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ABSTRACT

HIGH ORDER NUMERICAL METHODS FOR INVISCID AND VISCOUS
FLOWS ON UNSTRUCTURED GRIDS

By

Yuzhi Sun

The spectral volume (SV) method is a newly developed high-order, conservative, and
efficient finite volume method for hyperbolic conservation laws on unstructured grids. It
has been successfully demonstrated for scalar conservation laws and multi-dimensional
Euler equations. In this study, the SV method is compared with another high-order
method for hyperbolic conservation laws capable of handling unstructured grids named
the discontinuous Galerkin (DG) method. Their overall performance in terms of the
efficiency, accuracy and memory requirement is evaluated using the scalar conservation
laws and the two-dimensional Euler equations. To measure their accuracy, problems with
analytical solutions are used. Both methods are also used to solve problems with strong
discontinuities to test their ability in discontinuity capturing. Both the DG and SV
methods are capable of achieving the formal order of accuracy while the DG method has
a lower error magnitude and takes more memory. They are also similar in efficiency. The
SV method appears to have a higher resolution for discontinuities because the data

limiting can be done at the sub-element level.

The SV method is also successfully extend to the Navier-Stokes equations. First, the SV

method is extended to and tested for the diffusion equation. In this study, three



different formulations named Naive SV, Local SV and Penalty SV for the diffusion
equation are presented. The Naive SV formulation yields an inconsistent and unstable
scheme, while the other two formulations are consistent, convergent and stable. A Fourier
type analysis is performed for all the formulations, and the analysis agrees well with the
numerical results. Second, the Local SV method is chosen to be extended to solve the
Navier-Stokes equations since it gives the optimum accuracy in solving the diffusion
equation. The formulation of the Local SV method for the two-dimensional compressible
Navier-Stokes equations is described. Accuracy studies are performed on the scalar
convection-diffusion and the Navier-Stokes equations using problems with analytical
solutions. It is shown that the designed order of accuracy is achieved for 1%, 2" and 3"
order reconstructions. The solver is then used to solve other viscous laminar flow

problems to demonstrate its capability.
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CHAPTER 1

INTRODUCTION

1.1 Background of Computational Fluid Dynamics (CFD)

The physical aspects of transport phenomena in the macro-scale are govermed by the

Newton’s laws of motion and the fundamental principles of mass, energy and species
conservation. The final objective of most engineering investigations is to obtain a
quantitative description of the physical problem by analytical, experimental or numerical

methods.

By the turn of the twentieth century, the development of closed form analytical solutions
for flow field problems had reached a highly mature stage and it was being realized that a
large class of problems still remained which were not amenable to exact analytical
solution methods. Experimental fluid dynamics has played an important role in validating
and delineating the limits of the various approximations to the governing equations. The
wind tunnel, as a piece of experiment equipment, provides an effective means of
simulating real flows. Traditionally this has provided a cost-effective alternative to full-
scale measurement. In the design of equipment that depends critically on the flow
behavior, e.g. aircraft design, full-scale measurement, as part of the design process is
economically unavailable. The steady improvement in the speed of computer and
memory size since 1950s has led to the emergence of computational fluid dynamics
(CFD) to study the characteristics of fluid dynamics using digital computers. CFD is

significantly cheaper than wind tunnel testing and will become even more so in the future.



1.2 Numerical Methods in CFD

The success of CFD is really dependent on two factors, i.e. improvement on computer
hardware and highly efficient computational algorithms. Therefore, there have been
intensive efforts to develop highly efficient and accurate numerical algorithms to seek

higher quality numerical solutions with less CPU time.

The basic issue of quality of numerical solutions in CFD simulation is fundamentally
important: how accurate are the numerical simulations and how does one obtain the most
accurate results given a fixed computational resource? These questions lie at the core of
modern numerical methods that aim to control the error in the computed solution and to

optimize the computational process.

Many methodologies have been developed to address this issue for the hyperbolic
systems in the last three decades. One of the most successful algorithms is the Godunov
method [24], which laid a solid foundation for the development of modern upwind
methods [20,25-26,46,60-61]. For example, van Leer [60-61] extended the first-order
Godunov method to second-order by using a piece-wise linear data reconstruction and a
limiter to remove spurious numerical oscillations near steep gradients. In addition, for
better efficiency the exact Riemann solver used in the Godunov method was replaced by
approximate Riemann solvers or flux-splitting procedures, such as the flux-vector
splitting [59] by Steger and Warming, the flux-difference splitting [52] by Roe, the
smoother flux vector splitting [62] by Van Leer, the differentiable approximate Riemann

solver [45] by Osher, and AUSM [40] by Liou, FUSS [63] by Wang, among many others.



