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ABSTRACT

Multivariate Linear and Nonlinear Decision trees

By

Geetha Arunachalam

The ID3 classification algorithm developed by Quinlan is a very popular decision tree

algorithm used extensively for obtaining a classifier model for patterns described by list

of discrete valued attributes. A decision tree is made of decision nodes and leaf nodes.

The decision node act as a test on input patterns and determines the outgoing branches

from that node. The leaf node acts as a terminal node and contains the class name or label

where the pattern is finally classified. The ID3 algorithm uses information gain based

criterion to select the best attribute test at decision nodes. C45 is an extension of the ID3

algorithm for handling continuous valued attributes. Both IDB and C45 decision trees use

one attribute at decision node and produce orthogonal decision boundaries. They often

tend to give complex decision trees for data sets with continuous valued attributes. There

is ample scope for reducing the size of the decision trees without any compromise in

classification accuracy by replacing the uni-variate test with multivariate tests and

orthogonal decision boundaries with non-orthogonal decision boundaries. This thesis

presents two-decision tree algorithms with multivariate test at decision nodes for data sets

with continuous valued attributes. The first algorithm gives a decision tree with linear

decision boundaries and the second algorithm gives a decision tree with nonlinear

decision boundaries. The proposed algorithm also use information criterion for selecting

the best linear or nonlinear test at each decision node. Results demonstrating the benefits

of generating higher order decision trees and non-orthogonal decision boundaries for

classification of data sets with continuous valued attributes are presented.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The need to find more efficient ways of performing a given task and the sheer

challenge of programming machines to imitate human intelligence has motivated

extensive research in machine learning since mid 1950’s. The ease with which humans

recognize a face, understand spoken words, read handwritten characters belies the

complex process that underlies pattern recognition [1]. Pattern recognition, which can be

defined as the act of taking in raw data and taking action based on the category of the

pattern, has been crucial in our day-to-day activities. Sophisticated machine learning for

accurate pattern recognition has become inevitable in finger print identification, DNA

sequence identification, and automated speech recognition, classification of objects and

in many more applications.

Early machine learning work produced self-improving programs such as adaptive

systems that monitor their own performance and improve it by adjusting parameters.

Then knowledge-based systems were introduced, which emphasized learning as the

acquisition of structured knowledge in the form of concepts or rules [2]. An expert

system for a complex task may require hundreds or even thousands of such rules. These

approaches failed to keep pace with the increasing demand on expert systems. This

bottleneck has motivated further investigation of different machine learning methods as a

means of explicating knowledge [3]. There are many pattern classification algorithms for

dealing with various levels of complexity and different applications. The following

paragraph summarizes some of the popular approaches used for pattern classification.



Bayesian decision theory is a fundamental statistical approach to the problem of

pattern classification. It makes use of the assumption that the problem is posed in

probabilistic terms and all of the relevant probability values are completely or partially

known [4]. Designing an optimal classifier in the presence of prior probabilities and class

conditional densities is straightforward. However in reality, in most pattern recognition

applications, the training data that are particularly representative of the patterns are not

sufficient to provide a complete knowledge of the probabilistic structure of the problem.

Though the estimation of prior probabilities is straight forward, the estimation of

conditional densities becomes complex especially when the dimensionality of feature

vector is large. The severity of this problem can be reduced significantly, if we know the

number of parameters to be estimated and also some general knowledge about the

problem for pararneterizing the conditional densities in advance. Maximum likelihood

and Bayesian estimation are two common methods used for parameter estimation.

Maximum likelihood views the parameters as quantities whose values are fixed but

unknown, whereas Bayesian method views the parameter as random variables having

some known prior distribution [4]. Another way of obtaining the decision function is

using non-parametric techniques. In contrast to parametric estimation, non-parametric

techniques can be used with arbitrary distributions, and without any assumption regarding

the underlying densities. One example of non-parametric design procedure is the nearest

neighbor rule, which bypasses the probability estimation, and directly goes to decision

function estimation [1]. Some non-parametric techniques estimate the probability density

function from sample patterns, which if satisfactory are substituted as true density in the

classifier.



Another method of obtaining the classifier model is to assume a form of the decision

boundary functions and use the training data to estimate the parameters of the decision

boundary. Here the knowledge of underlying probability distributions is not required and

in a limited sense the approach can be called as non-parametric. Linear discriminant

functions are relatively simple to compute and are attractive candidates for initial trial

classifiers. The task of finding a linear discriminant function is formulated as the problem

of minimizing a criterion function such as training error. In complex classification

models where linear discriminants are inadequate for good classification a nonlinear

decision function can yield decision boundaries with minimum error. However in these

complex problems, the need to determine too many free parameters makes the problem

more difficult in the absence of prior knowledge, which guides the choice of nonlinearity.

In such cases multilayer neural networks or multilayer-perceptrons are found to have

better performance. Neural networks learn the nonlinearity i.e. it learns the parameters

governing the nonlinear mapping of the problem and gives better classifier model than

linear discriminant [1]. For more complicated problems with less prior knowledge and

little training data, more sophisticated models based on stochastic methods are employed.

In this method randomness plays a crucial role in search and learning, for finding the

parameters. The general approach is to bias the search towards the region where we

expect the solution to be, and allow randomness somehow to help find optimal parameter

values. Boltzmann learning is one such method. It is based on concepts and techniques

from physics, specifically statistical mechanics. Another candidate is the genetic

algorithm, which is based on concepts from biology specifically on mathematical theory

of evolution. The Boltzmann class of techniques is highly theoretical and has



considerable success in pattern recognition whereas the latter class is more heuristic yet

affords flexibility and can be attractive when adequate computational resources are

available [1].

So far all the pattern classification models discussed above involve feature vectors

of real valued numbers and use some notion of metric to be minimized. In classification

problems with patterns described by list of attributes, the classifier model has to move

beyond the idea of continuous probability distributions and metric, and move towards the

discrete problems that are addressed by rule based or syntactic pattern recognition

methods. The simple and intuitive way to classify a pattern is via sequence of questions,

which in turn can be displayed in a directed decision tree. In a basic decision tree the

classification proceeds from top to bottom. The decision at each node concerns a

particular property of the pattern and the branches correspond to possible values. The

tree is grown inductively with decision nodes until a terminal or leaf node is reached.

Leaf node has the class name of the patterns.

Quinlan’s Itemized Dichotomizer 3 (ID3) algorithm and C45 are very popular decision

tree algorithms, based on information theory concepts. The ID3 algorithm is developed

from basic CLS-Concept Learning System concepts, which constructs a decision tree by

minimizing the cost of classifying an object and recursively divides each of the

partitioned sets. In the ID3 algorithm the cost driven approach is replaced by information

driven evaluation [2]. ID3 algorithm uses Shannon entropy function to automatically

determine the attribute with most significant amount of discriminating information. It

uses a greedy search algorithm to obtain best separation and builds the tree with best

attributes. C45 is an extension of ID3, which can handle continuous attributes and



training data with missing attribute value. Both ID3 and C45 decision tree algorithms use

univariate test at each decision node and construct the trees with orthogonal decision

boundaries resulting in a complex tree.

This thesis uses the entropy concept in a variation of the basic ID3 algorithm to

obtain non-orthogonal linear decision boundaries and nonlinear decision boundaries for a

two class problem. In chapter two the basic 1- D ID3 algorithm and the need for non-

orthogonal boundaries for continuous valued attributes are explained. In the third chapter

two of the previously developed multivariate decision tree algorithms IE and LACl with

two attributes at each decision node are discussed. In chapter four the proposed linear

attribute combination algorithm for continuous valued attributes is discussed. This

algorithm assumes that each class is distributed in and around the vicinity of its mean.

The algorithm systematically identifies attribute combinations with maximum interclass

separation in the corresponding two dimensional feature space.

Chapter five presents an algorithm for obtaining a nonlinear decision boundary for

nonlinearly separable classes. In this algorithm at each decision node a nonlinear test is

used to partition the data and the test with minimum entropy is selected for building the

decision tree. The results of all five algorithms on real field data are discussed and

contrasted in chapter six. Chapter seven summarizes all five algorithm implemented in

this thesis and presents some concluding remarks and possible directions for future work.



CHAPTER 2: BASIC RULES FOR DECISION TREE

2.1 Decision Tree

A decision tree is generally defined as a tree whose internal nodes are tests on

input patterns and whose leaf nodes are categories or classes. The basic decision tree

employs a top down greedy search through all possible branches. Top down Induction

decision trees are characterized by their representation of acquired knowledge as decision

nodes. They use simple knowledge formalism instead of complex expressive power of

semantic networks and as a result these systems have less complex learning

methodologies capable of solving difficult problem of practical significance [2].

The conventional incremental learning method analyzes each instance at a time for

developing a classification model [5]. A basic decision tree uses non-incremental learning

strategy, in which the decision tree is developed with a set of cases relevant to

classification tasks. The set of values or attributes associated with training instances are

used to express decision node in the tree. The decision trees are built starting with the

root of the tree and proceeding down its leaves. The process is repeated for each sub tree

rooted at the new node. Each decision node in the tree represents condition or expression

with attributes in the given data set. Based on the outcome of test on the set is partitioned

into branches, which forms leaf node or another decision node.

The training set used for developing the decision tree should not contain

conflicting instances with same attribute values and yet belonging to different classes. In

such cases the attribute will be inadequate for building decision trees by the induction

task. With adequate attributes a decision tree that correctly classifies each instance in



training set can be obtained. Leaves of decision tree are class names, whereas other nodes

represents attributes test with a branch for each possible outcome. Usually there will be

many such correct decision trees, but the trick lies in selecting a tree, which is minimal

and more likely to capture the inherent structure in the problem and correctly classifies

training data as well as other unseen objects. An ideal decision tree should have good

classification on training as well as testing data and yet be simple with minimum number

of nodes. By selecting attributes, which have more information at each decision node, a

simple and good classifier model can be obtained. The following example illustrates how

the concept of selecting attributes with more information at decision nodes gives simpler

tree with good classification.

 

 

 

 

 

Table 2.1: Training Data

Instances Attribute X Attribute Y Class

1 0 0 0

2 l 0 l

3 O 1 1

4 l 1 O     
 

In the above binary example we have two attributes X and Y, two classes 0, 1 and

four instances. Two different decision trees can be built by choosing different attributes at

the root node as shown in Figure 2.1. The decision tree shown in Figure 2.1 (a) is simple

with one decision node. Attribute X is used at the root node. Depending on the values of

attribute X the data set is partitioned into two subsets. The instances belonging to each of

the subsets are from the same class so we can label the subsets as leaf or terminal node

without any further test nodes. In contrast the decision tree in Figure 2.1 (b) has 3

decision nodes. This is because the Attribute Y at root node results in subsets with



instances, which do not belong to same class. In order to obtain the leaf nodes with

instances of same class, we need two more test nodes for each subset. Further test on each

subset with attribute X, results in the leaf nodes with correct classification. It is obvious

from this example that by selecting attribute X with more information we can construct a

decision tree, which is simpler.

 

 
 

      

 

   

 

 

    

 

 

  

 

      

     

X

0

Leaf node Leaf node

Instances 1 and 3 Instances 2 and 4

Class 0 Class 1

(a)

Y

O l

X X

Instances l and 2 Instances 3 and 4

0 l

O 1

Leaf node Leaf node Leaf node Leaf node

Instance l Instance 2 Instance 3 Instance 4

Class 0 Class 1 Class 1 Class 0

(b)

Figure 2.1: Different Decision Trees for Table 2.1



The crucial task in designing a decision tree is in selecting which attribute test or

query is appropriate at each node. The attribute test at each node should aim at

partitioning the data into subsets that are as pure as possible, in other words belonging to

one particular class. Lesser the impurity at a node, better the classification will be.

There are many mathematical measures of impurity, Variance impurity, Gini

impurity, Misclassification impurity and Entropy impurity [1]. Let i(N) denote the

impurity of node N and P(a),. ) is the fraction of patterns at node N belonging to class 0),.

