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ABSTRACT

FORMING LIMIT DIAGRAMS

BY

Jimmy Issa

In this work, the Marciniak and Kuczynski model (MK) will be

reviewed and will be generalized to a more general approach for the

calculation of forming limit diagrams. In the new model we will

account for all directions of the imperfection. This new approach has

been used to calculate the theoretical FLDs (forming limit diagrams)

for Vonmises, Barlat Yield96 and Barlat YieleOOO for aluminum alloy

Al2008-T4 and compared with an experimental one. All the derivations

needed for the implementation of the code are derived in the appendix

for all yield functions. Finally the stretch stamping test will be modeled

using LS-DYNA. A very good agreement has been achieved between

the experimental and theoretical results.
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Introduction

Forming limit diagrams (FLDs) have been valuable tools for analyzing

sheet metal forming after the introduction of the idea in 1965. Stretching

operations of sheet metals will normally lead to a development of a sharp

localized neck on the surface where the plastic flow will localize and lead to

failure. Forming limit diagrams have been first introduced by Keeler [1-2]

and are still used as a failure criterion to assess the formability of sheet

metals. Many tried to model the localized necking analytically after the

introduction of the idea, starting with the pioneer work of Marciniak and

Kuczynski [3] who first presented a mathematical model to help understand

sheet metal deformation during forming. They modeled the imperfection as a

long groove, perpendicular to the direction of the largest stress for positive

major strains (RHS) or along Hill’s direction of zero-extension (the strain

increment parallel to the groove inside and outside of it is equal to zero) for

the negative major strains (LHS). Using this approach theoretical FLDs have

been calculated for linear strain path using different yield criteria, von Mises,

Hill’s 1948 [4-5-6], Hill’s 1979 [5-6] and many other yield functions. Graf

and Hosford [6] used an anisotropic yield function (Hill's 1979) and

investigated the effect of the hardening exponent n, the strain rate sensitivity

m, the imperfection f, the R-value and the yield function exponent a. F.

Barlat [7] calculated the FLD using a yield function based on von Mises but

with a high exponent. The effect of nonlinear strain paths has been



investigated on forming limits where experimental and numerical FLD have

been predicted for changing strain paths for different materials [8-9-10-11].

M.C. Butuc [12-13] used a more general MK model and calculated the FLDs

for von Mises, Hill’s 1948, Hill’s 1979 and Barlat Yld96 for Al6061.

In this work the MK model and a more general approach for the calculation of

forming limit diagrams are explained in detail. The general approach is based

on the MK model but is more general since there is no constraint on the

groove direction and the limiting strain is calculated for all possible angels

and minimized versus the angel of the groove. This new approach uses the

Newton-Raphson method to solve for the transverse stress and effective

strain in the groove. For this reason the second derivative of the yield

function is needed for the evaluation of the Jacobian. I calculated the forming

limit diagram for Al2008-T4 aluminum alloy using the modified MK model

where von Mises, Yield96 and Yield2000 were used to describe the yield locus

and modeled the hardening using both Voce and Swift models. The first and

second derivatives for the three yield functions are evaluated in the appendix

to make future implementation easier. F. Barlat [14] calculated the FLD by

incorporating microstructural parameters, internal damage (voids) and

crystallographic textures in his model and it has given very accurate results.

Using a macroscopic approach, a very good agreement has been achieved

between the calculated and the experimental FLD when the yield locus is

described with Yld96 and the material hardening with Swift model.



CHAPTER 1: Experimental Forming Limits

Over the years experimental forming limit diagrams have been

determined [4-15] for different linear strain paths and even for material pre-

strained in different directions (biaxial tension, uniaxial tension and plane

strain).

The most widely used technique involves printing or etching a grid of

small circles of diameter do on the sheet metal before deforming it. After

stretching or forming the sheet, the circles will deform into a shape which

resembles an ellipse. The forming process will stop when the first perceptible

neck is observed. To find the limiting strains for different strain paths,

lubrication and specimen widths are varied. To obtain the limit for negative

minor strains, very narrow specimens are used and by increasing the width

to full width specimen, we can find the limits up to balanced biaxial. After

deformation the ellipses wholly or partially in the neck are considered failed,

while the circles one or more diameters away form the neck are considered

safe. The principal diameters of the failed ellipses are measured (major d1

and minor d2). The limiting strain can then be represented as engineering or

true strains using the two formulas written below.