One of the most popular schemes for obtaining solutions on unstructured meshes is the
discontinuous Galerkin finite element (DG) method, which was introduced in the early
1970’s for the num;:rical solution of first-order hyperbolic problems (see [6,13,15-18,23,
35,36,39,48-50]). Simultaneously, but independently, it was proposed as non-standard
schemes for the numerical approximation of second-order elliptic equations [2, 68]. In
recent years there has been renewed interest in the discontinuous Galerkin method due to
its favorable properties, such as a high degree of locality, stability in the absence of
streamline-diffusion stabilization for convection-dominated diffusion problem [29], and
the flexibility of locally varying the polynomial degree in hp-version approximations,
since no point wise continuity requirements are imposed at the element interfaces. Much
attention has been paid to the analysis of the DG method applied to non-linear hyperbolic
equations and hyperbolic systems [11,12,27], several other types of non-linear equations
(including the Hamilton-Jacobi equation [30], and non-linear Schrodinger equation [37],
and other non-linear problem [14]). Also, it was extended to the compressible Navier-

Stokes equations [7].

An alternative to the finite element method is the finite-volume method, in which the
governing equations are solved in integral form over the discrete volumes formed by the
cells of a mesh. Description of various finite-volume methods on unstructured meshes are
given by Barth and Jesperson [S], Whitaker, et al. [69], Jameson, et al. [32-34], and
Mariplis and Jameson [42]. Barth [3] presents a detailed account of the implementation of

finite volume schemes for the Euler and Navier-Stokes equations using efficient edge-



based data structures. Finite volume schemes generally solve for quantities averaged over
cells of the actual mesh in the case of cell-centered schemes or over cells of a dual mesh
in the case of vertex schemes. In any event, in order to evaluate the residual, a
polynomial data distribution must be reconstructed from these averaged quantities. To
achieve higher than second order accuracy, a higher order distribution must be
constructed in each cell, requiring information from more distant neighbors. This was
done by Barth and Frederickson [4] for quadratic reconstruction (and hence third order
accuracy). Hu and Shu [31] further devised a fourth order scheme without expanding the

third order stencil.

More recently, a high-order, conservative, yet efficient method named the spectral
volume (SV) method was presented by Wang [64] for hyperbolic conservation law. The
SV method is a finite volume method, in which the concept of a “spectral volume” is
introduced to achieve high-order accuracy in an efficient manner similar to spectral
element and multidomain spectral methods. Each spectral volume is further subdivided
into control volumes, and cell-averaged data from these control volumes are used to
reconstruct a high-order approximation in the spectral volume. Then Riemann solvers are
used to compute the fluxes at spectral volume boundaries. Cell-average state variables in
the control volumes are updated independently. Furthermore, total variation diminishing
and total variation bounded limiters are introduced in the SV method to remove/reduce
spurious oscillations near discontinuities. Unlike spectral element and multidomain
spectral methods, the SV method can be applied to fully unstructured grids. A very

desirable feature of the SV method is that the reconstruction is carried out analytically,



and the reconstruction stencil is always nonsingular, in contrast to the memory and CPU-

intensive reconstruction in a high-order k-exact finite volume method.

1.3 Motivation and Objectives of This Study

The newly developed spectral (finite) volume method has been successfully
demonstrated for hyperbolic conservation laws including non-linear systems on
unstructured grids in a series of papers [65-67]. A framework has been established to
easily solve non-linear time-dependent hyperbolic systems of conservation laws using
explicit, non-linear Runge-Kutta time discretization [58] with approximate Riemann
solvers and TVB (total variation bounded) non-linear limiters [54]. One objective of this
study is to give a further numerical demonstration that the SV method is comparable to
other high order methods and also possesses some unique properties. To do so, we
evaluate the DG and SV methods on hyperbolic conservation laws, since the DG and SV
methods seem to be the most efficient among the high-order methods on unstructured

grids.

Ultimately, we wish to extend the SV method to the Navier-Stokes equations to perform
large eddy simulation and direct numerical simulation of turbulence flow for problems
with complex geometries. So, another objective of this study is to extend the SV method

[64-67] to the Navier-Stokes equations.

A key in the extension is to properly discretize the second order viscous terms. In a

second-order finite volume method, the solution gradients at an interface are computed



by averaging the gradients of the neighboring cells sharing the face, and were shown to
be adequate. For higher-order elements, special care has to be taken in computing the
solution gradients. For example, Cockburm and Shu developed the so-called local
discontinuous Galerkin method to treat the second order viscous terms and proved
stability and convergence with error estimates [19] motivated by the successful numerical
experiments of Bassi and Rebay [7]. Baumann and Oden [8], Oden, Babuska and
Baumann [44] introduced a different discontinuous Galerkin method for the discretization
of the second order viscous terms. Riviere, Wheeler and Girault [51] analyzed three
discontinuous Galerkin approximations for solving elliptic problems in two or three
dimensions. More recently, Shu [57] summarized three different formulations of the
discontinuous Galerkin method for the diffusion equation, and Zhang and Shu [72]

performed a Fourier type analysis for these three formulations.

Motivated by the DG approach in handling the viscous term, three SV formulations for
pure diffusion equations will be presented in this research, and one of them will be
successfully applied to 1D and 2D scalar convection-diffusion equations, eventually to
viscous flows governed by the Navier-Stokes equations. The spatial convergence rate of
the SV method will be established for some scalar cases and Couette flow, and the

designed order of accuracy will be studies.

