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ABSTRACT

Sensorless Speed Control of Induction Motors

Using Sliding Mode Control Strategy
By

Attaullah Yousuf Memon

The ficld-oriented speed control of induction motors without mechanical sensors
is considered. A sliding modc speed control algorithm is developed for the speed
control that replaces the traditional PI controller. The traditional approach for the
scnsorless speed control of using flux and speed observers is augmented with a sixth-
order nonlinear induction machine model that describes the motor in field-oriented
coordinates. The model takes into consideration the crrors in flux estimation. The
flux regulation problem is addressed by following the traditional approach of using
PI controllers. For the speed regulation problem, the machine model is simplified by
assuming that the flux regulation takes place relatively fast and by employing a slid-
ing mode controller that presents good performance against un-modeled dynamics,
insensitivity to parameter variations, external disturbance rejection and fast dynamic
response. A performance comparison of the developed sliding mode controller with
the traditional PI controller is presented. The simulation presents the edge that the
developed sliding mode controller has over its counterpart, a traditional PI controller.
The analysis reveals the conditions under which the sliding mode controller provides
cffective speed control while preserving the closed-loop system stability under uncer-

tain external load disturbances and reference speed variations.
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CHAPTER 1

Introduction

The induction motor is the motor of choice in several industrial applications duc to
its reliability, power-to-size ratio, ruggedness and relatively low cost. In the last few
decades, the induction motor has evolved from being a constant speed motor to a
variable speed, variable torque machine. DC motors had the advantage of precisc
speed control at the cost of many disadvantages, including but not limited to the
maintenance requirements, complex structures and power limits. The induction
motors are robust, smaller in size, almost maintenance free and possess a wide range
of speeds when compared with the DC motors. Their mechanical dependability
is due to the reason that there is no requirement of mechanical commutation
(i.e. there are no brushes nor commutators to wear out as in the DC motors).
Another advantage is that Induction Motors can be used in many volatile environ-

ments since no sparks are produced as is the casc in the commutator of the DC motors.

However, the induction motor, by itself, presents a very challenging control
problem. This is owing to the complex nature of issues that the induction motor

presents;
e The dynamic model of the induction motor is nonlinear

e Certain state variables e.g. rotor fluxes are not measurable



e Due to the ohmic temperature rise, the rotor resistance varies considcrably with

a corresponding significant effect on the system dynamics

1.1 Why Sensorless Electric Drive?

Many variable-spced electrical drives used in general-purpose applications ranging
from simple servo systems to complex traction systems require a capability of
speed variation with a pre-defined performance standard. In such applications,
it is necessary that the actual drive-speed measurements be available at every
instant in order to control the drive effectively. For this rcason, many different
kinds of speed sensors have been used, including tacho generators, optical en-
coders, resolvers, etc. Elimination of such a requirement of having speed sensor on
the motor shaft represents a cost advantage, and also enhances the reliability of

the drive owing to the absence of a mechanical sensor and associated cable accessorics.

The idea of developing cfficient sensorless electric drives has gained consider-
able interest due to their low cost and dependability, since there is no further
requirement of having a mechanical sensor to measure speed. Instead, the intrinsic
motor electro-mechanical propertics can be utilized to estimate the rotor position
and/or speed. There are numecrous methods that have been proposed by various
researchers in this ficld over the last two decades. Of considerable significance are
the collection of papers by Rajashckara et al 6], the tutorials by Lorenz [11] and
Holtz [4], and the monographs by Leonhard [10] and Vas [14]. The identification
of the rotor speed is generally based on mcasured terminal voltages and currents.
Various dynamic models are used in order to estimate the magnitude and the spatial
orientation of the magnetic flux vector and for this purpose open loop estimators

or closed-loop obsecrvers are used, which usually differ with respect to accuracy,



robustness and sensitivity against model parameter variations.

1.2 Speed Estimation in Induction Motor Drives

There are two basic approaches for speed and position estimation in induction
motors. The first approach uses the fundamental machine model to design model
reference adaptive systems, nonlinear observers, extended Kalman filters, or adaptive
observers. It has long been recognized that the challenging part in this approach is
keeping a load stationary at (or ncar) zero flux frequency. The second approach uses
sccondary phenomena or the parasitic effects of the machine to develop methods

that will be effective at low frequency.

In their recent work [8], Khalil and Strangas have identificd some drawbacks
associated with the analysis using the first approach that has been done so far and
subsequently published by many rescarchers in this ficld. These are summarized

here:

e Analysis is limited to local lincar models; it is rare to find analysis that takes

into consideration the nonlinearities of the system

e Model uncertainty is usually ignored in the analysis, even though the presence
of such uncertainty (e.g. change of resistances with temperature) could change

the conclusions in a fundamental way

e No analysis of the overall closed loop system. It is typical in methods based
on rotor or flux position estimation that the analysis is limited to the position
cstimation problem itself with no analysis of the impact of the estimation error

on the performance of the closed-loop system



The traditional ficld-oriented control [10, 9] is studied here, where a flux observer
is used to cstimate the rotor flux. The spced control problem is considercd, where
the motor speed is required to track a given speed command in the presence of an

unknown load. The two key elements of the approach of (8] are:

e To keep track of the error in estimation of the rotor flux, ficld orientation is
performed using the estimated flux angle and two additional state variables are

added by projecting the flux estimation error into the ficld oriented coordinates

e A high-gain obscrver is used to estimate the speed from current measurcments

With the use of these two key elements, a nonlincar model of the induction motor
in the ficld-oriented coordinates was derived that formulates the flux and specd
rcgulation problems. The flux regulation problem was addressed by using the
traditional approach of using PI controllers. While addressing the speed regulation
problem, the nonlinear induction motor model was simplified by assuming that the
flux rcgulation takes place relatively fast and by using a high-gain PI controller to
regulate the g-axis current to its command. This results in a third-order non-linear
model in which the speed and two flux estimation errors are the state variables, the
g-axis current is the control input and a speed estimate provided by the high-gain
observer is the mcasured output. The analysis was limited to the design of PI

controllers via lincarization.

1.3 Scope of thesis work

This work is an extension of the analysis of the closed-loop system using the third-

order non-lincar model (8]. The goal here is to design a nonlinear feedback controller

4



for the stator voltage vs that uses only the measurcments of the stator current i,
such that the rotor speed w asymptotically tracks a bounded time-varying reference
speed wy.¢. Here, a nonlinear sliding-mode speed control algorithm is developed and
implemented, and the analysis of the overall closed loop system is undertaken. The
analysis provides a better insight into the speed control problem when the nonlinear-
itics of the machine model are taken into account and presents certain bounds and
conditions in which the developed speed control algorithm will work with a superior
performance. Various machine operating situations are taken into account for the
purposc of simulations using the developed speed control algorithm and the results
obtained are compared with those obtained using the traditional PI control algorithm.
The comparison simulations clearly indicate the edge that the developed speed control

algorithm has over the traditional PI control.



CHAPTER 2

Literature Review

2.1 The Induction Motor

The induction motor was invented by Nikola Tesla (1856 - 1943) in 1888. It requircs
no electrical connections to the rotating member; the transfer of energy from the sta-
tionary member to the rotating member is by means of clectro magnetic induction. A
rotating magnetic field, produced by a stationary winding (called the stator), induces
an alternating emf and current in the rotor. The resultant interaction of the induced

rotor current with the rotating field of the stationary winding produces motor torque.

The Torque - Speed characteristic of an induction motor is directly related to
the resistance and reactance of the rotor. Hence, different Torque - Specd charac-
teristics may be obtained by designing rotor circuits with different ratios of rotor

resistance to rotor reactance.

2.2 Principle of Operation

When a set of three-phase currents displaced in time from cach other by angular

intervals of 120 degrees is injected into a stator having a sct of three-phase windings



displaced in space by 120 degrees electrical, a rotating magnetic field is produced [9].
This rotating magnetic field has a uniform strength and travels at an angular specd
equal to its stator frequency. The rotating magnetic field in the stator induces elcc-
tromagnetic forces in the rotor windings. As the rotor windings are short-circuited,
currents start circulating in them, producing a reaction. As known from Lenz’s law,
the reaction is to counter the source of the rotor currents, i.e. the induced emfs in
the rotor and, in turn, the rotating magnetic ficld itsclf. The induced emfs will be
countered if the difference between the speed of the rotating magnetic field and the
rotor becomes zero. The only way to achicve it is for the rotor to run in the same
direction as that of the stator magnetic field and catch up with it eventually. When
the differential speed between the rotor and magnetic field in the stator becomes zero,
there’s zero emf, and hence zcro rotor currents resulting in zero torque production
in the motor. Depending on the shaft load, the rotor will scttle down to a speced
wr always less than the speed of the rotating magnetic field, called the Synchronous
Speed of the machine ws. The speed differential is known as the Slip Speed wy.

The Synchronous Speed of the machine w; is given as

ws = 27 fs(rad/sec) (2.1)

where fs is the supply frequency.
The slip speed is given as

wgy = wg — wr(rad/sec) (2.2)

The differential speed between the stator magnetic ficld and rotor windings is the

slip speed, and this is responsible for the frequency of the induced emfs in the rotor

and hence the rotor currents.



The direction of rotation of an induction motor is dependant on the direction
of rotation of the stator flux, which in turn is dependant on the phase sequence of

the appliced voltage.

2.3 Reference-Frame Transformation

The performance of an induction machine is generally described by a sct of differen-
tial equations. Some of the machine inductances appearing in thesc equations are
functions of the rotor specd and the coefficients of the differential equations that
describe the behavior of the induction machine are generally time-varying. A change
of variables is often used in order to reduce the complexity of these differential
cquations. A transformation refers the machine variables to a frame of reference that
rotates at an arbitrary angular velocity and a particular transformation can rcadily
be obtained from this transformation by simply assigning the speed of rotation of

the reference frame of our choice.

A change of variables that formulates a transformation of the 3 - phase variables to

the arbitrary reference frame may be expressed as [12]

fqdos = stabcs (2~3)

where
(fqdos)T = [qufdsfos] (24)
(fabcs)T = [fasfbsfrs] (2.5)

cosf cos(0 — 2375) cos(6 + 23’3)

2
K, = 3| sinf sin(f - %’5) sin(0 + 23’1) (2.6)

1 1 1
2 2 2



w2 (2.7)

In the foregoing equations, f can represent any variable like voltage, flux-linkage or
current. The frame of reference may rotate at any constant or varying angular velocity
or it may remain stationary. It is convenicnt to visualize the transformation equations

as the trigonometric relationships between variables as shown in Figure 2.1.