For a two category classification model, the variance impurity is given by the following

expression.

i(N) = P(a),) P(a)2) 2.1

The expression goes to zero indicating zero impurity whenever the node represents only

patterns of one class. Gini impurity is the generalization of variance impurity to two or

more classes. Gini impurity is given by the expression as shown below.

i(N)=Z P(a),.) P(wj)=1- Z P2(a)j) 2.2

ta,- 1

This gives the expected error rate at node N when the node is labeled as a leaf node with

randomly selected class from the data distribution at nodeN. The Misclassification

impurity measures the minimum probability of rnisclassifying a training pattern at

node N . Misclassification impurity is expressed by the following equation.

i(N)=1- maxmwj) 2.4



Finally the Entropy impurity, which is the most popular is based on Shannon’s

information theory concept and is given by the expression below.

i(N)=—ZP(a)j)log2 19(0),.) 2.5

i

This expression will result in zero when all the patterns belong to one class and results in

a positive value when patterns of different classes are present. Maximum value occurs

when the different classes are equally likely at a node. ID3 algorithm employs entropy

impurity for selecting the best attribute at each node. Shannon’s measure of information

contained in a message based on information theory concept is widely used in computer

science, communications, information processing and in data compression and storage.

The information in a message depends on a priori expectations. Smaller the prior

probability of the message more the information contained, in other words the more

probable the message, the less information it conveys [7].

2.2 Entropy Test

Shannon defines the information content of a message as a function of the

probability of occurrence of the message [6]. In a set S of n symbols in a message with

probabilities of 171 , p2 ,....p,, , the information contained in a message n, of probability p,-

is given by

1(1),): -log2 p, bits 2.6

10



Total information in the message with all n symbols is expressed as summation of all

information contained in them as below.

" 2.7

1(p,.p2....-p,.)=-Zlog2(p,-) bits

i=1

The expected value of the information of the set S also known as entropy of the message

is given by the expression

n 2.8

H(S) = H071, p2’”"pn) = "Z pi 1032(pi)

i=1

The expected information or entropy for a test X on set S with k outcomes such that S

is partitioned into k subsets is the weighted sum over the subsets as shown below

*‘ 2.9

Hx (S) = —2 12.10).)
is]

The information gain by applying test X on set S is

gain(X)=H(S)-HX(S) 2.10

Lower the entrOpy for a test X on set S , higher the information gain. Information gain is

precisely the measure used by ID3 to select the best attribute at each step in growing the

tree.

2.3 ID3 Algorithm

The entropy concept discussed above is used for attribute selection at each node in the

ID3 algorithm where a decision tree is built from top to bottom with the best possible

separation at each test node. IDB strives to obtain a decision tree from an arbitrary

collection of objects in a set. If the set C is empty or contains instances from one class, a

decision tree with leaf node assigned with the class is obtained. On the other hand if the

11



set C has more than one class, let T be any test on the set C with 01.02....0n as the

outcomes. The test Ton the set C produces the partition as {C1,C2....Cn} as the

outcome. The graphical representation is shown in Figure 2.2.

//\\

// \:\

Figure 2.2: A tree structuring of objects in C

The decision tree for the whole set C can be obtained if each partition is replaced by

a decision tree. As long as two or more subsets from test node are non—empty and each

subset is smaller than the set at the decision node, this divide- and- conquer method will

lead to a subset containing instances belonging to one class. Such a subset is then

assigned as leaf or terminal node. The test at a decision node is important for a simple

decision tree. The ID3 algorithm based on information theory depends on two

assumptions as explained below [1].

a) Any correct decision tree for set C will classify instances in the same proportion

as their representation in setC. An arbitrary instance belonging to class P is

 

p and belonging to class N is .

(p + n) (p + n)

 

given by

12



b) A decision tree returning a class while classifying an instance can be regarded as a

source of a message 'P' or 'N'. The expected information to generate the

message is given by

2.11

H(p,n)=- p logz[ p ]- " log2( " ]
p+n p+n p+n p-l-n

Attribute test A with values {al ,az...a,} at root node will partition the training set C

    

into C,,C2....C, where C, contains those objects in C that have value a, for

attributeA. Let C, contain p, instances of class P and n, instances of classN . The

expected value of information of subset C, is given by H(p,,n,) and the expected

value of information of the tree with attribute A as root is given by weighted average .

2.12

H(A): ZPJ—‘i:"H(p.. n.)

where the weight of the i ”' branch is in proportion to the number of instances in C

that belong to C,. The information gain for this test on attribute A is given by

gain(A) = H(p, n) - H(A) 2.13

ID3 examines all the possible partitions with all candidate attributes and selects the

attribute that has the maximum gain. The attribute with maximum gain is used as test

node and the procedure is repeated recursively to form decision trees for each of the

subsets formed at the test node. The procedure is illustrated with the example training

data shown in Table 2.2. The training set has 14 instances and indicates whether golf

can be played or not in a particular weather condition. There are four attributes

namely Outlook, Temperature, Humidity and Windy.

13



The possible values that different attributes can take are as follows.

1) Outlook = {sunny, overcast, rainy}

2) Temperature ={hot, mild, cool}

3) Humidity ={high, normal}

4) Windy = {true, false}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2.2 Golf Training Data Set 1

Attributes

Instances Outlook Temperature Humidity Windy Class

1 Sunny Hot High False N

2 Sunny Hot High True N

3 Overcast Hot High False P

4 Rain Mild High False P

5 Rain Cool Normal False P

6 Rain Cool Normal True N

7 Overcast Cool Normal True P

8 Sunny Mild High False N

9 Sunny Cool Normal False P

10 Rain Mild Normal False P

l 1 Sunny Mild Normal True P

12 Overcast Mild High True P

13 Overcast Hot Normal False P

14 Rain Mild High True N       



For simplicity the construction of a decision tree with ID3 algorithm is illustrated

with discrete valued attributes. The different classes we have in this example are

‘Play’ P and ‘Don’t Play’ N . Out of 14 instances 9 belong to class P and 5 belong

toN .

Therefore the average information of this whole data set is given by

9 9 5 5
HS =——lo ———lo -—=o.94o b’t
H 14 gz14 l4 g214 ‘8

The attribute ‘Outlook’ can take 3 values namely {sunny, overcast, and rainy}. By

choosing ‘Outlook’ as the test attribute we will have three subsets with five instances

for attribute value ‘sunny’, five instances for ‘rainy’ and four instances for ‘overcast’.

The expected value of information for three subsets is given below

Let p, and n, be the number of instances in a subset indicating the two classes and

p = 9 and n = 5 be the total number of instances in each of the two classes.

‘sunny’: p1 = 2; nl =3; H(p,,n,) = —-:-log2%—%log2-:— = 0.971 bits

‘overcast’: p2 = 4; n2 =0; H(anz) =—:1log2——910g2% = Obits

‘rainy’: p3 =3; n3 =2; H(p3,n3)=—%log2-:-—%log2% = 0.971 bits

The expected value of information of the tree with attribute ‘Outlook’ as root is given

by weighted average as follows.

3 p. + n.

H(outlook) = 23—17—111(p, ,n,) = 0.694 bits

i=1 P n

The information gain for attribute ‘outlook’ is

Gain(outlook) = H(S) - H(outlook) = 0940-0694 = 0.246 bits

15



The information contained in the whole set H(S) is constant for all attribute tests,

therefore the information gain for each attribute test is equivalent to minimizing the

expected value of information or entropy at the test node with the attribute test.

In a similar manner if we calculate the average information and gain of other three

attributes we will get

H(temperature) = 0.911 bits; Gain(temperature) = 0.029 bits

H(humidity) =0.79 bits; Gain(humidily) = 0.151 bits

H(windy) = 0.892 bits; Gain(windy) = 0.048 bits

The ID3 chooses the attribute with highest information gain for test node. In this

example, attribute ‘outlook’ has maximum information gain and it is used as the test

attribute at root node.

 

   

 

 

Outlook

Sunny / Rain

/ Overcast

W'

Humidit rndy

High

Play True False

Normal

Don’t Play \

Play

Play Don’t Play

Figure 2.3: The Decision tree for Table l
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After the test with attribute ‘outlook’ the training set S is divided into subsets based

on the attribute values. Each subset is either assigned as leaf node if all of its

instances belong to one class or a decision tree is developed recursively using the

same procedure. The tree is continued until all the instances are correctly assigned to

a leaf node. Developing a complete decision tree for the given (golf) training data

using the ID3 algorithm will result in a decision tree as shown in Figure 2.3.
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Given a training data set S with attributes set A and classes set C to ID3

algorithm it executes the following steps. All the instances in training data

set S is assigned a class.

Ifall entries in S arefrom the same class

I Return a leafnode with that class name as label )

else ifS is empty

I Return a single node with valuefailure }

else

{Let AI. be the attributefrom set A that has the highest gain, with best

classification oftraining set S.

Then the decision attribute at the root node is A,.For each value v,

ofA,, add a new branch below with root correspbnding to the test

AJ. =v,.

Let 5,, be the subset ofS that has value v, forA,.

If Sv, is empty

IThen add a leaf node below this branch with label = most

frequently occurring class in set SI

else

{Add a new sub tree below this branch and repeat the

procedurefor other

subsets}

end

end

 

Figure 2.4: ID3 Algorithm
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2.4 Improvements on Basic ID3 Algorithm

2.4.1 Gain ratio

The information gain approach has a natural bias towards attributes having many

values over those with few values [7]. For example if we add an attribute Date which

will be different for each instance, then we would end up selecting Date as the

attribute with maximum gain as it classifies all instances correctly. The resulting tree

will have a single decision node with number of outcomes or in other words leaf

nodes equal to number of instances. Such a decision tree would be useless when a test

data is applied although it correctly classifies the training data. To handle this

problem, Quinlan [7] suggested the concept of gain ratio, which normalizes the

information of the attribute using split information. Split information is defined as

S.-
S log 2

where A is the attribute with c different values and S is the data set with c subsets

Splitlnformation (S. A) =‘2

i=1

S 2.14

S  

{S1, S2 ,...S,} due to partitioning by attribute A. Gain ratio is then defined as

Gain(S , A) 2.15

GainRatio(S, A) = . ,

Splttlnformatron(S , A)

 

The attribute with maximum gain ratio is selected for a decision node. The split

information of the attribute should be small, in other words the number of values that

an attribute can take should not be very large.

2.4.2 Continuous valued attributes

The attribute humidity can also take continuous values. The basic IDB introduced

initially was designed to predict classes, which are discrete valued, and to handle

attributes with discrete values. The second restriction of handling the discrete valued

l9



attribute can be relaxed and continuous-valued decision attributes can be incorporated

in the decision tree [8]. For example for an attribute A with continuous value the test

node can be assigned as A < cwhere the threshold c lies within the minimum and

maximum of the values taken by attribute A. For obtaining the threshold value for an

attribute under examination, all possible values it takes are sorted. If the attribute take

n different values, then it is sufficient if we examine n-I thresholds by taking the

midpoint of two consecutive sorted values. For example, in the training set in Table

2.2 if humidity is a continuous attribute with values

{85,90,78,96,80,70,65,95,70,80,70,90,75,80}, the information gain for n-I thresholds

are calculated and the threshold value that partitions the data with minimum entropy

is selected. The best partition with minimum entropy occurs at ‘Humidity’=75 and the

test for ‘Humidity’ results in binary partition with one subset having instances

satisfying ‘Humidity’ S75 and other subset containing instances satisfying ‘Humidity’

>75. C45 is an extension of ID3, which loperates on continuous valued attributes by

following the above procedure.

2.4.3 Noise

The golf training set explained above deals with data, which is noise free. In most real

world data the description of instances may include attributes based on measurements

or subjective judgments that results in errors in the values of attributes. For example

if the attribute of outlook of instance 1 is incorrectly recorded as overcast, then the

instances 1 and 3 will have identical descriptions but belong to different classes. This

kind of non-systematic errors either in the values of attributes or class information is
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usually referred to as noise and the attributes in the training set becomes inadequate

for building a decision tree. Two essential modifications for any tree-building

algorithm capable of operating in noise-affected training set are as follows [7].

a) The algorithm must work with inadequate attributes, because noise can cause even

the most comprehensive set of attributes appear inadequate.

b) The algorithm must be able to decide that testing further attributes will not improve

the predictive accuracy of the decision tree. It should refrain from increasing the

complexity of the decision tree to accommodate a single noise-generated special case.

The first requirement is necessary to handle situations when further testing is ruled

out for a subset with instances of different classes. This case arises when the

attributes are inadequate or unable to discriminate among the instances, or when each

attribute has been judged to be irrelevant to the class of instances in the subset.

In above scenario, it is necessary to produce a terminal node with class information,

though the objects in the subset are not of the same class. One approach is to select

the majority class name and assigning it to the leaf node. This minimizes the sum of

the errors over all instances in a subset.