1.4 Qutline of the Dissertation
The dissertation is arranged as follows. We first review the framework of the

discontinuous Galerkin (DG) spectral volume (SV) methods in Chapter 2. Then in



Chapter 3, we evaluate the DG and SV methods in terms of the number of operations,
memory requirement, accuracy and CPU times for inviscid flows. In Chapter 4, we
present three SV formulations for the diffusion equation. The extension of the SV method
to the viscous flow is presented in Chapter 5 and Chapter 6. Finally, a summary of the

present study and recommendations for further investigations are given in Chapter 7.



CHAPTER 2

FRAMEWORK OF DG AND SV METHODS

The DG method is a finite element method using discontinuous solution and test spaces
(usually piecewise polynomials of suitable degree), which means that the state variables
are not continuous across element boundaries. The fluxes through the element boundaries
are then computed using an approximate Riemann solver, mimicking the successful
Godunov finite volume method [24]. Due to the use of Riemann fluxes across element
boundaries, the DG method is fully conservative at the element level. The SV method
[64-67] is a finite volume method. For a given unstructured grid, each element (called a
spectral volume) is further partitioned into structured sub elements named control
volumes (CVs). Mean state-variables at the CVs inside a SV are employed to construct a
high-order polynomial within the element or SV, which is then utilized to update the
means at the CVs. The reconstruction problem can be solved analytically, and is identical
for all simplexes. Therefore a high-order SV method is much more efficient than a high-
order k-exact FV method, in which a reconstruction problem must be solved for each
control volume. The SV method is fully conservative at the sub-cell control volume level.

Both methods are reviewed next.

2.1 DG Method

Consider the following two-dimensional conservation laws

0, +VeF =0, Qx(0,T) (2.1)



equipped with proper initial and boundary conditions. In Eq. (2.1), F =(f, g) is the flux
vector. Multiplying Eq. (2.1) by a test function ¢, integrating over the computational

domain Q, and performing integration by parts, we obtain the following weak statement

of the problem
[e0,av+ §¢F(Q)ondS—jV<o-F(Q)dv =0,Vg 2.2)
Q 0Q Q

Note that the integral in Eq. (2.2) is understood to be performed in a component-wise

manner if Q is a column vector.

2.1.1 Space Discretization

Assume that the computational domain £2is subdivided into N non-overlapping triangular
elements {7;}. By applying Eq. (2.2) to each element T;, we can obtain the discrete
analogue of Eq. (2.2) on the computational grid. Let the solution and test function be
piece-wise polynomials in each element. Denote the polynomial basis

as §(r)={§l(r),---,§,,(r)}T. If the polynomial is of order k, the dimension of the

polynomial space in 2D is n = (k+1)(k+2)/2. The solution and the test function on

element T; can be expressed as

0ir.1)= Y 0/ (), gy = D), (r). (2.3)
j=1 j=1

The expansion coefficients Qij denote the degrees of freedom (DOFs) of the numerical

solution on element T;. Note that there is no global continuity requirement for Q; , which

is generally discontinuous across the element boundaries. Using the solution and test

function, Eq. (2.2) on element T; becomes



g“ I¢I1Qidv + §(0;,FondS - IV(p,, eFdV =0. (2.4)

Equation (2.4) must be satisfied for any test function ;. Since & is the basis function

for g, , Eq. (2.4) is equivalent to the following system of n equations

d .

ngjQ,-var §&;Fonds - [VE; oFdV =0, 1<j<n. 2.5)
T; oT; T;

Because the approximate solution is discontinuous at the element boundaries, the

interface flux is not uniquely defined. It is at this stage the Riemann flux used in the

Godunov finite volume method [24] is borrowed. The interface flux function Fen is
replaced by a Riemann flux f‘(QL,QR,n), where QLand QR are the state variables at

the left and right side of the interface. In order to guarantee consistency and conservation,

the Riemann flux must satisfy

F(Q.0.m)=F(Q)en, (", 0% .m)=-F(Q" 0" -n). (2.6)
The surface and volume integrals in Eq. (2.5) can be computed with Gauss quadrature
formulas of suitable orders of accuracy, which are given in Appendix A. Following the
arguments given in [13], the surface integral must be exact for polynomials of degree 2k,
while the volume integral must be exact for polynomials of degree 2k-1, i.e.,

K
§&Fonds =73 [£;Fends.
aT,' r=1Ar

J.ng.ndS = Zwrsgj(rrs)ﬁ(QL(rrj)’QR(rrs)anr)Ars
Ay s=1
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nv
Iv‘fj *FdV = Z stfj (ry) o F(Q; (rs))V;. 2.7
T; s=1

where K is the number of planar faces of T;, ns is the number of quadrature points on a
planar face for the surface integral, nv is the number of quadrature points in the element

for the volume integral, w, and w, are the Gauss quadrature weights, r,;and r, are the

Gauss quadrature points. Let U’ = {Q,'l.'",Q,” }7 be the DOFs for element T;, and W'

denote the mass matrix J ¢;&1dV ¢ . Equation (2.5) can be further written as
Ti

i -]
iU—+(w') §&F ends - [VEeFav |=0. (2.8)
dt
aT; T;
By assembling together all the elemental contributions, a system of ordinary differential

equations that govern the evolution of the discrete solution can be written as

au =RU), 2.9)
dt

where U is the global vector of DOFs, and R(U) is the global residual vector with the

element vector being

Ri(U)=-(Wi)_I §§Fond5—jvg-de . (2.10)
a7; T;

2.1.2 Grids and Data Reconstructions
The degrees of freedom are chosen as the values at certain points in each element, which

are shown in Figure 2.1.
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Figure 2.1 Degrees of freedom for DG,
(a) linear element, (b) quadratic element, (c) cubic element

The basis functions in terms of the triangular coordinates are given next.

