Rare isotope beam energy measurements and scintillator developments for ReA3
The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations.A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with respect to the acceleration RF clock. The time-of-flight system can provide beam energy information with precision of <0.1%.Scintillators are widely used to reliably measure beam profiles and beam distributions. At low energies, scintillator-based diagnostic devices are more problematic because of their fast light yield degradation under ion bombardment. The degradation of the scintillation yield of single crystal YAG: Ce under He+ irradiation at low energies between 28 and 58 keV has been systematically studied. The scintillator was irradiated at the rare isotope ReAccelerator (ReA) facility. The scintillation emission is attributed to its rapid 5d-4f transition of Ce3+ ions. As the bombardment time increases, an exponential decay of the light output is observed due to the induced radiation damage of the crystal lattice. The decrease of the experimentally observed light yield as a function of particle fluence is found to be in fair agreement with the Birks model. Analysis indicates that the damage cross section of scintillation centers slightly decreases with the ion energy. The scintillator degrades slower under higher-energy irradiation.In order to investigate scintillation degradation over a wide range of irradiation energies and scintillator materials, the scintillation processes for KBr, YAG:Ce, CaF2:Eu and CsI:Tl crystals under H2+ irradiation in the energy range of 600-2150 keV/u have been investigated. The data indicates that YAG:Ce and CsI:Tl can maintain stable luminescence under continuous ion bombardment for at least a total fluence of 1.8x10^12 ions/mm^2. On the other hand, the luminescence of CaF2:Eu shows a rapid initial decay but then maintains a nearly constant luminescence yield. The extraordinary scintillation response of KBr is initially enhanced under ion bombardment, approaches a maximum, and then eventually decays. The scintillation efficiency of the CsI:Tl scintillator is superior to the other materials. The low-energy H2+ bombardment (25 keV/u) on the YAG:Ce scintillator can lead to the significant degradation of the scintillation yields. Different scintillation degradation responses for the low- and high-energy bombardments can be attributed to the transmission loss of the emitted light inside the crystal caused by displacement damages.
Read
- In Collections
-
Electronic Theses & Dissertations
- Copyright Status
- In Copyright
- Material Type
-
Theses
- Authors
-
Lin, Ling-Ying
- Thesis Advisors
-
Leitner, Daniela
- Committee Members
-
Perdikakis, Georgios
Zelevinsky, Vladimir
Marti, Felix
Tollefson, Kirsten
Duxbury, Phillip M.
- Date Published
-
2015
- Subjects
-
National Superconducting Cyclotron Laboratory (U.S.)
Isotopes--Research
Research
Scintillation spectrometry
Time-of-flight mass spectrometry
Michigan--East Lansing
- Program of Study
-
Physics - Doctor of Philosophy
- Degree Level
-
Doctoral
- Language
-
English
- Pages
- xxi, 159 pages
- ISBN
-
9781321639391
1321639392
- Permalink
- https://doi.org/doi:10.25335/qjas-m981