The second requirement of deciding when an attribute is really relevant to

classification can be obtained by chi-square test for stochastic independence. Using

this test based on statistical properties we can determine the confidence of how much

the attribute is independent or dependent on the class of objects in a subset [7].
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2.4.4 Unknown Attributes

Sometimes the data can have missing attribute values. This happens when the

values are not relevant to a particular case, and not recorded when the data was

collected or due to some human error in compiling the data. Either significant amount

of the data with unknown attributes has to be discarded with some test cases

misclassified or the algorithm should be modified to handle unknown attribute values.

To incorporate the necessary modification the following facts have to be considered

[7].

a) Two tests using different numbers of unknown values should be weighted

appropriately with respect to their relative desirability.

b) After selecting a test, the training instances with unknown values of relevant

attribute cannot be associated with a particular outcome of the test, and so cannot

be assigned to a particular subset. We need to find a way to partition the data in

such cases.

0) When the decision tree is used to classify an unseen case, how should the system

proceed, if the case has an unknown value for the attribute tested in the current

decision node?

To answer the first query we can modify the apparent gain obtained by considering all

cases to the value obtained by looking at cases with known values of the relevant

attribute, multiplied by the fraction of known cases in training set. Let S be the

training set and T a test based on some attribute. Suppose the value of attribute A is

known in fraction F of the cases in S. Let info (S) be the information of the set S and

info 5 (T) be the information obtained by applying the test T on S. The information
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gain can be modified to consider only case with known attribute values as shown

below

gain (T) = P(A known) x(info(S)- info 5 (T) + PM not known) x 0

= Fx(info (S)-infoS(T)) 2'16

To deal with the second problem stated above, we can associate with each case in

each subset a weight representing the probability that the case belongs to each subset.

Let 01 ,02,...0,, be the outcomes of the test T on training set S. Weight w is

associated with each case in each subset representing the probability that the instance

belongs to each subset S,. The weight w is 1 when a case with known outcome 0, is

assigned to subset S, and 0 in all other subsets. For unknown outcomes the weight is

taken as the probability of the outcome 0, at that point. In general a case from S with

weight w whose outcome is not known is assigned to each subset T, with weight

w x P(0,) 2.17

For addressing the third issue of classifying unseen instances, which arises when the

decision node encounters test attribute with unknown value, the system is modified to

explore all possible outcomes and combines the resulting classification arithmetically.

Once the total class distribution for an unseen instance has been established, the class

with highest probability is assigned as the predicted class.

2.4.5 Pruning of decision trees

The decision tree generated by the ID3 algorithm continues to subdivide the set until

all training instances are correctly classified and no additional test offers any
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improvement. This may lead to over fitting of the data, which may not perform, well

on test data. To overcome this drawback pruning is done on decision trees to remove

the parts of the tree that do not contribute to classification accuracy on unseen

instances, resulting in a tree that is less complex and hence more comprehensible.

When a decision rule identifies greater error rate in a sub-tree than in a single leaf,

that particular decision node can be pruned by replacing the whole sub-tree by a leaf

node. We have two families of techniques; the first uses a training data set for pruning

and the second uses cost complexity and reduced error as the basis for pruning.

Consider the test data shown in Table 2.3. The last three instances in the test data will

be misclassified as ‘Don’t Play’ if we use the decision tree in Figure 2.3. Though we

do not have any misclassification in training data we will have 3 misclassifications in

 

 

 

 

 

 

the test data.

Table 2.3: Test data

Instances Attributes Class

Outlook Temperature Humidity Windy

1 Sunny Hot High False N

2 Rain Hot High True P

3 Rain Hot High True P

4 Rain Mild High True p        
If the tree is pruned by replacing the sub-tree for attribute ‘Windy’ by a leaf node ‘Play’,

then all instances in test data will be correctly classified but with 2 misclassification in

training data. Although we have 2 misclassifications on the training data on the whole
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with training and test data together there will be only 2 misclassifications, instead of 3

misclassifications. The pruned decision tree is shown in Figure 2.5(b).
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Figure 2.5(a): Original Decision tree

Outlook

Sunny / Rain

/ Overcast

Humidity

High Play

Play

Normal

Don’t Play

Play

Figure 2.5(b): Pruned Decision tree
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2.4.6 Multivariate test at decision nodes

The ID3 algorithm considers only one attribute test at any decision node. If more

than one attribute are considered at each decision node we can obtain a simpler decision

tree and possibly better classification performance. Another drawback in ID3 is that the

decision boundaries are all orthogonal to feature axes. By applying a test using a linear

combination of two or more attributes at decision nodes we can obtain a very simple

decision tree with non-orthogonal tests [9]. In a similar manner we can replace the linear

combination test with a nonlinear test, which further simplifies the decision tree by

generating a more complex decision boundary. The next chapter discusses some of the

previous approaches attempted to obtain a simple decision tree by considering more than

one attribute at each node.
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CHAPTER 3: MULTIVARIATE DECISION TREE

3.1 Need for Multivariate Test

The ID3 algorithm employs only univariate test at any decision node, which could

potentially result in a complex, over-fitted decision boundaries. Secondly the correlation

between the attributes is not considered in building the decision tree. By employing a test

at decision node, that exploits the correlation between two attributes we can get a more

powerful classifier model than the ID3 algorithm. The algorithms discussed in this

chapter involve continuous valued attributes.

This chapter describes two decision tree algorithms based on the combination of two

continuous valued attributes at each decision node. The first algorithm called Joint

Entropy (JE) algorithm gives orthogonal decision boundaries, but in contrast to the ID3

algorithm which partitions the data into two subsets for continuous valued attributes, the

IE algorithm divides the data into four subsets [10]. The second algorithm called Linear

Attribute Combination (LAC) algorithm generates non-orthogonal decision boundaries.

Only the test employed at the decision node for partitioning the data varies while the

criterion for selecting the attributes is the same as in ID3. Once the subsets are obtained

by applying the test, the entropy is calculated and the test with minimum entropy is

chosen at a particular node.

3.2 Joint Entropy Algorithm JE

Assume that A and B are two attributes with values {a,,a2,...a,,} and

{b1 ,b2 ,...b,,,} respectively at a decision node. The total number of possible combinations

that a test can have is{nXm} . Each combination will divide the group of instances at the
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test node into four subsets [10]. For example if attribute A takes the value a, and attribute

B takes the value b, , we can partition the training data into four subsets. This is obtained

by combination of instances having attribute A<a, and A2 a, with instances having

attribute B< b, and 82 b, .

The expected value of information in the tree with attributes A and B having values a,

and b, at the decision node is given by the joint entropy of the pair AB expressed as [10].

3.1

 

2

p.-+n.~

Z I 1H(pii’nij)
,4 p+n

H(A,B) =

2

l=I

The following example illustrates the algorithm. Consider the data set in Table 3.1. The

training set has two continuous valued attributes X and Y and two discrete classes 0 and 1.

Here instead of sorting the values in an attribute and examining the midpoints as

thresholds, the algorithm examines the actual values in the attributes for threshold

selection. The number of values that attribute X can take is 7 and the number of values

attribute Y can take is 8. The entire algorithm will examine 7X8 combinations at the test

node for selecting the best attribute. Let us examine the combination of attribute X with

threshold value 2 and attribute Y with threshold value 3. Then we will have two groups

for each attributes with instances X<2, X22 and Y<3, Y23. The expected value of

information or the joint entropy for each combination is given as

6 6 0 0

‘X<2’ d ‘Y<3’ H = ——10 —-—lo — = 0 hran (Pirnri) 6 g2 6 6 32 6 '5

‘X<2’ and 723' H(Piz."12) = —glog2 g—élogz -:-= 0 bits

‘X22’ and ‘Y<3’ H(p2,,n22,) = —%log2 %-%log2 %= 0 bits
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‘X22’ and ‘Y23’ H(p,,nzz) = _%10g2%—%10g2% =0 bits

The Joint entropy of the tree with attributes X and Y with values 2 and 3 respectively at

the decision node is given by weighted average

2"
+n

F1 p-l-n

 H(A, B) = "” H(p,,n,): 0 bits.

2

1:1

Table 3.1: Training data with non-orthogonal boundary

Instances Attribute X Attribute Y Class

1 1

1 .5 0.5

0.5 2.2

0.5 0.5

1 .5 1 .5

1

1

O

2.5

3

3.5

1 A
d
d
—
L
—
A
—
b
o
o
o
o
o

1

2

3

4

5

6

7

8

9

10

11

12

Similar to the above procedure we can find the joint entropy for different threshold

combinations. Finally the attribute combination with minimum entropy is chosen as the

test at the decision node. For the given training set the attribute combination explained

above has the minimum entropy and it is used at the root node for partitioning the data.

The Figure 3.1 shows the decision tree generated by the JE algorithm for the training set

in Table 3.1.
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X&Y

/ \

   

X<2 & Y<3

X22 & Y<3

X22 & Y23

X<2 & Y_>.3 \

ClassO / ClassO

Classl Classl

Figure 3.1: Decision Tree using JE Algorithm

The two dimensional data distribution is plotted in Figure 3.2. It can be seen that the two

classes can be separated by a line having equation y = -x+3.5. The decision boundary

obtained using the JE algorithm, also shown in Figure 3.2, is orthogonal in nature.

Although the decision boundary is orthogonal and not much different from that obtained

using the ID3 algorithm, IE classifies the data using a single decision node where as ID3

requires two separate nodes for classifying the training data. Figure 3.3 shows the

decision tree obtained using the ID3 algorithm on the data set in Table 3.1. The ID3

algorithm with one attribute at a decision node gives complicated and over fitted decision

boundaries [10]. Consequently when the test data is applied to the decision tree, the IE

algorithm results in much better classification performance in terms of both classification

accuracy and simplicity of the decision tree compared to corresponding results of

conventional ID3 algorithm. These results on test data are summarized in chapter seven.
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Figure 3.3: Decision Tree obtained by using ID3 algorithm

Class 0

Class 1

 

 
  

Figure 3.2: Data Distribution of Table 3.1 with JE decision Boundary
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Total attribute combination set AB is determined by all possible pair wise combination of

attributes. All the instances in training data set S is assigned a class.

Given a training data set S, attributes set A, classes C and total attributes combination set

AB as input to the Joint Entropy algorithm (JE) it executes thefollowing procedure.

Ifall entries in S arefrom the same class

{ Return a leafnode with that class name as label }

else ifS is empty

{ Return a single node with valuefailure }

else

{Let a,,b,, be the attribute pair that has the highest information gain or

minimumjoint entropy, with best classification oftraining set S.

Then the decision attribute at the root node is a, ,b,. For each subsets with

instances that satisfies the test condition a, <v & b, (x ,' a j (v &b,, 2x ,' A].

2 v &b,, <x; a j. 2 v & bk 2x; where v is threshold value for attribute A and x

is the threshold valuefor B. Add a new branch below the root each subsets.

Let Sj, be the subset ofS that a J. <v & bk <x

If Sv, is empty

IThen add a leaf node below this branch with label = most frequently

occurring class in set S}

else

{Add a new sub tree below this branch and repeat the procedurefor other

subsets}

end

end

 

Figure 3.4: JE Algorithm
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3.3 Linear Attribute Combination algorithm l-LACl

The Linear attribute combination algorithm is capable of generating non-

orthogonal decision boundaries and produces a simpler decision tree relative to that of IE

algorithm, which is limited to orthogonal decision boundaries [10]. Given a pair of

attributes XY, representing the axes of a two dimensional space the LACl algorithm first

determines the bounding rectangles of the two classes by finding minimumx . , ymin and

maximum x of each class in the feature space. The eight vertices of the boundingrmx . yrmx

rectangles are then projected on to the X and Y-axes to find the intercept points of each

class. Assuming the decision boundary to be straight lines in the XY feature space passing

through each combination of intercept points projected on X and Y-axes, the associated

entropy for each line that partitions the data in two subsets as y- mxSc and y- mx>c are

computed. The line/decision boundary with minimum entropy is selected as the test for

that particular attribute combination. Repeating the above procedure for each pair wise

combination of attributes, the pair with minimum entropy is selected as the test at the

decision node. The following example illustrates the above procedure for the same data

set used to illustrate the IE algorithm in Table 3.1.