.

/

£ fs

Figure 2.1. Transformation equations as trigonometric relationships

The equations of transformation may be thought of as if f4s and f4, variables arc
directed along the paths orthogonal to each other and rotating at an angular velocity
w,whercupon fqs,fys and fes may be considered as variables dirccted along stationary

paths, each displaced by 120 degrees. If fas, fps and fes are resolved into fgs, the first



row of equation (3.2) is obtained, and if fqs, fp, and fcs are resolved into fy,, the
sccond row is obtained. The fy, variables arc not associated with the reference frame,
instead, they are only related arithmetically to the abc variables, independent of 6.
Portraying the transformation as shown in Fig. 2.1 is particularly convenicnt when
applying it to ac machines where the direction of f,s, fy; and fes may be thought
of as the direction of the magnetic axes of the stator windings. Then, the direction
of fqs and fy5 can be considered as the direction of the magnetic axes of the new
windings created by the change of variables. The rcference frame transformation
thercfore simplifies the intricate equations involving 120 degree 3 — phase variables into

the 2 — phase orthogonal variables.

Commonly used reference frames

The reference frames commonly used in the analysis of clectric machines and power
systems can be described as, the arbitrary, stationary, rotor and synchronous reference
frames. The arbitrary reference frame can be defined as the one that can be assigned
any given angular velocity corresponding to the fundamental frequency associated
with a quantifiable variable like flux-linkage for example. The synchronous reference
frame is the reference frame rotating at the electrical angular velocity corresponding
to the fundamental frequency of the variables associated with the stationary circuits.
In the case of ac machines, it is the electrical angular velocity of the air-gap rotating

magnetic ficld established by stator currents of fundamental frequency.

Transformation between reference frames

Many times during the derivations and analyscs it is convenient to rclate variables in
one reference frame to another reference frame directly, without involving abe variables
in the transformation. This direct transformation takes the form of a Vector Rotator

given as

10



cos(fy — 0z) —sin(fy —0z)
sin(fy — 0z) cos(fy — 01)
where 6, and 6; represent the angular displacements associated with the reference

frames involved with the inter-frame transformation.

2.4 Frequency-Controlled Induction Motor Drives

The speed of an induction motor is very near to its synchronous speed. The difference
between the two being characterized by the slip speed. If the synchronous speed of
the induction motor is changed, therc is a corresponding change in the specd of the
motor and this can be done by changing the supply frequency of the a.c. source. The

relationship between the synchronous speed and the frequency is given by

_120fs

Ns = P (2.8)

where 75 is the synchronous speed in rev/min, fs is the supply frequency in Hz and
P is the number of poles.

The a.c. supply available for the utility purposes is of a constant frequency and
when an induction motor is operated with the utility supply, it runs at a constant
speed. For the purpose of speced control, a frequency changer is required to change
the speed of the induction motor. The electric motor drives which use frequency

changers to achieve the speed control are referred to as Frequency-Controlled Electric

Drives.

11



2.4.1 Static Frequency Changers

The static frequency changers can be broadly classified as Direct and Indirect static
frequency changers. The direct frequency changers are some times called as Cyclo-
converters. These convert the a.c. supply source frequency to a variable frequency.
The output frequency typically ranges from 0 to 0.5fs, and for the better waveform
control of the output voltage, the frequency is limited to 0.33fs. The smaller range

of frequency variation is suitable for low-speed and large-power applications.

For a majority of applications, a wide frequency range is desirable duc to the
requirements over the desired speed range. In such applications, the Indirect
frequency conversion methods are employed. An indirect frequency changer consists
of two power conversion stages; first stage is Rectification (ac to dc) and the second
stage is Inversion (dc to ac). The indirect frequency changers are broadly classified
depending on the source that supplies the input power to them and that can either
be a voltage source or a current source. In both cases, the power input is kept to a
specified constant. The output frequency becomes independent of the input supply
frequency by means of the dc link. Various configurations of the indirect frequency
changers have evolved kecping in view the diversity of applications. However,
these only differ in the way the two power conversion stages are incorporated.
The more common configurations are the so called PWM inverter fed induction
motor drive, Variable-Voltage- Variable-frequency (VVVF) induction motor drive
and Variable-Current- Variable-frequency (VCVF) induction motor drive. A detailed
description of the current and voltage source static frequency changers and the

current and voltage source inverters can be found in [9].

12



2.4.2 Speed Control

For the inverter-driven induction motor, the speed control is cffectively achieved by
mcans of variable frequency. However, apart from the frequency, the applied voltage
also neceds be varied so that the air gap flux can be maintained at a constant value
without letting it to saturate. It is well known that in order to maintain the air
gap flux constant, the ratio between the phase voltage and the supply frequency is
to be maintained to a constant value [9, 10]. Thercfore, whenever stator frequency
is changed to obtain speced control, the stator input voltage has to be changed

accordingly to maintain the air gap flux at a constant value.

The requircment of keeping the ratio between the stator voltage and the sta-
tor frequency constant, actually compounds the speed control problem in an
induction machine. This, in fact, is the difference between the speed control problem
of an induction motor and a dc motor, which requires only the voltage control for
the purpose, and the simplicity of the control problem madec it preferable machine in

many applications until carly 1980s.

Various spced control strategics have been formulated for the induction ma-
chine, depending upon how the voltage-to-frequency ratio is implemented. The more
important and commonly employed speed control strategics are precisely revisited
here. Further details about these control strategies can be found in [9, 12]. The

commonly employed speed control strategics for the induction machines are:
1. Constant Volts/Hz Control
2. Constant Slip-speed Control

3. Vector Control or Ficld-oriented Control

13



The speed control strategy developed here is based on the Vector control or the Field
Oriented Control. Further discussion on the vector control is presented in the next

scction.

Constant Volts/Hz Control

The constant volts/Hz control is primarily designed to accommodate variable speed
commands by using the inverter to apply a voltage of correct magnitude and
frequency so as to approximately achicve the commanded spced without the use of
speed fecdback. Thercfore, it is safe to say that the simplest and the least expensive

induction motor drive strategy is constant volts/Hz control.

The specd control strategy relies on two foundations. One of them is that the
torque-speed characteristic of an induction machine suggests that the electrical rotor
speed of an induction machine is very near to the synchronous spced and hence has
a direct relationship to the electrical frequency. Thus, by controlling the frequency,
the speed can be controlled. The second foundation is based upon the phase-voltage

cquation that may be expressed as [12]

dAas
dt

(2.9)

Vas = Tslas +

For stcady-state conditions at intermediate to high speeds wherein the flux-linkage
term dominates the resistive term in the voltage equation, the magnitude of the

applied voltage is rclated to the magnitude of the stator flux-linkage by

VS =Lt)eA3 (210)

which suggests that in order to maintain constant flux linkage without any saturation,

the stator voltage magnitude should be proportional to the frequency.

14



The advantages of this control stratcgy are that it is simple and rclatively in-
expensive because of being an open loop control solution and that the spced can
be controlled to a degree without using speed feedback. This, in turn, indicates a
drawback of this control strategy; because it is open loop, some spced error will

occur, particularly at low specds.

Constant Slip-speed Control

In Constant Slip-specd Control, the drive system is designed so as to accept a torque
command input and hence the system demands an additional fcedback loop requiring
the use of a speed sensor. The method is highly robust with respect to changes in
machine paramcters and results in high efficiency of both the machine itsclf and
the inverter at the cost of somewhat sluggish response in closed-loop speed control

situations.

The constant slip-speed control is inherently a current source - based control
strategy which offers the advantage that as the current is rcadily controlled and
limited, the drive becomes extremely robust. However, this comes at an expense

that the control strategy requires phase current feedback.

Onc of the simplest strategies for current control operation is to utilize a fixed

slip-frequency, defined as

Ws = We — Wr (2.11)

Which suggests that many different optimizations of the machine performance can
rcadily be obtained by appropriately selecting the slip frequency ws, including achicv-
ing the optimal torque for a given value of stator current (maximum torque per

ampere) as well as the maximum efficiency [12].

15



Field-oriented Control

Ficld-oriented control provides the advantages of smooth motion at slow speeds as
well as the efficient operation at high speeds. In many motor drive systems, it is
desirable to make the drive act as a torque transducer wherein the electromagnetic
torque can ncarly instantaneously be made equal to a torque command. In such
a system, speed control is dramatically simplified because the electrical dynamics
of the drive become irrclevant to the speed control problem. There are a number
of permutations of this kind of control strategy, broadly known as Field Oriented
Control, and these include- stator flux-oriented, rotor flux-oriented, and air-gap
flux-oriented control. Within these types, there are direct and indirect methods of

implementations.

In the idcal field-oriented control, the current space vector is fixed in magni-
tude and direction (in quadraturc) with respect to the rotor, irrespective of its
rotation. This isolates the controllers from the time variant winding currents and
voltages, and thercfore eliminates the limitation of controller frequency response and
phase shift on motor torque and speed. Using Ficld Oriented Control, the quality of

current control is largely unaffected by speed of rotation of the motor.

The motor currents and voltages are manipulated in the d-q reference frame
of the rotor. This means that measured motor currents must be mathematically
transformed from the three-phase static reference frame of the stator windings to
the two axis rotating d-q reference frame. Similarly, the voltages to be applied
to the motor are mathematically transformed from the d-q frame of the rotor to
the three phase reference frame of the stator before they can be used for PWM
output. It is these reference frame transformations, which generally require the fast

math capability of a DSP or a high performance processor, which arc the heart of

16



ficld-oriented control.

2.5 Vector Controlled Induction Motor Drives

Various speed control strategies employed for the induction motors generally provide
a good steady-state response. However, many of the control stratcgics present poor
dynamic responsc and the cause of such poor dynamic response is found to be that
the air-gap flux linkages deviate from their set values, both in magnitude and in
phase. These variations in the flux linkages have to be controlled by the magnitude
and frequency of the stator and rotor phase currents and their instantaneous phases.
The oscillations in the air-gap flux linkages result in oscillations in electromagnetic
torque and generally reflect as speed oscillations. Further, these result in large
cxcursions of stator currents and present a requirement of larger peak ratings on
inverters and converters that eliminate the cost advantage that ac drives have over

their counterpart dc drives.

