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ABSTRACT

A COMBINED CONVECTION COOKING AND SALMONELLA INACTIVATION

MODEL FOR GROUND MEAT AND POULTRY PRODUCTS

By

Adam Edward Watkins

A predictive model for moist-air impingement cooking of ground-and-formed

meat and poultry products was developed. A coupled heat and mass transfer model

incorporating the effects of fat transfer was combined with a model for Salmonella

inactivation, to produce a complete prediction tool for meat and poultry processors.

The model utilized the finite element method to numerically solve separate equations

for heat, moisture, and fat transport. These equations were coupled through boundary

conditions and interdependent thermo-physical property relationships. An enthalpy

formulation for heat transfer was utilized to avoid discontinuities related to solid-to-

liquid phase changes ofwater and fat within the product. Boundary conditions

unique to moist-air impinging flow were incorporated into the model. These

boundary conditions accounted for the additional heating effects of surface

condensation that are common within moist air impingement systems.

To complete the fat transport component of the model, laboratory experiments

were conducted to determine the fat holding capacity of ground beef as a function of

temperature and initial fat content. Fat holding capacities ranged from 0.05 to 0.6 g

fat/g nonfat dry matter, and a polynomial model was parameterized to those data.



Additionally, laboratory-scale, moist-air convection cooking tests were

conducted to confirm the importance of fat transport. Species and initial fat content

significantly affected (P<0.05) cooking time, yield, and fat loss for ground beef, pork,

and turkey. The heating time required to reach 85°C varied by as much as 217

seconds between different fat contents ofthe same species. Differences in cooking

yield of up to 18% were measured between different fat contents. Fat transport was

responsible for up to 28% yield loss in high fat products.

Finally, cooking experiments using an industrial moist-air impingement

cooking system were used to validate the temperature, moisture, and yield predictions

of the complete cooking model. The cooking model predicted transient patty center

temperatures with a standard error of prediction of 80°C for 54 cooking tests. At

temperatures above 45°C, the standard error of the prediction was 5.8°C. The

standard error for final moisture content predictions was 2.3% wet basis. Standard

error for final cooking yield predictions was 6%. Additional comparisons were

conducted between the cooking model and published data collected from moist-air

impingement ovens. Data from published sources were used to perform a verification

of the Salmonella inactivation predictions of the model. The standard error of

prediction for Salmonella inactivation was 1.3 logs (CFU/g).
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1 INTRODUCTION AND OBJECTIVES

1.1 Background

Impingement cooking is used for manufacturing many fully and partially cooked

meat and poultry products. Impingement ovens utilize a type of convection in which

cooking air is directed normal to the product surface at high velocities (>10 m/s). This is

generally accomplished by forcing the cooking air through an array of slots or nozzles.

Impinging airflow allows for heat transfer rates an order of magnitude higher than those

that occur in conventional convection ovens (Gardon and Akfirat, 1966).

Moist-air impingement ovens combine impinging airflow with high humidity

cooking air. In moist-air ovens, humidity can exceed 90% moisture by volume. The use

of high moisture cooking air creates a condensing condition on the surface of the product.

Condensing conditions dramatically increase the rate of cooking by taking advantage of

the release of latent heat from steam in the cooking air. High moisture cooking air also

suppresses product moisture loss during cooking. This results in cooking yields higher

than those achieved when cooking with dry air. In meat cooking systems, a second

cooking section with lower air moisture content is often utilized to aid in surface

browning of the product.

Development of a computerized model for moist-air impingement cooking of

meat products is of interest for two major reasons. First, cooking models can be used as

tools for optimizing cooking processes. Heat and mass transfer models can be utilized to

optimize processes in terms of product temperature, yield, and quality. Optimizing the

cooking process can have major economic significance. In the United States alone, there



are 76 manufacturing facilities producing ground beef and poultry patties. The value of

production from these plants exceeds $520 million per year (F818, 2001). Even modest

increases in cooking yield stand to increase profits significantly. A one percent increase

in yield could potentially increase annual profits by over $5 million. Reducing energy

costs and wasted line capacity due to overcooking stands to improve profits even further.

Reducing overcooking also stands to improve product quality characteristics such as

color, flavor, and texture.

The second and more important reason for modeling the cooking process is to

ensure microbial safety of the cooked product. The Food Safety and Inspection Service

(FSIS) has proposed regulations that would shift the emphasis of cooking regulations for

ground meat and poultry products from a system of time-temperature standards to a

system ofperformance standards (F818, 2001). Such regulations have already been

enacted for whole muscle meat products (F818, 1999). The new performance standards

are based upon a 7-10g10 reduction in viable Salmonella for ready-to-eat (RTE) poultry

products and a 6.5-logro reduction in Salmonella for RTE beef, roast beef, and corned

beef products.

The new standards are designed to give processors the flexibility to develop

customized, science-based processing strategies. However, it will be the duty of the

processor to demonstrate that the process meets the required reductions in Salmonella.

Unfortunately, adequate scientific tools are not currently available for processors to

reliably and confidently verify compliance with the Salmonella performance standards.

Processors need a tool that will allow them to determine the effects ofprocessing

on the reduction of Salmonella. Due to safety concerns, it is neither feasible nor



desirable for manufacturers to conduct microbial challenge studies in the factory

environment. Experiments can be conducted in the laboratory using microbial pathogens

including Salmonella and Listeria monocytogenes in model food systems, but these

results ofien do not correspond well with actual processing conditions. The use of

mathematical models is an alternative to conducting microbial chellenge studies.

Although mathematical models are not a substitute for the judgment of an experienced

microbiologist, FSIS has indicated that mathematical models based on heat transfer

equations can be used to demonstrate the effects of processing on bacterial inactivation

(F818, 2002).

Descriptive mathematical models for cooking processes would be of great value

to processors and would allow for continuing innovation in the processed meat industry.

Unfortunately, the development of cooking models is limited, with current models not

accounting for the unique surface heat and mass transfer conditions present in moist-air

impingement ovens (Chapter 2). Few existing models account for variations in product

composition which can have significant effects on heat transfer and cooking yield. In

most cases, yield loss is modeled solely as a function of moisture changes in the product

during cooking. Although exceptions exist, most of the available cooking models have

not been coupled with models for microbial inactivation.

To be ofmaximum utility, cooking models should include all variables that affect

microbial lethality, including product size, density, specific heat, thermal conductivity,

product composition, humidity, and strain of the organism (F818, 2001). Models should

be flexible and applicable to various cooking conditions without the need for generation

of empirical data sets. Mass losses due to both moisture and fat loss during cooking



should be considered. Finally, models should be validated against actual process data,

including microbial inactivation data from inoculated challenge studies.

1.2 Objectives

The overall goal of this study was to develop a cooking model that would meet

the above criteria, as well as provide a graphical tool for illustrating the effects of

processing to manufacturing plant personnel. The specific objectives of this study were

to:

1. Develop a coupled heat and mass transfer model incorporating the transient effects of

moisture and fat transfer during moist-air impingement cooking of ground beef

patties.

2. Incorporate Salmonella inactivation models into the heat and mass transfer model and

combine with a user interface to produce a tertiary cooking model.

3. Validate the heat and mass transfer model using data collected from an industrial

moist-air impingement oven.

4. Validate the Salmonella inactivation models using data collected from inoculated

challenge studies in a pilot-scale moist-air impingement oven.

5. Develop the user interface as a tool than can be used to illustrate the effects of

cooking parameters on yield and microbial safety to non-technical personnel,

including oven operators.



2 REVIEW OF LITERATURE

2.1 Introduction

From the perspective of the processor, the most important output variables of

cooking are temperature profile, cooking yield, and microbial inactivation. Cooking

models can be used as a powerful tool for estimating these parameters. To model the

reduction in pathogens such as Salmonella during cooking, it is first necessary to model

the cooking process itself. The temperature history of the meat during cooking is the

most important factor for modeling microbial reduction. As a result, heat transfer has

been the focus of many models for cooking processes. However, in terms ofprofitability,

the most important factor for processors to consider is cooking yield. Therefore, mass

transfer is also an important factor to consider when modeling cooking processes.

The first portion of this chapter summarizes previous research in the area of

cooking models. The thermo-physical properties required for modeling are also

discussed. The final portion of the chapter addresses microbial modeling and previous

work combining microbial models with models for meat cooking.

2.2 Introduction to cooking

Cooking and other heat treatments are among the most important unit operations

in the food processing industry. Heat treatments during processing vary widely,

depending upon the type of product. Foods may be fully or partially cooked, blanched to

inactivate enzymes, dried to extend shelf life, pasteurized to kill unwanted

microorganisms, or simply heated as part of the manufacturing process (Fellows, 1988).



The types of devices used for cooking and heating are nearly as numerous as the number

ofproducts that can be produced. Examples include heat exchangers, deep-fat fryers,

contact-cooking systems, convection ovens, microwaves, and infrared ovens.

As a result of their ubiquity in the food industry, heating and cooking systems are

of great interest to the food engineer. Ovens and other heating systems must be properly

designed to ensure safe foods of the highest quality. Under-cooking may result in foods

that are not safe to eat due to surviving pathogenic microorganisms. Over-cooked

products may not have the quality characteristics demanded by customers. In addition to

affecting product quality, overcooking can also be wasteful to the processor in terms of

energy consumption and reduced product yield.

Most engineering analyses of cooking processes are aimed at determining the

temperature and/or moisture profiles of the product undergoing cooking. Meat products

are generally cooked prior to packaging. During cooking of unpackaged products, heat is

transferred into the product, resulting in increased temperatures and thermal gradients

within the meat. At the same time, moisture is transported out of the product, resulting in

moisture gradients and yield loss (with the exception ofboiling, in which case moisture

may be added to the product). Fat losses during cooking can also be significant (Young

et al., 1991; Pan and Singh, 2001; Badiani et al., 2002).

2.3 Heat and mass transfer in meat during cooking

Numerous studies have described heat transfer during cooking of meat

(Dagerskog and Bengtsson, 1974; Dagerskog, 1979a and b; Skjoldebrand, 1980;

Skjoldebrand and Hallstrom, 1980; Housova and Topinka, 1985; Thorvaldsson and



Skjoldebrand, 1995; Pan and Singh, 2001; Shilton et al., 2002). Virtually every analysis

presumes that the dominant mechanism of heat transfer within meat products is

conduction. However, Shilton et al. (2002) proposed that for high fat ground meat, heat

transfer may be related to both conduction and internal convection within the melted fat

phase.

Mass transport of water within meat products has also received considerable

attention (Dagerskog and Bengtsson, 1974; Hung et al., 1978; Dagerskog, 1979a and b;

Skjoldebrand, 1980; Skjoldebrand and Hallstrom, 1980; Mittal et al., 1982; Mittal et al.,

1983; Hallstrom, 1990; Thorvaldsson and Skjoldebrand, 1995; Pan and Singh, 2001).

Most cooking models assume that mass transport of water is primarily the result of

molecular diffusion to a drying product surface (Huang and Mittal, 1995; Ngadi et al.,

1997; Zanoni et al., 1997; Chen et al., 1999; Mittal and Zhang, 2000; Mittal and Zhang,

2001; Shilton et al., 2002).

Hung et al. (1978) proposed a different mechanism for water transport during

convection cooking of bovine semitendinosus muscles in which it was determined water

loss during cooking of these muscles was most likely due to pressure forces caused by

fiber shrinkage. Furthermore, water loss was only weakly dependent on oven temperature

and appeared to depend primarily on the amount of muscle shortening during cooking.

For samples cooked directly from the frozen state, an initial period of drip loss was

observed. The water lost during this period was believed to be due to the melting of ice

crystals within the muscle. During this initial drip period, sample orientation affected the

amount of loss; with samples having muscle fibers oriented vertically producing the

highest losses. In this period, gravity was believed to contribute to the water loss. For



samples thawed before cooking, no such initial drip period existed. Thorvaldsson and

Skjoldebrand (1995) also noted that water transport was up to 25% faster in the direction

parallel to muscle fibers than across muscle fibers during oven roasting of bovine

semitendinosus muscles.

Some authors have taken to expressing moisture transport in meat in terms of

"water holding capacity" (Dagerskog, 1979a and b; Pan et al., 2000). This represents the

amount of water that a type of meat will contain, given a certain temperature history.

Upon heating, the water holding capacity of meat products generally decreases, resulting

in water losses. Although this type of analysis does not truly describe a mechanistic

process of water transport, it coincides with the knowledge that protein releases water

upon denaturing (Bodwell and McClain, 1978).

Combined with the fiber squeezing mechanism described by Hung et al. (1978),

the water holding capacity model provides a reasonable approximation of water transport

during some cooking processes. However, this technique does not account for resistance

to moisture transport within the product. This a significant weakness for most processes,

since moisture diffusivity within meats is known to be low (Zanoni et al., 1997). Models

that do not account for moisture diffusivity must be inherently empirical, as the

mechanisms for transport within the product are not described based upon first principles.

2.4 Modeling the cooking process

Models for cooking processes can be divided into two categories. They are either

based solely on data from experimental studies (empirical models) or derived from

theoretical formulas of heat and mass transfer (Hayakawa, 1970). Empirical models can



be developed for cooking processes using data collected under the conditions of interest.

These models require less rigorous mathematical analysis and can provide good

predictive capability for a limited range of conditions. Additionally, empirical models do

not generally require the researcher to have accurate thermal property data to get good

results. The weakness of empirical models is that they are not generally applicable to

situations that are different from the conditions for which the model was developed.

Slight changes in the system, such as changes in product size or geometry, require an

entirely new set of experimental tests to generate new model parameters. Although it is

theoretically possible to construct empirical models with an unlimited number of input

parameters, the number of inputs that can be meaningfully included in the model is

limited in practice.

Models based on theoretical principles are generally more robust than empirical

models. Fundamental heat and mass transfer equations can be used to produce models

that are much more general in nature than can be accomplished through experimental

methods. By changing the boundary conditions of the model equations, a single model

can often be used for several different types of cooking processes. However, models

based on theoretical principles have their own drawbacks. Differential equations for heat

and mass transfer quickly become too cumbersome to solve using analytical techniques.

Thus, numerical methods are typically applied to cooking models. In order to produce

models based upon transport equations, accurate knowledge of thermal and physical

properties of the product must be known. In situations where properties are not

accurately known, theoretical models end up being semi-empirical in nature, as the model



constants must be adjusted to fit experimental process data. A number of different

empirical and theoretical models are described in the following sections.

2.4.1 Empirical models

Empirical models can be effective for predicting the temperature and moisture

history ofproducts during cooking. Bengtsson et al. (1976) developed a model for heat

and mass transfer during oven roasting of meat. In the cooking process that was

modeled, the meat was placed on a metal rack inside of an oven chamber with walls

maintained at a fixed temperature. The mechanisms of heat transfer in this type of

cooking are primarily natural convection and radiation. A plot consisting of a

dimensionless temperature term (Tair-chnm)/(Tau-Tim,”) as a function of a dimensionless

time term (kt)/(pcp12) on a semi-log plot was used to develop simulation equations. From

the diagram, a prediction equation for meat temperature as a function of time was

developed. Results of the comparison between predicted and experimental results were

good; however, quantitative results were not given.

Sarkin (1978) used a technique nearly identical to that of Bengtsson et al. (1976)

to produce a computer cooking simulation for meat products. An equation for the linear

portion of the heating curve was developed (Equation [2.1]).

 

T - -T

log[ 3" )=a+b-t [2.1]

Tair - Tinitial
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Coefficients a and b are constants and were determined by regression. The model had

errors between the predicted and experimental temperatures of02°C or less for cooking

times ofup to 10 hours. These results show the close predictions that are possible with

empirical models.

Erdogdu et al. (1999) developed an empirical model for predicting the yield loss

of shrimp during immersion cooking. Shrimp were cooked isothermally for varying

periods in water at temperatures between 65 and 95°C. Afier heating, the yield losses

were measured, and an equation for yield loss was determined by multiple linear

regression (Equation [2.2]).

%YieldLoss=a+b-T+c-T2+d-t2+e-t+f-T-t [2.2]

The terms a, b, c, d, e, and fwere regression constants. The error between experimental

and predicted yield losses ranged from 0.15 to 2.6% yield. This again shows the potential

for empirical models to produce very close approximations of experimental data.

The primary drawback to each of the empirical models is that they are only valid

for a specific set of cooking conditions. Although the error of the models is very low,

this is to be expected, as the same data that were used for model development were used

for error calculation. The models are not applicable to conditions other than those used in

the regression. The cooking models of Bengtsson et al. (1976) and Sarkin (1978) only

allow for meat temperature to be predicted as a function of cooking time. No provision is

made for predicting yield, and processing conditions are not considered, thereby limiting

the usefulness of the models as tools for processors. The yield model of Erdogdu (1999)

11



allows yield to be calculated as a function oftime and temperature, but temperature

profile is neglected. All three models ignore the effects ofproduct composition. In

addition, the models are not readily adaptable to products of different sizes or geometries

from those used for model development. The weaknesses illustrated by these models

show the underlying reason that empirical models cannot be utilized as general models

for the varying processing conditions that occur in industry.

2.4.2 Models based upon heat and mass transferprinciples

Most cooking models reported in the literature are based on theoretical heat and

mass transfer equations. Models based on transport principles are generally more flexible

than those developed through purely empirical methods. The equations that govern heat

and mass transfer are not product specific and are generally accurate for a wide range of

conditions.

During cooking of most meat products, the predominant mechanism of heat

transfer within the product is conduction. The governing equation for conductive heat

transfer in rectangular coordinates is derived from an energy balance (Bird et al., 1960).

6T 5 0T a BI a BI
O O —— = — k 0— +_ k .— +— k .—

203

Various cooking processes can be simulated using the conduction equation. Most

cooking processes transfer heat to the product via the food surface. As a result, different

cooking types can be modeled by changing the surface boundary conditions as

12



appropriate for the type of cooking to be modeled. Models for conductive, convective,

and radiative cooking can be constructed by including the appropriate heat flux boundary

conditions. The flux equations for conduction, convection, and radiation heat transfer are

well known and are given by Equations [2.4], [2.5], and [2.6] respectively.

q 6T

X = kT ' a surface [ 2'4]

%= 111‘ '(Too — Tsurface) [ 2'5 ]

q 4 4
X = 8 ' O ' (Tsurface '- Theat source ) I 2-6 I

Most mass transfer models are based upon transport by diffusion. The governing

equation for diffusion is similar in form to the equation for conduction (Bird et al., 1960).

99:3(Dm .§)+_6_[Dm .§]+£(Dm “QC—j [ 27]

at 6x 6x 6y 8y 62 62

Treatments of surface mass transfer vary, but are typically modeled using a

convective mass transfer boundary condition and/or a term for evaporation. The equation

13



for mass transfer by convection is analogous to convective heat transfer and is usually

given by Equation [2.8].

n = hm '(Cequilibrium " C) I 28]

Numerous authors have published theoretical models for meat cooking. Models

have been developed for contact cooking (Dagerskog, 1979a and b; Ikediala et al., 1996;

Pan et al., 2000), immersion frying (Ngadi et al., 1997; Farkas et al., 1995a and b;

Vijayan and Singh, 1997; Mittal and Zhang, 2001), convection cooking (Mittal and

Blaisedell, 1982; Mittal et al., 1983; Holtz and Skjoldebrand, 1986; Huang and Mittal,

1995; Zanoni et a1, 1997; Chen et al., 1999; Mittal and Zhang, 2000), oven roasting

(Singh et al., 1984), microwave cooking (Mallikarjunan et al., 1996), and infrared

cooking (Shilton et al., 2002). The following sections describe models for each of these

types of cooking.

2. 4.3 Contact cooking

Contact cooking is one of the simplest mechanisms of cooking. During contact

cooking, products are placed in direct contact with a heating surface, resulting in heat

transfer by conduction. The rate of cooking is limited by the temperature gradient

between the product and heating surface and by the surface resistance of the

product/heating element interface. This type of cooking is common in the fast food

industry, particularly for ground beef patties.

14



Dagerskog (1979a) developed an early model for contact cooking of meat patties.

The model was based on a one-dimensional formulation of the conduction equation with

a term added to incorporate the latent heat of evaporation of water. This equation was

solved numerically using a finite difference technique.

Transfer of moisture out of the meat was calculated based upon experimental

measurements of water holding capacity. The capacity of meat to store water under

varying times and temperatures was determined experimentally. Experimental

determination of water holding capacity was conducted by heating 10 g samples enclosed

in sealed plastic pouches in an isothermal water bath. Water content of the samples was

measured afler they had been heated and allowed to drain for 1 minute on absorbent

paper. Water holding capacities were then plotted as functions oftemperature and time.

For each time step in the model, it was assumed that the free water released due to the

change in water holding capacity was transported out of the meat. Heat and mass

transport equations were used to determine the amount of water that exited the meat due

to evaporation. A second water loss equation was formulated using a mass balance based

on changing water holding capacity. The difference in water loss due to changing water

holding capacity and water lost by evaporation was attributed to drip loss. Differences

between the experimental and simulated water losses ranged from 0.2 to 2.7% loss for a

pan temperature of 140°C and from 0.3 to 2.9% loss for a pan temperature of 180°C.

Predictions of the center temperature ranged from 0 to 2°C of the experimental values at

cooking times of up to 6 minutes.

The water holding capacity model has an advantage over other methods, in that it

accounts for the varying water binding capacities of different products. It also has the

15



benefit of easily describing the drip loss phenomenon. Weaknesses of the water holding

capacity model are that it is highly empirical and does not account for internal resistance

to moisture transfer. Because it does not account for internal resistance to moisture

transfer, the water holding capacity model is expected to decrease in accuracy with

increasing product thickness. The water holding capacity model is also product specific,

as different products have much different water binding properties.

Ikediala et al. (1996) developed a model for single-side pan-frying ofmeat patties

that was not based on the water holding capacity model, but rather a two-dimensional

Fourier conduction equation formulated in radial coordinates with an added term for the

evaporation of water.

a -c -T

M=£~§~£nkT~fl)+—a—(kT-§]+Np-M [2.9]

r

A contact heat transfer coefficient was used to describe heat transfer at the patty/grill

interface. The same thermal properties reported by Dagerskog (1979a) were used for

calculations. The primary difference between the heat transfer component of this model

and the model of Dagerskog (1979a) was the expansion of the conduction equation into

two dimensions. This allowed for the temperature distribution in the patty during

cooking to be modeled in two dimensions, resulting in a more complete description of the

temperature profile. Deviations between experimental and predicted center temperatures

were less than 4°C.

16



Ikediala et al. (1996) modeled moisture loss in the patty slightly differently than

Dagerskog (1979a). The average moisture content of the patties was modeled using an

exponential decay model.

mave : mave,initial ' CXP(- (3 + b ' T) ' t) I 210]

The constants a and b for the mass transfer equation were determined using

regression of experimental values. The use of an exponential decay function for moisture

transfer is completely empirical and represents a total deviation from first-principles. The

result is that the model is specific for the product and conditions tested and lacks

robustness.

Pan et al. (2000) used a technique similar to that ofDagerskog (1979a) and

Ikediala et al. (1996) to model cooking ofhamburgers by two-sided contact cooking.

Heat transfer was modeled using a one-dimensional formulation of the Fourier

conduction equation. However, the conduction equation was written in terms of

enthalpy, rather than temperature.

fi=£[kT(H).flaifl) [ 2.11]

Use of the enthalpy formulation allowed cooking from the frozen state to be modeled

without discontinuities related to the phase change from ice to liquid water. Relationships

between enthalpy and temperature were used to produce temperature history curves.
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Enthalpy of frozen hamburger was calculated using a food property computer program

(Singh and Mannapperuma, 1994). Enthalpy ofunfrozen hamburger was calculated

using an empirical equation (Equation [2.12]).

Hnonfrozen =Href +p'I(l6OO+2600'XW +15'Xf 'T)'(T—Tref)} I 2-12]

The changes in moisture and fat contents, independent ofposition, were

determined using Equations [2.13] and [2.14].

= Thm ' (m - mequilibrium) I 2-13 I

9
|
?

[2.14]12L 2 —hf ' (F - 1:equilibrium)

The model assumed that no transport of water or fat occurred below specified

threshold temperatures. The temperature dependence of the water and fat equilibrium

concentrations was given by Equations [2.15] and [2.16].

( 6w(T-Tinma1)) [ 2.15]mequilibrium = minitial '6
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Fequilibrium = Finitial 'e(_6F(T_Ti“m°l» [ 2-16 l

The previous equations were solved at each node for every time step, giving

moisture and fat contents as functions of temperature. A finite difference technique was

used for solving the heat transfer and mass equations. As in the model by Dagerskog

(1979a), this method treats water and fat content as "state" variables (i.e., functions of

just temperature rather than results of transport processes). The 5“, and Stems are

related to the water and fat holding capacities of the meat and were determined

experimentally with whole patties.

This model (Pan et al., 2000) is one of the most complete models for cooking

available in the literature. Differences between predicted and center temperatures were

small, although differences of up to 10°C occurred in the temperature range between 0

and 40°C. Differences between measured and predicted yields were less than 3%.

Inclusion of fat transport as a separate mechanism sets the model apart from any of the

prior contact-cooking models. In addition, utilization of the enthalpy formulation for heat

transfer represents an important step in the simulation of temperature profiles for

products that may originate in the frozen state. However, the empirical nature of the

water and fat holding capacity models limits robustness. Water and fat holding capacity

were determined using whole patties. In this way, internal resistance to moisture and fat

transfer was accounted for indirectly. However, this approach limits the utility of the

model to products of the same composition and geometry that was used to develop the

model parameters.
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2.4.4 Ftying

Frying is another operation that is commonly used to cook meat products.

Immersion (deep fat) frying is typically modeled as a moving boundary problem (Singh,

2000). Products undergoing frying are described as consisting of an inner core region

surrounded by a dry crust region. As cooking proceeds, the boundary between the crust

and core regions moves towards the product center.

Vijayan and Singh (1997) developed a model for heat transfer during flying of

frozen foods. Frying was modeled as a moving boundary problem. Separate transport

equations were utilized for the crust and core regions. Heat transfer in the crust was

modeled using a one-dimensional formulation of the Fourier conduction equation. A

convective boundary condition was used to describe heat transfer at the oil-product

interface. The position of the crust-core interface at a given time was given by Equation

[2.17].

A-t

Sj+1=3j'*'chrust —CIcore]'r_ [2.17]

pm)

In the core of the product, heat transfer was modeled using an enthalpy

formulation of the conduction equation (see Equation [2.11]). Differences between

simulated and measured center temperatures ranged from 1 to 6°C over a range of 0 to

75°C. The model did not account for mass transfer. Therefore, although useful for

predicting temperature, this model cannot be used for yield predictions.
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A model for moisture transport during deep fat frying of chicken drums was

developed by Ngadi et al.(1997). A two-dimensional diffusion equation formulated in

radial coordinates was used to describe moisture transfer in the product (Equation [2.18]).

6K: 1 6 ac: a at:
___=._ _. .[, .__. +2.. I) .___ :218
at r arIr m ar] 62[ m 62) [ 1

The two-dimensional formulation of the conduction equation allows for modeling of non-

spherical products. This is useful not only for chicken drums, but for other products such

as chicken strips.

An exponential function was used for the surface mass transfer boundary

condition. This resulted in an empirical relationship similar to that used by Ikediala et al.

(1996)

C = Cinitial 'CXP((-a + b ° Ton ) ' t) l 2-19 1

The constants a and b were determined by regression of experimental data and were equal

to -0.045 and 4.167-10“ respectively. The utilization of an empirical boundary condition

greatly limits the robustness of the model.

The finite element grid was broken up into elements representing the bone, bone

marrow, cartilage, and muscle portions of the chicken drumstick. The moisture

diffusivity of the muscle portion of the drumstick was modeled as a function of cooking

oil temperature and moisture content using an equation developed in separate
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experiments (Equation [220]); (Ngadi and Correia, 1995). Constant diffusivities were

used for the other components.

_ 2930

oil

 1)m =8.35-IO'° ~exp[ —0.56l-C+O.092-C2] [ 2.20]

This model represents a good tool for determining moisture distributions in a

complex system undergoing cooking, although moisture predictions were off by up to

30% for some conditions. Unfortunately, this was not combined with a model for heat

transfer. Nonetheless, the usefulness of the finite element method for modeling systems

with multiple physical properties and complex geometries was demonstrated.

Mittal and Zhang (2001) developed a model for deep fat frying using a different

approach. An artificial neural network (ANN) was used to predict temperature, moisture,

and fat content in meatballs during deep fat frying. Input parameters included fat

diffusivity, moisture diffusivity, thermal diffusivity, heat transfer coefficient, fat

conductivity, and oil temperature, as well as frying time, meatball radius, and initial

temperature. The data used to train the artificial neural network were generated from

validated mathematical models. Heat, moisture, and fat concentration were modeled

using one-dimensional transport equations formulated in radial coordinates. The

maximum errors between modeled and experimental temperature, moisture, and fat

content were 1.9°C, 0.004% dry basis, and 0.016% dry basis, respectively, for the

optimum ANN design.
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Artificial neural networks have several advantages over other types of modeling

for predicting temperature and moisture distributions during cooking. ANN’s can "learn"

from new data to increase accuracy of prediction. This allows experimental data to be

combined with simulation data from models. Neural networks can often generate results

faster than mathematical models, which is useful in optimization studies where many data

sets must be analyzed. However, in many cases where artificial neural networks are

generated from simulation data, the question exists whether the actual simulation data

would be more accurate than the data generated from the ANN. In this case, it would

seem to make more sense to use the data of the original simulation rather than the ANN.

In addition, theoretical models can be more readily adapted to new conditions.

2.4.5 Convection cooking

Forced-air convection cooking is an important method for commercial cooking of

meat products. Huang and Mittal (1995) developed a computer model for forced

convection cooking, broiling, and boiling of meatballs. Heat and moisture transfer were

modeled using one-dimensional conduction and diffusion equations formulated in radial

coordinates.

An energy balance at the surface of the meatball was used for the heat transfer

boundary condition. This equation accounted for convective heat gain, latent heat of

evaporating water, and conduction at the meatball surface.

81‘ am

kT :5; surface =hT °(Tair “Tsurface)+ Dm 'p'l'glsurface I 2-21]
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Boundary conditions for the moisture transport equation were based upon

moisture content equilibrium between the surface and the environment. The transport

equations were solved using the finite difference method. Constant transport properties

were used in the simulation. Surface heat transfer coefficients for each type of cooking

were determined using analysis of the center temperatures of aluminum spheres heated

under the conditions of interest. The thermal and mass diffusivity values were estimated

by minimizing the root-mean-square deviations between the observed and predicted

temperature and moisture histories. This was conducted using only one set of cooking

data and validated using four other data sets. The average root mean square errors for

temperature and mass prediction versus experimental results were 3-5.1°C and 0.04-0.19

g respectively. The strength of this model is that it was derived entirely from transport

equations. Although an empirical technique was used to fit thermal and mass diffusivity

values, a similar technique is often used to determine the published values that are

available for those constants.

Chen et al. (1999) developed a model for convection cooking of chicken patties.

The finite element method was used to solve heat and mass transfer equations based on

transport principles. Cooking was modeled using two-dimensional transport equations

formulated in radial coordinates. The use of two-dimensional formulations allowed for

complete description of the temperature and moisture distributions in the patties.

9.91: 1.9. r.k_T.§T_ +2 k_T.§_T_ [2.22]
at r 6r c 8r 62 62

24



9.92: 1.13. r.l‘_m_.@ +3 5&2“. [2.23]
at r 6r cm (it 62 dz

The two-dimensional formulation of the heat and mass transfer equations made it

possible to model cylindrical patties as axis-symmetric bodies. The boundary condition

for the heat transfer equation consisted of both a convective heat transfer term and a

latent heat term for surface evaporation.

kT- =hT-(Tair—T)+Dm-p-K-—— [2.24]

The boundary condition for the mass transfer equation was based upon convective

mass transfer at the surface.

= h... -(m... -m) I 2251

The equilibrium moisture term used in the mass transfer boundary condition was

calculated using the equation developed by Huang and Mittal (1995).

- 5222.47 -1 .0983

RH = ”W _—' mequilibrium I 2-26 I

Rg ' Tair
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Based on previous research, heat capacity and thermal conductivity were modeled

as functions of temperature and moisture content respectively (Murphy et al., 1998;

Murphy and Marks, 1999). This decreased standard error of prediction for center

temperature from 5.5 to 37°C, as compared to using constant values for Cl, and k.

cp =3017.2+2.05-T+0.24-T2 +0.002r3 [ 2.27]

kT =0.194+0.436-m [ 2.28]

Singh et al. (1984) developed a heat and mass transfer model for oven roasting of

meat. Heat transfer within the meat was modeled using a two-dimensional conduction

equation.

2 2

flza. £4.22 [2.29]

A convective boundary condition with a term for evaporation of water was used at

the product surface.

6T

h ' (Tair — T): k ' hm '(Psurface " Pair )+ kT ' El surface I 2-30]
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The finite difference method was used to solve the heat transfer equation. No attempt

was made to describe the transport of water within the product. A linear relationship was

used for the value of Psurfacc (Equation [2.31]).

