* on pasture following an outbreak associated with sheep at a scout camp. Letters in Applied Microbiology 34(2): 100-104.

Olsen SJ, Miller G, Breuer T, Kennedy M, Higgins C, Walford J, McKee G, Fox K, Bibb W, Mead P. 2002. A waterborne outbreak of *Escherichia coli O157*: H7 infections and hemolytic uremic syndrome: Implications for rural water systems. Emerging Infectious Diseases 8(4): 370-375.

Osek J. 1999. Escherichia coli O157 - a dangerous pathogen with a broad spectrum of illnesses. Medycyna Weterynaryjna, 55(4): 215-221.

Osek J, Gallien P. 2002. Molecular analysis of *Escherichia coli O157* strains isolated from cattle and pigs by the use of PCR and pulsed-field gel electrophoresis methods. Veterinarni Medicina, 47(6): 149-158.

Padhye NV, Doyle MP. 1992. *Escherichia-Coli O157-H7* - epidemiology, pathogenesis, and methods for detection in food. Journal of Food Protection 55(7): 555-565.

Papadakis JA, Mavridou A, Richardson SC, Lampiri M, Marcelou U. 1997. Bather-related microbial and yeast populations in sand and seawater. Water Research 31(4): 799-804.

Papanek PJ. 1994. How clean should the ocean be for swimmers. Lancet 343(8908): 1238-1239.

Paton AW, Paton JC, Goldwater PN, Manning PA. 1993. Direct detection of *Escherichia coli* Shiga-like toxin genes in primary fecal cultures by polymerase chain reaction. J. Clin. Microbiol. 31:3063-3067.

Paunio M, Pebody R, Keskimaki M, Kokki M, Ruutu P, Oinonen S, Vuotari V, Siitonen A, Lahti E, Leinikki P. 1999. Swimming associated outbreak of *E. coli O157:H7*. Epidemiology of Infections, 122(1): 1-5.

Pavia AT, Nichols CR, Green DP, Tauxe RV, Mottice S, Greene KD, Wells JG, Siegler RL, Brewer ED, Hannon D, Blake PA. 1990. Hemolytic-uremic syndrome during an outbreak of *Escherichia coli O157:H7* infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J. Pediatr. 116:544-551.

Pellizari VH, Pedroso DMM, Kirschner CC, Silva LAG, Martins MT. 1993. Assessment of media using Beta-D-Glucuronidase activity for the detection of *Escherichia-Coli* in Water. Revista De Microbiologia 24(3): 182-186.

Perez-Guzzi JI, Folabella A, Milwebsky E, Rivas M, Fernandez-Pascua C, Gomez D, Zamora A, Zotta C, Cordoba M. 2000. Isolation of *Escherichia coli O157:H7* in storm drainsin the sity of Mar del Plata with bacterial contaminantion of fecal origin. Rev Argent Microbiology 32(3): 161-164.

Pettibone GW, Irvine KN. 1996. Levels and sources of indicator bacteria associated with the Buffalo River area of concern. Journal of Great Lakes Research 22(4): 896-905.

Philips CA. 1999. The epidemiology, detection and control of *Escherichia coli O157*. Journal of the Science of Food and Agriculture 79(11): 1367-1381.

Pickering LK, Obrig TG, Stapleton FB. 1994. Hemolytic-uremic syndrome and enterohemorrhagic *Escherichia- coli*. Pediatric Infectious Disease Journal 13(6): 459-475.

Pinsky PF. 2000. Assessment of risk from long-term exposure to waterborne pathogens. Environmental and Ecological Statistics 7(2): 155-175.

Prieto MD, Lopez B, Juanes JA, Revilla JA, Llorca J, Delgado-Rodriguez M. 2001. Recreation in coastal waters: health risks associated with bathing in sea water. Journal of Epidemiology and Community Health 55(6): 442-447.

Pruss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water, Review of epidemiol. 27(1): 1-9.

Raina PS, Pollari FL, Teare GF, Goss MJ, Barry DAJ, Wilson JB. 1999. The relationship between *E-coli* indicator bacteria in well- water and gastrointestinal illnesses in rural families. Canadian Journal of Public Health-Revue Canadienne De Sante Publique 90(3): 172-175.

Rahn K, Renwick SA, Johnson RP, Wilson JB, Clarke RC, Alves D, McEwen S, Lior H, Spika J. 1997. Persistence of *Escherichia coli O157:H7* in dairy cattle and the dairy farm environment. Epidemiological Infections 119:251-259.

Rasmussem MA, Casey TA. 2001. Environmental and food safety aspects of *Escherichia coli O157:H7* infections in cattle. Critical Reviews in Microbiology 27(2): 57-73.

Reilly WJ. 1997. *E coli O157* in Scotland. Scottish Center for Infection and Environmental Health Weekly Report.

Rice DH, Hancock DD, Besser IE. 2003. Faecal culture of wild animals for *Escherichia coli O157*: H7 152(3): 82-83.

Riley LW, Remis RS, Helgerson SD. 1983. Hemorrhagic colitis associated with a rare *Escherichia coli* serotype. N Engl J Med;308:681-685

Rivas M, Balabi L, Miliwebsky ES, 1998. Sindrome Uremico Hemolitico en Ninos de Mendoza, Argentina. Medicina 58:1-7.

Robinson KJ, Ragan RM. 1993. Geographic Information System based nonpoint pollution modeling. Wat. Res. Bull. 29(6): 1003-1008.

Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. 2001. Climate variability and change in the Untied States: Potential impacts on water- and foodborne diseases caused by microbiologic agents. Environmental Health Perspectives 109: 211-211S.

Rosenburg ML, Koplan JP, Wachsmuth IK, Wells JG, Gangarosa EJ, Guerrant RL, Sack DA. 1977. Epidemic diarrhea at Crater Lake from entertoxigenic *Escherichia coli*: A large waterborne outbreak. Annals of Internal Medicine 86: 714-718.

Rowe PC, Orrbine E, Lior H, Wells GA, Yetisir E, Clulow M, McLaine PN. 1998. Risk of hemolytic uremic syndrome after sporadic *Escherichia coli O157*: H7 infection: Results of a Canadian collaborative study. Journal of Pediatrics 132(5): 777-782.

Rudra RP, Dickinson WT, Abedini MJ, Wall GJ. 1999. A multi-tier approach for agricultural watershed management. J. AM. Water Res. Ass. 35(5): 1159-1170.

Samadpour M, Stewart J, Steingart K, Addy C, Louderback J, McGinn M, Ellington J, Newman T. 2002. Laboratory investigation of an *E. coli O157:H7* outbreak associated with swimming in Battle Ground Lake, Vancouver, Washington. Journal of Environmental Health, 64(10): 16-20.

Samadpour M, Kubler M, Buck FC, Depavia GA, Mazengia E, Stewart J, Yang P, Alfi D. 2002. Prevalence of Shiga toxin-producing *Escherichia coli* in ground beef and cattle Feces from King County, Washington, Journal of Food Protection 65(8): 1322-1325.

Sample DJ, Heaney JP, Wright LT, Koustas R. 2001. Geographic Information Systems, decision support systems, and urban storm water management. J. Water Res. Plan. and Manag. ASCE. 127 (3): 155-161.

Sargeant JM, Gillespie JR, Oberst RD, Phebus RK, Hyatt DR, Bohra LK, Galland JC. 2000. Results of a longitudinal study of the prevalence of *Escherichia coli O157:H7* on cow-calf farms. American Journal of Veterinary Research 61(11): 1375-1379.

Schepel M. 1998. STREAM, spatil tools for river basin, environment, and analysis of mangement options. GIS 1998, GIS Technologies and their Environmental Applications WIT Press Southampton, Boston.

Schroeder SA, Caldwell JR, Vernon TM, White PC, Granger SI, Bennett JV. 1968. A waterborne outbreak of gastroenteritis in adults associated with *Escherichia coli*. Lancet 7545: 737-740.

Seyfried PL, Tobin RS, Brown NE, Ness PF. 1985. A Prospective-study of swimming-related illness, 1. Swimming-associated health risk. American Journal of Public Health 75(9): 1068-1070.

Seyfried PL. 1989. Bacterial indicators to estimate the health-hazards associated with the use of swimming pools. Toxicity Assessment 4(3): 317-327.

Shamsi UM. 1996. Storm water management implementation through modeling and GIS. J. Water Res. Plan. and Manag. ASCE. 122(2): 114-127.

Sinton LW, Finlay RK, Hannah DJ. 1998. Distinguishing human from animal faecal contamination in water: a review. New Zealand Journal of Marine and Freshwater Research 32(2): 323-348.

Slutsker L, Ries AA, Greene KD, Wells JG, Hutwagner L, Griffin PM. 1997. *Escherichia coli O157:H7* diarrhea in the United States: Clinical and epidemiologic features. Annals of Internal Medicine 126(7): 505-516.

Slutsker L, Ries AA. 1998. A nationwide case-control study of *Escherichia coli O157*: H7 infection in the United States. Journal of Infectious Diseases 177(4): 962-966.

Smayda TJ, Shimizu Y. 1993. Toxic Phytoplankton Blooms in the Sea. London: Elsevier.

Srihari KA, Rao DV. 1998. Relative efficacy of 4-methyl umbelliferyl beta-D glucuronide (MUG) growth media for the detection of *Escherichia coli* in processed foods. Journal of Food Science and Technology-Mysore 35(4): 314-319.

Stark SL, Nuckols JR, Rada J. 1999. Using GIS to investigate septic systems sites and nitrate pollution. J. Environmental Health, 61(8): 15-6.

Stephenson GR and Street LV. 1978. Bacterial variations in streams from a southwest Idaho rangeland watershed. Journal Environ Qual. 7(1):150-157.

Stevenson AJ. 1953. Studies of bathing water quality and health. American Journal of Public Health 43:529-538.

Stoke DL, Griffin GD, Tuan VD. 2001. Detection of *E-coli* using a microfluidics-based antibody biochip detection system. Fresenius Journal of Analytical Chemistry 369(3-4): 295-301.

Strachan MJC, Fenlon DR, Ogden ID. 2001. Modelling the vector pathway and infection of humans in an environmental outbreak of *Escherichia coli O157*. FEMS Microbiology Letters 203 (1): 69-73.

Strachan MJC, Dunn Gm, Ogden ID. 2002. Quantitative risk assessment of human infection from *Escherichia coli O157* associated with recreational use of an animal pasture. International Journal of Food Microbiology 75(1-2): 39-51.

Swerdlow DL, Woodruff BA, Brady RC, Griffin PM, Tippen S, Donnell HD, Geldreich E, Payne BJ, Meyer A, Wells JG, Greene KD, Bright M, Bean NH, Blake PA. 1992. A

waterborne outbreak in Missouri of *Escherichia coli O157:H7* associated with bloody diarrhea and death. Ann. Intern. Med. 117:812-819.

Synge BA. 2000. Veterinary significance of verocytotoxin-producing *Escherichia coli* 0157. World Journal of Microbiology & Biotechnology, 16(8-9): 725-732.

Tamblyn SJ, deGrosbois RJ, Taylor D, Stratton J. 1999. An outbreak of *Escherichia coli* 0157:H7 infection associated with unpasteurized non-commercial, custom-pressed apple cider—Ontario, 1998. Can. Commun. Dis. Rep. 25:113-120.

Tarr PI. 1995. Escherichia-Coli O157-H7 - Clinical, diagnostic, and epidemiologic aspects of human infection. Clinical Infectious Diseases 20(1): 1-10.

Tarr PI, Neill MA. 2001. Escherichia coli O157: H7. Gastroenterology Clinics of North America 30(3): 735-747.

Tanaka Y, Yamaguchi N, Nasu M. 2000. Viability of *Escherichia coli O157*: *H7* in natural river water determined by the use of flow cytometry. Journal of Applied Microbiology 88(2):228-236.

Teunis PFM, Nagelkerke NJD, Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Analysis 19(6): 1251-1260.

Theron J, Cloete TE. 2002. Emerging waterborne infections: Contributing factors, agents, and detection tools. Critical Reviews in Microbiology 28(1): 1-26.

Tim US, Jolly R. 1994. Evaluation agricultural nonpoint source pollution using integrated Geographical Information Systems and hydrologic/water quality model. J. Envir. Qual. 23(1): 25-35.

Thomas A, Cheasty T, Frost JA, Chart H Smith HR, Rowe B. 1996. Verocytotoxin-producing *Escherichia coli*, particularly serogroup *O157*, associated with human infection in England and Wales: 1992-4. Epidemiol. Infect. 117:1-10.

Tiedemann AR, Higgens DA, Quigley TM, Sanderson HR, Bohn CC. 1988. Bacterial water quality responses to four grazing strategies-comparison to Oregon standards. J. Environ Qual. 17(3):492-498.

Tsen HY, Jian LZ. 1998. Development and use of a multiplex PCR system for the rapid screening of heat labile toxin I, heat stable toxin II and Shiga-like toxin I and II genes of *Escherichia coli* in water. J. Appl. Microbiol. 84:585-592.

USDA. 1997. Agricultural Census data.

USDA Agricultural Census data collected 1997 published 1999 and data collected 1974 published 1976.

USEPA Human Health Risk Assessment Guidelines (1986), and supplement (August 2000)

USDA. 2002. AGNPS website http://www.sedlab.olemiss.edu/agnps.html.

USEPA. 2001. http://www.epa.gov/OWOW/tmdl/index.html

USEPA. 2002a. Surf your Watershed http://www.epa.gov/surf

USEPA. 2002b. Better Assessment Science Integrating point and Non-point Sources (BASINS) http://www.epa.gov/waterscience/ftp/basins/system/BASINS3/bit.htm

USGS. 2002. Geographic Information Systems http://www.usgs.gov/research/gis/title.html

van Asperen IA, Medema G, Borgdorff MW, Sprenger MJW, Havelaar AH. 1998. Risk of gastroenteritis among triathletes in relation to faecal pollution of fresh waters. International Journal of Epidemiology 27(2): 309-315.

Van Ess E, Harding AK. 1999. A bacteriological study of natural freshwater swimming areas in Western Oregon. Journal of Environmental Health 61(9): 14-19.

Van Every LR. 1995. Groundwater as a vehicle for disease transmission in southeastern Idaho: a case study. Journal of Environmental Health 58: 16-19.

Vernozy-Rozand C, Montet MP, Ray-Gueniot S. 2002. *E-coli O157 : H7* in water: a public health problem. Revue De Medecine Veterinaire 153(4): 235-242.

Verweyen HM, Karch H, Brandis M, Zimmerhackl LB. 2000. Enterohemorrhagic *Escherichia coli* infections: following transmission routes. Pediatric Nephrology 14(1): 73-83.

Vold L, Sandberg M, Jarp J, Wasteson Y. 2001. Occurrence and characterization of *Escherichia coli O157* isolated from cattle in Norway. Veterinary Research Communications 25(1): 13-26.

Vonschirnding YER, Kfir R, Cabelli V, Franklin L, Joubert G. 1992. Morbidity among bathers exposed to polluted seawater - a prospective epidemiologic-study. South African Medical Journal 81(11): 543-546.

Wallace JS, Cheasty T, Jones K. 1997. Isolation of vero cytotoxin-producing *Escherichia coli O157* from wild birds. Journal of Applied Microbiology 82:399-404.

Wang GD, Zhao T, Doyle MP. 1996. Fate of enterohemorrhagic *Escherichia coli* 0157:H7 in bovine feces. Applied and Environmental Microbiology 62(7): 2567-2570.

Wang GD, Doyle MP. 1998. Survival of enterohemorrhagic *Escherichia coli O157*: H7 in water. Journal of Food Protection 61(6) 662-667.

Wang XH, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river for watershed planning. Envir. and Planning 27(2): 231-246.

Wang XH, Yin ZY. 1997. Using GIS to assess relationship between land-use and water quality at a watershed level. Enviro. Intern. 23(1): 103-114.

Wang X. 2001. Integrating water quality management and land-use planning in a watershed context. J. Enviro. Manag. 61(1): 25-36.

Watanabe H, Wada A, Inagaki Y, Itoh K, Tamura K. 1996. Outbreaks of enterohaemorrhagic *Escherichia coli O157:H7* infection by two different genotype strains in Japan. 1996. Lancet 348:831-832.

Waters JR, Sharp JC, Dev VJ. 1994. Infection caused by *Escherichia coli O157:H7* in Alberta Canada and in Scotland: a five year review 1987-1991. Clinicla Infectiuos Disease 19:834-843.

Weiskel PK, Howes BL, Heufelder GR. 1996. Coliform contamination of a coastal embayment: sources and transport pathways. Environ Sci Technol 30:1872-1881.

Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare *Escherichia coli* serotype. J. Clin. Microbiol. 18:512-520.

Wells JG, Shipman LD, Greene KD, Sowers EG, Green JH, Cameron DN, Downes FP, Martin ML, Griffin PM, Ostroff SM, Potter ME, Tauxe RV, Wachsmuth IK. 1991. Isolation of *Escherichia coli* serotype *O157:H7* and other Shiga-like-toxin-producing *E. coli* from dairy cattle. J. Clin. Microbiol. 29:985-989.

Wheeler D, Alexander LM. 1992. Assessing the Health Risks of Sea Bathing, Journal of the Institution of Water and Environmental Management 6(4): 459-467.

Whipp SC, Rasmussen MA, Cray WC. 1994. Animals as a source of *Escherichia-Coli* pathogenic for human-beings. Journal of the American Veterinary Medical Association 204(8): 1168-1175.

Wickens B. 2000. Tragedy in Walkerton, Maclean's 113(23) 24-26.

Willshaw GA, Smith HR, Cheasty T, Wall PG, Rowe B. 1997. Vero cytotoxin-producing *Escherichia coli O157* outbreaks in England and Wales, 1995: phenotypic methods and genotypic subtyping. Emerg. Infect. Dis. 3:561-565.

WMU. 2002. Kalamazoo River Watershed hosted by Western Michigan University http://www.wmich.edu/watershedinfo/index1.html

Wright DJ, Chapman PA, Siddons CA. 1994. Immunomagnetic separation as a sensitive method for isolating *Escherichia coli O157* from food samples. Epidemiol. Infect. 113:31-39

Wong KM, Strecker EW, Strenstrom MK. 1997. GIS to estimate storm-water pollutant mass loadings. Journal of Envir. Eng. ASCE 123(8): 737-745.

Wyer MD, Fleisher JM, Gough J, Kay D, Merrett H. 1995. An Investigation into parametric relationships between enterovirus and fecal indicator organisms in the coastal waters of England and Wales. Water Research 29(8): 1863-1868.

Wymer LJ, Dufour AP. 2002. A model for estimating the incidence of swimming-related gastrointestinal illness as a function of water quality indicators. Environmetrics 13(5-6): 669-678.

Yavzori M, Porath N, Ochana O, Dagan R, Orni-Wasserlauf R, Cohen D. 1998. Detection of enterotoxigenic *Escherichia coli* in stool specimens by polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 31:503-509.

Younts S, Alocilja EC, Osburn WN, Marquie S, Grooms DL. 2002, Differentiation of *Escherichia coli O157*: H7 from non-*O157*: H7 E-coli serotypes using a gas sensorbased, computer- controlled detection system. Transactions of the ASAE 45(5): 1681-1685.

Zhao T, Doyle MP, Zhao P, Blake P, Wu FM. 2001. Chlorine inactivation of *Escherichia coli* 0157: H7 in water. Journal of Food Protection 64(10): 1607-1609.

Zhou ZJ, Nishikawa Y, Zhu P, Hong S, Hase A, Cheasty T, Smith HR, Zheng MG, Haruki K. 2002. Isolation and characterization of Shiga toxin-producing *Escherichia coli* 0157: H7 from beef, pork and cattle fecal samples in Changchun, China. Journal of Veterinary Medical Science 64(11): 1041-1044.

Chapter 3

The Effect of Rainfall, River Flow and other Meteorological Aspects on E. coli Levels in the Red Cedar River

Introduction

Ever since fecal contamination of water was determined a human health risk, there has always been a great deal of concern regarding the level of coliform bacteria counts in water. Many bodies of water throughout the world are considered to have counts above acceptable levels. The sources of these coliforms are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow (EPA 2000). The indicator organism for fecal contamination in fresh water is *Escherichia coli* (*E.coli*) (EPA 2003, WHO 2003). Physical characteristics of the watershed maybe risk factors that affect the concentration levels of *E.coli*. This study will examine the effect of the seasons, the flow rate of the river, rainfall, air temperature, water temperature, intensity of the sun, humidity, soil moisture, ground temperature, and wind speed as factors related to concentration levels of *E.coli*.