The bounding rectangle of two classes is obtained by finding the maximum and minimum

values of each attribute X and Y for the two classes. Figure 3.5 shows the data distribution

along with the bounding rectangles. The eight vertices of the bounding rectangles are

projected on the X, Y-axes and the intercepts points are obtained. Table 3.2 gives the

vertices of bounding rectangles and their respective projection on X, Y-axes. Decision

boundaries are obtained by drawing lines through every pair of intercepts and the entropy

for each pair is computed. The decision boundary with minimum entropy is assigned as
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the root node. The process is repeated at each node until all the instances in the data are

correctly classified. The decision boundary with y+1.14x=4 was found to have minimum

entropy with the best classification performance for the data set under discussion. The

instances that have y+1.14x$4 are classified as class ‘0’ and the instances that have

y+I.I4x >4 are classified as class ‘1’.
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Figure 3.5: Data distribution of Table 3.1

Table 3.2: Intercept points and Vertices of bounding rectangles

Class Vertices of bounding Projections on Projections on

rectangle X axis Y axis

‘0’ (.5,0.5);(1.5,.5);(l.5,2.2);(.5,2.2) (.5,0);(l.5,0) (0,0.5);(0,2.2)

 

 

‘1’ (1,2); (3.5,2) ;(3.5,4); (1,4) (1,0); (3.5.0) (0,2); (0,4)
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Figure 3.6 shows the decision boundary obtained using the LACI algorithm for the above

data set. The decision boundary is non orthogonal in nature. Figure 3.7 shows the

implemented decision tree for the data set. Unlike the IE algorithm we have only two

subsets for each node. Each decision node is binary and a single decision node correctly

classifies the data set into two leaf nodes for the data set under discussion. The ID3

algorithm generates a tree with two decision nodes and the IE algorithm decision tree

needs 4 leaf nodes and only one decision node. Compared to both ID3 and IE algorithms

non-orthogonal decision boundary obtained using the linear attribute combination

algorithm LACl provides superior classification performance [10] as seen in the results

chapter.
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Figure 3.6: Decision boundary obtained using the LACl algorithm
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Figure 3.7: Decision Tree using LACl
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Total attribute combination set AB is determined by all possible pair wise combination

ofattributes. All the instances in training data set S is assigned a class.

Given a training data set S, classes set C and total attributes combination set A B and

intercept points set P ofthe set as input to the Linear Combination algorithm (LC) it

executes thefollowing procedure.

Ifall entries in S arefrom the same class

I Return a leafnode with that class name as label I

else ifS is empty

I Return a single node with valuefailure }

else

ILet the line L,, passing through points P, , P, be the line that has the minimum

entropy, with best classification oftraining set S.

Let the points P, & P, be from the two dimensional space formed by using

attributes

A, & B, .Hence let ( A,, Bk ) be the attribute pairfrom AB whose distribution

space contains the line L, .

Then the decision attribute pair at the root node is ( A,, B, ) and the decision

test at the root node is equation of line L, passing through points P, & P, .For

the subsets that have instances with and y>c add branch below the Root.

Let S,, be the subset ofS that satisfies<= y-mx

If S,, is empty

IThen add a leaf node below this branch with label = most frequently

occurring class in set S}

else

IAdd a new sub tree below this branch and repeat the procedure for

other subsets}

end

end

 

Figure 3.8: LAC] algorithm
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CHAPTER 4: MULTIVARIATE DECISION TREE USING LINEAR

ATTRIBUTE COMBINATTION (LAC2) ALGORITHM

4.1 Linear Attribute Combination Algorithm 2 - LAC2

In the IE algorithm described in the last chapter, pair wise combinations of

attributes are evaluated and the combination with minimum entropy is selected for the

decision node. This makes the algorithm computationally intensive particularly when the

continuous values that an attribute can take are large. Apart from the problem of

determining the right threshold, it also has the disadvantage of producing complex

decision trees associated with orthogonal decision boundaries. The LAC1 algorithm with

non-orthogonal decision boundaries discussed in the previous chapter also has some

drawbacks. In LACl, the training data is correctly classified if and only if either one of

the class is clustered about the origin. This is due to the fact that the line of separation is

obtained by joining intercept points of the bounding rectangle vertices with the X and Y-

axes. If the two classes are clustered far away from the origin, the line of separation,

which is closer to origin, will lie below the two classes instead of separating them. LACl

algorithm therefore needs additional preprocessing to overcome this drawback. A

modified Linear attribute combination algorithm (LAC2) is proposed in this thesis to get

a decision boundary, which separates the two classes no matter where they are clustered.

In this algorithm, the line of separation of the form y = mx+ c is obtained by constructing

lines through the point which lies approximately at center of the region that separates the

two classes distinctly. This algorithm makes use of the fact that each class is mostly

clustered around the mean of its distribution. Along with the minimum entropy criterion
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the variance of two classes is used as an additional criterion to select the attribute

combination and attribute test.

The two dimensional test, for the combination of features (A, B) is determined by

identifying the decision boundary separating the two classes in the two dimensional A-B

space.

Consider a training data S set with n instances described by attributes A, B, C with

values {a,,a2,....a,,} {b,,b2,...b,,}and {c,,c2,....c,,} respectively at a decision node. The

training set S can be represented as a set of pattern vectors

3:1 (L3,) }, i: I..n (4.1)

where X, = {a,,b,,c,} is the feature vector and Y, = 0 or 1 represent the two classes.

With 3 attributes ABC the number of possible attribute combinations that a

decision node can have is 3C2 =3. Here the two dimensional test for each combination,

partitions the data at a test node into two subsets. For example, consider the attribute

combination AB. Assuming linear decision boundary in two dimensional space spanned

by the A and B axes, represented by the function,

F(a,b) = I) —ma + c (4.2)

where m is the slope of the decision boundary and cis the intercept. The objective is to

find an optimal value for the slope m and the constant c in the equation,

b = ma + c (4.3)

that classifies the two classes at a decision node with minimum rrrisclassification error.
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The step by step implementation of the procedure for estimating m and c consists of 3

major modules:

I. Determine the pivotal point on the decision boundary,

H. Determine the { l.db }
opt ’

III. Constructing a decision tree with attribute combination that has maximum

information gain

Details of each step are explained next.

I. Determine the pivotalpoint lying on the linear decision boundary

1. For two dimensional attribute space (A, B) compute the means of two classes in S

(a:.b:)and 1.213)..

°=—Za,;b°="lib,

no i=1 "0 i=1

where no is the number of patterns in class ‘0’

01"1201Ib1‘12b (44)

"1 i=1 n] i=1

where n, is the number of patterns in class ‘1’.

2. Determine the bounding rectangles R° and R1 for two classes, in the two

dimensional spaces by determining the minimum and maximum values of the two

attributes as

(03.1.1)” )=min{a1.b}.":1:(aL.b§.,)=max{a1.b,-}I;°.

where instance ie class "0

(“3mbl» >=mlnlanb 1... :(al...b.‘...)=max{a..b.1::. (4'5)

where instance is class ‘1’
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3. Let I (a, b) represent the line joining mean (a; ,bL) and (a2 ,bfi ).

4. Determine the intersection points of line I with R0 and R1.

LetlnR'={I' i=0,1
_1___nner’ Iout___e__r}’

1‘ _ r‘ i _ - 1' . . . .

wherel_p —(ap,bp), p — inner, outer and the 1,: Intersection pornts satisfy the

condition

d{(a2.b2) I_.__:.... } <dllaib2.)_1__:..,}

d{(a:.bl.) r_:...}<d{(a:e..1)_._}

where d(. , .) is the Euclidean distance

5. The pivotal point (ad, ,b,,,) lying on the decision boundary is then chosen as the

midpoint of the line segment defined by I." and I' as below.
_i__nner ._1_nner

0 l 0 l

a _ ainner + ainner . b_b1nner + burner (4 6)

db — 9 db: —'_ .

2 2

 

II. Determine the linear decision boundary (l.d.b) b = ma + c that partitions the

training set with maximum information gain

This step can be performed in two possible ways. The first approach is a brute force

search for optimal values of the parameters m and c and it is done by evaluating the

information gain for a set of l.d.bs systematically at increasing angles. Assuming

t9,is the angle made by the l.d.b with A axis, a set of lines are constructed at

increasing angles 19, according to equation 4.7.
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6, =0, 0,=rA6 ; r=1,2...k

where k=(180/A9)
(4.7)

For instances, choosing At9=15, [6,, r=1,2...,k}={ 0,15,30,....180}

This will result in set of l.d.bs as in equation 4.8, generated using equation 4.9.

b = m, a + c, (4.8)

m, =tan( 6,)

(4.9)

Cr =bdb ' mr adb

where (a,, ,bdb) is defined in equation 4.6.The decision boundary b=ma+c partitions the

training data S into two subsets as

s, ={(X,,Y,)},i=1... s,

where s1 is the number of instances that satisfies b, - m a, S c

52:1(K11KH
J: 1... 32

(4-10)

where 32 is the number of instances that satisfies b, - m a, > c

The entropy for the above partition is computed for each l.d.bs and the resulting

information gain is determined. The optimal decision boundary is then selected as

follows.

{l.db } =max(Gain /{ l.db },} ); r=1,2...k (4.11)
opt

The { l.db }0p, given by equation 4.12 is the optimal line of separation of two classes

corresponding to maximum information gain.
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The {l.db LP, is chosen as the test for the two dimensional linear attribute

combination.

b: mop, a+ cap, (412)

where m and c are the corresponding optimal parameters of m and c .
opt opt

In the second approach the search for optimal values m and c is done more

intelligently than in the first approach. The l.d.bs are constructed only at 6 angles

given by

6r={ 6111111 191113 6121111 161(1):“ 16111211 2911112} (4:13)

where the angles 6, are determined from the data distribution. First the origin of the

x,

two dimensional space is shifted to (a,,, ,b,,, ). The shifted attribute values (a,,b, )

i=1..n is given by

“i: “Faith;

11;: 11,111,; i=1,2...n (4.14)

The rectangular to polar coordinate transformation in the shifted coordinates will

result in 6, given by equation 4.15.

19,: tatt‘l [it] ; i=1,2...n

a
(4.15)

Using the polar coordinates of the shifted data points the six angles are computed by

equation 4.16 for constructing l.d.bs.
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62in = ““191”;

6,2,, = max{6, },I'=°,

’ 9

where instance ie class ‘0 and n0 is the number of patterns in class ‘0

9|. =I'I'll 9 n3 ;

.... "I 'I” (4.16)

giafimaxigtm

where instance i6 class ‘l’and n1 is the number of patterns in class “1”.

6b,,l = bisector (9:111. , 6,1,”)

6b,,2 = bisector (61111111 , 6,?“ )

Shifted attribute values are used only for angle computation alone. The parameters

m, and c, in the decision boundary are determined using true attribute values

(a,,b, ). The parameter m, and c, are computed for each l.d.b at the computed

angles 6,: {6,1,“ ,e,‘,,,, 6,3,, , 6,2,,“ 6,,“ , 6m} and their respective partitions of the

data are determined using equation 4.10. The entropy is computed for each l.d.b and

the optimal boundary with maximum information gain is selected for the attribute

combination by implementing 4.10 and 4.11.

III. Constructing a decision tree with attribute combination test that has

maximum information gain.

Compute the optimal decision boundary { l.db },,,,, for each attribute combination by

implementing step I, and second approach in II and determine the attribute

combination with maximum information gain as shown in equation 4.17.



Node attribute = max I gain I [~61 1’ XIII}

where gain { l.db I; is the maximum information gain for (4-17)

attribute combination u ,v

The decision boundary corresponding to attribute combination with maximum

information gain is selected as the test at the decision node and the outgoing branches

are obtained. If more than two attribute combination test has maximum information

gain, then the attribute combination with maximum interclass distance given by

equation 4.18 between I." and II is selected at the test node.
Inner inner

MaxdiStu’v = max { d( Item" ’Ii‘nner ) }

—— “"' (4.18)

Using the { l.db }:,',’,' corresponding to maximum information gain the outgoing

branches are determined. Each branch is assigned as leaf node if the subset in that

branch satisfies the condition that all patterns in the subset belong to same class. The

tree is built recursively from the branch if the subset in the branch contains a mixture

of patterns from both classes, repeating the steps I, II, III until all the instances are

correctly classified.
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4.2 Illustration of LAC2 with examples

4.2.1 Example 1

The following example illustrates the LAC2 algorithm. Consider the data set in Table 3.1.

The training set has two continuous valued attributes X and Y belonging to ‘class 0’ and

‘class 1’. Here we have only two attributes and therefore only one combination of two

attributes is possible. Our aim is to determine the best linear decision boundary with

maximum information gain in two dimensional XY space. The decision tree with

twodimensional test y=mx+c is built by implementing steps I,II , III steps in section 4.1.

The vertices of the bounding rectangles, the mean of two classes, and the innermost

intersection points are given in the Table 4.1. Figure 4.1 shows the data distribution of the

two classes with bounding rectangles, the line joining the means and the two innermost

intersection points obtained by implementing the step I in section 4.1.

