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ABSTRACT

NUMERICAL INTEGRATION OF CONSTITUTIVE MODELS

APPLICABLE TO METAL FOAMS

By

Abhishek Modi

Metal foams have unique combinations of physical and mechanical properties and are

becoming increasingly popular among researchers and designers. Four elasto-plastic

material models for metal foams are studied in detail. All four material models

considered are rate independent elastoplastic models with isotropic hardening rules. A

return mapping algorithm using the Newton-Raphson closest point projection is discussed

for integrating the constitutive equations of the models. A way to do the return mapping

along the spectral directions of the stress tensor is described so as to reduce the

dimensionality of the problem. An algorithm applicable to all metal foam models, both

with associative and non-associative hardening, is presented. A user subroutine is written

in FORTRAN for implementing the algorithm. Numerical simulation of the diagonal

crushing of metal foam cube is done in FEM program ABAQUS to verify the material

model algorithm. The result of the numerical simulation using user defined subroutine, is

compared with the result using the inbuilt metal foam model in ABAQUS. The energy

absorption capacity of metal foams is demonstrated by comparing the crushing process of

a metal foam cube with a solid aluminum cube.
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Chapter 1

Introduction to Metal Foams and their properties

1.1 Introduction

Foamed metals have become increasingly important to both researchers and designers in

the past two decades owing to the unique and interesting combinations of physical and

mechanical properties of these materials. Increased interest in these materials in recent

times is also due to improved production methodologies [6, 10] which result in easier

availability of foamed metals of better and consistent properties at affordable prices.

Metal foams have unique combinations of desired properties like impact energy

absorption capacity, air and liquid permeability, good acoustic properties as well as low

thermal conductivity and high electrical conductivity. One reason why cellular metals

have not been more popular in engineering design till recently is the poor manufacturing

processes available in the past. New manufacturing techniques developed in the last

decade have now ensured that foamed metals have a greater range and control of physical

properties. Increased process control over the manufacturing parameters has improved

the quality of the metal foams produced. The micro mechanical structure of these new

metal foams is more consistent leading to better mechanical properties which can be

predicted with more accuracy. In this chapter we have listed some of the applications for

metallic foams, classification of cellular metals and the commonly available metal foams

with their market names.



1.2 Applications of metal foams

Metallic Foams are important materials in engineering because of the interesting

combinations of physical and mechanical properties. The existing applications for metal

foams cover a wide range of fields [10]. The applications for metal foams can be broadly

divided into three categories based upon the structure and properties of these foams.

Foams with predominantly closed cells are useful for shock and impact absorption

applications. In energy absorption applications their structure allows these closed cell

foams to absorb large amounts of mechanical energy when they are deformed. Closed

cell foams have a high compressive strength and can undergo large plastic deformations

because of their porous structure. The automotive industry is looking at metal foams for

use in front bumpers to use their high impact absorption capacity. Some other suggested

uses for these materials are as protective envelope for air borne safety equipment like

aircraft black boxes. Disposable landing feet for spacecrafts and disposable clamping

fixtures are other places these materials can be used.

Open cell foams, because of their air and fluid permeability, can be used for functional

applications like filtration, damping etc. Metal foams have good thermal and acoustic

properties which can be used to dampen vibrations and absorb sounds in certain

conditions. Dust and fluid filters, engine exhaust mufflers are some areas these properties

are useful. Inert metal foams (ex. gold, silver) are used for the filtration of corrosive

liquids. Other useful properties like low thermal conductivity in conjunction with high

structural strength is desirable for applications like high temperature gaskets, flame



arrestors etc. Metal foams are good electric conductors which make them good

candidates for application as porous electrodes. Foamed metals have also been used

advantageously in heaters and heat exchangers.

Foamed aluminum is being used as core material in sandwich panels which are used for

structural, load bearing purposes. When used as the filler in sandwich panels they take up

a lot of volume without considerably increasing the overall weight of the structure. These

three dimensional panels which are structurally very stiff can be used effectively in the

aircraft industry as a low cost replacement of honeycomb panels. The automotive

industry is also looking at these panels to use in the body of the car. The high structural

strength of these panels coupled with the thermal properties of the porous metals has

found application as wall and floor heating tiles. Open cell metal foams when used as the

core of reinforcing structural struts allow the flow of liquids through them making them

useful for heating or cooling purposes.

The above list of applications for cellular metals is not a complete list of all the places

these remarkable materials with a combination of useful properties have found

application. As the manufacturing processes for metallic foams improve leading to better

quality foams at lower prices, designers will use them more widely.



1.3 Classification of metal foams

Cellular metals are defined as metals with solid and gaseous phases in their morphology.

To properly identify metallic foams which are a subset of the larger class of cellular

metals, proper classification has to be made for all kinds of cellular metals [6].

Cellular metals- This is the most general classification and refers to a metallic body in

which any kind of gaseous voids are dispersed.

Porous Metals- These are a special kind of cellular metal. The voids are pores which are

round and isolated from each other.

Metal Foams- These are a kind of cellular metal with restricted morphology. The cells

are closed and are separated from each other by thin films.

Metal Sponges- These are open cell cellular metals with interconnected voids.

The subject of this study will be limited to Metal Foams and Metal Sponges.

New and improved manufacturing techniques have resulted in the availability of better

quality metal foams at lower prices. Banhart [6] and Davies [10] have listed the new

manufacturing techniques being used by leading manufacturers of metal foams in the

industry. Alcan, Alporas and Alulight are the trade names of the most commonly

available closed cell aluminum foams. The manufacturing processes of these common

types of aluminum foams are described below along with the range of their physical

properties.



Trade name: ALCAN

Manufacturers: Hydro Aluminum in Norway & Cymat Aluminum Corporation in Canada

Manufacturing process: This is a foaming method for obtaining metal foam from

aluminum melt. The foaming of aluminum melt is done by gas injection. Silicon-carbide,

aluminum-oxide or magnesium-oxide particles are used to increase the viscosity of the

melt. This helps in the stability of the foam when it is being formed. This step requires

sophisticated mixing techniques to ensure a uniform distribution of particles. The melt is

formed in the second step by injecting gas. The foaming is done in a continuous process

in which the mixture of gases and solid metal floats to the top while the liquid metal

drains out. Because of the gravitationally induced drainage, a gradient in density, pore

size and pore elongation is observed in the resulting foam. By this process the foams

obtained have the following average properties:

Average densities 0.069 - 0.54 _g_

cm3

Average pore size 3mm-25mm

Trade name: ALPORAS

Manufacturers: Shinko Wire Company in Japan

Manufacturing process: Metal/Aluminum melts can also be foamed by directly adding a

blowing agent in the melt instead of injecting gas into it. First some 1.5% wt Ca metal is

added to the melt for increasing the viscosity by the formation of calcium oxide and

calcium-aluminum oxide. After the viscosity has reached the desired level, titanium

hydride is added (1.6% wt), serving as a blowing agent by releasing hydrogen gas in the

hot viscous liquid. After cooling the vessel below the melting point of the alloy, the



liquid foam turns into solid aluminum foam. By this process the foams obtained have the

following average properties:

Average densities 0.18 — 0.24 i—

cm3

Average pore size 2mm-10mm

Trade name: ALULIGHT

Manufacturers: Fraunhafer Institute in Germany

Manufacturing process; Foamed aluminum can also be prepared from metal powder.

Aluminum powder or alloy powder are mixed with the right amount of blowing agent,

after which the mix is compacted to yield a dense product. Next, this semi-finished

product is heat treated to temperatures close to the melting point of the matrix material.

This leads the blowing agent to decompose and release gas, which in turn forces the

precursor material to expand and foam. An advantage of this process is that the expansion

during foaming can be controlled inside a mold which results in the formation of near net

shapes of the foam material.

1.4 Issues in manufacturing and applications of metal foam

There has been relatively limited use of metal foams in engineering design despite their

impressive combinations of properties. Notwithstanding the recent developments in

manufacturing of metal foams, there is a lack of sophistication in manufacturing

processes when compared to polymeric foams. Some of the important issues hindering in

the manufacturing and application of metal foams are listed below.