True Limiting Strains Engineering Limiting Strains

do d0

d2 ‘12 ‘do
= — e :—

82 111((10) 2 do

Finally, Forming limit diagrams determined in different laboratories

may be somewhat different. This is because the determination of the first

perceptible neck is subjective. Many techniques have been used to determine

the onset of the neck; visual inspection and feeling with the fingers. Also,

there is no restriction placed on how far one should go from the neck before

considering a circle to be safe. It is recommended that safe readings should

be made at a distance at least equal to 1.5 circle diameter from the center of

the neck. Below are two pictures of two different failed specimens.

   
- an». a lawn-

Figl: Fractured specimen



 

FigZ: Failure under biaxial tension



CHAPTER 2: MK Model

2.1 Introduction

The MK model is the first mathematical model presented by Marciniak

and Kuczynski [3] to help understand localized necking in sheet metals. They

assumed a long groove, a locally thinned region within which the strain will

concentrate and will lead to failure due to the onset of localized necking. The

origin of this imperfection is a variation in the sheet thickness [3], difference

of the material strength [16] or a combination of both. The failure is

assumed to occur when the ratio of the strain increment within the groove

and outside of it reaches a critical value. There are some constraints on the

orientation of the imperfection where it has been taken to be perpendicular

to the axis of the largest principal stress and strain for positive major strains

(RHS of the FLD), and in the direction of zero-extension for negative major

strains (LHS of the FLD). In this section we will explain the algorithm for the

calculation of FLDs based on the MK model. We will investigate the effect of

the hardening exponent n, the strain rate sensitivity exponent m, the

imperfection parameter f, the R-value and the yield function exponent a,

where the yield locus will be described by Hill’s 1979 yield function. We will

investigate yield function differences in predicting localized necking. The

corresponding algorithms are all written in Matlab.



2.2 Right hand side of forming limit diagrams

For positive minor strain the groove is assumed to be perpendicular to

the axis of the largest principal stress and strain. The strain increments

parallel to the groove within and outside of it are equal. The algorithm can be

summarized by assuming, for a known strain path, the largest principal strain

increment in the imperfection (region b) and then calculating the one in the

homogeneous region (region a). The failure is assumed to occur when their

ratio reaches a critical value (in the calculation below the critical value is

assumed to be equal to 10). The algorithm below is written for von Mises

yield function. The changes that will need to be implemented for other yield

functions are described in the definition of each yield function. The Matlab

programs are written for von Mises (Appendix A), Hill’s quadratic (Appendix

B), and non-quadratic yield functions (Appendix C). In the algorithm below

indices a and b refer to the homogeneous and the defected region

respectively. Indices 1 and 2 refer to the principal values. The figure below

describes well the model.

 

 

 

 

 
FigB: RHS model



2.2.1: Algorithm

Under plane stress condition (03 = O), for a known strain ratio in region a:

The stress ratio is calculated:

0a =54=(2p.+1)/(p.+2>
0'

al

The yield function is then evaluated:

(1)“ = E“- =‘/a:-aa +1

Impose a value for the strain increment in the groove:

 

dab, = 0.001

Assume a value for the strain increment in region a:

algal

Calculate the rest of the variables needed for region a:

(1802 = padgal

dga3 = —d£al ’dgaz

5;“ : d8al(1+ aapa )/(Da

3;.
fla — d5

 

al

The equation below holds due to the compatibility requirement:

dab2 = (1802



The rest of the variables in region b are evaluated:

dgb3 = _dgbl -—d£b2

E0 = d8bl(1+ 0‘be )/q)b

 

 

35.

fl. — dab]

dabz

b 2:

dab,

ab = (2,01; +1)(pb + 2)

(I),J =,/a: —ab +1

From the force balance equation between region a and b the largest strain

increment in the region a is recalculated. Then it is correspondingly adjusted

and the process is repeated until the force balance is satisfied. The force

balance equation is derived below:

F
:Fbl

For a unit width and thickness t, the force in the 1-direction is:

Fl 2 (at = 5(g} = [2}

0' (D

The hardening rule with strain rate dependence can be written:

n-'-m

EzkE 5



Using the variables defined above the force can be expressed by:

F, = kt(§ + d5)" a" /<1> = kt(§ + d3)” (fl/p)§,"' /q>

By applying the above force expression to regions a and b, and after some

adjustments, the force balance can be reduced to:

éta + dga Y[§—:] 55:2 = éexpfigb " £30 Xg” + dgbr(—E:L] big;

Where the imperfection parameter f and the current thickness are:

f : kbtbO /kataO

t: to exp£3

To solve the force balance equation, the Newton-Raphson or the Mid-point

method can be used. Both methods were programmed in Matlab, but the

Newton-Raphson proved to be faster. The same algorithm can be used for

any yield function provided that the equations that involve the use of the

yield function are changed correspondingly. Below, the algorithm will be

applied to several different yield functions.