Table 4.1: Computed coordinates by LAC2 for Data in Table 3.1

 

 

 

    

Class Vertices of bounding Mean Innermost

rectangle intersection points

‘0’ (5,05); (15,5) (10,128) (1.5, 2.05)

(15,22); (5,22)

‘1’ (1,2); (35,2) (2.16, 3.1) (1.46, 2.0)

(35,4); (1,4)

 

Table 4.2 shows the computed minimum, maximum and bisector angles

6;“ , 0:,” , 6;, , 02m , 6Ml , 9m using the second approach in step II.
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Figure 4.1: Data distribution with computed coordinates

 

 

Table 4.2: Angle in Degrees

6N3] 6M3 2 613m: 63in grlnin grllHX

84.5 334 270 170 36 358        

The decision boundary at angle 6m2 partitions the training data with maximum

information gain and the two dimensional test y: m x+ c with parameters
opt opt

map, = -0.49 and cap, =2.7 are selected as the test at the decision node. The parameters

map, and cap, are computed using equation 4.7 and 4.8.

m,,, =tan (334 (3.14/180)) = -049

a,,, = (I.5+I.46)/2 =1.48

bd, = (2.05+2.0)/2 =2.03

cop! = bdb-mopt =2.7
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The data under discussion is linearly separable and all the instances of two classes are

separated by the decision boundary y+0.49x=2. 7. Implementing step III results in a

simple decision tree with single decision node classifying all instances correctly. Figure

4.2 shows the final decision boundary with minimum entropy or maximum information

gain. This decision boundary classifies all the instances correctly.

 

 

 
   

    

       
Figure 4.2: Final Decision boundary Obtained by LAC2 algorithm

In the above data set only one combination of attribute is possible. For data sets, having

more than two attributes the number of attribute combinations will be more than three. In

such cases the minimum entropy of the selected test equation for each attribute

combination is compared and finally the attribute combination with minimum entropy is

selected as the test equation at the node.

48



In general for a pattern vector with g attributes {Y,,Y2...Yg} there are h ="CZ possible

pair wise combination of attributes. For each attribute combination (Y,,Yj) i¢ j the

LAC2 algorithm gives the best decision boundary function f3]. in the Y, — Y}. space. The

final bivariate test is selected using the maximum information gain criterion similar to

that of in ID3 algorithm.

4.2.2 Example 2

Consider another example of training data set shown in Table 4.3. This training data set

has total of 12 instances and 3 attributes X, Y, Z. The data distribution for different

attribute combination in a two dimensional space and the decision boundary with

maximum information gain is shown in the Figure 4.3. The attribute combination XY is

selected at root node as it has minimum entropy. Implementing the steps I, II, III in

section 4.1 results in a decision tree with two test nodes as shown in the Figure 4.4.

The training data is linearly non separable, therefore the decision tree by LAC2 algorithm

needs more than one decision node to classify all instances correctly. The decision tree

using ID3 algorithm for same data needs three decision nodes and 4 leaf nodes to classify

all the instances correctly. Figure 4.5 shows the decision tree obtained using ID3

algorithm. The decision tree obtained using LAC2 algorithm is simpler than that obtained

using ID3 algorithm.
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Table 4.3: Training Data with 3 Attributes

 

 

 

 

 

 

 

 

 

 

 

 

       
 

 

 

   

 

 

Instance No Attribute X Attribute Y Attribute 2 Class

1 1 1.3 1 0

2 1.5 0.8 3 0

3 0.8 2.5 2.5 0

4 0.5 0.5 1 0

5 2 1.5 0.5 0

6 1 2 2 0

7 1.5 4 2.5 1

8 2 3 3 1

9 2.5 3 1.5 1

10 3 2 1.5 1

11 3.5 3.5 2 1

12 1 1.6 5 1

6 l l T 7 i I i i I

0 Class 0

4 Class 1

5 ~
a

4 ~ i —

qr-

3 ~\ at; 44+ ..

\\ /

   

 

     
 

Figure 4.3 (a): Data Distribution for attributes combination X and Y at Root node
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Figure 4.3 (c): Data Distribution for attributes combination Y and Z at Root node
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$3.11 / \ >3“

z—0.71x Class‘l’

   

Class ‘0’ Class ‘1’

Figure 4.4: Decision Tree for Data set in Table 4.3 using LAC2
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Figure 4.5: Decision Tree for Data set in Table 4.3 using ID3
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4.3 Distance Criterion

If two or more attribute combinations have the same minimum entropy then the distance

criterion is used in LAC2 algorithm for selecting the winning attribute combination. The

distance between the innermost intersection points of two classes is a direct measure of

the class separation and hence the classification performance for test data. This is because

of the intuitive fact that for any classification model built using training data truly

representative of the test data, the unknown instance of a particular class is clustered

around the mean of the class. The examples shown in Figures 4.6 and 4.7 illustrate the

above phenomena. Figure 4.6(a) shows the training data distribution and the decision

boundary for attribute combination AB of the two classes. The distance between the

innermost intersections (black dots) that separates two classes is very small. Figure 4.6(b)

shows the test data for two classes and the misclassification of the test data by decision

boundary. Though the training data is correctly classified nrisclassification in test data is

typical when the interclass distance is small. Now consider Figure 4.7, which shows the

training data distribution in the AC space for attribute combination AC. Compared to

attribute combination AB, the weighted interclass distance of two classes for the same

training data in Figure 4.7(a) is larger in the AC space. Figure 4.7(b) shows the test data

for two classes, in which all instances are correctly classified by the decision boundary

using attribute combination AC. Whenever more than one attribute combinations has

minimum entropy, the attribute combination with maximum interclass “distance” is

selected at the decision node.
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4.4 Comparison with LACl algorithm

The examples of data distribution when LACl fails are shown in Figures 4.8 and 4.9. In

both cases the LAC2 algorithm correctly identifies the optimal decision boundary. A

major drawback of LACl is that it assumes that the two classes are distributed about the

origin, so that the two classes are on either sides of the decision boundary obtained by

joining projection of the patterns from two classes on the horizontal and vertical axes.

Consequently the algorithm requires excessive number of iterations or equivalent tree

expansion to converge to the true partition between two classes when the underlying

assumption is not valid. The LAC2 algorithm overcomes this problem by constructing the

decision boundary through center (adb ,bdb) of region between the two classes in the step

11.
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Figure 4.8: (a) Decision Boundary Obtained by LAC2 algorithm for separable classes in

IRIS data set
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Figure 4.9: (a) Decision Boundary Obtained by LAC2 algorithm for separable classes in

IRIS data set
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Figure 4.9: (b) Decision Boundary Obtained by LACI algorithm

for separable classes in IRIS data set

The decision tree algorithms that we have discussed so far result in linear decision

boundaries using one or more attributes at a decision node. For nonlinearly separable

data, nonlinear decision boundaries will give much simpler tree with better classification

performance than the decision trees with linear test. The following chapter explains an

algorithm in which a nonlinear test is used at every decision node for partitioning the data

for classification.

57



 

 

Total attribute combination set AB is determined by all possible pair wise combination of

attributes. All the instances in training data set S is assigned a class.

Given a training data set S, classes set C and total attributes combination set A Bas input to

the Linear Attribute Combination algorithmZ (LAC2) it executes thefollowing procedure. If

all entries in S arefrom the same class

I Return a leafnode with that class name as label I

else ifS is empty

I Return a single node with valuefailure }

else

ILet approximate midpoint of separation region of two class be x0, y0 and m=tan

ImxI, mx2, mnI, ng, d1, d2} be the slope of line passing through x0, y0. Let the

line Lq with slope mq passing through points x0, )0 be the line that has the

minimum entropy, with best classification oftraining set S.

Let the points x0, y0 befrom the two dimensional spaceformed by using attributes

Aj & B1 .Hence let ( Aj , Bk ) be the attribute pairfrom AB whose distribution space

contains the line Lq .

Then the decision attribute pair at the root node is ( Aj , Br ) and the decision test at

the root node is equation of line Lq passing through points x0, y0 with slope m,

.For the subsets that have instances with y<=mx+c and y>=mx+c add branch

below the Root.

Let S j,‘ be the subset ofS that satisfies y<=mx+c

If Sfl. is empty

IThen add a leaf node below this branch with label = most frequently

occurring class in set SI

else

{Add a new sub tree below this branch and repeat the procedurefor other

subsets}

end

end

 

Figure 4.10: LAC2 Algorithm
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CHAPTER 5: MULTIVARIATE DECISION TREE USING

NONLINEAR ATTRIBUTE COMBINATION (NLAC) ALGORITHM

5.1 Nonlinear Attribute Combination Algorithm - NLAC

In this chapter we propose a decision tree algorithm with non- linear test at each

node, replacing the linear univariate and bivariate tests. The algorithm with bivariate

attribute tests discussed so far gives linear decision boundary in the two dimensional

feature space. The algorithm can be made significantly more powerful by formulating

rules that allow nonlinear decision boundaries. The number of decision nodes can be

drastically reduced if we use a nonlinear decision node instead of a linear decision

node. This is particularly true for data distributions in which two classes are not

linearly separable. The nonlinear decision tree proposed in this thesis uses a

nonlinear test with two attributes at every decision node. With the help of two

attributes the coefficients of a second order polynomial equation is estimated so that

maximum information gain or minimum rrrisclassification error is obtained at each

node. For a set of attributes the attribute combination with minimum entropy test is

then selected for the node under consideration.

Consider a training data set S with n instances {inl ,in2 Winn} . Each pattern in" is

three dimensional with features X, Y, Z feature space, that takes on{x,,x2,....xn} ,

{y,, y2,....y,,}, {z,,zz,....zn} . Each pattern belongs to either class ‘0’ or class’l’. In

the above case we have three attribute combinations XY, X2, and Y2. The nonlinear

attribute combination algorithm fits a second order polynomial equation for each

59



attribute combination. The two classes are separated by second order nonlinear

decision boundary estimated in the two dimensional feature space.

I. Determining the coefficients ofsecond order non linear decision boundary

1. Given a two dimensional attribute space X, Y the second order nonlinear equation,

can be represented as

ax,2 +by,.2 +cxiyl. + dxl. +ey, + k = v, ; i=1..n (5.1)

The class v, takes either ‘class 0’ or ‘class 1’ depending on the x,, y, values of

attributes X, Y for a particular instance.

2. The six coefficients {a, b, c, d, e, k} of second order polynomial equation a, b, c, d,

e, and k are estimated using Gauss Newton nonlinear least-square method as follows

[1 l].

a) The nonlinear equation for all the instances in the training data set can be written

in matrix form as [11] in equation 5.2. Prior to fitting a second order nonlinear

equation, each attribute values were normalized by its maximum value in the training

set and the same normalization is applied to the test data before fitting the nonlinear

    

equation.

"r2 M2 x1)’r x1 yr 1 a\ {VIN

l. .,
c ..

d = .. (5.2)

e

k vn-l

K )

Lx: y: xnyn xn yn 1_4 \v'1 I  

In matrix form, equation (5.2) can be written as,
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DE = 7 (5.2)

where the matrix Dhas the attribute values for all the instances and the vector g

contains the values of the coefficients and the vectory has the estimates of the actual

class 7!.

b) The coefficients are determined by minimizing the square error between the

estimated class and actual class. The cost function 5(c), of this optimization problem

is expressed as the sum of squared classification errors as in equation 5.3.

1 N . . 2

6(6) = - [7(1’) - 7(1)) (5.3)

A

The rrrisclassification error e(i) = y(i)-—- y(i)is a function of the coefficient vectorg.

The error is minimized with respect to g and the coefficient update is expressed as

g(k +1) = 9(k) — (1,71, )‘1 1%" (5.4)

where Jk the Jacobian matrix of the error vector e" at the k‘" iteration is expressed

   

  

as,

" de"(l) ae‘ (1) ae"(1) ae" (1) ae"(1) ae" (1) '

8a db dc 3d 3e 8k

Jr ___ .. .. (5.5)

Be"(N) 38%”)
L aa .. .. 8k -  
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In order to solve for the coefficient vectorg, we need the matrix J,‘T Jk to be non-

singular [11]. The problem of non-singularity problem is addressed by the modified

Gauss Newton method where the equation for updating the coefficients is given by

g(k +1) = g(k) — (111, + 81)" 1%" (5.6)

where a] is positive definite matrix for all instances. The updated coefficients at the

k‘” iteration are used in the k +1 iteration and the error vector e"+1 is estimated. The

process is repeated until the estimated error becomes negligible and the estimated

class for all the instances becomes reasonably close enough to the actual class

information provided.