Stability of foams: foams are unstable systems because their large surface area causes

energy to be far from a minimum value. Foams can at best be meta-stable, constantly

decaying at a certain rate. One way to increase the stability of foams is to introduce solid

particles in the melt to increase the viscosity. The action of foam stabilization by the

addition of particle additives is not entirely clear. Some recent work has been done to

study the stability of metal foams [9].

Consistent quality of foam in production: availability of consistent foams in a wide range

of densities is important for wide scale industrial applications. There is a lack of

sufficient knowledge of the mechanisms of foam formation to be able to produce foams

of consistent quality with pro-defined parameters.

Expense of metal foams: There have been some recent improvements in the field of

manufacturing, but there is still need for setting up efficient industrial processes to reduce

the cost and improve the quality of foams. Metal foams are nevertheless less expensive

than honeycomb panels that are popular in the design of weight bearing structures in the

aircraft industry.

Physical properties of foam: In recent years there has been considerable research interest

in experimental studies of the physical and mechanical properties of available metal

foams [2, 12, 17, 18]. There is still a need to establish a wide database for the physical

properties like density, average cell size, cell wall irregularities, and cell wall thickness



and mechanical properties like compressive strength, tensile strength, hydrostatic

strength, elastic modulus and energy absorption capacity.

Modeling of the mechanical response of foams- It is increasingly important for design

engineers to be able to predict the large strain response of materials they use in design.

Efficient and accurate material modeling of metal foams is required for use in FEM

packages. There has been some research which treats metal foams as solid continuum and

applies the equations of elastoplasticity theory [11, 19].

The focus of this study is to provide an algorithm for the numerical integration of the

elastoplastic constitutive equations of metal foams.



Chapter 2

Experimental studies on metal foams

2.1 Introduction

There is a sizable and growing amount of literature on the experimental studies done on

metal foams to record their physical and mechanical properties. Several researchers have

done experimental studies on the uniaxial and biaxial response of foamed metals [17, 18].

A majority of these experimental works have focused on the uniaxial stress strain

response of metal foams both in compression and in tension. Some work has been done to

summarize the results of these tests in simple theoretical equations [2]. Closed cell foams

exhibit remarkably lower values of strength in experiments than the theoretical

predictions. The micro structure of foams has been studied in some detail to explain the

apparent drop in the physical properties of closed cell metal foams. Apart from uniaxial

experiments, some biaxial loading studies [11, 12] have been performed to measure the

performance of foamed metals under various stress situations. Such experiments are

useful in determining the initial yield surface of foams. A presentation of results from the

experimental literature, most pertinent to the present study, is given in this chapter.

2.2 Scaled equations for strength and modulus of foamed metals

Andrews et al [2] have attempted to use simple dimensional arguments to model the yield

strength and elastic stiffness of closed cell and open cell foams in terms of simple

equations. The most important physical property which determines the mechanical



properties of foams is the density of the foam relative to the density of the cell wall

material. Dimensional arguments can be used to relate the Young’s Modulus and yield

strength of the foam to the relative density with respect to the cell wall material.

The mechanical properties of foams can be modeled by considering the mechanisms by

which the cells deform and fail. Open cell foams and closed cell foams fail by different

mechanisms. Open cell foams under uniaxial stress deform by the formation of plastic

hinges in the cell walls. In Closed cell foams on the other hand, bending of cell walls is

accompanied by stretching of cell faces.

A structural mechanical analysis of a low density, open cell, Kelvin foam with a

tetrakaidecahedral structure leads to the following equation for the modulus and yield

strength of open cell foams [2].

a: a- 2

§—=0.98[p—] (2.1)

E ,0

3

at: at: 3

EC. = 0,3 :0—
(23)

cc ,0

where

E* - elastic modulus of open cell foam

0': - uniaxial compressive yield stress of open cell foam.

E - elastic modulus of cell wall metal (aluminum)

ac - uniaxial compressive yield stress of cell wall metal (aluminum).

10



*

£— - relative density of the foamed metal with respect to the base metal.

,0

A similar analysis for ideal tetrakaidecahedral closed cell structure leads to the following

set of equations [2].

* * 2 *

E—=o.32 3— +o.32 9-- (2.3)

E .0 P

. .. 2 ..

51:0.” ”— +0.44 £- (2.4)

0c p p

where now

E*- elastic modulus of closed cell foam

0': - uniaxial compressive yield stress of closed cell foam.

Comparison of the predicted values of modulus and strengths from these equations to the

experimental results from studies on the stiffness and strengths of the open cell foam

ERG and the closed cell foams Alcan, Alporas & Alulight show interesting results [2].

The theoretical equations for the open cell foam (Eq 2.1 and 2.2) are quite close to the

experimental results for ERG, but the theoretical equation for closed cell foam (Eq 2.3

and 2.4) over-predicts the experimental results from Alcan, Alporas and Alulight quite

appreciably. The reason for the observed difference between the model and experimental

values is the presence of micro-mechanical imperfections in the morphology of closed

cell foams.

ll



2.3 Effect of micro-structural irregularities on strength and modulus

Micro-structural observations of the closed cell foams (Alcan, Alporas and Alulight)

reveal a number of defects in the structure which is not taken into account in the

theoretical model [15]. Some of these defects are listed below

Cell wall curvature: The walls of some of the cells are not plane but have some initial

curvature which is not taken into account by the model

Cell wall corrugations: The walls of some cells have corrugations and chinks.

Density gradient: The density of the foam varies throughout the thickness of the foam due

to the processing conditions. This is pronounced in Alcan which is cast under the

influence of gravity.

Defects in cell walls: some of the cell walls are missing and others have voids.

The effect of cell wall curvature and corrugations has been modeled using FEM and

compared to the strength of a periodic tetrakaidecahedral cell [15]. The observed cell wall

imperfections can account for up to a 70% drop in the mechanical properties of foams.

The presence of these micro structural defects is a direct result of the production methods

for foams. One of the important challenges for the manufacturers of foamed metals is to

develop production methodologies that increase the uniformity of the microstructure of

foams.

12



2.4 Uniaxial compressive stress strain response of metal foams

Experimental studies on the uniaxial compressive response of various types of closed and

open cell metal foams reveal certain similarities [7]. All foams irrespective of the cell

wall material exhibit the schematic response under uniaxial loading. Initial loading results

in an increase in stress magnitude which appears to be proportional to strain. But the

unloading modulus is greater that the loading modulus suggesting that local yielding

takes place almost immediately on loading. In a macro sense the material can be

considered elastic up to a certain strain. After the stress reaches the yield point, there is a

regime of strong plastic deformation with very little strain hardening. Sometimes a

separate upper and lower yield point is observed. After an extended plateau the stress

strain curve enters a regime of rapid strain hardening. This part of the stress strain curve

is characterized by densification of cell walls as they collapse on one another,

accompanied by a rapid increase in stress. The strain at which the stress strain regime

enters densification is called the densification strain. Fig. 5.1 shows a typical uniaxial

compressive response of closed cell aluminum foam.

2.5 Initial yield surface of foams

The initial yield surface for metal foams is important in the mathematical model of the

elastoplastic response of foams. Some phenomenological yield criteria have been

suggested by Deshpande-Fleck [11], Miller [19] and Doyoyo [12] among others, for

foamed metals. Experimental studies for biaxial and multiaxial loading of foams are

limited when compared to the large experimental literature available for uniaxial loading.

13



Nevertheless attempts have been made in this regard by Deshpande-Fleck [11] and

Doyoyo et al [12] among others.

Doyoyo et al [12] have investigated the yield surface of closed cell aluminum foam using

the modified Arcan apparatus. Butterfly shaped test specimens of the foam were used in

the Arcan apparatus which ensures the yielding of the foam is at the center of the

specimen.

The Yield surface was found to be pressure dependant and quadratic in the meridian

plane. A phenomenological yield surface has been proposed in the principal stress space

which depends on the first invariant of principal stresses (II) and second invariant of

deviatoric stresses (12 ).