The seasonal variation of *E.coli* concentration levels have been studied and reported in the literature. Over a twelve-year period (1984-1995) a study in Scotland determined that seasonality was a factor with the highest amount of hospital admissions for illness due to *E.coli* in July and August (Douglas 1997). It should be noted that this study was not limited to recreational use of water and showed the seasonal pattern only for patients under 15 years old. In contrast, a study in Florida showed that concentration of fecal indicator organisms were the highest during the late fall and early winter months,

which corresponds to the wet, weather months in Florida (Lipp 2001). In addition the study determined that the levels of fecal indicators were significantly associated with rainfall, stream flow, and temperature. Moreover, a study of two steams in Arkansas over a three year period concluded that concentrations of indicator bacteria increased with increasing flow rates and seasonal effects were observed on the indicators with the highest levels occurring during the summer months (Edwards 1997). Furthermore, in a study of a dairy herd *E. coli O157:H7* was found in 4.3% of the herd and *E. coli* concentration levels peaked during the May to July timeframe but was not found in the herd from November to May (Mechie 1997). However, a study in northwest England reported that bacteria indicators showed no seasonal variations over a two-year period (Obiri-Danso and Jones 1999).

Other studies support the association of the levels of fecal indicators in a water body and rainfall events. In a study that examined 99 samples from three tributaries that contributed to different drinking water reservoirs showed that *E.coli* levels along with other bacteriological parameters increased considerably during extreme rainfall events (Kistemann 2002). In a similar study on Delaware River, increased concentrations of *Giardia, Cryptosporidium* and other microorganisms were associated with rainfall (Atherholt 1998). In a retrospective study on waterborne disease outbreaks in the U.S. for 1948 to 1994, analyzed 548 reported outbreaks as documented by the USEPA database. The results showed that 51% of waterborne disease outbreaks were preceded by precipitation events above the 90th percentile and 67% by events above the 80th percentile (Curriero 2001). This study concluded that there is a statistically significant association between high intensity rainfall events and waterborne disease outbreaks.

Other studies also conclude that *E.coli* levels increase with rainfall (Briski F 2000; Ferguson 1996; Atherholt 1998; Pettibone and Irvine 1996; Niemi and Niemi 1991; Mallin 2001; Noble 2003). Recent study by Rose (2001) suggests that an increase in rainfall or snowmelt increases the impact of diseases caused by microbiologic agents.

An increase in the flow of a river has been also related to an elevation in the concentration levels of *E.coli* in the river. Early studies in Idaho and Oregon found that fecal *E.coli* concentrations were higher during period of high flow than during period of lower flow (Stephenson and Street 1978; Tiedemann 1988). These finding were confirmed in a study of two rivers in Arkansas that concluded that concentrations of indicator bacteria increased with increasing flow rates (Edwards 1997).

The survival characteristics of a mixture of five *E. coli* 0157:H7 strains innoculated at 10³ CFU/ml in filtered and autoclaved municipal water, in reservoir water, and in water from two recreational lakes were determined for a period of 91 days and stored at three different temperatures of 8, 15, or 25 degrees C. Greatest survival was in filtered autoclaved municipal water and least in lake water. Regardless of the water source, survival was greatest at 8 degrees C and least at 25 degrees (Wang 1998).

According to the United States Food and Drug Administration (FDA) *E. coli* grows between the temperatures of 2.5°C and 45°C (USFDA 1992).

An objective of this study is to determine if there is a seasonal effect on the concentration levels of *E.coli* in the Red Cedar River watershed. Another objective is to determine if there is relationship between the flow rate of the river and concentration levels of *E.coli*. In addition, an objective of this study is to determine the statistical significance of concentration levels of *E.coli* as related to the watershed physical

characteristics of rainfall, air temperature, water temperature, intensity of the sun, humidity, soil moisture, ground temperature, wind speed, duck population, as well as river flow. Finally, an objective of this study is to use the statistical data to model risk factors to so that water safety can be determined by the changes in physical characteristics which maybe determinable in real time. It is hypothesized, based on the results reported in the literature, that the model risk factors are directly related to rainfall and associated factors.

Methods and Materials

Data

The location of the study site is on the Michigan State University (MSU) campus in East Lansing, Michigan. Water samples from the Red cedar River were collected weekly during the 32 weeks from April to November over a three-year period. The water samples were taken from the Farm Lane Bridge, which crosses the Red Cedar River in the center of campus. These were collected by the MSU university physician's office and sent to the Michigan Department of Environmental Quality (MDEQ) for the determination of *E. coli* concentration levels in water. The detection method for the analysis of *E. coli* used by MDEQ was EPA Method 1103.1, which is a mTEC Agar enumeration method introduced by EPA in 1986 and modified in 1998 (Dufour 1981; USEPA, 1986b; USEPA 1998). The river flow measurements were taken from the United States Geological Service (USGS) gauging station that is located about 300 yards down river from the Farm Lane bridge.

Figure 3-1. View of the Farm Lane Bride over the Red Cedar River from the USGS Gauging Station on the Campus of Michigan State University.

The weather data were collected from the archives of the MSU horticulture research weather station located on campus about two miles south of the Farm Land Bridge. Data that were collected and used in this study included air temperature, humidity, soil moisture at two inch depth, soil temperature at two inch depth, solar radiation, wind speed, and precipitation. Finally, water temperature data and duck count data were collected by Jo Latmore, Ph.D. candidate at MSU as part of a separate project and were only available for a portion of this study.

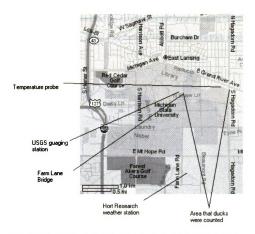


Figure 3-2. Locations of where measurements were taken for this study.

The Red Cedar River arises in Cedar Lake in the south-central Lower peninsula of Michigan and flows about 45 miles (80 kilometers) to its confluence with the Grand River in the city of Lansing. It has 12 tributaries and drains a total area of about 472 square miles (22,000 hectares). The river provides mid-Michigan residents with numerous recreational opportunities that include angling, canoeing, kayaking, photography and bird watching. The river also serves as a source of water for the irrigation of crops throughout the watershed, as well as, drainage for agricultural land. The weekly samples were taken from the 5,400-acre MSU campus with agricultural

operations two miles south of the river, traditional campus setting along the river, and the urban landscape of the city of East Lansing less than a quarter mile north of the river.

Figure 3-3. The Red Cedar River Watershed with The Michigan State University campus outlined in red.

Statistical Analysis

For seasonal effects, correlations were analyzed between the three years of data. The first step in the statistical analysis included assessment of the correlations between the *E.coli* levels and the physical and meteorological measurements. All the data was collected at the same frequency as the water samples for the *E.coli* concentration measurements, weekly over the 32 weeks from April to November over the three-year

period with the exception of the water temperature and duck counts. For all data the number of samples (n) is equal to 96 except for water temperature where the number of samples is equal to 33 and duck count where the number of samples is 40. Because of the lack of normality in the distribution of *E.coli*, precipitation and flow rate data, Spearman's correlation coefficient was used in all the correlations.

Once the physical and meteorological variables that significantly correlated with *E.coli* were identified based on the correlation analysis, they were included in a logistic regression with *E.coli* level exceeding a certain thresholds as a dependent variable. Two different logistic regressions were run with different thresholds, one threshold value at the *E.coli* level of 300cfu/100ml, which is the highest acceptable full body contact level, and another at the *E.coli* level of 1000cfu/100ml, which is the highest acceptable partial body contact level. Statistical analysis was completed using SPSS version 11 software package, as well as, SAS version 6.1.

Results and Discussion

Seasonal Effects

The plot in Figure 3-4 shows the weekly levels of *E. coli* with each year of data overlaid so that the weeks of the each year line up. Note that the peak levels for each year occur on different weeks. Statistical analysis on this data set shows that there is no correlation either using parametric (Pearson) or non-parametric (Spearman)

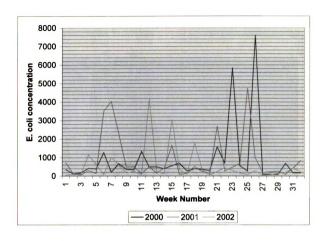


Figure 3-4. E. coli Concentration from April to November in the Red Cedar River

correlation coefficients between the three years of data. Based on these analyses, it is concluded that there is no observed seasonal effect for *E. coli* levels from the Farm Lane Bridge over the three-year period from 2000 to 2002.

The plot in Figure 3-5 shows the weekly value for the flow rate at the time that the sampling was done for the $E.\ coli$ analysis. In contrast to the $E.\ coli$ levels, the flow rate correlation using Spearman's Rho, between the three years is statistically significant at least p < 0.05 or better. From this analysis, it can be concluded that there is an observed seasonal variation in the flow rate of the Red Cedar River at the Farm Lane Bridge.

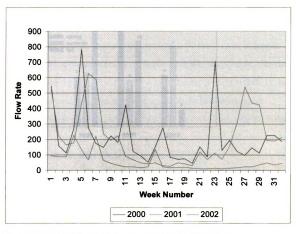
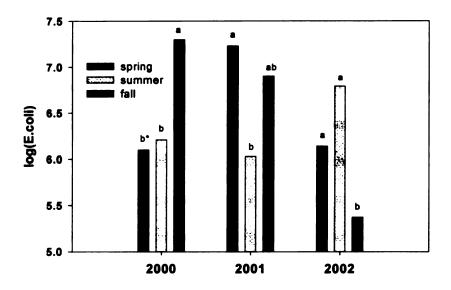
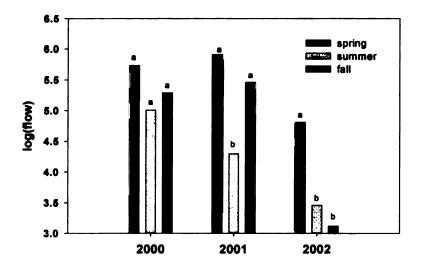




Figure 3-5. Flow Rate from April to November in the Red Cedar River

^{*} means within the same year followed by the same letter are not significantly different (p<0.05)

Figure 3-6. Mean Values of the Log-transformed *E.coli* Concentrations in Spring, Summer and Fall of the Studied Years.

^{*} means within the same year followed by the same letter are not significantly different (p<0.05)

Figure 3-7. Mean Values of the Log-transformed Flow Rates in Spring, Summer and Fall of the Studied Years.

There was no overall seasonal effect in the studied three years of the *E.coli* concentration (p<0.1). However, the interaction between year and season was statistically significant indicating that season effects were different in different years. Indeed, in 2000 average *E.coli* concentration was significantly higher in fall than in spring or summer (p<0.1). In 2001, spring concentration was significantly greater than summer, while there was no difference between fall and summer or fall and spring (p<0.05). In 2002, fall had significantly lower concentration than spring or summer, the latter two being not significantly different from each other (p<0.01). The observed inconsistency in seasonal effects indicates that in the studied area occurrence of the increased *E.coli* concentrations cannot be directly associated with any particular season.

Year-to-Year Observations

Shown in Figure 3-8 are the mean values along with error bars indicating the 95% confidence level for *E.coli* and flow for each year. Note that as flow varies so do *E.coli* levels. In the year 2002 the mean flow rate dropped by about 75% from the previous years and the mean *E.coli* level for the year 2002 dropped over 40% in comparison to the previous years.

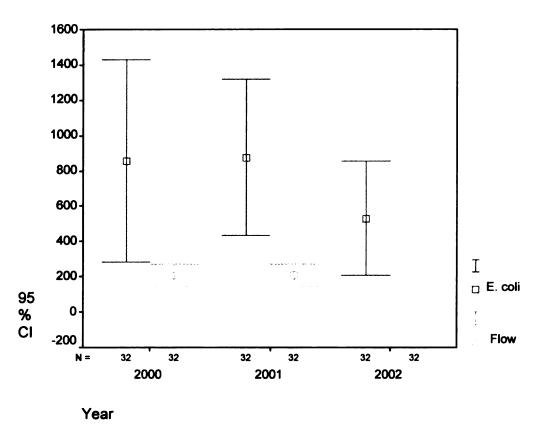


Figure 3-8. Yearly Mean and Standard Deviation of E. coli Levels and Flow

Shown in Figure 3-9 are the mean values for *E.coli*, flow (shown as bars) and rainfall (overlaid as lines) for each year. The rainfall data were collected over the day of *E.coli* sampling along with the two days previous to sampling and data was calculated and reported as a cumulative total over a 24, 48, or 72 hour period. Not surprisingly rainfall is associated with the *E. coli* level as does the flow rate. In the year 2002 the mean cumulative rainfall for a 72-hour period dropped by about 65% from the year 2000 and the mean *E. coli* level for the year 2002 dropped about 38% in comparison to the year 2000. In the year 2002 the mean flow rate dropped by about 75% from the year 2000. It makes common sense that the flow rate is lower for dry years and the year 2002 was a drought year with no rain for an 11-week period from June through August.

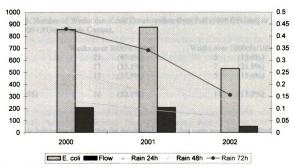


Figure 3-9. Yearly Mean of E. coli Levels, Flow, and Rainfall.

Michigan law (Michigan Public Health Code, PA 368 of 1978) based on EPA guidelines (EPA 2003) mandates that the *E.coli* concentration of 300cfu/100ml is the highest acceptable full body contact level, which is considered a person putting their head under water and would include swimming and water skiing. The law also mandates that *E.coli* concentration of 1000cfu/100ml is the highest acceptable partial body contact level which is considered putting a body part other than ones head into the water and would include fishing, canoeing, kayaking or boating. Table 3-1 shows the number weeks for each that the *E. coli* concentration was exceeding the regulated levels.

Table 3-1. Number of Weeks that *E.coli* Concentration Over Full (1000 CFU/ml) or Partial (300 CFU/ml) Body Contact.

Year	Weeks over 300cfu/100ml		Weeks over 1000cfu/100ml	
2000	21	(65.6%)	5	(15.6%)
2001	17	(53.1%)	7	(21.9%)
2002	12	(37.5%)	5	(15.6%)
Total (n=96)	50	(52.1%)	17	(17.7%)

It is interesting to note that the number of weeks that were over 300cfu/100ml decreased from the year 2000 to 2002 in a similar trend to that of rainfall and flow. This may indicates that the *E.coli* concentration at this level is influenced by rainfall and flow. In contrast, the number of weeks that were over 1000cfu/100ml do not follow these trend and indicating that there maybe other facts other than rainfall and flow rate that influence occurrence of the very high concentrations of *E.coli*.

Effect of All Individual Factors

Rainfall and flow were not the only data that was collected to be compared to *E.coli* concentration. Data that was collected and used in this study included air temperature, humidity, soil moisture at two inch depth, soil temperature at two inch depth, solar radiation, wind speed, precipitation, water temperature data and duck count. All the data was collected at the same frequency as the water samples for the *E.coli* concentration measurements, weekly over the 32 weeks from April to November over a three-year period with the exception of the water temperature and duck counts. For all data the number of samples (n) is equal to 96 except for water temperature where the

number of samples is equal to 33 and duck count where the number of samples is 40. For the impact of each physical and meteorological measurement on the *E.coli* levels, correlations using Spearman's rho analysis were run keeping the *E.coli* level as the independent variable and all others as dependent variables. The results are shown in Table 3-2.

Table 3-2. Statistical Analysis of *E. coli* Concentration vs. River Flow, Rainfall, Air Temperature, Humidity, Soil Moisture, Ground Temperature, Solar Radiation, Wind Speed, Water Temperature, and Duck Count. (n = 96)

Statistical Formula Spearman's rho	Flow 0.368**	Rain 24 hrs 0.349**	Rain 48 hrs. 0.510**	Rain 72 hrs. 0.512**
Statistical Formula Spearman's rho	Temp hi 0.079	Temp low 0.222*	Hum hi 0.233*	Hum lo 0.330**
Statistical Formula Spearman's rho	Soil mst hi 0.361**	Soil mst low 0.262*	Grnd tmp hi 0.157	Grnd tmp lo 0.166
Statistical Formula Spearman's rho	Solar -0.016	Windspd 0.035	Water tmp ^a -0.129	Ducks ^b 0.010

^{*} Statistically significant at p < 0.05; ** Statistically significant at p < 0.01.

From the statistical analysis, river flow, rain, humidity and soil moisture were significantly correlated to *E.coli* concentrations. This group of factors are all related to each other since when is rains humidity increases, soil moisture increases and river flow increases. It is not surprising that all the variables from this group are significantly correlated with *E.coli* levels. Ducks have been shown to be a source of *E.coli* and have been shown as a causation of illness to swimmers (Ackman 1997; Samadpour 2002). From this study there is no correlation between *E. coli* concentration and the number of

a Water temperature had n = 33

b Duck count had n = 40

ducks in the river upstream from the sampling point. In general, temperature, whether air, soil or water, did not correlate to *E.coli* levels with the exception of the low temperature of the day that the sample was collected. Solar radiation and wind speed were not significantly correlated with *E.coli* concentrations.

Correlograms were calculated for each variable in each year. They indicated that there was no significant spatial correlation between the variables. Hence, it is assumed that the E.coli, 72-hour total rainfall (rain72), and air temperature measurements collected at weekly intervals are independent. Analysis of the partial Spearman rank correlation coefficients with rain72 controlled produced no significant correlations between E.coli and any of the variables directly or indirectly related to amounts of cumulative 72 hr precipitation, including flow, 24-hour total rainfall (rain24), 48-hour total rainfall (rain 48), humidity and soil moisture. The variables that had significant effect on the E. coli when the amounts of cumulative 72-hour precipitation have been controlled for were air and soil temperature. Because of this observation and also because of the discussed above absence of the of the increase in E.coli in spring when the overall flow is higher than in the other seasons, we may conclude that although flow is significantly positively correlated with *E.coli*, the correlation is rather spurious since the amounts of cumulative precipitation in past 48 or 72 hours is the driving force of both increase in flow and in E.coli concentration. Higher correlation between rain72 with E.coli than those between flow and E.coli can also be partially explained by the fact that high intensive rains not only produce high flow but also increase the runoff from the watershed carrying soil, manure and other potential sources of E.coli. High flow, on the

other hand, may result from a sequence of relatively mild rains that did not increase amount of runoff sediment.

Once correlations were identified, the variables that were significantly correlated were then analyzed using a logistic regression to determine the risk factors of each variable. Since river flow, rain, humidity and soil moisture were significantly correlated to *E. coli* concentration they were used as the factors in the logistic regression. Two different logistic regressions were run with different thresholds, one threshold value at the *E. coli* concentration of 300cfu/100ml the highest acceptable full body contact level and 1000cfu/100ml the highest acceptable partial body contact level.

The logistic regression model for describing the probability of E.coli>300 as a function of rain72:

$$\log\left(\frac{\pi_{>300}(Rain_{72})}{1-\pi_{>300}(Rain_{72})}\right) = -0.79 + 1.6Rain_{72}$$

The observed probabilities of *E.coli*>300 and those predicted by the model are shown in Figure 3-10. The rain72 data were divided in several classes such that there is a sufficient (>5) number of events with *E.coli*>300 in each class. The observed probabilities were calculated by dividing the number of occurrences of *E.coli*>300 observed in each rain72 class by the total number of *E.coli* observations in this class.

Positive slope of the logistic regression equation (p<0.001) indicates that the probability of E.coli levels above 300 increases as rain72 increases. The lowest probability is observed at zero rain72 and is equal to approximately 30%. The probability of E.coli>300 reaches 95% for rain72 values exceed 2.4 cm. For every 1 cm increase in rain72 values the odds of observing E.coli concentrations >300 increase on average $e^{1.6}$ =

5 times. The 95% confidence interval for the logistic regression coefficient for rain72 is equal to 0.71 to 2.47, hence we may conclude that the odds of *E.coli* exceeding 300 are increasing at least twofold and at most twelve-fold for each 1 cm increase in rain72. This result is supported by requirements in southern California to post health warnings on beaches following all storms in which the rainfall is 1.25 cm or higher (Noble 2003).

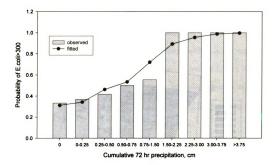
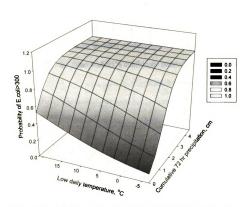



Figure 3-10. Probability of *E.coli* >300 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall.