10



2.2.2 von Mises

The von Mises yield function is the most basic yield function describing

the plastic behavior of isotropic materials. An isotropic material responds in

the same manner when strained or stressed in any direction. All the

derivations needed for the implementation of the algorithm for von Mises

yield function are shown above. In plane stress applications the yield function

is:

232 =(0'I —0'2)2 +032 +0“:

The calculated forming limit diagrams below are for von Mises yield function

where the imperfection parameter f, the hardening exponent n and the strain

rate exponent m are variables. The FLD curves shown below have been

plotted using the MK model. The groove does not change direction when the

deformation occurs. So it is assumed to be perpendicular to the direction of

the largest stress and strain and does not rotate during the straining of the

sheet. The plots shown below indicate that formability increases and failure

occurs at higher strains, with increased strain rate sensitivity and strain-

hardening exponent, and decreased imperfection parameter.

11
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2.2.3: Hill’s Quadratic 1948

The Hill’s quadratic yield function was one of the first yield functions to

describe the plastic anisotropy of metals. Hill has formulated a quantitative

treatment of plastic anisotropy without regard to its crystallographic origin. A

new parameter R has been used which is the ratio of plastic strain in the

width and thickness direction for a tensile specimen cut from a sheet. The R-

values usually vary with the test direction and it is common to characterize a

material by an average R-value written below.

 

Where the indices represent the angles (with the rolling direction) to which

the tensile specimen has been cut from the sheet. For R equal to 1 the

quadratic hill's yield function will simply be reduced to von Mises. For plane

stress loading the yield function simplify to the equation below:

_ 2 2R

0 = a, +0, ——0',az

1+R

The only two expressions in the algorithm that should be changed in order to

get the forming limit diagrams using Hill’s 1948 are the stress ratio and the

yield ratio. The stress ratio is a function of the strain ratio and the yield ratio

is a function of the stress ratio. Those two functions are written below.

14
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The figure above shows that the forming limit is very sensitive to the value of

R and it decrease with increasing R. The forming limit for this case is

calculated with the largest strain assumed to occur in the RD direction.
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2.2.4: Hill’s Non-Quadratic 1979

Hill’s quadratic yield function overestimated the effect of the R-value on

the shape of the yield loci. A new yield function has been developed to

overcome this weakness where a higher exponent “a" has been used to

account for crystallographically textured fcc and bcc metals. With a equal to

2 this criterion simplifies to Hill’s quadratic. However, crystallographic

calculations are much better approximated by a being equal to 6 for bcc and

8 for fcc metals. For plane stress loading this criterion simplifies to:

E“(1+R) = a,“ +0; +R(c7l —02)“

The yield ratio for this yield function can be expressed explicitly as a function

of the stress ratio but the stress ratio cannot be expressed explicitly as a

function of the strain ratio. A nonlinear equation should be solved in order to

first get the stress ratio and then evaluate the yield ratio. The Newton

Raphson method or the Midpoint method can be used to solve this equation.

Below the non-linear equation and the yield ratio are written:

p(1+ R(1— a)“l )- a“ + R(l — a)"" = 0

<1) = [fiv +1+R(1—a)“)jz

16
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The plot above proves that the forming limit diagram is insensitive to the

level of R, where it was very dependant when the quadratic hill's yield

function was used. This independence of the FLD of the R-value gave the

non-quadratic function a great importance because it matched with the

experimental FLD where it has been shown to not depend on R values.
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Hill's 1979 - different a values
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As mentioned before the exponent a, connected to the crystal structure, is

equal to 6 or 8 for bcc and fcc alloys respectively. For the special case where

R is equal to 1 and a equal to 2, Hill’s 1979 will simply reduce to von Mises.

The plot above shows a dependence of the FLD on the value of a.
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2.3: Left hand side of forming limit diagrams

For the negative minor strain regime the groove direction is assumed to

line up with Hill’s direction of zero-extension such that the plane 'strain

condition is satisfied. The existence of a critical thickness strain criterion for

localized necking of sheets in the negative minor strain regime has been

demonstrated. The effective limit strain in region a increases as the strain

ratio becomes more negative and tends towards uniaxial tension. The limit

thickness strain is a constant regardless of the imposed strain ratio, thus

indicating the existence of a critical thickness strain for the onset of localized

necking. The limiting thickness strain is dependant only on n, m and f. It is

independent of the plastic anisotropy, the yield function and the plasticity

theories (flow or deformation theory).