I)surface =3 +b'T
[ 2.31]

Although a term for evaporation was used to improve the heat transfer model, this model

is not suitable for predicting yield during cooking.

A different technique, was utilized by Mittal and Zhang (2000) to develop a

model for convective thermal processing of fiankfurters. This model was based upon an

artificial neural network. Input variables for the ANN were fat-protein ratio, initial

temperature, initial moisture content, frankfurter radius, ambient temperature, relative

humidity, and process time. The artificial neural network was trained using data from

validated mathematical models. The models were based upon one-dimensional heat and

mass transfer equations. Moisture diffusivity and equilibrium moisture content as

functions of temperature, fat protein ration, and relative humidity were used in the model

following the work of Mittal and Blaisdell (1982):

Dm = Exp(— 8.6787+0.08468.FP—0.3614-RH~FP—4341.5/Tabs +8.55-C) [ 2.32]

mequilibrium = —0.102- 1n(- Rg oFP - (T + 5.665) ln(RH)/1.132 .107) [ 2.33 ]
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The ANN was trained using 13,500 data points generated from the mathematical

models. Fat-protein ratio was found not to be an important factor in predicting moisture

content or temperature. As discussed earlier, artificial neural networks pose some

advantages over purely numerical models, and may be effective for use in optimization

experiments. The primary advantage of artificial neural networks is that they can be

utilized to produce results much faster than models based upon the finite difference or

finite element methods. As a result, ANN’s have promise for optimization studies, real-

time control, and other situations where fast calculations are essential. However, ANN’s

are still limited in that they must be “trained” with data either from experimental or

model sources. The theoretical basis of numerical models means that they can be more

easily adapted to changing processing conditions without the need for “training”.

2. 4. 6 Other types ofcooking

Models are available for several other types of cooking. Mallikarjunan et al.

(1996) developed a model for microwave cooking of shrimp. Heat transfer was modeled

using a two-dimensional transport equation in axial coordinates.

 

2 2

Earl—a. .1..£+_6_I+6_T + Q [234]

1' a!- arz 2 p.cp

where Q is the heat generated by the microwaves and is given
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Q = Q0 .[exp[‘_(15£'_r)] + exp[:(_§_:i)fl [ 2.35 ]

P P

Moisture loss during cooking was calculated using the following equation:

am 9 ' V ' cp 5T

-—=hm-A-(P.at—Pw)+——- — [2.361

Heat transfer at the surface was modeled using a convective heat transfer equation

with a term for water evaporation. Equation [2.36] is somewhat unusual in that the

evaporation term is generally included in the heat transfer equation. The result is that

Equation [2.36] does not account for internal resistance to moisture transport.

Equations were solved using the finite difference method. Constant thermal

properties were used. The surface heat transfer coefficient was calculated using the

equation for natural convection over a horizontal cylinder:

0.25

AT] [ 2.37]h =1.3196- —
T (Ad

Simulation results were validated by collecting transient temperature and mass

data during cooking in a household microwave oven. The model temperature predictions

were within 6°C ofthe experimental values. Mass losses were within 0.8% of the

predicted values.
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Another type of cooking uses far-infrared radiation for heating. Shilton et al.

(2002) developed a model for far-infrared cooking of beef patties. The model accounted

for heat transfer and evaporative mass losses during cooking. Heat transfer was modeled

using a one-dimensional Fourier equation with a term for the latent heat associated with

water evaporation. Mass transport was modeled by a diffusion equation. The boundary

condition for heat transfer at the surface was given by:

(Yr 4 4

kT ' E‘— = 0" Theating element _ Tsurface I 238 I

A convective boundary condition was used for the mass transfer equation.

Dm 'E=hm '(Cair ‘Csurface) I 239]

The mass diffusion coefficient was calculated using an equation by Maroulis et al.

(1998).

1),, = a.exp(b/T)-exp(c/c) [ 2.40]

Thermal conductivity and density were modeled as a function of temperature

using equations by Choi and Okos (1985).
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k=a+b-T—CoT2 [2.41]

p=a—b-T—c-T2 [2.42]

The authors noted that the heat transfer model was not accurate for patties

containing high levels of fat. To more accurately model heat transfer in high-fat patties,

an effective thermal conductivity was calculated.

2
k=(a+b-T—c-T )+(heffl+heff2T) [2.43]

This technique allowed more accurate modeling of heat transfer for meat

containing high levels of fat. However, it did not actually relate heat transfer to fat

content or describe the transfer of fat out of the product. Addition of a more detailed fat

transfer component would increase the utility of the model.

2.5 Thermal and physical properties required for modeling

Before it is possible to create cooking models based on heat and mass transfer

principles, accurate values for the thermal and physical properties of meat products must

be known. Since these values may vary widely with temperature and composition, it is

necessary to quantify these effects. Thermal and physical properties of a wide range of

food products are available from food engineering textbooks and handbooks, such as

those published by ASHRAE (Stroshine and Hamann, 1996; ASHRAE, 1998). Although
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the properties of interest can often be obtained, care must be taken to scrutinize the

conditions for which they are accurate.

Numerous articles have been published on the thermal properties of meat

products. These properties were reviewed extensively by Sanz et al. (1987). Experimental

values for thermal conductivity, enthalpy, apparent heat capacity, and density of beef,

pork, mutton, poultry, and fish were reported. Most of the property values listed were in

the -30 to 30°C temperature range. Other articles related to thermal properties ofmeat

and meat products have been written by McProud and Lund (1983), Perez and Calvelo

(1984), Dincer (1996), and Tsai et al. (1998). Moisture diffusivity data for a wide range

of foods were compiled by Zogzas et al. (1996). Enthalpy data for meat products have

been published by Levy (1979), Skala et a1. (1989), and Tocci and Mascheroni (1998).

The rate of moisture transport in meat products is considerably lower than the rate

of heat transfer. Zanoni et al. (1997) reported that moisture diffusion affected only a 3

mm deep layer of the product surface. Chen et al. (1999) reported similar results. These

results give insight into the development of element meshes for future cooking models.

The region ofhighest activity for moisture transfer is confined to a layer close to the

surface of the patty, and thus a fine mesh should be used in that area.

Accurate values for thermal and physical properties are critical to development of

cooking models based on transport equations. Small deviations in pr0perty values often

result in large differences in model performance. Thus, care must be used when selecting

property data from published sources. The product composition can often have a

dramatic effect on physical properties. Thus, composition-dependent property equations,

such as those developed by Choi and Okos (1986), are often utilized.
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2.6 Microbial models

Mathematical microbial models can provide important tools for predicting the

growth or reduction of microorganisms in foods. When properly utilized, models can

provide an initial estimate of microbial behavior without the investment in time and

materials required for microbial challenge studies. The use of models is also less

expensive. Although microbial challenge studies may still be required to verify model

results, the model may be used to more efficiently design such studies by selecting the

conditions to be tested. Models can be used to quickly determine the effects ofprocess

changes on microbial food safety. These capabilities are invaluable for the planning of

hazard analysis critical control programs. Graphical depictions of changes in microbial

counts can serve as educational tools. This is especially valuable for showing non-

microbiologists the effects ofprocessing on microbial safety. However, the limitations of

the model must be considered whenever a model is used to predict microbial activity in

food products (F818, 2002).

Mathematical modeling of microbial activity in food products has been

extensively reviewed in the literature (Whiting and Buchanan, 1994; Whiting, 1995;

Roberts, 1997). Whiting (1995) classified microbial models based upon a three-level

scheme-as primary, secondary, or tertiary. Primary models describe the changes in a

microbial population as a function of time. Secondary models describe the primary model

parameters as functions of environmental parameters. Tertiary models combine primary

and secondary models with a user interface to produce a complete simulation tool.
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2. 6.1 Primary models

Primary models describe the number of bacteria in a population as a function of

time. Mathematical equations are used to describe the growth or inactivation curve using

a set ofparameter values. Ideally, these parameters relate to descriptive terms such as lag

time or generation time. Examples ofprimary models are linear models, exponential

models, and models based on the Gompertz function (Whiting, 1995). A log-linear

inactivation model is given by Equation [2.44].

logN=logN0+—Il)--(t—t0) [2.44]

Equation [2.45] is an inactivation model based on first-order kinetics.

=e ' [2.45]

A primary model for microbial inactivation based on a Gompertz equation was

parameterized by Van Impe et al. (1995).

y 2: a - exp[— upturn—2"“: - (k — t)+ 1)] I 2-46]
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Peleg and Cole (1998) suggested a primary inactivation model based on a Weibull

distribution (Equation [2.47]).

log10 3(1) = —b(T) . 1"”) [ 2.47 ]

Each type ofprimary model has its own merits and inherent weaknesses. The

log-linear model is the most commonly used inactivation model in both industry and

academia. Large quantities of data have been amassed using the model parameters for

numerous microorganisms and processing conditions. This makes implementation of the

log-linear model the easiest of any of the primary models. Additionally, log-linear

models have become ingrained as the “standar ” for microbial inactivation and are thus

widely accepted in industry. However, microbial inactivation does not always follow

log-linear kinetics (Peleg, 1997). Other types of inactivation models may be more

suitable for modeling inactivation in these cases. Unfortunately, these equations are often

more cumbersome to use, and suitable experimental data for model constants are not as

widely available as for log-linear models. To develop modeling software that is both

flexible and as widely acceptable as possible in nature, log-linear inactivation kinetics

should be utilized. However, to develop the most accurate model for specific cases, other

types ofprimary models may be superior.

2. 6.2 Secondary models

Secondary models describe the changes in primary model parameters as a

function of environmental conditions. These models can show the effects of variables
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such as temperature, pH, water activity, and substrate composition. Examples of

secondary models are Arrhenius relationship models, response surface models, and

square root models (Whiting, 1995).

An Arrhenius relationship for the inactivation constant, k, was given by

Geankoplis (1993).

-133

k=a-e R-T [2.48]

Equation [2.49] is a square-root relationship for k (Whiting, 1995).

JE=a(T—T0) [2.49]

Mattick et al. (2001) parameterized the following log-logistic secondary models for

Salmonella. The models are designed to be used with the primary model in Equation

[2.47].

b(T) = 6.841/{1 + exp[(76. 14 — T)/4.204]} [ 2.50 ]

n(T) = 0.670/{1+ exp[(T - 80.14)/3.785]} . [ 2.51 ]
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Juneja and Eblen (1999) developed a response surface model for inactivation of

Listeria monocytogenes (Equation [252]). The model described decimal reduction time

as a function of temperature, pH, salt content, and sodium pyrophosphate content.

ln(D) = c1+ c2 - (T) + c3 - (pH) + c4 - (salt) + c5 ~(phos) + c6 - (T) - (pH)

+ c7 - (T) - (salt) + cs - (T) - (phos) + c9 - (pH) - (salt) + 010 - (pH) - (phos)

+c11-(salt)-(phos)+ en -(T)2 +c13 -(pH)2 +c14 -(sa1t)2 +c15 -(phos)2

[ 2.52]

2. 6.3 Tertiary models

Tertiary models combine primary and secondary models with a user-interface to

to produce a complete simulation tool. Two widely used tertiary models in the United

States are the American Meat Institute Process Lethality Determination Spreadsheet

(AMI, 2003) and the United States Department ofAgriculture's Pathogen Modeling

Program (USDA, 2004).

The AMI model is based upon a Microsoft Excel spreadsheet (AMI, 2003). The

spreadsheet uses a log-linear thermal death time model to calculate process lethality

based on time/temperature data inputted by the user. The user must also input 2 and Tm]-

values for the thermal death time models. A table of z and Trey values for common meat

microorganisms is supplied to aid the user in choosing input values. Unfortunately, 2

values may be influenced by numerous conditions that are not accounted for by the chart

of suggested values. Thus many users will likely choose z and Tref values that are
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inappropriate for the cooking process of interest and therefore generate lethality data that

are highly suspect.

The Pathogen Modeling Program (version 7.0) is a menu-based program that is

based upon a suite of models (USDA, 2004). The program provides tools for assessing

microbial inactivation of Clostridium botulinum, Escherichia coli 0157:H7, and Listeria

monocytogenes, but not Salmonella. The models for microbial inactivation and survival

are based upon a logistic inactivation model (Equation [2.53]).

+ 5131+”) (17 all + e—bzfljN (1
log-N?)- = log 12+ 3131041)) + (1+ 61320-111) [ 2.53 ] 

2.7 Combined models

Several authors have attempted to combine cooking models with microbial

inactivation models. Zanoni et al. (1997) linked inactivation models for Enterococcus

faecium to a cooking model for Bologna sausage. Two different inactivation models

were utilized. The first was a simple first order inactivation model.

—=—k-N [2.54]

The second was a model developed by Whiting and Buchanan (1994).
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a-(1+exp(-b1-t1)) (1-a)°(1+°"p(-b2 OW] I 2.55]

The model was validated by inoculated challenge studies. At log reductions below 6,

both the first-order inactivation model and the Whiting and Buchanan model predicted

reductions within 1- log of the experimental values. At reductions above 6-log, the first

order model greatly overestimated inactivation. However, at log reductions above 6, the

Whiting and Buchanan model was within l-log of the experimental data. Unlike the first-

order model, the Whiting and Buchanan model incorporates a tailing effect at high levels

of inactivation, which provided a better fit to the experimental data. This clearly

illustrates how certain inactivation models may be more accurate than others under some

conditions.

The contact-cooking model developed by Pan et al. (2000) included a first-order

inactivation model for E. coli OlS7:H7.

dN - 2.303

a“ = Dre, .lorrref-Tonz ' [ 2'56]
 

Temperature data from each time step were utilized to obtain the number of

microbes at each nodal location. The total surviving population at each time step was

then determined. However, the inactivation model was not validated using experimental

data.
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Mallikarjunan et al. (1996) included an inactivation model for Listeria

monocytogenes with a model for microwave cooking of cocktail shrimp. The

inactivation model assumed first-order reaction kinetics.

 

.N [2.57]

The inactivation model was validated by injecting a liquid inoculum into the

geometric center of each shrimp. After cooking, the shrimp were tested for surviving

bacteria. This methodology made it impossible to track the actual numbers of surviving

Listeria as a function of time. Although useful for predicting the worst-case scenario, this

technique probably overestimates the cooking required for most products where

microorganisms are present either at the surface or dispersed throughout the product.

2.8 Limitations of models

Although microbial models can be valuable tools, there are limitations inherent in

any model. A model is generally only accurate for the range of conditions under which it

was developed. Extrapolating outside of the ranges used for the model development may

give misleading results. Models are generally microbe specific, and a model for one

microorganism cannot be expected to produce accurate results for another

microorganism, or even for a different product.
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2.9 Summary

The models contained in the previous sections describe cooking processes with

varying degrees of complexity. Although each of the models discussed has its own

merits, none of the published models provide a “complete” description of the cooking

process. Ideally, a cooking model should be based entirely upon engineering first-

principles, be flexible for a wide range ofproducts and product conditions, and describe

the interrelationships between all of the components of the cooking process including

heat transfer, moisture transfer, and the transfer of fat. The goal of the following sections

was to develop such a model.
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3 MATERIALS AND EXPERIMENTAL METHODS

3.1 Overview

The study was broken up into three major groups of experiments. In the first

group of experiments, ground beef, ground pork, and ground turkey patties were cooked

in a laboratory convection oven. The results of these experiments were used to illustrate

and quantify the differences in cooking characteristics between species and fat content.

In the second group of experiments, laboratory studies were conducted to determine the

fat holding capacity of ground beef. The data generated in these experiments were later

used to develop the fat transfer portion of the cooking model (Chapter 4). The third set of

experiments involved cooking ground beefpatties in an industrial moist-air impingement

oven. These data were then analyzed to determine the effects ofprocessing conditions on

yield and temperature profiles. In addition, results from this group of experiments were

utilized to validate the computer-cooking model that is described in Chapter 4.

3.2 Laboratory oven cooking tests

3. 2. 1 Experimentalprocedure

A series of laboratory experiments was conducted to investigate the effect of meat

species and initial fat content on cooking characteristics during convection cooking of

ground beef, ground pork, and ground turkey patties. All cooking tests were conducted

using a custom built, laboratory convection oven.
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The laboratory convection oven consisted of three chambers (Figure 3.1). These

included a large conditioning chamber (Figure 3.2), a steam generator, and the cooking

chamber itself.

 

Steam

generator

  Conditioning chamber with air

heaters

 

   
 

   

Sample chamber with

suspended sample

Figure 3.1 - General arrangement of the laboratory convection oven showing

directions of steam and airflow.

 

 

Figure 3.2 - Interior of laboratory oven conditioning chamber.
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The conditioning chamber was the largest portion of the oven and was used to

heat and condition the cooking air to the desired temperature and moisture content. The

dimensions of the conditioning chamber were approximately 83 cm in length by 56 cm in

width by 51 cm in height. The conditioning chamber contained four 350-watt strip

heaters (McMaster-Carr: Cleveland, OH). Steam was injected into the conditioning

chamber from the steam generation unit. The steam generation unit contained water

heated by a 750-watt immersion heater (Tempco: Wood Dale, IL). An electronically

activated solenoid valve was utilized to inject steam into the conditioning chamber. The

sample chamber was a small container located at the edge of the conditioning chamber.

The dimensions of the cooking chamber were approximately 10 cm by 10 cm by 10 cm.

Cooking air was drawn from the conditioning chamber by a 6-watt centrifugal fan

(Dayton model 4C440: Niles, IL) and passed through the sample chamber by means of

tubular ducts (Figure 3.3).

 

Figure 3.3 - Interior of laboratory oven showing fan, ducts, and sample chamber

(located at left).



The oven was connected to a computer interface that continuously monitored and

controlled oven temperature and moisture content. During cooking, oven dry bulb and

wet bulb temperature were controlled within i 0.2°C. Dry bulb and wet bulb temperature

within the conditioning chamber was monitored using a high temperature dry bulb/wet

bulb humidity probe (Viasala model DMP 246: Viasala, Woburn, MA). The airflow in

the cooking chamber was 1.3 m/s.

Ground turkey, ground beef, and ground pork were purchased from a local

grocery store. Additional ground pork was provided from the Michigan State University

Meat Laboratory. Two fat contents of each meat species were utilized: 1.4 and 8.6% for

ground turkey, 7.2 and 17.5% for ground beef, and 15.7 and 41.9% for ground pork. Fat

contents were determined in triplicate by solvent extraction (AOAC method 991.36:

AOAC, 2000). The moisture content of each species was determined in triplicate by

oven drying (AOAC method 950.46: AOAC, 2000). Moisture contents were 74.8 and

73.0% wet basis for the 1.4 and 8.6% fat ground turkey, 71.5 and 63.3% wet basis for the

7.2 and 17.5% fat ground beef, and 64.1 and 43.6% wet basis for the 15.7 and 41.9% fat

ground pork.

Each meat type was formed into uniform patties by pressing into plastic petri

dishes (52 mm diameter; 13 mm height) . The patties were then frozen and removed

from the dishes prior to use in the cooking experiments. Before cooking, patties were

tempered to 4°C by placing in a refrigerator for 2-3 h.

Prior to heating, each patty was weighed to the nearest 0.01 g. The radius and

thickness of each patty were then measured, to the nearest 0.1 m, using a digital caliper.
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A 24-gauge type-K thermocouple (Omega: Stamford, CT) was then inserted into the

geometric center of each patty using a placement jig (Figure 3.4).

(a) (b)

  
\ AA \ if Thermocouples

Frame Screen

 

Figure 3.4 — (a) Picture and (b) schematic ofjig used to place thermocouples into

meat patties during cooking experiments.

Patties were then placed into the cooking chamber of the oven, where they were

supported on a wire mesh screen. This allowed for airflow on all sides of the product.

The patties were cooked one at a time in the convection oven to center temperatures of

45, 55, 65, 75, and 85°C at an oven temperature of 177°C and a wet bulb temperature of

82°C. Five patties were cooked at each condition. Alter cooking, the patties were

removed from the oven and weighed to the nearest 0.01 g. The new thickness and

diameter of each patty were measured using the caliper, and the patties were frozen at -

5°C pending further analysis. After 24 h, the patties were removed from the freezer, and

the moisture content was measured by oven drying (AOAC Method 950.46: AOAC,

2000)
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The amount ofwater lost during cooking was calculated for each patty using the

initial and final moisture contents (Equation [3.1]).

ANImoisture = Minitial 'Xw,initial “Mfinal 'Xw,final I 3-1 I

where Minitial and MW. are the initial and final mass of the patty and XW is the wet basis

moisture content of the meat. These data were used to calculate the component of yield

loss attributed to moisture. For many of the samples, the mass lost due to moisture loss

was considerably less than the total mass loss. The mass loss not accounted for by

moisture was attributed to fat loss during cooking. These losses were calculated using

Equation [3.2].

AM fat = AM total _ AM moisture I 3-2 I

3.2.2 Statistical analysis

Analysis of variance (ANOVA) was used to evaluate the effects (or=0.05) of

initial fat content, cooking time, and time-fat interaction on center temperature, cooking

yield, fat loss, and volume change within each meat species. ANOVA was conducted

using the Microsoft Excel Data Analysis Package (Microsoft Excel Version

2000:Redmond, WA).
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3.3 Measurement of fat holding capacity

3.3.1 Experimentalprocedure

Laboratory experiments were conducted in an isothermal water bath to determine

the fat holding capacity of ground beef. The fat holding capacity of the meat is the

maximum amount of fat bound in the meat after a given heat treatment. The fat holding

capacity of the meat was determined as a function of temperature and time using a so-

called “net test” (Barbut, 1996).

Two lots of ground beefwere acquired from the Michigan State University Meat

Laboratory. The fat contents of the two lots were 5.6 and 15.0% fat by mass, determined

in triplicate using solvent extraction (AOAC method 991.36: AOAC, 2000).

Brass tubes were used to contain the meat samples during cooking and were

chosen due to their high thermal conductivity. The tubes were cut from 0.36 mm thick

brass tube stock (K&S Engineering: Chicago, IL). The tubes had an inside diameter of

7.9 mm and a length of approximately 122 mm.

Prior to each heating test, a silicone stopper was placed in one end ofeach heating

tube. Teflon tape (13mm width) was then wrapped around the silicone stopper to ensure

that the closed end of the tube was watertight. The weight ofthe combined tube, stopper,

and tape was then measured to the nearest 0.1 mg using an electronic balance.

Approximately 3.5g ofmeat was then loaded into each tube by hand. During loading, the

meat was packed into the closed end of the brass tube by firmly tapping the tube on the

bench top. After loading, the total weight of the tube and meat was measured to the

nearest 0.1 mg.
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A 30 um nylon mesh (Spectrum Labs: Rancho Dominguez, CA) was then

attached over the open end ofeach tube using laboratory tape. A type-T thermocouple

probe (Cole Parmer: Vernon Hills, IL) was inserted through the silicone stopper and into

the approximate center of the meat sample within the tube. Tubes were then placed into

an isothermal water bath (Neslab: Newington, NH) for one of four holding times. The

open end of each tube was held above the surface of the water by a test tube rack. The

entire meat sample was located in the submerged portion of the brass tube. The time

measurement was started when the temperature of the center of the sample was within

1.0°C of the water bath temperature. Samples were heated at water temperatures of 30,

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, and 90°C and heating times of 2, 5, 10, and 15

minutes. Five tubes were heated simultaneously for each time-temperature combination.

After heating, the tubes were removed from the water bath, and the surface

moisture was removed with a paper towel. The tubes were then placed, mesh-side down

in centrifiige tubes (length: 102 mm, diameter: 14.7 mm: Fisher: Pittsburgh, PA). A brass

spacer fabricated from the same stock used to produce the heating tubes was placed in the

bottom of each centrifirge tube (Figure 3.5). The length ofthe brace spacers was

approximately 27 mm. Prior to centrifuging, the silicone stoppers and Teflon tape were

removed from each tube. The tubes were centrifuged at 25°C and 1000g for 15 minutes.
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\
I

‘— centrifuge tube

‘— brass tube containing meat

   
‘__. tape

*— 30 um nylon mesh

‘— brass spacer 
Figure 3.5 — Schematic of tube setup used for centrifuging.

After centrifuging, two distinct layers were observed in each tube. A solid layer

of extracted fat was located above a liquid layer (Figure 3.6). For the purposes of this

study, only the fat located in the solid layer was of interest, as this is the component most

often overlooked by cooking models. To separate the solid fat from the liquid layer, the

brass tube containing the meat sample was first removed from each tube. A syringe with

an 18-gauge needle (BD: Franklin Lakes, NJ) was then used to withdraw the liquid layer

from beneath the solid fat layer. The centrifuge tube containing the spacer and the fat

layer was then heated in a 102°C convection oven for 24 hours to drive off any remaining

water. After heating, the tube was removed from the oven and allowed to cool in a

dessicator for one hour. The tube was then weighed to the nearest 0.1 mg, and the weight

of fat in the tube determined by subtracting the weight of the empty tube and spacer from

the weight of the tube containing the spacer and extracted fat.
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solid layer
 

  liquid layer

Figure 3.6 — Schematic of the centrifuge tube after centrifuging showing the two

distinct layers that formed within the tube. In this schematic the heating tube has

been removed. The liquid layer contains water and soluble proteins. The solid

layer is composed of fat.

The fat content remaining in each sample after centrifuging was determined by

subtracting the mass of the extracted fat from the initial mass of fat in the sample prior to

heating. It was assumed that no protein was present in the extracted fat. The fat content

was expressed in terms of dry basis fat content by dividing the mass of fat remaining in

the sample by the mass of non-fat dry matter in the sample. This fat content was

considered the fat holding capacity of the meat under the specific conditions of

temperature and time.

3.3.2 Statistical analysis

Quadratic response-surface models were used to describe the fat holding capacity

of each batch of meat as functions of time and temperature (Equation 3.3).

F=BO+Bl-T+[32-T2+B3-t+B4-t2+BS-t-T+a [3.3]
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The statistical significance (or=0.05) of each regression parameter was determined using

t-statistics. The models were then adjusted accordingly to eliminate non-significant

terms. A regression model was also fit to the combined FHC results of the low and high

fat ground beef (Equation [3.4]).

F=B0 +B1'T+B2°T2+B3't+B4't2+B5'F+B6't'T+B7'T'FO +B8'I'F0 [ 34]

The statistical significance (or=0.05) of each regression parameter was determined using

t-statistics, and the model was again adjusted to eliminate non-significant terms.

3.4 Industrial oven cooking tests

3. 4. 1 Experimentalprocedure

A series of cooking tests were conducted using a commercial continuous-feed

moist-air impingement oven (Stein model JSO-IV2FMC FoodTech, Sandusky, OH)

located at the FMC FoodTech Technical Center (Sandusky, OH). The JSO-IV oven

consisted of two 3.65 m long cooking sections with a 0.8 m intermediate section. The

belt width of the oven was 1.02 m. The oven was equipped with 1.07 m long in-feed and

discharge sections, which were not utilized during this study.
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Figure 3.7 - Stein model JSO-IV moist-air impingement oven.

Commercially produced, pre-formed, frozen hamburger patties (Gordon Foods,

Grand Rapids, M1) were used for the cooking tests. The patties had a thickness of 1 cm

and average diameters of~12 cm. The average uncooked patty weight was 105 g. The

labeled fat content was 10%. This fat content was confirmed using solvent extraction

(AOAC method 991.36: AOAC, 2000).

Tests were conducted using a 1/3 partial factorial design (Table 3.1) comprised of

three cooking temperatures (121, 177, and 232°C), three oven steam contents (50, 70, and

90% steam by volume), and three oven fan speeds (50, 75, and 100% of full). For each

cooking condition, three oven belt speeds were chosen to produce varying degrees of

doneness (undercooked, fully cooked, and over cooked). Belt speeds were chosen based

upon the experience of a trained operator and adjusted as required to achieve the desired

patty temperatures. Two hamburger patties were cooked at each belt speed, for a total of

54 patties.
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Table 3.1. Treatment conditions utilized for model validation experiments.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Experiment Temp. (°C) Steam by Volume Air Flow Time (Min.)

m/s

1 121 50 % 11.4 5

121 50 % 16.8 11

8 121 50 % 21.8 8

11 121 70 % 11.4 8

13 121 70 % 16.8 5

18 121 70 % 21.8 11

21 121 88 % 11.4 11

23 121 78 % 16.8 8

25 121 78 % 21.8 5

30 177 50 % 11.4 8

32 177 50 % 16.8 6

34 177 50 % 21.8 3

37 177 70 % 11.4 3

47 177 83 % 11.4 6

49 177 84 % 16.8 3

50 177 86 % 16.8 6

54 177 86 % 21.8 8

56 232 50 % 11.4 5

58 232 50 % 16.8 2

63 232 50 % 21.8 7

66 232 70 % 11.4 7

68 232 70 % 16.8 5

70 232 70 % 21.8 2

73 232 82 % 11.4 2

75 232 82 % 11.4 7

78 232 82 % 16.8 7

80 232 82 % 21.8 5
 

Prior to cooking, the frozen patties were tempered in a -3°C cooler (> 3 h) to

provide a uniform initial temperature distribution. Before each cooking run, the patties

were weighed to the nearest 0.1 g. The radius and diameter of each patty were measured

to the nearest 0.1 m using a digital caliper. A 24-gauge type-K thermocouple (Omega:

Stamford, CT) was then placed and held at the center of each patty using a placement jig
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(Figure 3.4). Additional thermocouples were positioned at the top and bottom surfaces of

the patties and held in place by the placement jig. The thermocouples were attached to an

oven data logger (Datapaq model 9000: Datapaq, Wilmington, MA). that was able to

pass through the oven with the patties during cooking. During the cooking process, patty

and air temperatures were recorded every 1 second.

Patties were placed on the center of the oven belt and allowed to cook for the

designated time. The patties were then removed from the oven and immediately weighed

to the nearest 0.1 g to determine post-cooking weight. The thickness and diameter of

each patty was then re-measured to the nearest 0.1 mm. Afler weighing and measuring,

the patties were frozen (-20°C) using an impingement freezer and placed into sealed

plastic bags pending firrther analysis. Dwell time in the impingement freezer was 2

minutes.

After each cooking run, the data were uploaded to a personal computer, and

temperature versus time curves were constructed. The bulk moisture content of each

patty was determined using oven drying (AOAC Method 950.46: AOAC, 2000). The

cooking yield was calculated for each patty by dividing the mass of the cooked patty by

the mass of the patty prior to cooking. Using the moisture content of the raw and cooked

meat, the mass of water that exited the patty during cooking was calculated (Equation

[31]).
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3.4.2 Statistical analysis

Multiple linear regression was conducted to quantify the effects of the cooking

variables on the center temperature achieved in the patties during cooking. Equation

[3.5] was used as the basis for the regression.

Tcenter = '30 + Bl ' Toven + I32 ' Xsteam + B3 ' time + B4 ° Airflow + 8 I 3-5 I

A second regression was performed in an attempt to quantify the effects of cooking

parameters on cooking yield. Regression was performed using Equation [3.6] as a basis.

Yield = [30 + [31 woven + [32 -xS,,,m + [33 . time + [34 - Airflow + e [ 3.6]

3.5 Cooking model validation

3.5.1 Cooking model

A computer model was developed to simulate moist-air impingement cooking of

ground-and-formed meat and poultry patties. Development of this model is detailed in

Chapter 4. The model was based upon heat and mass transfer principles and did not

require experimental data for its development, with the exception of the relationships

utilized for the fat holding capacity. However, it was necessary to validate the model

using experimental data to validate its performance. This was conducted using data

generated in the industrial cooking tests (Section 3.4) and additional published data from

a pilot-scale impingement oven.
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3.5.2 Experimental data

The finished computer model was validated using the data generated in the

industrial impingement cooking tests described in Section 3.4. The computer model

requires user input of oven temperature, steam fraction, air velocity, and cooking time.

Additional inputs required are product initial temperature, product moisture content,

product fat content, and meat species. The computer model was executed using the 27

sets of process conditions listed in Table 3.1. The input conditions for the ground beef

were an initial temperature of —2 to 0°C, initial moisture content of66% wet basis, and

initial fat content of 10% wet basis. The element mesh was set up for a patty diameter of

12 cm and thickness of 1 cm (see Chapter 4 for element mesh).

Output data were generated for the transient patty center and surface

temperatures, final bulk moisture content, and final cooking yield. The output were

compared to the temperature profiles generated during the cooking experiments as well as

to the final yield and moisture values measured after the cooking tests. A standard error

of prediction (SEP) between the transient model and experimental temperature profiles

was calculated for each run (Equation [3.7]).

 

 

SEP = J: (Tpredictecrll : Fll‘measured)2 [ 3.7 ]

The differences between the predicted and measured yield, moisture content, and

fat loss were determined for each model run. The aggregate standard error ofprediction

57



was also calculated for the endpoint yield, moisture content, and fat loss for all of the

model runs.