The only two variables that were statistically significant in the logistic regression for E.coli > 300 were rain72 (p<0.001) and templo (p<0.05):

$$\log\left(\frac{\pi_{>300}(Rain_{72})}{1-\pi_{>300}(Rain_{72})}\right) = -1.57 + 1.79Rain_{72} + 0.082Temp_{low}$$

Plot of the predicted probability of E.coli > 300 as a function of rain72 and low temperature of the day of sampling (templo) is shown in Figure 3-11. At zero rain72, the probability of E.coli > 300 is equal to ~11% if the templo is -6.5 °C, however, the probability increases to 50% as the templo increases to 18 °C. At lower templo (<0°C) the 95% probability of E.coli concentration>300 is reached at approximately 1.3 cm rain72, however at templo>15°C degrees the 95% probability of E.coli > 300 occurs at 0.25 cm rain72. The 95% confidence intervals for the logistic regression coefficients for rain72 and templo are equal to 0.80-2.77 and 0.01-0.15, respectively.

Figure 3-11. Probability of *E.coli* >300 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall and Low Air Temperature.

Since only 17 observations existed with *E.coli*>1000, the number of independent variables that could be used in the regression equation had to be limited to 3 (Stokes 2000). Hence, the logistic regression for >1000 was conducted using several combinations of three independent variables. The only variable that was statistically significant in the logistic regression was rain72 (p<0.01):

$$\log\left(\frac{\pi_{>1000}(Rain_{72})}{1-\pi_{>1000}(Rain_{72})}\right) = -2.55 + 0.91Rain_{72}$$

Plots of the observed probabilities of E.coli > 1000 calculated for grouped rain72 data are shown in Figure 3-12. The lowest probability is observed at zero rain72 and is equal to approximately 7%. The highest probability predicted by the model for the observed data was equal to 82% at the highest rain72 value of 4.5 cm. For every 1 cm increase in rain72 values the odds of observing E.coli concentrations > 1000 increase on average $e^{0.91} = 2.5$ times with 95% confidence interval 1.6 to 3.9 times.

probability e.coli>1000

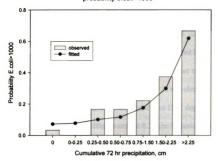


Figure 3-12. Probability of *E.coli* >1000 cfm/100ml Resulting from Logistic Regression Based on Cumulative 72 Hour Rainfall.

Conclusions

Based on these analyses, it is concluded that there is no observed seasonal effect for $E.\ coli$ levels from the Farm Lane Bridge over the three-year period from 2000 to 2002. From the statistical analysis using Spearman's rho, river flow, rain, humidity, low temperature of the sampling day and soil moisture were significantly (p<0.05) correlated to $E.\ coli$ concentrations.

Other studies support the association of the levels of fecal indicators in a water body and rainfall events and the results presented in this study support these findings. In addition, previous studies have shown that increased river flow has been related to increases in the concentration levels of *E. coli* in a river and the results presented in this study also support these findings. From this study there is no correlation between *E. coli*

concentration and the number of ducks in the river upstream from the sampling point.

Solar radiation and wind speed did not correlate to *E. coli* concentrations.

Using governmental guidelines for maximum *E. coli* level for the safe use of water for recreation, statistical models were designed and it was concluded that the odds of *E.coli* exceeding 300 cfu/100ml are increasing at least twofold and at most twelve-fold for each 1 cm increase in 72-hour total rainfall. It was also concluded that if the low temperature of the sampling day was greater than 15°C degrees the 95% probability of *E.coli* exceeding 300 cfu/100ml occurs at 0.25 cm 72-hour total rainfall.

The results that have been presented indicate that programs to control run off from riparian land during a rain event will have the greatest impact on lowering risk of sickness to swimmers from fecal contamination.

References

Ackman, D., S. Marks, et al. (1997). "Swimming-associated haemorrhagic colitis due to Escherichia coli O157:H7 infection: Evidence of prolonged contamination of a fresh water lake." Epidemiology and Infection 119(1): 1-8.

Atherholt TB, LeChevallier MW, Norton WD, Rosen JS, 1998, Effects of Rainfall on Giardia and Crypto, J. Amer. Water Works Assoc. 90(9): 66-80.

Briski F, Dsipos L, Petrovic M, 2000, Distribution of Faecal Indicator Bacteria and Nutrients in the Krka River in the Region of the Krka National Park, Periodicum Biologorum 102(3):273-281.

Curriero FC, Patz JA, Rose JB, Lele S, 2001, The Association between Extreme Precipitation and Waterborne Disease Outbreak in the United States, 1948-1994, Am. J. of Pub. Health, 91(8): 1194-99.

Douglas AS, Kurien A, 1997, Seasonality and Other Epidemiological Features of Haemolytic Uraemic Syndrome and *E. coli* O157 Isolates in Scotland, *Scott Med J.* 42(6):166-71.

Edwards DR, Coyne MS, Daniel TC, Vendrell PF, Murdoch JF, Moore PA, 1997, Indicator Bacteria Concentrations of Two Northwest Arkansas Streams in Relation to Flow and Season, Transaction of the ASAE, 49(1): 103-9.

Ferguson CM, Coote Bg, Ashbolt Nj, Stevenson IM 1996 "Relationships between Indicators, Pathogen and Water Quality in an Estuarine System," Water Research 30(9): 2045-2054.

Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M, 2002, Microbial Load of Water Reservior Tributaries During Extreme Rainfall and Runoff, App and Environ, Microbio. 68(5):2188-97.

Lipp EK, Kruz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB, 2001, The Effects of Seasonal Variability and Weather on Microbial Fecal Pollution and Enteric Pathogens in a Subtropical Estuary, Estuaries 24(2): 266-76.

Mallin MA, Ensign SH, McIver MR, Shank GC, Fowler PK, 2001, "Demographic, Landscape, and Meteorlogical Factors Controlling Microbial Pollution of Coastal Waters," Hydrobiologia 460:185-193.

Mechie SC, Chapman PA, Siddons CA, 1997, A Fifteen Month Study of E. coli O157:H7 in a Dairy Herd, Epidemiol. Infect., 118(1): 17-25.

Niemi RM, Niemi JS, 1991 "Bacterial Pollution of Waters in Pristine and Agricultural Lands." J. Environ. Oual. 20:620-627.

Noble RT, Weisberg SB, Leecaster MK, McGee CD, Dorsey JH, Vainik P, Orozco-Borbon V, 2003, Storm effects on regional beach quality along southern California shoreline, J. Water Health 01:1 23-31.

Obiri-Danso K, Jones K, 1999, Distribution and Seasonality of Microbial Indicators and Thremophilic Campylobacters in two Freshwater Bathing Sites on the River Lune in Northwest England," J of Applied Microbiology 87(6): 822-832.

Pettibone GW, Irvine KN, 1996 "Levels and Sources of Indicator Bacteria Associated with the Buffalo River Area of Concern," J of Great Lakes Research 22(4): 896-905.

Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA, 2001, "Climate Variability and Change in the Untied States: Potential Impacts on Water- and Foodborne Diseases Caused by Microbiologic Agents," Environmental Health Perspectives 109: 211-211S.

Samadpour M, Stewart J, Steingart K, Addy C, Louderback J, McGinn M, Ellington j, Newman T, 2002, Laboratory Investigation of an *E. coli* O157:h7 Outbreak Associated with Swimming in Battle Ground Lake, Vancouver, Washington, Journal of Environmental Heaalth, 64(10): 16-20.

Stephenson GR and Street LV (1978) Bacterial Variations in Streams from a Southwest Idaho Rangeland Watershed. J. Environ Qual. 7(1):150-157.

Stokes et al., 2000

Tiedemann AR, Higgens DA, Quigley TM, Sanderson HR, Bohn CC (1988) Bacterial Water Quality Responses to four Grazing Strategies-Comparison to Oregon Standards. J. Environ Qual. 17(3):492-498.

USEPA 2003, Bacterial Water Quality Standards for Recreational Waters (Freshwater and Marine Waters) EPA-823-R-03-008.

USFDA 1992 Center for Food Safety and Applied Nutririon, Foodborne Pathogenic Microorganisms and Natural Toxins Handbook ("Bad Bug Book").

Wang, G. D.; Doyle, M. P, 1998, Survival of enterohemorrhagic Escherichia coli O157: H7 in water, Journal of Food Protection 61(6) 662-667.

World Health Organization (2003), Guidelines for Safe Recreational Water Environments, Volume 1: Coastal and Fresh Water, Geneva, Switzerland.

Chapter 4

The Effect of Rainfall, Nutrient Levels, and Land-use on *E. coli* Levels in the Red Cedar River

Introduction

Escherichia coli (E. coli) is the type species of the genus Escherichia, which contains mostly motile rod-like gram-negative bacilli within the family Enterobacteriaceae and the tribe Escherichia. E. coli bacteria live in the digestive systems of humans and other warm-blooded animals. E. coli can be found in the fecal flora of a wide variety of animals including cattle, sheep, goats, pigs, cats, dogs, chickens, and gulls (Hancock 2001; Niemis and Niemis 1991).

There are a variety of sources that contribute bacteria and other pathogens to the surface water. These sources include illicit waste connections to storm sewers or roadside ditches, septic systems, combined and sanitary sewer overflows, storm (rain) runoff, wild domestic animal waste, and agriculture runoff. Each of these sources is related to a type of land-use and the type of land-use may have an impact on the amount of *E.coli* and other nutrients that are discharged into nearby surface water.

Population growth in coastal areas is increasing at a rate double that of population growth worldwide. It is estimated that billions of gallons of treated and untreated wastewater are discharged daily into the world's coastal waters. In developing nations, 90% of untreated sewage from urban areas is dumped into streams and oceans (Crossette 1996). Coastal ecosystems are under increasing stress from a variety of human activities that cause increased pollution, floral and faunal changes (Vitousek 1997; Epstein 1998).

E. coli sources have been linked to land use, mainly agricultural operations. Cow manure has specifically been implicated as a causative factor in the high bacteria levels and ensuing swimming restrictions on Tainter Lake, Wisconsin (Behm 1989). Among the many outbreaks reported, studies have been published from outbreaks in Scotland (Coia 1998; License 2001), Missouri (Swerdlow 1992) and Idaho (Vane Every 1995), all of which were associated with agricultural activities.

In contrast, studies have shown that residential development has had effect of elevated *E. coli* levels (Frenzel and Couvillion 2002; Smith 2001; Mallin 2000). It has been suggested that impervious surface may have be the cause for the elevated *E. coli* levels in the urban areas (Mallin 2000). However, a study of an urban area to determine sources of fecal contamination in river determined that the source was domesticated animals and wildlife (Murry 2001). In a study of pristine lands in the fiords of Scandinavia, it has been shown that fecal concentration can be above safe levels (Niemis and Niemis 1991).

There are many examples of GIS used as a tool in the analysis of watersheds.

Moreover, GIS has been used to model the activities and systems of a watershed. Non-point pollution in a watershed has been a natural to model using GIS tools. BASINS designed by the EPA (USEPA 2002b) STREAM (Spatial Tools for River basins, Environment and Analysis of Management options) (Schepel 1998), and SIMPLE (Spatially Integrated Models for Phosphorus Loading and Erosion) (Kornecki 1999) are examples of popular models that have designed for the evaluation of non-point pollution. Agricultural land-use has been studied for non-point run-off. AGNPS (Agricultural Non-Point Source) is a model designed by the USDA (Grunwald 2000, USDA 2002) for use in

determining the impact of agricultural activities on a watershed. AGNPS has been used to determine the agricultural impact on coastal and estuarine ecosystems (Choi 1999) and has been modified to integrate ARC/INFO databases in order to evaluate non point source problem areas (Liao 1997). In addition, models have been designed to study impact of the use of buffer strip on the water quality (Tim 1994). GIS tools have been used to evaluate non-point pollution of surface waters with phosphorus and nitrogen (Carpenter 1998, Robinson 1993). Additional GIS methods have been employed to help understand sediment loading from agricultural land use (Rudra 1999).

Of course agricultural lands have not been the only areas studied. Urban systems also have an impact on a watershed and GIS tools have been employed to study these impacts. Storm-water management systems and their impacts have been modeled using GIS (Shamsi 1996). Estimations of mass loading from these types of systems evaluated (Wong 1997, Adamus 1995). Larger scale studies have used the entire watershed in order to determine problem areas and what corrective actions could be implemented. The optimization the mix of Best Management Practices (BMP) to reduce the loading on a waterbody has been the goals of some research (Sample 2001, Wang 2000). GIS has been used to manage the ecosystems of a watershed (Crawford 1998).

The impact of land use on a watershed is an obvious use of GIS tools but only recently studies on this subject have been published. Correlation between water quality using conductivity as the measure and urban land use was identified (Wang 1997). Other assessments of water quality and land use have determined with out surprise that land use does impact water quality (Wang 2001, Bhaduri 2000). There is very little in the literature on using GIS in a watershed to determine risk from microbial pathogens based

on land use. There are published results investigating septic systems as potential pollutant but this study used nitrate as its measure (Stark 1999). In Ontario geographic distribution of *E. coli* O157:H7 infection and was compared to cattle population (Michel 1999). The results indicate that cattle density had a positive and significant association with the incidence of reported cases. GIS has been used to model and predict pathogen loading from livestock (Fraser 1998).

The relationship of nutrients levels to *E. coli* concentrations in surface water has rarely been reported in the literature. Total suspend solid were strongly correlated to indicator bacteria when flow rates were the highest (Pettibone and Irvine 1996). In another study, a statistical analysis showed that there was a significant correlations between levels of nitrate as well as levels of phosphate with the indicator bacteria fecal coliform (Daby 2002). Heavy loadings of organic and inorganic nutrients can change the ecological balance, stimulating nuisance organisms (Burkholder 1997) and in some cases affecting the virulence of indigenous species (Bates 1991).

The objective of this study is determine if the type of land-use around a sampling point is associated with elevated *E. coli* concentration levels. Another objective of this study is to determine if the type of land-use around a sampling point is associated with elevated levels of nutrients. In addition, an objective of this study is determine if there is any association between the concentration levels of nutrients and the concentration levels of *E. coli*. It is hypothesized that agricultural land-use has the highest discharges of *E. coli* and nutrients and therefore has a greater negative impact to the Red Cedar River than other types of land-use.

Materials and Methods

The Red Cedar River arises in Cedar Lake in the south-central Lower peninsula of Michigan and flows about 45 miles (80 kilometers) to its confluence with the Grand River in the city of Lansing. It has 12 tributaries and drains a total area of about 472 square miles (22,000 hectares). The river provides mid-Michigan residents with numerous recreational opportunities that include angling, canoeing, kayaking, photography and bird watching. The river also serves as a source of water for the irrigation of crops throughout the watershed, as well as, drainage for agricultural land.

Figure 4-1. The Red Cedar River Watershed with The Michigan State University campus.

A data set that included 17 sampling points was studied over 13 sampling dates over a 32-week period in 2001. The water samples for this multiple sampling point study

Health Department depending on the county in which the sampling point was located. All water samples were sent to the MDEQ for the determination of *E. coli* levels using EPA method 1103.1 (Dufour 1981; USEPA, 1985; USEPA 1986; USEPA 2003). In this multiple sa outside lab were the standard methods that are recognized by the State of Michigan for such water samples for analyzing these nutrients. In addition, rainfall data from three different sites that include East Lansing, Williamston, and Howell so that the rainfall data better represents each of the sampling sites. In addition, the 17 sampling points were part of a larger 38 sampling point studies that collected *E. coli* data weekly for 20 consecutive weeks (July to November) in 2000 and the 17 sampling point study, the dataset includes results for the following nutrients: ammonia nitrate, total phosphorus, and total suspended solids. The nutrient results were generated by an outside lab from the water samples that were split with the MDEQ. The methods that were used by the for 32 consecutive weeks (April to November) in 2001.

The land use was determined by using the GIS program ArcView 3.1, (ESRI Redland CA) with a National Land Cover Data (NLCD) layer for the watershed. Each sampling point was located on the watershed map and a one-mile radius buffer was created around the point. The land use was calculated on the semi circle of the buffer that was upstream of the sampling point. If the land use for the calculated buffer was less than 85% of one land use as categorized by the NLCD then the land use for that sampling point was determined to be a mixed use. The land use variable for this analysis were either urban, mixed, or agriculture. For the impact of each nutrient and rainfall measurement, as well as, land use data on the *E. coli* levels, statistical analysis were

conducted using the Spearman's rho keeping the *E. coli* levels as the independent variable with rainfall, ammonia nitrate, total phosphorus, and total suspended solids set as dependant variables. Statistical analysis was completed using SPSS version 11 software package.

Results and Discussion

The graphical illustration shown in Figure 4-2 depicts the mean $E.\ coli$ concentration for the 17 sampling points. This represents 17 sampling points that were studied over 13 sampling dates over a 32-week period in 2001 and has 221 $E.\ coli$ samples in the statistical analysis. From the analysis shown in Figure 4-2, mixed land use has the highest impact on elevated $E.\ coli$ levels and is followed by urban land use and agricultural land use has the lowest impact on elevated $E.\ coli$ levels. This difference is significantly different at p < 0.05.

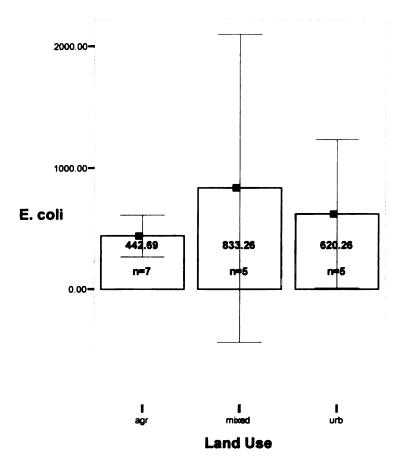


Figure 4-2. Means E. coli vs. Land use for 17 Selected Sampling Points * vertical bars represent plus or minus one standard error of the mean.

The graphical illustration shown in Figure 4-3 depicts the mean ammonia nitrate concentration for the 17 sampling points. This represents 17 sampling points that were studied over 13 sampling dates over a 32-week period in 2001 and has 221 ammonia nitrate samples in the statistical analysis. From the analysis shown in Figure 4-3, mixed land use has the highest impact on elevated ammonia nitrate levels and urban land use and agricultural land use had similar low impact on elevated ammonia nitrate levels. This difference is significantly different at p < 0.05.

Figure 4-3. Mean Ammonia Nitrate vs. Land use for 17 Select Sampling Points

* vertical bars represent plus or minus one standard error of the mean.

The graphical illustration shown in Figure 4-4 depicts the mean total phosphorus concentration for the 17 sampling points. This represents 17 sampling points that were studied over 13 sampling dates over a 32-week period in 2001 and has 221 total phosphorus samples in the statistical analysis. From the analysis shown in Figure 4-4, mixed land use has the highest impact on elevated total phosphorus levels and is followed by urban land use and agricultural land use has the lowest impact on elevated total phosphorus levels. This difference is not significantly different.

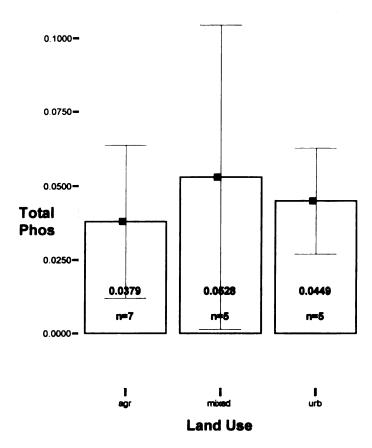


Figure 4-4. Mean Total Phosphorus vs. Land use for 17 Select Sampling Points

* vertical bars represent plus or minus one standard error of the mean.

The graphical illustration shown in Figure 4-5 depicts the mean total suspended solids concentration for the 17 sampling points. This represents 17 sampling points that were studied over 13 sampling dates over a 32-week period in 2001 and has 221 total suspended solid samples in the statistical analysis. From the analysis shown in Figure 4-5, agricultural land use has the highest impact on elevated total suspended solids levels

and is followed by urban land use and mixed land use has the lowest impact on elevated total suspended solids levels. This difference is significantly different at p < 0.05.