  

 

   
 

 
FiglO: LHS model
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2.3.1: Algorithm

The algorithm is simple here because it involves the solution of a

nonlinear equation with the thickness strain. A thickness strain increment is

assumed in the imperfection and from the nonlinear equation the thickness

strain in the homogeneous region is calculated until the thickness strain in

the homogeneous region reaches a limiting value. This equation is solved

using either Newton Raphson method or the Mid-Point method. After lengthy

mathematical manipulation where the force balance equation coupled with

the condition of Hill’s zero extension have been used, the nonlinear equation

simplifies to the equation below. The full derivation of this equation is in

[17].

(d8: 7" (8:. + a: )" exp<e§> = flde: )"' (sf. + £5)f exp<a§>

20



2.3.2: Thickness limit

The limiting thickness strain in the homogeneous region is independent

from the strain ratio. For each value of n, m and fthe limiting strain in region

a is constant. The variation of the limiting strain with n, m and f is shown in

the plots below. By increasing the values of n and m, the limiting thickness

strain increases by keeping a constant ratio with the thickness strain in the

imperfection. By increasing the f values, the limiting thickness strain will

increase with a small increase in its ratio with the limiting strain in the

imperfection.

Thickness limit — different n values
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2.3.3: Results

The plots below show the effect of the hardening exponent n, the strain

rate sensitivity parameter m and the imperfect parameter f. The FLD for the

LHS increases with the increase in the values of n, m, and decrease with the

increasing value of f. This is reasonable because an increase in the

imperfection parameter means a deeper defect, which will lead to an earlier
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CHAPTER 3: General MK Model

3.1: Introduction

In this chapter, we will explain in detail a general approach for the

calculation of forming limit diagrams. This present model is an extension of a

previous analysis by Marciniak and Kaczynski (MK-model), where it is

generalized to account for all possible directions of the imperfection. The

limiting strain is calculated for all possible angels and minimized versus the

angel of the groove. We will use this approach to compare different yield

functions starting with the most basic one for isotropic materials von Mises

and two anisotropic yield functions Barlat Yld96 and Barlat Yld2000 proven to

describe well the plastic behavior of aluminum sheet metals. Two work-

hardening laws, swift and voce, will be used to model the effective stress-

strain behavior of the material. This new approach uses the Newton-Raphson

method to solve for the transverse stress and effective strain in the groove.

For this reason, the second derivative of the yield function is needed for the

evaluation of the Jacobian. The first and second derivatives of the three yield

functions are evaluated in the appendix for implementation purposes.

Forming limit diagrams will be calculated for aluminum alloy Al2008-T4 and

will be compared with experimental data. Barlat calculated the FLD for

Al2008-T4 by incorporating micro structural parameters, internal damage

(voids) and crystallographic textures in his model and showed very accurate

results. All computed FLDs assume that the largest strain is in the y-direction
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(TD direction) in order to be on the safe side. A very good agreement

between the calculated and the experimental FLD was obtained, when the

Yld2000 and the voce hardening law were used. M.C. Butuc [12-13] already

developed FLD for the Al6061 aluminum alloy based on von Mises, Hill’s

1948, Hill’s 1979 and Barlat Yld96yield function.
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3.2: Modified M-K model

This model uses the same assumption proposed by Marciniak and

Kuczynski [3] who assumed a long groove, a locally thinned region within

which the strain will concentrate and will lead to failure due to the onset of

localized necking. The origin of this imperfection is a variation in the sheet

thickness [3], difference of the material strength [16], or a combination of

both. The failure is assumed to occur when the ratio of the strain increment

within the groove and outside of it reaches a critical value. As we mentioned

earlier there is some constraints on the orientation of the imperfection. The

modified M-K model will consider all possible orientations for the groove and

consider the failure to occur when the ratio of the total strain increment

inside and outside of the imperfection reach the value of 10.

  

 

   
 

 
Figl7: Modified MK model
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The model above consist of two regions, the homogeneous region “a” where

the axis 1, 2 and 3 represent the principal directions of stress and strain and

the groove region “b” where the axis n, t and 3 are the normal to the

direction of the groove, the longitudinal direction, and the thickness

direction. The M-K imperfection parameter is defined as the initial thickness

ratio of the defected and the homogeneous area .The deformation within the

groove occurs at a faster rate than the one in the homogeneous region and

the plastic flow will localize in the imperfection area leading to eventual

failure. Under deformation, the strains parallel to the imperfection direction

within and outside of the groove are equal and forces perpendicular to the

groove in both regions are the same. Those two constraints are called

compatibility and equilibrium conditions. The groove is assumed to rotate

while the deformation occurs. Let e and e0 be the current and the initial sheet

thickness. The value of the imperfection parameter, the compatibility and the

equilibrium conditions can then be written as

Imperfection parameter: f = b/e"