Induction Motor drives basically requirec a coordinated control of stator cur-
rents - in magnitudes, in frequencies and in phases - making it a complex and
intricate control problem. However, it is possible to have an independent control of
the flux and torque for the induction motor drives as in the dc drives. The stator
current can be resolved along the rotor flux linkages and the component along the
rotor flux linkages is the field producing current. But, this calculation requires the
instantancous position of the rotor flux linkages and if this is made available, the
control problem simplifies to the similar one for the separately-excited dc drives.
Since, the control is achicved in field coordinates, thercfore, it is generally referred
to as Field Oriented Control and because it relates to the control of the rotor flux

linkages, it is also known as Vector Control [9].

17



2.5.1 Principle of Field Oriented Control

For the purpose of explaining principle of Field Oriented Control, it is assumed that

the position of the rotor flux linkage Ar is known and it is at an angle p from a

stationary frame of reference. The three stator currents can be transformed into ¢

and d axes currents in the synchronous reference frames by using the transformation

ias
igse 9 | sinp sin(p-— %{-) sin(p + 2375
=3 o0 o ibs
idse cosp cos(p— ) cos(p+ )
les

from which the stator current is can be derived as
ig = V (iqse)2 + (idsc)2
and the stator current angle is given as

1
03 = tan—l(__.qS(’- )
ldse

(2.12)

(2.13)

(2.14)

where igee and iy, are the g and d axes currents in the synchronous reference frames

that are obtained by projecting the stator current on the ¢ and d axcs respectively.

The current is is responsible for producing the rotor flux A, and clectromag-

netic torque Te. Resolving the stator current is along A provides the field producing

component iy and the perpendicular component is the torque producing component

ir. By writing rotor flux linkages and torque in terms of these components as (9]

/\rCXif

Te & Apip « ifiT

18

(2.15)

(2.16)



it can be seen that the orientation of A, in synchronous reference frames presents the
flux and torque producing components of the stator current is as dc quantities and,

thercfore, they are ideal for use as control variables.

The crucial thing to the implementation of the field oriented control is the

acquiring of the instantaneous rotor flux angle p, which can be written as

p= [(wr+wg)dt = [ wsdt (2.17)
/ /

and the field oriented control schemes are classified based on how p is acquired. If p is
calculated by using terminal voltages and currents, then it is known as Direct Vector
Control. On the other hand, if p is obtained by using rotor position measurements
and/or using estimators or observers with only using machine parameters, then such

a scheme is known as Indirect Vector Control.
A dctailed discussion on the modeling, analysis and control schemes pertain-

ing to the vector control of induction motors is provided in (9], where a number of

direct and indirect vector control algorithms arc presented for various applications.
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CHAPTER 3

Previous Work

3.1 Introduction

The previous work (8] is reviewed in this chapter. It utilizes the fundamental induc-
tion machine model to design nonlincar observers for flux and speed estimation. A
sixth-order nonlinear model of the induction machine is derived that describes the mo-
tor in field-oriented coordinates. The model takes into consideration the error in flux
estimation. The flux regulation problem is addressed by following the traditional ap-
proach of using PI controllers. For the speed regulation problem, the machine model
is simplified by assuming that the flux regulation takes place relatively fast and by
using a PI controller to regulate the g-axis current to its command. A third-order
nonlinear model is derived. Using this third-order nonlinear model, the speed regu-
lation problem using a traditional PI controller is considered. The analysis presents
conditions pertaining to the design of control for sensorless operation of induction
motors. It reveals an important role played by the stcady-state product of the flux

frequency and the g-axis current in determining the control propertics of the system.
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3.2 Induction Motor Model

The Induction Motor is represented in stator frame of reference by the equations [9)

d, _ ( R Rr . .
(—1}/\1- = (—L—TI+WJ)/\r+Z;LmlsU (3.1)
- Lm( R RL2 .
Lsals = ——L:'(—-E;I+WJ)/\T—(R3+ Lg )ls+v_g (32)
dw 3Lm T ,. 1
mE = oL Ar Jis = bjw = —Ty, (3.3)

where Ar € R? is the rotor flux, is € R? is the stator current, vs € R? is the stator
voltage, and w is the rotor speed. The parameters L,,Ls and Ly, denote the rotor,
stator, and mutual inductances, o = 1 — L2,/LsL, is the leakage parameter, R, and R;
arc rotor and stator resistances, m is the rotor’s moment of incrtia, b; is a friction
coefficient, and p is the number of pole pairs. The resistance Rs which represents
stator resistance, R, which represents rotor resistance, the moment of inertia m, and
the friction coefficient b, are trcated as uncertain parameters with R, Ry, and b; as
their nominal values, respectively. The load torque T, will be treated as a bounded

time-varying disturbance.

The 2 x 2 matrices I and J are defined by

I= , I =

3.3 Flux Observer

For the purpose of designing the controller, the field-orientation along the rotor flux

Ar is considered. Since Ar is not mecasured, an open loop observer [15]

d- R, s B
cTt.’\r = (—L—TI + pwregd)Ar + L—:Lmzs (3.4)
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is used to estimate Ar. The flux observer duplicates the flux equation (3.1) , with

the unavailable speed w replaced by its reference w,s. Orienting the vectors Ar, is, Us

and e = Ar — )\, along the vector Jr, and denoting the direct-axis components by Ay,

iq, vq and ey, respectively, and the quadrature-axis components by Ag(=0).iq, vg and

eg, respectively, the motor can be represented by the following sixth-order nonlincar

model [8].
.d(;\_td = —arAg+arLmiy
dig , ; iq + drLmis
S4 = ardhg- (asn+arBlm)ia + Poregi + drLmiz/Ad
+ yuq — arfey — Bpweq
% = =Bpwdg — pwrefig — (asn+ arBLlm)iqg — drLmigiq/Xg
+ yuq + pweg — arBeg
L hlig(h = e) + ieq) — bw = Ty./m
ii;_td = —areq+ (pores — o+ arlmiq/Aqleq
+ (dir — ar)(Lmig = Ag)
dd_? = —(pref — pw+ arlmiq/Ag)eq — areq
+ (dr — ar)Lmiq + p(wref — w)Ag
where

For the later use, define

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

In the foregoing equations, Ay, iy, and iq arc available for feedback, as they can be

calculated from is and A, while w, e4 and eq arc not available.
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3.4 Flux Regulation

In field orientation, the flux A; is regulated to a reference flux A,y > 0, which is
taken as a constant. By viewing (-arBey — Bpweq) as a disturbance input to equation
(3.6), the cquations (3.5) and (3.6) can be used to design a state feedback controller
for vy to regulate Ay to A..s. There are several methods available to design such a

controller. The traditional approach of using two PI controllers [10] is considered here.

First, iy is viewed as a control input to equation (3.5) and the PI controller is

designed as

K[E +K[i
I& = ( ss )[’\rcf - ’\d]

And then, the second PI controller is designed as

K K

With tight feedback loops, the regulation of Ay to A..; can be ensured for a wide

range of variation of the term

pw,.efiq + Cermig//\d +yvg — arfeq — ﬂp“’eq

which acts as an input on the right-hand side of cquation (3.6). The design should
cnsure that Ay starts at a positive value and approaches A,y monotonically so that Ay
is always positive. The initial conditions of A4 are determined by the initial conditions

of the flux observer (3.4).

3.5 Speed Observer

Sensorless operation of an Induction Motor cssentially requires us to use an observer
to measure the rotor speed, as no other means arc available to measure the rotor

specd online. The high-gain obsecrver 7] is a technique that works for a wide class
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of nonlinear systems and guarantces that the output feedback controller recovers the
performance of a state feedback controller when the obscrver gain is sufficiently high.
A high-gain observer is utilized here to estimate the rotor speed. Towards that end,

rewriting cquations (3.7) and (3.8) as

di
ﬁ = —Bpodg = fi(Aguigeiq wpep) + g + 8y (3.11)
% = jiighg — bw + 62 (3.12)

where

fl(/\d, ld, iq,wr(,f) = pu)r(.,jld + (ds" + drﬁLyn)Iq + ermldlq//\d

is available online, and 4y, 5 arc uncertain terms given by

01 = [(ds — as)n + (dr — C"r)ﬂLm]iq + ﬂpv-’ed - arﬁé‘q

by = (1 — f)ighg + p(—igeq + igeq) — (b= b)w — T /m

The change of variables

) O
Q = w o (3.13)
Ad —ed 1

(T) - m{[(ds - ag)n+ (ar — ar)BLp)iq - arﬁeq}

brings equations (3.11) and (3.12) into the form

di

d—t" = —BpwAg - fiAgig.ig wref) + v2q (3.14)
d, -

-‘—;{- = fiighg — bw + 43 (315)

where

_ bé d, 6 o
63 - 62 - ‘;pid - Hi(‘;p&d) £ f2(’\d'ld!’q‘wr(’,fved)erTL)
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and f, is a continuous function of its arguments. The change of variables (3.13) is
invertible provided Ay — ey # 0. The high-gain obsecrver, then, is represented by the

equations

di A , . 4

—d;q = =BpAQ = fi(Ag idiig wref) + Tvg + (%)("q ~1q) (3.16)
dQ L _ih a9 .

T fieda =B ()i~ ig) (3.17)

where € is a small positive parameter and a; and a9 are positive constants that assign
the roots of s2 + ajs + ay = 0 at desired locations in the left-half s — plane. The scaled

estimation errors

io—1 .