Linear element:

S =4,
=4,
G=1-4-4.

Quadratic element:

& =424 -1,

& =4 (24 -1,
& =A3-(24;3 1),
¢4 =444,
&5 =44y - A3,
Ee =443 Ay.

Cubic element:
S =A4-CGA4-1)-(B4 -2)/2,
$r =4 Bh-D-B4 -2)/2,
& =43-(3A43-1)-(343-2)/2,
Sa=4-A-BA4-1)9/2,
Es=Ay-A3-(3-1):9/2,
$o=A3-4-(343-1)-9/2,

12



&1 =44 34-1)-9/2,
=4y A3-(BA3-1)-9/2,
$o =A3-4-(34 -1)-9/2,
S10 =274, -4y - 43,

where A j»J=123 are the triangular coordinates described in Appendix A,

A‘l+/12 +/13=1,/1j >0.

2.1.3 Time Integration
An explicit multi-stage third-order TVD (total variation diminishing) Runge-Kutta
scheme is employed for time integration [55]. The Runge-Kutta scheme can be expressed

in the following form:
v =u"+MRU™M);

U@ =%U"+i[u(‘)+mR(U‘”)}; (2.11)

vt = %U" +§[U(2) +ARWU )],

Where, U" is the global vector of DOFs at timet =t,,, and U n+1 is the global vector of

DOFs attimet =t,,| =t, +At.

2.1.4 Monotonicity Limiter
For the non-linear Euler equations, it is necessary to perform data limiting to maintain
stability if the solution contains discontinuities. There are two possible ways of applying

limiters in the system setting. One way is to apply a limiter to each characteristic variable.
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The other is to apply a limiter to each of the conservative variables. In one dimension, the
former has the nice property of naturally degenerating to the scalar case if the hyperbolic
system is linear. In multiple dimensions, characteristic variables are defined in a
particular direction, e.g. in the face normal direction. In a fully unstructured grid, there is
no coordinate direction to define a characteristic variable. Therefore it is difficult to
design characteristics-based limiters in multiple dimensions. In this research, we choose
the component-wise approach for the limiter, which should also be much more efficient
than the characteristic approach. To this end, we first establish the following numerical

monotonicity criterion for each element
aimln S Q, (rs) S aimax , (2.12)
where ;™" and Q,™** are the minimum and maximum cell-averaged solutions among

all its neighboring elements sharing a face with T;, and Q;(r,) is the solution at any of

the quadrature points. If the inequality (2.12) is violated for any quadrature point, then it
is assumed that the element is close to a discontinuity, and the solution in the element is

forced locally linear, i.e.,
Q;(r)=Q; +VQ;e(r-r;), VreT;, (2.13)
where r; is the position vector of the centroid of T;. The magnitude of the solution

gradient is maximized subject to the monotonicity condition given in the inequality
(2.12). The original polynomial is used to compute an initial guess of the gradient at the

element centroid, i.e.,

Vo, =(

99; 90i
ox ' dy

ri
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This gradient may not satisfy the inequality (2.12). Therefore it is limited by multiplying

a scalar limiter ¢ € [0, 1] so that the following solution satisfies the inequality (2.12)
Qi(r)=0; +@VQ; e(r-r;). (2.14)

The scalar limiter can be obtained by examining the numerical solutions at all the

quadrature points [65].

2.2 SV Method
In the SV method, the element T; is named a spectral volume, which is further partitioned

into subcells named control volumes (CVs), indicated by C; ;, as shown in Figure 2.2.

/\:> /<>\ Linear reconstruction

j—

uadratic reconstruction

/\ ,,
/\ — /&\Cubic reconstruction
a

Figure 2.2 Spectral volumes of various degrees




To approximate the solution as a polynomial of degree k in two dimensions (2D), we

need to partition the SV into n = (k+1)(k+2)/2 sub-cells. The degrees of freedom (DOFs)

in a SV are the volume-averaged mean variables Q j at the n CVs. There are numerous

ways of partitioning a SV, and not every partition is admissible in the sense that the
partition may not be capable of producing a degree k polynomial. Once n mean solutions
in the CVs of an admissible SV are given, a unique polynomial reconstruction can be
obtained from
n
pi()= Y L;(0Q; j, (2.15)
j=1

where L ;(r) are also degree k polynomials satisfying

L, ()dv =V, 8, (2.16)
Chj

and V; ;is the volume of C; ;. This high-order polynomial reconstruction facilitates a

high-order update for the mean solution of each CV. Integrating Eq. (2.1) in each CV, we

obtain

do; j

K
— Vit Y j’(Fon)ds =0, (2.17)

f=1Ar
where K is the total number of faces in Ci,j. The flux integral in Eq. (2.17) is then

replaced by a Gauss-quadrature formula (see Appendix A) that is exact for polynomials

of degree k
ne
[(Fen)ds =3 w, FQ@,)on, A,, (2.18)
Ay s=1
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where ne is the number of quadrature points on the r-th face, w,, are the Gauss
quadrature weights, r,; are the Gauss quadrature points. Since the reconstructed

polynomials are piece-wise continuous, the solution is discontinuous across the
boundaries of a SV, although it is continuous across interior CV faces. The fluxes at the
interior faces can be computed directly based on the reconstructed solutions at the
quadrature points. The fluxes at the boundary faces of a SV are again computed using
approximate Riemann solvers given the left and right reconstructed solutions. The

Runge-Kutta scheme is again used for time integration.