Compatibility condition: d8; = def;

Equilibrium condition : 0'“ e“ = 0” e” , 0"e“ = abeb
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3.2.1 Algorithm

Given the stress state in region “a”, the plastic strain is evaluated in

region “b” for a known orientation of the groove. In the figure above we will

assume the x-, y- and z-axis to be the orthotropic axes of the material

(rolling, transverse and normal) that line up with axes 1, 2 and 3

respectively. For one increment we will explain clearly how to calculate the

plastic strain in region “b”. First, assume a small increment of the effective

strain in region “a” and then follow the steps below. The details below show

how this algorithm should be used in order to calculate the FLD for

proportional loading, by assuming that no shear stress exists in region “a”.

This algorithm could be used to find the critical strain for an unknown strain

path where the strain state will be an input from an FEM analysis.

3.2.1.1 Region “a”

. Strain ratio

Usually in the calculation of forming limit diagrams for linear strain path the

strain ratio in region “a” will be an input.

a

dag

dab
II

p:
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. Stress ratio

The stress ratio is then evaluated by assuming that it is a variable equal to

the stress in the y-direction, if the stress in the x-direction is set equal to 1

and shear stress equal to zero.

 

For most yield functions, to get the stress ratio one will need to solve the

following nonlinear equation:

1

a . 6 ,-

—J’F—p—0” =0 For 0': a

60' 60'
yy xx 0

d5; — pair):r = 0 :>

The Newton Raphson or Mid-Point method could be used for this purpose. For

the Mid-Point method the initial interval where the solution is located can be

taken as [-1; 2].

. Yield ratio

The yield ratio is the ratio of the yield function to the stress in the x-

direction. The yield ratio becomes the yield stress by assuming the stress in

the x-direction to be equal to 1, the stress in the y-direction to be equal to

the stress ratio, and the shear stress to be equal to zero.

Q
I

 

, ¢=0yr For a: a

C
“

O
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. Stress state

Having assumed an increment for the effective strain, the yield stress can be

evaluated using the hardening rule (swift or voce). Coupled with the yield

ratio, the stress in the x-direction can be calculated, knowing the stress in

the y-direction, and by setting the shear stress equal to zero (no shear stress

in region “a”).

3”,, = hardening?“ + did)

00 =EHR/(DU

a _ a

a”, —a0ju

a —

0'0 —0

. Strain state

The strain state is calculated from the Flow Rule knowing the stress state in

the orthotropic referential frame.

 

 

0'
a _ — YF a _ a a

dart-d8a¥:81x_£u+d8u

XX

60'
a _ - YF a _ a 0

d5” — den 0'“ :> a”, — a” +d5y)

W

160
a _ - _ YF a _ a a

dew—d :>£ —5xy+d£xy
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. Output needed

To solve for the effective strain increment in region “b" four values are

needed; the strain increment parallel to the groove, the strain in the

thickness direction, the stress normal to the groove and the shear stress in

the groove coordinate axis. Those four values are calculated as following:

a _ a - 2 a 2 a -

d8" —d£M sm 6+d£w cos 6—day sm 26

a __ a 2 0 ° 2 a '

0",," —O-xx cos 0+0” sm (9+0; sm26

of, = 0'1‘,’y(cos2 6— sin2 (9) + (va — 0;)sin6cos6’

a __ a 0

3.2.1.2 Region “b”

. Nonlinear Equations

For this region to complete our study we have to compute the effective strain

increment and compare it with the one in the homogeneous region. Two

nonlinear equations in the effective strain increment and the stress in the

longitudinal direction must be satisfied. The first state that the yield stress

computed from the yield function must equal the one computed form the

hardening rule. The second is the compatibility equation. The two equations

are written below.
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GIIdEb’ab)= 35R ’50:? = 0fl

G,(d§b,a{: )= d5: — d5: = 0

To solve these equations the Newton-Raphson method is used. This method

involves the computation of the Jacobian needed in the iterative evaluation of

the solution. The solution is reached by iteration using the formula below:

dgil-il _ d5? _J—l Gl(dEib’U:i)

Grim — 6:; 02(dgib’O-3i)

Where J is the Jacobian of the nonlinear equations. The Jacobian is the

matrix of the derivatives of G1 and G2 with respect to the effective strain

increment and the stress in the longitudinal direction. For this case the

Jacobian is symmetric and its components are described below:

_

 

 

' 00, at},

J = 6d?” 60':

at}, at},

Lads—‘1’ 60'": -  

The first component of the Jacobian is straightforward and is obtained by

deriving either hardening rules (Swift or Voce)

6Gl nK(§0 + 5” + (15” )""l Swift hardening

6d?” ‘— C x 3 exp[— C(g” + (15” )] Voce hardening
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As we mentioned above the Jacobian is symmetric and the non-diagonal

component involve the first derivative of the yield function, which is derived

in the Appendix.