3. 5.3 Comparisons with literature data

In addition to the model validation using experimental data from the industrial

cooking tests, the cooking model was compared to published data for ground chicken

breast patties (Murphy et al, 2001a and b). The purpose of this comparison was to

demonstrate the versatility of the model. The published data were collected using a pilot-

scale moist-air impingement oven (Stein model 102: Stein, Sandusky, OH). Murphy et

al. (2001a) developed a regression model for cooking time as a firnction of center

temperature, oven air velocity, and oven wet bulb temperature (Equation [3.8]).

ln(t) = 8.8678 + 0.0278 - T — 2.0410 - ln(wa) — 0.2306 - Vair + 0.0481 - ln(wa °Vair)

[3.8]

The regression for cooking time had an R2 of 0.95. Murphy et al. (2001b) developed a

second regression model for yield of ground chicken patties as a function ofpatty center

temperature, oven air velocity, and oven air wet bulb temperature (Equation [3.9]). The

regression model for yield had an R2 of 0.89.

Yield = 75.4031 + 0.9309 - T — 1.2443 . Va], + 0.1047 . vai,2 - 0.0121 -r2

— 0.0102 -M .v,,, + 0.0027 - wa .r

[3.9]

58



The geometry of the Stein 102 oven used by Murphy et al. (2001a and b) was

different from the geometry of the Stein JSO-IV. The Stein 102 oven used an array of

round nozzles rather than the slot nozzles utilized in the JSO-IV oven (Chapter 4).

Therefore, it was necessary to modify the cooking model with an equation for an array of

round nozzles as discussed in Chapter 4.

Model simulations were conducted using the process conditions ofMurphy et al.

(2001a and b). These conditions were a dry bulb cooking temperature of 149°C, wet bulb

air temperatures of 40, 70, 85, and 95°C, and air velocities of 1.53, 2.13 and 2.73 m/s.

The product settings for the model were chicken at an initial moisture content of 80% wet

basis, initial fat content of0.2% dry basis, and initial temperature of4°C. The element

mesh was adjusted for a patty diameter of 127 mm and a thickness of 12.7 mm. Cooking

model tests were run using each combination of dry bulb temperature, wet bulb

temperature, and airflow giving a total of 12 cooking conditions. The cooking time of

each simulation was adjusted to give a final patty temperature of 80°C.

For each model run, the temperature profile from the model was compared to the

temperature profile generated by the regression model at 1 second intervals for the

temperature range between 55 and 80°C (the calibration range of the regression model).

Transient standard error of prediction was calculated for each run using Equation [3.7].

The same procedure was used to calculate the SEP for transient yield value for each run.

3.6 Salmonella inactivation model validation

The location of the impingement oven utilized for our experiments did not allow

for inoculated challenge studies. Therefore, simulated Salmonella Senftenberg

S9



inactivation results were compared to literature values for ground meat patties cooked in

a pilot-scale moist-air impingement oven (Murphy et al., 2002). Simulated results for

Listeria innocua were also compared to literature values (Murphy et al., 2002) to

demonstrate the flexibility of the model.

The model was run using the equations for the geometry of the Stein 102 oven

(array of round nozzles). The cooking air conditions utilized for the model runs were an

oven air temperature of288°C, a steam content of25% by volume, and an air velocity of

4 m/s. Although the patties used by Murphy et al. (2002) were composed of a mixture of

ground beefand ground turkey, the ground beef setting was utilized for the model runs.

This setting was chosen based upon the fairly high (20% wet basis) fat content ofthe

meat. The product properties were an initial moisture content of 58% wet basis, initial fat

content of20% wet basis, and initial temperature of -2°C.

The model was run once for inactivation ofS. Senftenberg and once for

inactivation ofL. innocua. The D and z-values for the model runs were set to 312

seconds and 623°C for S. Senftenberg and 1,508 seconds and 490°C for L. innocua, at a

reference temperature of 60°C (Murphy et al., 2003). The reference temperature for both

sets ofD and 2 values was 60°C. The experiments ofMurphy et al. (2002) utilized

ground meat with an initial inoculum of 107 CFU/g. Therefore, the model was set to run

with a limit of 7-log total reduction. Transient inactivation curves generated by the

model for each organism were plotted on the same graphs as data from the published

study and SEP’s calculated between the model and experimental data.
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4 MODEL DEVELOPMENT

4.1 Introduction

A computer model was developed for moist-air impingement cooking of ground

and formed meat and poultry products. The computer model is composed of a coupled

heat and mass transfer mode] combined with a model for Salmonella inactivation. The

finite element method (FEM) was used to numerically solve the differential equations

associated with the heat and mass transfer model. The model was programmed using

Microsoft Visual Basic (Version 6.0 professional edition: Microsoft, Redmond, WA).

A typical impingement oven has impinging jets located above and below the

product (Figure 4.1). The cooking air enters the ductwork and is forced through slots

normal to the product. Not shown in Figure 4.1 is the perforated belt that the product

travels on through the oven. A typical impingement oven would contain many pairs of

impingement jets arranged in series along the length of the belt.

The computer model was developed for an oven with the following controllable

variables: airflow, air temperature, steam content by volume, and cooking time. The

distance between the impinging jets and the product surface must also be specified. For

the purpose of modeling, it was assumed that the upper and lower impinging jets were

located an identical distance from the product surface.
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Product suspended on -

perforated belt (belt not 4

shown) '1‘ \

—I.

Input airflow _,t

Figure 4.1 - Illustration of the airflow within an impingement oven in relation to the

product.

 

 

       
       
 

 

        
 

 

 

The coupled heat and mass transfer model was based upon three transport

components. The three components were heat transfer, moisture transfer, and fat transfer.

Incorporation of the fat transfer component represents one of the unique aspects of the

cooking model as compared to most previous models that have been published. The

three transport solutions were coupled through the boundary conditions and

interdependent thermo-physical properties.

The boundary conditions associated with moist-air impingement ovens are

somewhat different than those in conventional convection ovens. One of the unique

aspects of moist-air impingement ovens is the very high oven air moisture content that is

often used for meat product cooking. The high fraction of water in the air results in a

condensing boundary condition during the period in which the surface of the patty is

below the dew point ofthe cooking air. This condensing condition increases the rate of
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heat transfer and reduces the rate of moisture loss from the product. Inclusion of the

condensing boundary condition is another unique aspect of this cooking model.

Two different sets of boundary conditions were used to model the cooking

process — one for the impinging flows on the horizontal surface of the patties and one for

the vertical edges of the patties. The first set ofboundary conditions was used to describe

the impinging flow that is the predominant mechanism for heat and mass transfer in

moist-air impingement ovens. The boundary conditions used to model impinging flow

were based on an expansion of the technique of Millsap and Marks (2002) and depended

on transport correlations published by Martin (1977). The second set ofboundary

conditions was used to describe the convection that occurs along the vertical surfaces

(edges) of the patty. These conditions were based upon transport correlations for

turbulent flow past a flat plate (Bejan, 1995).

The following set of basic assumptions was utilized when developing the heat

and mass transfer model.

1. Heat transfer occurs by conduction within the patty and by a combination of

convection, condensation, and evaporation at the patty surface.

2. Moisture and fat transfer within the patty occur primarily by diffusion and

capillary flow, respectively.

3. When the temperature of the patty is below the dew point, moisture condenses at

the patty surface, and the moisture content of the patty surface does not change.

When the surface temperature of the patty is above the dew point, water

evaporates at the surface.
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4. The phase change from solid to liquid water occurs at a single temperature. A

phase change from solid to liquid fat occurs at a single fat melting point.

5. Mass transport of water within the patty does not occur at temperatures below the

freezing temperature. Mass transport of fat does not occur below the melting

point of the fat.

6. Fat transport within the patty is driven by the gradient between the local fat

content and the value at the surface. Surface fat content is a function of time,

temperature, and initial fat content.

7. The size and shape of the patty does not change during cooking.

8. Boundary conditions were assumed to be the same for the top and bottom of each

patty.

4.2 Heat and mass transfer model

4. 2. 1 Heat transfer solution

The heat transfer simulation was formulated using the Fourier equation written in

terms of enthalpy. The enthalpy formulation was utilized to produce a model free from

discontinuities caused by the phase changes of fat and water. Similar techniques for

modeling heat transfer have been utilized by Volner and Cross (1981), Pan (1998), and

Pan et al. (2000).

Most ground beef and poultry patties are shaped like short cylinders (Figure 4.2).

This geometry allows heat and mass transfer in formed patties to be modeled using two-

dimensional axisymmetric solutions. Heat transfer by conduction within the patties was

modeled using Equation [4. 1].
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Figure 4.2 - Geometry of a patty illustrating radial coordinate system.

  $1.43,. kT 2! ,3 RT 95 [4.1]
at rar cp-pdr dch-pdz

Heat capacity (cp), thermal conductivity (k7), and density (p) were modeled using

transient values based on product composition and temperature (Section 9.3). Patties

were assumed to be at a uniform internal temperature prior to cooking. The initial

product temperature was converted to enthalpy using an equation based on the technique

of Voller and Cross (1981): (Equation [4.2]).

 

rCPsfmzen O T T < Tfreezing

H =< cp.frozen ' Tfreezing
T = Tfreezing

cp,frozen ° Tfreezing + )‘w + cp ' (T ' Tfreezing) Tfreezing < T <= Tmelting,fat

[cp,frozen ' Tfreezing + Aw + cp ' (T — Tfreezing )+ A'f T > Tmelting,fat

[4.2]
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Equation [4.2] converts temperature values into enthalpy based upon an absolute

zero reference temperature. Provision was made for two phase changes within the

product during cooking. The first was the phase change between ice and liquid water,

and the second was the phase change between solid and liquid fat. An initial temperature

equal to the freezing temperature of the meat was assumed to imply a completely frozen

sample.

A similar technique was used to convert enthalpy values back to temperature for

display purposes (Equation [4.3]). The variables op; and cm in Equation [4.3] are the heat

capacities of the frozen and thawed meat, Tf and Tan are the freezing temperature of water

and the melting temperature of fat, and Agw and M; are the latent heats of fusion for water

and fat respectively. Based on the results of the fat holding capacity experiments

described in Section 3.3, a value of45°C was used for the fat melting temperature.

H S Cp,f °Tf

Cp,f -Tf S H

rH/c

Tr

pf

Scpf 'Tf +kw

(H—kw —273‘Cp,f)/Cp,t Cp’f 'Tf +1“, < H

Scpf °Tf +7tf +Tf 'cp,t

Tm cp,f-Tf+}tf+Tf-cp,t <H

Scpx ‘Tf +}\.f +Tf -cp,t +1tf

 1(H —)“w -273.CP-f —)"W )/Cp,t H > Cp,f -Tf +Af +Tm °cp,t +Af

[4.3]
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The boundary conditions for heat transfer were composed of a convection term

and a moisture transport term (Equation [4.4]).

6T

kT ' 5n- = hT ' (Tair - Tsurface ) + h m,water ° 9“vaporization ° (C air " Csurface)
[4.4]

During the period in which the surface temperature of the meat is below the dew

point temperature of the cooking air, heat transfer due to condensation occurs, causing

additional heat transfer into the patty. When the surface temperature of the meat exceeds

the dew point temperature, evaporation occurs at the patty surface, limiting sensible

temperature increases in the product. This has the effect of limiting the maximum

surface temperature reached at the product surface as a function of oven conditions and

surface moisture content. Until the surface of the patty reaches low moisture contents

due to drying, the surface temperature never exceeds the wet bulb temperature.

At the vertical and radial centerlines of the product, heat transfer was assumed to

be zero due to product symmetry (Equations [4.5] and [4.6]).

6T
_=0 :0 4.56r r l ]

§I=0 Z=0 [46]
dz

4. 2.2 Moisture transfer solution

Moisture transfer within the product was modeled using a two-dimensional

equation for diffusion in radial coordinates (Equation [4.7]).
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am 1 a k m,water 6m 5 km,water am

—: —..— r.————o-——— +———- —————--—— [4.7]

at r at cm,water ' p 51' 62 cm,water ' P 62

The units for mm... are decimal dry basis moisture content. Mass transfer at the product

surface was modeled using a convective boundary condition (Equation [4.8]).

8’

[4.8]
k m,water an = h m,water ' (C air _ Csurface)

The concentration of moisture in the cooking air was calculated using Equation [4.9].

[4.9]
Cair : psteam ' Xair

X3], is the molar fraction of steam in the cooking air. This is equal to the percentage of

steam by volume. The density of steam (psteam) was calculated using an equation derived

from tabular data (see Section 9.2).

pmam = —0.0002 - log(T)+ 0.0015 [ 4.10]

The concentration of moisture at the patty surface was calculated using Equation [4.11].
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Csurface : ERH ' Csat I 4-11 I

Equilibrium relative humidity (ERH) was calculated using an equation by Huang and

Mittal (1995).

 

_ . -l.0983
ERH =ex 5222.47 111 [ 4.12]

1.9818-T

In Equation [4.12], m is dry basis moisture content, T is absolute temperature, and ERH

is decimal equilibrium relative humidity. The saturation concentration (Csat) was

calculated using Equation [4.13]. Equation [4.13] was developed using regression of

steam table data as shown in Section 9.2.

csat = 8.121 - 10'10 .r3 —3.520.10'8 -'r2 41.320.10‘6 .r +6.215-10-7 [ 4.13]

At the radial and vertical centerlines of the patty, mass transfer was assumed to be zero

due to product symmetry (Equations [4.14] and [4.15]).

—=0 r=0 [4.14]
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92:0 2:0 [415]

dz

4. 2.3 Fat transfer solution

Fat transfer was modeled using a two-dimensional formulation of Darcy’s law for

diffusion of liquids through porous media (Datta, 2002).

6F 1 6 BF 6 6F

—=["‘a—r'(r'Dcap,fat '_)+—Z‘(Dcap.fat “an I 4'16]

Fat content was written in terms of dry basis fat content. Dcapfat is the capillary

diffusivity of fat in the product.

The fat content at the surface of the patty was modeled using an equation

generated from experimental values as detailed in Section 3. Equation [4.17] was utilized

to set the values of the fat content at each boundary node as a function of temperature and

product composition. This equation was derived from experimental data (Section 5.3.)

F = 0.7062 — 0.0193 - T + 0.0001 - T2 + 0.0069 . Emma, + 0.0002 - T . PM,l [ 4.17 ]

At the radial and vertical centerlines of the patty, fat transfer was assumed to be

zero due to product symmetry (Equations [4.18] and [4.19]).
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——=0 r=0 4.18&_ l ]

§E=0 2:0 [4J9]
dz

4. 2.4 Heat and mass transfer coefficients — Array ofslot nozzles

Heat and mass transfer coefficients utilized in Equations 4.4 through 4.8 were

modeled as functions of instantaneous process conditions using the technique of Millsap

and Marks (2002). For the surfaces of the patty subject to impingement conditions (the

top and bottom), correlations developed by Martin (1977) for an array of slot nozzles

were used to determine heat and mass transfer coefficients. Prandtl number, Schmidt

number, and Reynolds number were first calculated using Equations [4.20], [4.21], and

 

 

[4.22] respectively.

c . . .

Pr: p,m1x “mix [4.20]

kmix

Se=——“ii’£— [ 4.21]

Pmn'DAB

v- . . .w

Re: J“ pm“ [4.22]

“mix
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Values for the heat capacity (emu), viscosity (um), thermal conductivity (kmix),

density (pm), and diffusivity (D5,) of the air-steam mixture were calculated using the

relationships in Section 9.2. The (W) term in Equation [4.22] is the slot width of the

impinging jets. The term, v, in Equation [4.22] is the jet exit velocity.

Nusselt and Sherwood numbers were calculated using Equations [4.23] and

[4.24], respectively (Martin, 1977).

Z

3 3

Nu=3-Pr°-42-f0:i- Lif— [ 4.23]

3 % + 1%

0

Z

3 3

Sh=—:—-Sc0'42-f02- Z'Re [4.24]

%.+f%

where f0 is a filnction of the slot geometry, and is given by Equation [4.25].

f0 =(60+4-(%—2)2)_1/2 [ 4.25]
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In Equation [4.25], H represents the spacing between the impinging jets and the product

surface, and W represents the slot width of the jets. Heat and mass transfer coefficients

were calculated from the Nusselt and Sherwood numbers using Equations [4.26] and

[4.27], respectively.

 

Nu-k -

h =——-——-m1x 4.26T W l ]

Sh-D

hm,water = w 5“ [ 4.27]

For the vertical surfaces of the patty (the patty edges), correlations for turbulent

flow past a flat plate (Bejan, 1995) were used to calculate heat and mass transfer

coefficients. Turbulent flow was assumed due to the flow regime created by

configuration of the oven ductwork and turbulent air coming off of the top and bottom

surfaces of the patty. Reynolds number was calculated using Equation [4.28] where (E)

is the edge height of the patty.

Rezw [4.23]

”mix
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Prandtl and Schmidt numbers were calculated using Equations [4.20] and [4.21],

respectively. Nusselt and Sherwood numbers were calculated using Equations [4.29] and

[4.30].

4 1

Nu = 0.037 ~ Re/S-Pr/3 [ 4.29]

4 l

Sh = 0.037 - Re/5-Sc/3 [ 4.30]

Heat and mass transfer coefficients were then calculated using Equations [4.31] and

 

[4.32], respectively.

hT2M [ 4.31 ]

E

Sh . D

hm,water = E sa [ 4.32]

4. 2.5 Heat and mass transfer coeflicients — array ofround nozzles

In addition to the correlations for an array of slot nozzles, additional correlations

were utilized to predict the heat and mass transfer coefficients for an array ofround

nozzles (Martin, 1977). Nusselt and Sherwood numbers were calculated using equations

[4.33] and [4.34], respectively.
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Nu = Pro-42. KA (HS,0t /D, r)- G(Hslot /D, f)- F(Re) [ 4.33 ]

Sh = Sc0‘42 -K A (Hslot /D, f)- G(Hslot /D, f)- F(Re) [ 4.34 ]

KA(Hs[m/D, f) is the array correction function and is given by Equation [4.35].

6 —0.05

H /1)
K H D,f=1+—S'°—t— [4.35]
A( slot/ ) [0.6/J?

where:

f=0.785-(D/L)2 [ 4.36]

In the above equations, D and L represent the nozzle diameter and nozzle spacing,

respectively. G(f, H/D) is a geometric function (Equation [4.37]), and F(Re) is a function

of the Reynolds number (Equation [4.38]).

1—2.2-~/f [4.37]

G(f’HSIOt/D)= ZW/F. I+0.2'(Hslot/D-6)"/E
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F(Re): 0.5-Re2/3 [ 4.38]

From the values of Nusselt and Sherwood numbers, values for heat and mass

transfer coefficients were calculated using Equations [4.26] and [4.27] respectively.

4.3 Microbial inactivation model

A simple first-order inactivation model (Equation [4.39]) was combined with the

heat and mass transfer model.

N0 AI

10 — : —
4.39810( N ] D l l

where:

D = Dmf .10(Tref‘T)/Z [ 4.401

The reduction in the number ofSalmonella at each node was determined by

calculating the fraction of survivors after each time step. The number of survivors after

each time step was calculated by inserting the temperature data generated by the cooking

model into Equation [4.41]. The overall reduction at the center of the patty was then
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determined for the entire cooking process. The aggregate microbial reduction for the

entire patty was calculated by calculating the volume average of all the nodes.

At

N=N0/IOD [4.41]

4.4 Finite element formulation

4. 4.1 Introduction

The finite element method (FEM) was utilized to solve the cooking model

equations. The finite element is a common numerical method for solving differential

equations that are difficult to solve using analytical techniques. The finite element

method has several advantages over other numerical techniques that make it very suitable

for formulating cooking models. FEM is readily adaptable to irregular geometries, it can

be applied to systems containing more that one set of physical properties, and it is readily

applied using computers.

The following sections briefly describe the finite element method and the

techniques used to convert the model equations into computerized form. A much more

detailed description of the finite element method was given by Segerlind (1984).

4. 4.2 Finite element basics

To apply the finite element method, the geometry of the system must first be

broken down into a finite number of discrete regions referred to as elements. Elements

are typically triangular or quadrilateral, although other geometries can also be utilized.
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The comers of each element are referred to as nodes. Adjacent elements share the nodes

at the corners they have in common. When the finite element method is performed, a

numerical solution is generated for each node in the element mesh. Increasing or

decreasing the number of nodes controls the resolution of the model. Models with a large

number of nodes produce finer resolution at the expense of increased computing time.

Figure 4.3 shows the geometry of the system used for the computer model as well

as the element mesh. Figure 4.4 is a view of the element mesh with the coordinate axis

indicated.

 

 

 

 

           
 

   

  

Figure 4.3 - Geometry of a ground meat patty with the modeled region and element

mesh indicated.
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Figure 4.4 - Illustration of the finite element mesh utilized for the model.

The radial symmetry of ground meat and poultry patties allowed patties to be

modeled as two-dimensional axisymmetric bodies. For the purpose of the cooking

model, the modeled region was broken down into 117 triangular elements. This resulted

in 82 nodes. The density of the element grid was higher at the patty surface to better
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model the larger moisture, fat, and temperature gradients present near the product

surface. The 117-node element mesh was chosen to balance solution accuracy with

computing time (see Section 5 .5.1).

4. 4.3 Governing equations

As discussed in the previous sections, the cooking model was formulated using

three sets of differential equations. The basic solution of the heat transfer, moisture

transfer, and fat transfer equations using the finite element method is very similar.

Therefore, solution of a generic transport equation will be shown with emphasis given to

the differences between the three solutions.

The basis for each transport solution was the time-dependent two-dimensional

field equation expressed in radial coordinates (Equation [4.42]).

2

i§$=1[nri[r@)]+D,9—Il [ 4.42]
at r or ar 522

Equation [4.41] is a generic form of the governing equations given by Equations

[4.1], [4.7], and [4.16]. In Equation [4.42], the term (of) is the unknown variable and

corresponds to the enthalpy, moisture content, and fat-protein ratio in Equations [4.1],

[4.7], and [4.16], respectively. The terms (A) and (D) are combinations of thermo-

physical property values. For the heat transfer solution, the term D is equal to the thermal

conductivity, and the term 7). is equal to the product of the heat capacity and the density of

the meat. For the moisture transfer solution, the term D is equal to the moisture

conductivity, and the term it is equal to the product ofthe specific moisture holding
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capacity and the density of the meat. For the fat transfer solution, the D term is equal to

the capillary diffusivity, and the A term is not utilized.

The finite element method is a weighted residual technique. An approximate

solution is substituted into the governing equations, and the error term calculated. The

product of this term and a weighting function is then reduced to zero to produce a

numerical solution. The weighting function may take many forms. The method chosen

was Galerkin’s method. In this method, the weighting function uses the same functions

that were used for the approximate solution (Segerlind, 1984).

Using Galerkin’s method for the axisymmetric field problem, the weighted

residual equation is Equation [4.43].

{11(6)}: —][N]T[%§(r—;ij+ozg+x%]dv [ 4.43]

The term [N], is a vector of shape functions. Triangular elements were used for

the cooking model. This allowed the density of the element mesh to be increased near

the boundaries without dramatic change in the aspect ratio ofthe elements. Proper aspect

ratio is desirable, as elements with greatly uneven lengths and widths can contribute to

loss of solution accuracy (Segerlind, 1984). Figure 4.5 is an illustration of a typical

triangular element. The element contains three nodes that are labeled as nodes i, j, and k.
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Figure 4.5 - Illustration of a triangular element showing counterclockwise node

numbering.

The shape functions for a triangular element are given by Equations [4.44]

through [4.46].

l

Nk = ‘2TA—(ak + bkr + ckz)

where:

ai = RjZk -Rij bi=Zj—Zk
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Ci =Rk-R'

[ 4.44]

[ 4.45]

[ 4.46 ]



=RkZi—RiZk bj=Zk—Zi °j=Ri“Rk

ak=RiZj—RJ-Zi bk =Zi—Zj Ck=Rj"Ri

The terms R" and Z“ are the r and z coordinates of the nth node, respectively.

After applying the product rule for differentiation and considerable manipulation

(Segerlind, 1984), Equation [4.43] can be converted to the form of Equation [4.47].

or:[ineavfiaelvjal
[[[N]T D, grim“) + 112 gsin 0de + {[[NF (A gijdv

F

[ 4.47]

The first integral of Equation [4.47] is related to transport within the product and

can be written as Equation [4.48], where [km] is the element stiffness matrix.

ik”-—IiVII) Qg—Wa—[N]+wz°[—:23%]dv [4.48]

The second integral in Equation [4.47] is related to the derivative boundary condition and

can be written as Equation [4.49], where “(0} is the inter-element vector.

{1(6)}: [[N]T(DEcosfHDz gsin0]d [4.49]
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The third integral in Equation [4.47] is a time-dependent capacitance term.

Using Equations [4.48] and [4.49], Equation [4.47] can be re-written in the form:

{1(0)}: {102)}, lk(°)]i¢(e)i+ [C(e)J[¢(e)} [ 4.50]

where [Cm] is called the capacitance matrix and is given by Equation [4.51], and {(1)}

represents the nodal values of 6CD/6t.

[CM]: [3.[N]T[N]dv [ 4.51 ]

Inserting the shape functions into the element stiffness matrix and integrating

gives the form of the stiffness matrix shown in Equation [4.52].

  

' 2 ‘ ’ 2 7
) Zm-‘D bi bisz bibk Zm'D Ci CiCZj CiCk

[1((e ]= 4A r bibj bj bjbk + 4A 2 CiCj Cj CjCk [ 4.52]

2

    
2

bibk bjbk bk CiCk CjCk Ck

‘

Expanding the capacitance matrix using a lumped solution gives the form of the

capacitance matrix given by Equation [4.53]. The lumped solution assumes that the

variation art/at is constant across each element. This is the solution that provides for the

maximum operating range of the final model.
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0 0

[C(e)]=-’f§0 1 0 [4.53]

o 1

Treatment of the inter-element vector is somewhat more involved. A derivative

boundary condition over a boundary F can be specified using Equation [4.54].

Drgc080+ngsm0=—M¢b +S [ 4.54]

The right hand side of Equation [4.54] can be substituted into Equation [4.49] yielding

Equation [4.55].

{19}: I[INIT(1\4[N]{<I>“’)1- Sill“ I 4551

Upon expansion, Equation [4.55] produces two terms given by Equations [4.56] and

[4.57].

IkM(c)I= lMlNlrlNldl"
[4.56]

r13C

a): and [4,7,
r13c

84



Equations [4.56] and [4.57] can be expanded into the form of Equation [4.58] and [4.59].

(3Ri+RJ-) (Ri+RJ-) 0

 

 

[kM(e)]=2”11‘2’IL (Ri+RJ-) (Ri+3Rj) 0 [4.58]

0 0 0

{fs(e)}= “6 Ri+2RJ~ [4-59]

0

For the convective heat transfer boundary condition, the term M is equal to the

heat transfer coefficient h. The term S is equal to the heat transfer coefficient multiplied

by the temperature of the bulk fluid. Since the heat transfer solution was formulated in

terms of enthalpy, the equilibrium enthalpy related to the oven air temperature was

calculated using Equation [4.2] and substituted in place of the oven air temperature in

calculating S.

For the convective moisture transfer boundary condition, the term M is equal to

the convective mass transfer coefficient hm. The S term is equal to the convective mass

transfer coefficient multiplied by the equilibrium moisture content for the meat under the

given oven air temperature and moisture conditions. Equilibrium moisture content was

calculated using Equation [4.60] derived from the work ofHuang and Mittal (1995).
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—l/l.0983

EMC = 1.9818 Tsurface ln(RH) [ 4.60 1

— 5222.47

where:

RH =100 ' (Coven /Csat) I 4°61 I

4. 4.4 Finite diflerence time solution

A finite difference time-solution was used to provide a FEM solution over a

number oftime steps. This resulted in an equation with a time-step term (Equation

[462]).

([C]+ 0At[k]){<l>}b = ([c]— (1 — 0)At[l<]){cr>}a + At((1 — 0){F}b + 0{F}a) [ 4.62 ]

Setting the value of 0 equal to 1/2 (central difference method), results in Equation [4.63].

At At At

[[c]+ 70.0415), = [[c]_ ?[K]]{<D}a + 761?}. + [14,) r 4.63 1

Equation [4.63] can be reduced to Equation [4.64].

[A]{(I>}b = [P]{<r>}a + {F *} [ 4.64]
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where:

[A] = [[c]+ 323M] [ 4.65 ]

lpl=[lcl—é‘,llkl) [ 4.66]

and

{w}: 4‘0}. +114.) 1 4.67]

4.4.5 Application ofFEMsolution

Equation [4.64] has a form that can be readily programmed into a personal

computer. For the cooking model, three sets of element solutions were constructed. The

first set of equations was related to the heat transfer portion ofthe model (Equation

[4.1]). The second set of equations was related to mass transport due to moisture

migration (Equation [4.7]). The third set of equations was related to fat transfer

(Equation [4.16]). The finite element solution was programmed using Microsoft Visual

Basic (Version 6.0 professional edition: Microsoft, Redmond, WA); (Section 9.5).
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4. 4.6 User interface

A Windows-based user interface for the model was developed using Microsoft

Visual Basic. The user interface consisted of two primary window screens controlled by

a menu toolbar. Illustrations of each interface screen are shown in Section 9.4.

The first of the windows is the input screen. On this screen, the user inputs the

oven air temperature, the oven steam content or wet bulb temperature, the air velocity,

and the cooking time. The user also has the option of inputing a set of transient oven

conditions using a file input. The input screen also requires the user to specify the initial

temperature, fat content, and moisture content of the meat. Buttons are available for

selecting between beef, pork, and turkey. The final component of the interface screen is

the microbial inactivation input section. Default D, 2, and reference temperature values

for a seven-strain Salmonella cocktail in beef (Smith et al., 2001) are incorporated into

the model. However, these defaults may be replaced with values specified by the user.

The second screen of the user interface is the output screen. On this screen, the

output temperature, moisture, yield, and microbial inactivation are displayed in graphical

form. The final temperature, moisture, yield, and lethality values are also given in digital

form. A message is displayed in the inactivation output section indicating whether or not

the required level of lethality was achieved for the product selected.
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5 RESULTS AND DISCUSSION

5.1 Overview

The experimental results for this study are grouped into three main sections. The

first section (Section 5.2) describes the results of a set of experiments conducted using a

laboratory convection oven. Patties of ground turkey, ground beef, and ground pork were

cooked to various endpoint temperatures to determine the effects of meat species and

initial fat content on cooking yield, heating rate, and shrinkage. These experiments were

intended to provide insight on differences in cooking behavior between meat species and

fat content and to evaluate the need for including fat transfer in meat cooking models.

Section 5.3 describes the results of a series of experiments conducted to determine

the fat holding capacity of ground beef as affected by isothermal heating. These data

were used to develop an expression for fat holding capacity as a function of initial fat

content and temperature. This expression was then included as a portion of the cooking

model (Section 4.2.3).

Section 5.4 describes the results of experiments conducted using an industrial

moist-air impingement cooking system (Stein model JSO-IV). Ground beef patties were

cooked in the oven using various cooking conditions. The effects of oven conditions on

cooking time, yield, and volume change were determined. Additionally, data from this

set of experiments were used to validate the heat and mass transfer components of the

cooking model.
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5.2 Laboratory oven cooking tests

In these tests, small meat patties were cooked in a laboratory convection oven to

determine the effect of species and initial fat content on fat loss for ground turkey, ground

beef, and ground pork (Section 3.2). The effects of species and fat content on cooking

time, yield, and volume change were also determined.

5. 2.] Cooking time

For each cooking test, the time required to reach the target endpoint center

temperature was measured. Using this information, temperature versus time plots were

constructed for each species and fat content (Figures 5 .1-5.3)
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Figure 5.1 — Center temperature as a function of cooking time for ground turkey

patties cooked in a laboratory convection oven: means of 5 replicates.
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Figure 5.2 — Center temperature as a function of cooking time for ground beef
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patties cooked in a laboratory convection oven: means of 5 replicates.
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Figure 5.3 — Center temperature as a function of cooking time for ground pork

patties cooked in a laboratory convection oven: means of 5 replicates.

91



The cooking rates of turkey differed between the 1.4% and 8.6% fat samples

(Figure 5.1). The temperature ofboth the low and high fat patties increased as a function

of time. However, the heating rate of the 1.4% fat samples was slightly higher. The 1.4%

fat patties took 254 seconds to reach 45°C compared to 264 seconds for the 8.6% fat

patties. The difference in heating time increased as the patties reached higher

temperatures. The 1.4% fat patties reached 85°C in 513 seconds compared to 684

seconds for the 8.6% fat patties, a difference of almost 3 minutes. Analysis of variance

confirmed the statistical significance (P<0.05) of differences in heating times between the

two fat contents (Table 5.1).

Table 5.1 — Analysis of variance for cooking time of ground turkey patties as

affected by temperature and initial fat content.