=" ,m=0-Q

satisfy the equations

en = aym - BpAgm (3.18)
Y 2. JEE VR S
ey = —(g5-)m ~ b — by (3.19)

For small ¢, the closed loop system will behave as a singularly perturbed system, with
m and 7y as the fast variables. The essence of the singular perturbation theory (7],
is that when we face a perturbation problem that is characterized by discontinuous
dependance of the system properties on the perturbation parameter ¢, then the dis-
continuity of solutions causcd by singular perturbations can be avoided if analyzed
in separate time scales. According to singular perturbation theory [13], the stability

of the fast dynamics is determined by the matrix

—a1  =fpXg
[e§
Z’pid 0
in which A4 > 0 is treated as a constant. The characteristic cquation of this matrix

is s+ ays+ag = 0 ; hence, it is Hurwitz by design. From the high-gain obscrver
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theory (1] , it is known that if the control input v, is bounded uniformly in e, then
the estimation error Q — Q will be O(e) after a short transient period [0, T(¢)]. where

lime_gT(e) =

3.6 Speed Controller

The design of speed controller can be simplified by reducing the order of the system.
First, it is assumed that the flux regulator acts fast enough to regulate Ay to its
constant reference A..¢. This assumption allows us to take Ay = A,y and, therefore,

= :\L,Ti,i lcads to dropping equations (3.5) and (3.6). Also, it can be seen from

cquation (3.7) that for any current command i3, we can design vg as the PI controller

Vq (qu?‘f‘Kq [1‘ _ Iq]

with sufficiently large gains to regulate iq to ig. This allows us to view i4 as the control

input. Thus, the speed controller can be designed using the third-order model

®d — areq+ (rires - o+ GrLmig/Areg)eq (3.20)
% = —(pures — P+ GrLmig/Mes)eq — areq

+ (dr = ar)Lmiq + plwreg — w)Aref (3.21)

(;;: = #{iq(/\mf —eq) + /\ﬁlft’q} —bw Ty /m (3.22)

Q - (A";f, c"f @Yo+ p‘;"qf _ aig (3.23)

where Q is viewed as the measured output and,

((!9 (’ls)’]"—(ar ('lr)BLyn
OpA ref

The goal is to have Q track w, .
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It is natural to usc integral control to ensurc zcro steady-state error when

wref and Ty are constant [7]. Under the condition, @ = w..f, the equilibrium

equations are

0 = -oaréq+ (pwpes—po+ erm'i-q/’\Tef)e-q
0 = —(pwres — PO+ drLmig/Aref)éq — aréy

+ (ar — Or)Lm'i_q + P(Wref - L":')’\ref

Are

0 = ligQhres - &)+ FLéq) = bo =Ty m
Aot = €, A
Q = (T, 9%
Aref P’\rcf

(3.24)

(3.25)
(3.26)

(3.27)

Solving equations (3.24) and (3.25) for ¢; and ¢; in terms of ig and © =& - w,.y and

substituting in cquation (3.27), it can be shown that

- drLmigy, - . (Gr—ar)Lmig {5 s )0 Ay
(~p2 + %)(—w + m—'%)wc = - dsogalndiy “:3;7 i

where

¥r Lmis -, drLmig
we = poges + T and A = a? + (-pd + G2

To gain insight into the problem, the case is considered when a5 = ag, for which the

preceding equation reduces to

-, drLmig - ir—ar)Lmig
(-p3 + Fimia)(pg 4 (Grprllmia),,, —

TE,

Assuming that we # 0, the equation has two solutions:

-~ ((fr—Or)Lrni‘ ~ (eryni_
w = —X—q or w= T_‘l
PAref PAref

It is clear that the first solution is the one which yiclds zero steady-state error in the

nominal case when dr = ar. The equilibrium point corresponding to this solution is
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s b“’ref +Tp/m
g = —
Hhrey = g
_ (dr ot GT)L ; .
W = Wref + —ﬁ (328)

In order to sce whether a PI controller can stabilize this equilibrium point, the equa-

tions (3.20)-(3.23) are linearized at this equilibrium point, to obtain the lincar model
= Az + Bliq - iq)

Q — wyof = Cx + D(iq — iq)

where
ClrLrn;
—ar _’Wq 0
_ Lmi,
A= _grxT_:}_lq —ar _p’\rcf
BA
wq oL b
0
B=| (& - ar)Llm
/1’\ref
C = ( W 4] )
Xef Phres
and

with the transfer function

G(s)=C(sI - A)~1B+D = "J’%

in which

= 4\ 2 wear Lmig _ (dr—ar)Lm
n(s) = pApefls® +ars + Mres 1B W*?d (s +b)]
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i upA2 1232
d(s) = (s + D)l(s + ar)? + (522 + Zrel (s + ap — VM)

m
ref

It can be scen that the product weig plays an important role in the control design.
When weig = 0, G(s) has a zero at the origin. Hence, it is impossible to design
any controller with the integral action. This follows from the well known theory of
servomechanisms [3]. When weig < 0, G(s) has a real zero in the right-half s-plane;
hence, it is non-minimum phase. It is possible to design a controller with integral
action to stabilize the system, but such a controller cannot be a PI controller. This
fact can be scen by sketching the root locus of the system for different possible pole-
zero patterns. For a PI controller, the root locus will always have a branch on the
positive real axis. This leaves us with the casc when wcig is positive. In this case, the
transfer function G(s) is minimum phase and we can design a PI controller with high-
gain feedback to stabilize the closed-loop system and achieve good tracking propertics.

Such PI controller takes the form

K r +K )
Iy = (_M[umf - Q]
The condition

- i X L 1
Welg = g [pu)ref + o_rrre"}m] >0
is satisficd when the motor is operated in the motoring or braking modes, but not in

the gencrating mode. A similar condition has also been presented in [2].

The condition wcig = 0 is satisfied if ig = 0 or we = 0 [8]. The casc we = 0 indi-
cates operation at zero frequency, in a braking mode corresponding to certain speed
and torque. It is well known in the induction motor literature that operating the
motor at zero (or low) frequency is challenging, and that a design for such case will
have to exploit secondary phenomena of the machine, not conveyed in the machine

model (3.1)-(3.3). The case i; = 0, regardless of the speed, indicates that the power
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into the machine is negative.

Figurc 3.1 presents a schematic for sensorless control of an induction motor

using flux and speed observers. Three-phase stator currents are first transformed

drgt
idsi
Wref » M M K K
| Obecrver|_? X
> ¢ Inverse
Flux regulator | PJ Controller |  Fiekd odientation
0 [/
v |
as, ; Vds
2 2 idse Vee 2
= = A\ =
3\ ids 2 igse Vee| |2
4 A
T T Fied oventaio o Vs
Y A
G
Observer | O Igs*
Pl Controller PI Controller
23
Transformation an
Vas
i\ 2 Vgs
Vs 3 Vds

Figure 3.1. Sensorless control of an induction motor using traditional PI controllers
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to d — g currents. The flux observer provides the flux estimate A; and angle 6, for
ficld-orientation, using thesc d - ¢ currents and reference speed wy.y. The d -¢
currents arc then transformed into ficld-coordinates. The speed Observer utilizes
these ficld currents to provide a speed estimate. Two PI controllers are used for
flux regulation and regulation of the d-axis current. For the speed regulation, a PI
controller is used that regulates the g-axis current to its command. The voltage
signals provided by the PI controllers are transformed back to original coordinates

by inverse ficld-orientation and d — q to three-phase transformation.

31



CHAPTER 4

Speed Control Using Sliding Mode

Control Strategy

4.1 Introduction

The complex nonlinear nature of the induction motor model together with the fact
that certain important quantities are not measured, present difficultics in designing
the high performance induction machine drive control algorithms. In addition,
the uncertaintics pertaining to the imperfect knowledge of the system inputs and
disturbances together with the inaccuracies in the machinc modeling contribute to
performance degradation of the feedback control system. Sliding mode control is a
popular technique in nonlinear feedback control that operates effcctively over a range

of system parameter variations and disturbances.

Sliding mode control deals with robust control under the matching conditions;
that is, when uncertain terms enter the state equation at the same point as the
control input. In sliding mode control, the trajectories are forced to reach a sliding
manifold in finite time and to stay on the manifold for all the future time. Motion on

the manifold is independent of matched uncertainties. Its two main advantages arc
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e The dynamic behavior of the system may be tailored by the particular choice

of switching function

e The closed-loop response becomes totally insensitive to a particular class of

uncertainty related to the system paramecter variations and disturbances.

By using a lower order modecl of the system, the sliding manifold is designed to achieve

the control objective .

4.1.1 Sliding Mode Control

Consider the system

N-
Il

f(x) + g(x)u

y = h(z)

The sliding mode control law for such a system takes the form
u = —p(z)sgn(s)

where g(z) is bounded up and below by certain inequalitics in order to satisfy the

conditions for maintaining the motion on the sliding manifold and

1, s>0
sgn(s) =
-1, s<O.

The motion consists of a reaching phase during which the trajectories starting off
the manifold s = 0 move towards it and reach it in finite time, followed by a sliding
phase during which the motion is confined to the manifold s = 0 and the dynamics of
the system are represented by the reduced order model of the system(7]. The mani-
fold s = 0 is called the sliding manifold. A sketch of the typical phase portrait for a

sccond-order system is shown in Figure 4.1.
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Figure 4.1. A typical phase portrait under sliding mode control

Due to the imperfections in switching devices and delays, the sliding mode control suf-
fers from chattering. Two different approaches for reducing or eliminating chattering

arc|7]

e Dividing the control into continuous and switching components so as to reduce

the amplitude of the switchin component
e Replacing the signum sgn function by a high-slope saturation function
Using the sccond approach, the control law is taken as
u = —f(z)sat(s/e)

where sat(.) is the saturation function defined by

Y, if |y] <1
sat(y) =

sgn(y), if |y| > 1
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and ¢ is a positive constant. The slope of linear portion of sat(s/e) is (1/¢). A good
approximation requires ¢ to be of a very small numerical value. In the limit, as e — 0,

the saturation function sat(s/<) approaches the signum function sgn(s).

4.1.2 Zero Dynamics and the Relative Degree of Nonlinear

Systems

From the view point of designing feedback control for a nonlincar system, it is
neccessary to investigate certain important propertics of the system. The two
important properties of a nonlinear system considered here arc the relative degree

and the zero dynamics.

Relative degree of a nonlincar system is the number of derivatives of the out-
put necded to make the input explicit for the system. The samec term is used for a
lincar system in a context that it is the excess of poles over zeroes for the transfer

function of a given linear systecm.