II = oi, (2.5)

12 £5,ij (2.6)

Here

oi]. = %ou 6,]. + Si). (2,7)

aij - SII'CSS tensor

Si]- - deviatoric stress tensor

Deshpande & Fleck [11] have performed biaxial loading experiments for the yield

surface and have come up with a similar pressure dependant yield surface in the principal

stress space. They used triaxial system consisting of a pressure cell and a screw driven

l4



piston for axial loading. The probing of the yield surface suggests a quadratic shape in the

stress space of mean stress (0,") and Von Mises effective stress (Ge).

where

l

Um = 30-h: (27)

3

03 = ESijSI-j (2.8)
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Chapter 3

Elastoplastic material models of metal foam

3.1 Introduction

Metal foams are heterogeneous because of the gaseous voids present in the morphology.

Metal foams are therefore not continuous materials in the strict sense of the definition.

The elastoplastic theory applicable to continuous materials however, can be applied to

metal foam specimens which are considerably larger in dimension than the average cell

dimension. The rule of thumb followed in some references [2, 12] is that the smallest

specimen dimension should be at least 10 times the average cell diameter for continuum

theory to be applicable. Several attempts have been made to model the mechanical

response of metal foams under the broad theory of elastoplastic materials. Commercially

available FEM programs LS-DYNA [13] and ABAQUS [1] have material subroutines for

metallic foams incorporated in the program. Two other material models in literature by

Deshpande-Fleck [11] and Miller [19] are also studied in detail. In this chapter we

present the general equations of elastoplastic theory as applicable to metal foams and also

the constitutive equations of the four models.

3.2 General equations of elastoplastic theory as applicable to metal foams

Uniaxial experiments [18] performed on metal foams have shown that the unloading

elastic modulus of foams is higher than the loading modulus even for small strains. This

is explained by the fact that metal foams undergo local plastic yielding almost

immediately on loading. The local yielding is due to the presence of irregularities at the

16



cellular level. The overall specimen can still be treated as elastic at the macroscopic level

up to the yield stress. All the four models considered assume isotropic elastic behavior in

the elastic region with a constant elasticity tensor.

0:7 = Cans/f1 (3.1)

where

Cijkl - elasticity tensor

£5- - elastic strain

since isotropic elastic behavior is assumed, Cu“ is completely defined by any two elastic
'1

parameters like modulus of elasticity (E) and elastic Poisson’s ratio ( v ).

Elastoplastic theories in general assume the strain rates to decompose additively. So we

can write

é”- : e;- + a; (3.2)

where

815-, - plastic strain

Isotropic elastic behavior is assumed until yielding is reached. Once yielding is reached,

the inelastic response is assumed to be strain rate independent by all four material

models. A yield surface in stress space is used to indicate yielding.

day-.55) = o (3.3)

The presence of 8,5? in the yield rule is to take into account the strain hardening of the

material. As explained later, the yield surface of metal foams can be conveniently

l7



represented in the stress space by the Von-Mises equivalent stress (q) and hydrostatic

pressure stress (p). where p and q are defined as follows

1

p = -3017 (3.4)

3

q = 55.75:;- (3.5)

The hardening of the yield surface depends on the amount of inelastic strain in the

material. Three of the models (ABAQUS, Deshpande-Fleck, and Miller) assume an

isotropic hardening rule for strain hardening. LS-DYNA uses a hardening rule that allows

for change in the shape of the yield surface. The hardening for all four models can be

given in terms of two scalar quantities that are used to track the growth of plastic strain.

The following strain-like scalar internal variables are introduced

3” - equivalent plastic strain

85’ - volumetric plastic strain

The equivalent plastic strain is defined later (Eq 4.7). The volumetric plastic strain can be

written as

6,? = eff (3-6)

Now we can write the yield surface in terms of four scalars in the following manner

f(p.q.£"’ .83." ) = 0 (3.7)

Elastoplastic theories in general define the rate of inelastic strain in terms of a flow

potential function

. a

£5 = r—a: (3.8)

1.l

18



where

7- plastic multiplier

¢ - flow potential function

The flow potential function (¢) is defined in the stress space and can evolve with

accumulation of plastic strain just like the yield potential function (f). In fact a lot of

elastoplastic models assume the flow potential to be the same as the yield potential. If this

is the case then the flow rule is said to be associative, otherwise it is said to be non-

associative. The flow rule is associative for two of the models (Deshpande-Fleck &

Miller) while the other two models (LS-DYNA & ABAQUS) use a non-associative flow

rule.

The strain hardening of the yield function and flow potential is incorporated in the

models through the input of experimental data. The four models considered use the data

from uniaxial compressive test and/or hydrostatic compressive test as input. The

equivalent plastic strain (ép ) is used as a measure of the uniaxial plastic strain for all

models except the Miller model (see Sec 3.3.4)

Pc = Fc (gvp ) (3'9)

ac = fic(§p) (3.10)

where

pc - hydrostatic compressive yield stress

ac - uniaxial compressive yield stress

The yield surfaces of elastoplastic materials are most conveniently represented in the

principal stress space. The complete representation of the yield surface in principal stress

19



space requires the description of cross-sectional shape in the deviatoric plane and its trace

on the meridian (p-q) plane. All four models considered here assume the material to

remain isotropic in the inelastic region leading to circular cross-sections in the deviatoric

plane. Therefore the models can be compared in the meridian plane generated by Von

Mises equivalent stress (q) and hydrostatic pressure stress (p). The yield surface for all

the four material models studied here are pressure dependant and quadratic in the p-q

plane.

0'1

 

  
03 o ‘ 0

pt pc p

Deviatoric plane Meridian (p—q) plane

Fig 3.1 metal foam yield surface in deviatoric and meridian plane

Experiments done on probing the initial yield surface of metal foams reveal that all metal

foams share some important characteristics [16]. All metal foams have a pressure

dependant yield surface that is quadratic in the p-q plane. The yield functions of all four

material models share this property. The other characteristics of the yield surface of foam

20



can be described in terms of some experimental parameters. We define these parameters

below

0'? - initial compressive uniaxial stress

p2 - initial compressive hydrostatic stress

p? - initial tensile hydrostatic stress

VP - plastic Poisson’s ratio

0
a . . . . . . . .

= —g - ratio of the initial compressrve and tensrle unraxral stress

at

The four material models studied, have yield surface functions that can incorporate one or

more of these additional experimental parameters. The complexity of the yield surface

depends on how many parameters it can accommodate. Miller model [19] and ABAQUS

[l] are both three parameter models while DYNA [l3] and Deshpande-Fleck model [1 l]

are two parameter models.

3.3 Description of selected constitutive models

Four elastoplastic material models for metal foam are studied in detail and the description

of their yield surfaces, hardening rule and flow rule are given in this section.
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3.3.1 LS DYNA model (material model # 75) [13]

LS-DYNA has an inbuilt material model for metal foams as material model # 75.

 

 

 

 

The yield function is given by

f(p.q.£"’ .13.”) = 0 (Eq. 3.7)

where

r 1 2
P'EIPc" pt) q 2

f= + (-) -1 (3.11)

V a b

\

Pc
= _ 3.12

Pt 10
( )

1

a= 3(1): +pc) (3.13)

1 1 2 .

M = Gel (Peptgadpc 410-300 (3.14)

b = Ma (3.15)

As can be seen from the above equations, the initial calibration of the yield surface

requires the knowledge of 0'? and p2 . The material model can therefore be described as

a two parameter model.

The strain hardening uses two sets of experimental data as input. The values of ac and

pc in the above equations are obtained from the results of uniaxial compressive test (Eq.

3.10) and hydrostatic compressive stress (Eq. 3.9) respectively.

The ratio of the half axes of the ellipse (M) is not a constant and so a and b can evolve

independently from each other. Hence the shape of the yield surface can change during
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loading. The yield surface remains an ellipse in p-q plane and no comer development

takes place (Fig 3.2)

The flow rule is not associative and is given by

. 8¢
P = _ .8

where

(Minna/q2 + %p2

 
 

cl

hardened YS 1

\ 0".

initial YS
\\

flow rule 0':

/ I \ \

I] \\

I \

I \

I I

I, ‘\

f I

J '.
I l

I l o 1

pc pc

(3.16)

Fig 3.2 evolution of yield surface and flow potential for LS-DYNA model # 75
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3.3.2 ABAQUS metal foam model (metal foam plasticity with volumetric hardening) [1]

ABAQUS has two inbuilt material models: metal foam plasticity with volumetric

hardening and metal foam plasticin with isotropic hardening. We will consider metal

foam plasticity with volumetric hardening.