The TVD limiter in the SV method [65] is very similar to the one described in the last
section. The main difference is that the limiter is applied for the sub-cell averaged state
variables, rather than for the averaged state variables of macro element, i.e., the SV. This
is possible because of the inherent local resolution in the SV method. In order to make an
objective comparison with the DG method, the limiters are implemented in a similar

fashion.

Remark: In Wang’s paper [65], the Lebesgue constant is employed to quantify the

quality of the reconstructions. Following the paper [65], the Lebesgue constant ||Fn || is

expressed as

n
Iml= L;
I rrgagjzﬂ i)

for a given partition of a triangle E. It was shown in paper [65] that the smaller the
Lebesgue constant, the better the interpolation polynomial. In this work, we use good

enough SV partitions so that the interpolation polynomial is convergent when the
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computational grid is refined. Figure 2.3 shows the SV partitions used in our numerical

simulations for linear, quadratic, and cubic reconstructions. The order of grid nodes, faces,

control volumes and Gauss quadrature points (GQPs) are also shown in one spectral
volume.

2
N NE
° No. of nodes
17 J 14 8 No. of faces
2
9 4 No. of CVs
13 No. of GQPs

24

00‘132'3 4 4 5 1
(c)
Figure 2.3 SV partitions used in numerical simulations
(a) linear SV, (b)quadratic SV,(c) cubic SV
(this figure presented by color)
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CHAPTER 3

EVALUATION OF DG AND SV METHODS

3.1 Number of Operations and Memory Requirement

In order to provide a reasonable estimate of the number of operations for both methods,
we need to specify the governing equation and the Riemann solver. Two equations are
considered in this research. One is the 2D scalar linear conservation law in which Q is a
scalar, and f =aQ and g =bQ with a and b being constants. The other equation is the
2D Euler equations. In both cases, the Rusanov flux [53] (also called local Lax-
Friedrich’s flux) is selected. The Rusanov flux for the scalar conservation laws takes the

following form

ol (an, +bny) if(any +bny)>0

R 3.1
Q" (an, +bn y) otherwise

ﬁ(QL,QR,n)={

Since modern computers can execute multiplications as fast as additions, I operation is
defined to be one multiplication or one addition. Internal functions such as sqrt is
assumed to cost /0 operations. In addition, each if statement is also counted as I

operation. In this case, this scalar Riemann solver costs M g =5 operations (3 operations

to compute an, +bn,, one if statement, and another multiplication). The analytical flux

takes M , operations.

For the Euler equations, the Rusanov Riemann flux [53] takes the following form

Fb.0%m=1iF@h) + F@Fen-a@® -0h)) (3.2)
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where a =|v,|+¢, ¥, is the average face normal velocity, and ¢ the average speed of

sound at the interface. Given the vector of conservative variables, it is estimated that an

analytical flux evaluation costs M, = 24 operations, and a Riemann flux takes M p =85

operations.

For simplicity we have not considered the cost of limiters in the number of operations.
We do believe that the limiters in the SV method are more expensive to be implemented
than those in the DG method because data limiting is carried out for each element in the

DG method, but for each sub-cell (CV) in the SV method.

3.1.1 DG Method
We consider linear, quadratic and cubic elements, which are expected to yield second,
third and fourth-order spatial accuracy respectively. The DOFs for these elements are

shown in Figure 2.1. Over each element T;, the residual vector can be written as

j (FeV&))dV - § F&ds
. Al Ti oT;
RIU)= —(w') : . (3.3)
[(Feveyav - §FE,ds
LTi J7; §

3.1.1.1 Numbers of operations

The total number of operations can be roughly divided into three main parts,

corresponding to the cost for computing the state variables at all the Gauss quadrature
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points (N;), the number of operations to compute the fluxes (N.), and the cost to multiply

the mass matrix (N;).

There are a total of (nv+3*ns) quadrature points that are used for surface and volume
integrals. We need n multiplications and n-I additions to compute one state variable
given the DOFs. Assume Q has nc component. Then the total number of operations to
compute the solutions at all the quadrature points is then
Ny=nc*(2*n-1)*(nv+3*ns). (3.4)
Note that we have ignored the number of operations to compute the limiter for simplicity.
To evaluate the volume integral, we need to compute the (analytical) fluxes at nv
quadrature points relating to n shape functions, while 3*ns Riemann fluxes are necessary
to evaluate the surface integral. However Riemann fluxes are shared between two
neighboring elements. Therefore we need to halve the number of operations for the
Riemann fluxes when evaluating the number of operations per element. We also need to
include the number of operations to carry out the Gauss quadrature formula. Thus we
obtain
Ny=n*nv*M, +3*ns*Mp/2+nc*n*2*nv-1)+nc*n*(3*ns-1) 3.5
N3 is simply the cost of a square matrix multiplying a vector, which is 2*n*n-n for one
component. For nc components, we therefore have
N3 = nc*(2*n*n-n). 3.6)

Note that N3 = 0 if an orthogonal basis is used.