Zero dynamics of a nonlincar system represent the internal dynamics of the
system when the output is identically zero. In linear systems, this matches nicely
with the dynamic equations whose eigenvalues are the zeroes of the transfer function
of lincar system. This is critical for linear controller design because at high-gain
the closed-loop poles migrate to open-loop zeros and these zeros determine the
boundedness of the control required for lincar tracking. Zero dynamics are important
for many nonlinear controller design procedures like feedback linearization, sliding
mode control and adaptive control. Details of zero dynamics matter because if
the system possess unstable zero dynamics, it can invalidate many control design
procedures. Theoretical foundation of the calculation of the relative degree and the

zero dynamics is given in [7, 5].
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Consider a single-input single-output nonlinear system

f(x) + g(z)u

™
I

y = h(z)

The calculation of the zero dynamics of this system consists of two steps

e Bring the system in a normal form with a nonlincar invertible change of coor-

dinates z = ®(x)
e Extract the zero dynamics equations from this form

First, calculate r components of @ as

é1(x) = h(x)
¢2(z) = Lyh(z)
or(r) = L}_lh(z)

where Lgh(r) = 6—77(;—‘)}'(1) and L}h(z) ctc. are recursively defined and r is the relative

degree i.c. the smallest r for which LgL;.*lh(:) #0, with Ly = ?;;:t)g(z). Choose the
remaining n — r new coordinates z;, i = r + 1,...,n so that ®(z) is invertible at = = z.

Additionally, sclect ¢;,i=r+1,...,n so that [5]

The normal form in the new coordinates z is then



o1 = Zr

ir = b(z)+a(z)u
ry1 = ‘1r+l(3)
in = ‘In(z)
and
y = 2

where b(r) = L}h(.r), a(r) = LgL}_lh(I) and ¢;(z) = Ligi(z)i=r+1,.,n We use the

rclation
z = 712

to express b(r), a(z) and g;(x) as functions of z.

The above equations represent the system in the normal form. This form de-
composes the system into an external part and an internal part. In order to obtain
y = 0, we choose the input u as —b(z)/a(z) and the initial conditions zg such that
z; =0,i=1,...,r. By definition, the zero dynamics of the system are then given by the

equations for z,,1,...,#n, With the coordinates zy,...,z; sct to zero. With

& = [zl,...,z,-]T

n = [zr_,_],.‘.,zn]T
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the last (n — r) equations of the normal form can be written as

n = q({v ")

and the zcro dynamics arc obtained by setting ¢ = 0:

n = q(0,n)

4.1.3 Regulation via Integral Control in Relative Degree-1

Systems

Supposc the system

f(x) + g(z)u

8-
Il

h(x)

<
I

has relative degree 1 for all z in a domain D ¢ R®. Our goal is to dcsign a state feedback
control law such that the output y asymptotically tracks a constant reference signal r.
When the signum function sgn(s) is approximated by the saturation function sat(s/<),
the regulation error will be ultimately bounded by a constant ke for some k > 0. Using
an integral control provides zero steady-state error, therefore, we augment the integral
of the regulation error y — r with the system and design a feedback controller that
stabilizes the augmented system at an equilibrium point, say zss, where y = r. We

usc the integrator
g=y—-r=e
with the system cquations to obtain the augmented system
= f(z)+g(z)u
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o=e=y-—r

To proceed with the design of the sliding mode control, we can take,

s=kogo+e

where kg is a positive constant. The sliding mode control law for such a system takes

the form

u = —j(z)sat(s/e)

4.2 Sliding Mode Controller Design For the Induc-

tion Motor

In order to proceed with designing the speed controller based on the sliding mode

control theory, the reduced-order machine model (3.20)-(3.23) is considered. To this

cffect, the error functions can be defined as

€ = W= Wref

y = Q_wref

and the equations (3.20)-(3.23) can be rewritten as

€4 = —areq+(=pe+drLmig/Are)eq
eg = —(-pe+arlmiq/Arcfleq — areq+ (dr — ar)Lmig = pedpes
. ) ’\rcf L
¢ = pligWhes —eq) + L, cal e —bwres —Tp/m—dyeg
Mef—e€q.  w
Vo= (e ke e - i
ref ref PAref

where
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a= (ds-as)77+(tir—ar)ﬂLm
'dp’\ref

The system is single-input-single-output where ey, eq and e are the three states, the
¢-axis current is the control input and a speed estimate © (provided by a high-gain
observer) is thc measured output. The error functions have been introduced to

conveniently proceed with the analysis.

The goal here is to address the speed regulation via integral control based on
the sliding mode control theory, such that the rotor speed w asymptotically tracks a
bounded time-varying reference speed wy¢. Clearly, the equilibrium point of interest
pertaining to the reduced order system would be such that the flux estimation errors
eq and eq, and the speed crror e are zero. The following section presents the analysis

related to the asymptotic stability of the desired equilibrium point.

4.2.1 Zero Dynamics of the system

For the purpose of stability analysis, the nominal parameters case is considered when
R: = Ry and Rs = Rs, which makes a = 0 in equation (4.4). The resulting system has
a relative degree 1 in R3 as the control input appears in the output cquation upon
calculating the first derivative of the output. The internal (or zero) dynamics of the
system are described by equations (4.1) and (4.2) when y is set identically zero. The
external dynamics of the system are described by equation (4.3). Analysis of the zero
dynamics provides insight into the asymptotic stability of the origin. The system is

said to be minimum phase if the origin of the zero dynamics is asymptotically stable

(7). When

in cquation (4.4); we obtain
_ Wrefed — Qﬁteq

e= —/———— 4.5
’\ref —€d ( )
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Taking the time dcerivative of the preceding equation

ey Oey

6 = 7] “’r(’jcd—gpﬁteq o1t 0 “"refed_n_pneq ¢
Aref —€d — Aref — €d 1

and substituting the values of €5 and €; from equations (4.1) and (4.2), we obtain

1

é = ————({ —arwy,fed — pew,ofeq + (arLmig/Are f)wye f€
(’\rcf_"d){ rWref€d ref¢q (arLmiq/ rcf) ref€q

—;}Lmzqed a?
- areeq + ————

+ —Leq + arer
’\rej p q r€Aref
2

1 a .
+ —————()\ /- t?d)2{ - arwrcff% + [;f- - pew,.(,f + ((ler?-q/Arcf)u)rcf] eqeq
re

o2y s
_pmuy 2
+ [a,-e )‘rcf ]rq}

The sccond order terms in ey and e that appear in the above relationship can be

approximated by O(jlef||?), where fles[|2 = €2 + 2. Further, substituting the valuc of e

from equation (4.5); we obtain

2
; 1 HFLmiq
o? . A
+ (—I;’; + aer1vqwmf//\mf)eq + (/\,.(,;—c—fqd) [ar“’rcf(’d _ %eq]
+ O(llegll?)
or
;= — “Z ’\rcf ar
e = (’\rcf - ed) [“ Qrwrefeq + ;eq + m(arwmfed - ’;Cq)
)‘rcf(’\ref —eq)\ P méd + Qrwrefhmeq |ig
+ O(llesl|?) (46)
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Similarly, substituting the value of e from equation (4.5) in cquation (4.3) we get

. , bwye f HAre f bar
ée = ll(/\.r(’f —eq)ig — (’\rcf — ed)ed + ( Im + p(’\rcf — Cd))t’q

T
— (breg + £+ drep) (4.7)

Comparing equations (4.6) and (4.7); we have

2
{“()\r(-f _ed) - /\rej /\:(f_(‘d (%}Lnlf’d‘*'(l'rwr(,f[qneq)}lq
—Z——jl - arw e+“—'i2€ +——j—5’\"’ (aw e—Qle)
= )‘ref—cd r%ref€d p €4 (’\ref_(‘d rWref€d D €q

b BAre T, | -
+bwr(‘f6d - %LP(]] - —E:,—(I‘Leq + (bwT(.’f + _”%‘ +u),.ef)

or

)‘r(‘ Qrwre A 4
iqg = azf {[(b - Or)wref + (—/\—if:‘;‘—%}ed
l"\rcf(’\ref - ed)2 - (-pLLmed + O’T“’rchmeQ) ref ~ %d
- ar \ (Aref — €)X
ar re H{Are d)ref
b—ay) - P f _ f
+[ p 07 (Aref — €a) Lm Jeq
T
+ [()‘rcf - ed)(b“’rcf + FL +“:’rpf)]} + O(“e_f“2) (48)

The next steps involve substituting the value of iy from (4.8) into (4.1) and (4.2)
to obtain the equations for the zero dynamics of the system. Towards that end, we

substitute the value of iq in (4.1) and after some simplifications, we obtain,

€q = -—areg
arLme Qrwpe fA
; rlmco {0 arrary + 2L,
BAref(Aref = eq)? - 7 Lmeq — arwregLmeg ref ~¢d

sz’\r(’f l‘(’\r(‘f - ed)’\rpf]
- €q

—-ar
—T(p— -
+ [ P ( Otr) (Aref _ ed) Lm

T,
+ [(Arc}' - ed)(b‘-“rcf + FL + “"'rcf)]} + O(”ef“2) (4.9)

42



Similarly when we substitute the value of ig in equation (4.2), we obtain

€q = arL'l,,,rd {{(b ~ ar)wpef + O—(—;wrd_ :";]
HAref(Aref = eq)? - QPLLmed — arwpefLmeg ref ~ €d
ar p “ref B Aref = €d)Aref
b- - - i
+ [ p ( a") (/\rcf — ed) Lm ](’q
T,
+ [(/\,-(,f —eq)(bw ,.(,f+ L +wref)]}
A
Taréq =~ (,\",fng q) (p""r(’f"d - "r‘?q) + Olles1I?) (4.10)

A further approximation of the seccond-order terms in e4 and e4 simplifics the equations

(4.9) and (4.10) to

. L T
€ = —areg+ “_'2_'2(1, e + 2k I +wr‘,,)eq+ Olles11%) (4.11)
“)‘r(’f
. L T, .
€q = |:pwrcf + 0:2771 (b“’ref + KL +“"r(’f)jl€d + O(|I€f||2) (4.12)
ref

Assuming that w,.f(t) and Tp(t) approach constant limits as t — oo, i.c.
lim¢_,cowpe f(t) = @pe fy limg—ootref(t) = 0, limp oo Ty (t) = Ty, and neglecting the sccond-
order terms in ez and eq, equations (4.11) and (4.12) constitutc a lincar time-varying

system of the form

¥ = [A+ B(t)r
where
—ar "Lz'm(bwref + m)
A = )
- - T,
_Wref+%§%'u;(h"rcf+77ll‘) 0
Te
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' - . T,
0 Qﬁ’f-m[bwrcf+wrcf+7#]

B(t) _ . ; © ref
“Wrej_%ﬁfu;[b‘z’ref""‘:’rcf‘*'?rlf] 0
re

where &5 = wreg — @rep, Ty = Ty — Tr, A is constant and B(t) is time-varying such

that limy_,c0B(t) = 0.