3. Once the coefficients are estimated using the modified Gauss-Newton method, the

instances at the node are classified using equation 5.7. The node has two branches

representing the outcomes of the test at the node. Equations 5.8a and 5.8b denote the

classification rule of patterns into class ‘1’ and class ‘0’.

(X,,Y,)E class ‘0’ if ax,2 +by‘.2 + cxiy, + dx‘ + ey, + k _<. 0.5 (5.8a)

(X,,Y,.)e class ‘1’ if ax} +by'.2 +cxiy, +dxi +ey, +k >05 (5%)

where a ,b ,c ,e ,d ,k are the coefficients of nonlinear equation calculated using the

modified Gauss-Newton method and x, , y, are the attribute values for the i"I instance.

4. The entropy for the above partition is computed and the resulting information gain

is evaluated.
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II. Constructing a decision tree with attribute combination test that has maximum

information gain.

Let {gain (X, Y), gain (X, Z), gain (Y, Z)} be the information gain of the non linear

decision boundary estimated for each two dimensional attribute combination by

implementing step I.

Maxgain comb = max Igain(X, Y), gain (X, 2): gain (Yr 2)) (5 8)

The decision boundary corresponding to attribute combination with maximum

information gain Maxgainmb is selected at the decision node and the outgoing

branches are obtained. The instances in the two outgoing branches or subsets are

examined and the leaf nodes are assigned if all the instances in a subset belong to

same class. If the instances of a branch or subset contains pattern from different

classes the tree is built recursively repeating the steps I, II.

5.2 Illustration using synthetic data

Figure 5.1 shows the data distribution of 37 instances belonging to class ‘1’ and

class ‘0’ for the three-attribute combinations XY, X2 and Y2. The patterns are seen to be

nonlinearly separable in all attribute combinations. The nonlinear equation for each

combination is estimated by implementing step I in section 5.1. For the data distribution

shown in the Figure 5.1 the attribute combination XY has the lowest entropy and hence

the XY combination is selected at the root node in step 11. The estimated coefficients a, b,

c, d, e, k of nonlinear equation in two dimensional space XY are -2.97, -4.16, 3.52, 3.63,

2.50, and -1.72 respectively, which gives bivariate, nonlinear test with two outcomes as

— 2.97x,2 — 4.16y,2 + 3.52x, y, + 3.63x, + 2.531,. - 1.72 S 0.5

- 2.97x,2 - 4.16y} + 3521:, y, + 3.63x, + 2.5 y, -1.72 > 0.5
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Table 5.1 shows the attribute values for some instances in the above data distribution

after normalizing each attribute with respect to its maximum value. Substituting the X, Y

attributes values and the corresponding coefficients in the nonlinear equation

ax,2 + by,2 + cx, y, + dx, + eyi + k = v, the values of v, are determined as shown in Table

5.1. The values of v, are then thresholded to get binary valued class information as seen

in the last two columns of Table 5.1. The predicted class of instance 1 is same as true

class. Similarly for all instances the predicted class in both subsets is the same as true

class for the selected nonlinear test at root node.
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Table 5.1: Instances from data Distribution in Figure 5.1

 

 

 

 

 

Instances Attribute X Attribute Y Attribute Z Actual Class V.- Predicted Class

1 1 0.58 0.91 1 1.2 1

2 0.8 0.67 0.94 1 1.09 1

3 0.6 0.17 0.72 0 0.11 0

4 0.5 0.83 0.61 0 0.06 0        
 

Therefore both subsets obtained after the root node are pure, in other words all the

instances in a subset belongs to class’O’ or class’l’ and they are assigned as leaf nodes

with respective class name. The Figure 5.2 shows the decision tree for the data

distribution discussed above. The Figure 5.3 shows the plot of nonlinear decision

boundary obtained by NLAC for data shown in Figure 5.1.

 

- 2.97x,2 — 4.16y} + 3.52x, y, + 3.6311,. + 2.5y, —1.72

S 0.5 / \ >0.5

/ \
Class ‘0’ Class’l’

  
 

Figure 5.2: Decision Tree using NLAC algorithm for data shown in Figure 5.1

66



um, '1 , a. :41; F

1 + class

41* class 1

  
us 0.4 0.5 0.5 0.7 0.8 0.9 1

X,

Figure 5.3: Nonlinear decision boundary obtained using NLAC on data shown in

Figure 5.1

The decision boundary for the data distribution discussed is highly nonlinear in

nature. The LAC2 algorithm with linear decision boundaries results in a complex

decision tree as shown in Figure 5.4. The decision tree generated by LAC2 algorithm

requires more decision nodes as classes are not linearly separable. The LAC2

algorithm performs well as long as the data is evenly distributed in and around their

class mean and bounding rectangle of one class is not entirely contained in another

class. For the same nonlinearly separable data in Figure 5.1 the LAC2 algorithm

generated a decision tree with more than 4 decision nodes. When the classes are

nonlinearly separable, decision tree obtained using nonlinear test nodes are relatively

simpler than the decision tree obtained using linear tests at decision nodes. The results

obtained using the LAC2 decision tree algorithm and nonlinear decision tree
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algorithms are contrasted more elaborately with real world application data in the

following chapter.

y + 12511:

S9/

\
> 9

y -2.8x y +0611

3 -1.2 / \ >12 3 0.8 / ‘ >0.8

/ \ 1‘ , \

y.-58x Class 0 Class ‘1’
Class ‘0’ </ \

y-5.5x Class ‘0’

S -2.8 / \ >-2.8

/ \

Class ‘1’ y -0.8x

>0.5

S 0.5 / \

/ Class ‘0’

Class ‘1’

Figure 5.4: Decision Tree by LAC2 algorithm for data shown in Figure 5.1

68



 

 

Total attribute combination set AB is determined by all possible pair wise combination of

attributes. All the instances in training data set S is assigned a class.

Given a training data set S, classes set C and total attributes combination set A Bas input

to the Nonlinear decision tree algorithm it executes thefollowing procedure.

Ifall entries in S arefrom the same class

I Return a leafnode with that class name as label }

else ifS is empty

I Return a single node with valuefailure I

else

{Let ax,2 + by,2 + cx, yi + dx, + ey, + k = v, be the non linear equation that has

the minimum entropy, with best classification oftraining set S.

Let the points x, y befrom the two dimensional spaceformed by using attributes

Aj & Bk .Hence let ( Aj, Br ) be the attribute pair from AB whose distribution

space contains the line the non linear equation

ax,2 +by,2 +cxiy, +dx, +ey, +k =v,.

Then the decision attribute pair at the root node is ( Aj , Bk ) and the decision test

at the root node is non linear equation with minimum entropy .For the subsets

that have instances with v, =0 and v, =1 add branch below the Root.

Let Sjk be the subset ofS that satisfies v, =0

If Sj, is empty

IThen add a leaf node below this branch with label = most frequently

occurring class in set S}

else

{Add a new sub tree below this branch and repeat the procedurefor other

subsets}

end

 

Figure 5.5: NLAC decision tree algorithm
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CHAPTER 6: RESULTS AND DISCUSSION

6.1 Database description

The IE, LACl, LAC2, and NLAC decision tree algorithms offers significantly

improved results in terms of classification accuracy and simplicity of decision tree largely

due to the use of bivariate tests at each decision node. In this chapter the performance of

ID3 and JE orthogonal decision trees, LACl and LAC2 linear decision trees, and finally

NLAC decision tree are evaluated for 10 different training and testing data pairs on three

databases. The Iris benchmark data and two additional databases of signals from eddy

current Array probe and Rotating Probe coil obtained during inspection of steam

generator tubes are used for evaluating the different algorithms.

6.1.1 Iris Database

The Iris database is often used as a benchmark database in pattern recognition field.

This dataset contain three types of Iris plants ‘Setosa’, ‘Versicolor’, and ‘Virginica’ each

having 50 instances. Each pattern vector has four attributes namely sepal length, sepal

width, petal length and petal width. Two of the three classes ‘Versicolor’ and ‘Virginica’

are nonlinearly separable from each other. The third class ‘Setosa’ is linearly separable

from the other two classes. For testing the performance of different algorithms, the data

from two nonlinearly separable classes are used. All attributes values are continuous

valued and the class ‘Versicolor’ is assigned as class’O’ and class ‘Virginica’ is assigned

as class’l’.

70



6.1.2 Eddy Current database

a) Array Probe database

This data is basically eddy current data collected from an Array probe used during the

inspection of heat exchange tubes in steam generator units from nuclear power plants.

Array probe uses the eddy current principle and collects data from the heat exchange

tubes for Non-Destructive evaluation [14]. More details of Eddy current and NDE

methods can be found in EPRI Tech Report [14]. The data is collected at different

excitation frequencies for detecting different types of defects such as cracks, MBMs,

dents, corrosion etc. Given the data collected from a tube the data is preprocessed for

noise removal and the region of interest (ROI) containing potential defect signals are

identified. The next step extracts the features from the data in region of interest for

classification. A training database with the ground truth is used for building the tree. Each

R01 is an instance described by the features extracted from it. Using the ground truth the

ROI’s are assigned as class’ 1’ for defects or class’O’ for non-defects. The above database

describing each instance with attributes and classes is divided into training and test data

set. The database used for evaluating the performance of ID3, JE, LACl, LAC2 and

NLAC decision tree algorithm has two classes namely MBM defects labeled as class’l’

and non-defects labeled as class’O’. This particular Array probe data was collected at four

different frequencies, namely 90,170,380 and 750 KHz. All features used for

classification are extracted from the data collected at excitation frequency 380 KHz. The

database has 4 features or attributes namely, vertical peak-to-peak voltage, phase angle,

ratio of vertical and horizontal component, and magnitude of the signal. Figure 6.1 shows
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the images of Array probe data before noise removal, after noise removal and the

identified ROI. Figure 6.2 shows the line scan of the data within the identified ROI.
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Figure 6.1: (a) Array probe Data Vertical component - Data before preprocessing.
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Figure 6.1: (b) Array probe Data Vertical component - Data after preprocessing.
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Figure 6.2: (b) Line scan of the ROI - Horizontal Component

The line scan through the peak value in the ROI is determined. For the ROI shown in

Figure 6.1(c) the line scan through the peak value is in channel 11. Figures 6.2 (a) and

6.2 (b) show the vertical and horizontal component data from channel 11 in the array

probe. After removing the mean in the ROI, the points Q and R in Figure 6.2(a)

correspond to data points at which the vertical component signal has maximum V q and

minimum V , voltage respectively. The corresponding horizontal voltage values at Q and

R are determined as, hq , and h, . From these vertical and horizontal voltages the four

features are computed by equation 6.1. The Table 6.1 shows the computed features.

Similarly the features are extracted from each ROI and given as the input to decision tree

algorithm for classification.
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Vertical peak to peak = V q - v , 6.1(a)

v 6.1(b)

Phase angle = tan ’1 J—

hq

vq

Ratio of vertical and horizontal = absolute ? 6.1(c)

q

6.1(d)

Magnitude = v: +h:

Table 6.1: Features extracted from the ROI

 

 

Vertical peak to lPhase angle In] Ratio of vertical and Magnitude

peak In volts defies horizontal In volts In volts

0.39 71 .8 2.7 0.41      

b) RPC Database

RPC is the acronym for Rotating probe coil. This probe also uses the eddy current

principle for collecting inspection data similar to the Array probe. It also serves the same

purpose of Non-destructive evaluation of heat exchange tubes, but the way the data is

collected is different from that of the Array probe .The RPC probe moves in a helical

fashion along the length of the tube collecting the data in circumferential direction as well

as axial direction. The Array probe in contrast contains a circumferential array of sensors

each collecting the data in axial direction. The resolution of data collected with the RPC

is relatively higher than that of the Array probe, but the time required by the RPC for

collecting the data is relatively longer than the time required by Array probe. The RPC is

also excited at different frequencies for collecting the data. The data collected from the

heat exchange units are pre-processed for removal of noise and the ROI’s are identified.
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Once the ROI’s are identified features are extracted from the ROI’s and labeled as defect

or non-defect class using the ground truth. Data in each R01 is represented by four

features or attributes namely maximum vertical voltage, maximum phase angle,

maximum horizontal voltage and maximum magnitude of the signal. Features are

extracted in a sinrilar fashion as explained for Array probe.