The total cost to compute the residual vector for a single element is then
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NT =N1+N2 +N3 3.7
The numbers of operations for the DG schemes of second to fourth orders are listed in

Table 3.1.

Table 3.1 Number of operations for the DG method

Equation k N nv Ns Nr
1 3 2 141
2 6 6 3 512
Scalar Conservation Law 3 10 12 4 1496
1 2 831
2 6 6 3 2627
Euler Equations 3 10 12 4 7334

3.1.1.2 Memory requirement

The memory requirement for the DG method is estimated as the following:

e Two solutions; one at the current time step, and the other at the last time step.

Residual.

e Volume, centroid coordinates, face area, and face unit normal.
e Coordinates of quadrature points (face, cell)
¢ Gradient of shape function on quadrature points (face, cell).

e Shape functions, and their gradients at the centroid of the elements.
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The storage requirement is roughly 90 words per element for a second-order DG scheme,
221 words per element for a third-order DG scheme, and 512 words per element for a

fourth-order DG scheme for the 2D Euler equations.

3.1.2 SV Method

The degrees of freedom in the SV method are the mean state variables at the sub-cells,

i.e. control volumes. Over each spectral volume T;, the residual can be expressed as

- §ﬁds
' aC,"l
R'U)= : (3.8)
- ﬁds
L aCi.n

3.1.2.1 Numbers of operations

There are two kinds of faces in a spectral volume. The faces that lie on the SV boundaries
are called Riemann faces, because the state variables are discontinuous across these faces.
The other faces that lie inside a SV are named continuous faces because the state
variables are continuous across these faces. Denote the total number of faces in a SV with
nf, and the number of Riemann faces nr. Then the number of continuous faces is then (nf
- nr). Let the number of quadrature points on each face (edge) be ne. Then the number of
operations to compute the state variables at all the quadrature points is nc*nf*ne*(2n-1).
In addition, a total of (nf - nr)*ne analytical fluxes need to be computed while nr*ne
Riemann fluxes must be computed. Since the Riemann faces are shared between two

neighboring SVs, the number of operations is again halved. We also include the number
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of operations to carry out the Gauss quadrature formula (2*ne-1)*nf*nc. Since the mass
matrix in the SV method is always the identity matrix, number of operations in the SV
method can be written as

NT =N1+N2 +N3

where
Ny =nc*nf *ne*(2n-1) 3.9)
Ny =(nf-nr)*ne*M, +nr*ne*Mp/2+(2*ne—-1)*nf *nc (3.10)
N3 =0 @3.11)

The numbers of operations for the SV schemes of second to fourth orders are listed in

Table 3.2 for both the scalar and system conservation laws.

Table 3.2 Number of operations for the SV method

Equation k N ne nf nr Nr
1 3 1 9 6 81
Scalar Conservation Law 2 6 2 15 9 468
3 10 2 27 12 1287
1 3 1 9 6 543
Euler Equations 2 6 2 15 9 2553
3 10 2 27 12 6168
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3.1.2.2 Memory requirement

The permanent memory requirement is estimated as follows:

e Two solutions, one at the current time step, and the other at the last time step;

e The residual, volumes and centroid coordinates for the CVs, the face unit normal
vectors and areas for the sub-cell grid;

e Face to cell and face to node connectivity for the sub-cell grid;

e Coordinates of the sub-cell grid;

e A connectivity linking each quadrature point on a face to a point of the local standard

SV to reconstruct the solution at the quadrature point.

The storage requirement for the 2D Euler equations is roughly 99 words per element for a
second-order SV scheme, 194 words per element for a third-order SV scheme, and 361

words per element for a fourth-order SV scheme.

3.2 Accuracy and CPU Times

The following, we will do the comparison of DG and SV methods in terms of accuracy
and CPU time on both 2D scalar conservation laws and 2D inviscid flows governed by

Euler equations.

3.2.1 Scalar Conservation Laws

3.2.1.1 2D linear wave equation

We first test the performance of both methods for the following linear scalar conservation

law
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Up +Uy tuy =0; O<x<2, O<y<2

with u(x,y,0) =sin(z(x+y)) , and periodic boundary condition. The numerical
simulation was carried out until ¢ = I on two different grids, one regular and one irregular
as shown in Figure 3.1. The finer meshes are produced recursively from the coarser
meshes by dividing each triangle into 4 smaller triangles. The third-order TVD Runge-
Kutta time integration scheme was used with a sufficiently small time step that the errors
are independent of the time step. The same time step was used in both the DG and SV
methods although larger time steps are permitted in the SV method for stability. The
errors are computed based on the cell-averaged state variable on the element or the SV.
No limiters were employed in the simulations since the problem is smooth. Tables 3.3
and 3.4 present the errors and CPU times using both methods on the regular mesh, while
Tables 3.5 and 3.6 display the errors and CPU times using both methods on the irregular
mesh. Note that on the regular mesh, both methods achieved the expected numerical