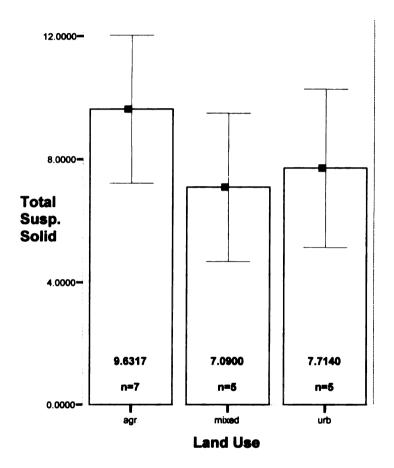


Figure 4-5. Mean Total Suspended Solids vs. Land use for 17 Select Sampling Points

* vertical bars represent plus or minus one standard error of the mean.

The dataset included not only the results for ammonia nitrate, total phosphorus, and total suspended solids but also rainfall. The rainfall data was collected over the day of sampling along with the two days previous to sampling and data was calculated and

reported as a cumulative total over a 24, 48, or 72 hour period. This dataset represents 17 sampling points that were studied over 13 sampling dates over a 32-week period in 2001. For the impact of each rainfall and nutrient measurement on the *E. coli* levels, statistical analysis were conducted using the Spearman's rho keeping the *E. coli* levels as the independent variable with rainfall, ammonia nitrate, total phosphorus, and total suspended solids set as dependant variables. The results are shown in Table 4-1.

Table 4-1. Statistical Analysis of E. coli Concentration vs. Rainfall, Ammonia Nitrate, Total Phosphorus, and Total Suspended Solids (n = 221).

Statistical Formula Spearman's rho	Rain 24 hrs 0.067	Rain 48 hrs. -0.012	Rain 72 hrs. 0.084
Statistical Formula Spearman's rho	Am. Nitrate 0.274**	Total Phos. 0.033	TSS 0.169*

^{*} Statistically significant at p < 0.05; ** Statistically significant at p < 0.01.

From the statistical analysis, ammonia nitrate was significantly correlated to *E. coli* concentrations. The total suspended solids were significantly correlated to *E. coli* concentrations. From this data, elevations in these nutrients do have a correlation with elevated *E. coli* concentrations in the Red Cedar River.

It is interesting to note that rainfall did not show any correlation using either statistical analysis. This is contrary to other reported studies including a study during the same time period on the Red Cedar River (Lang 2003). Other studies support the association of the levels of fecal indicators in a water body and rainfall events. In a study that examined 99 samples from three tributaries that contributed to different drinking water reservoirs showed that *E. coli* levels along with other bacteriological parameters

increased considerably during extreme rainfall events (Kistemann 2002). In a related study on Delaware River, increased concentrations of Giardia, Cryptosporidium and other microorganisms were associated with rainfall (Atherholt 1998). In a retrospective study on waterborne disease outbreaks in the U.S. for 1948 to 1994, analyzed 548 reported outbreaks as documented by the USEPA database. The results from this study showed that 51% of waterborne disease outbreaks were preceded by precipitation events above the 90th percentile and 67% by events above the 80th percentile (Curriero 2001). This study concluded that there is a statistically significance association between rainfall and waterborne disease outbreaks. Other studies also conclude that E. coli levels increase with rainfall (Briski 2000; Ferguson 1996; Atherholt 1998; Pettibone and Irvine 1996; Niemi and Niemi 1991; Mallin 2001; Noble 2003). A recent study suggests that an increase in rainfall or snowmelt increases the impact of diseases caused by microbiologic agents (Rose 2001). In reviewing the data from this study, the rainfall data was collected from three different sites that include East Lansing, Williamston, and Howell so that the rainfall data better represents each of the sampling sites. These rainfall collection sites were not at the 17 sampling sites and probably did not represent the real rainfall that occurred at the 17 sampling sites during the time period that the river water samples were collected.

An expanded dataset that included the sampling sites to include all 38 sampling sites over the two-year period was evaluated to determine the impact of land use on *E. coli* concentrations. The graphical illustration shown in Figure 4-6 depicts the mean *E. coli* concentration for the 38 sampling points. This represents the 38 sampling points that were collected *E. coli* data weekly for 20 consecutive weeks (July to November) in 2000

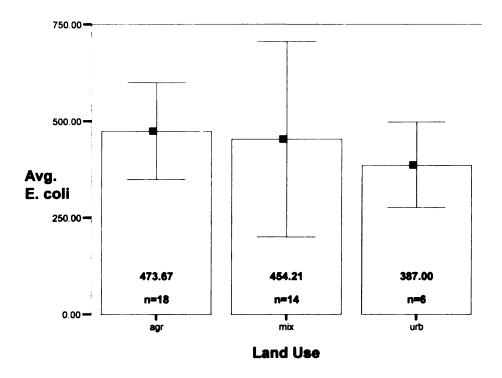


Figure 4-6. Mean E. coli Levels vs. Land use for all 38 Sampling Points

* vertical bars represent plus or minus one standard error of the mean.

and for 32 consecutive weeks (April to November) in 2001 and has 1976 *E. coli* samples in the statistical analysis. From the analysis shown in Figure 4-6, agricultural land use has the highest impact on elevated *E. coli* levels and is followed by mixed land use and urban land use has the lowest impact on elevated *E. coli* levels but this is not significantly different. This result is in contrast to the results shown in Figure 4-2 in which agricultural land use had the lowest impact on elevated *E. coli* concentrations.

Conclusions

Based on the results from this study, it is concluded that elevations of nutrients do have an association with elevations in the levels of *E. coli* concentration. The concentration levels of ammonia nitrate were significantly correlated to *E. coli* concentrations and the levels of total suspended solids were significantly correlated to *E. coli* concentrations.

These results indicate that if the locations of the sources of nutrients that enter into nearby surface water are identified then proper best management practices (BMP) can be implement at these locations and the implemented BMP will have an impact on controlling nutrients into the surface water as well as having an effect to lower the *E. coli* concentration in the surface water.

However, in this study rainfall does not show correlation with *E. coli* levels and this is contradictory to what has been reported by others. This contradiction maybe explained by the fact that the rainfall data was collected from three different sites that include East Lansing, Williamston, and Howell so that the rainfall data better represents the sampling site. These rainfall collection sites were not at the 17 sampling sites and probably did not represent the real rainfall that occurred at the 17 sampling sites during the time period that the river water samples were collected.

The impact of land use on *E. coli* concentrations was investigated but the results did not reveal with any certainty as to which type of land-use has the greatest impact on elevated *E. coli* concentrations. In the small sample that was analyzed, agricultural land use had the greatest impact on elevated total suspended solids. However, mixed land use had the greatest impact on elevated on ammonia nitrates. Larger sample sets need to be

studied to determine if the type of land-use does have an impact the concentration levels of *E. coli* and other nutrients in nearby surface water.

References

Adamus CL, Bergman MJ. 1995. Estimating non-point source pollution loads with GIS screening. Water Res. Bull. 31(4): 647-655.

Atherholt TB, LeChevallier MW, Norton WD, Rosen JS. 1998. Effects of rainfall on *Giardia* and *Crypto*. J. Amer. Water Works Assoc. 90(9): 66-80.

Bates SS, de Frietas ASW, Pocklington R, Quilliam MA, Smith JC, Worms J. 1991. Controls on domoic acid factors influencing production by the diatom *Nitzschia pungens* f. multiseries: nutrients and irradiance. J Fish Aquat Sci 48:1136-1144.

Behm, Don. 1989. Ill waters: The fouling of Wisconsin's lakes and streams. The Milwaukee Journal Sentinel. Special report: a series of articles published November 5-10.

Bhaduri B, Harbor J, Engel B, Grove M. 2000. Assessing water-scale, long-terrm hydrilogic impacts of land-use change using GIS_NPS model. Enviro. Manag, 26(6): 643-658.

Briski F, Dsipos L, Petrovic M. 2000. Distribution of faecal indicator bacteria and nutrients in the Krka River in the region of the Krka National Park. Periodicum Biologorum 102(3):273-281.

Burkholder JM, Glasgow HB. 1997. *Pfiesteria piscicida* and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol Oceanogr (5 Part 2) 42:1052-1075.

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharply AN, Smith VH. 1998. Non-point pollution of surface waters with phosphorus and nitrogen. Ecological Appl. 8(3): 559-568.

Choi KS, Blood E. 1999. Modeling developed coastal watersheds with the agricultural non-point model. J. Am. Water Res. Ass. 35(2) 233-244.

Coia, JE. 1998, Clinical, microbiological and epidemiological aspects of Escherichia coli O157 infection. FEMS Immunology and Medical Microbiology 20(1): 1-9.

Crawford IM, Tim US, Jain DK, Liao H. 1998. Managing ecosystems in a watershed context: Progress made and emerging role of integrated spatial information technologies.

GIS 98 GIS Technologies and their Environmental Applications WIT Press Southampton, Boston

Crossette B. 1996. Hope, and pragmatism, for U.N. cities conferences. New York Times, 3 June: A3.

Curriero FC, Patz JA, Rose JB, Lele S. 2001. The association between extreme precipitation and waterborne disease outbreak in the United States, 1948-1994. Am. J. of Pub. Health, 91(8): 1194-99.

Daby D, Turner J, Jago C. 2002. Microbial and nutrient pollution of coastal bathing waters in Mauritius. Environmental International 27(7): 555-566.

Dufour AP, Strickland ER, Cabelli VJ. 1981. Membrane filter method for enumerating *Escherichia coli*. Appl Environ Microbiol 41:1152-1158.

Epstein PR, Ford TE, Colwell RR. 1993. Marine ecosystems. Lancet 342:1216-2219.

Epstein PR. 1998. Marine ecosystems: emerging diseases as indicators of change. Boston, MA:Center for Health and the Global Environment, Harvard Medical School.

Ferguson CM, Coote BG, Ashbolt NJ, Stevenson IM. 1996. Relationships between indicators, pathogen and water quality in an estuarine system. Water Research 30(9): 2045-2054.

Fraser RH, Barten PK, Pinney DAK. 1998. Predicting pathogen loading from livestock using a geographical information system-based delivery model. J. Environ Qual 27(4): 935-945.

Frenzel SA, Couvillion CS. 2002. Fecal-indicator bacteria in streams along a gradient of residential development. Journal of AWRA 38(1): 265-273.

Gunwald S, Norton LD. 2000. Calibration and validation of a non-point source pollution model. Agr. Water Mana. 45(1): 17-39.

Hancock, D. D., T. E. Besser, M. L. Kinsel, P. I. Tarr, D. H. Rice, and M. G. Paros. 1994. The prevalence of *Escherichia coli* O157:H7 in dairy and beef cattle in Washington State. Epidemiol. Infect. 113:199-207.

Hancock DD, Besser TE, LeJeune J, Davic M, Rice D. 2001. The control of VTEC in the animal reservoir. International Journal of Food Microbiology 66(1-2): 71-78.

Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M. 2002. Microbial load of water reservior tributaries during extreme rainfall and runoff. App and Environ. Microbio. 68(5):2188-97.

Kornecki TS, Sabbagh GJ, Storm DE. 1999. Evaluation of runoff, erosion, and phosphorus modeling system- SIMPLE. J. Am. Water Res. Ass. 35(4): 807-820.

Liao HH, Tim US. 1997. An interactive modeling environment for non-point pollution control. J. Am. Water Res. Ass. 33(3): 591-603.

Licence, K.; Oates, K. R.; Synge, B. A.; Reid, T. M. S. 2001. An outbreak of E-coli 0157 infection with evidence of spread from animals to man through contamination of a private water supply. Epidemiology and Infection, 126(1) 135-138.

Mallin MA, Williams KE, Esham EC, Lowe RP. 2000. Effect of human development of bacteriological water quality in coastal watersheds. Ecological Applications 10(4): 1047-1056.

Mallin MA, Ensign SH, McIver MR, Shank GC, Fowler PK. 2001. Demographic, landscape, and meteorlogical factors controlling microbial pollution of coastal waters. Hydrobiologia 460:185-193.

Murray KS, Fisher LE, Therrien J, George B, Gillespie J. 2001. Assessment and use of indicator bacteria to determine sources of pollution to an urban river. Journal of Great Lakes Research 27(2): 220-229.

Michel P, Wilson JB, Martin SW, Clarke RC, McEwen SA. 1999. Temporal and geographical distributions of reported cases of *E. coli* O157:H7 infection in Ontario. Epdemiol. Infect. 122: 191-200.

Noble RT, Weisberg SB, Leecaster MK, McGee CD, Dorsey JH, Vainik P, Orozco-Borbon V. 2003. Storm effects on regional beach quality along southern California shoreline. J. Water Health 01:1 23-31.

Niemi RM, Niemi JS. 1991. Bacterial pollution of waters in pristine and agricultural lands. J. Environ. Qual. 20:620-627.

Pettibone GW, Irvine KN. 1996. Levels and sources of indicator bacteria associated with the Buffalo River area of concern. J of Great Lakes Research 22(4): 896-905.

Robinson KJ, Ragan RM. 1993. Geographic Information System based non-point pollution modeling. Wat. Res. Bull. 29(6): 1003-1008.

Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. 2001. Climate variability and change in the Untied States: Potential impacts on water and foodborne diseases caused by microbiologic agents. Environmental Health Perspectives 109: 211-211S.

Rudra RP, Dickinson WT, Abedini MJ, Wall GJ. 1999. A multi-tier approach for agricultural watershed management. J. Am. Water Res. Ass. 35(5): 1159-1170.

Sample DJ, Heaney JP, Wright LT, Koustas R. 2001 Geographic information systems, decision support systems, and urban storm water management. J. Water Res. Plan. and Manag. ASCE. 127 (3): 155-161.

Schepel M. 1998. STREAM: spatial tools for river basin, environment, and analysis of mangement options, GIS. GIS Technologies and their Environmental Applications WIT Press Southampton, Boston.

Shamsi UM. 1996. Storm water management implementation through modeling and GIS. J. Water Res. Plan. and Manag. ASCE. 122(2): 114-127.

Smith JH, Wickman JD, Norton D, Wade TG, Jones KB, 2001, Utilization of landscape indicators to model potential pathogen impaired waters. Journal of AWRA 37(4): 805-814.

Stark SL, Nuckols JR, Rada J. 1999. Using GIS to investigate septic systems sites and nitrate pollution. J. Envior Health, 61(8): 15-6.

Swerdlow DL, Woodruff BA, Brady RC, Griffin PM, Tippen S, Donnell HD, E. Geldreich E, Payne BJ, Meyer A, Wells JG, Greene KD, Bright M, Bean NH, and Blake PA. 1992. A waterborne outbreak in Missouri of *Escherichia coli* O157:H7 associated with bloody diarrhea and death. Ann. Intern. Med. 117:812-819.

Tim US, Jolly R. 1994. Evaluating agricultural Non-point source pollution using integrated geographical information systems and hydrologic/water quality model. J. Envir. Qual. 23(1): 25-35.

USEPA. 1985. Test methods for *Escherichia coli* and enterococci in water by the membrane filter procedure. Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA-600/4-85/076.

USEPA. 1986. Ambient water quality criteria for bacteria-1986. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, DC. EPA-440/5-84/002.

USDA. 2002. AGNPS website http://www.sedlab.olemiss.edu/agnps.htm].

USEPA. 2002b. Better assessment science integrating point and non-point sources (BASINS) http://www.epa.gov/waterscience/ftp/basins/system/BASINS3/bit.htm

USEPA. 2003. Bacterial water quality standards for recreational waters (freshwater and marine waters) EPA-823-R-03-008.

Van Every LR. 1995. Groundwater as a vehicle for disease transmission in southeastern Idaho: a case study. Journal of Environmental Health 58: 16-19.

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of earth's ecosystems. Science 277: 494-499.

Wang XH, White-Hull C, Dyer S, Yang Y. 2000. GIS-ROUT: a river for watershed planning. Envir. And Planning 27(2): 231-246.

Wang XH, Yin ZY. 1997. Using GIS to assess relationship between land-use and water quality at a watershed level. Enviro. Intern. 23(1): 103-114.

Wang X. 2001. Integrating water quality management and land-use planning in a watershed context. J. Enviro. Manag. 61(1): 25-36.

Wong KM, Strecker EW, Strenstrom MK. 1997. GIS to estimate storm-water pollutant mass loadings. J. Envir. Eng. ASCE 123(8): 737-745.

Chapter 5

A Linkage between Technology and Policy in Evaluating the Risk of Microbial Safety in Recreational-use Water

Introduction

Ever since fecal contamination of water was determined as a human health risk, there has always been a great deal of concern regarding the level of coliform bacteria counts in water. Many bodies of water throughout the world are considered to have bacteria counts above acceptable levels. The sources of these bacteria are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow.

The United States Public Health Services (USPHS) conducted a series of studies in the 1940s and 1950s that showed a causal connection between fecal coliform and gastrointestinal sickness exists (Stevenson 1953). In the late 1970s, the EPA conducted a landmark prospective cohort study and reported a linear relationship between the incidence of gastroenteritis among swimmers and marine bacterial counts (Cabelli 1982). Between 1973 and 1978, participants were recruited at beaches from three U.S. locations (New York; Lake Pontchartrain, Louisiana; Boston, Massachusetts) and were contacted by telephone days after going to the beach. Swimming status was self-selected, not randomly assigned, and symptoms were self-reported. The mean proportion of swimmers with gastrointestinal symptoms was 6.8% versus 4.6% in non-swimmers (Cabelli 1982). When bacterial concentrations were above 1/100 ml, relative risk increased linearly, reaching 4.0 with concentrations of 1,000/100 ml (p < 0.001). In addition, the frequency

of gastrointestinal symptoms was inversely related to the distance from known sources of municipal wastewater (Cabelli 1982). Since these studies, a large body of literature involving the epidemiology of illness from the use of recreational water has been published (Examples include studies by: Seyfried 1985; Van Asperen 1998; Henrickson 2001; Prieto 2001)

Beach closings and illness after exposure to marine water may be increasing in frequency (Harvell 1991). There were over 12,000 coastal beach closings and advisories in the United States from 1988 to 1994 (an increase of 400% over that period), with over 75% of the closings due to microbial contamination (Barton 1995). A recent report compiled by the National Resources Defense Council (NRDC), which surveyed more than 200 waterfront communities, found that during 1999 there were at least 6,160 beachuse days of closings and advisories at beaches (NRDC 2000). According to the most current report, the NRDC's twelfth annual beach report, at least 13,410 closings and advisories were issued across the country in 2001, a 19 percent jump over the previous year (NRDC 2002).

Public Policy to Reduce Risk in Recreational Water

One of the major goals of the Clean Water Act of 1972 and its amendments (CWA) is to ensure that U.S. waters are safe for fishing and swimming (33 U.S.C.A. §§ 1251 to 1387). The use of water quality indicators that accurately reflect "safety" is essential for this goal. The CWA mandates the use of indicator organisms to determine safe levels and CWA section 303(d) requires the reporting of "impaired waters." In addition, section 303, establishes the water quality standards and Total Maximum Daily

Load (TMDL) programs. The TMDL program is required by the rules that amended the CWA issued in 1985 and then subsequently amended in 1992 (USEPA 2002).

TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive while still meeting water quality standards, and then determines an allocation of that amount to the pollutant's sources. Water quality standards are set by States, Territories, and Tribes and must meet or exceed the Federal standards set forth in the CWA. These entities identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and non-point sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the State has designated. Additionally, the calculation must also account for seasonal variation in water quality.

The indicator organism mandated for the monitoring of pathogens in fresh water is *E. coli*. If the level of this organism is consistently elevated from the standard, then the waterbody is declared an "impaired water" as defined in CWA 303 (d) and a TMDL is required to be developed and implemented for that waterbody. As of 2001, there are 5,512 reported "impaired waters" due to pathogens (over 13% of all impairments reported and this is the second highest impairment behind sediment which is just below 14%) (USEPA 2001).

The Beach Environmental Assessment Closure and Health (BEACH) Act was signed into law in October 2000 and amended the CWA (USEPA 2002b). This

legislation directs the EPA Administrator to conduct studies to review health risks; to develop indicators to detect the presence of pathogens; to offer guidance for state-to-state application of the revised water quality criteria; to publish and revise regulations requiring the monitoring of coastal waters; to provide technical assistance to states for uniform assessment and monitoring procedures; and to establish a national coastal recreation water pollution occurrence database and a listing of communities complying with regulations published pursuant to this legislation. In addition, the Beach Act authorizes \$30 million annually for grants that would help states, local governments and Indian tribes to monitor beach waters and notify the public when beach water exceeds the established criteria. Moreover, some of these grants are designated for the development of improved detection of pathogens in water, both freshwater and marine water.