The yield function is the same as the one in DYNA and is given by

 

 

 

f(p.q.é".e.f’) =0 (Eq 3.7)

where

1 2

P§(pc- pt) q 2

f = + [—) -1 (3.17)

a b

1 o
a = 5(1). +13.) (3.18)

1 1

M = erg/$113930?(p3 nib-3032 (3.19)

b = Ma (3.20)

Tensile hydrostatic yield stress (pto) is a constant and is independent of the compressive

hydrostatic yield stress ( Pc) for this model. The initial calibration of the yield surface

requires the knowledge of 0'? , p2 and p?. The material model can therefore be

described as a three parameter model.

The hardening rule for this model is more simplistic than LS-DYNA and is governed

completely by the hydrostatic compressive yield stress - volumetric strain curve.

p. = We?) (Eq 3.9)



The ratio of the half axes, M is a constant during the plastic flow which conserves the

shape of the ellipse. Thus the hardening in this case can be considered isotropic (Fig 3.3)

The flow rule is not associative and is the same as the one in LS-DYNA.

. EM
.1.) = —

a", y 30,-]-

where

¢(p.q)=‘/qz + 3132

hardened YS

initial Y

flow rule

t
o

 

(3.21)

Pc

Fig 3.3 evolution of yield surface and flow potential for ABAQUS metal foam model
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3.3.3 Deshpande & Fleck model [1 1]

Unlike metals, metal foams undergo volume reduction under hydrostatic compressive

pressure. The plastic Poisson’s ratio(v" ) can be taken as a measure of the

compressibility of materials. Solid metals which do not undergo volume reduction under

pure hydrostatic pressure have a constant plastic Poisson’s ratio (VP = é). Experimental

studies done by Deshpande & Fleck indicate that in metal foams the plastic Poisson’s

ratio is an important parameter that can be directly related to the yield surface ellipticity.

They introduced a shape factor a that is related to plastic Poisson’s ratio (VP ) by

a2 =3(l—-3VL) (3.22)

2 (1+VP)

They further suggested a two parameter yield surface that is quadratic in p-q plane.

Initial calibration of the yield surface requires knowledge of shape factor a and initial

uniaxial compressive stress Y°. The yield function is given by

 

f(p.q.€”.£.f’)=0 (Eq3.7)

where

f = __l_(q2 + a2p2) —0'c (3.23)

 WI

Note that v” = 0.5 gives elliptic shape factor a = Owhich reduces the Deshpande-Fleck

yield criterion to the Von Mises yield criterion for metals

q—a'c =0 (3.24)
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Deshpande-Fleck have suggested two different hardening models in their paper.

Differential hardening model allows the yield surface to change shape whereas self-

similar hardening preserves the shape of the yield surface during plastic deformation. The

differential hardening model has a yield function of the form

2 2

41) 1%) -1
Q and P are the yield strengths under deviatoric and hydrostatic stress respectively. Since

these can evolve independently of each other, the shape of the ellipse can change while

always remaining symmetric in tension and compression. Different yield strengths under

tension and compression are therefore not incorporated in either of the Deshpande-Fleck

models.

We have considered only the more simple case of self-similar hardening that is sufficient

for most purposes and is governed by the uniaxial compressive stress and equivalent

plastic strain curve.

ac = 6.12”) . (Eq 3.10)

The flow rule is associative

 

. a

8.5? = 1'3: (Eq 3.8)
l]

where

.. l

¢(p.q.£p,£f) = ————i-(q2 + azpz) ~00 (3.26)

1+ 9'-

3
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hardened YS\

initial Y

   
Fig 3.4 evolution of yield surface and flow potential for Deshpande-Fleck model

3.3.4 Miller model [19]

Ron Miller has proposed a yield surface to describe the plastic flow of metal foams by

starting with the Drucker-Prager material model originally proposed for frictional

materials like soil.

The Drucker-Prager yield surface is

q-i’p-Uc =0 (3.27)

By adding a quadratic pressure term to the Drucker-Prager model one can include several

important features of metal foam plasticity. The new model requires three parameters for
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the initial calibration which can be obtained by the results of uniaxial compression and

tension experiments. The yield surface is now given by

f(p,q,£‘p,€f)=0 (Eq3.7)

where

a
2

- 0' 3.28
(100's P Cl0 c ( )
 

f = q - 7p +

The model has a three parameter yield surface. Apart from the initial compressive

uniaxial yield stress (0'? ), the model incorporates the ratio of the uniaxial compressive

and uniaxial tensile stresses ( ,3 ) and the plastic Poisson’s ratio (vp ).

The coefficients y,a and do are the functions of ,6 and vp

[6fl2-12fl+6+9((f::))]

2(/3+1)2

 

r:
(3.29)

_ 45+24y—4y2 +4vp(2+vp)(6y—yz -9)

l6(1+vp)2

do=l[1_Z+J(1_Z) +52] (3.31)
2 3 3 9

a
 (3.30)

 

The model incorporates hardening through a function that is explicitly entered as input.

The uniaxial stress strain curve is used for the input data. A novelty in this model is the

multiplicative decomposition of the uniaxial stress-strain curve into hardening caused by

strain hardening of base material and hardening caused by cell compaction.
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ac = "c(£‘p )17(£,f’ ) (3.32)

The advantage of this method of modeling hardening is that the large densification

hardening due to cell collapse can be reached only through large values of volumetric

plastic strain (85’ ). This is unlike the other models like Deshpande-Fleck where

densification stress levels can be reached even in a case where volumetric plastic strain

(6,? ) is low but equivalent plastic strain (1?” ) is high.

The flow rule is associative

 

£5: .32.. (Eq3.8)

where

,,sP,sP = - + a 2—do 3.33
¢(Pq v) q 7P doacp O c ( )

q

  
 

P

Fig 3.5 evolution of yield surface and flow potential for Miller model
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3.4 Comparison of Yield Surfaces

The complexity of the yield surface depends on the number of experimental parameters

that are used for calibration. Two of the four models (ABAQUS and Miller) are three

parameter models while the other two (DYNA and Deshpande-Fleck) are two parameter

models. Moreover the experimental parameters that these models take as input are

different. For example, ABAQUS uses the values of compressive uniaxial stress (0'? ),

compressive hydrostatic stress ( p2 ) and tensile hydrostatic stress (p? ). On the other

hand, Miller model which is also a three parameter model uses the values of compressive

0

unraxral stress (0'? ), ratio of compressrve to tensrle uniaxial stress ( ,8 = —‘6) and plastic

0':

Poisson’s ratio (VP ).

In order to compare the shape of the yield surface of these four models we have

calibrated all of the yield surfaces for the same parameters. The values we choose are

02:1180kPa

o _
pc —690kPa

o _
p, —200kPa

ABAQUS and Miller, being three parameter models, pass through all three points while

DYNA and Deshpande-Fleck can accommodate only the first two.
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q(kPa)

1500

02:11:30

 L 

-1000 1000 500 p2 = 690

pUcPa)

Fig 3.6 comparison of initial yield surface in p-q plane
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Chapter 4

Integration of the constitutive equations

4.1 Introduction

Integration of the constitutive equations of the inelastic material models is an important

requirement in the finite element analysis of mechanical structures. All four material

models presented in the previous chapter fall in the category of rate independent

elastoplastic models. Typically rate independent elastoplasticity models define the rate of

inelastic strain in terms of stress and a set of internal state variables (Eq. 3.8). The

solution of the nonlinear differential constitutive equations is typically performed

incrementally and numerical integration becomes necessary. In a finite element method

for solving boundary value problems the integration of the constitutive equations is

performed at each quadrature point for every time increment in a strain driven

framework. The mathematical problem then reduces to a local one in which the updated

stresses and state variables are sought for a given strain increment and initial values of

the internal variables. In problems of finite deformations, where strain increments are two

or three times the yield strains, the stability of the numerical integration scheme becomes

important. An unconditionally stable algorithm specific to the material models of metal

foams is described in this chapter.
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4.2 Constitutive equations in continuous form

As seen in the previous chapter, the yield potentials (f) and flow potentials (¢) of metal

foams are conveniently represented in terms of the deviatoric stress (q) and hydrostatic

stress (p). It is therefore instructive to write the stress (031-) in terms of p and q.

oi}- = -p6,-j + Si]- (4.1)

where

Sij - deviatoric stress tensor

we can then write

2

0,, = —p15,, +?‘1n (4.2)
if

where nij is the unit tensor that gives the direction of the stress point in the deviatoric

plane

(4.3)

The track of the plastic strain (65 ) in the material is kept by the scalar quantities 5“" and

8,? as mentioned in chapter 3. These quantities along with p and q are used to define the

yield rule

f(p.q.ép.el’)=0 (Eq3.7)

and flow potential

¢(p.q.€'p .65) (Eq 3.8)
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The complete description of the state of a material point therefore requires the knowledge

of oij, 8” and 8”.