  
 

sin26

661 = 602 = _60,,. 63:, 60W cosz 6

60': 6d?” 60': 60'?v 60': ,

~ y —sml9cost9

The derivative of G; with respect to on involves the second derivative of the

yield function, which is derived in the appendix.

 

 

 

a__20'rr 625:)? 623W "

6203; 60'260' 603x610}, ' sin20

26—i— = —alE”[sin2 6 cos2 6 — sin 26?] ii— 6 0,", -a—UlF—— cos2 (9

60'“ 60'”60'“ 60'; 60'”60'”, ,
_1_ 5223;; 1 623,5} 1:3}; L—smdcosl?

L2 60560” 2 6030,60”. 2 60'”, _ 

. System Solution

To solve the system of the two nonlinear equations we will use the Newton-

Raphson method. The initial values are assumed to be the one of the

homogeneous region. Using the equilibrium condition we are able to compute

the normal stress to the groove and the shear stress in the groove. We

assume the initial imperfection parameter to be the current for the first

iteration so we can proceed with the calculations and provided that the

variation of the imperfection parameter is too small at the beginning of the
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deformation. Using the rotation rule below and the flow rule the stresses and

strains in the groove in the orthotropic referential frame are determined and

finally we calculate the strain increment in the groove in the longitudinal

direction using the rotation formula:

 

... . INITIAL [‘15:] [‘15.]

d5 ,0'" -) b = a

VALUES Ono or:

of. = as. /f
a; ,o.‘.'. ,f EQUILIBRIUM-) b

a... = a: //

0'2" 0:, = of" 0052 6 + 0': sin2 6 — 0:, sin 26

0': ROTATION-9 0;, = 0:, cos2 6 + 0': sin2 6 + 0:, sin 26

0'5: 0;; = of, (cos2 6 — sin2 6) — (0': — 0:")sin 6cos6

0'; 5:.

of; FLOW RULE-) sf;

0'; 8:;

81’.

a; ROTATION-9 def; = def; sin2 6 + dag, cos2 6 — defy sin 20

b

a”
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Now having all the values needed to solve the nonlinear equation, the strain

increment in the groove and the stress in the longitudinal direction of the

groove are computed by iterating until a convergence value is reached. After

that the current imperfection parameter and the angle of the band are

updated. The process continue by assuming an effective strain increment in

region a and calculating the one in the groove until the ratio of these two

approaches a critical value corresponding to local instability. It is usually

assumed that failure occurs when the strain increment in the homogeneous

region reaches 10 percent or less than the one in the groove.

 

Imperfection parameter: f = fo exp(g§’ —£;’)

. . 1+ d6“

Groove orIentatIon : tan(6 + d6) = tan 6 "‘

1+ d6;

The study above is done assuming the major strain to occur along the rolling

direction (x-axis), but to obtain the full FLD we have to assume the case

where the major strain occur along the transverse direction where it will give

the lowest values for the strain and will be used as the FLD for material. To

calculate the FLD where the major strain occurs along the (y-axis), the only

thing to do is to switch the x and y material coefficient and use the same

algorithm. For Vonmises both FLDs are the same due to the symmetry of the

yield function with the rolling and transverse directions, but for Barlat Yield96

and Barlat 2000 the full FLD is not symmetric with the first bisector.
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3.3: Yield Functions

In this work three yield functions are used to calculate the theoretical

FLDs for Al2008-T4, von Mises, Barlat Yield96 and Barlat Yield2000. A

description of the yield functions and the derivation needed for the

implementation of the codes are presented in the appendix.

3.4: Hardening rules

The coefficients of an effective stress-strain curve that defines the strain

hardening of a material is found by fitting the experimental data obtained

from a uni-axial tensile test to one of the following equations:.

Swift 5 = KG, + a)"

Voce E = A — Bexp(—CE)

Where 0’ and E are the effective stress and effective strain respectively, and

the rest of the variables are constants that are obtained from theby fitting

the above equations of to experimental results from a tensile test.