order of accuracy in both L and L, norms. However, the DG method consistently
produced L; and L., errors of smaller magnitude than the SV method. The SV method,
on the other hand, is about 15% - 140% faster than the DG method depending on the
order of accuracy of the scheme. On the irregular grid, the DG method is capable of
achieving the expected order of accuracy in both L; and L., norms. Although the SV
method achieved the expected order of accuracy in L; norm, the third-order SV scheme
showed a reduction of half an order in L., norm. This may indicate the quality of the

quadratic SV partition can be further improved. Again, the SV method is consistently

faster than the DG method on the irregular grid.
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(a) Regular (10x10x2)

(b) Irregular (10x10x2)

Figure 3.1 Regular and irregular grids
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Table 3.3 Errors and CPU times at ¢ = 1 for a 2D linear wave equation using the DG
method on the regular mesh

Order of
accuracy Grid Lyerror Lyorder | Lerror | L,order | CPU(s)
10x10x2 1.14e-02 --- 2.43e-02 --- 3.33e-01
20x20x2 2.31e-03 2.30 5.83e-03 2.06 2.76e+00
2 40x40x2 5.09e-04 2.19 1.42e-03 2.04 2.23e+01
80x80x2 1.18e-04 2.11 3.49e-04 2.02 1.81e+02
160x160x2 | 2.84e-05 2.06 8.65¢-05 2.01 1.45¢+03
10x10x2 3.45e-04 --- 7.65e-04 --- 7.590e-01
20x20x2 4.27e-05 3.02 9.66e-05 2.99 6.37e+00
3 40x40x2 5.32e-06 3.00 1.21e-05 3.00 5.09e+01
80x80x2 6.65¢-07 3.00 1.51e-06 3.00 4.27e+02
160x160x2 | 8.31e-08 3.00 1.89¢-07 3.00 3.37e+03
10x10x2 1.39¢-05 --- 2.43e-05 --- 1.66e+00
20x20x2 8.59¢e-07 4.02 1.52e-06 4.00 1.33e+01
4 40x40x2 5.34e-08 4.01 9.54e-08 4.00 1.08e+02
80x80x2 3.33e-09 4.00 5.97e-09 4.00 8.47e+02
160x160x2 | 2.08e-10 4.00 3.73e-10 4.00 7.28e+03

Table 3.4 Errors and CPU times at ¢t = I for a 2D linear wave equation using the SV
method on the regular mesh

Order of

accuracy Grid Lyerror | Lyorder | Lerror | L,order | CPU(s)
10x10x2 | 4.02e-02 --- 5.86e-02 --- 1.21e-01

20x20x2 1.06e-02 1.92 1.59¢-02 1.88 9.47e-01
2 40x40x2 | 2.71e-03 1.97 4.09¢e-03 1.96 8.81e+00
80x80x2 | 6.83e-04 1.99 1.03e-03 1.99 8.39e+01
160x160x2 | 1.71e-04 2.00 2.59¢-04 1.99 6.05e+02

10x10x2 | 3.73e-03 --- 5.21e-03 --- 4.68e-01
20x20x2 | 4.77e-04 2.97 7.12e-04 2.87 4.19¢+00

3 40x40x2 | 6.04e-05 2.98 9.05e-05 2.98 3.67e+01
80x80x2 | 7.59e-06 2.99 1.14e-05 2.98 2.91e+02
160x160x2 | 9.51e-07 3.00 1.43e-06 2.99 2.21e+03
10x10x2 | 5.90e-05 --- 8.40e-05 --- 1.32e+00

20x20x2 | 3.73e-06 3.98 5.37e-06 3.97 1.35e+01

4 40x40x2 | 2.35e-07 3.99 3.34e-07 4.01 8.61e+01
80x80x2 | 1.48e-08 3.99 2.09e-08 4.00 6.90e+02
160x160x2 | 9.24e-10 4.00 1.31e-09 4.00 5.72e+03
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Table 3.5 Errors and CPU times at ¢ = I for a 2D linear equation using the DG method

on the irregular mesh

Order of
accuracy | Grid | Ljerror | Ljorder | L,error | L, order CPU (s)
10x10 | 2.17e-02 --- 6.05e-02 --- 3.77e-01
20x20 | 4.67e-03 2.22 1.64e-02 1.88 3.26e+00
2 40x40 | 1.07e-03 2.12 4.17e-03 1.97 2.65¢+01
80x80 | 2.56e-04 2.06 1.05e-03 1.99 2.13e+02
160x160 | 6.26e-05 2.03 2.62e-04 2.00 1.75e+03
10x10 | 7.34e-04 --- 2.56e-03 --- 9.12¢-01
20x20 | 8.72e-05 3.07 4.42¢e-04 2.53 7.50e+00
3 40x40 [ 1.07e-05 3.03 6.34e-05 2.80 6.00e+01
80x80 [ 1.33e-06 3.01 8.19e-06 2.95 4.8e+02
160x160 | 1.66e-07 3.00 1.03e-06 2.99 4.29¢+03
10x10 | 4.10e-05 --- 1.80e-04 --- 1.93e+00
20x20 | 2.41e-06 4.09 1.30e-05 3.79 1.57e+01
4 40x40 | 1.47e-07 4.04 8.54e-07 3.92 1.27e+02
80x80 | 9.08e-09 4.01 5.72e-08 3.90 1.02e+03
160x160 | 5.65e-10 4.01 3.72e-09 3.94 8.87e+03