 

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square

Temperature 6618213 4 1654553 48.2258 <0.001

Fat Content 59305.68 1 59305.68 17.2860 <0.001

Interaction 57447.52 4 14361.88 4.1861 0.006
 

With ground beef, the heating rate was significantly higher for the 17.5% fat

patties than for the 7.2% fat patties (Figure 5.2). The average time required to heat the

17.5% fat patties to 45°C was 260 seconds compared to 361 seconds for the 7.2% fat

patties. The heating time increased with increasing patty temperature. The time required

to reach 85°C was 619 seconds for the 17.5% fat patties compared to 836 seconds for the

7.2% fat patties. Analysis of variance showed both center point temperature and fat

content to affect (P<0.05) heating time for ground beef patties (Table 5.2).
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Table 5.2 - Analysis of variance for cooking time of ground beef patties as affected

by temperature and initial fat content.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square
 

Temperature 7420335 4 185508.4 19.7617 <0.001

Fat Content 1208353 1 1208353 12.8723 <0.001

Interaction 29187.52 4 7296.88 0.7773 0.547
 

As with the beef patties, the higher fat content pork patties took less time to heat

than the lower fat patties (Figure 5.3). The average time required for the 41 .9% fat

patties to reach 45°C was 236 seconds compared to 285 seconds for the 15.7% fat patties.

Heating temperature increased with increasing time. The time required for the 41 .9% fat

patties for each 85°C was 608 seconds compared to 710 seconds for the 15.7% fat patties.

Analysis of variance showed temperature and fat content to be significant (P<0.05) with

respect to heating time (Table 5.3).

Table 5.3 - Analysis of variance for cooking time of ground pork patties as affected

by temperature and initial fat content.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square
 

Temperature 1036732 4 2591829 59.6434 <0.001

Fat Content 59512.5 1 59512.5 13.6951 <0.001

Interaction 7689.6 4 1922.4 0.4424 0.777
 

In the case of the ground beef and ground pork patties, samples containing higher

levels of fat achieved higher rates of heating. This was most likely due to the lower

moisture content associated with the higher fat products. As water contributes the
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greatest source of heat capacity in the meat matrix, lowering the water content would be

expected to increase the heating rate. It has also been hypothesized that inclusion of high

fat contents could result in convective heating within the meat, thereby increasing the

heating rate (Shilton et al., 2002).

Unlike the ground pork and ground beef patties, the heating rate of the ground

turkey patties was higher for the lower fat product. It should be noted that the

compositions of the two ground turkey samples were more similar than those of the

ground pork and ground beef samples. Specifically, the moisture content of the 8.6% fat

ground turkey was only 1.8 w.b. moisture points lower than the moisture content of the

1.4% fat patties. This compares with differences in moisture content of 8.2 and 20.5 w.b.

moisture points for the ground beef and ground pork, respectively. The smaller

differences in moisture content for the ground turkey mean that the heat capacity of the

two samples was nearly the same. Thus, moisture probably played a less significant role

in differences in heating rate for the ground turkey patties.

The difference in heating rate between different fat levels ofground turkey patties

was largest at temperatures above 55°C. Interaction between fat content and temperature

was significant. This differs from ground beef and ground pork, which had consistent

differences (i.e., no significant fat-temperature interaction). It is therefore likely that the

different heating characteristics of the turkey were related to other compositional

characteristics of the meat. The 8% initial fat ground turkey patties included ground skin

as a method for increasing fat content. This may have contributed to the different heating

characteristics of the ground turkey as compared to the ground beef and ground pork.
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5. 2.2 Cooking yield

For each test, the cooking yield was calculated at each endpoint temperature

(Figures 5.4-5.6). Large differences in yield were evident between the 1.5% fat and 8.6%

fat ground turkey patties (Figure 5.4). The yields of the 1.4% fat patties were

consistently higher than the yields of the higher fat patties. The yield of the 1.4% fat

patties ranged from 90% at 45°C down to 81% at 85°C compared to yields of about 83%

to 63% for the 8.6% fat patties. The decrease in yield was approximately linear with

respect to center temperature for both fat contents. Analysis of variance confirmed the

significance (P<0.05) of both center temperature and fat content on cooking yield (Table

5.4). Higher yield losses for the 8.6% fat patties were presumably due to fat loss during

cooking. However, the results presented in the next section do not support the conclusion

that fat transport was solely responsible for yield differences between the two fat contents

of turkey. It is possible that interaction between the fat and water within the patty

resulted in lower water binding capacity for the higher fat patties, resulting in higher rates

of moisture loss during cooking. Further experimentation is needed to determine the

mechanisms for fat and water binding during cooking.

Table 5.4 — Analysis of variance of yield as a function of center temperature and

initial fat content for ground turkey patties.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square

Temperature 1359.399 4 339.8498 10.5351 <0.001

Fat Content 1751.823 1 1751.823 54.3051 <0.001

Interaction 203.2676 4 50.8169 1.5753 0.200
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Figure 5.4 — Yield as a function of endpoint center temperature for ground turkey

patties of two fat contents: means of 5 replicates.

For the ground beef, only minor differences in yield were detectable between the

7.2% and 17.5% fat samples at each cooking temperature (Figure 5.5). The yield ofboth

products decreased from about 84% at 45°C to between 63 and 66% at 85°C. Analysis of

variance indicated that yield was related (P<0.05) to center temperature but not to initial

fat content for these data..

Table 5.5 - Analysis of variance of yield as a function of center temperature and

initial fat content for ground beef patties.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square

Temperature 2135.567 4 533.8917 37.9595 <0.001

Fat Content 9.6439 1 9.6439 0.6857 0.413

Interaction 21.9899 4 5.4975 0.3909 0.814
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Figure 5.5 - Yield as a function of endpoint center temperature for ground beef

patties of two fat contents: means of 5 replicates.

For ground pork, there were large differences in yield between the 15.7 and

41.9% fat patties (Figure 5.6). The yield ofthe lower fat patties was much higher at each

center temperature. Cooking yield for the 15.7% fat patties ranged from about 90% at

45°C to about 71% at 85°C. Cooking yield for the 41.9% fat patties ranged from about

74% at 45°C to about 54% at 85°C. Cooking yield decreased linearly as a function of

temperature for patties of both fat contents. Analysis of variance showed differences

(P<0.05) in yield as a function of temperature, fat content, and temperature-fat interaction

(Table 5.6).
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Figure 5.6 - Yield as a function of endpoint center temperature for ground pork

patties of two fat contents: means of 5 replicates.

Table 5.6 - Analysis of variance of yield as a function of center temperature and

initial fat content for ground pork patties.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square
 

Temperature 2132.37 4 533.0926 96.4285 <0.001

Fat Content 4153.887 1 4153.887 751.376 <0.001

Interaction 79.8724 4 19.9681 3.61 19 0.013
 

The differences in cooking yield appear to be affected by both meat species and

fat content. No significant correlation between initial fat content and cooking yield can

be made across the three meat species. Although the yield at 85°C was lowest for the

highest fat product (41 .9% fat ground pork) and highest for the lowest fat product (1.4%

fat ground turkey), the behavior of samples of in-between fat contents was not consistent.

This could be caused by differences in protein conformation and fat composition of the
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three meat species. It may also be due to differences in water and fat binding capacity of

the meat proteins. Differences in particle size and porosity of the meat may also affect

the cooking yields by changing the moisture and fat transport dynamics.

5.2.3 Fat loss

The amount of fat lost during cooking as a function of temperature for 1.4% and

8.6% fat ground turkey patties is shown in Figure 5.7. The amount of fat lost during

cooking of ground turkey patties was below 2% for every temperature. Analysis of

variance indicated that neither temperature nor initial fat content had a significant

(P<0.05) effect on fat loss during cooking (Table 5.7).
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Figure 5.7 - Fat loss as a function of temperature for ground turkey patties of two

fat contents: means of 5 replicates.
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Table 5.7 — Analysis of variance for fat loss as functions of center temperature and

initial fat content for ground turkey patties.

 

 

Factor Sum of Degrees of Mean F-Value P-value

Squares Freedom Square

Temperature 29.9082 4 7.4770 1.2317 0.3184

Fat Content 4.4131 1 4.4131 0.7270 0.4006

Interaction 17.8231 4 4.4558 0.7340 0.5760
 

The amount of fat lost during cooking of ground beef patties was much larger

than the amounts lost during cooking of ground turkey (Figure 5.8). Fat losses were

higher for the 17.5% fat patties, ranging up to 6% of the initial mass of the meat.

Analysis of variance showed that initial fat content had a significant (P<0.05) effect on

the amount of fat lost during cooking (Table 5.8). A significant temperature effect on the

amount of fat lost during cooking could not be shown.
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Figure 5.8 - Fat loss as a function of temperature for ground beef patties of two fat

contents: means of 5 replicates.
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Table 5.8 — Analysis of variance for fat loss as functions of center temperature and

initial fat content for ground beef patties.

 

 

Factor Sum of Degrees of Mean F-Value P-value

Squares Freedom Square

Temperature 12.8007 4 3.2002 0.9060 0.4730

Fat Content 240.3399 1 240.3399 68.0423 <0.001

Interaction 35.0635 4 8.7659 2.4817 0.065
 

Fat losses for ground pork were the highest of the three meat species tested

(Figure 5.9). For the 15.7% fat pork patties, the amount of fat lost during cooking was

low and never exceeded 2% of the initial patty mass. However, for the 41 .9% fat patties,

the amount of fat lost during cooking was much larger. The amount of fat lost during

cooking was about 20.5% of the initial patty mass at 45°C. The amount of fat lost

increased with increasing patty temperature up to about 28% at 85°C. Analysis of

variance showed cooking temperature, fat content, and temperature-fat interaction to

affect (P<0.05) fat loss (Table 5.9).

Table 5.9 — Analysis of variance for fat loss as functions of center temperature and

initial fat content for ground pork patties.

 

 

Factor Sum of Degrees of Mean F-Value P-value

Squares Freedom Square

Temperature 68.6303 4 17.1576 14.3904 <0.001

Fat Content 5660.502 1 5660.502 4747.583 <0.001

Interaction 56.5569 4 14.1392 1 1.8589 <0.001
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Figure 5.9 - Fat loss as a function of temperature for ground pork patties of two fat

contents: means of 5 replicates.

The quantities of fat lost by the 17.5% fat ground beef patties and 41 .9% fat

ground pork patties during cooking are of great significance for modeling. Cooking

models that do not take fat loss into account will likely over predict cooking yields. For

high fat products such a sausage, these errors in yield prediction could exceed 25%.

Many models may account for fat losses indirectly by over predicting mass transfer

coefficients. However, this method may restrict the utility of the models to products of

similar composition. To produce robust cooking models, transport of both moisture and

fat components should be considered.
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5.2.4 Volume change

Plots of volume change as a function of product temperature were plotted for each

meat species (Figures 5. 10-5. 12). The volume of ground turkey patties as a function of

temperature is shown in Figure 5.10. Volume of the 1.4% fat patties ranged between 74

and 70% of the initial volume at center temperatures between 45 and 85°C. Volume of

the 8.6% fat patties decreased more dramatically as a fiinction of center temperature and

ranged from 62% to 56% of the original volume at center temperatures of 45 and 85°C

respectively. Analysis of variance showed that initial fat content had a significant effect

on volume change during cooking (P<0.05) (Table 5.10). However, the relationship

between center temperature and volume change was not statistically significant.

Although the change in volume was significantly different over the measured temperature

range, both products exhibited major decreases in volume between the raw state and

45°C. This shows that major volume changes occur during the initial stages of cooking,

and thus may be impossible to avoid during convection cooking.

Table 5.10 — Analysis of variance for effects of temperature and initial fat content on

volume change for ground turkey patties cooked in a laboratory convection oven.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square
 

Temperature 253.4806 4 63.3702 1.0724 0.383

Fat Content 2910.062 1 2910.062 49.2471 <0.001

Interaction 122.8181 4 30.7045 0.5196 0.722
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Figure 5.10 — Relationship between product temperature and volume change for

ground turkey patties cooked in a laboratory convection oven: means of 5 replicates.

The ground beef patties exhibited a similar decrease in volume during cooking

(Figure 5.11). Analysis of variance showed both center temperature and fat content to

significantly affect volume (Table 5.11). Unlike the ground turkey and pork patties, the

higher fat beef patties had less shrinkage during cooking than did the lower fat patties.

Table 5.11 — Analysis of variance for effects of temperature and initial fat content on

volume change for ground beef patties cooked in a laboratory convection oven.

 

Factor Sum of Degrees of Mean F-Value P-Value

Squares Freedom Square

Temperature 1424.392 4 356.0981 11.5257 <0.001

Fat Content 631.248 1 63 l .248 20.43 14 <0.001

Interaction 133.973 4 33.4933 1.0847 0.377
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ground beef patties cooked in a laboratory convection oven: means of 5 replicates.

The largest changes in volume during cooking occurred for ground pork patties

(Figure 5.12). Volume decreased as a function of cooking temperature for both the

15.7% and 41 .9% fat patties. The 15.7% fat patties ranged from about 74% to 60% of

their original volumes at 45°C and 85°C, respectively. The 41.9% fat patties ranged from

70% to 42% of their original volumes at 45°C and 85°C, respectively. The large volume

changes correlate with high yield losses during cooking. Analysis of variance indicated

that both center temperature and fat content significantly (P<0.05) affected volume

change (Table 5.12).
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Table 5.12 - Analysis of variance for effects of temperature and initial fat content on

volume change for ground pork patties cooked in a laboratory convection oven.

 

Factor Sum of Degrees of Mean F-Value P-Value

Smres Freedom Sjuare

 

 

 

   

   

Temperature 2125.544 4 531.386 16.7989 <0.001

Fat Content 1506.957 1 1506.957 47.6400 <0.001

Interaction 451.4145 4 112.8536 3.5677 0.014
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Figure 5.12 — Relationship between product temperature and volume change for

ground pork patties cooked in a laboratory convection oven: means of 5 replicates.

Changes in volume are a major concern in the development of cooking models.

Slight changes in thickness greatly affect predictions of center temperature and may also

have large effects on yield predictions. Due to the geometry of the products tested, most

heat and mass transfer occurs in the axial direction. Therefore, changes in product

thickness are of greater concern than changes in product radius.
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Although the volume of all samples decreased with increasing product

temperature, the same was not true for patty thickness. Most of the reduction in patty

volume was caused by a reduction in patty diameter. The thicknesses of the 1.4 and 8.6%

fat ground turkey patties, when cooked to a temperature of 85°C, were 120 and 110% of

the initial values, respectively. The final thicknesses of the 7.2 and 17.5% fat ground

beef patties were 97 and 120% of their initial values, respectively. The thicknesses of the

15.7 and 41.9% fat ground pork patties were 120 and 110% of their initial values,

respectively. Therefore, in all but one case, patty thickness actually increased, while the

radius decreased.

These results indicate that changes in volume cannot be modeled by simply

reducing the size of the element mesh in proportion to the reduction in product mass.

Further information is needed to determine the mechanisms for patty shrinkage. This

would be an excellent area for further study.

5.3 Fat holding capacity experiments

Fat holding capacity (FHC) was determined as a function of temperature and initial

fat content for two lots of ground beef with initial fat contents of 5.6 and 15% by mass

(Section 3.3). The fat holding capacity of the meat was defined as the amount of fat

remaining in the meat after heating and centrifuging for 15 minutes at 1000 g. The fat

content of the centrifuged meat was expressed in terms of dry basis fat content using

Equation [5. 1].
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F: Mfat /Mdry matter [ 5-1]

where M dry mane, refers to the mass of meat that is neither water nor fat.

The mass of dry matter in each sample was calculated using Equation [5.2].

Mdry matter : I\dtotal _ (M fat + Mwater) [ 5-2 ]

Mm and Mwatc, were calculated from the initial wet basis moisture and fat contents of the

meat. The amount of dry matter was assumed to be constant during heating and

centrifugation. During cooking, small quantities of dry matter are released in the forms

of soluble proteins. Future studies should be conducted to describe the relationships

between meat proteins and moisture and fat holding capacities in a more fundamental

manner. However, inclusion of such relationships was beyond the scope of this study.

The fat content, P, was plotted as a function of heating temperature for each

heating time (Figures 5.13-5.16, 5.18-5.21).

5.3.] Lowfat samples (5. 6% initialfat wet basis)

The relationship between fat holding capacity and temperature for heating times

of 2, 5, 10, and 15 minutes can be seen in Figures 5.13-5.16. The initial fat content of the

ground beef was 0.14 g fat/g dry matter. For each heating time, the fat holding capacity

was markedly lower at 55°C. The fat holding capacity of samples heated to 90°C ranged

from 0.03 to 0.05 g fat/g dry matter.
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Linear regression was used to fit a model for fat/dry matter ratio as a function of

heating temperature and holding time for the 5.6% fat (wet basis) ground beef samples.

A quadratic response surface was chosen for the initial regression model (Equation [5.3]).

F=BO+BI~T+Bz~T2+B3-t+B4-t2+BS-t-T+e [5.3]

Regression coefficients for the response surface model are given in Table 5.13.

.
o

.
o

\
l

0
0

+
l

I 1

9
’

o
\

/
g
d
r
y
m
a
t
t
e
r
)

5
3

.
o

A
u
.

  

H T

£3(l3 T
3 a

[4., 0.2 i

L O O O Q Q

0 1 + o .
- » o: e o o , .

0 _ _.L_L_JHL I 1.,1__.i_ l__+_1__.t__l _r_+_l_i__4__t_l,4__i__i__i_+_i_;t_i_+.1.4_t_t_+ 1 .L_J._L_T

20 30 40 50 60 70 80 90 100

Temperature (°C)

Figure 5.13 - Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 2 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.14 - Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 5 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.15 — Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 10 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.14 — Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 5 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.15 - Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 10 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.16 — Fat holding capacity as a function of temperature for 5.6% fat ground

beef heated for 15 minutes at temperatures from 30 to 90°C: means of 5 replicates.

Table 5.13 - Results from regression of fat holding capacity as functions of time and

holding temperature for 5.6% fat ground beef.

(F=[3o +3, 'T+13¢ -T’ +0, ~t+04 -t’ +13, -t-T+e)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square

 

 

 

 

Regression 5 0.0703 0.0141 37.8124 <0.001

Residual 46 0.0171 0.0004

Total 51 0.0875

Factor Coefficient Standard t-Statistic P-Value

Error

[30 (g fat/g dry matter) 0.3459 0.0339 10.2141 <0.001

B1 (g fat/g dry matter)-°C'1 -0.0060 0.0011 -5.6101 <0.001

02 (g fat/g dry matter)-°C'2 3.28E-05 8.67E-06 3.7842 <0.001

83 (g fat/g dry matter)'s" -00057 0.0032 -1.8057 0.078

[34 (g fat/g dry matter)-s'2 0.0002 0.0002 1.3904 0.171

05 (gfat/gdrymatter)°°C’l-s'l 2.96E-05 2.86E-05 1.0368 0.305

111



Heating temperature was found to affect the fat holding capacity of the meat

(P<0.05). The heating time and time-temperature interaction terms of the response

surface model were not significant. A second regression was performed, neglecting the

time and time-temperature interaction terms (Equation [5.4]).

F=BO+BI.T+8,.T2+2 [5.4]

The regression coefficients of the modified response surface model are given in Table

5.14.

Table 5.14 — Results from linear regression of fat holding capacity versus holding

temperature for 5.6% fat ground beef.

(F=[i,,+[ll -T+[12-'l‘z +8)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square

 

 

 

 

Regression 2 0.0691 0.0346 92.2654 2.43E-l7

Residual 49 0.0184 0.0004

Total 51 0.0875

Factor Coefficient Standard t-Statistic P-value

Error

I30 (g fat/gdrymatter) 0.3178 0.0295 10.7649 <0.001

B: (g fat/gdrymatter)-°C" -0.0057 0.0011 -5.4687 <0.001

[32 (gfat/gdrymatter)-°C'2 3.24E-05 8.69E—06 3.7254 <0.001

The regression model shows the fat holding capacity of the meat to be inversely

proportional to the heating temperature. The drop off in fat holding capacity between 50

and 55°C is likely related to melting of fat globules within the meat matrix. The melting
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temperatures of the most prevalent saturated fatty acids in ground beef occur near this

range, with the melting temperatures of myristic, palmitic, and stearic acids being 54, 63,

and 70°C, respectively (Bodwell and McClain, 1978). Ground beef with a fat content of

only 5.6% contains only small quantities of extra-muscular fat and thus should be

expected to contain lower percentages of saturated fatty acids. This could explain the

lack of further losses in FHC at temperatures above 60°C.

The lack of time-significance seems to support the idea that fat holding capacity is

largely related to the physical state of the fat itself. Since fat melting occurs over a short

period, once the fat has melted, further heating should not affect the amount of liquid fat.

If fat holding capacity changes were driven primarily by changes in protein

conformation, denaturing, etc., longer heating times would be expected to produce

increasingly lower levels of fat holding capacity.

A comparison of the fat holding capacity values predicted by the regression

equation and the experimental data resulted in an R2 of 0.79 (Figure 5.17). The root

mean square error (RMSE) ofthe regression was 0.02 g fat/g dry matter.
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Figure 5.17 — Comparison of fat holding capacity calculated from regression model

versus experimental values: means of 5 replicates.

5.3.2 Highfat samples (15% initialfat wet basis)

The effect of temperature on fat holding capacity was much more pronounced for

the 15% fat meat than for the 5.6% fat meat (Figures 5.18-5.21). The initial fat content of

the 15% fat meat was 0.6 g fat/g dry matter. Fat holding capacity decreased with

temperature and ranged between 0.07 and 0.17 g fat/g dry matter for samples heated to

90°C.

Multiple linear regression was again used to model fat content as functions of

heating temperature and holding time, using a quadratic response surface equation

(Equation [5.3]). The regression coefficients for the response surface equation are given

in Table 5.15.
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Figure 5.18 — Fat holding capacity as a function of temperature for 15% fat ground

beef heated for 2 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.19 - Fat holding capacity as a function of temperature for 15% fat ground

beef heated for 5 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Figure 5.21 - Fat holding capacity as a function of temperature for 15% fat ground

beef heated for 15 minutes at temperatures from 30 to 90°C: means of 5 replicates.
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Table 5.15 — Results from regression of fat holding capacity versus time and holding

temperature for 15% fat ground beef.

(F=Bo+B1'T+B2 'T2 +33 't+B4’t2 +35 -t-T+£)

 

 

 

 

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square

Regression 5 1.4071 0.2814 54.8295 <0.001

Residual 47 0.2412 0.0051

Total 52 1.6483

Factor Coefficient Standard t-Statistic P-value

Error

[30 (g fat/g dry matter) 1.3497 0.1237 10.9131 <0.001

01 (g fat/g dry matter)-°C'l -0.0322 0.0039 -8.1558 <0.001

[3; (g fat/g dry matter)-°C‘2 0.0002 3.19E-05 6.5391 <0.001

[3. (g fat/g dry matter)°s" 0.0155 0.0117 1.3221 0.193

[34 (g fat/g dry matter)°s'2 -0.0006 0.0006 -1 .0612 0.294

135 (g fat/g dry matter)-°C"-s" -0.0001 0.0001 -1.0881 0.282
 

Heating temperature again affected fat holding capacity (P<0.05). However, as

with the lower fat beef, holding time and time-temperature interaction were not

statistically significant. A modified regression was performed omitting the terms for

holding time and time-temperature interaction (Equation [5.5]).

[5.5]

The regression coefficients of the modified regression are shown in Table 5.16.
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Table 5.16 — Results of regression of fat holding capacity versus holding

temperature for 15% fat ground beef.

(11:13o +13, -T+p, -T’ +2)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Sguare

 

 

 

Regression 2 1.3922 0.6961 135.9025 <0.001

Residual 50 0.2561 0.0051

Total 52 1.6483

Factor Coefficient Standar t-Statistic P-Value

d Error

[30 (g fat/gdrymatter) 1.4163 0.1085 13.0474 <0.001

8. (g fat/gdrymatter)'°C" -00329 0.0039 -8.5302 <0.001

112 (gfat/gdrymatter)-°C'2 0.0002 3.191305 6.4820 <0.001

The fat holding capacity of the 15% fat ground beef was inversely proportional

to the heating temperature. The effect of heating temperature was much more

pronounced for the 15% fat ground beef than for the 5.6% fat product. The coefficient

for the linear temperature term in the regression equation was —0.0329 (g fat/g dry

matter)/°C for 15% fat ground beef, compared to —0.0057 (g fat/g dry matter)/°C for

5.6% fat ground beef.

Like the low fat samples, the largest change in fat holding capacity for the 15%

fat samples occurred between 40 and 55°C. However, unlike the lower fat samples, fat

holding capacity of the 15% fat samples continued to decrease at temperatures above

55°C. This was likely due to the inclusion of higher quantities of long chain saturated

fatty acids.

The lack of time-dependence of the fat holding capacity was similar to that

exhibited by the lower fat samples. This further supports the idea that fat holding
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capacity, as measured in this study, is governed primarily by the physical state of the fat

globules within the meat matrix. This is of special interest when formulating models for

mass transfer, as the physical state of the fat must be considered. Clearly, solid fat does

not have the transportability of liquid fat. However, it may be possible to develop highly

advanced fat transport models based upon knowledge of the individual fat constituents of

a given species and cut of meat. This would allow for maximum flexibility of advanced

processing models.

A comparison of the fat holding capacity values predicted by the regression model

(Equation [5.5]) to the experimental data resulted in an R2 of 0.84 (Figure 5.22). The

RMSE of the regression model was 0.071 g fat/g dry matter.
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Figure 5.22 - Comparison of fat holding capacity calculated from regression model

versus experimental values (15% fat): means of 5 replicates.
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After completing separate regression analyses for the 5.6% and 15% fat ground

beef samples, a combined regression was performed to create a model for fat holding

capacity as a function of heating temperature, holding time, and initial fat content. A

response surface model was chosen for the regression (Equation [5.6]). No second- order

terms for fat content were utilized in the regression equation, because data were only

available from two initial fat contents. The coefficients for the regression model are

listed in Table 5.17.

F=Bo+131°T+Bz°T24433444344205'F0+I36't'T+B7'T'FO 15.61
+Bg°t'F+8
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Table 5.17 — Linear regression of fat holding capacity as functions of heating

temperature, holding time, and initial fat content.

F=B0+Bl “T7432 'T2 +53 't'I'B4 't2 +65 'Fo +56 't'T'I‘B-I °T'Fo

+Bs-t-Fo+a

 

 

 

 

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square

Regression 9 2.1005 0.2339 65.0322 <0.001

Residual 95 0.3409 0.0036

Total 104 2.4414

Factor Coefficient Standard t-Statistic P-value

Error

[30 (g fat/g dry matter) 0.3334 0.1104 3.0193 0.003

B! (g fat/g dry matter)°C'l -0.0136 0.0027 -5.037 <0.001

[3; (g fat/g dry matter)°C'2 0.0001 1.90E-05 6.3768 <0.001

[3, (g fat/g dry matter)°s" -0.0042 0.0111 -0.3804 0.704

[34 (g fat/g dry matter)-s'2 -0.0002 0.0003 -0.4541 0.651

[35 (none) 0.0503 0.0080 6.3074 <0.001

8. (g fat/g dry matter)-°C"°s" 0.0001 0.0002 0.7967 0.428

[37 (°C") -0.0005 0.0001 -4.2171 <0.001

Ba (8") 0.0008 0.0008 0.9458 0.347
 

None of the terms containing holding time were significant (P<0.05). A modified

regression was performed excluding the time terms (Equation [5.7]).

[ 5.7 ]F=Bo+131°T+I32'T2+I33°F0+I34'T°F0+8

The coefficients of the modified regression are shown in Table 5.18.
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Table 5.18 - Linear regression of fat holding capacity as a function of holding

temperature and fat content.

(F=11.+9. -T+11. -T’ +11. ~F.+11. -T-F.+e)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square
 

 

 

 

Regression 4 1.9767 0.4942 106.330 <0.001

Residual 100 0.4647 0.0046

Total 104 2.4414

Factor Coefficient Standard t-Statistic P-value

Error

[30 (g fat/g dry matter) 0.7062 0.0746 9.4719 0.006

B. (g fat/g dry matter)-°C'l -0.0193 0.0026 -7.3996 <0.001

[3; (g fat/g dry matter)-°C'2 0.0001 2.16E-05 5.0990 <0.001

[3; (none) 0.0069 0.0020 3.4355 <0.001

[3.. (°C") 0.0002 3.41E-05 7.1495 <0.001

A comparison of the fat holding capacity values predicted by the regression and

the experimental data produced an R2 of 0.81 (Figure 5.23). The RMSE for the

regression was 0.068 g fat/g dry matter.
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Figure 5.23 - Comparison of fat holding capacity calculated from regression model

versus experimental values: means of 5 repetitions.

5.3.3 Summary

The regression models presented for fat holding capacity provide a tool that can

be utilized as a component of the cooking model. However, it should be noted that this

results in an empirical fat transfer model. The equations developed for fat holding

capacity are specific for ground beef. Further studies should be conducted to measure the

FHC of other meat species. In addition, mechanisms of fat transport should be firrther

studied to produce a theoretical model for FHC.

The methods used to determine fat holding capacity were considered adequate for

the purposes of this study. However, several factors should be taken into consideration

for further experiments. The most probable source of error for the FHC experiments was

in the centrifugation procedure. The centrifuge utilized for the study was held at 25°C.

Although the centrifuge tubes were insulated from the rotor by plastic inserts, some re-
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solidification of fat took place during centrifugation. To eliminate this potential source of

error, a method of separating the free fat while maintaining the sample temperature

should be determined. It may also be desirable to measure the fat content of the meat

directly using a method such as solvent extraction rather than the method of mass

balances utilized in this study.

5.4 Industrial cooking tests

A set of cooking experiments was conducted using an industrial moist-air

impingement oven (Stein Model .1SO-IV:FMC Foodtech, Sandusky, OH). Ground beef

patties were cooked under different cooking conditions to quantify the effects ofprocess

conditions on heating rate and cooking yield. The results of this set of experiments were

also used to validate the computer-cooking model.

5. 4.] Cooking time

For each cooking experiment, temperature versus time was plotted for both the

center and surface temperatures of the patty (Figure 5.24). The complete collection of

temperature-time plots can be found in Chapter 9. The general form of each time-

temperature plot was similar. After entering the oven, the surface temperature of the

patty quickly rose to a semi-equilibrium level. Calculations showed that this level was

equal to the wet bulb temperature of the meat surface (Section 4). The temperature at the

meat surface was limited by a number of factors, including oven temperature, oven steam

content, and the surface moisture content of the meat.
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Figure 5.24 - Example surface and center temperature versus time for ground beef

patties cooked at (a) oven temperature: 121°C, oven steam content: 50% by volume,

oven airflow: 11.4 m/s and (b) oven temperature: 232°C, oven steam content: 50%

by volume, oven airflow: 16.8 m/s.
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The center temperature of the meat increased at a much slower rate than the

surface and approached the surface temperature asymptotically. For most cooking

experiments, the center temperature of the patty was at least 10°C below the surface

temperature at the end cooking.

Several revelations about the cooking process can be inferred from the

experimental data. The first is that increasing the oven temperature does not

proportionally increase the heating rate of the patties. The wet bulb temperature always

limits the surface temperature of the patty. With the exception of extremely low surface

moisture contents, the temperature of the patty surface cannot exceed the wet bulb

temperature of the cooking air. The moisture content at which surface temperature will

exceed the wet bulb temperature is a function of the equilibrium relative humidity of the

meat. Under the conditions tested, this moisture content was between 5 and 7% wet

basis. No observations of surface temperature exceeding 100°C were made for any of the

54 experimental cooking trials.
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Because the heating rate at the center of the patty is controlled by the thermal

gradients between the center of the patty and the patty surface, the patty surface

temperature is the limiting factor for cooking time. Multiple linear regression was used

to describe center temperature as a function of oven temperature, steam content, cooking

time, and airflow. Table 5.19 shows the results of the regression. As expected, steam

content, and cooking time were significant (P<0.05). A positive correlation existed

between center temperature and steam content and cooking time. Not-surprisingly,

cooking time had the largest effect on center temperature. More interesting however, is

that oven steam content had a much more pronounced effect on center temperature than

did oven temperature. The effect of steam content resulted in a potential temperature

difference ofup to 9.8°C over the range of steam contents tested, as compared to a non-

significant effect of oven temperature. This compares to a difference of only 3.4°C

related to oven temperature, indicating that oven steam content has a much greater effect

on the surface wet bulb temperature ofthe patty than oven temperature. This observation

should be taken into account when working to optimize oven settings.
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Table 5.19 - Linear regression of patty center temperature as functions of oven

temperature, steam content, cooking time, and oven airflow.

(T=BO+BI .Toven +32 .M+B3 't+B4.Valr)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square
 

Regression 4 6548.757 1637.189 35.6310 <0.001

Residual 50 2297.425 45.9485

Total 54 8846. 182
 

 

Factor Coefficient Standard t-Statistic P-value

 

Error

Bo °C 30.3786 8.0882 3.7559 <0.001

01°C/°C 0.0306 0.0228 1.3391 0.187

B2 °C°%Steam" 0.2583 0.0641 4.0275 <0.001

B3 °C-s" 4.1720 0.4146 10.0639 <0.001

8. °C-s-m" -0.0218 0.2194 -0.0993 0.921
 

Oven air velocity did not significantly affect the patty center temperature. The

temperature gradients that drive conduction within the patty result from increases in the

patty surface temperature. Although increasing the airflow has the effect of increasing

the heat transfer coefficient at the patty surface, corresponding increases in the mass

transfer coefficient result in increased evaporative cooling in the later stages of cooling.