3.5: Material constants

The material constants, needed for the implementation of the code for

aluminum alloy Al2008-T4, describes for both two hardening rules and yield

functions are presented below. The imperfection parameter is assumed to be

0.996.
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Swift Voce

50 0.002 A 447 Mpa

n 0.1882 B 248 Mpa

K 456.82 Mpa C 4.3 Mpa

  
 Table 1: Constants for voce and swift equation — Al2008T4

 

 

       

Yield96

a C1 C2 C3 C5 (1x (1y Orzo all

8 1.1227 0.9154 1.0137 1.0578 1.55 1.75 1.0 0.6

  
 
Table 2: Constants for Barlat Yield96 — Al2008T4

Yield2000

 a (II (12 (13 04 (15 (16 (17 as

 

    
8 0.91777 1.14937 1.17360 1.14556 1.05262 1.19593 1.01494 1.06188

      
 
Table 3: Constants for Barlat Yield2000 - Al2008T4
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3.6: Results and discussions

The experimental and the computed FLDs for von Mises, Barlat Yld96 and

Barlat Yld2000 yield function for Al2008-T4 using Swift hardening law are

shown in Fig-18. It can be seen that von Mises over predicted the

experimentally measured failure points due to the anisotropy of the metal

and Yld96 and Yl2000 have given good result with Yld96 being more

conservative. In Fig-18 the FLDs are calculated using Swift hardening rule

where it is shown that failure points are well predicted when Yield96

describes the yield locus. For Al2008-T4 it is best to use Yield96 to describe

the yield locus and Swift equation to model the hardening of the material to

be on the safe side.
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CHAPTER 4: Simulation of Stretch Stamping

4.1: Introduction

In many sheet metal forming simulations a forming limit diagram is used

to predict failure. In sheet metal stamping simulations, the minor and major

strains for all elements are plotted against each other and compared with

with the FLD curve to check whether or not strains at any element exceed

the limiting curve. Usually the FLD is generated using both Voce and Swift

hardening rule, and the most conservative one is used to check for the

possibility of the development of a localized neck in the sheet. In this chapter

stretch stamping of a sheet metal with a hemispherical punch is simulated

using LS-DYNA and the major and minor strains of all the elements are

tracked through the simulation to see how and when they exceed its the

FLDlimit. When one element reaches the limiting curve the simulation is

stopped and the limiting punch depth is recorded. Although strain paths in

this type of simulations are not linear, FLDs are still used to check for

necking and has been shown to provide qualitatively accurate and failure

validprediction. The pure-stretch stamping test of a Al2008-T4 sheet using a

hemispherical punch has been done experimentally and initial failure

occurredwas recorded for at a punch depth of 27mm at room temperature.

The finite element simulation result with LS-DYNA alsos matched the

experimental results, where it was showed predicted that the first time the

strains in a first element exceeded reached the FLD, occurred when the

punch depth was at 27mm.
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4.2: Description of the model

In pure-stretch stamping, a sheet is clamped between a die and the

blank holder, and a punch is used to deform the sheet. A full model has been

used in this simulation to capture the anisotropic behavior of the AA3003-

H111 sheet. The dimensions of the part, the material properties, and all the

data needed to model this experiment is described below.

4.2.1: Part dimensions

The punch diameter is 4 in. The diameter of the die and the blank holder

is 7.5 in. The diameter of the sheet is 3.54 in. The height of the die is 1.81

in, and 0.4 in for the blank holder. The radius of the surface of the die and

blank holder parallel to the sheet is 2.3 in. The sheet is assumed to have a

uniform thickness of 1mm. The initial distance between the die and the sheet

was taken to be zero, and the one between the blank holder and the sheet

was taken to be 0.5 mm to prevent any initial penetration. The initial

distance between the punch and the sheet was assumed to be 3 mm. The

radial distance between the punch and the blank holder was assumed to be

0.7mm.

4.2.2: Element type and material models

For all parts the “Belytschko-Tsay” (Shell element number 2 in LS-DYNA)

was used, using 5 integration points for the sheet and 2 for the rest of the
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parts. The punch and the blank holder were modeled as rigid materials

 
“Steel” (material number 33 in LS-DYNA) and constrained to move only

normal to the initial plane of the sheet. The die was modeled as rigid “Steel”

but constrained to remain fixed during the forming process. The sheet was

aluminum AA3003-H111 and modeled to follow BARLAT-YLD2000 (user

material option has been used) and assumed to follow Voce and Swift

hardening rule.

 

4.2.3: Material properties

The material constants for the aluminum and steel are shown below.