6.2 Results

6.2.1 ID3 and JE Algorithm- Orthogonal decision boundaries

a) Iris database

The Iris database containing two nonlinearly separable classes with 50 instances

each was divided randomly into training and testing data with 25 instances from each

class. The process was repeated to obtain different sets of training and testing database

pairs and all five algorithms were implemented. All four features were used for

evaluating the performance. The results of performance of all algorithms are compared.

The decision tree built using training data is tested with the corresponding test data from

the dataset pair. Table 6.2 and Figure 6.3 shows the results obtained using ID3 and JE

algorithm for the Iris database with four attributes. ID3 algorithm selects any one out of

four attribute that has the minimum entropy at every decision node. With four attributes

in each pattern vector, the JE, LACl and LAC2 algorithm has 6 combinations of two

attributes. These algorithms select the combination with nrinimurn entropy at every

decision node. The misclassification rate in Table 6.2 for ID3 algorithm varies from 6 to

3 with average misclassification rate as 4.9. The misclassification rate for IE algorithm in

Table 6.2 ranges from 2 to 4. For 7 out of 10 data sets JE algorithm consistently performs
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better than ID3 algorithm. Besides classification accuracy JE algorithm also results in

simpler decision tree with lesser number of decision nodes. But the number of leaf nodes

is more in JE algorithm. This is because of the fact that for every decision node the JE

algorithm partitions the data into four subsets whereas ID3 algorithm partitions the data

into two subsets. Moreover although JE algorithm makes use of two attributes at every

decision node, it generates orthogonal decision boundaries similar to ID3. The LAC l

algorithm overcomes the drawbacks of IE algorithm and builds a simple decision tree

with non-orthogonal decision boundary with two attributes in a two dimensional feature

space.

Table 6.2: Results of ID3 and JE algorithm on Iris database non-separable classes

 

 

 

 

 

 

 

 

 

 

 

 

IDs JE

#

Sets # Misclasslticatlon # Decision Nodes r# Misclasslflcatlon it Decision Nodes

l 4 3 4 2

2 5 4 3 2

3 6 3 4 3

4 5 4 3 2

5 4 3 4 2

6 5 4 3 2

7 6 3 4 2

8 5 4 3 2

9 2 3 2 2

10 5 4 3 2        
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Figure 6.3: (a) Misclassifications with ID3 and JE on Iris database
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Figure 6.3: (b) Decision nodes with ID3 and JE on Iris database

 



b) Array probe database

The Array probe database comprising 27 instances belonging to defect class and 73

instances from non-defect class were split into training and test data sets. The training

data consists of 18 instances from defect class and 47 instances from non-defect class.

The test data was made of remaining 9 instances from defect class and 25 instances from

non-defect class. Ten different data sets with training and testing pairs were generated

randomly from the database for evaluating the performance. Table 6.3 and Figure 6.4

show the number of misclassifications and the decision nodes for Array probe data using

ID3 and IE algorithm with orthogonal decision boundaries. The two classes ‘defect’ and

‘non-defect’ are nonlinearly separable in the Array probe data set. By choosing training

data whose” distribution is very close to test data distribution we can build a simple

decision tree that classifies all instances correctly. However in practice this is seldom

true. The multiple randomly selected training and test data pairs ensure that we have

enough diversity in the choice of training and test data pairs. IE algorithm gives zero

misclassification for data set four. On the ten data sets, the average rrrisclassification by

IE algorithm is 2.3 whereas for the ID3 algorithm the average misclassification is 2.5.

Although the difference in rrrisclassification rate is not too large, IE algorithm results in a

simpler decision tree than the ID3 algorithm. The next section shows the results obtained

using LACl and LAC2 algorithms with non-orthogonal decision boundary.
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Table 6.3: Results of ID3 and JE algorithm on Array probe database
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Figure 6.4: (a) Misclassifications with ID3 and IE on Array Probe database
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Figure 6.4: (1)) Decision nodes with ID3 and IE on Array Probe database

c) RPC database

The RPC database used for evaluating the performance of the decision tree algorithms

has 22 instances from ‘defect’ class and 115 instances from ‘non—defect’ class. The

uaining data consists of 16 instances from ‘defect’ class and 81 instances from ‘non-

defect class. The test data comprises of remaining 6 instances from ‘dcfect’ class and 34

instances from ‘non-defect’ class. Randomly generated pairs of training and testing data

sets were applied as input to the decision tree algorithm. The two classes defect and non-

defect in RPC database are nonlinearly separable. Table 6.4 and Figure 6.5 summarize

the results of performance with IE and ID3 decision tree algorithm. The rrrisclassification

rate for ID3 and IE algorithm is more or less in the same range.
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Table 6.4: Results of ID3 and JE algorithm on RPC database
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Figure 6.5: (a) Misclassifications with ID3 and IE on RPC database

Average rrrisclassification for ID3 is 2.6 and for IE it is 2.4. However the IE algorithm

results in a simpler decision tree with just 2 or 1 decision node whereas the ID3 algorithm

uses upto 3 decision nodes for obtaining the same range of classification accuracy.
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Figure 6.5: (b) Decision nodes with ID3 and JE on RPC database

(1) Attributes Selection

Figure 6.6 and 6.7 shows the decision tree for data set number 1 obtained using ID3

algorithm and IE algorithm on Iris database shown in Table 6.2. Attribute ‘1, 2, 3, 4’

corresponds to sepal length, sepal width, and petal length and petal width. The decision

tree constructed by ID3 algorithm selects the attributes petal length, petal width and sepal

width as the test attributes at three decision nodes. The decision tree constructed by IE

algorithm consists of two decision nodes. The IE algorithm also uses the same three

attributes used in ID3, but in two dimensional combination at each node, and hence lesser

number of nodes than ID3 algorithm.

83



Attribute ‘3 ’

«71/ \ 20.71

\

Class ‘I ’ Attribute ‘4’

< 0.68 / \ 2 0.68

A/ \

Attribute ‘2’ Class ‘0’

< 0.88 / \ 2 0.88

/ \

Class ‘1’ Class ‘0’

Figure 6.6: Decision Tree by ID3 algorithm on Iris Data set 1

Similarly for most of the data sets in the three databases discussed, IE algorithm selected

same attributes as in IDB, but in two dimensional combinations with lesser number of

nodes.

Attribute ‘3, 4’

<0.71&<0.68 / \\>071 & >068

>0.71 & <0.68

/ <0.71&20.68

/ Class "1

Class ‘0’ Cl

Attribute ‘1,2’ m

<0.63 &ZO.V/ \
20.63 & 20.88

/ <0.63 &20.88 \

Class ‘0’ 20.63 & <0.88

\ Class ‘1 ’

Class ‘0’ Class ‘I ’

Figure 6.7: Decision Tree by JE algorithm on Iris Data set 1
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6.2.2 LAC1 and LAC2 Algorithm-Linear, non-orthogonal decision boundaries

a) Iris database

The LAC1 and LAC2 algorithms generate linear but non-orthogonal decision

boundaries in the two dimensional feature space. These algorithms are therefore more

powerful than ID3 and IE algorithm. Table 6.5 and Figure 6.8 shows the results obtained

using LAC1 and LAC2 algorithms on randomly generated training and testing data set

pair used in section 6.2.1. The misclassification rate is seen to vary from 2 to 4 for LAC1

algorithm. On average the rrrisclassification rate for LAC1 is 3.2 whereas for ID3

algorithm and IE algorithm the average misclassification rate is 4.7 and 3.3. Although the

LAC1 algorithm outperforms ID3 algorithm in terms of classification accuracy the

average level of complexity of the decision tree generated in LAC1 is the same as that of

ID3 algorithm. This is because of the fact that the simplicity of the decision tree

generated by LAC1 depends on the location of the instances with respect to origin. The

LAC2 algorithm overcomes this drawback, as its performance is independent of the data

location.

Table 6.5: Results of LAC1 and LAC2 algorithm on Iris database non-separable classes

LAC1 LACZ

# Decision Nodes # Decision Nodes
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Figure 6.8: (a) Misclassifications with LAC1 and LAC2 on Iris database
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Figure 6.8: (b) Decision nodes with LAC1 and LAC2 on Iris database

The LAC2 algorithm gives better performance in terms of both classification accuracy

and fewer decision nodes resulting in simpler decision tree relative to that obtained using
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[D3, IE and LAC1 algorithms. The Iris database is non-separable in two dimensional

feature spaces and hence the difference between the complexities of decision tree

generated by LAC1 and LAC2 algorithms is not that obvious. For linearly separable and

nonlinearly separable data in two dimensional feature spaces the LAC2 algorithm tends

to give much simpler decision tree.

b) Array Probe database

The performance of linear decision tree algorithm LAC2 is more obvious in the

case of Array probe database as it is nonlinearly separable in two dimensional feature

spaces, unlike Iris database. Table 6.6 and Figure 6.9 shows the results obtained using

LAC1 and LAC2 algorithms on Array probe database. The average nrisclassification rate

with the LAC2 algorithm is 2 whereas with LAC1 algorithm it is 2.2. The LAC2

algorithm has number of misclassifications less than 3 in 7 out of 10 data sets making it

more desirable than LAC1 algorithm.

Table 6.6: Results of LAC1 and LAC2 algorithm on Array Probe database

LAC1 LAC2

# Decision Nodes # Decision Nodes
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Figure 6.9: (a) Misclassifications with LAC1 and LAC2 on Array Probe database
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Figure 6.9: (b) Decision nodes with LAC1 and LAC2 on Array Probe database



Besides better classification accuracy, the LAC2 algorithm also provides much simpler

decision tree with just 1 or 2-decision nodes in contrast to that of the LAC1 algorithm

where the number of nodes ranges from 2 to 4. The LAC2 algorithm has better

classification accuracy while yielding simpler decision trees relative to that obtained

using the ID3 algorithm. The average number of decision nodes and the misclassification

rate for LAC2 are 1.5 and 2 respectively whereas for ID3 the values are 1.9 and 2.5.

c) RPC database

The two classes in the RPC database are also nonlinearly separable similar to the Array

probe database. Here the classification accuracy as well as simplicity of decision tree is

better than non-orthogonal decision trees reported in section 6.2. Table 6.7 and Figure

6.10 shows the results obtained using LAC1 and LAC2 algorithms on the RPC database.

The average misclassification classification rate for LAC1 and LAC2 are 1.8 and 1.7. The

difference in misclassification rate is just 0.1. But the LAC2 algorithm has the advantage

of lower computational complexity of the resulting decision tree in comparison to that of

LAC1 algorithm.

Table 6.7: Results of LAC1 and LAC2 algorithm on RPC database

 

 

 

 

 

 

 

 

 

 

 

  

# LAC1 LAC2

Sets # Misclassiflcatlon # Decision Nodes # Mlsclasslflcatlon # Declslon Nodes

1 0 3 2 2

2 1 2 1 2

3 2 2 2 1

4 1 2 1 1

5 2 2 0 3

6 3 2 3 1

7 2 2 2 2

8 3 2 2 1

9 2 2 2 2

10 2 2 2 2     
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Figure 6.10: (a) Misclassifications with LAC1 and LAC2 on RPC database
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Figure 6.10: (b) Decision nodes with LAC1 and LAC2 on RPC database

 



Similar to results obtained for Array probe data we can see a significant difference in

performance between LAC2 and IDS algorithm. The average misclassification rate and

average number of decision nodes for LAC2 are 1.7 and 1.7 respectively. For ID3 the

corresponding values are 2.6 and 2.3.

b) Attributes selection

Figures 6.11 and 6.12 show the decision tree obtained using LAC1 and LAC2

algorithms on Array probe data set number 5 shown in Table 6.6. Attributes ‘V, X, Y, Z ’

correspond to vertical peak-to-peak voltage, phase angle, ratio of horizontal and vertical

component, and magnitude of the signal. The decision tree constructed using LAC1

algorithm selects the attribute combination V, X and V, Z as the test attributes at two

decision nodes. The decision tree generated by LAC2 algorithm consists of just one

decision node with two dimensional attribute combinations V, X.

x+0.6v

S 0.5 / \ >O.5

/ \

Class ‘1 n z+14v

s -0.5 / \ >06

/ \

Class ‘1 ” Class ‘0"

Figure 6.11: Decision Tree by LAC1 algorithm on Array Probe Data set 5
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Although both LAC1 and LAC2 employ the same attribute combination at the root node,

the LAC1 algorithm needs an additional decision node for classification due to its

drawback discussed in chapter 4. Similarly for most of the data sets in the three databases

discussed, the attributes combination in LAC2 algorithm were the same as the attribute

combination used by LAC1 algorithm, but with lower number of decision nodes.

x - 2.74v

s.- 0.2 / \ >02

/ \.