The result was a zero net gain in the heating rate of the patty for the conditions tested.

During the early stages of cooking, increases in airflow may increase the rate of

condensation at the patty surface, thereby temporarily increasing the heating rate.

However, as illustrated in the heating curves, the surface temperature reaches equilibrium

within about 10 seconds for the range of oven conditions tested. The marginal gains in
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surface temperature heating rate caused by increasing airflow did not significantly

increase the rate of heating at the patty center.

5. 4.2 Cooking yield

Figure 5.25 shows the relationship between patty center temperature and cooking

yield for ground beef patties cooked in the JSO-IV impingement oven. Cooking yields

decreased as a function of patty center temperature.
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Figure 5.25 - Cooking yield as a function of endpoint center temperature for ground

beef patties cooked in a Stein JSO-IV industrial moist air impingement oven.

The results of linear regression are shown in Table 5.20. Oven temperature,

cooking time, and oven steam content were each found to significantly affect patty yield

(P<0.05). Cooking time, oven temperature, and oven steam content each had a negative

effect on cooking yield. Cooking time had the strongest effect on yield. Oven
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temperature and steam content each had an effect approximately one order of magnitude

below the effect of cooking time. Oven temperature created a potential difference in

cooking yield of up to 5.6% over the range of temperatures used. Steam content had an

effect equal to 4.8% yield over the range of steam contents tested.

Table 5.20 — Regression parameters for cooking yield as a function of oven

temperature, steam content, cooking time, and airflow.

(Y=Bo +Bl .Tovel +B2 .M+B3 .t+p4 .valr)

 

 

 

 

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Square

Regression 4 3836.668 959.1669 50.0733 <0.001

Residual 50 957.7628 19.1553

Total 54 4794.43

Factor Coefficient Standard t-Statistic P-value

Error

[30 109.6251 5.2223 20.9917 <0.001

[31 °C'l -0.0503 0.0147 -3.4133 0.001

B; °o Steam’l -0.1259 0.0414 -3.0397 0.004

[33 s'2 -3.4932 0.2677 .13.0507 <0.001

8. s-m" -00453 0.1416 -0.3201 0.750
 

5.4.3 Fat loss

For each patty, the cooking loss not accounted for by moisture loss was calculated

and assumed to be entirely due to fat loss. The amount of fat lost increased with center

temperature (Figure 5.26) and ranged from less than 1% of the initial mass at 50°C up to

almost 10% of the initial mass at 95°C. This accounts for nearly all of the fat initially

present in the patty. The results of linear regression for fat loss as a function of oven
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parameters are shown in Table 5.21. Only cooking time significantly affected the yield

lost due to fat. Clearly, the effects of fat loss must be taken into account to accurately

model yield losses during cooking.

Table 5.21 - Regression parameters for fat loss as a function of oven temperature,

steam content, cooking time, and airflow.

(AYfat =fi0 +51 °Toven +32 'M+B3 't+B4 'valr)

 

Degrees of Sum of Mean F-Value P-Value

Freedom Squares Smiare
 

 

 

 

Regression 4 88.1928 22.0482 7.7278 <0.001

Residual 22 62.7679 2.8531

Total 26 150.9607

Factor Coefficient Standard t-Statistic P-value

Error

130 -3.0612 2.9207 -l.0481 0.306

13l (°C") 0.0070 0.0081 0.8722 0.393

132 (% Steam") 0.0464 0.0230 2.0188 0.056

B3 (s") 0.0118 0.0025 4.7997 <0.001

134 (s-m'l) -0.0161 0.0771 -0.2085 0.837
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Figure 5.26 - Yield loss not accounted for by moisture loss as a function of endpoint

temperature for ground beef patties cooked in a Stein JSO—IV industrial moist-air

impingement oven.

5. 4.4 Volume change

Patties exhibited a reduction in volume during cooking. The volume change was

primarily due to dramatic reductions in the diameter ofthe patties during cooking. The

diameter reduction as a function of endpoint center temperature is shown in Figure 5.27.

The diameter of the patties decreased linearly as a function of center temperature. The

thickness of the patties did not exhibit the same behavior. The thickness of the patties

remained relatively unchanged during cooking, with approximately half of the patties

undergoing slight decreases in thickness, and the other half undergoing slight increases.

The average absolute change in thickness was 0.76 mm. The mean change in thickness

was —0.14 mm.
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Figure 5.27 - Reduction in diameter during cooking as a function of cooking yield

for ground beef patties cooked in a stein JSO-IV industrial moist-air impingement

oven.

The fact that the diameter of the patties changes so drastically during cooking,

while the thickness stays relatively unchanged, presents a challenge for modeling

cooking. To model cooking as completely as possible, volume changes should be

incorporated into the model. However, for patties such as those utilized in these

experiments, heat and mass transfer occur primarily in the axial direction, due to the

height/diameter ratio of the patties. Since patty thickness remains relatively unchanged,

changes in volume do not affect heat and mass transfer dramatically from the standpoint

of modeling. However, further research in this area could shed light on the changing

physical conditions that occur within meat during cooking.
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5.5 Cooking model validation

Validation of the cooking model was conducted using the data collected from

cooking experiments with a Stein JSO-IV moist-air impingement oven (Sections 3.4 and

5.4). Validation was conducted for temperature, moisture, and yield. Additional

comparisons were made using yield and temperature data from published sources

(Murphy et al., 2001a and b).

5. 5. 1 Finite element mesh

The finite element mesh utilized for cooking model validation consisted of 116

triangular elements with a total of 78 nodes. The element mesh was shown graphically in

Chapter 4. A total of 28 nodes were located along the convective boundaries ofthe patty

geometry. Mesh density was lowest at the center of the patty and increased near the

surface where the temperature and moisture gradients were expected to be highest.

The element mesh utilized was chosenoto balance solution accuracy with

computing time. Increasing the number of elements from 48 to 116 lowered the transient

standard error of prediction for the center temperature of a test experiment from 11.6°C

to 55°C. This increase in accuracy came at the cost of computing time. The 48 element

model only took 17 seconds to complete, compared to 75 seconds for the 116 element

model. Increasing the number of elements from 116 to 234 did not improve the accuracy

of the temperature prediction. However, the computing time required to run each test

was increased to 295 seconds. This clearly illustrates that increasing the mesh density

comes at a major cost in computing time. This is of importance to users utilizing the
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model to simulate large numbers of conditions for applications such as process

optimization.

The value of the time step selected for the model was 1 second. This value was

utilized to aid in comparisons with experimental data, which was recorded at one-second

intervals. Unfortunately in certain cases, the one-second value for the time step may

result in numerical oscillations if a constant element mesh size is utilized. Automatic

routines for mesh generation and time step optimization could eliminate this potential

problem.

5. 5.2 Temperature profile-experimental data

Validation of temperature profiles was conducted by comparing transient center

temperature data collected during the experimental tests to corresponding predictions

generated by the model. Example center temperature profiles are shown in Figures 5.28-

5.30. All experimental and predicted temperature results are graphed in Chapter 9.
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Figure 5.28 — Example comparison of experimental temperature data with data

generated by the cooking model (oven temperature=121°C, steam content=50%, air

velocity=11.4 m/s).
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Figure 5.29 - Example comparison of experimental temperature data with data

generated by the cooking model (oven temperature=121°C, steam content=70%, air

velocity=11.4 m/s).
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Figure 5.30 — Example comparison of experimental temperature data with data

generated by the cooking model (oven temperature=121°C, steam content=88%, air

velocity=11.4 m/s).

Figure 5.28 is typical ofmost comparisons in several respects. Noticeable

deviation between the model and experimental data occurred during the early stages of

cooking. During the later stages of cooking, profiles for the model and experimental data

were very close. Although the level of agreement between the model and experimental

data varied between cooking runs, the phenomenon of the predicted center temperature

lagging behind the measured temperature during the early stages ofcooking was common

to all cooking experiments. These results were similar to those reported by Pan et al.

(2000) who found that temperature values lagged below predicted values for contact

cooking of hamburger patties. These deviations were largest between 0 and 40°C.

Disparities in the sample cooking curve provided by Pan et al. (2000) were very similar

to the predicted error shown in Figure 5.28.
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Based on Figure 5.28, several conclusions can be made. First, it is possible that

the deviation between the temperature profile predicted by the model and the

experimental data was caused by inaccurate predictions of thermo-physical properties in

the model. The thermal conductivity may have been underestimated at low temperatures.

The model also may have overestimated the heat capacity of the product at low

temperatures.

A second possibility for the deviation between the model and the experimental

temperature profiles is the effect ofvolume change. The model did not take into account

volume change during cooking. If the thickness of the patty changed significantly during

cooking, the rate of heat transfer to the center of the patty may have changed, even under

conditions of constant thermal properties. However, as discussed in Section 5.4.4, the

thickness of the patties remained constant during cooking, with significant shrinkage

occurring only in the radial direction. Because heat transfer occurred primarily in the

vertical direction, it is unlikely that shape changes contributed significantly to error in the

model for the product tested.

Figures 5.29 and 5.30 illustrate a more pronounced deviation between the model

and experimental temperatures during the first minute of cooking. This type of deviation

was seen in about half of the 54 cooking trials. Typically, the deviation consisted of an

increase in measured temperature above the predicted value followed by a drop in

temperature to a level consistent with the predicted value. This deviation typically

occurred over a temperature range of 0 to 40°C. At temperatures above 40°C, the

experimental temperature profiles then closely matched the values predicted by the

cooking model.
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One possibility for the disparity between the model and experimental data in the

early stages of cooking is that the thermocouple measuring center temperature may have

moved as the meat began to cook. Changes in product texture, along with diameter

changes occurring during cooking, would explain why the thermocouple could move

during the early portion of cooking. However, this explanation does not account for the

resolution between the measured and predicted temperature values at higher

temperatures.

The possibility that the author considers most likely is that fat-related effects were

the cause of these deviations. From the fat holding capacity experiments in Section 3.3,

large changes in fat holding capacitywere seen in the temperature range between 40 and

50°C. The laboratory experiments in Section 3.2 also show that yield loss is roughly

linear at temperatures above 45°C. Most fat is in a form that is available for transport at

temperatures above 45°C.

Prior to heating, ground beef consists of a mixture of ground fat and muscle

particles. Unlike whole muscle products, the fat particles are dispersed throughout the

meat, rather than in their naturally occurring structures. In this sense, the fat particles

exist as a dispersed phase within a matrix of lean meat. When the fat particles are in

solid form, physical forces serve to keep them in suspension within the meat. However,

upon melting, the fat is free to exit the meat through capillary mechanisms.

It is proposed that during the initial phases of cooking, changes in the meat

structure occurred that resulted in the thermocouple not giving an accurate representation

of the average temperature in the center of the patty. Due to the near-frozen condition of

the meat before cooking, the meat had a very firm initial texture. As a result, when the
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thermocouple was inserted into the patty, a minute void space may have been created

around the thermocouple, which would have provided a channel for condensing water to

penetrate to the center of the patty, and thereby increase the thermocouple temperature

above that of the meat. At temperatures above 40-50°C, constriction ofthe meat and

filling of internal voids by melting fat would result in more intimate contact between the

thermocouple and the meat matrix, thereby resulting in more accurate temperature

readings. The vertical orientation of the thermocouple may have contributed to this type

of effect by providing an uninterrupted vertical channel between the bottom and center of

the patty.

This theory would explain the deviations seen in Figures 5.29 and 5.30. It is also

highly likely that the deviation in Figure 5.28, although less pronounced than the others,

was caused by a similar effect. In the temperature curves where significant deviations

occur between the measured and predicted center temperature values, the measured

center temperature value appears to temporarily move in the direction of the surface

temperature of the patty, before dropping back down to a level more consistent with the

predicted value. This seems to support the hypothesis that condensing water at the

surface temperature may be penetrating the patty along the thermocouple “channel”.

Unfortunately, accurate surface temperature values were not available for many of

the cooking trials due to the difficulty in maintaining uninterrupted contact between the

thermocouples and the patty surface during cooking. The high airflow of the oven,

combined with changes in patty geometry, often separated the thermocouples from the

patty surface. For this reason, surface temperature data are missing from many of the

figures in Section 9.1. Due to inconsistentcies in the surface temperature data, it was not
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considered meaningful to calculate transient SEP for the surface temperature of each

model run. Instead, general observations of the predicted and measured surface

temperatures were made.

For each simulated cooking run, the surface temperature of the meat quickly rose

to a semi-equilibrium value. This temperature reflects the wet bulb temperature of the

oven air. This temperature never exceeded the boiling point of water for any of the

patties tested. For patties in which accurate surface temperatures are available, the

predicted surface temperatures corresponded closely with the experimental values. In

many cases, the measured surface temperature values were considerably different from

the predicted values. However, it is the opinion of the author that these cases represent

situations in which the thermocouple was not in contact with the actual surface of the

patty. In some cases the thermocouple may have been lodged slightly below the surface

of the patty. These cases illustrate the difficulty inherent in measuring the surface

temperature of meat patties within commercial convection ovens.

Standard error ofprediction was calculated for the center temperature data of each

cooking trial, using temperature data collected at 1 second intervals from both the model

and experiments. The SEP of the transient center temperatures for individual trials ranged

from 2.1 to 139°C (Table 5.21). The overall SEP for all of the cooking trials was 80°C.

The SEP for the final center temperature of all of the patties was also 80°C. The error in

the temperature curves was generally concentrated in the early portion of the curves. The

cooking experiments that were run for short times had the largest errors. As the patty

center reached high temperatures, the differences between the model and experimental

data became small. A second set of SEP data was generated for the portion of each
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cooking run above 45°C (Table 5.22). These SEP’s ranged from 0.5 to 108°C, a large

improvement from the values taken over the entire temperature range. The overall SEP

for all data points above 45°C was 58°C. The trials with large SEP values for

temperature were generally the experiments with the shortest cooking times. In these

tn’als, deviations between the model and experimental data at low temperatures affected a

larger percentage of the total cooking time, thus resulting in larger SEP between

experimental and predicted data.
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Table 5.22 — Standard error of prediction for the entire trial (SEP) and for data

above 45°C (SEPNsoc) for center temperature of beef paties.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

EXP- SEP (°C) SEP1>45°C (°C) EXP- SEP (°C) SEPT>45°C (°C)

# (data points) (data points) # (data points) (data points)

la 5.5 (193) 1.2 (128) lb 4.7 (157) 5.1Q3)

6a 3.9 (416) 4.1 (330) 6b 3.3 (418) 3.1 (324)

8a 2.4 (300) 1.2 (214) 8b 6.9 (303) 3.4 (247)

11a 6.9 (294) 2.8 (220) 11b 8.9 (295) 3.6 (244)

13a 4.0 (187) 3.1(115) 13b 12.5 (189) 9.6 (152)

18a 4.1 (3%) 3.6 (340) 18b 7.6 (396) 1.9 (341)

21a 5.5 (368) 2.4 (298) 21b 7.1 (369) 1.3 Q94)

23a 3.0 (320) 3.g229) 23b 5.1 (301) 4.3 (214)

25a 5.1 (L41) 4.1 (60) 25b 8.6 (117) 6.3 (60)

30a 3.2 (276) 2.1 (177) 30b 6.8 (280) 3.3 (206)

32a 4.2 (224) 1.7 (126) 32b 14.7 (224) 12.3 (196)

34a 5.3 (125) 2.5 (29) 34b 12.5 (116) 9.1 (68)

37a 7.1 (105) 0.5 (25) 37b 23.8 (108) 21.5 (69)

47a 2.1 (264) 1.7 (187) 47b 9.74273) 5.9 (206)

49a 8.0 (114) 9.5 (26) 49b 16.5 (120) 8.0 (27L

50a 9.5 (240) 7.7 (125) 50b 3.6 (240) 2.5 (129)

54a 13.5 (304) 10.8 (198) 54b 7.3 (313) 6.9 (254)

56a 6.3 (188) 5.5 (112) 56b 17.8 (186) 12.4 (119)

58a 13.1 (118) 7.1 (21) 58b 5.5 (116) 8.0 (23)

63a 7.2 (259) 5.1 (190) 63b 4.5 (262) 2.1 (169)

66a 4.0 (256) 1.8 (177) 66b 5.4 (260) 5.7 (161)

68a 2.8 (186) 0.8 (112) 68b 7.5 (190) 8.1 (83)

70a 7.1 (75) * 70b 12.0 (70) 9.9 (11)

73a 10.7 (77) * 73b 8.8 (73) 2.4 (5)

75a 8.0 (259) 2.3 (195) 75b 13.2 (259) 12.4 (235)

78a 2.2 (191) 0.9 (98) 78b 2.7 (192) 2.2 (109)

80a 8.3 (191) 2.5 (114) 80b 11.4 (192) 8.9 (161)
 

* Center temperatures did not exceed 45°C

5.5.3 Temperature profile-published data

 
A total of 12 model runs were conducted to simulate the conditions utilized in the

experiments of Murphy et al. (2001a). The center temperature profiles of each model run

were compared to temperature predictions from the regression equation developed by

Murphy et al. (see Section 3.5.3). Transient comparisons were made between the center
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temperatures predicted by the model and the Murphy et al. regression equation for the

temperature range between 55 and 80°C. The model and regression transient temperature

data were compared at 1 second intervals. Standard error of prediction for transient

center temperature was calculated for each model run (Table 5.23).

Table 5.23. Standard error of prediction for transient center temperature of ground

chicken breast patties predicted by the model and by the regression equation of

Murphy et a1. (2001a).

 

 

 

 

 

 

 

 

 

 

 

 

 

Dry Bulb Steam by Airflow SEP Center

Temperature (°C) Volume (m/s) Temperature (°C)

149 6 1.53 10.3

149 6 2.13 12.4

149 6 2.73 13.5

149 25 1.53 1.4

149 25 2.13 1.6

149 25 2.73 2.4

149 60 1.53 2.6

149 60 2.13 1.6

149 60 2.73 1.8

149 91 1.53 3.7

149 91 2.13 2.8

149 91 2.73 3.2      
 

For the wet bulb temperatures of 70 to 95°C, the SEP ranged from 1.1 to 61°C.

This was comparable to the SEP of the experimental data collected from the Stein JSO-

IV oven. However, for the driest cooking air condition (wa=40°C), the SEP ranged from

13.3 to 157°C. This indicates that the cooking model may not be reliable for extremely

dry air conditions. This was probably due to the equation for equilibrium relative

humidity. However, the cooking model was designed for high moisture impingement
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ovens, so deviations at extremely dry conditions are not critical for the intended use of

the model.

5. 5.4 Moisture content- experimental data

For each experimental cooking run in the Stein JSO-IV oven, the endpoint

moisture content predicted by the model was compared with the experimental values

(Section 5.4.2). The deviations between the model and experimental moisture contents

ranged from —5.2% to 3.6% wet basis moisture, with an average deviation of—0.04% wet

basis (Table 5.24). This indicates that the model moisture predictions are centered

around the measured values with little bias. Standard error of prediction for the complete

set of final moisture contents was 2.3% moisture w.b.
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Table 5.24 — Difference between measured and predicted moisture content for each

oven condition. Experiment numbers correspond to the conditions listed in Table

3.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment Difference between measured and

Number predicted moisture content (% wet basis)

1 1.6

6 -4.7

8 -2.5

11 0.8

13 2.4

18 -1.2

21 -0.5

23 1.7

25 3.6

30 -5.2

32 -3.7

34 -0.3

37 0.0

47 0.0

49 -l.2

50 1.5

54 1.2

56 2.0

58 -O.8

63 -l.7

66 -l .3

68 0.6

70 0.0

73 1.8

75 1.2

78 3.5

80 4.0    
 

5. 5.5 Cooking yield — experimental data

For each cooking run in the Stein JSO-IV oven, the cooking yield predicted by the

model was compared to the experimental value. Standard error of prediction for the

complete set of cooking yields was 5.9%. The deviation in predicted yield ranged from —
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10.2 to 10.5% with an average deviation of -—1.2% (Table 5.25), indicating that the model

had a slight bias towards overpredicting yield loss.

Table 5.25 — Difference between measured and predicted cooking yields for each

oven condition. Experiment numbers correspond to the conditions in Table 3.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment Difference between predicted and

Number measured cookingxield (% yield)

1 3.7

6 10.5

8 6.3

11 -3.4

13 -6.5

18 4.1

21 -2.3

23 -2.6

25 -5.7

30 9.3

32 0.9

34 4.1

37 -5.3

47 -3.6

49 -7.6

50 -10.2

54 -6.0

56 8.9

58 -4.7

63 -l.1

66 2.1

68 -0.4

70 2.4

73 -1.4

75 -4.3

78 -10.2

80 -8.4    
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5. 5. 6 Cookingyield —published data

Yield predictions of the model were also compared to yield predictions from the

literature (Murphy et al., 2001b). The published paper presented a regression model for

the yield of ground chicken patties cooked in a Stein model 102 impingement oven.

The model and published yield equation were compared using the same procedures

described in Section 5.4.1.1. Like the temperature predictions, the yield data was a much

closer fit for wet bulb temperatures between 70 and 95°C. The SEP in that temperature

range varied from 1.1 to 6.1% yield. At a wet bulb temperature of40°C, the SEP ranged

from 13.3 to 15.7% yield.

5.6 Lethality model validation

For each run of the computer model, two sets ofSalmonella lethality data were

generated. The first set of data was the inactivation profile at the center point of the

patty, generated using a log-linear equation. For the second data set, total inactivation of

Salmonella within the patty was determined. A volume averaging procedure was used to

determine total inactivation from inactivation at all of the nodal points. This overall

reduction in Salmonella is the value that would be determined experimentally when

counting the number of surviving organisms in a whole ground beef patty.

Due to facility constraints, it was not possible to perform inoculated challenge

studies for Salmonella in the moist-air impingement oven used in this study. However,

data exist in the literature for tests that were conducted in a pilot-scale impingement oven

(Murphy et al., 2002).
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In order to minimally validate the combined cooking/ inactivation model,

simulations were conducted to compare values of microbial inactivation predicted by the

model with those from the literature. The cooking model was run using the cooking

conditions used by Murphy et al. (2002), as described in Section 3.6. The resulting

inactivation profiles were plotted on the same graphs as data points reported in the

published study (Figures 5.31 and 5.32).
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Figure 5.31 - Comparison between model Salmonella Senftenberg lethality

predictions and data points published by Murphy et al. (2002).
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Figure 5.32 — Comparison between model Listeria innocua lethality predictions and

data points published by Murphy et al. (2002).

The Salmonella Senftenberg inactivation curve predicted by the model was based

on D and z-values for Salmonella Senftenberg heated in turkey (Murphy et al., 2003).

For heating times of 150 and 160 seconds, the inactivation curve predicted by the model

is within the bounds of the experimental data reported by Murphy et al. (2002).

However, the model reaches a maximum reduction of 7-log (set by the initial inoculum

level) approximately 15 seconds before the experimental data. At times above 180

seconds, both the model and experimental data indicate a reduction of 7—logs. Standard

error of prediction for the Salmonella inactivation curve was 1.3 logs (n=21).

A comparison of the Listeria inactivation curve predicted by the model and the

experimental data of Murphy et al. (2002) indicated a close fit between the experimental
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and predicted inactivation’s. The model inactivation curve was generated using D and 2-

values for Listeria innocua in ground turkey (Murphy et al., 2003). At a heating time of

150 seconds, the model slightly underestimated the level of lethality, although the model

predictions were within l-log of the lower end of the experimental data range. As

heating time increased, the inactivation curve predicted by the model closely estimated

the experimental data. Standard error of prediction for the L. innocua inactivation curve

was 1.1 logs (n=21).

These comparisons only give a rough verification of the ability of the cooking

model to predict microbial inactivation. However, the temperature prediction capability

of the model has been verified much more extensively. Combining the temperature

prediction capabilities of the model with experimentally derived kinetic parameters for

microbial estimation (D and z-values) should enable the cooking model to produce an

acceptable first estimate of microbial lethality during cooking. In addition, due to the

design of the cooking model, the effects ofprocess changes on corresponding changes in

microbial lethality are readily visible. This makes the combined cooking and Salmonella

inactivation model a valuable tool for predicting the effects ofprocessing parameters on

microbial safety.

5.7 Illustration of model utility

The utility of a combined cooking and inactivation model is several-fold. Some

examples are listed below.
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1. A processor uses a moist-air impingement oven to produce ready-to-eat ground

beef patties. The oven is currently operated at a dry bulb temperature of 177°C, a

steam content of 75% by volume, and an air velocity of 18 m/s. The dwell time in

the oven is 3 minutes. The processor wishes to increase the throughput of the

oven by adjusting the moisture content of the cooking air from 75 to 85%

moisture by volume. The processor wants to know what the new oven dwell time

will be to reach the same patty center temperature that was achieved by the

previous process.

In this case, determining the new dwell time in the oven could be determined by

running the cooking model under the new set ofprocess conditions. Running the model

under the original cooking conditions, the processor finds that the original final center

temperature was 787°C. The processor then runs the model under the new conditions

and sees that the dwell time that will achieve 787°C is 170 seconds, a ten second

improvement over the original conditions, which would translate into a 5.8% increase in

throughput.

2. In the situation above, the processor is concerned that the faster cooking time will

not be adequate to achieve the desired level of microbial inactivation.

In this case, the processor can use the lethality prediction function of the computer

model. Running the cooking model, the processor sees that the cooking process greatly

exceeds the required lethality in both cases. However, based on a 6.5-log target
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reduction, the higher steam content cooking air achieves the desired lethality 14 seconds

earlier than the original condition.

3. The processor is not convinced that the current operating conditions are making

the most efficient use of the oven system. Experience indicates that increasing the

steam content of the oven will decrease cooking time. However, quantitative data

are not available. The processor would like to develop a set of experiments to

optimize the oven settings.

Taking the oven system offline to perform optimization experiments is time

consuming and expensive. In addition to the time and manpower spent conducting the

experiments, the oven must be taken out of production for the time period of the

experiment. To determine the effects of changing process conditions, the processor runs

simulations using the cooking model. Examples 1 and 2 show how the model can be

used to illustrate changes in process conditions. By running the model under many more

sets of conditions, the processor can determine the ideal settings for the desired cooking

results.

4. Product output from oven systems sometimes falls behind due to problems with

equipment and backups during previous unit operations. Operators might try to

catch up with production quotas by increasing the oven belt speed. The manager

is concerned that the desired level of microbial lethality is not being achieved due
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to increases in belt speed. It is difficult for the manager to illustrate to the

operators that their actions may result in food that is potentially unsafe.

This instance illustrates the benefit of the graphical temperature and lethality

outputs of the model. The graphical outputs can be used to illustrate the effects of

process changes to personnel with no knowledge of heat transfer or microbial inactivation

kinetics. If the oven conditions utilized in Example 2 were in use, the oven would

achieve a 6.5-log reduction in Salmonella in 129 seconds. Decreasing the dwell time by

ten seconds (119 seconds cooking time) would decrease the predicted lethality to only

0.8-log. In this case, a very small adjustment in cooking time would result in a product

that is potentially unsafe.
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6 CONCLUSIONS

The main conclusions of this study were:

1. Fat content had a significant effect on the cooking time for ground turkey, ground

beef, and ground pork. Differences in the time required to reach 85°C between

different fat contents of each meat species were 171, 217, and 102 seconds for

ground turkey, ground beef, and ground pork patties, respectively. Higher fat

samples of ground beef and ground pork cooked faster than the lower fat samples.

The opposite was true for ground turkey. Fat content significantly affected the

yields of ground turkey with initial fat contents of 1.4% and 8.6%, and ground

pork of initial fat contents of 15.7% and 41.9% fat. Differences in yield between

fat contents of ground turkey and ground pork were 18 and 17%, respectively,

when cooked to 85°C. No significant differences in yield were measured between

ground beef with initial fat contents of 7.2 and 17.5%. Fat transfer contributed up

to 6% of the yield loss of ground beef and up to 28% of the yield loss of ground

pork patties.

2. Fat holding capacity of ground beefwas modeled as a function of initial fat

content and heating time using multiple linear regression. Holding time did not

significantly affect fat holding capacity. The regression equation for fat holding

capacity had a coefficient of variation of 0.81 and a standard error ofprediction of

0.068 g fat/g dry matter. This equation was an important step towards developing
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a model for heat and mass transfer of ground beef products that includes the

effects of fat transport.

The effects of oven temperature, steam content, and airflow on heating time,

yield, fat loss, and volume change of ground beef patties cooked in an industrial

moist-air impingement oven were quantified. Multiple linear regression showed

that oven steam content had the largest effect on both heating rate and cooking

yield. Neither oven temperature nor air velocity had a significant effect on patty

center temperature. Oven temperature, steam content, and cooking time all had

significant affects on cooking yield. Fat loss increased roughly linearly, and patty

diameter decreased roughly linearly with patty temperature. Patty thickness

remained fairly constant during cooking.

A finite-element method-based cooking and Salmonella inactivation model was

developed. The model was an improvement over previously published models for

the following reasons:

a) The heat and moisture transport portions of the model were based

completely on heat and mass transfer principles. Empirical correlations

were only used for thermal property relationships. This allowed for

maximum flexibility of the model over different cooking conditions.

b) Fat transport was incorporated in the model. The incorporation of fat

transport created a model that could predict yield losses for products

containing a wide range of fat levels.
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c) The model incorporated the transient effects of heat and mass transfer

related to moist-air impingement, including the effects of condensation as

a surface mass transfer process (rather than as an “effective heat transfer”

effect).

d) The model was validated with experimental data from an industrial moist-

air impingement oven.

The cooking model was validated using data collected from an industrial moist-air

impingement oven. The transient standard error ofprediction for temperature was

8°C. The model more accurately predicted temperatures above 45°C. At

temperatures above 45°C, the SEP was reduced to 57°C. Predictions of moisture

content had errors ranging from O to 5.2% wet basis. Predictions of cooking yield

had errors ranging from 0.1 to 15.4% with an average deviation of 5.9%.

Comparisons with temperature and yield data compiled by other researchers were

also favorable. Standard error of prediction for center temperature of chicken patties

at cooking air wet bulb temperatures between 70 and 95°C ranged from 1.4 to 3.7°C.

Higher errors occurred at an air wet bulb temperature of40°C. Standard errors of

prediction for yield ranged from 1.1 to 15.7%.

The microbial lethality prediction of the model was compared to published data.

Standard error of prediction for inactivation ofSalmonella Senftenberg in ground

beef patties was 1.3 logs (CFU/g). Standard error of prediction for Listeria innocua

was 1.1 logs (CFU/g).
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7 FUTURE WORK

There are a number of studies that should be conducted in order to further develop

our understanding of the dynamics of meat and poultry cooking. The results of these

studies could be utilized for the development of more precise and more robust cooking

models. In addition, further understanding of the mechanics of cooking could improve

our general understanding of the effects ofprocessing on meat and poultry quality

attributes. Recommendations for further studies include:

1. Experiments designed to determine the effects ofprotein and fat chemistry on fat

and moisture transport should be conducted. Specifically, the effects of fat

composition on transport properties should be investigated. Models for fat

viscosity as functions of lipid composition and temperature could contribute

greatly to understanding of fat transport mechanisms. Understanding of these

mechanisms is needed to maximize the effectiveness of cooking models for a

wide range ofproduct compositions.

2. An analysis of the changes in meat microstructure during cooking should be

performed. Such studies should include analysis of the changes in porosity during

cooking as well as the relationships between meat microstructure and volume

change. The dynamics ofvolume change during cooking should be investigated.
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Studies should be designed to determine the driving forces for fat transport and

moisture transport via drip loss. These phenomena are generally attributed to

changes in water and fat holding capacities, but there is little understanding of the

physical mechanisms behind such changes. Further knowledge of these driving

forces is needed for the development of mechanistic models for water and fat

holding capacities and transport.

Extensive validation of microbial inactivation kinetics during impingement

cooking of meat and poultry products should be performed. This should be done

utilizing inoculated challenge studies with an actual moist-air impingement oven.

Automatic mesh generation subroutines should be added to the cooking model.

This would allow for much easier modeling ofcooking for various product

geometries. It would also allow for the cooking model to account for volume

change during cooking.

The model should be used for optimization of impingment cooking processes, in

terms of safety, cooking yield, and oven throughput.