It is mandated that consistent national health standards for beach water be established by 2004. Currently, the EPA has determined that *E. coli* level is the best indicator of risk to swimmers in fresh water. An *E. coli* concentration of less then 126 CFU/100ml, calculated as a geometric mean over 30 days, is considered to be safe for full body contact recreational use of water (USEPA 1986). If a waterbody has a designated use of full body contact recreational use and the *E. coli* levels are consistently elevated from the above described standard, then the waterbody is declared an "impaired water" as defined in CWA 303 (d) and a TMDL is required to be developed and implemented for that waterbody.

Many county health departments in the State of Michigan routinely collect water samples at beaches to determine if the water is safe for swimming. Samples are generally

taken one foot below the surface in water that is between three and six feet in depth. The analysis is performed in a laboratory using standard methods. *E. coli* bacteria are counted and judged against standards established by state rules. Results from the method are available after approximately 28 hours; so the results from this analysis are reported the following day.

County health departments take a minimum of three samples each time a beach area is monitored. The <u>daily</u> geometric mean calculated from these samples must be below 300 *E. coli* per 100 milliliters for the water to be considered safe for swimming. One or two of the samples may be above 300, but if the daily geometric mean is below 300, the beach is not in violation of the water quality standard. A minimum of five sampling events (consisting of at least three samples per event) must be collected within a 30-day period for the results to be considered a reliable indication of water quality. After 30 days, a geometric mean is calculated for all the individual samples collected within that time frame. This <u>30-day</u> geometric mean must be below 130 *E. coli* per 100 ml for the water to be considered safe for swimming. Although the method yields results that are very accurate, the results are not reported in less that 24 hrs. Officials close beaches based on old information that may or may not be the actual condition of the water at the time of closure and leave prior groups exposed.

E.coli O157:H7

In the early1980s, *E. coli* O157:H7 was recognized as a pathogen (Riley 1982). The toxicity to humans from this pathogen has been reported to be as low as 10 cells (Phillips 1999). There are an estimated 73,000 cases of *E. coli* O157 infections per year

in the United States, of which approximately 62,000 are food-borne and 11,000 are waterborne (Mead 1999). These estimates consider waterborne cases from ingestion of water as food not from recreational use of a waterbody. Examples of waterborne cases include Walkerton, Ontario where the town's water supply was contaminated by *E. coli* O157:H7 (not included in the estimations because it happened in Canada in the year 2000). The identified cases of *E. coli* O157 infections from the use of recreational water are limited to a few epidemiological studies (Mudgett 1998; Friedman 1999; Olsen 2002).

Since the current accepted analysis for *E. coli* and *E. coli* O157:H7 takes days, officials close beaches based old information that may or may not be the actual condition of the water at the time of the closure and thus leaving prior groups exposed. What is needed is a rapid method that can give information on the beach conditions so that officials can make decisions on closure before the public is exposed to the water. This is supported by a study which conducted on beaches in Lake Michigan over a 12-year period concluded that current protocol is inadequate for predicting risk at the time of beach closure (Whitman 1999). The biosensor in this study that is evaluated and compared to the existing methods produces results in about 10 minutes and is inexpensive. It is believed that the use of such a device would increase the public's safety in the use of recreational water.

Biosensors

A biosensor is an analytical device that integrates biological sensing elements with a transducer (Turner 1998; Ivnitski 1999). The general function of a biosensor is to

convert biological events into a quantifying electrical response (Cahn 1993).

Electrochemical immunoassays are biosensors made up of antibodies as biological sensing elements attached to an electrochemical transducer (Zhang 2000). The performance of a biosensor based on polyaniline as an electrochemical transducer in measuring an immunological reaction has been evaluated (Muhammad-Tahir and Alocilja, 2002). Polyaniline in particular, has been one of the most extensively investigated conducting polymers, due to its excellent stability in liquid form, promising electronic properties (Syed 1991) and strong biomolecular interactions (Imisides 1996).

Objectives

The main focus of this project is to improve the safety of recreational-use water through better communication of the actual risk. The specific objectives are: 1) to determine if rain or river flow has an influence on the concentration of *E. coli* and *E. coli* O157:H7; 2) to evaluate if total *E. coli* measured maybe used as an indicator of pathogenic *E. coli* O157:H7 contamination; 3) to evaluate if a biosensor maybe employed to measure quickly the presence of *E. coli* and *E. coli* O157:H7.

Materials and Methods

The Project Site

The Ingham County Health Department (ICHD), Michigan Department of Environmental Quality (MDEQ), Michigan Department of Community Health (MDCH), and Michigan State University (MSU) collaborated on a study to determine the amount of *E. coli* and pathogenic *E. coli* O157:H7 in the Red Cedar River. For four weeks in April

and May of 2002, four sites were sampled (Hagadorn, Farm Lane, Kalamazoo Street, and Putman Street; See Figure 5-1).

The samples were split with one going to MDEQ for total *E. coli* analysis and then the cultures were given to MDCH for the determination of *E. coli* O157:H7. The Biosensor Lab in the Agricultural Engineering Department at MSU analyzed the other split sample. The Biosensor Lab used a recently invented biosensor built specifically for the rapid analysis *E. coli* O157:H7.

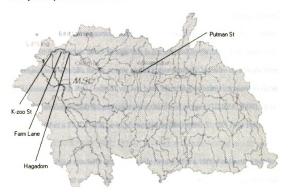


Figure 5-1. Red Cedar River Watershed with Locations of Sampling Sites

The Red Cedar River arises in Cedar Lake in the south-central Lower peninsula of Michigan and flows about 45 miles (80 kilometers) to its confluence with the Grand River in the city of Lansing. It has 12 tributaries and drains a total area of about 472

square miles (22,000 hectares). The river provides mid-Michigan residents with numerous recreational opportunities that include angling, canoeing, kayaking, photography and bird watching. The river also serves as a source of water for the irrigation of crops throughout the watershed. In terms of aesthetics, hundreds of thousands enjoy a walk along the Red Cedar River on the campus of MSU each year. Three of the weekly samples (Hagadorn, Farm Lane, and Kalamazoo Street) were taken from the 5,400 acre MSU campus which has agricultural operations two miles south of the river, traditional campus setting along the river, and the urban landscape of the city of East Lansing less than a quarter mile north of the river. The fourth weekly sample was taken from the Putman Street Bridge that is surrounded by the city of Williamston, Michigan near a public kayak course and is approximately 20 miles up stream from the MSU campus. The Red Cedar River has been identified as being impaired as defined in the CWA section 303(d) for pathogens and dissolved oxygen (USEPA 2000). It is anticipated that a TMDL will be implemented by December 31, 2011 for both impairments.

Lowering a specially designed bottle holder with a 100ml collection bottle into the Red Cedar River made it possible for the sample to be collected. The bottle holder allowed the technician to take the sample from any bridge spanning the Red Cedar. The sampling bottle was lowered from the center of the bridge until it was approximately two feet below the surface of the river and then retrieved full of river water. Four bottles were collected at each site. After the collected samples were properly labeled, they were put in a cooler filled with ice. Three of the four 100ml samples were dropped off to the

MSU biosensor lab for analysis and the remaining 100ml sample for each site was delivered to the MDEQ for analysis.

Weather Related Data Collection

Along with the variation of the concentration of *E. coli* during the study, there were variations in rainfall and river flow for the different sampling events. The National Weather Service (NWS) reported rainfall from a station in Williamston, Michigan where the Putman Street site is located. The Horticulture Research Station reported rainfall for the MSU campus on the campus. The United States Geological Services (USGS) provided the river flow data from USGS staging stations in Williamston and on the MSU campus.

E. coli Materials and Methods (EPA Method 1103.1)

The original mTEC Agar enumeration method (Dufour *et al.*, 1981) for *E. coli* was introduced by EPA in 1986 (USEPA, 1986b). A revised method was developed in 1998 by the EPA and has been designated as the modified mTEC method. Both the mTEC and modified mTEC Agar methods use the membrane filter procedure. The two membrane filter methods provide a direct count of *E. coli* in water based on the development of colonies that grow on the surface of the membrane filter (Difco Labs, Detroit MI). The MDEQ used the revised method for the analysis in this study.

A water sample is filtered through the membrane, which retains the bacteria. After filtration, the membrane containing the bacteria is placed on a selective and differential modified mTEC Agar medium, incubated at 35±0.5°C for 2 h to resuscitate the injured or

stressed bacteria, and then incubated at 44.5±0.2°C for 22 h. After 20 minutes, Red colonies on modified mTEC medium are counted with the aid of a fluorescent lamp and a glass lens (2–5x magnification) or stereoscopic microscope. The Enumerated colonies are forwarded to MDCH for *E. coli* O157:H7 biochemical confirmation and serotyping. This procedure adds a few more days before results are finally reported.

Biosensor Material and Methods

The biosensor used in this analysis consists of two parts: The immunosensor and the electronic data collection system. The immunosensor is comprised of four different pads: sample application, conjugate, detection, and absorption. The system was constructed as shown in Figure 5-2. The cellulose membrane was used (5 x 10 mm) for the sample application pad, fiber glass membrane for the conjugate pad (5 x 10 mm), nitrocellulose (NC) membrane (5 x 20 mm) for the capture pad, and cellulose membrane (5 x 30 mm) for the absorption pad. Silver electrodes were fabricated on the NC membrane to electrically connect the immunosensor with the electronic data collection system consisting of a copper wafer and an ohmmeter linked to a computer.

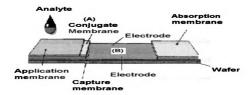


Figure 5-2. Schematic diagram of the immunosensor. Conjugate pad for polyanilinelabeled antibody absorption (A). Detection pad coated on each side with silver electrodes (B). Gap between electrodes is the site for antibody immobilization

Aniline, glutaraldehyde, N, N Dimethylformamide (DMF), Tween-20, lithium chloride, tris buffer, phosphate buffer saline (PBS) were purchased from Sigma-Aldrich (Missouri). Anti- E. coli O157:H7 was obtained from Kirkegaard & Perry Laboratories, Inc. (Gaithersburg, MD). Nitrocellulose (NC) membrane with a flow rate of 160 sec per 4 cm, cellulose membrane, and fiberglass membrane grade G6 were purchased from Millipore (Massachusetts). Micro-tip silver pen was purchased from Chemotronics (Georgia). Other reagents used were of analytical grade. All chemicals and diluents were prepared with doubly deionized water with conductivity below 0.1µS/cm. Lyophilized affinity purified polyclonal antibodies of E. coli O157:H7 were purchased, and stored at 4°C until rehydrated with phosphate buffer (pH 7.0). Two different concentrations of antibodies were prepared: 500µg/ml of antibody was used on the capture pad, and 150µg/ml was used for conjugating with polyaniline and coated on the conjugate pad.

A water-soluble polyaniline was synthesized by following a standard procedure of oxidative polymerization of aniline monomer in the presence of ammonium persulfate (Kim, 2000). A mixture of the antibody and polyaniline was left to react for 30 minutes. The conjugate was then precipitated by centrifugation (13000 rpm for 3 min) using 0.1M Tris buffer as the blocking reagent. The conjugated antibody was diluted in 0.01M LiCl and stored at 4°C before use. When ready, 10μl of the conjugated antibody was applied on the conjugate pad and left to dry. Cellulose membranes for absorption and sample application pads were treated with distilled water three times to remove dirt and surface residuals. The membranes were left to dry and stored inside a petri dish to maintain a clean surface.

Affinity purified antibodies were immobilized on the NC membrane by the following steps. First, the NC membrane was saturated in 10% (v/v) methanol in water for 45 min and left to dry. The membrane was then treated in 0.5% (v/v) glutaraldehyde for 1 hour. After drying, 2.5µl of 0.5mg/ml of antibody was pipetted on the membrane, and incubated at 37°C for one hour. Inactivation of residual functional groups and blocking was carried out simultaneously by incubating the membrane with 0.1M tris buffer, pH 7.6, containing 0.1% Tween-20 for 45 min. The membrane was left in the air to dry.

All prepared membranes were arranged in the order mentioned in Figure 2 and attached onto an etched copper plate using double-sided tape. The prepared biosensor was stored at 4°C before its use. The prepared biosensor was connected to a multimeter and a computer for signal measurement. To begin detection, 0.1 ml of the water sample was pipetted onto the application pad. The generated signal was captured using a multimeter (BK multimeter, MA) in the form of resistance. The biosensor was calibrated using the uninoculated distilled water.

Two tests were performed in this study to assess the performance of the biosensor. Sensitivity testing was conducted to evaluate the detection limit of the biosensor. In this testing, a distilled water sample inoculated with a varying concentration of *E. coli* O157:H7 was used.

The second test involved with the water samples collected from various sources along the Red Cedar River: Kalamazoo Street, Farm Lane, Hagadorn, and Putman Street. One hundred ml of each sample was filtered through a bio-filter membrane (BIOPath, Florida). The membrane filter was transferred to a test tube containing 10 ml of 0.1% peptone water. The test tube was vortexed to release the trapped cells from the membrane. Then, 0.1 ml of each water sample was pipetted onto the application pad of the biosensor. Three replicates were done for each treatment.

Results and Discussion

Pertinent data collected from the four sampling sites shown in Figure 1 are listed in the Table 5-1. The data in Table 5-1 includes *E. coli* concentration in colony forming units (CFU) per 100ml as reported by the MDEQ and *E. coli* O157:H7 concentration in CFU per 100ml as reported by the MDCH. In addition, rainfall data that was calculated in the 24-hour period, 48-hour period, and 72-hour period prior to the collection of the water samples that was analyzed for *the E. coli* and *E. coli* O157:H7 concentrations is included in Table 5-1. The Red Cedar River flow rate in cubic feet per second of water moved is also reported in Table 5-1 for the dates of sampling.

Table 5-1. E. coli Concentration, Rainfall, River Flow, and E. coli O157:H7 Concentration from the Sampling Sites in the Red Cedar River Watershed.

Kalamazoo S	Street					
Date	E.coli F	Rain 24 hrs.	Rain 48 hrs.	Rain 72 hrs.		O157:H7
	(CFU/100ml)	(inches)	(inches)	(inches)	(ft ³ /sec)	(CFU/100ml)
4/15/2002	190	0	0	0.03	387	0
4/22/2002	60	0.15	0.15	0.17	232	0
4/30/2002	250	0	0.2	0.53	216	0
5/07/2002	110	0.17	0.17	0.17	229	0
5/14/2002	720	0.03	0.2	1.09	456	0
Farm Lane						
Date	E.coli F	Rain 24 hrs.	Rain 48 hrs.	Rain 72 hrs.	Flow	O157:H7
	(CFU/100ml)		(inches)		(ft ³ /sec)	(CFU/100ml)
		•	,	, ,	` ,	,
4/15/2002	173	0	0	0.03	387	0
4/22/2002	47	0.15	0.15	0.17	232	0
5/07/2002	107	0.17	0.17	0.17	229	0
5/14/2002	1150	0.03	0.2	1.09	456	0
Hagadorn						
Date	E.coli F	lain 24 hrs.	Rain 48 hrs.	Rain 72 hrs.	Flow	O157:H7
	(CFU/100ml)	(inches)	(inches)	(inches)	(ft ³ /sec)	(CFU/100ml)
4/15/2002	90	0	0	0.03	387	0
4/22/2002	80	0.15	0.15	0.17	232	0
5/07/2002	130	0.17	0.17	0.17	229	0
5/14/2002	770	0.03	0.2	1.09	456	0
Putman Stre	et					
Date	E.coli R	ain 24 hrs.	Rain 48 hrs.	Rain 72 hrs.	Flow	O157:H7
	(CFU/100ml)	(inches)	(inches)	(inches)	(ft ³ /sec)	(CFU/100ml)
4/16/2002	43	0	0.1	0.1	197	0
4/30/2002	77	0	0.14	0.41	86	0
5/07/2002	133	0.06	0.06	0.06	87	0
5/14/2002	453	0.05	0.13	0.87	227	Ö
	· -	-	- · 			-

Objective 1: Rain and River Flow influence on E. coli Concentration

Along with the variation of the concentration of *E. coli* during the study, there were variations in rainfall and river flow for the different sampling events. The National Weather Service (NWS) reported rainfall from a station in Williamston, Michigan where the Putman Street site is located. The Horticulture Research Station reported rainfall for the MSU campus on the campus. The United States Geological Services (USGS) provided the river flow data from USGS staging stations in Williamston and on the MSU campus. This flow data is provisional at the time of calculations and will not be reviewed and made official until the spring of 2004.

In the statistical analysis that was performed and shown in Table 5-2, rainfall was collected for the 24 hour period of the day of the sample collection and in addition the cumulative total of rainfall for 48 hour period and 72 hour period. The statistical analysis indicates that there is an influence of higher concentration of *E. coli* from both increased rainfall and increased river flow. There are older studies that reported similar findings (Stephenson 1978; Tiedemann 1988). More recently, in a three-year study in Arkansas, it was reported that *E. coli* concentrations increased with increasing flow rates (Edwards 1997). In addition, a study that examined 99 samples from three tributaries that contributed to different drinking water reservoirs showed that *E. coli* levels along with other bacteriological parameters increased considerably during extreme rainfall events (Kistemann 2002). It is interesting to note that the 24 hour period of rainfall is not statistically significant in influencing *E. coli* concentration but this may be explained by the fact that the rainfall total that is reported is from midnight to midnight of a day and the sampling was done in the late morning. Since the rainfall collection includes time

that is after the sampling is done, it might correctly reflect the rainfall impact in the 24-hour period. In both the Pearson's correlation and ANOVA the total rainfall for a 72-hour period was statistically significant at p < 0.0001.

Table 5-2. Statistical Analysis of *E. coli* Concentration vs. Rainfall, River Flow, and *E. coli* O157:H7 Concentration.

Statistical Formula	Rain 24 hrs	Rain 48 hrs.	Rain 72 hrs.	Flow	O157:H7
Pearson's Correlation	315	.429*	.899**	.674**	NA
ANOVA	.082	.267	14.129**	4.760*	NA

^{*} Statistically significant at p < 0.05; ** Statistically significant at p < 0.01. NA = Statistical analysis not possible since all entries were zero.

Objective 2: E. coli as an Indicator of Pathogenic Contamination

The *E. coli* concentrations varied from a very low level of 43 CFU/100ml to a very high level of 1150 CFU/100ml, however, no *E. coli* O157:H7 was detected in any of the samples analyzed. Within the parameters of this study, the results show that the use of total *E. coli* concentration as an indicator of *E. coli* O157:H7 does not provide a reliable risk factor of the pathogenic bacteria to humans using the water. The statistical analysis shown in Table 5-2 indicates that there is no correlation between *E. coli* and *E. coli* O157:H7 concentrations.

This suggests that *E. coli* levels may not be an accurate indicator of the level of pathogenic bacteria in the water. Therefore the use of *E. coli* levels for determining the risk of pathogenic *E. coli* O157:H7 to humans using recreational water may have to redefined. A study in Italy concluded that concentrations of indicators of fecal contamination, whether within or over the values established by legislation, are not always related to the presence and density of individual pathogenic serotypes

(Bonadonna 2002). In this reported study, for many cases, the values of pathogenic serotype levels were not linear with respect to the levels of the bacterial indicators.

Objective 3: Biosensor Performance

Figure 5-3 illustrates the response of the biosensor tested with inoculated distilled water samples. The resistance drop was determined by calculating the difference between the resistance outputs of the blank and that of the inoculated samples. The difference in measured resistance (resistance drop) was the reduction in resistance due to electron transfer facilitated by the polyaniline-labeled antibody between the electrodes.

In water samples inoculated with *E. coli* O157:H7, the signal was shown to be proportional to the cell concentration between 10^1 and 10^4 CFU/ml. The signal was observed to decrease at concentrations higher than 10^4 CFU/ml (Figure 5-3). Statistical analysis reveals that the sensitivity limit of the biosensor was at $8.3 \pm 0.1 \times 10^1$ CFU/ml.

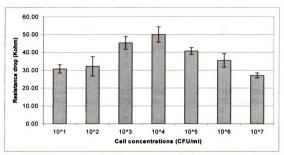


Figure 5-3. Resistance drop of the biosensor tested in distilled water samples inoculated with *E. coli* O157:H7.

The biosensor did not report any false positive during this study and the results were identical to the reported concentrations from traditional methods that use the culturing of the pathogenic bacteria as performed by MDCH shown in Table 3. The levels of *E. coli* O157:H7 remained zero despite a wide variation in the levels of total *E. coli*. The advantage in the biosensor is that it produced results in less than 20 minutes in contrast to the traditional method that produced results in three days.

Table 5-3. E. coli O157:H7 Analyzed by Traditional Methods and by the Biosensor.