The above system can be viewed as a perturbed system where A is the sys-
tem matrix of the nominal linear system and B(t) is the perturbation term. Theory
of stability of perturbed systems [7, Example: 9.6] proves that if the origin is an

exponentially stable equilibrium point of the nominal system
= Arx
and if
B(t)— 0 as t— oo

then the origin is a globally exponentially stable equilibrium point of the perturbed

system & = [A + B(t)]z.

In order to investigatc the stability of the origin (e = eq = 0) as an asymptot-
ically stable equilibrium point for the system (4.11)-(4.12), we proceed with the

calculation of the eigenvalues of the matrix A.

~ar b 05y + )
A =
T
Pref — %ﬁ%‘m( ref _"Il‘) 0
ref
—arL - TL
A+ar _ri_m(bwref+ m)
— “'\r
M-A = i ef
- - T
PWref + %(b‘dﬂ’f + 7#)] A
re
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which gives

AT = 4] = A+ ar) + [poges + Z—%Afj;‘(b@mf + 1) [%ﬁ%(b‘z’rd + 7))

or
M= 4] =22+ ard + [pogepn + 7
where
K= Qﬁém(’@ref + Z:f;)
BAres

The cigenvalues of A

A1’2 = —QQE + %\/Qz —4[p¢:)r(,fl\‘+h'2]

have negative real parts only when the product x(po, s +x) > 0, which is the case when
the stcady-state speed command &, ¢ and the steady-state load torque Ty, both have
the same sign, positive or negative. This condition is similar to the one obtained in
the previous work (8], referred to in Chapter 3, where the product weig determines a
similar stability condition. The condition x(pw,. s + x) > 0 is satisfied when the motor
is operated in the motoring or braking modes only. If the motor is opcrated in the
generating mode the stability condition is violated as the product x(po,.y + &) is no

longer a positive term.

4.2.2 Speed Regulation via Integral Control

A sliding mode controller with integral action is designed in order to address the speed
rcgulation problem. Using integral control provides zero steady-state error. There-
fore, we augment the integral of the regulation error with the system and design
a feedback controller that stabilizes the augmented system at the desired equilib-

rium point. Consider the reduced-order machine model (3.20)-(3.23) with the error
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functions defined as

e = “"—“"rcf

y = Q—‘"ref

In the nominal case ér = ar , s = as, cquations (3.20)-(3.23) can be rewritten as

€ = -—areq+ (—pe + aeriq//\rcf)Cq (413)
€qg = —(-pe+arLlmig/Acfleq — areq— pedpey (4.14)
A
¢ = l-‘[iq(’\rcf —eq) + Ir:;{eq] _be_bwr(’f_TL/m—“:’ref (415)
’\rcf —€d Wre f ar
- 2 e 4.16
Y ’\rcf ‘ ’\rcf d PAref 9 ( )

The system is single-input-single-output with ey, eq and e as the states, the g-axis cur-
rent as the control input and the speed estimate  (provided by a high-gain observer)

as the measured output. Augment the integrator

(4.17)

[
0
[
(3
3
-

with the system (4.13)-(4.16), and take

s=kgo+y (4.18)

where kg is a positive constant. The continuous sliding mode control law for the

system is

iqg = —Ksat(s/e) (4.19)
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where K should be chosen to satisfy the condition

s5<0 (4.20)

outside the boundary layer {|s| < €} to ensure that the trajectories reach the boundary

layer in finite time and stay inside thereafter.

Substituting the value of y from equation (4.16) in cquation (4.18) yiclds

’\rrf —€d Wre f ar
= k -
s 00 + ( /\,-ef )(’ /\ref eq+ p/\,.cf €q
Aref —€d e w o
s = kno ref - o ref . L
’ 0o ( ’\rcf )f’ ’\r(tfe )‘rcf “at P’\rcf “a

Substituting the values of €, €5, ¢ and ¢ from equations (4.13)-(4.15) and (4.17), we

obtain
§ = koy

’\rcf —€d . ’\r(’f .

+ (T) {/“["(I(’\rcf —eq)+ Lim eq) — be — bwres —Tp/m — Wr(‘f}
e .

_ Sre] { —areg + (—pe + aerzq//\ref)cq}

Wref .
- Fres { —areg + (—pe + aerzq/,\mf)eq}

ar

p’\ref

{ - (—pe+ arLmig/Arefleq — areq — pe,\”,f}

which simplifies to

. ar pe(e +wrof) Iz a?
= 2 _ - — r
8 { ’\ref ( e + L")1‘(’v_f)ed + ( ’\rcf + Lm ('\ch (’d) p’\r(’,f )Cq

- (b('\”f —:‘::f+ rhref )e + koy
- (/\r—i\f;p—f—q) (bw,.(,f + Ty /m+ d’rcf)}
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l‘(’\r(’f - ed)2 arLm(e + “-’r(’f)eq a‘ng ;
+ X B 22 Tz ey
ref ref Phres

The above expression can be written in the form

§=F+Giqg (4.21)
where
F o= ar (2c+w )€+(M+L(A —ey) - a? )P
- Aref ref)%d )‘rcf Lm ref ~d P)‘rcf N
b( Ao r — +arA
- ( ( ref ed) ar rcf)e-}-k()y

’\rt‘f

Aref — €
- (#(b‘”ml +TL/m+‘brcf))}

ref
G = {ﬂ(’\rcf - ed)2 _ a,-Lm(e;—qu(,f)Cq _ n?ém Cd} (4‘22)
Aref '\ref p'\ref
The function G should satisfy the condition
G>Gy>0 (4.23)

for some positive constant Gg, which is the case in the neighborhood of e¢; = ¢4 = 0.

From (4.21),

ss = sF + sGig (4.24)

For |s| > ¢, the sliding mode control (4.19) takes the form

ig = —Ksgn (s)
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and equation (4.24) can be written as

s$

sF — GK|s|

sF_
G

G|s|"-(';‘ — GK|s|

G

GK|s|

IN

We assume that the ratio !g‘ satisfics the incquality
F
|5| <K -K (4.25)

where Kj is a positive constant. Then,

s$ < G|s|(K — Kp) - GK|s|
= —KyG|s|
< —KpGpls| (426)

It is clear from the forcgoing analysis that inequalitics (4.23) and (4.25), rewritten as

=
v

Ko+ 5]

G- > Gp>0 (427)

should hold over the domain of interest in order to ensure that all trajectories outside
the boundary layer {|s| < ¢} reach it in finite time and those inside the boundary layer

cannot leave, as portrayed in Figure 4.2.

In order to analyze the system inside the boundary layer, consider

€¢ = —areg+(—pe+arlmig/Acfleq (4.28)
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Figure 4.2. Trajectory outside the boundary layer reach it in finite time and stay

inside thereafter

€ = —(—pe+arLmig/Ares)eq — areq — pedres

) . Aref :

e = I‘[lQ(’\rcf —eg) + Ly eq] —be - bwTCf - TL/m ~ Wref
0 = —kgo+s

Ar(,f - ed “)r(’f Qr
y = € — eq4 + €
( Aref ) Aref 4 PAref !
s = kgo+y

Inside the boundary layer, the control input (4.19) is given by

ig = —K(s/e)

Substituting the value of s from cquation (4.33), we obtain

)‘rcf_ed)e__“"rcf ar

eq4+
)‘ref

koo + e
? ( Aref d PAref I

iy = ——
9 €
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(4.35)



Substituting the value of iq from cquation (4.35) in cquation (4.28) yiclds

€4 = —areq— peeq

K| Aref —€d Wre f ar
B (aer//\mf) € [koo + ( /\rcf )e - /\ref ‘at p’\rcf ‘%

Neglecting sccond-order terms in eg and eq, the above equation simplifies to

,

K
€q = =—areq— peeg— (aer/)\,.(,f) - (koa + c)eq + O(]](‘fll2) (4.36)

Substituting the value of iq from equation (4.35) in equation (4.29), we obtain

K Aref —€d Wre f ar
€g = peeg+ |arLm/A — koo + - e— eq4+ eqle
q d ( T m/ rcf) c I: 0 ( )\r(gf ) ’\r(’f d p)‘r(’,f q d

—arcqg — pe)‘rcf

which simplifies to

. K
€q = peeq+ (aer/)\r(,f) - (kga + e)ed —areg — pedref

+ O(lles11?) (4.37)

Similarly, substituting the value of iq from equation (4.35) in equation (4.30) yiclds

. K )‘rt’f —€d Wre f ar
= —u(Ar - — |k - - : >
€ u( ref €q) z [ 00 t ( Ares )e ’\rchd + P’\rcfcq
;Lz\n,f .
-z—rn—eq - bf’ - bwmf - TL/T" - wn,_f

and this simplifics to

A Ka
ref r/P)Cq

= u—E—K(koa +Wrcj)€d+l‘( Lo -

- (b*’l‘g’\ﬂ’.f)e - (l‘@’\rd)o - (b"‘"cf +Tp/m +d“"f)
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+ Olles11%) (4.38)

Neglecting the the sccond-order terms in ey and eq, the system can be characterized

by the fourth-order state model

K
€4 = —areq—peeq— (aer/'\ref) - (koff + ‘—’)eq (4.39)
K

€4 = pecg+ (aer//\",f) - (koa + e)ed —areq = peAres (4.40)

‘ uK Aref  Kar/p K

e = T(Icoa+w.,.ef)ed+u( [:0,;{ __5;)6(’— (b+u?/\rej)e

Kk .
(s )o (g T ) )
) Aref —€d Wref ar
= - + 4.42

7 ( Aref )8 Aref ed PAres “ ( )

In order to analyze the performance of the system, inside the boundary layer, we
cxamine the behavior of the system in the vicinity of the equilibrium point. Towards
that end, we write the equilibrium equations under the steady-state conditions w,. ¢ =

Wrefs Ty = TL and ":’r(’f =0.