The model should be adapted in the future to simulate cooking of whole-muscle

products.
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8 APPENDICES

160





8.1 Model and experimental temperature versus time curves for moist-air

impingement cooking of ground beef patties.
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Figure 8.1 - Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 11.4 m/s (Experiment 1a).
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Figure 8.2 - Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 11.4 m/s (Experiment lb).
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Figure 8.3 — Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 16.8 m/s (Experiment 6a).
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Figure 8.4 - Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 16.8 m/s (Experiment 6b).
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Figure 8.5 - Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 21.8 m/s (Experiment 8a).
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Figure 8.6 - Oven temperature: 121°C, oven steam content: 50% by volume, oven

airflow: 21.8 m/s (Experiment 8b).
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airflow: 11.4 m/s (Experiment 11a).
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airflow: 16.8 m/s (Experiment 13a).
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Figure 8.11 - Oven temperature: 121°C, oven steam content: 70% steam volume,

oven airflow: 21.8 m/s (Experiment 18a).
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airflow: 11.4 m/s (Experiment 21a).
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Figure 8.14 — Oven temperature: 121°C, oven steam content: 88% by volume, oven

airflow: 11.4 m/s (Experiment 21b).
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airflow: 16.8 m/s (Experiment 23a).
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Figure 8.18 - Oven temperature: 121°C, oven steam content:78% by volume, oven

airflow: 21.8 m/s (Experiment 25b).
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Figure 8.19 — Oven temperature: 177°C, oven steam content: 50% by volume, oven

airflow: 11.43 mls (Experiment 30a).
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Figure 8.21 - Oven temperature: 177°C, oven steam content: 50% by volume, oven

airflow: 16.8 mls (Experiment 32a).
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Figure 8.22 - Oven temperature: 177°C, oven steam content: 50% by volume, oven

airflow: 16.8 mls (Experiment 32b).
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Figure 8.23 - Oven temperature: 177°C, oven steam content: 50% by volume, oven

airflow: 21.8 m/s (Experiment 34a).
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Figure 8.24 - Oven temperature: 177°C, oven steam content: 50% by volume, oven

airflow: 21.8 m/s (Experiment 34b).
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Figure 8.25 - Oven temperature: 177°C, oven steam content: 70% by volume,

oven airflow: 11.4 m/s (Experiment 37a).
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Figure 8.26 - Oven temperature: 177°C, oven steam content: 70% by volume,

oven airflow: 11.4 mls (Experiment 37b).
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Figure 8.27 - Oven temperature: 177°C, oven moisture content: 83% by volume,

oven airflow: 11.4 mls (Experiment 47a).
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Figure 8.28 - Oven temperature: 177°C, oven moisture content: 83% by volume,

oven airflow: 11.4 mls (Experiment 47b).
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Figure 8.29 - Oven temperature: 177°C, oven steam content: 84% by volume,

oven airflow: 16.8 mls (Experiment 49a).
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Figure 8.30 - Oven temperature: 177°C, oven steam content: 84% by volume,

oven airflow: 16.8 mls (Experiment 49b).
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Figure 8.31 - Oven temperature: 177°C, oven steam content: 86% by volume,

oven airflow: 16.8 mls (Experiment 50a).
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Figure 8.32 - Oven temperature: 177°C, oven steam content: 86% by volume,

oven airflow: 16.8 mls (Experiment 50b).
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Figure 8.33 - Oven temperature: 177°C, oven steam content: 86% by volume,

oven airflow: 21.8 mls (Experiment 54a).
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Figure 8.34 - Oven temperature: 177°C, oven steam content: 86% by volume,

oven airflow: 21.8 m/s (Experiment 54b).
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Figure 8.35 - Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 11.4 m/s (Experiment 56a).

 H O O

 
 

4
;

O

   

N 0

T
e
m
p
e
r
a
t
u
r
e
6
C
)

O
\

0
0

o
o

  Model

0 50 100 150 200

Time (s)

Figure 8.36 - Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 11.4 mls (Experiment 56b).
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Figure 8.37 — Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 16.8 m/s (Experiment 58a).
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Figure 8.38 — Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 16.8 m/s (Experiment 58b).
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Figure 8.39 - Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 21.8 m/s (Experiment 63a).
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Figure 8.40 - Oven temperature: 232°C, oven steam content: 50% by volume,

oven airflow: 21.8 mls (Experiment 63b).
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Figure 8.41 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 11.4 mls (Experiment 66a).
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Figure 8.42 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 11.4 mls (Experiment 66b).
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Figure 8.43 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 16.8 mls (Experiment 68a).
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Figure 8.44 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 16.8 m/s (Experiment 68b).
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Figure 8.45 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 21.8 m/s (Experiment 70a).
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Figure 8.46 - Oven temperature: 232°C, oven steam content: 70% by volume,

oven airflow: 21.8 mls (Experiment 70b).
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Figure 8.47 - Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 11.4 m/s (Experiment 73a).
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Figure 8.48 - Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 11.4 mls (Experiment 73b).
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Figure 8.49 — Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 11.4 mls (Experiment 75a).
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Figure 8.50 — Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 11.4 mls (Experiment 75b).
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Figure 8.51 — Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 16.8 mls (Experiment 78a).
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Figure 8.52 — Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 16.8 mls (Experiment 78b).
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Figure 8.53 - Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 21.8 mls (Experiment 80a).
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Figure 8.54 - Oven temperature: 232°C, oven steam content: 82% by volume,

oven airflow: 21.8 m/s (Experiment 80b).
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8.2 Derivation of cooking-air thermo-physical property equations

The oven-air thermo-physical properties used in the cooking model were

modeled using non-steady-state relationships. The latent heat of vaporization for

water as a function of temperature was modeled using linear regression of tabular

data (Geankoplis, 1993); (Equation [8.1]).

,1 = -—2.429 - T + 2502.8 [ 8.1 ]

The resulting regression had an R2 value of 0.998 (Figure 8.55).
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Figure 8.55 - Latent heat of vaporization for water as a function of temperature

(From tabular data: Geankoplis, 1993).
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The viscosity of air was modeled as a function of temperature using regression of

tabular data (Geankoplis, 1993); (Equation [8.2]).

14144 = —0.0000000002 - T2 + 0.0000005 -T + 0.0002 [ 8.2 ]

The resulting regression equation had an R2 value of 0.9998 (Figure 8.56).
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Figure 8.56 - Viscosity of air as a function of temperature (From tabular data:

Geankoplis, 1993).

The viscosity of steam was modeled as a function of temperature using regression of

tabular data (Geankoplis, 1993); (Equation [8.3]).

41.4.... = —0.00000001-T2 + 0.00004 - T + 0.0089 [ 8.3 ]
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The resulting regression had an R2 value of (Figure 8.57).
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Figure 8.57 - Viscosity of steam as a function of temperature (From tabular

data: Geankoplis, 1993).

A mixture equation developed by Burrneister (1983) was utilized to calculate the

viscosity of the air-steam mixture (Equation [8.4]).

Hair + k1 steam

“mix =

1+¢,,-’%( 1+¢.-x%(

where:

  [8.4]
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The density of air was modeled as a function temperature using regression of tabular

data (Geankoplis, 1983); (Equation [87]).

pair = -0.00000000002 ~ T3 + 0.00000001-T2 — 0.000004 . T + 0.0013 [ 8.7 ]

The regression equation had an R2 value of 1 (Figure 8.58).
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Figure 8.58 - Density of air as a function of temperature (from tabular data:

Geankoplis, 1993).

The density of water vapor at temperatures below 100°C was modeled as a function

of temperature using tabular data (Geankoplis, 1993); (Equation [8.8]).

P vapor
= 0.00000000003 T“ + 0.00000000025 - T3 - 0.0000000039 - T2 + 0.00000085 . T

[8.8]

The regression equation had an R2 value of 1 (Figure 8.59).
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Figure 8.59 - Density of saturated steam as a function of temperature (From

tabular data: Geankoplis, 1993).

The density of steam at atmospheric pressure and temperatures above 100°C was

modeled as a function of temperature using regression of tabular data (Geankoplis,

1993); (Equation [8.9]).

= —0.0002 - log(T)+ 0.0015 [ 8.9 ]
p steam

The regression equation had an R2 value of 0.999 (Figure 8.60).
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Figure 8.60 - Density of steam at 101.35 kPa as a function of temperature (From

tabular data: Geankoplis, 1993).

The density of the air-steam mixture was assumed given by Equation [8.10] which

assumes that the molar fraction of each component is equal to the volume fraction.

pmix = pair .Xair + psteam . Xstcam I: 810]

The heat capacity of the air-steam mixture was calculated as functions of temperature

and composition using an equation given by Millsap (2002); (Equation [8.11]).

. : (pair 'Xair 'cpair + psteam .xsteam .cpstcam) [ 811 ]

P-m'x (pair . Xair + psteam . xstcam)

 

C
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The thermal conductivity of air was modeled as a function of temperature using

regression of tabular data (Geankoplis, 1993); (Equation [8.12]).

kair = 0.000000003 - T2 + 0.0000008 - T + 0.002 [ 8.12 ]

The regression had an R2 value of 0.9999 (Figure 8.61).
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Figure 8.61 - Thermal conductivity of air as a function of temperature (From

tabular data: Geankoplis, 1993).

The thermal conductivity of steam was modeled as a function of temperature using

regression of tabular data (Geankoplis, 1993); (Equation [813]).
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k = 0.0000009 - T + 0.0002 [ 8.13 ]
steam

The regression had an R2 value of (Figure 8.62).
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Figure 8.62 - Thermal conductivity of steam as a function of temperature (From

tabular data: Geankoplis, 1993).

Thermal conductivity of the air-steam mix was modeled using an equation given by

Burmeister (1983); (Equation [8.14]).

k p = kair + ksteam [ 814]

mm Xstcam xair

1+Aas.( Aair) 1+Asa ( /Xstcam)
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> . 1 + [0.733 . (sWm . 3.1, )0-51/TM

 

 
3.

1+ m Tair.K

[ 8.16]

The diffusivity of steam in air was modeled using an equation from Vargaflik (1966);

(Equation [8. 17]).

Dw=02  
T

16.[ air,K

273

I.
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8.3 Product thermo-physical properties

Composition dependent values ofproduct thermo-physical properties were

used for the model calculations (Equations [8.18] and [8.19]). The heat capacity of

meat was modeled as a function of the mass fractions of water, protein, and fat (Choi

and Okos, 1986). Separate equations were utilized for the temperature ranges below

(Equation [8.18]) and above (Equation [8.19]) freezing.

Cp.frozcn = Cp.ice .xW +cp.protein .XP +cp.fat .XF [ 8'18]

c = c -XW +Cp.protein -XP +cp‘fat ~XF [ 8.19]

Thermal conductivity of the meat was calculated using a series model based

upon the volume fraction and thermal conductivity of the water, protein, and meat

fractions of the meat (Choi and Okos, 1986); (Equation [820]).

kT=k ~X +k ~X +k X [8.20]
water water protein protein fat . fat

The density of the meat was calculated using a parallel model based upon the

density of the water, fat, and protein components of the meat (Choi and Okos, 1986);

(Equation [8.21]).
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1

mwater/p water + mfat /p fat + mprotein /pprotein

 

p: [8.21]

The moisture diffusivity of the meat was modeled as a function of fat-protein

ratio and temperature using an equation developed by Mittal and Blaisdell (1984);

(Equation [822]).

4829.7
 km = 0.003~exp(— 0.442+FP— +1155] [ 8.22]

A constant value of 64.4 J/g was utilized for the latent heat a fusion of fat

(Skala etal., 1989). The latent heat of fusion for water was set at 337.8 J/g

(Geankoplis, 1993). A value of 0.003 g/g was utilized for the value of moisture

capacity, cm (Chen et al., 1999). A constant value of 0.0008 g/s'cm2 was utilized for

the fat conductivity, kf.
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8.4 Screen shots from Visual Basic cooking model user interface
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Figure 8.63 — Input screen of cooking model user interface.
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8.5 Visual Basic model code

Module — Main

Version 1.0 - July 2004

By Adam E. Watkins and Dr. Bradley P. Marks

Department of Biosystems and Agricultural Engineering

Michigan State University

Sub Main()

'Many of the modules associated with the basic FEM architecture were provided by or modified

' from modules provided by Dr. Larry Segerlind - Michigan State University. These modules

' have been identified in the module comment statements.

‘ FEM cooking and microbial inactivation model - Main Module

' This module controls the calculations for a two-dimensional heat and mass transfer problem.

'Open the main input file. Contains node data, element data, boundary nodes, etc.

Open "c:\Tdeield47.txt" For Input As #1

'Open the main output file

Open "c:\modeloutput.txt" For Output As #3

'Input setup information

Input #1, NumNodes, NumEle, NudeyNodes, NumMatlSets, NumDeridey

'Set solution timestep to l s

timestep = 1

'Format display

Form2.MSChart1.Visible = True 'Show chart 1

Form2.MSChart2.Visible = True 'Show chart 2

Form2.MSChart3.Visible = True 'Show chart 3

'Input oven conditions from a file or from the input screen

If Forml .Option2 = True Then

Open "c:\OvenConditions.txt" For Input As #2 'Open oven conditions input file

Input #2, NumTimeSteps 'Get cooking time from file

ReDim OvenConditions(NumTimeSteps, 3) 'Dimension oven conditions matrix

Call InputOvenConditions(OvenConditions(), NumTimeSteps) 'Get oven conditions from file

Forrnl .Frame3.Visible = True 'Show oven conditions graph
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Forml.MSChart1.Visible = True

OvenConditions(O, 1) = ”Temperature C"

OvenConditions(O, 2) = "Steam Content”

OvenConditions(O, 3) = "Air Velocity m/s"

Forml.MSChart1.ChartData = OvenConditions

'Close oven conditions file

'Oven conditions from form

Close #2

Else

NumTimeSteps = Forml .Text4.Text

ReDim OvenConditions(NumTimeSteps, 3)

For I = 1 To NumTimeSteps

OvenConditions(I, l) = Forml .Textl .Text

OvenConditions(I, 2) = Forml .Text2.Text

'Show oven conditions graph

'Labels on graph

'Labels on graph

'Labels on graph

'Plot oven conditions on graph

'Input cooking time

'Dimension oven conditions matrix

'Oven temperature C

'Oven steam content % by volume

If OvenConditions(I, 2) = 0 Then OvenConditions(I, 2) = 1

OvenConditions(I, 3) = For‘ml .Text3.Text

Next I

Forml .Frame3.Visible = True

Forml .MSChartl .Visible = True

OvenConditions(O, l) = "Temperature C"

OvenConditions(O, 2) = "Steam Content"

OvenConditions(O, 3) = "Air Velocity m/s"

Forml.MSChart1 .ChartData = OvenConditions

End If

ReDim Coord(NumNodes, 2)

ReDim EleMatlData(NumEle)

ReDim EleNodeData(NumEle, 4)

ReDim SubDerivBC(NumDefidey + l, 2)

ReDim BoundaryType(NumDeridey + 1)

ReDim deNode(NudeyNodes)

'Input node,element, and derivative boundary data

'Oven air velocity cm/s

'Show oven conditions graph

'Show oven conditions graph

'Labels on graph

'Labels on graph

'Labels on graph

'Plot oven conditions on graph

'Dimension matrix of coordinate data

' Coord( ,1) X coordinate

' Coord( ,2) Y coordinate

'Dimension element material set

'Dimension matrix ofelement node data

' EleNodeData%( ,l) = Node I

' EleNodeData%( ,2) = Node J

' EleNodeData%( ,3) = Node K

' EleNodeData%( ,4) = Node M

'Subscripts of the derivative

' boundary condition

'Convection or impingement at each

' derivative boundary

'Vector of boundary nodes

Call InputBasicData(NumMatlSets, NumNodes, NumEle, Coord(), EleMatlDataO, EleNodeDataO)

Call InputDerivBC(NumDeridey, NudeyNodes, deNode(), SubDerivBC(), BoundaryTypeO)

Close #1 'Close input data file

'Input type ofproduct

If Forml .Option3 = True Then

Meat = 1 'Beef

TR = 6.5 'Target reduction

Form2.Labe12.Caption = "6.5"

Elself Forml .Option4 = True Then

'Label on Salmonella reduction graph
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Meat = 2 'Pork

TR = 6.5 'Target reduction

Form2.Label2.Caption = "6.5" 'Label on Salmonella reduction graph

Elself Forml .OptionS = True Then

Meat = 3 ' Turkey

TR = 7 'Target reduction

Forrn2.Labe12.Caption = "7" 'Label on Salmonella reduction graph

End If

'Input meat temperature, moisture, and fat content

InitialT = Forml .Text5.Text 'Initial meat temperature

InitialM = Forml .Text6.Text 'lnitial meat moisture content

If InitialM = 0 Then InitialM = 0.1 'Avoid zero moisture condition not allowed

' by model equations

InitialF = Forml .Text7.Text 'Initial meat fat content

'Input Salmonella reduction equation coefficients

Dvalue = Form1.Text9.Text 'D-value Salmonella

Z = Forml .Text10.Text 'z-value Salmonella

Tref = Forml.Text11.Text ’T-ref Salmonella

'Dimension vectors for calculation of inactivation

ReDim AverageN(NumTimeSteps) 'Volume average of microbial concentration

Dim Reduction As Variant 'Overall microbial reduction

ReDim logreduction(NumNodes) 'Center microbial reduction

Ninitial = 1000000000 'Value used for log-reduction calculation

ReDim No(NumNodes) 'Used for log—reduction calculation

ReDim NW(NumNodes) 'Used for log-reduction calculation

ReDim Nnew(NumNodes) 'Used forlog-reduction calculation

ReDim NnewW(NumNodes) 'Used for log-reduction calculation

For X = 1 To NumNodes

No(X) = Ninitial 'Create a nodal microbial concentration vector

NW(X) = Ninitial

Next X

'Dimension global solution vector

ReDim GSV(NumNodes) 'Enthalpy

ReDim GSV_M(NumNodes) 'Moisture

ReDim GSV_F(NumNodes) 'Fat

'Vector of temperature values

ReDim temperature(NumNodes) Temperature vector

'Calculate solid content of the product

Solid = 100 - lnitialM - InitialF 'Initial solid material in meat (NOT fat or water)

'Load vectors of moisture and F? values
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For K = 1 To NumNodes

GSV_M(K) = InitialM 'Load vector of nodal moisture values

GSV_F(K) = InitialF / Solid 'Load vector of nodal fat values

temperature(K) = InitialT 'Load vector of initial temperature values

Next K

’Calculate the initial therrnophysical properties of the product

Call CalculatelnitialProperties(heat_capacity_f, Meat, Solid, InitialT, InitialM, InitialF, heat_capacity,

latentW, frozenH, latentF)

'Formulate enthalpy table for reconversion to temperature

LevelOne = frozenI-I

LevelTwo = frozenI-I + latentW

LevelFive = frozenH + latentW + (2 "' 3.35)

LevelThree = frozenH + latentW + (45 * 3.35) + (2 * 3.35)

LevelFour = frozenl-I + latentW + (45 * 3.35) + latentF + (2 * 3.45)

'Percent of water thawed at the exact value of freezing temperature

PercentThawed = 1

'Convert product temperature to enthalpy

If InitialT < -2 Then

For K = 1 To NumNodes

GSV(K) = (InitialT + 273) " heat_capacity_f

Next K

Elself InitialT = -2 Then

For K = 1 To NumNodes

GSV(K) = frozenH + PercentThawed * latentW

Next K

Elself InitialT > -2 And lnitialT <= 45 Then

For K = 1 To NumNodes

GSV(K) = ((2 + InitialT) " 3.35) + (frozenH + latentW)

Next K

Elself InitialT > 45 Then

For K = I To NumNodes

GSV(K) = ((2 + InitialT) "' 3.35) + (frozenH + latentW + latentF)

Next K

End If

'Calculate oven air moisture content from wet bulb temperature if specified in that manner

If Form1.Checkl.Value = 1 Then

wa = Forml .Text8.Text

Tov = Forrn1.Text1.Text

latent = (-2.429 "‘ Forml.Text1.Text + 2502.8)

Cwb = 8.12078904E-10 "' wa " 3 - 0.000000035203247 "' wa " 2 + 0.00000131977474 "'

wa

+ 0.000000621530732

ConcOvenAir = Cwb - ((0.000731 / latent) "' (Tov - wa))

End If
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'Dimension output matrices

ReDim Output(NumTimeSteps, 2) Temperature output

ReDim Output_S(NumTimeSteps, 3) 'Salmonella linear lethality output

ReDim Output_SW(NumTimeSteps, 2) 'Salmonella logistic lethality output

ReDim AverageOutput(NumTimeSteps, 2) 'Yield and moisture output

ReDim AverageFat(NumTimeSteps) 'Element average fat content

'Dimension matrix of Element Physical Data

ReDim ElePhyData(NumMatlSets, 15) 'ElePhyData( ,1) Equation coef, Dx

'ElePhyData( ,2) Equation coef, Dy

'ElePhyData( ,3) Equation coef, G

'ElePhyData( ,4) Equation coef, Q

'ElePhyData( ,5) Equation coef, lamda

'ElePhyData( ,6) Equation coef, Dx_M

'ElePhyData( ,7) Equation coef, Dy_M

'ElePhyData( ,8) Equation coef, G_M

'ElePhyData( ,9) Equation coef, Q_M

'ElePhyData( ,10) Equation coef, lamda_M

'ElePhyData( ,l 1) Equation coef, Dx_F

'ElePhyData( ,12) Equation coef, Dy_F

'ElePhyData( ,13) Equation coef, G_F

'ElePhyData( ,14) Equation coef, Q_F

'ElePhyData( ,15) Equation coef, lamda_F

'Calculate Bandwidth

Call Cachandwidth(NumEle, EleNodeDataO, BandWidth)

'Dimension element matrices

'Element force vector

Dim EFQ(4) 'Enthalpy

Dim EFQ_M(4) 'Moisture

Dim EFQ_F(4) 'Fat

'Element force vector, derivative BC

Dim EFS(2) 'Enthalpy

Dim EFS_M(2) 'Moisture

Dim EFS_F(2) 'Fat

'Element stiffness matrix

Dim ESM(4, 4) 'Enthalpy

Dim ESM_M(4, 4) 'Moisture

Dim ESM_F(4, 4) 'Fat

'Element stiffness matrix, derivative BC

Dim EKM(2, 2) 'Enthalpy

Dim EKM_M(2, 2) 'Moisture

Dim EKM_F(2, 2) 'Fat

'Element subscript values
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Dim EleSub(4)

'Element Phi values (nodal unknown values)

Dim ElePhiVal(4) 'Enthalpy

Dim ElePhiVal_M(4) 'Moisture

Dim ElePhiVal_F(4) 'Fat

'Element capacitance matrix

Dim ECM(4, 4) 'Enthalpy

Dim ECM_M(4, 4) 'Moisture

Dim ECM_F(4, 4) 'Fat

'Element capacitance matrix, derivative BC

Dim ECQ(4, 4) 'Enthalpy

Dim ECQ_M(4, 4) 'Moisture

Dim ECQ_F(4, 4) 'Fat

'Dimension the arrays for the global system of equations

NumEleSub = 4

NumEleNodes = 4

'Vectors used in finite difference time solution

Temporary solution vector

ReDim Temp(NumNodes) 'Enthalpy

ReDim Temp_M(NumNodes) 'Moisture

ReDim Temp_F(NumNodes) 'Fat

'Global force vector

ReDim GFV(NumNodes) 'Enthalpy

ReDim GFV_M(NumNodes) 'Moisture

ReDim GFV_F(NumNodes) 'Fat

ReDim GFV_A(NumNodes) 'Enthalpy

ReDim GFV_M_A(NumNodes) 'Moisture

ReDim GFV_F_A(NumNodes) 'Fat

ReDim GFV_Star(NumNodes) 'Enthalpy

ReDim GFV_M_Star(NumNodes) 'Moisture

ReDim GFV_F_Star(NumNodes) 'Fat

'Global stiffness matrix

ReDim GSM(NumNodes, BandWidth) 'Enthalpy

ReDim GSM_M(NumNodes, BandWidth) 'Moisture

ReDim GSM_F(NumNodes, BandWidth) 'Fat

'Global capacitance matrix
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ReDim GCM(NumNodes, BandWidth) 'Enthalpy

ReDim GCM_M(NumNodes, BandWidth) 'Moisture

ReDim GCM_F(NumNodes, BandWidth) 'Fat

'Global A matrix used for FD time solution

ReDim GAM(NumNodes, BandWidth) 'Enthalpy

ReDim GAM_M(NumNodes, BandWidth) 'Moisture

ReDim GAM_F(NumNodes, BandWidth) 'Fat

'Global P matrix used for FD time solution

ReDim GPM(NumNodes, BandWidth) 'Enthalpy

ReDim GPM_M(NumNodes, BandWidth) 'Moisture

ReDim GPM_F(NumNodes, BandWidth) 'Fat

'Vector used for volume averaging

ReDim Volume(NumEle)

 

' FEM / Finite difference time solution

 

'Zero the global matrices

Call ZeroGlobalMatrices(NumNodes, BandWidth, GFV(), GSM(), GFV_M(), GSM_M(), GFV_F(),

GSM_FO. GCMO. GCM_MO, GCM_F())

'Show message indicating program is running

Form6.Show

'Initialize the global matrices for the first time step of the time solution

T = 1

'Build the banded system of equations

ForK = 1 To NumEle

Call CalculateProperties(Meat, Solid, NumEle, EleNodeData(), E1ePhyData(), temperature(),

GSV_M(), GSV_F(), moisture_capacity, density)

Call ESMatrix2DField(EleMatlData(), EleNodeData(), Coord(), E1ePhyData(), EFQ(),

ESM(),

EFQ_M(), ESM_M(), EFQ_F(), ESM_F(), Volume(l. KK)

Call EleCapMatrix(ElePhyData(), EleNodeData(), ECM(), ECM_M(), ECM_F(), Coord(),

KK)

Call EleSubscriptValues(EleNodeData(), KK, NumEleSub, EleSub())

Call BuildBandedSystem(NumEleSub, EleSub(), EFQ(), ESM(), GFV(), GSM(), ECM(),

GCMO,

EFQ_M(), ESM_M(), GFV_M(), GSM_M(), ECM_M(), (ECM_M(), EFQ_F(),

ESM_F(),

GFV_F(), GSM_F(), ECM_F(), GCM_F())

NextK

'Add in the derivative boundary conditions when they occur - direct stiffness method
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NumEleSub = 2

For I = 1 To NumDeridey

Call CalDerivBC(heat_capacity_f, frozenH, latentW, latentF, I, Coord(), SubDerivBC(),

EleSub(),

EKM(), EFS(), GSVO, EKM_MO, EFS_MO, GSV_M(), EKM_F(), EFS_FO,

GSV_F(),

OvenConditions(), T, BoundaryTypeO, InitialM, InitialF, moisture_capacity, density,

temperature(), ConcOvenAir)

Call BuildBandedSystem(NumEleSub, EleSub(), EFS(), EKM(), GFV(), GSM(), ECQ(),

GCM(),

EFS_MO, EKM_MO. GFV_M(), GSM_M(), ECQ_MO. GCM_M(), EFS_FO,

EKM_F(),

GFV_F(), GSM_F(), ECQ_FO, GCM_F())

Next I

'Set force vector values for next time step

For X = 1 To NumNodes

GFV_A(X) = GFV(X)

GFV_M_A(X) = GFV_M(X)

GFV_F_A(X) = GFV_F(X)

Next X

'Begin time stepping solution

For T = 1 To NumTimeSteps

'Construct global matrices using direct stiffness method

ForK = 1 To NumEle

Call CalculateProperties(Meat, Solid, NumEle, EleNodeData(), E1ePhyData(),

temperature(), GSV_M(), GSV_F(), moisture_capacity, density)

Call ESMatrix2DField(EleMatlData(), EleNodeData(), Coord(), E1ePhyData(),

EFQ(),

ESM(), EFQ_M(), ESM_M(), EFQFO, ESM_F(), Volume(), KK)

Call EleCapMatrix(ElePhyData(), EleNodeData(), ECM(), ECM_M(), ECM_F(),

Coord(), KK)

Call EleSubscriptValues(EleNodeData(), KK, NumEleSub, EleSub())

Call BuildBandedSystem(NumEleSub, EleSub(), EFQ(), ESM(), GFV(), GSM(),

ECM(),

GCM(), EFQ_M(), ESM_M(), GFV_M(), GSM_M(), ECM_M(),

GCM_M(),

EFQFO, ESM_F(), GFV_F(), GSM_F(), ECM_F(), GCM_F())

NextK

'Add in the derivative boundary conditions when they occur - direct stiffness method

NumEleSub = 2

For I = 1 To NumDeridey

Call CalDerivBC(heat_capacity_f, frozenH, latentW, latentF, I, Coord(),

SubDerivBC(),
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EleSub(), EKM(), EFS(), GSV(), EKM_MO, EFS_M(), GSV_M(),

EKM_F(), EFS_F(), GSV_F(), OvenConditions(), T, BoundaryTypeO,

InitialM, InitialF, moisture_capacity, density, temperature(), ConcOvenAir)

Call BuildBandedSystem(NumEleSub, EleSub(), EFS(), EKM(), GFV(), GSM(),

GCM(), EFS_M(), EKM_MO, GFV_M(), GSM_M(), ECQ_M(), '

GCM_M(),

EFS_F(), EKM_F(), GFV_F(), GSM_F(), ECQ_FO, GCM_F())

Next I

'Build matrices for finite difference (time) solution

Call BuildGAM(BandWidth, GAM(), GCM(), GSM(), GAM_MO, GCM_M(), GSM_M(),

GAM_F(), GCM_F(), GSM_F(), timestep, NumNodes)

Call BuildGPM(BandWidth, GPM(), GCM(), GSM(), GPM_M(), GCM_M(), GSM_M(),

GPM_F(), GCM_F(), GSM_F(), timestep, NumNodes)

Call ModifyGFV(GFV(), GFV_A(), GFV_StarO, GFV_M(), GFV_M_AO, GFV_M_StarO,

GFV_F_A(), GFV_F_StarO, GFV_F(), timestep, NumNodes)

'Solution of equations

Call MultpyBandMatrix(NumNodes, BandWidth, GPM(), GSV(), Temp())

Call MultpyBandMatrix(NumNodes, BandWidth, GPM_M(), GSV_M(), Temp_M())

Call MultpyBandMatrix(NumNodes, BandWidth, GPM_F(), GSV_F(), Temp_F())

For I = 1 To NumNodes

Temp(l) = Temp(I) + GFV_Star(l)

Temp_M(I) = Temp_M(l) + GFV_M_Star(I)

Temp_F(I) = Temp_F(I) + GFV_F_Star(I)

GFV_A(I) = GFV(I)

GFV_M_A(I) = GFV_M(I)

GFV_F_A(I) = GFV_F(I)

Next I

Call DecompBandMatrix(NumNodes, BandWidth, GAM())

Call DecompBandMatrix(NumNodes, BandWidth, GAM_MO)

Call DecompBandMatrix(NumNodes, BandWidth, GAM_F())

Call SolveBandMatrix(NumNodes, BandWidth, GSV(), Temp(), GAM())

Call SolveBandMatrix(NumNodes, BandWidth, GSV_M(), Temp_M(), GAM_MO)

Call SolveBandMatrix(NumNodes, BandWidth, GSV_F(), Temp_F(), GAM_F())

'Convert enthalpy data back to temperature for display

Call ConverthoTemp(heat_capacity__f, GSV(), GSV_M, GSV_F, temperature(), NumNodes,

InitialM, Solid, frozenH, latentW, latentF, heat_capacity, LevelOne, LevelTwo,

LevelThree, LevelFour, LevelFive)

'Calculate surface fat for next time step

Call CalculateSurfaceFatContent(InitialF, T, GSV_F(), NudeyNodes, deNodeO,

temperature(), T)

'Calculate Salmonella reduction

Call CalculateSurvivors(NumNodes, timestep, temperature(), Ninitial, No(), NW(), Nnew(),
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NnewW(), logreduction(), logreductionW, Dvalue, Tref, Z, TimeToLimit, TR)

'Volume averaging of Salmonella reduction

Call CalculateElementAverage(Volume(), NumEle, EleNodeData(), Nnew(),

WeightedAverage)

AverageN(T) = WeightedAverage

Reduction = -Log(AverageN(T) / Ninitial) / Log(10)

'Calculate the average moisture and FF of each element for overall yield and bulk moisture

determination

'Moisture

Call CalculateElementAverage(Volume(), NumEle, EleNodeData(), GSV_M(),

WeightedAverage)

'Fat

Call CalculateElementAverage(Volume(), NumEle, EleNodeData(), GSV_F(),

WeightedAverage)

AverageFat(T) = WeightedAverage

F = AverageFat(T)

'Calculate yield from moisture and fat percentages

 

 

Fat = F " Solid ‘Mass fat based on 100 g initial

Water = M * (Fat + Solid) / (1 - M) 'Mass water based on 100 g initial

Total = Fat + Water + Solid Total mass

' OUTPUT SECTION

'Graph yield

AverageOutput(T, 2) = Total 'Yield

AverageOutput(O, 2) = "Yield" 'Graph label

'Graph moisture

AverageOutput(T, 1) = WeightedAverage 'Moisture

AverageOutput(O, 1) = "M" 'Graph label

M = AverageOutput(T, 1)/ 100

'Graph temperature output

Output(O, l) = "Center Temp" 'Graph labels

Output(O, 2) = "Surface Temp" 'Graph labels

Output(T, l) =temperature(1) 'Center temperature

Output(T, 2) = temperature(4) 'Surface temperature

'Graph Salmonella reduction

Output_S(0, l) = "Log reduction" 'Graph label
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Next T

Output_S(O, 2) = "Target reduction" 'Graph label

Output_S(T, l) = logreduction(l) 'Graph Salmonella reduction from linear eqn.