Table 3.6 Errors and CPU times at ¢t = ] for a 2D linear wave equation using the SV

method on the irregular mesh

Order of
accuracy Grid | Ljerror | Ljorder | L.error | L order CPU (s)
10x10 | 6.71e-02 --- 1.18e-01 --- 1.38e-01
20x20 | 1.83e-02 1.87 3.40e-02 1.80 1.30e+00
2 40x40 | 4.71e-03 1.96 9.25e-03 1.88 1.17e+01
80x80 | 1.19e-03 1.98 2.42¢-03 1.94 8.61e+01
160x160 | 3.00e-04 1.99 | 6.20e-04 1.96 8.38e+02
10x10 | 8.36e-03 --- 1.68e-02 --- 5.59¢-01
20x20 [ 1.15e-03 2.86 2.95e-03 2.51 4.79¢+00
3 40x40 | 1.52e-04 2.92 5.28e-04 2.48 3.88e+01
80x80 | 2.01e-05 291 1.31e-04 2.01 3.27e+02
160x160 | 2.64e-06 2.93 2.85e-05 2.20 2.71e+03
10x10 | 2.28e-04 --- 7.39e-04 - 1.53e+00
20x20 | 1.37e-05| 4.06 | 5.45e-05 3.76 1.35e+01
4 40x40 | 8.50e-07 | 4.0l 3.54e-06 3.94 1.03e+02
80x80 |5.33¢-08| 4.00 |22le-07 4.00 7.98e+02
160x160 | 3.35¢-09 | 3.99 1.34e-08 4.04 7.31e+03
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3.2.1.2 2D Burger’s equation

Consider the two-dimensional nonlinear wave equation:

up tuuy +uuy, =0, -l<x<l, -l<y<l
1 1. . . . ..
u(x,y0) = Z + Esm(ﬂ(x + y)). with periodic boundary condition

We perform the simulation until ¢ = 0.1 when the solution is still smooth. The errors and
CPU times are documented in Tables 3.7 and 3.8. We also test the performance of TVB
limiters [65], in which the simulation is performed until ¢ = 0.45 when a shock wave
appeared in the solution. The solution errors in the smooth region [-0.2, 0.4] x [-0.2, 0.4]

are computed and presented in Tables 3.9 and 3.10.
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Table 3.7 Errors and CPU time on the 2D Burger’s equation at ¢ = 0.1 using DG on the

irregular mesh
Order of
accuracy Grid L, error Ljorder | L,error | L,order | CPU(s)
10x10 1.06e-02 --- 3.48e-02 --- 3.74e-02
20x20 2.75e-03 1.95 1.14e-02 1.61 3.22e-01
2 40x40 6.82e-04 2.01 3.21e-03 1.83 2.65e+00
80x80 1.70e-04 2.00 8.24e-04 1.96 2.18e+01
160x160 4.24e-05 2.00 2.08e-04 1.98 1.74e+02
10x10 6.80e-04 -—- 3.17e-03 --- 1.80e-01
20x20 1.14e-04 2.57 8.32e-04 1.93 1.54e+00
3 40x40 1.79e-05 2.68 1.62e-04 2.36 1.29¢+01
80x80 2.73e-06 2.71 3.45e-05 2.23 9.76e+01
160x160 4.08e-07 2.74 5.89e-06 2.55 7.76e+02
10x10 6.01e-05 --- 4.58e-04 --- 2.91e-01
20x20 3.68e-06 4.03 3.76e-05 3.61 2.34e+00
4 40x40 2.34e-07 3.98 2.47e-06 3.93 1.93e+01
80x80 1.61e-08 3.86 2.07e-07 3.58 1.53e+02
160x160 1.20e-09 3.75 1.95¢-08 341 1.21e+03

Table 3.8 Errors and CPU time on the 2D Burger’s equation at t = 0.1 using SV on the

irregular mesh

Order of

accuracy Grid L error Ljorder | L,error Lorder | CPU (s)
10x10 5.79e-03 -— 1.76e-02 -— 1.34e-02

20x20 1.46e-03 1.99 4.91e-03 1.84 1.29e-01
2 40x40 3.67e-04 1.99 1.41e-03 1.80 1.17e+00
80x80 9.41e-05 1.96 5.60e-04 1.34 8.62e+00

160x160 2.39¢-05 1.97 2.68e-04 1.06 6.92e+01

10x10 6.28e-04 - 2.15e-03 - 1.08e-01

20x20 1.18e-04 2.42 6.20e-04 1.80 9.80e-01
3 40x40 1.91e-05 2.62 1.38e-04 2.17 7.99e+00
80x80 3.02e-06 2.66 3.28e-05 2.07 6.83e+01
160x160 4.64e-07 2.70 6.09¢-06 2.43 5.09e+02
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