The flow rule gives the rate of plastic strain (Eq 3.8)

3¢

80,-]-

épzy—

using Eq. (4.2) we can break it down along p and q directions

ép_y[a¢_ap a_¢]_a_q

”’ baa, an

_ 13¢ 8;»
35 _ y[—§3-6,~ +—aq nij] (4.4)

Now we will define the equivalent plastic strain (5” ) in terms of the plastic multiplier

(7). Consider a complementary equivalent stress (6') corresponding to the equivalent

plastic strain (3” ) . Then we get

A tip: 8p

08 011-8’1

59¢
: I’D-i] 8——

”it

using Eq. (4.2) and Eq. (4.4) we get

~11) = y[pa_¢.+ 431’) (4.5)
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d¢ 29¢

the term p5—+qa— has the dimensions of stress and can be considered as a measure of

P q

the equivalent stress. Lets define

.. a.» w
= __ _ 4.60 17 3p +q aq ( )

then we get

3” = y (4.7)

Eq (3.8), Eq (4.7) and Eq (3.6) give the rate of plastic strain in terms of the plastic

multiplier (y).

Kuhn-Tucker condition is used to maintain the consistency of the yield function in the

elastic region and the plastic region. The condition is given by

7f = 0 (4.8)

such that

f .<_ 0 (Elastic region)

y 2 0 (Plastic region)

When the loading is in the elastic region, the stress is within the yield envelope (f S 0)

and there is no plastic growth (7 = 0). In the plastic region, r 2 0 and the stress point is

on the yield envelope ( f = 0)

These equations can be taken together to state the mathematical problem. In a strain

driven framework the mathematical problem of integrating the constitutive equations can

be stated in continuous form as follows
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GIVCI'I Eij

find

aij’ 5P and 8vp

subject to

. d
a; = 78—0?- (Eq. 3.8)

U

EP = y (Eq. 4.7)

.93," = .95 (Eq. 3.6)

7f = 0 (Eq- 4.8)

such That

0,-1- = €in (8“ —£,5) (Eq. 3.1)

y 2 O

f S O

4.3 Time discreet form of the mathematical problem

4.3.1 Closest point projection algorithm

The continuous differential equations in sec 4.2 cannot be solved in a closed form and

they need to be integrated numerically in time. For ensuring the stability of the

algorithms in dealing with large strains, we choose backward Euler time integration. In

the following equations all the quantities, unless explicitly mentioned are calculated at

time t+At.
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The mathematical problem for the time discreet form now takes the following form

Given

Ag"

find

0'-- 6"” and 5,?
l] ’

subject to

er = e£| HOE“; (4.9)
I

U I} 30--

I]

r?" = éPL +Ay (4.10)

85 = 65 (4.11)

Ayf =0 (4.12)

such that

=Cijk,(£k,—£5) (Eq3.l)

4.3.2 Predictor-Corrector algorithms

The numerical solution of the mathematical problem defined above is usually

accomplished following a predictor/corrector strategy. A common consideration for the

predictor is the elastic trial state defined as follows
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€5,trial = £15)
(4.13)

t

gem“! = g!" (4.14)

r

E‘erial = Evp
(4.15)

t

Then we have

03-11.: = W (811 _ gamut) (4.16)

ftrial ___ f(o.:jrial ’éerial ’E‘pdrial) (4.17)

The advantage of this elastic trial state is that we can determine if the strain increment is

elastic or plastic simply by considering the trial state.

Elastic loading

If f’”“’ s 0 then A7 = o

In this case the strain increment is elastic and the trial state is the final state

a; = 55”“ (4.13)

5p ___ éerial
(4.14)

(if = Efrrial
(4.15)

Plastic loading

If fl“ 20 then A720

In this case the increment has a plastic component and the plastic corrector is required to

restore the consistency of the yield surface. The mathematical problem is now of the
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same form as in section 4.3.1 except that there is no need of the Kuhn-Tucker condition.

Using Eq. (4.9) -— Eq. (4.11), the problem is restated as

Given

A817

find

o-- 3” and 8,,”
11’

subject to

at = 519' +Ay— 05449)
t

5P =§P| +Ay (Eq. 4.10)

55’ :39 (Eq. 4.11)

such that

0):]- :C'jkl (en—€15) (Eq3.1)

4.4 Stability and complexity of the numerical algorithms

Return mapping algorithms employing the predictor/corrector operator split strategy are

the most common methods for the integration of the elastoplastic constitutive equations.

Ortiz & Simo [21] have studied the accuracy and stability of the generalized trapezoidal

and generalized midpoint rules for time integration of the constitutive equations. They

have found that for finite deformations, where the strain increments are the order of a few
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percent, backward Euler time integration provides unconditional stability. If backward

Euler method is used to discreetize the constitutive equations in time, the algorithm is

called closest point projection algorithm. The mathematical problem statement in the

previous section (4.3.2) is the general set of constitutive equations employing backward

Euler method and the predictor/corrector method. This set of implicit equations can be

solved using Newton-Raphson iteration at each time step. If Newton-Raphson iterations

are employed for solving the backward Euler time integrated set of constitutive

equations, the algorithm is referred to as Newton-Raphson closest point projection

algorithm.

Newton-Raphson closest point projection is the preferred method to solve constitutive

equations becauseof unconditional stability of the algorithm. However a complex yield

surface with corners is extremely unwieldy to implement using the Newton-Raphson

iterations. Yield surfaces are most conveniently represented in principal stress space. If

the yield surface is a function of all the three stress invariants, they have an irregular

cross-sectional shape in deviatoric plane and a general trace in the meridian plane when

represented in principal stress space. R. Borja et al [8] have proposed a return mapping

algorithm in the principal stress directions appropriate for three invariant plasticity

models. This reduces the dimension of the stress space for the return mapping from six to

three. However in describing the evolution of the plastic response the rotation of the

principal stress directions must be accounted for. This introduces numerical complexity

in addition to the complexity of the yield surface and flow potential.
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Since metal foam models are only two invariant elastoplastic models, (the cross—sections

in deviatoric plane are circular) the return mapping can be done in the p-q plane. An

elegant method to do this is described in the next section.

4.5 Algorithm for two invariant plasticity models

Metal foams have a pressure dependant yield surface with circular cross-sections in the

deviatoric plane. The yield surface is not dependant on the third stress invariant(l3) and

in this sense it can be considered a two invariant yield surface. As seen in chapter 3,

metal foam yield surfaces ( f ) and flow potentials(¢) are conveniently represented in

terms of hydrostatic pressure stress (p) and Von-Mises deviatoric stress (q). Aravas [3]

has proposed an algorithm for return mapping in the p-q plane which we shall implement

for metal foams.

We can decompose the plastic strain rate in the directions corresponding to p and q.