0 = -—aréq— pééq — (aer//\ref) g (k,,a + é) €q (4.43)
0 = peeg+ (aer/,\",/) g (k,,& + é) €4 — aréq — pedpef (4.44)
0 = %(k06+u§ref)5d+;t(/\g;f —5'06;/")@,,— (b+u§z\,.ef)é

~ (#5500e )5 — (bipes + T /m) (4.45)
0 - *’;fr :f’ e ‘;; ed+p;’r:faq (4.46)

Naturally, the desired equilibrium point for the system is when the flux estimation
errors é; = é = 0 and the speed error & = 0, which imply that the output w tracks the

reference input w,. ;. Substituting these values in equation (4.45) provides the value
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of o at the desired equilibrium point as
T (3res + Ty /m) (4.47)

Lincarizing equations (4.39)-(4.42) about the cquilibrium point (eq = eg = € =0, 0 = 3),

we get the linear time-varying system

T = A(t)r

where
T
r = ("d €q g é)
T
r = (‘"d eq o e)
and
OerKk —
—Qr ——E/\:f—QU 0 0 \
('erank - _ _
ao=|  Bwer C o ° PAref

—w::f agr%f_ 0 !
) o - ) —(K800) (14

Substituting the value of & from cquation (4.47) yiclds

L - T
—ar Zx’l"fi(b‘“"ff + 1) 0 0 )
arlL - T,
—orpm (b, o+ T -a 0 —PAre
A(t) = l‘)‘ref( s+ ) ' Pired
_Wref o
ref p::rej 0 1
pRw,., 1 _ T A K r/ Kk, “KX!YT!
\ —TFL - X;Z(bwref + _"1;‘) P(‘L’-T(;,L - ﬂs p) _l‘_su’\rcf —b-—

Assuming that w..;(t) and Tr(t) approach constant limits as t — oo, i.c.

limp_oqwref(t) = @pep and limy oo Ty (t) = Ty, A(t) constitutes a lincar time-varying
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systemn of the form

Alt) = Ay+DBi(t)
where
Q - T
—ar ;f\—z-:l;(burcf n m) 0 0
- T
_% (bw’ref + —"l]‘) —-ar 0 _pAr(’f
Al = H ref
‘Dre 43
_r[ _/\_L 1
ref PAref 0
pK@ _ T, Are Kar/p LKA
_eﬂ }:Tf(b“)r(’f"' m) #(_errni___er_z_) —H—F )‘ref _b__T”‘L
0 00 0\
0 0 00
By(t) = o
TE
—X_L 0
ref 00
“——ik‘;’“ 000
where &pop = wpef — Oregy Ay is constant and Bj(t) is time-varying such that

limy—0oB1(t) = 0. The above system can be viewed as a perturbed system where
A is the system matrix of the nominal linear system and Bj(t) is the perturbation
termn. Theory of stability of perturbed systems [7, Example: 9.6] shows that if the

origin is an exponentially stable equilibrium point of the nominal system
T=Ar
and if
Bi(t)—0 as t— o0

then the origin is an exponentially stable equilibrium point of the perturbed systemn

i=A(t)z.
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In order to investigate the stability of (¢ = ¢g = e = 0, 0 = &) as an asymp-

totically stable equilibrium point for the systemn (4.39)-(4.42), we proceed with the

calculation of the eigenvalues of the matrix A4;, which can be represented in the

singularly perturbed form

where

Py

Py

Py

Pygy

EA]

EAQ

Py Pip
P=
Pyi+cA]  Pyy+elg
€ G
L _ T,
“or g (bores + 5%) 0
HAref
L _ T
_%/\g[m(bw”,f+ —,,1;) -ar 0
ref
_ ‘:)Tl‘! [43
ref pxref 0
T
(0 —pres 1)

(#K‘;’rcfv -uKar/p, _I‘KkO’\rcf>

( —p1K e g )

The cigenvalucs of this matrix can be approximated, for sufficiently small €, by those

of the matrices Pyy — PPy, Py) and Pyo/e (7).
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It can be verified that

and

—-ar %(h@nj + T” ) 0
Piy - PPy Py = —%ﬁ’fﬂ(b@ml + ;,,) ~ Plref 0 PROAre
e
0 0 —ko
Pple = _#%{Art’f

and from these we sce that there is a fast cigenvalue at —u &, 7 and a slow eigenvaluce

at —kg. The remaining slow eigenvalues of A; are the cigenvalues of the 2x2 matrix

L - T,
—or n (vores + 3F)
Ac = ref
arlL - T, -
‘#,\rzd (b""rcf+711{') ~ Pref 0
A —arlL - TL
+ar _#j\cz—m(b"dr(’f'*' 1n)
AI - Ac = _ ref
- - T,
Poref + (5™ (bores + 3] A
T€

which gives

, . - T - T
= <30 e + g + B« B
re TEé
or

|,\1 - Ac

=2 +ard+ [pu';mfn + ~2]

[
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Figurc 4.3. Sensorless control of an induction motor using sliding modec controller

where

The cigenvalues of A




have ncgative real parts only when the product x(po,.5 + &) > 0, which is the casc
when the steady-state speed command @, ¢ and the steady-state load torque Ty, both
have the same sign, positive or negative. The same condition was obtained in section

4.2.1, while investigating the stability of the zero dynamics of the system.

A Schematic for sensorless control of an induction motor using sliding mode

control is presented in Figure 4.3.

58



CHAPTER 5

Simulations

The performance of the sliding mode controller is evaluated through simulations in the
following sections. These simulations provide a way to compare the performance of
the previously developed speed control algorithm using the traditional PI controllers

with the sliding mode controller developed in Chapter 4.

5.1 Performance Comparison - PI controller vs

Sliding Mode Controller

In order to examine the performance of the sliding mode controller, the simula-
tions arc performed considering the operation of induction motor under different
conditions of paramcter variations, load torque and rcference speed variations. In
this section, we present the comparison simulations where the performance of the
sliding mode controller is comparced with the traditional PI controller for the speed
control of induction motor. For the purposec of this analysis, the induction motor
is opecrated under similar conditions except that the speed controller is cither a Pl
controller or a sliding mode controller. The simulation plots for the two controllers

appear side by side representing the similar conditions being taken into consideration.



In order to obtain concrete conclusions about the performance of the two speed
control algorithms, two induction motors, with different power ratings and machine
parameters, have been simulated. However, the simulation results for only onc of
the induction motors are presented in this section. Simulation results for the other

induction motor are available in the form of a compact disc.

5.1.1 Designing PI Controllers for the Speed Control

In this section, the PI controller gains arc designed for two different induction motors,

nicknamed as IM-1 and IM-2.

Induction Motor IM-1

The induction motor with the following machine parameters and ratings is used for

the purpose of simulations:(Taken from [7, Example 5.6]):

200V, 4 pole, 3-phasc, 60 Hz, Y-connccted, Base Power 5 hp
Rs = 0.183Q, Ry = 0.277Q, Ly, = 0.0538H, Ls = 0.0553H, Ly = 0.056H, m = 0.0165K g — m2.

A friction coefficient of b; = 0.01Kg — m2/sec has been added.

Designing PI controller gains for IM-1

The gains of the PI controllers for IM-1 have been taken from [8]. These gains have

been designed while considering the nominal parameters i.c. R = Ry and Rg = Rs.

The constants Ky, and Ky of the PI controller of vy are chosen using the

modecl
di .
Td(1t = -(asn + arﬂLm)ld +yvg + d = - l2l.393id + 276.345’L’d +d;

where d; is a disturbance input. The choice Ky, = 20 and 7‘[‘:;11 = 5 assigns the
p

closed-loop poles at —5.643x10% and -0.0049x10%. The magnitude of the transfer
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function from the command input % to iy is almost 0 dB over the frequency band
[0,103) rad/sec, and the magnitude of transfer function from d to iy is less than -30

dB over the frequency band [0,102] rad/scc.

The constants K, and Ky of the PI controller of iy arc chosen using the

model
dA . .
T8 = —arAg+ arLmig= —4.946); + 0.266i4

. Ky, .
To cnsure monotonic response of Ay, F-){—’ =5 has been taken to assign the zero of the
p
PI controller at —5 (almost cancclation of of the pole at —4.946). The gain Kj, has

been chosen as Ky, = 20, which assigns the closed-loop poles at -5.13 + j0.48.

The constants Kgp and Ky of the PI controller of v, are chosen using the

modecl
L4 = (agn+ arBLm +ar)ig + 1vq + dy = —121.393ig + 276.345v0 + do

where dj is a disturbance input. The choice Kgp = Kg; = 300 assigns the closed-loop
poles at —2.776x10* and —0.995. The magnitude of the transfer function from the
command input ig to iq is almost 0 dB over the frequency band [0, 10%) rad/scc,
and the magnitude of transfer function from d; to i is less than —30 dB over the

frequency band [0,900] rad/scc.

The constants Kuwp and K,,; of the PI controller of ig arc chosen using the
model (3.20)-(3.23). The transfer function of the lincarization at the equilibrium
point (3.28) is given by

(s) = 52.4(5%+4.94645+0.887wciy)
(5+0.6)[(5+4.9464)2+(0.887iq) 2|+ 584.416 (s +4.9464—0.159iq°)

The transfer function depends on the equilibrium point. By considering a range of

possible values of w,.s and Ty, the controller gains were chosen as Kyp = Ky, = 30.
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Induction Motor IM-2

The induction motor with the following machine parameters and ratings is used for

the purpose of simulations:(Taken from [12]):

220V, 4 pole, 3-phasc, 60 Hz, Y-connected, Base Power 3 hp
Base Torque 11.9 N.m. , Base Current 5.8 Ampere, 1710rpm

Rs = 0.43592, Ry = 0.6531Q, Ly, = 0.0693H,Ls = 0.0694H, L, = 0.0696H,
m = 0.0189K g — m2.

A friction coefficient of b; = 0.01Kg — m?/sec has been added.

Designing PI controller gains for IM-2

The gains of the PI controllers have been designed while considering the nominal
parameters i.e. Rr = Rr and Rs = R;.

The constants Kg, and Kg; of the PI controller of v4 are chosen using the model
L4 = _(agn+ arBLm)ig+yvg+dy = —2715i4 + 2508.1vg + d)

where d) is a disturbance input. The choice Ky; = K4, = 100 assigns the closed-loop
poles at —2.5x10° and —0.0099x102. The magnitude of the transfer function from
the command input i} to iy is almost 0 dB over the frequency band [0,10%) rad/scc,
and the magnitude of transfer function from d; to iy is less than —30 dB over the

frequency band [0,103] rad/scc.