Output_S(T, 2) = TR 'Graph target reduction

Output_S(T, 3) = logreductionW ‘Graph Salmonella reduction from logistic eqn.

'Write data to output file

Write #3, temperature(l), temperature(Z), temperature(4), Total, M, logreduction( 1 ),

logreductionW, Reduction

'Labels for Salmonella reduction graph

If logreduction(l) < TR Then

Form2.Labe13.Caption = "Log reduction not acheived!"

Form2.Label4.Visible = False

Fonn2.Labe15.Visible = False

Else

Form2.Label3.Caption = "Log reduction acheived atz"

Form2.Label4.Visible = True

Form2.Labe15.Visible = True

Form2.Label4.Caption = TimeToLimit

Form2.LabelS.Caption = "s"

End If

'End time stepping

'Digital display of endpoint data

Form2.Label8.Caption = Round(temperature(4), 1) 'Display surface temperature

Form2.Label9.Caption = Round(temperature( 1 ), 1) 'Display center temperature

Form2.Labe112.Caption = Round(Total, 1) 'Display yield

Form2.Labell3.Caption = Round((M "‘ 100), 1) 'Display moisture content

'Remove run message box

Form6.Hide

'Display graphs

Form2.MSChartl .ChartData = Output Temperature graph

Forrn2.MSChart2.ChartData = AverageOutput 'Yield/Moisture graph

Form2.MSChart3.ChartData = Output_S 'Salmonella graph

Close #3

End Sub
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Module — CacherivBC

Sub CalDerivBC(heat_capacity_f, frozenH, latentW, latentF, I, Coord(), SubDerivBC(), EleSub(),

EKM(),

EFS(), GSV(), EKM_MO. EFS_M(), GSV_M(), EKM_F(), EFS_F(), GSV_F(),

OvenConditions(), T, BoundaryTypeO, InitialM, InitialF, moisture_capacity, density,

temperature(), ConcOvenAir)

This subroutine calculates the element contributions resulting from

'derivative boundary conditions

'Assign the node numbers of the side to the array EleSub()

EleSub(l) = SubDerivBC(I, 1)

EleSub(Z) = SubDerivBC(I, 2)

'Grab oven conditions

OvenAirT = OvenConditions(T, 1)

OvenAirM = OvenConditions(T, 2)

OvenAirV = OvenConditions(T, 3) "' 100

'Evaluate the coefficients in the element matrices

XLength = Coord(SubDerivBC(I, 1), l) - Coord(SubDerivBC(I, 2), l)

YLength = Coord(SubDerivBC(I, l), 2) - Coord(SubDerivBC(I, 2), 2)

Ri = Coord(SubDerivBC(I, l), l)

Rj = Coord(SubDerivBC(I, 2), 1)

SideLength = Sqr(XLength " 2 + YLength A 2)

'Get temperature and moisture for each boundary

' T1 = temperature at node 1 of boundary

' T2 = temperature at node 2 ofboundary

T1 = l "' temperature(SubDerivBC(I, 1))

T2 = l * temperature(SubDerivBC(I, 2))

Tave = (Tl + T2) / 2

' M1 = moisture at node 1 of boundary (decimal)

' M2 = moisture at node 2 ofboundary (decimal)

M] = GSV_M(SubDerivBC(I, 1))

M2 = GSV_M(SubDerivBC(I, 2))

Mave=(M1 ’1+M2*1)/2

If Mave < 0 Then Mave = 0.01

'Convert moisture content to dry basis

MDB = (100 "‘ Mave) / (100 - Mave)
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'Oven geometry

Height = 6.35 'cm

S = 4.6482 'cm

E = 1.17 'cm

W = 0.635 'cm

F = W / (2 "‘ S) 'Martin Equation parameter

fo = (60 + 4 * (Height / W - 2) A 2) A -0.5 'Martin Equation parameter

 

'Calculate air physical properties as functions of temperature and steam content

'Steam concentration g/cmA3

If OvenAirT <= 100 Then

DensitySatSteam = 8.12078904E-10 “ OvenAirT A 3 - 0.000000035203247 * OvenAirT A 2 +

0.00000131977474 * OvenAirT + 0.000000621530732

Elself OvenAirT > 100 Then

DensitySatSteam = -0.0002 * Log(OvenAirT) + 0.0015 'g/cmA3

End If

If Forml.Checkl.Value = 1 Then

OvenAirM = ConcOvenAir

density_air = -0.00000000002 * OvenAirT A 3 + 0.00000001 "‘ OvenAirT A 2 - 0.000004 "‘

OvenAirT + 0.0013 'g/cmA3

X_S = OvenAirM / (OvenAirM + density_air)

Else

X_S = OvenAirM/ 100

End If

'Mass fraction air

X_A = 1 - X_S

'Molar weight of steam and air

M_steam = 18

M_air = 28

S_a = 79 'K

S_s = 559.5 'K

'Latent heat

latent = 1.2 * (-2.429 * Tave + 2502.8) 'J/g

'Air and steam viscosity

viscosity_air = -0.0000000002 "‘ OvenAirT A 2 + 0.0000005 "‘ OvenAirT + 0.0002 'g/cm s

viscosity_steam = -0.00000001 "’ OvenAirT A 2 + 0.00004 * OvenAirT + 0.0089 'g/cm 3

phi_as = 1 / 8 A 0.5 * ((1 + (viscosity_air / viscosity_steam) A 0.5 * (M_steam / M_air) A 0.25) A 2 / (1

+

(M_air / M_steam)) A 0.5) '-
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phi_sa = l / 8 A 0.5 * ((1 + (viscosity_steam / viscosity_air) A 0.5 * (M_air / M_steam) A 0.25) A 2 / (l

+

(M_steam / M_air)) A 0.5) '-

’Mixture viscosity

viscosity_mix = viscosity_air / (1 + phi_as * X_S / X_A) + viscosity_steam / (1 + phi_sa * X_A/

X_S) 'g/cm s

'Air and mixture density

density_air = 000000000002 * OvenAirT A 3 + 0.0000000] * OvenAirT A 2 - 0.000004 * OvenAirT

+

0.0013 'g/cmA3

density_mix = density_air "' X_A + DensitySatSteam * X_S 'g/cmA3

'Heat capacity

cpair = 1.01

cpsteam = 0.00000087429 * OvenAirT A 2 + 0.00018055 * OvenAirT + 1.8616 '1.888 '4.2

cpmix = (density_air * X_A "' cpair + DensitySatSteam * X_S * cpsteam) / (density_air "‘ X_A +

DensitySatSteam * X_S)

'Diffusivity

Dsa = (2.16 * 10 A -5 * ((OvenAirT + 2731/273) A 1.8) * 10000 'cmA2/s

A_as = 0.25 "' (1 + ((viscosity_air * viscosity_steam) "‘ (M_steam / M_air) A 0.75 + (1 + S_a/

(OvenAirT +

273)) / (l + S_s / (OvenAirT + 273))) A 0.5) A 2 "' (1 + 0.733 * (S_a "‘ S_s) A 0.5 / (OvenAirT

+

273)) / (l + S_a / (OvenAirT + 273)) '-

A_sa = 0.25 * (1 + ((viscosity_steam / viscosity_air) "' (M_air / M_steam) A 0.75 * (1 + S_s/

(OvenAirT +

273)) / (1 + S_a / (OvenAirT + 273))) A 0.5) A 2 * (l + 0.733 "‘ (S_a " S_s) A 0.5 / (OvenAirT

+

273)) / (1 + S_s / (OvenAirT + 273)) '-

'Thermal conductivity

k_air = 00000000003 "' OvenAirT A 2 + 0.0000008 "' OvenAirT + 0.002 'W/cm C

k_steam = 0.000000009 * OvenAirT + 0.0002 'W/cm C

k_mix = (k_air / (1 + A_as " (X_S / X_A)) + k_steam / (1 + A_sa "' (X_A / X_S))) 'W/cm

C

'Calculate Prandtl and Schmidt numbers

Pr_mix = cpmix * viscosity_mix / k_mix -

Sc_mix = viscosity_mix / (density_mix "' Dsa) '-

 

'Calculate oven steam moisture concentration

If Forml .Check1.Value = 1 Then

ConcOvenAir = ConcOvenAir

Else
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ConcOvenAir = DensitySatSteam * OvenAirM / 100 'g/cmA3

End If

 

'Calculate model parameters

'Convection condition

If BoundaryType(l) = 1 Then

'Calculate transport coefi'rcients

Re = OvenAirV "' density_mix "' E / viscosity_mix

Nu = 0.037 " Re A 0.8 " Pr_mix A (l /3)

SH = 0.037 "' Re A 0.8 * Sc_mix A (1 / 3)

H_M=SH"'Dsa/E

h=Nu*k_mix/E

'Calculate surface moisture concentration

If Tave < 0 Then

Csat = 0.000000621530732

Else

Csat = 8.12078904E-10 "' Tave A 3 - 0.000000035203247 "' Tave A 2 +

0.00000131977474 * Tave + 0.000000621530732

End If

'Calculate effective relative humidity

RH = 100 "‘ (ConcOvenAir / Csat)

MDB = (Mave * 100) / (100 - Mave)

ERH = Exp((-5222.47 “ (MDB A -1.0983)) / (1.9818 * (Tave + 273)))

Cs = ERH * Csat

'Calculate energy fluxes

Q_conv = h * (OvenAirT - Tave)

If ConcOvenAir > Csat Then

Q_cond = H_M * latent "‘ (ConcOvenAir - Cs)

Q_evap = 0

Else

Q_cond = 0

End If

If Cs > ConcOvenAir Then

Q_evap = H_M * latent * (Cs - ConcOvenAir)

Q_cond = 0

Else

Q_evap = 0

Endlf
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Q_total = Qficonv + Q_cond - Q_evap

'Effective heat transfer coefficient based on total flux (convection, condensing, evaporation)

heff = Q_total / (OvenAirT - Tave)

'Calculate equilibrium values under current conditions

'Enthalpy

Hequilibrium = OvenAirT * 3.35 + frozenH + latentW + latentF + (2 * 3.35)

'Moisture

If RH >= 97 Then

EMCWB = InitialM

Else

EMC = ((1.9818 ‘ (Tave + 273) "' Log(RH/ 100)) / ~5222.47) A (l / -l.0983)

EMCWB = (100 * EMC) / (100 + EMC)

End If

X = 1 "' InitialM

If X <= (EMCWB * 1) Then

EMCWB = X

End If

'FEM boundary coefficients

'Heat transfer

CoetM = heff "‘ SideLength / 6

CoefS = heff "' Hequilibrium "‘ SideLength / 2

'Moisture transfer

CoetM_M = H_M "' density " moisture_capacity " SideLength / 6 'Moisture transfer

CoefS_M = H_M * density "' moisture_capacity * EMCWB “ SideLength / 2

'Stein JSO-IV impingement condition

Elself BoundaryType(I) = 2 Then 'Impingement

'Calculate transport coefficients

Re = OvenAirV "‘ W "' density_mix / viscosity_mix

Nu=(2/3)*Pr_mixA0.42* foA0.75 ‘((2"'Re)/(F/fo+fo/F))A(2/3)

SI-I=(2/3)* Sc_mixA0.42 * foA0.75 * ((2 * Re)/(F/fo+fo/F))A(2/3)

H_M=SH"'Dsa/W

h=Nu"'k_mix/W

'Calculate surface moisture concentration

If Tave < 0 Then

Csat = 0.000000621530732
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Else

Csat = 8.12078904E-10 " Tave A 3 - 0.000000035203247 * Tave A 2 +

0.00000131977474 * Tave + 0.000000621530732

End If

'Calculate effective relative humidity

RH = 100 * (ConcOvenAir / Csat)

MDB = (Mave * 100) / (100 - Mave)

ERH = Exp((-5222.47 * (MDB A -1.0983)) / (1.9818 * (Tave + 273)))

Cs = ERH "' Csat

'Calculate energy fluxes

Q_conv = h " (OvenAirT - Tave)

If ConcOvenAir > Cs Then

(Lcond = H_M * latent * (ConcOvenAir - Cs)

Q_evap = 0

Else

Q_cond = 0

End If

If Cs > ConcOvenAir Then

(Levap = H_M “ latent * (Cs - ConcOvenAir)

Q_cond = 0

Else

Q_evap = 0

End If

Q_total = (Lconv + Q_cond - Q_evap

'Effective heat transfer coefficient based on total flux (convection, condensing, evaporation)

heff = Qtotal / (OvenAirT - Tave)

'Calculate equilibrium values under current conditions

'Enthalpy

Hequilibrium = OvenAirT "‘ 3.35 + frozenH + latentW + latentF + (2 * 3.35) '792.64 + 6.44

'Moisture

If RH >= 97 Then

EMCWB =Initia1M

Else

EMC = ((1.9818 "‘ (Tave + 273) "' Log(RH/ 100)) / -5222.47) A (1 /-1.0983)

EMCWB = (100 * EMC) / (100 + EMC)

End If

X = 1 "' InitialM

IfX <= (EMCWB * 1) Then

EMCWB = x
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End If

'FEM boundary coefficients

'Heat transfer

CoefM = heff "' SideLength / 6

CoefS = heff "‘ Hequilibrium "' SideLength / 2

'Moisture transfer

CoetM__M = H_M "' density * moisture_capacity * SideLength / 6 'Moisture transfer

CoetS_M = H_M * density * moisture_capacity * EMCWB * SideLength / 2

Elself BoundaryType(I) = 3 Then 'Small oven

W = 2.6

'Calculate transport coefficients

Re = OvenAirV * density_mix * W / viscosity_mix

Nu = 0.037 "' Re A 0.8 * Pr_mix A (1 /3)

SH = 0.037 * Re A 0.8 "‘ Sc_mix A (1 /3) '0.037 * Re A 0.8 * Sc_mix A (1 l3)

H_M=SH*Dsa/W

h=Nu"'k_mix/W

'Calculate surface moisture concentration

If Tave < 0 Then

Csat = 0.000000621530732

Else

Csat = 8.12078904E-10 "' Tave A 3 - 0.000000035203247 "‘ Tave A 2 +

0.00000131977474 "' Tave + 0.000000621530732

EndIf

'Calculate effective relative humidity

RH = 100 * (ConcOvenAir / Csat)

MDB = (Mave "' 100) / (100 - Mave)

ERH = Exp((-5222.47 * (MDB A -1.0983)) / (1.9818 " (Tave + 273)))

Cs = ERH * Csat

'Calculate energy fluxes

Q_conv = h * (OvenAirT - Tave)

If ConcOvenAir > Csat Then

Q_cond = H_M * latent "‘ (ConcOvenAir - Cs)

Q_evap = 0

Else

Q_cond = 0
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End If

If Cs > ConcOvenAir Then

Q_evap = H_M * latent * (Cs - ConcOvenAir)

Q_cond = 0

Else

Q_evap = 0

Endlf

Q_total = Q_conv + Q_cond - Q_evap

'Effective heat transfer coefficient based on total flux (convection, condensing, evaporation)

heff = Q_total / (OvenAirT - Tave)

'Calculate equilibrium values under current conditions

'Enthalpy

Hequilibrium = OvenAirT "‘ 3.35 + frozenH + latentW + latentF + (2 "‘ 3.35)

'Moisture

If RH >= 97 Then

EMCWB = InitialM

Else

EMC = ((1.9818 "' (Tave + 273) "' Log(RH/ 100)) / -5222.47) A (1 /-l.0983)

EMCWB = (100 "' EMC) / (100 + EMC)

End If

X = 1 "' InitialM

IfX <= (EMCWB " 1) Then

EMCWB = X

End If

'FEM boundary coefficients

'Heat transfer

CoefM = heff "' SideLength / 6

CoefS = heff "‘ Hequilibrium * SideLength / 2

'Moisture transfer

CoefM_M = H_M * density "' moisture_capacity "' SideLength / 6 'Moisture transfer

CoefS_M = H_M * density * moisture_capacity * EMCWB * SideLength / 2

Elself BoundaryType(l) = 4 Then 'Stein 102 oven

8 'height above belt

1.27 'nozzle diameter

6

h

d

L 'nozzle spacing
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'F = 0.906 * (d / l) A 2 'offset rows configuration

' o o o o

o o o

F = 0.785 * (d / L) A 2 'even rows configuration

' o o o o

o o o 0

'Calculate transport coefficients

Re = OvenAirV * d "' density_mix / viscosity_mix

KHDF = (1 + ((h / d) / (0.6 / Sqr(F))) A 6) A -0.05

GFHD = ((1 - (2.2 * Sqr(F))) / (1 + 0.2 * (h / d - 6) * Sqr(F))) * 2 * Sqr(F)

FREARN = 0.5 * (Re A 0.66)

Nu = (Pr_mix A 0.42) “ KHDF "' GFHD * FREARN

SH = (Sc_mix A 0.42) * KHDF " GFHD "' FREARN

H_M=SH*Dsa/d

h=Nu"'k_mix/d

'Calculate surface moisture concentration

If Tave < 0 Then

Csat = 0.000000621530732

Else

Csat = 8.12078904E-10 * Tave A 3 - 0.000000035203247 * Tave A 2 +

0.00000131977474 * Tave + 0.000000621530732

End If

'Calculate effective relative humidity

RH = 100 * (ConcOvenAir/ Csat)

MDB = (Mave "‘ 100) / (100 — Mave)

ERH = Exp((-5222.47 "‘ (MDB A -1.0983)) / (1.9818 * (Tave + 273)))

Cs = ERH * Csat

'Calculate energy fluxes

Q_conv = h * (OvenAirT - Tave)

If ConcOvenAir > Cs Then

Q_cond = H_M * latent * (ConcOvenAir - Cs)

Q_evap = 0

Q_cond = 0

Else

End If

If Cs > ConcOvenAir Then

Q_evap = H_M * latent * (Cs - ConcOvenAir)

Q_cond = 0

Else

Q_evap = 0

End If
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Endlf

Q_total = Qconv + Q_cond - Q_evap

'Effective heat transfer coefficient based on total flux (convection, condensing, evaporation)

heff = Q_total / (OvenAirT - Tave)

'Calculate equilibrium values under current conditions

'Enthalpy

Hequilibrium = OvenAirT * 3.35 + frozenH + latentW + latentF '792.64 + 6.44

'Moisture

If RH >= 97 Then

EMCWB = InitialM

Else

EMC = ((1.9818 " (Tave + 273) "' Log(RH/ 100)) / -5222.47) A (l / -l .0983)

EMCWB = (100 * EMC) / (100 + EMC)

End If

X = 1 * InitialM

If X <= (EMCWB * 1) Then

EMCWB = X

Endlf

'FEM boundary coefficients

'Heat transfer

CoefM = heff * SideLength / 6

CoefS = heff "' Hequilibrium * SideLength / 2

'Moisture transfer

CoefM_M = H_M * density * moisture_capacity "' SideLength / 6 'Moisture transfer

CoefS_M = H_M * density " moisture_capacity * EMCWB "' SideLength / 2

 

'Evaluate the element matrices

EKM(1,1)=2"‘ 3.14/2 ‘CoefM*(3 * Ri+Rj)

EKM(1,2)=2 * 3.14/2 * CoeflVl *(R1+Rj)

EKM(2,1)=2 * 3.14/2 * CoefM . (Ri +Rj)

EKM(2,2)=2 * 3.14/2 * CoefM *(Ri+3 * Rj)

EKM_M(1,1)= 2 * 3.14/2 * CoefM_M * (3 * Ri +Rj)

EKM_M(I, 2) = 2 * 3.14/2 * CoefM_M * (Ri + Rj)

EKM_M(2, 1) = 2 * 3.14/2 * CoefM_M * (R1 + Rj)

EKM_M(2, 2) = 2 * 3.14 / 2 * CoefM_M * (R1 + 3 * Rj)
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EFS(1)=2*3.14/3‘CoetS*(2*Ri+Rj)

EFS(2)=2*3.14/3‘CoefS*(Ri+2"'Rj)

EFS_M(I) =2 * 3.14/3 * CoefS_M * (2 * R1 + Rj)

EFS_M(2) = 2 * 3.14 / 3 * CoefS_M * (R1 + 2 * Rj)

End Sub

Module — MultplyBandMatrix

Sub MultpyBandMatrix(NumNodes, BandWidth, GSM(), GFV(), ProdVectorO)

This module provided by Dr. Larry Segerlind - Michigan State University

This subprogram multiplies a symmetric banded matrix and a column vector

' The banded matrix is stored as a rectangular array and only the

' coefficients on and above the main diagonal are stored in the array.

For I = 1 To NumNodes

Sum=0!

K=I-l

For J = 2 To BandWidth

M = J +1 - 1

If (M <= NumNodes) Then

Sum = Sum + GSM(I, J) * GFV(M)

End If

If (K > 0) Then

Sum = Sum + GSM(K, J) * GFV(K)

K = K - 1

End If

Next J

ProdVector(I) = Sum + GSM(I, 1) * GFV(I)

Next I

End Sub
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Module - EleSubscriptValues

Sub EleSubscriptValues(EleNodeData(), KK, NumEleSub, EleSub())

'This module provided by Dr. Larry Segerlind - Michigan State University

' This subprogram calculates the subscripts associated with the

' element. The subprogram allows the element to have one, two or

' three unknown values at a node.

NumEleSub = 4

If (EleNodeData(KK, 4) = 0) Then NumEleSub = 3

EleSub(l) = EleNodeData(KK, 1)

EleSub(2) = EleNodeData(KK, 2)

EleSub(3) = EleNodeData(KK, 3)

EleSub(4) = EleNodeData(KK, 4)

End Sub
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Module - ESMatrix2DField

Sub ESMatrix2DField(E1eMatlData(), EleNodeData(), Coord(), E1ePhyData(), EFV(), ESM(),

EFV_M(), ESM_M(), EFV__F(), ESM_F(), Volume(), KK)

' This module heavily modified from a module by Dr. Larry Segerlind - Michigan State University

This subprogram calculates the element stiffness matrix and element

' force vector for the three node triangular and the four node

' bilinear rectangular element

'Evaluation of the parameters in the element stiffness matrix

MatlSet = EleMatlData(KK)

Thermal properties

Dx = ElePhyData(MatlSet, l)

Dy = ElePhyData(MatlSet, 2)

G = ElePhyData(MatlSet, 3)

Q = ElePhyData(MatlSet, 4)

'Moisture transfer properties

Dx_M = ElePhyData(MatlSet, 6)

Dy_M = ElePhyData(MatlSet, 7)

G_M = ElePhyData(MatlSet, 8)

QM = ElePhyData(MatlSet, 9)

'Fat transfer properties

Dx_F = ElePhyData(MatlSet, ll)

Dy_F = ElePhyData(MatlSet, 12)

G_F = ElePhyData(MatlSet, 13)

Q_F = ElePhyData(MatlSet, 14)

'Evaluate the element stiffness matrix

If (EleNodeData(KK, 4) = 0) Then Triangular Element

XI = Coord(EleNodeData(KK, 1), 1)

Y1 = Coord(EleNodeData(KK, 1), 2)

Xj = Coord(EleNodeData(KK, 2), l)

Yj = Coord(EleNodeData(KK, 2), 2)

Xk = Coord(EleNodeData(KK, 3), 1)

Yk = Coord(EleNodeData(KK, 3), 2)

Ai=Xj*Yk-Xk"Yj

Aj=Xk"'Yl-XI*Yk

Ak=XI*Yj-Xj"‘YI

Bi=Yj-Yk

Bj=Yk-Yl

Bk=YI~Yj

225



Rbar *

Rbar *

Rbar *

Rbar "'

Rbar *

Rbar

3.14

3.14

c1=xrc-x1

Q=XLXk

Ck=Xj-Xl

TwiceArea = Ai + Aj + Ak

Rbar=(XI+Xj +Xk)/3

Volume(KK) = TwiceArea "' 3.14 * Rbar

DxOver4A = Dx / (2 "' TwiceArea)

DyOver4A = Dy / (2 "' TwiceArea)

GAreaOver12 = G "' TwiceArea / 24

Dx_MOver4A = Dx_M / (2 " TwiceArea)

Dy_MOver4A = Dy_M / (2 " TwiceArea)

G_MAreaOverl2 = G_M " TwiceArea / 24

Dx_FOver4A = Dx_F / (2 "' TwiceArea)

Dy_FOver4A = Dy_F / (2 "‘ TwiceArea)

G_FAreaOverlZ = G_F "‘ TwiceArea / 24

'Calculate the element stiffness matrix - enthalpy

ESM(1,1)= 2 * 3.14 “ Rbar "‘ (DxOver4A "' Bi "‘ Bi + DyOver4A * Ci * Ci) + 2 "‘ 3.14 *

GAreaOver12 " 2

ESM(I, 2) = 2 "‘ 3.14 " Rbar "‘ (DxOver4A * Bi " Bj + DyOver4A * Ci * Cj) + 2 * 3.14 "'

GAreaOver12

ESM(l, 3) = 2 "' 3.14 * Rbar “ (DxOver4A * Bi * Bk + DyOver4A * Ci * Ck) + 2 * 3.14 "'

GAreaOver12

ESM(2, l) = ESM(l, 2)

ESM(2, 2) = 2 " 3.14 " Rbar * (DxOver4A "' Bj * Bj + DyOver4A * Cj "' Cj) + 2 "' 3.14 *

GAreaOver12 * 2

ESM(2, 3) = 2 "' 3.14 "' Rbar "' (DxOver4A * Bj * Bk + DyOver4A * Cj * Ck) + 2 * 3.14 "

GAreaOver12

ESM(3, l) = ESM(l, 3)

ESM(3, 2) = ESM(2, 3)

ESM(3, 3) = 2 "' 3.14 "' Rbar "‘ (DxOver4A " Bk * Bk + DyOver4A * Ck * Ck) + 2 "' 3.14 *

" GAreaOver12 "' 2

'Calculate the element stiffness matrix - moisture

ESM_M(l, l) = 2 "' 3.14 * Rbar "' (Dx_MOver4A "' Bi "‘ Bi + Dy_MOver4A " Ci "' Ci) + 2 "'

* Rbar * G_MAreaOverlZ * 2

ESM_M(l, 2) = 2 * 3.14 * Rbar * (Dx_MOver4A * 131 r 131 + Dy_MOver4A * Ci * Cj) + 2 *

"' Rbar * G_MAreaOverlZ

ESM_M(l, 3) = 2 * 3.14 "' Rbar "' (Dx_MOver4A * Bi * Bk + Dy_MOver4A "‘ Ci " Ck) + 2"I

3.14 "' Rbar * G_MAreaOverlZ

ESM_M(Z, 1) = ESM_M(l, 2)
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3.14

3.14*

3.14*

3.14*

3.14*

3.14*

3.14

Else

ESM_M(2, 2) = 2 * 3.14 * Rbar * (Dx_MOver4A * Bj * Bj + Dy_MOver4A * Cj * Cj) + 2 *

* Rbar * G_MAreaOver12 * 2

ESM_M(2, 3) = 2 * 3.14 "‘ Rbar " (Dx_MOver4A * Bj * Bk + Dy_MOver4A * Cj " Ck) + 2

3.14 * Rbar * G_MAreaOver12

ESM_M(3, l) = ESM_M(l, 3)

ESM_M(3, 2) = ESM_M(2, 3)

ESM_M(3, 3) = 2 "' 3.14 * Rbar * (Dx_MOver4A "‘ Bk * Bk + Dy_MOver4A * Ck * Ck) + 2

3.14 * Rbar "' G_MAreaOver12 " 2

'Calculate the element stiffness matrix - fat

ESM_F(I, 1) = 2 * 3.14 * Rbar * (Dx_FOver4A * Bi "' Bi + Dy_FOver4A * Ci * Ci) + 2 *

Rbar * G_FAreaOver12 * 2

ESM_F(l, 2) = 2 * 3.14 * Rbar " (Dx_FOver4A "' Bi * Bj + Dy_FOver4A * Ci * Cj) + 2 *

Rbar * G_FAreaOver12

ESM_F(l, 3) = 2 "' 3.14 "' Rbar * (Dx_FOver4A * Bi * Bk + Dy_FOver4A * Ci * Ck) + 2 *

Rbar * G_FAreaOver12

ESM_F(2, l) = ESM_F(I, 2)

ESM_F(2, 2) = 2 * 3.14 " Rbar * (Dx_FOver4A * Bj * B] + Dy_FOver4A * Cj * Cj) + 2 "'

Rbar "' G_FAreaOver12 "‘ 2

ESM_F(2, 3) = 2 "’ 3.14 " Rbar * (Dx_FOver4A * Bj * Bk + Dy_FOver4A * Cj * Ck) + 2 "

Rbar "' G_FAreaOver12

ESM_F(3, 1) = ESM_F(I, 3)

ESM_F(3, 2) = ESM_F(2, 3)

ESM_F(3, 3) = 2 * 3.14 * Rbar "' (Dx_FOver4A * Bk * Bk + Dy_FOver4A * Ck * Ck) + 2 *

"' Rbar * G_FAreaOver12 * 2

'Calculate the element force vector - enthalpy

EFV(l) = (2 * 3.14 / 4) * (Q * TwiceArea/6) "' (2 * XI + Xj + Xk)

EFV(2) = (2 "‘ 3.14 / 4) "‘ (Q * TwiceArea / 6) "' (XI + 2 * Xj + Xk)

EFV(3) = (2 "‘ 3.14 / 4) "' (Q "' TwiceArea / 6) * (XI + Xj + 2 "‘ Xk)

'Calculate the element force vector - moisture

EFV_M(1)=(2 * 3.14 / 4) "‘ (QM "' TwiceArea / 6) “ (2 "' XI + Xj + Xk)

EFV_M(2) = (2 * 3.14 / 4) “ (QM "‘ TwiceArea / 6) "' (XI + 2 * Xj + Xk)

EFV_M(3) = (2 * 3.14 / 4) * (QM "‘ TwiceArea / 6) "‘ (XI + Xj + 2 * Xk)

'Calculate the element force vector - fat

EFV_F(l) = (2 * 3.14 / 4) "‘ (QF "' TwiceArea / 6) * (2 "' XI + Xj + Xk)

EFV_F(2) = (2 * 3.14 / 4) "' (QF * TwiceArea / 6) * (XI + 2 "‘ Xj + Xk)

EFV_F(3) = (2 "' 3.14 / 4) "‘ (QF * TwiceArea / 6) * (XI + Xj + 2 "' Xk)

'Rectangular element
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XLength = Coord(EleNodeData(KK, 2), 1) - Coord(EleNodeData(KK, l), l)

YLength = Coord(EleNodeData(KK, 4), 2) - Coord(EleNodeData(KK, 1), 2)

Area = XLength * YLength

Rbar = (Coord(EleNodeData(KK, l), 1) + Coord(EleNodeData(KK, 2), 1) +

Coord(EleNodeData(KK, 3), l) + Coord(EleNodeData(KK, 4), 1)) / 4

Volume(KK) = Area " 2 * Rbar * 3.14

Donver6B = Dx "‘ YLength / (6 "' XLength)

DyBover6A = Dy "' XLength / (6 * YLength)

GAreaover36 = G "‘ Areal 36

Dx_Moner63 = Dx_M * YLength / (6 "‘ XLength)

Dy_MBover6A = Dy_M "' XLength / (6 “ YLength)

G_MAreaover36 = G_M * Area / 36

Dx_Foner63 = Dx_F * YLength / (6 "' XLength)

Dy_FBover6A = Dy_F "' XLength / (6 * YLength)

G_FAreaover36 = G_F "' Area / 36

'Calculate element stiffness matrix - enthalpy

ESM(l, 1) = 2 * Donver68 + 2 * DyBover6A + 4 * GAreaover36

ESM(l, 2) = -2 * Donver63 + DyBover6A + 2 * GAreaover36

ESM(l, 3) = -Donver68 - DyBover6A + GAreaover36

ESM(l, 4) = Donver6B - 2 * DyBover6A + 2 "' GAreaover36

ESM(2, 1) = ESM(l, 2)

ESM(2, 2) = ESM(l, l)

ESM(2, 3) = ESM(l, 4)

ESM(2, 4) = ESM(l, 3)

ESM(3, 1) = ESM(l, 3)

ESM(3, 2) = ESM(2, 3)

ESM(3, 3) = ESM(l, 1)

ESM(3, 4) = ESM(l, 2)

ESM(4, 1) = ESM(l, 4)

ESM(4, 2) = ESM(2, 4)

ESM(4, 3) = ESM(3, 4)

ESM(4, 4) = ESM(l, 1)

'Calculate element stiffness matrix - moisture

ESM_M(], l) = 2 * Dx_Moner68 + 2 "' Dy_MBover6A + 4 * G_MAreaover36

ESM_M(l, 2) = -2 * Dx_Moner68 + Dy_MBover6A + 2 "' G_MAreaover36

ESM_M(], 3) = -Dx_Moner68 - Dy_MBover6A + G_MAreaover36

ESM_M(l , 4) = Dx_Moner68 - 2 * Dy_MBover6A + 2 * G_MAreaover36

ESM_M(2, 1) = ESM_M(], 2)

ESM_M(2, 2) = ESM_M(], l)

ESM_M(2, 3) = ESM_M(], 4)

ESM_M(2, 4) = ESM_M( 1, 3)

ESM_M(3, 1)= ESM_M(l, 3)

ESM_M(3, 2) = ESM_M(2, 3)

ESM_M(3, 3) = ESM_M(l, l)

ESM_M(3, 4) = ESM_M(], 2)

ESM_M(4, l) = ESM_M(l, 4)

ESM_M(4, 2) = ESM_M(2, 4)

ESM_M(4, 3) = ESM_M(3, 4)

ESM_M(4, 4) = ESM_M(l, l)
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End If

End Sub

'Calculate element stiffness matrix - fat

ESM_F(l, 1) = 2 * Dx_Foner63 + 2 "' Dy_FBover6A + 4 "' G_FAreaover36

ESM_F( 1 , 2) = -2 "' Dx_Foner68 + Dy_FBover6A + 2 * G_FAreaover36

ESM_F( l , 3) = -Dx_Foner63 - Dy_FBover6A + G_FAreaover36

ESM_F( 1, 4) = Dx_Foner6B - 2 "‘ Dy_FBover6A + 2 " G_FAreaover36

ESM_F(2, l) = ESM_F(], 2)

ESM_F(2, 2) = ESM_F(], l)

ESM_F(2, 3) = ESM_F(], 4)

ESM_F(2, 4) = ESM_F(l, 3)

ESM_F(3, 1) = ESM_F(I, 3)

ESM_F(3, 2) = ESM_F(2, 3)

ESM_F(3, 3) = ESM_F(l, l)

ESM_F(3, 4) = ESM_F(l, 2)

ESM_F(4, l) = ESM_F(], 4)

ESM_F(4, 2) = ESM_F(2, 4)

ESM_F(4, 3) = ESM_F(3, 4)

ESM_F(4, 4) = ESM_F(], 1)

'Calculate element force vector - enthalpy

EFV(1)= Q * Area/4

EFV(2) = EFV(l)

EFV(3) = EFV(l)

EFV(4) = EFV( 1)

'Calculate element force vector - moisture

EFV_M(1)= Q_M * Area / 4

EFV_M(2) = EFV_M(l)

EFV_M(3) = EFV_M(l)

EFV_M(4) = EFV_M(l)

'Calculate element force vector - fat

EFV_F(1)= Q_F "' Area / 4

EFV_F(2) = EFV_F( l)

EFV_F(3) = EFV_F( 1)

EFV_F(4) = EFV_F(l )
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Module - InputBasicData

Sub InputBasicData(NumMatlSets, NumNodes, NumEle, Coord(), EleMatlData(), EleNodeData())

This module slightly modified from a module by Dr. Larry Segerlind - Michigan State University

This subprogram inputs the nodal coordinates, the element material

' index, the element node numbers and the equation coefficients Dx, Dy,

' G and Q

For I = 1 To NumNodes

Input #1, Coord(I, 1), Coord(I, 2)

Next I

For I = 1 To NumEle

Input #1, EleMatlData(I), EleNodeData(I, l), EleNodeData(I, 2), EleNodeData(I, 3),

EleNodeData(l, 4)

Next I

End Sub
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Module — InputDerivBC

Sub InputDerivBC(NumDerivBC, NudeyNodes, deNodeO, SubDerivBC(), BoundaryTypeO)

'This module slightly modified from a module by Dr. Larry Segerlind - Michigan State University

This subprogram inputs the subscripts and coefficients for the

' derivative boundary condition

For I = 1 To NumDerivBC

Input #1, SubDerivBC(l, l), SubDerivBC(l, 2), BoundaryType(I)

Next I

For I = 1 To NudeyNodes

Input #1, deNode(I)

Next I

End Sub
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Module — BuildGAM

Sub BuildGAM(BandWidth, GAM(), GCM(), GSM(), GAM_MO, GCM_M(), GSM_M(), GAM_F(),

GCM_F(), GSM_F(), timestep, NumNodes)

'This module calculates the A matrix for the finite difference time solution using the central

' difference method

For X = 1 To NumNodes

For Y = 1 To BandWidth

GAM(X, Y) = GCM(X, Y) + (GSM(X, Y) "‘ (timestep / 2))

GAM_M(X, Y) = GCM_M(X, Y) + (GSM_M(X, Y) "' (timestep / 2))

GAM_F(X, Y) = GCM_F(X, Y) + (GSM_F(X, Y) "‘ (timestep / 2))

Next Y

Next X

End Sub
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Module - SolveBandMatrix

Sub SolveBandMatrix(NumNodes, BandWidth, GSV(), GFV(), GSM())

'This module provide by Dr. Larry Segerlind - Michigan State University

This subprogram solves the system ofbanded equations using the method

' of Gaussian elimination. The stiffness matrix has been decomposed

' prior to entering this subprogram using DecomposeBandMatrix.