Class ‘1 ” Class ‘0 ”

Figure 6.12: Decision Tree by LAC2 algorithm on Array Probe Data set 5

6.2.2 NLAC algorithm - Nonlinear decision boundaries

a) Iris database

The same training and testing data set pairs for Iris, Array probe, and RPC databases

randomly generated in section 6.2.1 were used for evaluating the performance of NLAC

algorithm. Table 6.8 and Figure 6.13 shows the results on the Iris database obtained using

NLAC algorithm for different training and testing data pairs. The misclassification rate

for NLAC algorithm is in the range of 2 to 3 similar to that of LAC2 algorithm. But

NLAC decision tree is simpler than that of LAC2 algorithm. The average number of

decision nodes with NLAC algorithm is 2.1. In contrast the LAC2 algorithm has a more

complex decision tree structure with average number of decision nodes being 3.1.
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Table 6.8: Results of NLAC algorithm on Iris database

# Sets
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Figure 6.13: (a) Misclassifications with LAC2 and NLAC on Iris database
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Figure 6.13: (b) Decision nodes with LAC2 and NLAC on Iris database

The average misclassification rate and number of decision nodes for LAC2 are 2.9 and

3.1 whereas for NLAC they are 2.6 and 2.1 respectively. The difference in the

misclassification rate for LAC2 and NLAC is just 0.3. However the NLAC algorithm

offers a decision tree with minimum number of decision nodes. NLAC algorithm uses

two decision nodes for 8 out of ten data sets, whereas LAC2 algorithm uses more than

two decision nodes for all ten data sets.

b) Array probe database

The results obtained using NLAC algorithm on Array probe database is

summarized in Table 6.9 and Figure 6.14. In section 6.2.2 the decision trees generated by

LAC1 and LAC2 have two decision nodes for the data set with zero misclassification.

The LAC1 and LAC2 needs at least two decision nodes to classify all non linearly
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separable classes, whereas the decision tree generated by NLAC algorithm needs just 1

decision node to classify all the instances correctly for the same data set .

Table 6.9: Results of NLAC algorithm on Array probe database

# Sets
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Figure 6.14: (a) Misclassifications with LAC2 and NLAC on Amy probe database

In 9 out of 10 data sets the decision tree obtained by NLAC algorithm has just one node

whereas LAC2 and LAC1 algorithms resulted in trees with l to 4 decision nodes. In

terms of classification accuracy the NLAC algorithm has 0 or 1 misclassification for 7
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out of 10 data sets. These results clearly show that the NLAC algorithm reduces the

complexity of the decision tree without any compromise in classification accuracy.
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Figure 6.14: (b) Decision nodes with LAC2 and NLAC on Array probe database

c) RPC database

The result obtained using the NLAC algorithm on RPC database is shown in the Table

6.10 and Figure 6.15. In this database NLAC algorithm yields a simple decision tree with

2 decision nodes and zero misclassification for 3 data sets. The LAC2 and LAC1

algorithm generates complex decision tree with three decision nodes and zero

misclassification on one data set The average number of decision nodes in the tree

generated by NLAC algorithm is lesser than LAC2 and LAC1 algorithms. The NLAC

decision tree clearly outperforms the LAC2 and LAC1 algorithms in terms of both
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number of decision nodes and classification accuracy when the dataset has classes that

are not linearly separable.

Table 6.10: Results of Non linear algorithm on RPC database

# Sets
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Figure 6.15: (a) Misclassilications with LAC2 and NLAC on RPC probe database
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Figure 6.15: (b) Decision nodes with LAC2 and NLAC on RPC probe database

(I) Attributes selection

The attributes combination chosen by NLAC algorithm is similar to the attributes

combination selected by the LAC1 and LAC2 algorithms. Apart from the attribute

combination selected by NLAC algorithm the LAC1 and LAC2 algorithms need

additional attribute combination for classifying the nonlinearly separable data resulting in

higher number of decision nodes.
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6.3 Results summary

The Tables 6.11, 6.12 and 6.13 show the average number of misclassifications and

decision nodes on all three databases for the five different decision tree algorithms. The

performance of LAC2 algorithm is better than ID3 algorithm in terms of number of

decision nodes as well as classification accuracy. The results demonstrate the fact that

multivariate decision trees with non-orthogonal boundaries are more efficient than

decision tree with orthogonal decision boundaries. Similarly the NLAC algorithm

performs better than LAC2 algorithm and appears to be more promising for data

distributions with classes that are non- linearly separable.

Table 6.11: Iris Database non-separable classes

 

 

 

 

 

 

 

Iris probe Database Averagg Misclassifleetlon Averagg Decision node

ID3 4.7 3.5

JE 3.3 2.1

LACi 3.2 3.8

LACZ 2.9 3.1

NLAC 1.8 2.1    

Table 6.12: Array probe Database nonlinearly separable classes

 

 

 

 

 

 

 

Array probe Database Average Mlsclassltlcatlon Average Declslon node

ID3 2.5 1.9

JE 2.3 1.3

LAC1 2.2 2.3

LACZ 2 1.5

NLAC 0.9 1.1    

Table 6.13: RPC Database nonlinearly separable classes

 

 

 

 

 

 

 

RPC Database Avegge Misclasslflcatlon Averagfleclslon node

ID3 2.6 2.3

JE 2.4 1.4

LAC1 1.8 2.1

LACZ 1.7 1.7

NLAC 1.1 1.4    
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Average number of decision nodes for IE is smaller compared to IDB but the number of

leaf nodes for every decision node is higher than in other algorithms. Every algorithm

performs well for a particular data distribution. The decision trees proposed in this thesis

are suitable for two class problem with continuous valued attributes. The number of

attributes should also be small. Large number of attributes leads to more attribute pair

combinations in JE, LAC1, LAC2 and NLAC algorithm and hence increases the

computation complexity. Of the five algorithms JE algorithm takes the most amount of

computation time as it computes the entropy for all combinations of feature values taken

by the two attribute combination to determine the appropriate thresholds for every

attribute combination. The computation time required by five algorithms in decreasing

order is JE, LAC1, LAC2, ID3 and NLAC algorithm. The computation time for Iris

training data set is presented in Table 6.14.

Table 6.14: Computation time for Iris training data set

 

 

Iris data set ID3 JE LACt LACZ NLAC

Computation time

in seconds 0.4 4.2 0.7 0.53 0.24       
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CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1 Summary and Conclusions

The objective of this thesis is to develop a decision tree based classification

algorithm that generates non-orthogonal and nonlinear decision boundaries in two

dimensional feature spaces. The basic ID3 uses one attribute at every decision node and

uses the entropy concept for selecting the test at each node. The IDB algorithm gives

orthogonal decision boundaries and very often tends to over fit the data thereby

increasing the size of the tree depth. The tree depth can be reduced considerably by

making use of more than one attribute at each decision node. The IE and LAC1 algorithm

uses two attribute combinations at every decision node and uses the entropy concept for

selecting the test. The IE and LAC1 algorithm reduces the tree depth with comparable or

better classification performance than ID3. However the IE algorithm generates

orthogonal decision boundaries with increased number of leaf nodes and LAC1 generates

complex decision tree when the data distribution is close to the origin.

Two algorithms based on linear and nonlinear attribute combinations referred to

as LAC2 and NLAC are proposed in this thesis to overcome the drawbacks in ID3, IE

and LAC1 decision tree algorithms. The LAC2 and NLAC algorithms use two attribute

combinations and employ the entropy criterion for selecting the bivariate test at each

decision node. The performance of LAC2 and NLAC decision tree algorithms were

evaluated with three real world application data and contrasted with the corresponding

performance of the ID3, IE, and LAC1 decision tree algorithms. Both LAC2 and NLAC

decision tree algorithms produce trees with reduced tree depth when compared to ID3, IE

and LAC1 algorithms. The LAC2 algorithm generates a decision tree with linear decision
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boundaries and its performance is independent of data distribution unlike LAC1

algorithm. For nonlinearly separable data sets the tree depth obtained with linear decision

tree can be reduced to almost half, by replacing the linear decision boundaries with

nonlinear decision boundaries. For all three databases the tree depth obtained with NLAC

algorithm is smaller than that obtained with the other four algorithms without any

compromise in classification accuracy. The LAC2 algorithm is most optimal for two

class problems with continuous valued attributes that are distributed uniformly in and

around the mean of its distribution in the two dimensional feature space. Similarly the

proposed NLAC decision tree algorithm is most optimal when the data is nonlinearly

separable in two dimensional feature spaces. In IE, LAC1, LAC2 and NLAC algorithms,

the instances that are not classified correctly in a particular two dimensional feature space

are classified in next node with same or different two dimensional feature space.

The univariate ID3 and its extension C4.5 are extensively used in building

classification trees and in data rrrining because of its robustness and consistency. The

results on all three databases obtained using IE, LAC1, LAC2 and NLAC algorithms

with multivariate tests are more promising for continuous valued attributes. For higher

dimensional pattern vector, the proposed algorithms can be extended to higher

dimensional multivariate test at each decision node. Secondly the order of nonlinearity

(currently 2) can also be increased. A final extension of the algorithm is the extension to

classification of more than two classes.

102



BIBILIOGRAPHY

[1] Richard O.Duda,Peter E.Hart and David G.Stork “Pattern Classification”.New

York;Wiley,2001.

[2] J.Quinlan. “Induction of Decision Trees.” Machine Learning Vl.1:81-106,l986.

[3] Michie,D.(l983).Inductive rule generation in the context of the Fifth generation.

Proceedings of the Second International Machine Learning Workshop. University of

Illinois at Urbana—Champaign

[4] Richard O.Duda and Peter E.Hart. “Pattern Classification and scene analysis” New

York, Wiley [c1973]

[5] Sammut, C.A. (1985). Concept development for expert system knowledge bases.

Australian Computer Journal 17.

[6] C.Shanon. “A Mathematical Theory of Communication.” Bell System Technical

Journal,

Vol.27,p.379-423 and 623-656,l948.

[7] J.Quinlan. “C4.5:Programs for Machine Learning”. Morgan Kaufmann 1993.

[8] T.Mitchell. “Machine Learning.” McGraw-Hill, p.52-81,1997

[9] C.Brodley and P.Utgoff, “Multivariate decision Trees.” COINS Technical Report 92-

82,1992

[lO] Savita S.Bhat. “Generalization of ID3 Algorithm to Higher Dimensions” MS

Thesis, Michigan State University.

[11] S.Haykins. “Artificial Neural Networks”

[12] M.Seo. “Automatic Ultrasound Signal Classification scheme”.Mater’s thesis.

[l3] C.Brodley and P.Utgoff, “Multivariate Decision Trees.” COINS Technical Report

92-82,1992

[l4] EPRI Tech Report, 2003.

[15] E.Feignbaum,P.Mccorduck. “The Fifth GenerationzArtificial Intelligence and Iapans

Computer Challenge to the world.” Addison Wesley, Reading, MA 1983.

[16] A.Iessop. “Informed Assesments: An Introduction to Information, Entropy and

Statistics.” Ellis Horwood, 1995.

103



[17] R.Mantataras et al., “Comparing information-thoretic attribute selection measureszA

statistical approach.” AI Communicatons 11,1998

[18] M.Last A.Kandel, O.Maimon. “Information Theoretic Algorithm for Feature

Selection.” Pattern Recognition Letters, 2001.

[19] J.Quinlan. “Simplifying decision trees.” International Journal pf Man-Machine

Studies, 27, 1987.

[20] Yao,Wong,Butz. “On Information-Thoretic Measures of Attribute Importance.”

Proceedings ofThird Pacific-Asia on knowledge Discovery and Data Mining, I999

[21] A.Collin. “Building Decision Trees with the ID3 Algorithm.” Dr.Dobb’s Ioumal,

p.107—109, 1996.

[22] J.Finaly and S.Dix. “An Introduction to Artificial Intelligence.” UCL Press,Taylor

and Francis Group,l996

[23] S.Russel,P.Norvig. “Artificial Intelligence-A Modern Approach.” Pearson Education

Asia, 2001.

[24] P.Winston. “Artificial Intelligence” Addision and Wesley Publishing Company,

1984.

[25] A.Collin. “Building Decision Trees with ID3 Algorithm: Dr.Dobb’s Journal,p.107-

109,1996

[26] U.Fayyad et al(Ed). “Advances in Knowledge Discovery and Data Mining.” AAAI

Press, 1996.

104



  
W

lllllllllllllllIlllll