Kalamazoo	Street		
Date	E. coli	E. coli O157:H7 (MDCH)	
	(CFU/100ml)	(CFU/100ml)	(CFU/100ml)
4/15/2002	190	0	0
4/22/2002	60	0	Ö
4/30/2002	250	0	0
5/07/2002	110	0	0
5/14/2002	720	0	0
Farm Lane	•		
Date	E. coli	E. coli O157:H7 (MDCH)	E. coli O157:H7 (Biosensor)
	(CFU/100ml)	(CFU/100ml)	(CFU/100ml)
4/15/2002	173	0	0
4/22/2002	47	0	0
5/07/2002	107	0	0
5/14/2002	1150	0	0
Hagadorn	F 1:	E POLEZ HE AMOUN	E 1:0153 H3 (D:
Date	E. coli (CFU/100ml)	E. coli O157:H7 (MDCH) (CFU/100ml)	E. coli O157:H7 (Biosensor) (CFU/100ml)
	(Cr O/Toom)	(Cr C/room)	(Cr C/ Toomi)
4/15/2002	90	0	0
4/22/2002	80	0	0
5/07/2002	130	0	0
5/14/2002	770	0	0
Putman St	reet		
Date	E. coli	E. coli O157:H7 (MDCH)	E. coli O157:H7 (Biosensor)
	(CFU/100ml)	(CFU/100ml)	(CFU/100ml)
4/16/2002	43	0	0
4/30/2002	77	0	0
5/07/2002	133	0	0
5/14/2002	453	0	0

Additional studies are needed to determine the repeatability and reliability of this device. Additional pathogenic serotypes, as well as, total *E. coli* could be adapted to the biosensor and studies need to be conducted to test such configurations. The biosensor

was only tested in freshwater and results from marine (salt water) conditions are necessary to determine the versatility of this device. Finally, since this study was conducted on a river, a similar study needs to be conducted for beaches located on lakes. With additional studies and implementing the findings from these future studies, in the near future the biosensor may provide the best available method for determining the safety of recreational-use water. Image this: a lifeguard dips a biosensor type device into the lake water. This device tests the water for the levels of many different strains of bacteria. Using the biosensor device is as easy as testing for pH. The results are available in minutes and the lifeguard can determine if the water is safe before the beach is opened to the public.

Conclusions

Methods of measuring pathogens directly are costly and time-consuming. Therefore, indicator organisms such as *E. coli* are used instead of analyzing the pathogens themselves. In many cases the TMDL implementation plan specifies the use of best management practices (BMPs) or a systems of BMPs. Water quality monitoring is an important component of the TMDL implementation plan and is needed to measure the success of both individual activities and the overall water quality of the waterbody. Although the samples were limited, the biosensor has shown promise for water quality analysis both before and after the installation of the BMPs. Since the biosensor analysis is both rapid and inexpensive, it could be an excellent tool for determining the success of installed BMPs non point pathogenic pollution as well as monitoring the TMDL implementation plan's improvement of the water quality.

The O157:H7 results were identical for all samples by both the standard methods and the biosensor. The biosensor did not report any false positive. E. coli O157:H7 was zero despite a wide variation in the levels of total E. coli. This suggests that E. coli levels may not be an accurate indicator of the level of pathogenic bacteria in the water and therefore the use E. coli levels for determining the risk to humans using recreational water may suggest a risk that is greater than the true risk for the use of the water. More data is needed to confirm these findings and also to compare levels of other strains of bacteria to total E. coli, which is the defined indicator bacterium for water quality.

References

Barton K, Fuller D. 1995. Testing the Waters V: Politics and Pollution at U.S. Beaches. New York: Natural Resources Defense Council.

Bonadonna L, Briancesso R, Coccia AM, Semproni M, Stewardson D. 2002. Occurrence of Potential Bacterial Pathogens in Coastal Areas of the Adriatic Sea. Environ. Monitor and Assess. 77(1):31-49.

Brunelle, S. 2001. Electroimmunoassay technology for Foodborne pathogen detection. Detection Technology: 55-62.

Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. 1982. Swimming-associated gastroenteritis and water quality. Am J Epidemiol 115:606-616.

Cahn, T. M. 1993. Biosensors. London, UK, Chapman and Hall.

D'Souza, S. F. 2001. Microbial Biosensors (Review). Biosensor & Bioelectronics 16: 337-353.

Dufour AP, Strickland ER, Cabelli VJ. 1981. Membrane Filter Method for Enumerating *Escherichia col*i. Appl Environ Microbiol 41:1152-1158.

Edwards DR, Coyne MS, Daniel TC, Vendrall PF, Murdoch JF, Moore JF. 1997. Indicator Bacteria Concentration of Two Northwest Arkansas Streams in Relation to Flow and Season. Transactions of ASAE 40 (1):103-109.

Friedman, M. S., T. Roels, et al. 1999. *Escherichia coli* O157: H7 outbreak associated with an improperly chlorinated swimming pool. Clinical Infectious Diseases 29(2): 298-303.

Harvell CD, Kim L, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, et al., 1999. Emerging marine diseases--climate links and anthropogenic factors. Science 285:1505-1510.

Henrickson, S. E., T. Wong, et al. 2001. Marine swimming-related illness: Implications for monitoring and environmental policy. Environmental Health Perspectives 109(7): 645-650.

Hoa, D. T., Suresh Kumar, T.N., Punekar, N.S., Srinivasa, R.S., Lal, R., A.Q. 1992. Contractor, Biosensor based on conducting polymers. Analytical Chemistry 64: 2645-2646.

Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. 1999. Biosensor & Bioelectronics 14: 599-624.

Kim, J. H., Cho, J.H., Cha, G.S. 2000. Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosensor & Bioelectronics 14: 907-915.

Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J, Vacata V, Exner M, 2002. Microbial Load of Water Reservior Tributaries During Extreme Rainfall and Runoff. App and Environ, Microbio. 68(5):2188-97.

Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:1-32

Muhammad-Tahir, Z. and Alocilja, E.C. Fabrication of a membrane strip immunosensor. IEEE Sensors Journal, accepted for publication.

Mudgett, C. C., R. Ruden, et al. 1998. A beach-associated outbreak of *Escherichia coli* O157: H7. Journal of Environmental Health 60(9): 7-13.

NRDC, 2000, 11th Annual Survey of Water Quality Monitoring and Public Notification Programs at U.S. Beaches.

NRDC, 2002, 12th Annual Survey of Water Quality Monitoring and Public Notification Programs at U.S. Beaches. http://www.nrdc.org/water/oceans/ttw/titinx.asp

Olsen, S. J., G. Miller, et al. 2002. A waterborne outbreak of *Escherichia coli* O157: H7 infections and hemolytic uremic syndrome: Implications for rural water systems. Emerging Infectious Diseases 8(4): 370-375.

Phillips, C. A. 1999. The epidemiology, detection and control of *Escherichia coli* O157. Journal of the Science of Food and Agriculture 79(11): 1367-1381.

Prieto, M. D., B. Lopez, et al. 2001. Recreation in coastal waters: health risks associated with bathing in sea water. Journal of Epidemiology and Community Health 55(6): 442-447.

Seyfried, P. L., R. S. Tobin, et al. 1985. A Prospective-Study of Swimming-Related Illness .1. Swimming- Associated Health Risk. American Journal of Public Health 75(9): 108-1070.

Seyfried, P. L., R. S. Tobin, et al. 1985. A Prospective-Study of Swimming-Related Illness .2. Morbidity and the Microbiological Quality of Water. American Journal of Public Health 75(9): 1071-1075.

Sergeyeva, T. A., Lavrik, N.V., Rachkov, A.E. 1996. Polyaniline label-based Conductimetric Sensor for IgG detection. Sensors and Actuators B(34): 283-288.

Stephenson GR, Street LV.1978. Bacterial Variations in Streams from a Southwest Idaho Rangeland Watershed. J. Environ. Qual. 7(1):150-157.

Tiedemann AR, Higgens DA, Quigley TM, Sanderson HR, Bohn CC. 1988. Bacterial Water Quality Responses to Four Grazinf Strategies. J. Environ. Qual. 17(3):492-498.

Turner, A. P., Newman, J.D. 1998. An Introduction to Biosensor. Biosensor for Food Analysis. UK, Athenaeum Press Ltd: 13-27.

USEPA. 1985. Test methods for *Escherichia coli* and enterococci in water by the membrane filter procedure. Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA-600/4-85/076.

USEPA. 1986a. Ambient water quality criteria for bacteria-1986. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, DC. EPA-440/5-84/002.

USEPA. 1986b. Bacteriological ambient water quality criteria; availability. Federal Register 51(45):8012-8016.

USEPA. 2000. State Impairments-Michigan, List ID MI082828H

USEPA. 2001. Protocol for Developing Pathogenic TMDLs, EPA 841-R-00-002.

USEPA. 2002a. http://www.epa.gov/owow/tmdl/intro.html

USEPA. 2002b. http://www.epa.gov/waterscience/beaches/act.html

van Asperen, I. A., G. Medema, et al. 1998. Risk of gastroenteritis among triathletes in relation to faecal pollution of fresh waters. International Journal of Epidemiology 27(2): 309-315.

Whitman RL, Nevers MB, Gerovac PJ. 1999. Interaction of Ambient Conditions and Fecal Coliform Bacteria in Southern Lake Michigan Beach Waters: Monitoring Program Implications, Natural Areas J. 19(2): 166-171.

Zhang, S, Wright, G., Yang, Y. 2000. Materials and techniques for electrochemical biosensor design and construction. Biosensors & Bioelectronics 15:273-282.

Chapter 6

Conclusions and Recommendations

Ever since fecal contamination of water was determined a human health risk, there has always been a great deal of concern regarding the level of coliform bacteria counts in water. Many bodies of water throughout the world are considered to have counts above acceptable levels. The sources or pathways of these *E. coli* are thought to be fecal contamination from humans, domestic animals and wildlife, as well as runoff from agricultural land, inadequate septic systems or sewer overflow. Physical factors, such as seasonal variability, rainfall, river flow, nutrient and the survival of bacteria in water, have an impact on *E. coli* levels in a waterbody. Tools exist to assist in determining the risk to swimmers of bacteria illness in a watershed. Although risk assessment models have been studied, an accurate dose-response model for illness to swimmers of bacteria illness in a watershed is not available.

There is a large body of literature involving the epidemiology of illness from the use of recreational water. Elevated *E. coli* levels have been identified as the cause of the illness and *E. coli* levels have been mandated as the indicator bacteria for the determination of water safety for swimmers. The validity of *E. coli* as an indicator of risk of fecal contamination has been debated and *E. coli* may not be an accurate indicator of pathogenic risk.

In contrast to the numerous studies, cases and reports of health effects from exposure to indicator bacteria in recreational-use water, there are a limited number of such findings in literature in regards to pathogenic *E. coli O157:H7*. In all these reports

or studies that have identified *E. coli O157:H7* illness related to swimming, only one identified *E. coli O157:H7* in the water that was the exposure. Although *E. coli O157:H7* infection from swimming is very rare, the reports indicate that children are at much higher risk that adults. This higher risk may be from weaker immune systems of children as compared to adults but more likely, it is due to the fact that children are more likely to ingest water while swimming and that children are more likely than adults to defecate while swimming. The use of sealed rubber swimming trunks on children maybe have the greatest impact in lowering the risk of *E. coli O157:H7* infections when swimming.

Public policy in both the United States and around the world has addressed the risk to swimmers of illness from bacteria in water. The levels of indicator bacteria that is acceptable as to the risk for swimmers have been established by USEPA, EEC, and WHO. In addition to these policies, laws and guidelines have been established to decrease the microbial input in a waterbody from sewage sources and agricultural facilities. Many of these laws and guidelines are being reviewed and revised in order to improve the public health of swimmers.

Based on the data collected and analyzed in this study, it is concluded that there is no observed seasonal effect for E. coli levels from the Farm Lane Bridge over the three-year period from 2000 to 2002. From the statistical analysis using Spearman's rho, river flow, rain, humidity, low temperature of the sampling day and soil moisture were significantly (p<0.05) correlated to E. coli concentrations.

Other studies support the association of the levels of fecal indicators in a water body and rainfall events and the results presented in this study support these findings. In addition, previous studies have shown that increased river flow has been related to

increases in the concentration levels of *E. coli* in a river and the results presented in this study also support these findings. From this study there is no correlation between *E. coli* concentration and the number of ducks in the river upstream from the sampling point.

Solar radiation and wind speed did not correlate to *E. coli* concentrations.

Using governmental guidelines for maximum *E. coli* level for the safe use of water for recreation, statistical models were designed and it was concluded that the odds of *E.coli* exceeding 300 cfu/100ml are increasing at least twofold and at most twelve-fold for each 1 cm increase in 72-hour total rainfall. It was also concluded that if the low temperature of the sampling day was greater than 15°C degrees the 95% probability of *E.coli* exceeding 300 cfu/100ml occurs at 0.25 cm 72-hour total rainfall.

Based on the results from this study, it is concluded that elevations of nutrients do have an association with elevations in the levels of *E. coli* concentration. The concentration levels of ammonia nitrate were significantly correlated to *E. coli* concentrations and the levels of total suspended solids were significantly correlated to *E. coli* concentrations.

These results indicate that if the locations of the sources of nutrients that enter into nearby surface water are identified then proper best management practices (BMP) can be implement at these locations and the implemented BMP will have an impact on controlling nutrients into the surface water as well as having an effect to lower the *E. coli* concentration in the surface water.

However, in this study rainfall did not show significant positive correlation with E. coli levels and this is contradictory to what has been reported by others. This contradiction maybe explained by the fact that the rainfall data was collected from three different sites that include East Lansing, Williamston, and Howell so that the rainfall data better represents the sampling site. These rainfall collection sites were not at the 17 sampling sites and probably did not represent the real rainfall that occurred at the 17 sampling sites during the time period that the river water samples were collected.

The impact of land use on *E. coli* concentrations was investigated but the results did not reveal with any certainty as to which type of land-use has the greatest impact on elevated *E. coli* concentrations. In the small sample set that was analyzed, agricultural land use had the greatest impact on elevated total suspended solids. However, mixed land use had the greatest impact on elevated ammonia nitrates. Larger sample sets need to be studied to determine if the type of land-use does have an impact the concentration levels of *E. coli* and other nutrients in nearby surface water.

Methods of measuring pathogens directly are costly and time-consuming. Therefore, indicator organisms such as *E. coli* are used instead of analyzing the pathogens themselves. In many cases the TMDL implementation plan specifies the use of BMPs or a systems of BMPs. Water quality monitoring is an important component of the TMDL implementation plan and is needed to measure the success of both individual activities and the overall water quality of the waterbody. The biosensor could be used for water quality analysis both before and after the installation of the BMPs. Since the biosensor analysis is both rapid and inexpensive, it could be an excellent tool for determining the success of installed BMPs non point pathogenic pollution as well as monitoring the TMDL implementation plan's improvement of the water quality.

The *E. coli O157:H7* results were identical for all samples by both the standard methods and the biosensor. The biosensor did not report any false positives. The levels

of *E. coli O157:H7* remained constant in relation to variation in the levels of total *E. coli*. This suggests that *E. coli* levels may not be an accurate indicator of the level of pathogenic bacteria in the water and therefore the use *E. coli* levels for determining the risk to humans using recreational water may suggest a risk that is greater than the true risk for the use of the water. Since this collaborative study was done with out funding, it was only operational for a four-week period. More data is needed to confirm these findings and also to compare levels of other strains of bacteria to total *E. coli*, which is the defined indicator bacterium for water quality.

However, there are weaknesses of this study. The biosensor was only tested in freshwater and results from marine (salt water) conditions are necessary to determine the versatility of this device. The sample set is small due to lack of funding for this project. Additional studies are needed to determine the repeatability and reliability of this device. Additional pathogenic serotypes, as well as, total *E. coli* could be adapted to the biosensor and studies need to be conducted to test such configurations. Finally, since this study was conducted on a river, a similar study needs to be conducted for beaches located on lakes. With additional studies and implementing the findings from these future studies, in the near future the biosensor may provide the best available method for determining the safety of recreational use water. Image this; a lifeguard dips a biosensor type device into the lake water. This device tests the water for the levels of many different strains of bacteria. Using the biosensor device is as easy as testing for pH. The results are available in minutes and the lifeguard can determine if the water is safe before the beach is opened to the public.

Appendix

Table A-1. Farm Lane Three Years of Data.

Table A-2. Yearly Mean of E. coli Concentration, Flow and Rainfall

Table A-3. Nutrients, E. coli, and Land-use Data.

Table A-1. Farm Lane Three Years of Data.

Week	Year	E. coli	thes 300	thes 1000	Flow	Rain 24	Rain 48	Rain 72	temp hi	temp low	humd hi	humd lo
1	200	350	1	0	54	6 (0		61.6	•	99.4	40.1
2									69.4		99.7	
3									82.5		83.3	
4			1						54.5		88.6	
5			1	0					68.3		100	
6 7				. 0					71		98.7	51 45.2
8									67.2 77.9		100.9 98.3	45.2 65.4
9									77. 8 70.2		99	
10				0					80.5		100.8	
11				1					83.1		101.9	43.8
12				Ó					81.3		90.9	
13	200			0					79.7			51.9
14	200	393	1	0	5	3 (0	0	74.6	51.5	100	43.5
15				0				1.77	75.4	66.1	99.9	78.5
16				0					82.6		101.3	64.5
17									77.6		101.2	
18									69.9		101.4	
19			1						77.8		101.6	58.5
20 21			0						70.2		97.3	46.2
22			1	Ó					72.9 78.4		100.9 102	89.6 37.2
23			1						56.1		97.4	54.4
24									76.1		88.4	40.6
25			Ó						43.4			
26			1						68		101.1	64.5
27	200	93	0	0	9				68.1		89.3	
28	200	90	0	0	14	5 0	0	0.27	56	27.2	102	37.1
29			0						59.7		98.5	
30									41.8		94.8	
31			0						37.9		85.4	55.3
32			0						45.3		102.2	
1			1						67.6		99.5	
2 3			0						67 70.3		92.3 54.5	21.5 31.2
4			0						66.3		99.8	27.3
5			Ŏ						74.4		97.2	
6			1	1					69.8			
7	200	1 4033	1	1	58				61.1	46.1	98.2	69.3
8			1	1	23	4 0.16	0	0	79.9	54.8	96.9	51.6
9			1	0					80.3		95.3	35.7
10			1	0					80.8		99.9	
11			0						76.4		89.5	
12			1	0					88.4		98.2	
13 14			0	0					87.7 90.7		96.8 98.9	28.2 44.8
15			1	1					87.1		98.9	
16			o o						91.2		99.4	27.4
17			0						83.1		98.8	42.1
18	200	i 517	1	0	4	7 0.1	0.23		72.3	61.1	98	68.4
19	200	247	0	0	4	2 0	0	0	80.2	62.7	98.1	58.7
20			0		2				77.5		99.5	41.7
21			1	1					77.7		99.9	73.9
22			0						74.4		98.6	45.5
23			1	0					43.8		97.7	
24 25			1	0					71.5		100.4	34.9 33.4
25 26			1	1					49.4 69.1		98.9 99	33.4 57.1
27			Ó	Ö					63.9		94.4	34.6
28			0	0					50.7		100.2	
29			ŏ	ŏ					58		86.1	200
30			ō	ō					52.7		99.1	45.8
31			1	0					57.4		96.9	56.5
32			1	0					45.9		86.8	

Table A-1. Farm Lane Three Years of Data. (continued)