Using Eq. 4.4

after time discreetization this equation becomes

1 3;» w

Asp:-A7(_38—6‘7 +—aq nil-J (4.16)

Let us define

-A7—a¢= (4.17)

3p

A-y-al-A= (4.18)

34

42



Then we have

A5,? = §Ae,,§,,- + Aeqnij (4.19)

Thus the plastic strain increment is decomposed in the spectral directions of the stress

tensor(5,,,n,.). This is possible because the flow rule (¢) is independent of the third

invariant which in turn is a consequence of circular cross-sections of the yield surface in

deviatoric plane.

Now consider the trial stress (Eq. 4.4)

rial _ ,trial
03 tjkl (Eu “'85 )

The updated stress (0',03,-) can be found from the trial stress and plastic strain increment

0.1.1.: oilflal_ Cij“A85

use the definition of the isotropic elastic tensor

CI!” = 205,16.” —(K_§G)5ij6k!

where

G- elastic shear modulus

K- elastic bulk modulus

Using Eq (4.21) and Eq (4.19) in Eq (4.20) we get

_ rial _ . _ ..
6,,- _ 0,4,. “3,6,, ZGAsqn,,

use Eq 4.2 to decompose 0,,- and 0'3”“,

-p5,- +--qn,-j= —pmaI5,-j+ -3—qqmalnt-"al —KA£,,5,-- —ZGA£qn,--
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(4.21)

(4.22)

(4.23)



comparing the coefficients in the spectral directions (5,, ,ng.) we get

r.

nf-‘al =n,, (4.24)

This means that the stress direction in the deviatoric plane does not change during return

mapping. So the return mapping can be done in the p-q plane.

using Eq. (4.23), the updated stress components (p, q) can then be written as

p = rim“I + KA8,, (4.25)

q = gm“ —3GA£q (4.26)

Eq 4.25 and 4.26 can replace Eq 3.1 to describe the evolution of stress in terms of two

scalars Asp and A8,,

Moreover Eq 4.17 — Eq 4.19 can be used to describe the evolution of the plastic strain in

terms of three scalars(A£,,,A£q,A}/)

The mathematical problem statement in sec 4.3.2 can therefore be now written in terms of

these three scalar quantities (Asp,A£q,Ay). We have further reduced the dimension of

the problem by eliminating A}! from Eq (4.17) and Eq (4.18). The constitutive equations

can now be written as

Find

Pr+AnQI+At

subject to

23¢ 8¢
A8,, 35+ A8,,g = (4.27)

f(17.23” .83? ) =0 (Eq 3.7)



such that

p = pm"I + KAep (Eq 4.25)

q = q‘”'“1 — 3GAeq (Eq 4.26)

. As . A8
,. p = ap,trral _ P = ep,trral q 4 2
a 8 ___—SE a +—§£ ( . 8)

3p 361

35’ = 85"“, + A8,, (4.29)

The dimension of the problem has been effectively reduced from seven to two. This

greatly simplifies the numerical implementation of Newton-Raphson to solve the explicit

equations.

Implementation of the N-R iterations for the above set of equations is done as follows

  

Let

X = (4.30)

A3,,

_ A5,, 92+ A8,, 2Q

F(X)= 3‘1 31’ (4.31)

“(12.61.3185)

let

2"“ =1?" +2" (4.32)

th

where 27‘“, I?" are the (k +1)” and (k) iterations and E is defined as the correction

VCCIOI'.

E=[c”] (4.33)

C
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E is the correction for)? vector. By applying Newton-Raphson method to solve

F(}-(')=0 weget

 

3F(fk) _ _k

85(- ~c=-F(X)

wecanwrite

[All A12][CP:|=[bl]

A21 A22 cq b2

where

 

[An 41:34?)

A21 A22 —

l2i=[::;’;]

The derivatives of the flow rule and the yield function can be expressed as

3;» 32¢
=— A

A“ 3., + 5” aque,

 

8): 82¢
=_. A _—

A” 3p+ 8q8p3A£q+

A21‘Ki'i 8f 81?,

82¢
 E

q apaAep

32¢
 

8

p aqueq

+8f

- 3P 613"” 348p 385’

A”: 8., 331" aAsq

_3G_a.-.f_+i_a_£_p_
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)



where

 

   

  

 

    

    

 

  

  

  

   

    

  

  

I 2 "1

32¢ 338; M" 32¢ 62¢
= 1+ ‘1 2 K + (4.42)

aque, [ 3,») aqap aqag‘f’

\ a‘1 J

K 2 )_lf 2 \

82¢ 883:” A8” 82¢ 323:? 82¢
= 1— p K — + (4.43)

apaAEP [3,)2 apap 92 apes;

1 a1" 1 K ap /

f 2 “1

32¢ 888:” A8” 32¢
= 1+ p —3G— (4.44)

apaAEq [ 3¢)2 aqap

I 31" 1

—1
/ 32¢ \ ( 32¢ \

32¢ aqaa-P " 32¢ ages?
= 1- —3G 4.45

aqus,, [ 3(1)]2 aqaq a_¢ ( )

\ a‘1 ) K aq )

33p =—As 1 32¢ (4 46)
BAEP q 22 2 aque,,

34

.p 2

as A 1 3 ¢ (4.47)
3A8}, = 8” _Qfl 2 apaAeq

3p

Eq (4.38) to Eq (4.47) can be calculated for the four material models discussed in

chapter3 to implement the algorithm for these models.
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4.6 implementation of the algorithm for selected material models

Implementing the above scheme for a particular material model requires the following

derivatives.

Flow rule ¢(p,q,£‘p,8,f’)

EB? 55!

3p ’aq

32¢ 32¢ 82¢

apap' apaq' 3434

 

32¢ 32¢ 62¢ 62¢

apagP ’ aqaep’ apes: ’ aqaa:

 

Yield function f(P.q. 2” . 8,?)

.31 3f.

ap’aq

1 PL

38"" ’ as,”

The derivatives of the four material models described in chapter 3 have been calculated

and are presented in appendix I.
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Chapter 5

Implementation of the algorithm

5.1 Introduction

The Newton-Raphson closest point projection algorithm described in the last chapter can

be implemented for all the material models of metal foam. FEM software package

ABAQUS has the functionality of a user defined subroutine built in. A subroutine was

written in FORTRAN for implementing the algorithm (Appendix II). The subroutine can

be used for all the four material models by the input of the appropriate derivatives. A

numerical simulation was done in ABAQUS for diagonal crushing of a cube. The

subroutine was implemented for the Deshpande-Fleck model. In this chapter we present

the results of the numerical simulation.

5.2 Input data for the model

The Deshpande-Fleck model requires the experimental data of uniaxial stress and

uniaxial strain as input for incorporating hardening rule. Due to lack of any experimental

data an input curve has been manufactured for closed cell aluminum foam. To ensure that

the manufactured data is close to the actual data, elastic modulus and the initial uniaxial

yield stress were calculated using the scaling equations introduced in chapter 2. (Eq 2.3

and Eq 2.4) The cell wall material properties were taken to be that of Aluminum alloy

2014.

p = 2800 kg/m3

E = 70x109 Mn2
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0', = 260 MPa

We will consider closed cell aluminum foam with 5% relative density for the simulation.

1: 0.05
p

In order to account for the reduction of observed values of the modulus and yield stress

due to the presence of irregularities in the microstructure (Sec. 2.3), 30% of the equation

values were taken.

We get

8" =0.35 GPa

0: =1.18 MPa

For the uniaxial stress strain data we have assumed shape similar to that typical of metal

foams. The plateau stress is taken as 1.25Mpa. Densification strain of 200% is taken

where the material undergoes rapid strain hardening due to the collapse of cells.
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Fig 5.1 typical compressive uniaxial response of closed cell foam
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5.3 Numerical simulation

Numerical simulation of the diagonal crushing of a cube has been done in ABAQUS. The

motivation for selecting the diagonal crushing process is to provide biaxial stress loading

as against uniaxial loading while at the same time keeping the load condition simple. At

the same time the diagonal crushing process demonstrates the energy absorption of metal

foam due to the reduction in volume.

Solid elements with reduced integration were used to model both the plate and the cube.