' This subprogram decomposes the column vector GFV(NumNodalVal%) before

' solving the system using backward substitution

'Decompose the global force vector

ForI= 1 To (NumNodes- 1)

MJ =1 + BandWidth - 1

If (MJ > NumNodes) Then

M] = NumNodes

Endlf

NJ = I + l

L = 1

For J = N] To M]

L = L + 1

GFV(J) = GFV(J) - GSM(I, L) * GFV(I) / GSM(I, 1)

Next 1

Next I

' Solution by backward substitution

GSV(NumNodes) = GFV(NumNodes) / GSM(NumNodes, 1)

For K = 1 To (NumNodes - l)

I = NumNodes - K

MJ = BandWidth

If ((I + BandWidth - 1) > NumNodes) Then

MJ=NumNodes-I+l

End If

Sum = 0!

For J = 2 To MJ

' n=I+J-1

Sum = Sum + GSM(I, J) "' GSV(n)

Next J

GSV(I) = (GFV(I) - Sum) / GSM(I, 1)

Next K

End Sub
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Module — BuildBandedSystem

Sub BuildBandedSystem(NumEleSub, EleSub(), EFV(), ESM(), GFV(), GSM(), ECM(), GCM(),

EFV_MO, ESM_M(), GFV_M(), GSM_M(), ECM_M(), GCM_M(), EFV_FO. ESM_F(),

GFV_F(), GSM_F(), ECM_F(), GCM_F())

This module modified from a module provided by Dr. Larry Segerlind - Michigan State University

This subprogram incorporates the element force vector and the element

' stiffness matrix into the global force matrix and the global stiffness

' matrix.

'This subprogram ASSUMES that the global stiffness matrix is symmetrical

' and stored in a rectangular format.

The direct stiffness method for a banded system of equations

For I = 1 To NumEleSub

II = EleSub(I)

'Force vector

GFV(II) = GFV(II) + EFV(I)

GFV_M(II) = GFV_M(II) + EFV_M(I)

GFV_F(II) = GFV_F(II) + EFV_F(I)

For J = 1 To NumEleSub

JJ = EleSub(J)

JJ = JJ - II + 1

If (JJ > 0) Then

'Stiffness matrix

GSM(II, JJ) = GSM(II, JJ) + ESM(I, J)

GSM_M(II, JJ) = GSM_M(II, JJ) + ESM_M(I, J)

GSM_F(II, JJ) = GSM_F(II, JJ) + ESM_F(I, J)

'Capacitance matrix

GCM(II, JJ) = GCM(II, JJ) + ECM(I, J)

GCM_M(II, JJ) = GCM_M(II, JJ) + ECM_M(I, J)

GCM_F(II, JJ) = GCM_F(II, JJ) + ECM_F(I, J)

End If

Next J

Next 1

End Sub

234



Module — BuildGPM

Sub BuildGPM(BandWidth, GPM(), GCM(), GSM(), GPM_M(), GCM_M(), GSM_M(), GPM_F(),

GCM_F(), GSM_F(), timestep, NumNodes)

'This module calculates the P matrix for the finite difference time solution using the central

' difference method

For X = 1 To NumNodes

For Y = 1 To BandWidth

GPM(X, Y) = GCM(X, Y) - (GSM(X, Y) " (timestep / 2))

GPM_M(X, Y) = GCM_M(X, Y) - (GSM_M(X, Y) ‘ (timestep / 2))

GPM_F(X, Y) = GCM_F(X, Y) - (GSM_F(X, Y) "' (timestep / 2))

Next Y

Next X

End Sub
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Module — ModifyGFV

Sub ModifyGFV(GFV(). GFV_A(), GFV_StarO, GFV_M(), GFV_M_AO. GFV_M_StarO,

GFV_F_A(),

GFV_F_StarO, GFV_F(), timestep, NumNodes)

'Modify the global force vector for the finite difference time solution

For X = 1 To NumNodes

GFV_Star(X) = (GFV_A(X) + GFV(X)) * (timestep / 2)

GFV_M_Star(X) = (GFV_M(X) + GFV_M(X)) * (timestep / 2)

GFV_F_Star(X) = (GFV_F_A(X) + GFV_F(X)) * (timestep / 2)

Next X

End Sub
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Module — EleCapMatrix

Sub EleCapMatrix(ElePhyData(), EleNodeData(), ECM(), ECM_M(), ECM_F(), Coord(), KK)

' Compose the element capacitance matrix

If (EleNodeData(KK, 4) = 0) Then

' Triangular Element

' [c]=lamda*A/3*[ l 0 0

' 0 1 0

' 0 l 1 ]

EleNodel = EleNodeData(KK, 1)

EleNode2 = EleNodeData(KK, 2)

EleNode3 = EleNodeData(KK, 3)

' Calculate the element area

Ri = Coord(EleNodel, 1)

Rj = Coord(EleNodeZ, 1)

Rk = Coord(EleNode3, 1)

Rbar=(Ri+Rj+Rk)/3

XLengthSidel = Coord(EleNodeZ, l) — Coord(EleNodel, l)

YLengthSidel = Coord(EleNodeZ, 2) - Coord(EleNodel , 2)

XLengthSide2 = Coord(EleNode3, l) - Coord(EleNodeZ, 1)

YLengthSide2 = Coord(EleNode3, 2) - Coord(EleNodeZ, 2)

XLengthSide3 = Coord(EleNode3, l) - Coord(EleNodel, l)

YLengthSide3 = Coord(EleNode3, 2) - Coord(EleNodel, 2)

SidelLength = Sqr(XLengthSidel A 2 + YLengthSidel A 2)

Side2Length = Sqr(XLengthSideZ A 2 + YLengthSide2 A 2)

Side3Length = Sqr(XLengthSide3 A 2 + YLengthSide3 A 2)

Half? = (SidelLength + Side2Length + Side3Length) / 2

Area = Sqr(HalfP * (HalfP - SidelLength) * (HalfP - Side2Length) * (HalfP - Side3Length»

Lamda = ElePhyData(l, 5)

Lamda_M = ElePhyData(l, 10)

Lamda_F = ElePhyData(l, 15)

ECM(1,1)= 2 * 3.14 "' Rbar "' Lamda * Area/3

ECM(2, 2) = 2 "' 3.14 * Rbar * Lamda * Area/3

ECM(3, 3) = 2 * 3.14 " Rbar * Lamda "' Area/3

ECM_M(1,1)= 2 * 3.14 "' Rbar * Lamda_M * Area/3

ECM_M(Z, 2) = 2 "' 3.14 * Rbar "' Lamda_M * Area / 3

ECM_M(3, 3) = 2 * 3.14 * Rbar "' Lamda_M * Area / 3

ECM_F(1,1)= 2 * 3.14 "‘ Rbar * Lamda_F "' Area / 3
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ECM_F(Z, 2) = 2 "' 3.14 " Rbar * Lamda_F "‘ Area / 3

ECM_F(3, 3) = 2 "' 3.14 * Rbar "' Lamda_F " Area / 3

Else

' Rectangular element

' [c]=1amda*A/4"'[ l 0 0 0

' 0100

' 0010

' 0001]

EleNodel = EleNodeData(KK, l)

EleNode2 = EleNodeData(KK, 2)

EleNode3 = EleNodeData(KK, 3)

EleNode4 = EleNodeData(KK, 4)

' Calculate the element area

Sidel = Coord(EleNode4, 2) - Coord(EleNodel, 2)

Side2 = Coord(EleNodeZ, 1) - Coord(EleNodel, 1)

Area = Sidel "' Side2

Lamda = ElePhyData(l, 5)

Lamda_M = ElePhyData(l, 10)

Lamda_F = ElePhyData(l, 15)

For J = 1 To 4

ECM(J, J) = Lamda * Area / 4

ECM_M(J, J) = Lamda_M "' Area / 4

ECM_F(J, J) = Lamda_F * Area / 4

Next J

Endlf

End Sub
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Module - ConverthoTemp

Sub ConverthoTemp(heat_capacity_f, GSV(), GSV_M(), GSV_F(), temperature(), NumNodes,

InitialM,

Solid, frozenH, latentW, latentF, heat_capacity, LevelOne, LevelTwo, LevelThree,

LevelFour,

LevelFive)

'Convert enthalpy to temperature data

For K = 1 To NumNodes

If GSV(K) < LevelOne Then

temperature(K) = GSV(K) / heat_capacity_f - 273

Elself GSV(K) >= LevelOne And GSV(K) <= LevelTwo Then

temperature(K) = -2

Elself GSV(K) > LevelTwo And GSV(K) <= LevelThree Then

temperature(K) = ((GSV(K) - (frozenH + latentW)) / 3.35) - 2

ElselfGSV(K) > LevelThree And GSV(K) <= LevelFour Then

temperature(K) = 45

ElselfGSV(K) > LevelFour Then

temperature(K) = ((GSV(K) - (frozenH + latentW + 1atentF))/ 3.35) - 2

End If

Next K

End Sub
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Module — CalculateProperties

Sub CalculateProperties(Meat, Solid, NumEle, EleNodeData(), E1ePhyData(), temperature(), GSV_M,

GSV_F(), moisture_capacity, density)

ForI = 1 To NumEle

'Calculate element average temperature, moisture, and fat

If EleNodeData(I, 4) = 0 Then

ElementAverageT = (1 "' temperature(EleNodeData(I, 1)) + 1 *

temperature(EleNodeData(I, 2)) + 1 "' temperature(EleNodeData(I, 3))) / 3

ElementAverageM = (1 * GSV_M(EleNodeData(I, 1)) + 1 *

GSV_M(EleNodeData(I, 2))

+ 1 " GSV_M(EleNodeData(I, 3))) / 3

ElementAverageFP = (1 "' GSV_F(EleNodeData(I, 1)) + 1 * GSV_F(EleNodeData(I,

2))

+ 1 * GSV_F(EleNodeData(I, 3))) / 3

Else

ElementAverageT = (l "‘ temperature(EleNodeData(I, 1)) + 1 *

temperature(EleNodeData(I, 2)) + l * temperature(EleNodeData(I, 3)) + 1

*

temperature(EleNodeData(I, 4))) / 4

ElementAverageM = (1 " GSV_M(EleNodeData(I, 1)) + 1 *

GSV_M(EleNodeData(I, 2))

+ 1 "' GSV_M(EleNodeData(I, 3)) + 1 "' GSV_M(EleNodeData(I, 4))) / 4

ElementAverageFP = (l "' GSV_F(EleNodeData(I, 1)) + l * GSV_F(EleNodeData(I,

2))

+ 1 * GSV_F(EleNodeData(I, 3)) + l "' GSV_F(EleNodeData(I, 4))) / 4

End If

moisture = ElementAverageM/ 100 'Element average moisture, decimal wb

MP = Solid 'Mass protein

MF = ElementAverageFP * Solid 'Mass fat

MM = (moisture * MF + moisture * MP) / (1 - moisture) 'Mass moisture

Total = MP + MM + MF 'Mass total

Fat = MF / Total 'Percent fat

Protein = MP / Total 'Percent protein

'Beef

If Meat = 1 Then

If ElementAverageT <= -2 Then

heat_capacity = 1.9 "‘ moisture + 1.711 * Protein + 1.298 "' Fat

Else

heat_capacity = 0.9 * (4.18 "' moisture + 1.711 " Protein + 1.298 "' Fat)

'(4.l8 *

moisture + 1.711 * Protein + 1.298 "' Fat)

End If

moisture_capacity = 0.003 'g/g
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capacity

capacity

melting

melting

density = 1 / (moisture + Fat / 0.9 + Protein / 1.4) 'g/cmA3

Vmoisture = moisture / 1 'Volume moisture

Vprotein = Protein / 1.4 'Volume protein

Vfat = Fat / 0.9 'Volume fat

Vtotal = Vmoisture + Vprotein + Vfat Total volume

VFm = Vmoisture / Vtotal 'Volume fraction moisture

VFp = Vprotein / Vtotal 'Volume fraction protein

VFf= Vfat / Vtotal 'Volume fraction fat

'thermal conductivity

ElePhyData(l, 1) = ((0.602 * VFm + 0.18 * VFf+ 0.2 "' VFp)/ 100)

ElePhyData(l, 2) = ((0.602 ’ VFm + 0.18 " VFf+ 0.2 * VFp)/ 100)

ElePhyData( 1, 5) = heat_capacity " density 'density‘heat

'Coefficient for Mittal moisture diffusivity equation

A = 0.003

ElePhyData(], 6) = 10000 * A * (0.003 "' Exp(-0.442 * ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 * moisture)) * moisture_capacity "'

density 'moisture conductivity

E1ePhyData(l, 7) = 10000 "‘ A * (0.003 * Exp(-0.442 * ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 "' moisture)) " moisture_capacity *

density 'moisture conductivity

ElePhyData(], 10) = density "' moisture_capacity 'density‘moisture

If ElementAverageT <= 45 Then

ElePhyData(] , 11) = 0 'fat diffusivity r-direction zero below

ElePhyData(], 12) = 0 'fat diffusivity z-direction zero below

Else

ElePhyData(], 11) = 0.0008 'fat diffusivity r-direction

ElePhyData(], 12) = 0.0008 'fat diffusivity z-direction

End If

E1ePhyData(l , 15) = 1 'Variable not used for fat trasfer equations

Elself Meat = 2 Then

If ElementAverageT <= -2 Then

heat_capacity = 1.9 " moisture + 1.711 * Protein + 1.298 "‘ Fat

Else

heat_capacity = (4.18 * moisture + 1.711 "' Protein + 1.298 * Fat) '(4.18 "'

moisture + 1.711 "' Protein + 1.298 "' Fat)

End If
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capacity

capacity

melting

melting

Turkey

moisture_capacity = 0.003 'g/g

density = l / (moisture + Fat / 0.9 + Protein / 1.4) 'g/cmA3

Vmoisture = moisture / 1 'Volume moisture

Vprotein = Protein / 1.4 'Volume protein

Vfat = Fat / 0.9 'Volume fat

Vtotal = Vmoisture + Vprotein + Vfat Total volume

VFm = Vmoisture / Vtotal 'Volume fraction moisture

VFp = Vprotein / Vtotal 'Volume fraction protein

VFf= Vfat / Vtotal 'Volume fraction fat

'thermal conductivity

ElePhyData(l, 1) = ((0.602 " VFm + 0.18 "' VFf+ 0.2 * VFp)/ 100)

ElePhyData(], 2) = ((0.602 * VFm + 0.18 "' VFf+ 0.2 * VFp)/ 100)

ElePhyData(l, 5) = heat_capacity "' density 'density‘heat

'Coefficient for Mittal moisture diffusivity equation

A = 0.003

ElePhyData(l, 6) = 10000 "‘ A * (0.003 "‘ Exp(-0.442 "' ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 " moisture)) "' moisture_capacity "'

density

'moisture conductivity 0.0000000129 '

ElePhyData(l, 7) = 10000 "' A * (0.003 "' Exp(-0.442 " ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 "' moisture)) * moisture_capacity *

density

‘moisture conductivity 0.0000000129 '

ElePhyData(], 10) = density "' moisture_capacity 'density*moisture

If ElementAverageT <= 45 Then

ElePhyData(l, l 1) = 0 'fat diffusivity r-direction zero below

ElePhyData(], 12) = 0 'fat diffusivity z-direction zero below

Else

ElePhyData(l, 11) = 0.00125 'fat diffusivity r-direction

ElePhyData( l , 12) = 0.00125 'fat diffusivity z-direction

End If

ElePhyData( 1 , 15) = 1 'Variable not used for fat trasfer equations

Elself Meat = 3 Then

If ElementAverageT <= -2 Then
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melting

melting

End If

heat_capacity = 1.9 * moisture + 1.711 * Protein + 1.298 "' Fat

Else

heat_capacity = (4.18 * moisture + 1.711 "' Protein + 1.298 * Fat) '(4.18 *

moisture + 1.711 " Protein + 1.298 "‘ Fat)

Endlf

moisture_capacity = 0.003 'g/g

density = l / (moisture + Fat / 0.9 + Protein / 1.4) 'g/cmA3

Vmoisture = moisture / 1 'Volume of moisture

Vprotein = Protein / 1.4 'Volume ofprotein

Vfat = Fat / 0.9 'Volume of fat

Vtotal = Vmoisture + Vprotein + Vfat Total volume

VFm = Vmoisture / Vtotal 'Volume fraction moisture

VFp = Vprotein / Vtotal 'Volume fraction protein

VFf= Vfat / Vtotal 'Volume fi'action fat

'thermal conductivity

ElePhyData(l, 1) = ((0.602 "‘ VFm + 0.18 "‘ VFf+ 0.2 "' VFp)/ 100)

ElePhyData(] , 2) = ((0.602 " VFm + 0.18 " VFf+ 0.2 "' VFp)/ 100)

ElePhyData(l, 5) = heat_capacity " density 'density‘heat

'Coefficient for Mittal moisture diffusivity equation

A = 0.003

ElePhyData(], 6) = 10000 * A " (0.003 * Exp(-0.442 * ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 "' moisture)) "‘ moisture_capacity *

density

'moisture conductivity

ElePhyData(l, 7) = 10000 * A * (0.003 * Exp(-0.442 * ElementAverageFP - 4829.7

(ElementAverageT + 273) + 11.55 * moisture)) "' moisture_capacity *

density

'moisture conductivity

ElePhyData(] , 10) = density "' moisture_capacity 'density‘moisture

If ElementAverageT <= 45 Then

ElePhyData(], 11) = 0 'fat diffusivity r-direction zero below

ElePhyData( 1 , 12) = 0 'fat diffusivity z-direction zero below

Else

ElePhyData(], 11) = 0.00125 'fat diffusivity r-direction

ElePhyData(l , 12) = 0.00125 'fat diffusivity z-direction

End If

ElePhyData(l, 15) = 1 'Variable not used for fat trasfer equations
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Next I

End Sub

244



Module — CalculateElementAverage

Sub CalculateElementAverage(Volume(), NumEle, EleNodeData(), Phi(), WeightedAverage)

This module calculates a weighted volume average of the nodal values.

ReDim VolumeRatio(NumEle)

ReDim ElementAverage(NumEle)

WeightedAverage = 0

ForK = 1 To NumEle

TotalVolume = TotalVolume + Volume(KK)

'Calculate the element average of the nodal values

If (EleNodeData(KK, 4) = 0) Then Triangular

element

Nodel = EleNodeData(KK, l)

Node2 = EleNodeData(KK, 2)

Node3 = EleNodeData(KK, 3)

ElementAverage(KK) = (Phi(Nodel) + Phi(Node2) + Phi(Node3)) / 3

Else 'Rectangular

element

Nodel = EleNodeData(KK, 1)

Node2 = EleNodeData(KK, 2)

Node3 = EleNodeData(KK, 3)

Node4 = EleNodeData(KK, 4)

ElementAverage(KK) =(Phi(Node1) + Phi(Node2) + Phi(Node3) + Phi(Node4)) / 4

Endlf

Next KK

'Calculate the volume weighted average

ForK = 1 To NumEle

VolumeRatio(KK) = Volume(KK) / TotalVolume

ElementAverage(KK) = ElementAverage(KK) " VolumeRatio(KK)

NextK

For I = 1 To NumEle

WeightedAverage = WeightedAverage + ElementAverage(I)

Next I

End Sub
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Module — InputOvenConditions

Sub InputOvenConditions(OvenConditions(), NumTimeSteps)

'Input oven conditions from file

For I = 1 To NumTimeSteps

Input #2, OvenConditions(I, 1), OvenConditions(I, 2), OvenConditions(I, 3)

If OvenConditions(I, 2) = 0 Then OvenConditions(I, 2) = 1

Next I

End Sub
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Module - CalculatesurfaceFatContent

Sub CalculatesurfaceFatContent(InitialF, T, GSV_F(), NudeyNodes, deNode(), temperature(),

timestep)

’This soubroutine calculates the fat content at the surface of the meat as functions

' of time and temperature. Experimental fat holding data was utilized to determine

' the relationship between time, temperature and fat content. Fat content is expressed

' in terms of Fat/Protein ratio.

'Calculate FP at each boundary node

For I = 1 To NudeyNodes

X = 0.23 - (0.0127 "' temperamre(deNode(I))) + (0.0001 "‘ (temperamre(deNode(I)) A 2)) +

(0.0617 "' InitialF) - (0.0007 * InitialF "‘ temperamre(deNode(I)))

If X > GSV_F(deNode(I)) Then

GSV_F(deNode(I)) = GSV_F(deNode(I))

Else

GSV_F(deNode(I)) = X

End If

If GSV_F(deNode(I)) < 0 Then GSV_F(deNode(I)) = 0

Next I

End Sub
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Module - CalculateSurvivors

Sub CalculateSurvivors(NumNodes, timestep, temperature(), Ninitial, No(), NW(), Nnew(), NnewW(),

logreduction(), logreductionW, Dvalue, Tref, Z, TimeToLimit, TR)

'Calculate the number of surviving microorganisms for eanch node at each time step

'Log-linear inactivation equation

For X = 1 To NumNodes

If logreduction(X) < 9 Then 'limit solution to 9 log reduction in order to avoid

' computer overload from low numbers as well as because a

'9-log reduction is well above the legal requirement

If ((Tref - temperature(X)) / Z) > -2 Then

(1 = Dvalue "‘ 10 A ((Tref - temperature(X)) / Z)

Else

d = 0.05

End If

Nnew(X) = No(X) / (10 A (timestep / d))

If Nnew(X) < 1 Then Nnew(X) = l

No(X) = Nnew(X)

logreduction(X) = -Log(No(X) / Ninitial) / Log(10)

Else

logreduction(X) = 9

End If

If logreduction(X) > 9 Then

logreduction(X) = 9

End If

'Weibull inactivation equation

If logreductionW < 9 Then

b = 0.000000000011047 "‘ Exp(0.4l758 * temperature(l)) '0.03 * (temperature(l)) A

2 _

(2.7 " temperature(l)) + 72.19

11 = 1.12

NnewW(X) = NW(X) "‘ (10 A (-b "' ((timestep / 60) A n)))

IfNnew(X) < 1 Then Nnew(X) = 1

NW(X) = NnewW(X)

logreductionW = -Log(NW(X) / Ninitial) / Log(10)

Else

logreductionW = 9

End If

Next X

If logreduction( 1) <= TR Then

TimeToLimit = TimeToLimit + timestep

End If

End Sub
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Module — CalculateInitialProperties

Sub CalculateInitialProperties(heat_capacity_f, Meat, Solid, InitialT, InitialM, InitialF, heat_capacity,

latentW, frozenH, latentF)

'Calculate the initial thermal properties of the product before time-stepping.

moisture = InitialM / 100 'Moisture, decimal wb

Fat = InitialF / 100 'Fat content, decimal wb

Protein = Solid / 100 'Protein content, decimal wb

'Beef

If Meat = I Then

If InitialT <= -2 Then

heat_capacity_f = 1.9 "‘ moisture + 1.711 "' Protein + 1.298 "' Fat

frozenH = (1.9 * moisture + 1.711 * Protein + 1.298 "‘ Fat) "‘ 271 'Enthalpy tied up

'in frozen meat

latentW = 337.78 * moisture 'Latent heat of

water

latentF = 64.4 "' Fat 'Latent heat of fat

Else

heat_capacity_f= 1.9 * moisture + 1.711 * Protein + 1.298 * Fat

heat_capacity = (4.18 "' moisture + 1.711 * Protein + 1.298 * Fat)

frozenH = (1.9 * moisture + 1.711 * Protein + 1.298 " Fat) * 271 'Enthalpy tied up

‘in frozen meat

latentW = 337.78 "' moisture 'Latent heat of

water

latentF = 64.4 "' Fat

End If

’Pork

Elself Meat = 2 Then

If InitialT <= -2 Then

heat_capacity_f= 1.9 * moisture + 1.711 "' Protein + 1.298 "' Fat

frozenH = (1.9 "‘ moisture + 1.711 * Protein + 1.298 "' Fat) * 271 'Enthalpy tied up

'in frozen meat

latentW = 337.78 * moisture 'Latent heat of

water

latentF = 64.4 "' Fat 'Latent heat of fat

Else

heat_capacity_f= 1.9 * moisture + 1.711 * Protein + 1.298 "' Fat

heat_capacity = (4.18 * moisture + 1.711 * Protein + 1.298 * Fat)

frozenH = (1.9 * moisture + 1.711 "' Protein + 1.298 "' Fat) * 271 'Enthalpy tied up

'in frozen meat

latentW = 337.78 * moisture 'Latent heat of

water

latentF = 64.4 * Fat 'Latent heat of fat

End If

Turkey
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Elself Meat = 3 Then

If InitialT <= -2 Then

heat_capacity_f= 1.9 " moisture + 1.711 "' Protein + 1.298 "' Fat

frozenH = (1.9 "' moisture + 1.711 "' Protein + 1.298 "' Fat) * 271 'Enthalpy tied up

'in frozen meat

latentW = 337.78 "‘ moisture 'Latent heat of

water

latentF = 64.4 * Fat 'Latent heat of fat

Else

heat_capacity_f = 1.9 * moisture + 1.711 "' Protein + 1.298 * Fat

heat_capacity = (4.18 "' moisture + 1.711 ‘ Protein + 1.298 "‘ Fat)

frozenH = (1.9 * moisture + 1.711 "' Protein + 1.298 " Fat) * 271 'Enthalpy tied up

'in frozen meat

latentW = 337.78 " moisture 'Latent heat of

water

latentF = 64.4 "' Fat 'Latent heat of fat

End If

End If

End Sub
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Module — Cachandwidth

Sub Cachandwidth(NumEle, EleNodeData(), BandWidth)

This module provided by Dr. Larry Segerlind - Michigan State University

'This subprogram evaluates the bandwidth for any group of elements.

' The subprogram assumes that triangular elements have as many data

' values as rectangular elements. The extra data values are zeros.

'Evaluate the bandwidth

NumEleNodes = 4

MaxDiff= 0

For I = 1 To NumEle

For J = 1 To (NumEleNodes - 1)

JJ = EleNodeData(l, J)

If (JJ = 0) Then Exit For

For K = (J + 1) To NumEleNodes

K = EleNodeData(I, K)

If(K = 0) Then Exit For

Diff = Abs(JJ - KK)

If (Diff > MaxDiff) Then

MaxDiff= Diff

Element = I

Endlf

Next K

Next J

Next I

BandWidth = (MaxDiff + 1)

End Sub
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Module — DecompBandMatrix

Sub DecompBandMatrix(NumNodes, BandWidth, GAM())

'This module provided by Dr. Larry Segerlind - Michigan State University

This subprogram decomposes a symmetric banded matrix into an upper

' triangular form using the method of Gaussian elemination. The

' matrix is stored in the rectangular array GSM(NumNodalVal%,BandWidth%).

' Only the upper part of the banded matrix is stored.

'Decompose the global stiffness matrix stored in a rectangular format

NumNodalVal = NumNodes * 1

For I = 1 To (NumNodalVal - 1)

MJ = I + BandWidth - 1

If (MJ > NumNodalVal) Then

MJ = NumNodalVal

End If

NJ = I + l

MK = BandWidth

If ((NumNodalVal - I + l) < BandWidth) Then

MK = NumNodalVal - I +1

End If

ND = 0

ForJ=NJToMJ

MK=MK-1

ND=ND+1

NL=ND+1

For K = 1 To MK

NK = ND + K

GAM(J, K) = GAM(J, K) - GAM(I, NL) * GAM(I, NK) / GAM(I, 1)

Next K

Next J

Next 1

End Sub
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Module - ZeroGlobalMatrices

Sub ZeroGlobalMatrices(NumNodalVal, BandWidth, GFV(), GSM(), GFV_M(), GSM_M(),

GFV_F(),

GSM_F(), GCM(), GCM_M(), GCM_F())

'This module modified from a module by Dr. Segerlind - Michigan State University

'This subprogram fills the global stiffness matrix and force vector

' with zero values. This subprogram assumes that the global stiffness

' matrix is symmetrical and stored in a rectangular format.

For I = 1 To NumNodalVal

GFV(I) = 0

GFV_M(I) = 0

GFV_F(I) = 0

For J = 1 To BandWidth

GSM(I, J) = 0

GSM_M(I, J) = 0

GSM_F(I, J) = 0

GCM(I, J) = 0

GCM_M(I, J) = 0

GCM_F(I, J) = 0

Next J

Next I

End Sub
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