Week	,	Year	E. coli	thes 300	thes 1000	Flow	Rain 24	Rain 48	Rain 72	temp hi	temp low	humd hi	humd lo
	1	2002	47	0	0	9	2 0.1	0.11	0.2	44.7	32.8	97.7	46.9
	2	2002	77	O	0	8	7 0.21	0.39	0.39	55.9	36.1	100.1	85.5
	3	2002	107	0	0	8	7 0.14	0.14	0.14	65.4	56.4	98.3	51.5
	4	2002	1150	1	1	22	7 0.01	0.81	0.91	51.3	42.4	99.5	54.3
	5	2002	623.5	1	0	13	7 (0	0.03	46.3	31.4	98.8	39.7
	6	2002	97	0	0	6	в с	0	0.14	79.1	43.8	97	23.9
	7	2002	1023	1	1	22	0.37	0.37	0.37	61.8	46.6	96.8	56.4
	8	2002	590	1	0	6	5 (0	0	85.5	55	98.9	36.6
	9	2002	163	0	0	4	6 (0.06	0.15	70.5	52.1	91.4	38.9
	10	2002	237	0	0	3	3 (0	0	89.8	65.6	93.8	37.6
	11	2002	90	0	0	2	4 (0	0	92.5	67.9	95.8	41.8
	12	2002	4133	1	1	2	2 0.2	0.2	0.2	90.9	59.4	92.2	31.7
	13	2002	240	0	0	1	3 (0	0	88.3	55.1	97.1	40.3
	14	2002	130	0	0	2	1 0.01	0.01	0.01	91.2	66	89.5	48.7
	15	2002	3033	1	1	13	4 0.78	1.17	1.23	86.5	69.4	97.3	66.8
	16	2002	350	1	0	2	1 0.01	0.02	0.02	8108	65.7	93.8	50.6
	17	2002	90	0	0	1	3 (0	0	88.5	62.6	97.8	41.3
	18	2002	1797	1	1	1	B 0.17	0.17	0.17	70.8	54.2	98	63
	19	2002			0	-		0	0			99.2	
	20	2002	63	0	0	1	2 (0	0	82.5	64.8	97.1	49
	21	2002			0			0	0			98.8	33.5
	22	2002	443	1	0	8.	в с	0	0	75.9	42	9 8.9	30.5
	23	2002			0	•			0.14				
	24	2002	163	0	0	9.	7 0.03	0.03	0.03	77.8	55.9	93.5	48.2
	25	2002			0	1	4 (0.1	0.1	53.9	35		
	26	2002			0	1	5 0	0.12	0.18	56.7	31.1		
	27	2002			0	_		0	0	50.7	24.7		
	28	2002	67	0	0	2	1 0	0	0.01	48.1	31.1	87.5	46.2
	29	2002			0	-		•	0			95.9	39.6
	30	2002			0				0.53				78.5
	31	2002			0	-		0	0			92.2	
	32	2002	260	0	0	4	3 0	0.01	0.03	40.2	28.7	99.4	55.8

Table A-1. Farm Lane Three Years of Data. (continued)

soil moist 1	soil mos 1 lo	soil moist 2	soil mos 2 lo	soil temp hi	soil temp lo	soler rad	wind speed	duck count	water temp	Week	Year
0.287	0.271	0.579	0.468	60.5	42.9	374.9	13.2			1	
0.264										2	
0.205										3	
0.336				60.4						4	
0.355 0.362										ě	
0.362										7	
0.368											
0.356										9	2000
0.379	0.359		0.936	85.3						10	
0.362	0.351									11	
0.332	0.319									12	
0.356										13	
0.286			0.821 1.588							14 15	
0.343 0.358			0.795							16	
0.338	0.33									17	
0.267			0.102							18	
0.292			3.372	71.7		364.1				19	
0.216										20	
0.341										21	
0.301										22	
0.316										23 24	
0.27 4 0.297	0.269 0.289									25	
0.297	0.258						12.5			26	
0.247				57.9		282.5	13.9			27	
0.298	0.29					304.7	12.2	18		28	2000
0.268	0.261	0.454	0.42							29	
0.278										30	
0.284										31	
0.296	0.286			42.5 62.2						32	
0.303 0.222	0.265 0.207		0.418	62.2							
0.222											
0.238											
0.323											2001
0.353	0.341										
0.356											
	0.282										
0.287											
0.282 0.191											
0.191											
0.18											
0.191								0			
0.313	0.187										
0.191											
0.18											
0.315									19.66 21.29		
0.247 0.18											
0.16											
0.191											
0.381							18.2	4	10.98	23	2001
0.308	0.287	4.805	2.692	65.5					11.91		
0.336	0.321										
0.402	0.355										
0.314											
0.347 0.341											
0.341											
0.364											
0.348									8.19	32	2001

Table A-1. Farm Lane Three Years of Data. (continued)

soil mois	t 1soil mos 1	soil moist 2 t	soil mos 2	soil temp h	soil temp k	solar rad	wind speed duck	k count water temp Week	١	'ear
0.24	43 0.227	0.804	0.761	54.7	43.7	202.6	20.6	8.34	1	2002
0.3	31 0.273	0.758	0.696	51.8	43.3	98.9	30		2	2002
0.28	31 0.238	0.781	0.745	61.4	54.2	192.8	22.3		3	2002
		0.902	0.865	54.3	49.8	137.2	17.2		4	2002
		0.859	0.821	49.9	43.1	333.7	13.5		5	2002
		0.753	0.703	66.1	50.8	632.5	14.5		6	2002
0.3	34 0.257	0.695	0.606	62.2	56.9	268.9	22.3		7	2002
0.27	75 0.256	0.654	0.621	71.2	59.2	641.5	10.5		8	2002
0.34	42 0.322	1.26	1.224	64.5	67.9	483	21.9		9	2002
0.3	32 0.29	1.206	1.156	78.8	67.8	552.8	15.9		10	2002
0.30	0.267	1.183	1.137	83.9	71.3	602.9	16.9		11	2002
0.2	26 0.215	1.167	1.128	83.3	69.9	559	26 .3		12	2002
0.29	97 0.284	1.506	1.444	79.4	6 5.6	574.1	16.6		13	2002
0.31	13 0.301	1.558	1.485	80.9	69.1	364.7	19.2		14	2002
0.42			1.505		72.3	333.9	20.9		15	2002
0.34			1.466		70.2		18.9		16	2002
0.31	14 0.295		1.425		70.7	548.6	18.6		17	2002
0.36			1.502	70.4	64.6	199.3	14.2 x		18	2002
0.39		1.677	1.609	79.1	64.9	544.3	10.5		19	2002
0.34			1.55	77.3	69.3	315.4	19.2		20	2002
0.31		1.536	1.486	82.2	66.7	452.8	12.9		21	2002
0.27		1.425	1.356	73.8	57.4	478.8	12.5		22	2002
0.32	25 3.11	1.386	1.331	64.2	53.1	400.2	15.2		23	2002
0.30		1.301	1.314	71.6	59.3	302.8	15.9		24	2002
0.32		1.468	1.427	5 7.7	49.5	369.9	24.3		25	2002
0.30		1.434	1.386	56.9	43.3	353.8	13.9		26	2002
0.29		1.408	1.362	50.1	39.5	232	14.5		27	2002
0.31		1.505	1.471	48.9	41.1	171.9	15.2		28	2002
0.28		1.477	1.432	46.7	37.2	202.4	15.2		29	2002
0.3		1.74	1.698	53	45.1	43.3	14.9		30	2002
	.3 0.294	1.747	1.698	38	32.9	139.6	17.6		31	2002
0.30	0.304	1.789	1.75	39.2	36.5	81.7	15.5		32	2002

Table A-2. Yearly Mean of E. coli Concentration, Flow and Rainfall

Year		E. coli	Flow	Rain 24h	Rain 48h	Rain 72h
2000	Mean	854.656	207.437	.1328	.2528	.4300
	N	32	32	32	32	32
	Std.	1594.15	175.2794	.3194	.4131	.5802
2001	Mean	872.796	208.312	.0950	.1684	.3412
	N	32	32	32	32	32
	Std.	1226.14	180.0730	.1754	.2954	.4322
2002	Mean	530.406	51.140	.0641	.1347	.1556
	N	32	32	32	32	32
	Std.	894.4360	56.8654	.1563	.2599	.2766
Total	Mean	752.619	155.630	.0973	.1853	.3090
	N	96	96	96	96	96
	Std.	1267.25	164.8587	.2282	.3297	.4571

Table A-3. Nutrients, E. coli, and Land-use Data. Week Date E. coli AN TSS Rain 24 Rain 48 Rain 72 Land use Site O 0.31 0.74 Agr 97 0.584 0.855 6.53 4/25/2001 LA 0.04 0.72 0.72 Agr 5/9/2001 197 0.142 0.091 9.56 LA 3 0.44 Agr 0.44 5/23/2001 130 0.16 0.013 15.4 n LA 5 0.023 0.02 0.02 0.02 Agr 6/6/2001 220 0.063 13.13 LA 7 0.067 9.7 0.18 0.18 Agr 9 6/20/2001 257 0.019 Λ LA 0.04 Agr 7/18/2001 280 0.074 0.001 8.6 0.04 0.04 LA 13 n 0 0.38 Agr LA 15 8/1/2001 550 0.128 0.009 4.76 290 0.047 0.091 4.4 0 0 0 Agr 17 8/15/2001 LA 0.58 19 8/29/2001 223 0.071 0.018 6.5 0.06 0.58 Agr LA 0.62 Agr 847 0.172 0.006 8.61 0 0 23 9/25/2001 LA 0.14 0.14 0.14 Agr LA 25 10/8/2001 210 1.057 0.026 4.4 0.138 0.033 3.92 0 O 0 Agr LA 29 11/6/2001 87 0.13 0.13 LA 31 11/20/2001 133 0.047 0.016 0.13 Agr 4/25/2001 90 0.013 0.046 3.96 0 0.08 0.34 Mixed LB 1 10.8 0 0.45 0.45 Mixed 3 5/9/2001 360 0.825 0.021 LB 0.35 0.66 Mixed 5 5/23/2001 460 0.512 0.018 14.8 0 I B 7 6/6/2001 360 0.072 0.01 13.47 0.03 0.03 0.07 Mixed LB 9 6/20/2001 340 0.068 0.018 5.4 0 0.12 0.13 Mixed LB 0 Mixed 13 7/18/2001 640 0.116 0.004 10.1 0 0 LB 1.03 Mixed 880 0.169 0.005 9.18 0 0 15 8/1/2001 LB 17 8/15/2001 2400 0.185 0.094 14.8 0 0 0 Mixed LB 510 0.097 0.014 0 0 0.1 Mixed 8.6 LB 19 8/29/2001 9/25/2001 560 0.073 0.01 7.35 0.09 0.37 0.37 Mixed LB 23 0.005 4.8 0 0 0.62 Mixed 350 0.098 LB 25 10/8/2001 29 11/6/2001 160 0.042 0.02 6.26 0 n 0 Mixed LB 0.038 0.01 4.4 0.19 0.19 0.19 Mixed 11/20/2001 380 31 LB LE 4/25/2001 250 0.015 0.05 4.73 0 0.08 0.34 Agr 1 170 0 124 0.013 15.2 0 0.45 0.45 Agr 3 5/9/2001 LE LE 5 5/23/2001 120 0.189 0.008 10.4 0 0.35 0.66 Agr 0.01 12.5 0.03 0.03 0.07 Agr 7 130 0.101 LE 6/6/2001 0.12 LE 9 6/20/2001 320 0.151 0.019 22.2 0 0.13 Agr 7/18/2001 480 0.107 0.004 16 0 0 0 Agr LE 13 8/1/2001 490 0.198 0.019 17.6 0 0 1.03 Agr LE 15 LE 17 8/15/2001 640 0.088 0.1 14 0 0 0 Agr 8/29/2001 350 0.107 0.025 25.2 0 0 0.1 Agr LE 19 280 0.009 0.09 0.37 0.37 Agr 23 9/25/2001 0.138 6.8 LE 25 10/8/2001 210 0.065 0.005 6.7 0 0 0.62 Agr LE 0 0 0 Agr 0.037 0.028 2.86 LE 29 11/6/2001 30 11/20/2001 120 0.035 0.01 3.2 0.19 0.19 0.19 Agr LE 31 4/25/2001 0 0.08 0.34 Mixed 70 0.035 0.046 6 34 LG 1 460 0.165 0.006 7.79 0 0.45 0.45 Mixed LG 3 5/9/2001 0.35 0.66 Mixed 0.002 0 200 0.15 13.4 LG 5 5/23/2001 LG 7 6/6/2001 210 0.115 0.04 9.46 0.03 0.03 0.07 Mixed 0.13 Mixed 0.018 62 O 0 12 9 310 0.094 LG 6/20/2001 300 0.123 0.01 11.6 0 0 0 Mixed LG 13 7/18/2001 1.03 Mixed 440 0 226 0.014 10 7 O O LG 15 8/1/2001 900 0.089 0.091 12.9 0 0 0 Mixed LG 17 8/15/2001 300 0.08 0.019 14 0 0 0.1 Mixed LG 19 8/29/2001 23 9/25/2001 410 0.119 0.014 14.4 0.09 0.37 0.37 Mixed LG 0.62 Mixed 25 10/8/2001 230 0.046 0.009 4.8 0 0 LG LG 29 11/6/2001 20 0.044 0.03 4.12 0 0 0 Mixed 0.19 0.19 Mixed LG 31 11/20/2001 80 0.039 0.016 7.1 0.19 0.34 Agr 100 0.016 0.044 4.65 0 0.08 LI 4/25/2001 1 0.45 Agr 0 0.45 LI 3 5/9/2001 280 0.083 0.004 18.7 170 0.01 9.7 0 0.35 0.66 Agr 5 5/23/2001 0.138 LI 0.009 0.03 0.030.07 Agr 180 0.076 10.6 LI 7 6/6/2001 9 6/20/2001 2800 0.095 0.014 9.2 0 0.12 0.13 Agr ш 440 0.005 6.8 0 0 LI 13 7/18/2001 0.041 0 Aar 15 8/1/2001 870 0.081 0.008 28.4 0 0 1.03 Agr LI 30.6 0.091 0 0 17 8/15/2001 3000 0.047 0 Agr LI 0.013 0 0 0.1 Agr LI 19 8/29/2001 1210 0.079 6.1

0.005

0.054

0.023

0.138

3.44

4.44

1.6

0.09

0.19

0

0

0.37

0.19

0

0

23

25

29

31

9/25/2001

10/8/2001

11/6/2001

11/20/2001

490

190

90

160

0.073

0.028

0.028

0.04

LI

1.1

LI

LI

0.37 Agr

0.62 Agr

0.19 Agr

0 Agr

Table A-3. Nutrients, E. coli, and Land-use Data. (continued)