Perfectly elastic steel is: used for the material in the plate. Material models using

Deshpande-Fleck and ABAQUS metal foam were used for defining the foam material of

the cube. Simulation was also done for the case of solid aluminum cube in order to

compare the energy absorption capacity of the metal foam.

Two of the bottom faces of the cube are rigidly constrained. Displacement boundary

conditions are applied on the bottom face of the steel plate to come down and again go up

in two steps. The displacement boundary conditions are applied in a ramp fashion to

ensure that there is no discontinuity in the displacements at any time.

L Hm]I

 

 

Fig 5.2 model used for simulation of diagonal crushing
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Fig 5.3 diagonal crushing of cube with user defined material model

(Deshpande-Fleck model)

  

 

 

       

    

 

    
 

 

 

 
  

 

 

Fig 5.4 diagonal crushing of cube with metal foam model

included with ABAQUS
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Fig 5.5 diagonal crushing of a solid aluminum cube
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5.4 Comparison of results

The results of the simulation for both the user defined model (Deshpande-Fleck) and the

metal foam model (ABAQUS) are quite similar to each other (Fig 5.3 and Fig 5.4). The

collapse of the elements as the plate comes down can be seen clearly. This demonstrates

the cell wall collapse in actual metal foams and also shows the volume reduction capacity

of the metal foam. The plastic Poissons ratio is close to zero as can be seen by the

negligible flow of material under the plate. When the plate is taken up in step 2 there is

very little elastic springback. This is due to the small elastic region of the metal foams.

It is instuctive to compare the crushing process of foam cube with an aluminum cube (Fig

5.5). The lateral expansion of the cube in this case is a result of the fact the the volume of

aluminum must remain constant during plastic flow. In metal foam most of the internal

strain energy (Fig 5.6) is in the form of plastic strain energy. The elastic strain energy

stored in step 1 is negligible. This means that most of the energy absorbed during step 1

is used up in the plastic volume reduction and very little is stored in the form of elastic

energy. On the other hand, solid aluminum stores more than 50% of its internal energy as

elastic strain energy and the rest is dissipated as plastic strain energy (Fig 5.7). In step 2

all the stored elastic energy is released resulting in springback action.

Due to the different amounts of external work done in the two crushing processes, the

total energy absorbed by the two materials cannot be compared quantitatively. This type

of comparison is useful for making a statement about the the capacity of metal foams to

absorb plastic energy during a large range of deformation.
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5.5 Conlusion

An elegant method of integrating the constitutive equations of two invariant constitutive

models specific to metal foams is presented. Backward Euler time integration is chosen

for deriving the constitutive equations of the closest point projection algorithm. This

ensures the convergence of the solution even for large strain increments. Newton-

Raphson iterations are used for solving the closest point projection algorithm because of

their global convergence property which makes the algorithm stable.

The other advantage of using Newton-Raphson iterations is that the tangent modulus of

the algorithm can be derived [3, 21]. The algorithmic tangent modulus is essential in

ensuring the optimal rate of global convergence of the FEM equations. Since only quasi-

static loading was used in this work, we have used explicit solution of FEM equations

and so calculation of the tangent modulus is not necessary.

The present algorithm can be extended to include the derivation of the algorithmic

tangent modulus. In tension, metal foams are susceptible to fracture. A further suggestion

for additional work would therefore be to incorporate failure of material in the model.
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APPENDIX I

Derivatives of the yield function and flow potential for all four models

LS-DYNA material model # 75
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ABAQUS volumetric hardening metal foam model
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ABAQUS volumetric hardening metal foam model
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Deshpande & Fleck Model [10]
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Miller model [18]
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APPENDIX II

Fortran Subroutines for implementing algorithm in ABAQUS

Subroutine for user material in FORTRAN for Deshpande-Fleck model

subroutine vumat(

c Read only (unmodifiable)variables -

l nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

2 stepTime, totalTime, dt, cmname, coorde, charLength,

3 props, density, strainInc, relSpinInc,

4 tempOld, stretchOld, defgradOld, fieldOld,

S stressOld, stateOld, enerIntemOld, enerInelasOld,

6 tempNew, stretchNew, defgradNew, fieldNew,

c Write only (modifiable) variables -

C

C

7 stressNew, stateNew, enerIntemNew, enerInelasNew )

include 'vaba_param.inc'

character*80 cmname

dimension props(nprops), density(nblock), coorde(nblock,*),

1 charLength(nblock), strainInc(nblock,ndir+nshr),

2 relSpinInc(nblock,nshr), tempOld(nblock),

3 stretchOld(nblock,ndir+nshr),

4 defgradOld(nblock,ndir+nshr+nshr),

5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),

6 stateOld(nblock,nstatev), enerIntemOld(nblock),

7 enerInelasOld(nblock), tempNew(nblock),

8 stretchNew(nblock,ndir+nshr),

8 defgradNew(nblock,ndir+nshr+nshr),

9 fieldNew(nblock,nfieldv),

l stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),

2 enerIntemNew(nblock), enerInelasNew(nblock)

c-------Local Variables

dimension

1 xx(50),yy(50),

2 C(6,6),

3 strainI(6,l),stressInc(6,l),

4 stresstrial(6,l),devstress(6,l),xntrial(6,l),

5 Amat(2,2),cor(2,l)

real
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1 lamda,mu,

2 a,fracturestress,fractureenergy,

3 kmod,gmod,

4 alphatrial,xptrial,xqtrial,

5 deltaep,deltaeq,

6 xp,xq,alpha,

7 Rl,RZ,norml,norm2,

8 Y,H,deltaalpha,

9 dfdp,dqu,dfdpdp,dqudq,dfdpdq,dadep,dadeq

integer

1 npoints,mpoints,kstart,

2 i,j,l(

3 nloop

c

c OPEN(UNIT=17,FIIEz'legr/research/helmholtz/abhishek/debug.dat')

c---------input properties

i=1

do 5 j=9,nprops,8

xx<i>=props<i>

YY(i)=Pr0PS(i+1)

i=i+1

5 continue

npoints =i-1

mpoints = 4

kstart = l

lamda = props(l)

mu = props(2)

a = ProPS(3)

fracturestress = props(4)

fractureenergy = props(5)

do 11 i = 1,6

do 10 j = 1,6

10 C(i,j) = 0

11 continue

do 16 i = 1,3

do 15 j = 1,3

15 C(i,j) = lamda

16 continue

C(1,1) = C(1,1) + 2*mu

C(2,2) = C(2,2) + 2*mu

C(3,3) = C(3,3) + 2*mu

C(4,4) = C(4,4) + 2*mu

C(5,5) = C(5,5) + 2*mu
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C

c..-

C

C

-----loop over nblock material points

C(6,6) = C(6,6) + 2*mu

kmod = (3*lamda + 2*mu)/3

grnod = mu

 

do 100 i = 1,nblock

alphatrial = stateOld(i,l)

do 20 j=l,6

strain1(j,1)=strain1nc(i,j)

20 continue

call matmul(C,strainI,stressInc,6, 1 ,6)

do 25 j=l,6

stresstrialG,l)=stressOld(i,j)+stressInc(j,1)

25 continue

if (stepTime.eq.0.0) then

stateNew(i,1) = stateOld(i,1)

do 27 j = 1,6

stressNew(i,j) = stresstrial(j,1)

27 continue

go to 100

endif

xptrial = -(1 .0/3.0)*(stresstrial(l , 1)+stresstrial(2,1)+

1stresstrial(3,l))

devstress(l,1) = stresstrial(1,1) + xptrial

devstress(2,1) = stresstrial(2,l) + xptrial

devstress(3,1) = stresstrial(3,l) + xptrial

devstress(4,1) = stresstrial(4,1)

devstress(5,l) = stresstrial(5,1)

devstress(6,1) = stresstrial(6,l)

xqtrial = sqrt(1.5)*sqrt(devstress(1,l)**2+devstress(2,l)**2

1+ devstress(3,1)**2+2*devstress(4,l)**2

1+ 2*devstress(5,1)**2 + 2*devstress(6,1)**2)

if (xqtrial.eq.0.0) then

do 29 j =1,6

xntrialGJ) = 0.0

29 continue

else

do 30 j =1,6

xntrialGJ) = 3.0/(2.0*xqtrial)*devstress(j,l)