The constants Ky, and Ky; of the PI controller of iy are chosen using the

model
d\ . .
Tt = —ardg+ arLlmig= —9.3836); + 0.6502iy

and the choice Ky, = 50 and Ky; = 100 assigns he closed-loop poles at —203.48 and

—-0.981. The latter causes an almost cancelation of the zero at —1.00.
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The constants Kgp and K, of the PI controller of vq arc chosen using the

model
('iai-tq = ‘((Ys'l] + OrﬂLm + Qr)iq + YVq + d2 = —2724365[d + 25081vq + d2

where dp is a disturbance input. The choice Kgp = Ky = 150 assigns the closed-loop
poles at —4.04x10° and -0.995. The magnitude of the transfer function from the
command input i} to ig is almost 0 dB over the frequency band [0,10%) rad/scc,
and the magnitude of transfer function from d; to iq is less than —30 dB over the

frequency band [0, 102] rad /sec.

The constants Kyp and K,,; of the PI controller of ig are chosen using the
model (3.20)-(3.23). The transfer function of the lincarization at the equilibrium

point is given by

Gls) = 20.1375(s2+9.38365+2.16wcig)
(s+0.1124)[(5+9.3836)2 +(2.16761iq) 2]+ 174.35(s+9.3836—0.5ig°)

The transfer function depends on the equilibrium point. By considering a range of

possible values of w,..; and Ty, the controller gains were chosen as Ky = Ky, = 300.

5.1.2 Sliding Mode Controller - Parameters

The PI controller gains have been designed for the two different motors; however,

the same sliding mode controller is used in both cascs.

The Sliding mode controller parameter K is defined based on the g¢-axis cur-
rent requirement for the specific induction motor drive (which is proportional to
the load torque T;). The typical value of i for a load torque command of 20
N.m. is approximatcly 25 Amperes, which suggests that the sliding mode controller

paramcter K should be taken around 30 - 35 for a very smooth operation under even
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unpredictable load conditions. The value of constant gain kg is chosen as unity. The
signum function of the sliding mode controller is replaced with sat(2) and the value

of ¢ is taken as 0.01.

5.1.3 Performance Comparison

In this section, we present the simulation plots for various cases in which the
two controllers are studied for similar situations. The simulation plots appear side

by side for the two controllers for the same situation and for the same induction motor.

The flux obscrver (3.4) is initiated at

. 0.1
A(0) =

0
so that A4(0) = 0.1. The spced observer (3.16)-(3.17) is implemented with a; = 2,
ay =1, € = 00002, o = u and b = b. In the simulations, the components of vs are
limited to +Vimaer V. The speed reference varies for different situations, however, for
a number of simulation cascs, it is taken as a step input smoothed by the transfer

function 1/(0.5s + 1).

Figure 5.1 shows simulation results for the two controllers for a speed com-
mand of 100 rad/sec applied at zero time with a load of 20 N.m. applied between
t =4 and t = 8 scc. This simulation is for the nominal parameters case i.e. R, = R,
and Rs = Rs. Clearly, both the controllers have equivalent performance curves for

the nominal parameters case.

Figure 5.2 shows simulation results for the two controllers for a spced com-
mand of 100 rad/sec for the case when there is a 100 percent increasc in the rotor

resistance R, and the nominal stator resistance i.c. Rg = Rs. A load of 20 N.m. is
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Figure 5.1. Simulation results with nominal paramcters

applied between t = 4 and ¢t = 8 sec.

According to (3.28), the cquilibrium values are ey = 4 = 0, and

- ar-ar)Lmi =
@ = Wpef = (’—px::f—"”l = —0.4435i4

where

= b‘“ref+TL/m

lq—

blar—ar)Lm

HAref === el
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For T; = 20, we obtain i5 = 24.164. The simulation results confirm thesc calculations.
The two controllers present almost cquivalent performance for such parameter

variation.

Figure 5.3 repeats the simulation for the two controllers for the speed com-
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Figure 5.2. Simulation results with 100 percent increasc in R, and nominal R,

mand of 100 rad/sec, with a 100 percent increasc in both the rotor resistance Ry and
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the stator resistance Rs. In this case, we expect the equilibrium point to be slightly
perturbed from the one we obtained in Figure 5.1.3. This is indeed the case. Clearly,
in this case ey and eq are no longer zero. The sliding mode controller has a slight
performance edge in this parameter variation case as it produces less speed error

when the induction motor is subjected to the load.

Figure 5.4 shows speed rcversal from 50 to -50 rad/scc at no load, with nomi-
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Figure 5.3. Simulation results with 100 percent increase in R, and Rs
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nal paramcters. It can be seen that the system settles back at the equilibrium point
following a transient during speed reversal. The two controllers have almost the same
performance for speed reversal from 50 to -50 rad/scc. The sliding mode controller
has a slight edge as it produces less flux estimation errbr during the transient. The
important factor that limits the performance is the control saturation. For both
controllers, reversing the speed from 100 to -100 rad/sec causes a control saturation.
During the control saturation the variables oscillate and the performance degrades

significantly.

Figure 5.5 shows the simulation results for the case when the induction motor
is subjected to a step load torque T;=20 N.m. at time t = 4 seconds. This can be
viewed as a casc when a sudden load torque command is applied while the induction
motor is operating under no load conditions before. Such cases can arisc in practice
under different drive fault conditions. It is clear from the simulation plots that the

sliding mode controller has an edge over the PI controller in such situation.

Figure 5.6 supplements the results of Figure 5.5. This figurc shows the simu-
lation results for the case when the induction motor is subjected to a sudden step
load torque Ty, of a higher value for a short period of time after the induction motor

has been subjected to T, =20 N.m. at t = 4 seconds.

This case rcpresents a fault condition in that the drive load riscs higher than
the nominal value for which the drive is designed. Such cases can arisc in practice
when two or more induction motors operate in parallel in a drive system and one or
more of them suddenly go out of operation, resulting in a sudden load rise on the
remaining machines within the drive system. It is clear from the simulation plots

that the sliding mode controller outperforms the PI controller in such situation.
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Figure 5.4. Simulation results for speed reversal under no load conditions with nom-
inal parameters

Figure 5.7 demonstrates the importance of the condition weig obtained in Chapter 3
and the similar condition x(pw,.s + x) > 0 obtained in Chapter 4. This condition is
satisfied for all the cases discussed so far. In this case, we apply a speed command of
10 rad/sec at zero time. Then, at time ¢t = 4, we apply a load of —1 N.m. For these val-
ucs, ig = —1.1564 and wc = 18.9758 ; hence, wcig < 0. Similarly, the term K(pores + ) >0

is violated in that for these values it turns out that s(pon.s + k) = ~18.958 # 0. It is
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Figure 5.5. Simulation results for step load torque T, with nominal parameters

clear from the simulation that the equilibrium has been destabilized after applying
the load. However, notice that the sliding mode controller recovers the performance
during the transient and eventually attains zcro steady-state crror. This simulation
shows the edge the sliding mode controller has over the PI controller for its good
performance against un-modcled dynamics, external disturbance rejection and fast

dynamic response.
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Figure 5.6. Simulation results for sudden step load torque increasc with nominal
paramecters

Figure 5.8 shows the simulation results for the casc when the induction motor
is subjected to a step reference speed command of 75 rad/sec at time ¢t = 1 seconds.
The sliding mode controller obediently tracks the reference speed after a short
transient period in which the trajectories outside the boundary layer reach boundary
layer and move inside it toward the equilibrium point, giving a zero stcady-state
crror. The PI controller struggles through and the performance deteriorates with the

passing scconds.
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Figure 5.7. Simulation results demonstrating loss of stability in case of PI controller
when under negative load torque with nominal parameters

Figure 5.9 presents the case when the induction motor has alrcady attained a
reference speed of 100 rad/sec. This represents the initial state of the system. Then,
a ncgative speed step command of -15 rad/scc is applied. During the transicnt,
the sliding mode controller recovers the performance while the PI controller loscs
stability and shows an increcasing deterioration in performance. Notice that, the

sliding mode controller also shows the spced crror during the transient when the
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Figure 5.8. Simulation results for step speed command with nominal parameters

negative speed step is applied. This is due to the presence of the PI controller in

the closed-loop that outputs the stator voltage as feed back to the induction motor.

This PI controller

Vg = (K_‘"’f_'iq_[p - 1Iy)

regulates iq to iy and outputs the g-axis stator voltage as feedback in the closed-loop.
Therefore, an error presented by this PI controller has a direct cffect on the

performance of the sliding mode controller.
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Figure 5.9. Simulation results for multi-step speed reduction with nominal parameters

Figure 5.10 supplements the results of the Figure. 5.9. This simulation also
presents the case when the induction motor has already attained a reference speed
of 100 rad/sec. Therefore the system is considered to have initial condition of
operating at 100 rad/sec. Then, a monotonically decreasing speed reference is
applied in such a way that the system attains the desired speed, say, 60 rad/sec at

some pre-defined time. The simulation results show that the sliding mode controller
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Figure 5.10. Simulation results for monotonic speed reduction command with nominal
paramcters

smoothly tracks the reference speed in this case while the performance of the PI

controller deteriorates.
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CHAPTER 6

Conclusions

Sensorless speed control of induction motors using flux and specd observers is an
cmerging technology, which is pushed forward by the need to develop low-cost,
dependable drive systems. The induction motor presents a complex control problem
due to its nonlincar dynamics and dependence upon paramectric variations. In order
to develop efficient scnsorless induction motor drive systems, it is neccssary to take

into account the nonlincaritics of the system.

A speed control algorithm based on sliding mode control strategy is presented
in this work. This nonlinear controller replaces the traditional PI controller used for
similar purposes. Analysis reveals the conditions under which the developed sliding
mode controller provides effective speed control, while preserving the closed-loop
system stability under uncertain external load disturbances and reference speed
variations. A performance comparison presents the edge that the developed sliding

mode controller has over the traditional PI controller.

Some aspects of the analysis of the sliding mode control has been restricted
to local regions. A more elaborate nonlocal analysis would certainly provide better

insight into the control problem, however, pursuing the samec is not very clear.
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In particular, performing nonlinear analysis requires the cxistence of a Lyapunov

function, which is not transparent at this point.

Human nature has a tremendous drive to scck for the best. This work is a
small step ahead of an earlier work [8], and there is a long way to go. The theoretical
analysis has been supplemented by simulation results and the next step would be

obtaining the experimental results.
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