\$1	Site	Week		Date	E. coli	AN TE	P TSS	Rain 24	Rain 48	Rain 72	Land use
\$1 5 5/23/2001 77 0.179 0.039 9.5 0 0.05			1	4/25/2001	83	0.034	0.053	3.05	0.51	0.98	urban
\$1	S1		3	5/9/2001	1470	0.107	0.004				
\$1	S1		5	5/23/2001							
\$1 13 7/18/2001 203 0.086 0.004 4.6 0 0 0 Urban \$1 17 8/28/2001 257 0.05 0.086 0.4 0 0.03 0.03 Urban \$1 17 8/28/2001 257 0.05 0.086 0.4 0 0.03 0.71 Urban \$1 23 10/8/2001 207 0.022 0.014 3.8 0 0 0.71 Urban \$1 28 11/8/2001 107 0.042 0.025 4.09 0 0 0 0 Urban \$1 28 11/8/2001 107 0.042 0.025 4.09 0 0 0 0 Urban \$1 28 11/8/2001 107 0.042 0.025 4.09 0 0 0 Urban \$1 31 11/20/2001 227 0.018 0.029 3.4 0.14 0.14 0.15 Urban \$18 1 4/25/2001 170 0.108 0.123 4.17 0 0.51 0.98 Mixed \$18 3 59/2001 147 0.08 0.028 3.47 0.04 0.54 0.54 Mixed \$18 5 5/23/2001 163 0.129 0.023 9.6 0 0.05 0.05 Mixed \$18 6 6/20/2001 2237 0.078 0.18 7.6 0 0.078 0.06 0.06 0.06 0.06 Mixed \$18 8 8/20/2001 187 0.376 0.13 6.5 0 0 0 0 0 Mixed \$18 18 8/25/2001 167 0.376 0.13 6.5 0 0 0 0 0 Mixed \$18 19 8/25/2001 533 0.337 0.014 0.56 0 0 0 0 Mixed \$18 19 8/25/2001 533 0.209 0.035 0.209 0.31 0.31 0.31 Mixed \$18 25 10/23/2001 633 0.209 0.035 0.209 0.31 0.31 0.31 Mixed \$18 25 10/23/2001 633 0.209 0.035 0.209 0.31 0.31 0.31 Mixed \$18 31 11/20/2001 247 0.153 0.145 2.1 0.14 0.14 0.15 Mixed \$18 31 11/20/2001 247 0.153 0.045 0.04 0.04 0.07 0.04 0.07 0.03 0.											
\$1 15 & \$715/2001 430 0.085 0.086 14.5 0 0 0 0 0 0 1 1 1 1											
\$1 17 \$2/26/2001 \$257 0.05 0.008 0.4 0 0.03 0.03 Univariant	-										
\$1											
\$1											
\$1 25 10/23/2001 400 0.011 0.039 35.9 0.31 0.31 0.31 urban 51 31 11/20/2001 227 0.018 0.026 3.4 0.14 0.14 0.15 urban 518 1 4/25/2001 170 0.016 0.029 3.4 0.14 0.14 0.15 urban 518 3 5/9/2001 147 0.08 0.022 3.47 0.04 0.54 0.58 Mixed 5/23/2001 147 0.08 0.022 3.47 0.04 0.54 0.54 Mixed 518 5 5/23/2001 147 0.085 0.022 3.47 0.04 0.54 0.54 Mixed 518 7 8/9/2001 227 0.075 0.05 0.01 12.25 0.08 0.06 0.05 Mixed 518 9 8/20/2001 227 0.075 0.18 7.5 0.01 12.25 0.08 0.06 0.06 0.06 Mixed 518 13 7/18/2001 140 0.075 0.10 7.5 0.00 0.0 0.00											
\$1 29									_		
\$18										0	urban
\$18									0.14	0.15	urban
51B 5 5/23/2001 183 0 0.029 9.8 0 0.05 0.06 0.06 0.08 1 Mixed S1B 13 7/18/2001 207 1.43 0.045 0 0.03	-		1	4/25/2001	170	0.106	0.123	4.17	0.51	0.98	Mixed
\$18	S1B		3	5/9/2001	147	0.08	0.028	3.47 0.04	0.54	0.54	Mixed
S1B 9 8/20/2001 2237 0.078 0.18 7.6 0 0.78 1 Mixed S1B 13 7/18/2001 140 0.075 0.001 2.8 0 0 0 Mixed S1B 17 8/15/2001 207 1.43 0.045 0 0 0 0 Mixed S1B 19 9/25/2001 553 0.337 0.011 6.66 0.03 0.71 0.71 Mixed S1B 23 10/8/2001 560 0.025 0.038 4 0 0 0.24 Mixed 0.024 0.01 0.24 0.01 0.24 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 2.246 0 0 0.01 Mixed 0.02 0.04 2.46 0 0.51 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08	S1B		5	5/23/2001							
S1B	S1B										
S1B											
\$18											
S1B									_	_	
S1B 23 10/8/2001 560 0.025 0.038 4 0 0 0.2 Mixed											
S1B 25 10/23/2001 633 0.209 0.036 9.29 0.31 0.31 0.31 Mixed S1B 31 11/8/2001 100 0.198 0.044 2.45 0 0 0 0 Mixed S2B 3 11/20/2001 120 0.012 0.044 6.42 0 0.51 0.98 urban S2B 3 59/2001 380 0.155 0.53 0.04 0.54 0.54 urban S2B 5 5/23/2001 90 0.257 0.014 11.3 0 0.05 0.05 urban S2B 7 6/6/2001 1450 0.293 0.076 8.6 0 0.78 1 urban S2B 9 6/20/2001 1450 0.293 0.076 8.6 0 0.78 1 urban S2B 17 8/1/2001 310 0.254 0.001 5.2 0 0 0 urban S2B 15 8/1/2001 100											
S1B 29 11/8/2001 100 0.198 0.044 2.45 0 0 0 0 0 0 Mixed S1B 31 11/20/2001 247 0.153 0.145 2.1 0.14 0.14 0.15 Mixed S2B 1 4/25/2001 320 0.055 0.051 6.33 0.04 0.54 0.54 urban S2B 5 5/23/2001 90 0.257 0.041 11.3 0 0.05 0.									-		
S1B 31 11/20/2001 247 0.153 0.145 2.1 0.14 0.15 Mixed S2B 1 4/25/2001 390 0.155 0.051 6.32 0.04 0.54 0.54 urban S2B 5 5/23/2001 90 0.257 0.014 11.3 0 0.05 0.05 0.05 urban S2B 7 6/6/2001 60 0.142 0.005 21.22 0.08 0.06 0											
S2B 1 4/25/2001 120 0.012 0.041 6.42 0 0.51 0.98 urban S2B 5 5/23/2001 90 0.257 0.014 11.3 0 0.54 0.54 urban S2B 7 6/8/2001 80 0.257 0.014 11.3 0 0.05 0.05 urban S2B 9 6/20/2001 1450 0.293 0.078 8.6 0 0.78 1 urban S2B 13 7/18/2001 310 0.254 0.00 5.2 0 0 0 urban S2B 15 8/1/2001 180 0.086 0.12 8 0 0 0 urban S2B 17 8/15/2001 370 0.108 0.009 5.78 0.03 0.71 0.71 urban S2B 25 10/23/2001 20 0.011 0 0 0 0 0 0 0 0 0 0 0 0									0.14	0.15	Mixed
S2B 5 5/23/2001 90 0.257 0.014 11.3 0 0.05 0.05 0.05 urban S2B 7 6/8/2001 450 0.293 0.078 8.6 0 0.78 1 urban S2B 13 7/18/2001 310 0.254 0.001 5.2 0 0 0 urban S2B 15 8/1/2001 1100 0.084 0.12 8 0 0.78 1 urban S2B 17 8/15/2001 180 0.084 0.12 8 0 0.03 0.03 0.03 S2B 19 9/25/2001 370 0.108 0.009 5.78 0.03 0.71 0.71 urban S2B 23 10/8/2001 80 0.025 0.041 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.041</td> <td></td> <td>0.51</td> <td>0.98</td> <td>urban</td>							0.041		0.51	0.98	urban
S2B 7 6/6/2001 80 0.142 0.005 21.22 0.06 0.08 0.08 urban S2B 9 6/20/2001 1450 0.293 0.078 6.6 0 0.78 1 urban S2B 13 7/18/2001 1100 0.084 0.12 8 0 0 0 urban S2B 15 81/2001 1100 0.084 0.12 8 0 0 0 urban S2B 17 8/15/2001 370 0.108 0.003 0.71 0.71 urban S2B 23 10/8/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 25 10/23/2001 20 0.011 0.063 5.5 0.31 0.31 0.31 urban S2B 29 11/6/2001 80 0.038 0.014 1.5 0 0 0 urban S2B 31 11/25/2001 30 0.034 0.024 0.02 </td <td>S2B</td> <td></td> <td>3</td> <td>5/9/2001</td> <td>380</td> <td>0.155</td> <td>0.051</td> <td>3.33 0.04</td> <td>0.54</td> <td>0.54</td> <td>urban</td>	S2B		3	5/9/2001	380	0.155	0.051	3.33 0.04	0.54	0.54	urban
S2B 9 6/20/2001 1450 0.293 0.078 6.8 0 0.78 1 urban S2B 13 7/18/2001 310 0.254 0.001 5.2 0 0 0 urban S2B 15 8/15/2001 1300 0.086 0.013 0 0.03 0.03 urban S2B 19 9/25/2001 370 0.086 0.013 0 0.03 0.03 urban S2B 23 10/8/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 25 10/23/2001 220 0.011 0.063 5.5 0.31 0.31 0.31 urban S2B 29 11/8/2001 60 0.063 0.025 0.041 1.5 0.14 0.14 0.15 urban S2B 31 11/20/2001 30 0.023 0.099 1.5 0 0 0 0 urban S5 1 4/25/2001 30	S2B		5	5/23/2001	90	0.257	0.014	11.3	0.05		
\$28	S2B		7	6/6/2001	60						
S2B 15 8/1/2001 1100 0.084 0.12 8 0 0 0 urban S2B 17 8/15/2001 180 0.086 0.013 0 0.03 0.03 0.03 urban S2B 19 9/25/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 25 10/23/2001 20 0.011 0.063 5.5 0.31 0.31 0.31 urban S2B 29 11/8/2001 80 0.083 0.025 1.56 0 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0.14 0.14 0.15 urban S5 1 4/25/2001 30 0.023 0.099 1.5 0 0.31 0.74 Agr S5 3 5/9/2001 100 0.064 0.025 6.94 0.04 0.72 0.72 Agr S5 7 6/8/2001 20											
S2B 17 8/15/2001 180 0.086 0.013 0 0.03 0.03 0.03 urban S2B 19 9/25/2001 370 0.108 0.009 5.78 0.03 0.71 0.71 urban S2B 23 10/8/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 29 11/8/2001 80 0.083 0.025 1.56 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0 0 0 urban S2B 31 11/20/2001 30 0.023 0.099 15 0 0 0.15 urban S5 3 5/9/2001 100 0.054 0.025 6.94 0.04 0.72 0.72 Agr S5 7 6/8/2001 230 0.038 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>									-		
S2B 19 9/25/2001 370 0.108 0.009 5.78 0.03 0.71 0.71 urban S2B 23 10/8/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 25 10/23/2001 200 0.011 0.083 5.5 0 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0.14 0.14 0.15 urban S5 1 4/25/2001 30 0.023 0.099 15 0 0.31 0.74 Agr S5 3 5/9/2001 100 0.054 0.025 6.94 0.04 0.72 0.72 Agr S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/6/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 13 7/18/2001 5									_	_	
S2B 23 10/8/2001 80 0.025 0.041 1 0 0 0.2 urban S2B 25 10/23/2001 20 0.011 0.063 5.5 0.31 0.31 urban S2B 31 11/8/2001 80 0.083 0.025 1.56 0 0 0 urban S5 1 4/25/2001 30 0.023 0.099 15 0 0.31 0.74 Agr S5 3 5/9/2001 100 0.054 0.026 6.94 0.04 0.72 0.72 Agr S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/8/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.065 0.049 3.6 0 0.18 0.18 Agr S5 13 7/18/2001 50 0.023 0.004 <td></td>											
S2B 25 10/23/2001 220 0.011 0.083 5.5 0.31 0.31 0.31 urban S2B 29 11/8/2001 80 0.083 0.025 1.56 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0.14 0.14 0.15 urban S5 1 4/25/2001 30 0.023 0.099 15 0 0.31 0.74 Agr S5 3 5/9/2001 100 0.054 0.025 6.94 0.04 0.72 0.72 Agr S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/6/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.065 0.049 3.6 0 0.18 Agr 0.18 Agr S5 13 7/18/2001 500 0.032 0.004 5.1 0.04 0.04 0.04 Agr											
S2B 29 11/6/2001 80 0.083 0.025 1.56 0 0 0 urban S2B 31 11/20/2001 390 0.038 0.014 1.5 0.14 0.14 0.15 urban S5 1 4/25/2001 30 0.023 0.099 15 0 0.31 0.74 Agr S5 3 5/9/2001 100 0.054 0.025 6.94 0.04 0.72 0.72 Agr S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/6/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.085 0.049 3.6 0 0.18 0.18 Agr S5 13 7/18/2001 50 0.034 0.004 5.1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0					1				_		
\$28											
S5 3 5/9/2001 100 0.054 0.025 6.94 0.04 0.72 0.72 Agr S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/6/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.065 0.044 5.1 0.04 <td< td=""><td></td><td></td><td></td><td></td><td>390</td><td>0.038</td><td></td><td>1.5 0.14</td><td>0.14</td><td>0.15</td><td>urban</td></td<>					390	0.038		1.5 0.14	0.14	0.15	urban
S5 5 5/23/2001 80 0.105 0.015 10.3 0 0.44 0.44 Agr S5 7 6/8/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.063 0.049 3.6 0 0.18 0.18 Agr S5 13 7/18/2001 520 0.034 0.004 5.1 0.04 0.04 0.04 Agr S5 15 8/1/2001 420 0.023 0.099 13.2 0 0 0.38 Agr S5 17 8/15/2001 500 0.032 0.001 0 0 0.38 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.06 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.009 2.00 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S8 3 11/8/2001	S5		1	4/25/2001	30	0.023	0.099	15 0	0.31	0.74	Agr
S5 7 6/6/2001 230 0.038 0.008 6.92 0.02 0.02 0.02 Agr S5 9 6/20/2001 380 0.065 0.049 3.6 0 0.18 0.18 Agr S5 13 7/18/2001 520 0.034 0.004 5.1 0.04 0.04 0.04 Agr S5 15 8/1/2001 420 0.023 0.099 13.2 0 0 0.38 Agr S5 17 8/15/2001 500 0.032 0.001 0 0 0 0 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.06 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.009 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	S5		3	5/9/2001	100				0.72		
S5 9 6/20/2001 380 0.065 0.049 3.6 0 0.18 0.18 Agr S5 13 7/18/2001 520 0.034 0.004 5.1 0.04 0.04 0.04 Agr S5 15 8/1/2001 420 0.023 0.099 13.2 0 0 0.38 Agr S5 17 8/15/2001 500 0.032 0.001 0 0 0 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.06 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.009 2.55 0.06 0.58 0.58 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/6/2001 120 0.018 0.046 2.76 0 0 0 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 5 5/23/200			-								
S5 13 7/18/2001 520 0.034 0.004 5.1 0.04 0.04 0.04 0.04 Agr S5 15 8/1/2001 420 0.023 0.099 13.2 0 0 0.38 Agr S5 17 8/15/2001 500 0.032 0.001 0 0 0 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.06 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.09 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.68 0.14 0.14 0.14 Agr S5 29 11/6/2001 120 0.018 0.048 2.76 0 0 0 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 20 0.074 <											_
S5 15 8/1/2001 420 0.023 0.099 13.2 0 0 0.38 Agr S5 17 8/15/2001 500 0.032 0.001 0 0 0 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.08 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.099 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/8/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 120 0.012 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 5 5/23/2001 60 0.074 0.005											
S5 17 8/15/2001 500 0.032 0.001 0 0 0 Agr S5 19 9/25/2001 310 0.03 0.009 2.55 0.08 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.009 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/8/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 1280 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 59/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 7 6/6/2001 200 0.071 0.005											
S5 19 9/25/2001 310 0.03 0.009 2.55 0.06 0.58 0.58 Agr S5 23 10/8/2001 300 0.09 0.009 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/8/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 1280 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 7 6/6/2001 200 0.071 0.005 8.6 0 0.44 0.44 Agr S8 9 6/20/2001 1030 0.097<									_		
S5 23 10/8/2001 300 0.09 0.009 2 0 0 0.62 Agr S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/6/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 1260 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 6/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 13 7/18/2001 300 0.097<									_		
S5 25 10/23/2001 120 0.058 0.025 5.66 0.14 0.14 0.14 Agr S5 29 11/6/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 1260 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 6/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 13 7/18/2001 2200 0.068 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0.031 0 0 0 0 0 0 0											
S5 29 11/8/2001 120 0.018 0.046 2.76 0 0 0 Agr S5 31 11/20/2001 1280 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 6/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 9 6/20/2001 1030 0.097 0.031 11.6 0 0.18 0.18 Agr S8 13 7/18/2001 200 0.088 16.3 0.04 0.04 0.04 Agr S8 17 8/10/2001 300 0.001											
S5 31 11/20/2001 1280 1.122 0.019 3.5 0.13 0.13 0.13 Agr S8 1 4/25/2001 10 0.012 0.039 2.11 0 0.31 0.74 Agr S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 6/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 9 6/20/2001 1030 0.097 0.031 11.6 0 0.18 0.18 Agr S8 13 7/18/2001 2200 0.088 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0.049 0.003 0 0 0 0.38 Agr S8 17 8/10/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 0.08 0.08 0.08 0.08 0.08 0.08 0.0					120						
S8 3 5/9/2001 225 0.056 0.033 2.45 0.04 0.72 0.72 Agr S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 6/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 9 6/20/2001 1030 0.097 0.031 11.6 0 0.18 0.18 Agr S8 13 7/18/2001 2200 0.068 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0 0 0.38 Agr S8 17 8/10/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 <td< td=""><td>S5</td><td></td><td>31</td><td>11/20/2001</td><td>1260</td><td></td><td>0.019</td><td>3.5 0.13</td><td></td><td>0.13</td><td>Agr</td></td<>	S5		31	11/20/2001	1260		0.019	3.5 0.13		0.13	Agr
S8 5 5/23/2001 60 0.074 0.005 8.6 0 0.44 0.44 Agr S8 7 8/6/2001 200 0.071 0.009 15.04 0.02 0.02 0.02 Agr S8 9 6/20/2001 1030 0.097 0.031 11.6 0 0.18 0.18 Agr S8 13 7/18/2001 2200 0.068 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0 0 0.38 Agr S8 17 8/10/2001 320 0.041 0.009 14.4 0.08 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 <t< td=""><td>S8</td><td></td><td>1</td><td>4/25/2001</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	S8		1	4/25/2001							
S8 7 8/6/2001 200 0.071 0.009 15.04 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0.003 0.04 0.04 0.04 0.04 Agr S8 17 8/10/2001 3000 0.017 0.003 0 0 0.38 Agr S8 19 9/25/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr											-
S8 9 6/20/2001 1030 0.097 0.031 11.6 0 0.18 0.18 Agr S8 13 7/18/2001 2200 0.068 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0 0 0.38 Agr S8 17 8/10/2001 0.049 0.003 0 0 0 0 Agr S8 19 9/25/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr											
S8 13 7/18/2001 2200 0.068 16.3 0.04 0.04 0.04 Agr S8 15 8/1/2001 3000 0.017 0 0 0.38 Agr S8 17 8/10/2001 0.049 0.003 0 0 0 0 Agr S8 19 9/25/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr											
S8 15 8/1/2001 3000 0.017 0.049 0.003 0 0 0 0.38 Agr S8 17 8/10/2001 320 0.041 0.009 14.4 0.08 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr											•
S8 17 8/10/2001 0.049 0.003 0 0 0 Agr S8 19 9/25/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr							<u> </u>				-
\$8 19 9/25/2001 320 0.041 0.009 14.4 0.06 0.58 0.58 Agr \$8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr \$8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr \$8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr					3000		0.003				-
S8 23 10/8/2001 130 0.058 0.008 2.2 0 0 0.62 Agr S8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr					320						-
\$8 25 10/23/2001 180 0.02 0.018 3.64 0.14 0.14 0.14 Agr \$8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr											•
S8 29 11/6/2001 70 0.033 0.025 6.46 0 0 0 Agr											•
S8 31 11/20/2001 120 0.031 0.013 2 0.13 0.13 Agr						0.033	0.025	3. 46 0		0	Agr
	S8		31	11/20/2001	120	0.031	0.013	2] 0.13	0.13	0.13	Agr

Table A-3. Nutrients, E. coli, and Land-use Data. (continued)

Site	Week	Date	E. coli ANTP	TSS	Rain 24	Rain 48	Rain 72 Land use
S10	1		73 0.19	0.093 3.75	0	0.31	0.74 Mixed
S10	3		3833 0.272	0.1 9.49	0.04	0.72	0.72 Mixed
S10	5		250 0.159 163 0.067	0.003 9.7 0.035 11.63	0 0.02	0.44 0.02	0.44 Mixed 0.02 Mixed
S10 S10	9		287 0.115	0.12 14.4	0.02	0.18	0.18 Mixed
S10	13		127 0.097	0.005 17	0.04	0.04	0.04 Mixed
S10	15		210 0.069	0.11 18.7	0	0	0.38 Mixed
S10	17 19		147 0.116 10533 0.149	0.041 0.014 7.36	0.0 6	0 0.58	0 Mixed 0.58 Mixed
S10 S10	23		833 0.065	0.026 5.8	0.00	0.00	0.62 Mixed
S10	25		190 0.049	0.023 5.45	0.14	0.14	0.14 Mixed
S10	29		153 0.095	0.046 4.67	0	0	0 Mixed
S10 S11	31 1		2643 <u>0.069</u> 110 0.014	0.039 4.2 0.033 3.52	0.13 0	0.13 0.31	0.13 Mixed 0.74 urban
S11	3		170 0.079	0.05 1.41	0.04	0.72	0.72 urban
S11	5		90 0.111	0.003 12.1	0	0.44	0.44 urban
S11	7		150 0.079	0.018 8.37 0.031 4.1	0.02 0	0.02	0.02 urban 0.18 urban
S11 S11	9 13		420 0.08 280 0.044	0.031 4.1 0.005 5.4	0.04	0.18 0.04	0.04 urban
S11	15		310 0.021	0.096 5.1	0.04	0	0.38 urban
S11	17		230 0.049	0.008	0	0	0 urban
S11	19		690 0.033	0.006 2.2	0.06	0.58 0	0.58 urban
S11 S11	23 25		150 0.013 250 0.012	0.008 0.8 0.026 19.4	0 0.14	0.14	0.62 urban 0.14 urban
S11	29		330 0.025	0.028 5.35	0.14	0	0 urban
S11	31	11/20/2001	230 0.022	0.014 1.8	0.13	0.13	0.13 urban
\$13	1		110 0.01	0.039 4.05	0 0.04	0.31	0.74 Agr
S13 S13	3 5		540 0.138 320 0.11	0.014 3.92 0.001 13.7	0.04	0.72 0.44	0.72 Agr 0.44 Agr
S13	7		300 0.075	0.023 17.17	0.02	0.02	0.02 Agr
S13	8		460 0.08	0.05 12.1	0	0.18	0.18 Agr
S13	13		450 0.04 620 0.048	0.005 7.2 0.125 8.2	0.04 0	0.04	0.04 Agr 0.38 Agr
S13 S13	15 17		620 <u>0.048</u> 550 0.033	0.125 8.2 0.014	0	0	0.36 Agr
S13	19		380 0.042	0.009 4.18	0.06	0.58	0.58 Agr
S13	23		700 0.013	0.02 2.2	0	0	0.62 Agr
S13	25		370 0.039	0.058 <u>20</u> 0.03 3.15	0.14	0.14	0.14 Agr
S13 S13	29 31		130 <u>0.043</u> 120 0.029	0.03 3.19	0.13	0.13	0 Agr 0.13 Agr
S14	1		80 0.013	0.044 3.31	0	0.31	0.74 Agr
S14	3		390 0.067	0.026 2.65	0.04	0.72	0.72 Agr
S14	5		190 <u>0.133</u> 250 <u>0.064</u>	0.001 16.3 0.035 16.84	0 0.02	0.44 0.02	0.44 Agr 0.02 Agr
S14 S14	9		670 0.061	0.056 15.9	0.02	0.18	0.18 Agr
S14	13		660 0.04	0.005 7.2	0.04	0.04	0.04 Agr
S14	15		460 0.032	0.101 6	0	0	0.38 Agr
S14	17 19		580 0.054 440 0.069	0.011 0.015 4.97	0 0.0 6	0 0.58	0 Agr 0.58 Agr
S14 S14	23		810 0.012	0.014 4.4	0.00	0.50	0.62 Agr
S14	25		320 0.034	0.028 12.6	0.14	0.14	0.14 Agr
S14	29		40 0.038	0.033 6.51	0	0	0 Agr
S14 S16	31 1		190 0.021 127 0.486	0.013 2.5 0.11 6.19	0.13 0	0.13 0.31	0.13 Agr 0.74 Agr
S16	3		393 0.219	0.086 10.3	0.04	0.72	0.72 Agr
S16	5		350 0.19	0.031 17.9	0	0.44	0.44 Agr
S16	7		273 0.116	0.068 13.6	0.02	0.02	0.02 Agr
S16 S16	9 13		223 <u>0.101</u> 100 0.071	0.076 10.6 0.001 3.5	0 0.04	0.18 0.04	0.18 Agr 0.04 Agr
S16	15		483 0.132	0.106 2.8	0.54	0.54	0.38 Agr
S16	17	8/15/2001	310 0.144	0.026	0	0	0 Agr
S16	19		1007 0.733	0.363 9.07	0.06	0.58	0.58 Agr
S16 S16	23 25		443 0.817 587 NS	0.036 4.2 NS	0 0.14	0 0.1 4	0.62 Agr 0.14 Agr
S16	29		587 0.179	0.025 3.26	0.14	0.14	0 Agr
S16	31	11/20/2001	213 0.133	0.05 3.3	0.13	0.13	0.13 Agr
S17	1		2500 0.117	0.085 2.32	0 0.04	0.31	0.74 Mixed 0.72 Mixed
S17 S17	3 5		2000 0.24 1800 0.15	0.091 3.49 0.008 3.3	0.04	0.72 0.44	0.72 Mixed 0.44 Mixed
S17	7		1700 0.229	0.014 2.83	0.02	0.02	0.02 Mixed
S17	8	6/20/2001	410 0.091	0.1 1	0	0.18	0.18 Mixed
S17	13		20 0.13	0.021 1.4	0.04	0.04	0.04 Mixed
S17 S17	15 17		4900 1.816 900 2.467	0.331 3.4 0.491	0	0	0.38 Mixed 0 Mixed
317	17	0/10/2001	2.407	J.78	U	U	O MINEU