30continue

endif
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deltaep = O

deltaeq = 0

xp = xptrial

xq = xqtrial

alpha = alphatrial

R1 = 0

if (alpha.eq.0.0) then

=yy(1)

H=(Y)’(2)-yy(l))/XX(2)

else

call startint(xx,yy,npoints,mpoints,

1kstart,alpha)

call polint(xx(kstart),yy(kstart),

1mpoints,alpha,Y,I-I)

endif

R2 = sqrt(l/(1+a**2/9))*sqrt(xq**2+a**2*xp**2) - Y

norml = sqrt(R1**2)

norm2 = sqrt(R2**2)

if (R2.LE.0.0) go to 35

nloop = 0

do while (norml.GT.l.OR.norm2.GT. 100)

nloop = nloop + 1

dfdp = sqrt(1/(l+a**2/9))*(a**2*xp)/sqrt(xq**2+a**2*xp**2)

dqu = sqrt(1/(1+a**2l9))*(xq)/sqrt(xq**2+a**2*xp**2)

dfdpdp = sqrt(1/(1+a**2/9))*(a**2*sqrt(xq**2+a**2*xp**2)—

1a**4*xp**2/sqrt(xq**2+a**2*xp**2))*(1/(xq**2+a**2*xp**2))

dqudq = sqrt(l/(1+a**2/9))*(sqrt(xq**2+a**2*xp**2) -

lxq**2/sqrt(xq**2+a**2*xp**2))*(l/(xq**2+a**2*xp**2))

dfdpdq = -sqrt(1/(1+a**2/9))*(a**2*xp*qu

1sqrt(xq**2+a**2*xp**2))*(1/(xq**2+a**2*xp**2))

dadep = -1/dfdp + deltaep*(1/dfdp**2)*kmod*dfdpdp

dadeq = —deltaep*(1/dfdp**2)*3*gmod*dfdpdq

Amat(1,1) = dqu+deltaep*kmod*dfdpdq+deltaeq*kmod*dfdpdp

Amat(l,2) = dfdp-deltaeq*3*gmod*dfdpdq-deltaeq*3*gmod*dqudq

Amat(2,1) = kmod*dfdp - H*dadep

Amat(2,2) = -3*gmod*dqu - H*dadeq

cor(1,1) = -R1

cor(2,l) = -R2

call gaussj(Amat,2,2,cor,l,1)

deltaep = deltaep + cor(l,1)

deltaeq = deltaeq + cor(2,1)
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C

C

C

xp = xptrial + kmod*deltaep

xq = xqtrial - 3*gmod*deltaeq

dfdp = sqrt(1/(1+a**2/9))*(a**2*xp)/sqrt(xq**2+a**2*xp**2)

dqu = sqrt(1/(1+a**2/9))*(xq)/sqrt(xq**2+a**2*xp**2)

alpha = alphatrial - deltaep/dfdp

R1 = deltaep*dqu + deltaeq*dfdp

if (alpha.LT.alphatrial) then

alpha = alphatrial

deltaalpha = 0

else

deltaalpha = -deltaep/dfdp

endif

R2=sqrt(1/(1+a**2/9))*sqrt(xq**2+a**2*xp**2)-(Y+H*deltaalpha)

norml = sqrt(R1**2)

norm2 = sqrt(RZ**2)

if (nloop.GT.100) pause 'divergent N-R'

enddo

35 stateNew(i,1) = alpha

do 40 j = 1,3

stressNew(i,j) = -xp + (2.0/3.0)*xq*xntrial(j,l)

40 continue

do 45 j = 4,6

stressNew(i,j) = (2.0/3.0)*xq*xntrial(j,1)

45 continue

100 continue

101 return

end
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Subroutine for multiplying matrices

subroutine matmul(A, B, res, p, q, r)

integer p,q,r

dimension A(p.r),B(r,q).res(p.q)

e

do 105 i = 1,p

do 110j = l,q

res(i,j)=0

do 115 k: l,r

res(i,j) = res(i,j) + A(i,k)*B(k,j)

115 continue

110 continue

105 continue

return

end
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Subroutine for inverting a matrix

subroutine gaussj(a,n,np,b,m,mp)

integer m,mp,n,np,NMAX

real a(np.np),b(np.mp)

parameter (NMAX = 50)

integer i,j,k,l,ll,irow,icol,indxc(NMAX),indxr(NMAX),ipiv(NMAX)

real big,dum,pivinv

do 211 j = l,n

ipiv(j) = O

211 continue

e

do 222 i = 1,n

c

Mg=0

do 213 j = l,n

if (ipiv(j).ne.1) then

do 212 k = 1,n

if (ipiv(k).eq.0) then

if (abs(a(i,k)).ge.big) then

big = abs(a(j,k))

irow = j

icol = k

endif

endif

212 continue

endif

213 continue

ipiv(icol) = ipiv(icol) + 1

if (irow.ne.icol) then

do 214 l =l,n

dum = a(irow,l)

a(irow,l) = a(icol,l)

a(icol,l) = dum

214 continue

do 215 l = 1,m

dum = b(irow,l)

b(irow,l) = b(icol,l)

b(icol,l) = dum

215 continue

endif
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C

C

C

C

indxr(i) = irow

indxc(i) = icol

if (a(icol,icol).eq.0) pause 'singular matrix'

pivinv = 1/a(icol,icol)

a(icol,icol) = 1

do 216 l = 1,n

a(icol,l) = a(icol,l)*pivinv

216 continue

do 217 l = l,rn

b(icol,l) = b(icol,l)*pivinv

217 continue

do 221 ll = 1,n

if (ll.ne.icol) then

dum = a(ll,icol)

a(ll,icol) = 0

do 218 l = 1,n

a(ll,l) = a(ll,l) - a(icol,l)*dum

218 continue

do 2191: 1,m

b(ll,l) = b(ll,l) - b(icol,l)*dum

219 continue

endif

221 continue

222 continue

do 2241: n,1,-1

if (indxr(1).ne.indxc(l)) then

do 223 k = 1,n

dum = a(k,indxr(l))

a(k,indxr(l))= dum

223 continue

endif

224 continue

return

end
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Subroutine for interpolating the hardness data

subroutine polint(xa,ya,n,x,y,ydash)

integer n,NMAX

real x,y,xa(n),ya(n),ydash

parameter (NMAX=15)

integer i,m,ns

real dy,den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)

real p(NMAX),pdash(NMAX)

ns=1

dif=abs(x-xa(l))

do 231 i=1,n

dift=abs(x-xa(i))

if (dift.lt.dif) then

ns=i

dif=dift

endif

C(i)=ya(i)

d(i)=ya(i)

P(i)=ya(i)

pdash(i)=0

231 continue

y=ya(ns)

ns=ns-l

do 233 m=1,n-1

do 232 i=1,n-m

ho=xa(i)-x

hp=xa(i+m)-x

w=c(i+1)-d(i)

den=ho-hp

if(den.eq.0)pause 'failure in polint'

den=w/den

d(i)=hp*den

c(i)=ho*den

pdash(i)=((x-xa(i+m))*pdash(i)+(xa(i)-x)*pdash(i+1))

1 /(xa(i)-xa(i+m))<I-(p(i)-p(i+l))/(xa(i)-xa(i+m))

pa)=((x-xa(i+m»*p(i)+<xa(i)—x)*p(i+1)>

l I(xa(i)-xa(i+m))

232 continue

if (2*ns.lt.n-m)then

dy=c(ns+1)

else

dy=d(ns)

ns=ns-1

endif
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y=y+dy

233 continue

ydash=pdash( 1 )

return

end

 subroutine for finding start of table

subroutine startint(xa,ya,n,m,kstart,x)

integer n,m,kstart

real x,xa(n),ya(n)

integer i,ns

real dif,dift

ns=1

dif=abs(x-xa(1))

do 241 i=l,n

dift=abs(x-xa(i))

if (dift.lt.dif) then

ns=i

dif=dift

endif

241 continue

kstart=min(max(ns-(m-1)/2,l),n+l-m)

return

end
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