 

 

 

 

   
 

 

 

 

 

Steel

Young’s modulus 210 GPA

Poisson ratio 0.3

Density 7850 kg/m3

Table 4: Properties of Steel

AA3003-H111

Young’s modulus 70 GPA

Poisson ratio 0.33

Density 2710 kg/m3   
 

Table 5: Properties of AA3003-H111
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Voce

A 144.015 MPA

B 76.217 MPA

C 13.058   
 

Table 6: Constants for voce equation

 

 

 

 

  

Swift

Ea 5.7E-4

n 0.2157

k 199.82 MPa  
 

Table 7: Constants for swift equation
 

 

 

 

 

 

 

 

 

 

 

 

   

Barlat YLD2000

a 8

L111 0.620325624

L112 -0.310162812

L121 -0.365965106

L122 0.731930213

L155 1.069533131

L211 0.681653114

L212 -0.331290171

L221 -0.350798498

L222 0.699980075

L255 1.06096938  
 

Table 8: Constants for Barlat Yield2000

See Appendix C for the definition of the parameters above.
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4.2.4: Constraints and prescribed motion

The die was assumed to follow a prescribed motion (displacement), with

the corresponding curve shown below. A force was applied on the blank

holder to clamp the sheet to the die. This force started from zero and

increased until it reaches 450 KN after nine seconds. A plot that describes

this motion is shown below. A picture of the full model is also shown below.

M3003-H111. RT

 

FigZO: Model stretch stamping



The plots show the prescribed motion for the punch and the blank holding

force.
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4.3: LS-DYNA

After calculating the theoretical FLDs of the material using the program

described in the previous chapter for both voce and swift hardening rules, the

more conservative curve was used to check for failure.

4.3.1: Swift and Voce FLDs

For this case the FLD curve based on voce hardening rule turned out to

give the more conservative FLD. Both FLDs were calculated with the larger

principal strain assumed to occur in the TD direction to be on the safe side.

The material coefficients for swift and voce hardening rules are written in the

previous paragraph. Both voce and swift FLDs are plotted below.
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4.3.2: LS-DYNA FLDS

In LS-DYNA, to open a FLD curve, the points should be c0pied to a txt file

starting with “fld_user” and followed by double the number of points. For

AA3003-H111 the input FLD file is written below. In LS-DYNA the curve is

read and plotted. The FLD curve used in this simulation is plotted below.

Usually many curves are generated from one data input file. The most useful

ones are the original FLD (Cracks curve) and a more conservative (Risk of

Cracks curve) curve to keep one on the safe side. Materials are considered to

be safe if they do not cross the crack curve. But it is better to be on the safer

side where one should not cross the risk of crack curve.

 

 

fld_user

36

0.178426 -0.08921

0.168248 -0.0673

0.159279 -0.04778

0.150106 —0.03002

0.141445 -0.01414

0.132489 0.000002

0.137678 0.011016

0.147395 0.023585

0.15628 0.03751

0.1647 0.052713

0.17261 1 0.069068

0.180267 0.086552

0.187824 0.105236

0.195239 0.124963

0.202804 0.146084

0.210229 0.168262

0.217641 0.191588

0.221089 0.212251

 

Table9: FLD user
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4.4: Experimental Findings

The pure-stretch stamping test has been performed in the lab at room

temperature. The picture below shows the fractured sheet at the depth of 27

mm.

 
FigZS: Failed sheet
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4.5: Numerical results

The computer simulation was stopped when the strains in an element

crossed the forming limit diagram. The plots below show the strain

distribution of all elements after 10 ms and at the failure time (23 ms). The

strain paths range from plane strain for the element on the sides of the

sheets to biaxial tension for the elements in the middle of the sheet. The

displacement of the middle element is plotted too.

LS-DYNA FLD (1:15 ms)
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The failure of the sheet has been found to take place in the cracks region

in the picture below. In this region the strains in some of the elements have

crossed the forming limit diagram and the sheet was considered to have

failed due to the onset of localized necking. A comparison of the actual and

predicted failed sheets indicates that a good qualitative match exists between

experimental and numerical results.

Fonnabll It

Contours of Formablllty: Mid. Surface "y ”y

Cracks

Risk

of cracks
 
Severe

thlnnlng
 

Good   
Inadequate

stretch

ernldlng
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FigZ9: FLD contour at failure
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CHAPTER 5: Conclusions

The experimental and numerical results were very close. First the punch

depth at failure was 27 mm for the experiment and 29 mm for the numerical

simulation, which corresponds to a discrepancy of only 7.5%. More

importantly, the failure occurred in the same location in both experimental

and numerical simulation. The results below show that forming limits are a

very useful tool to check for the failure of stamped sheet metals in numerical

simulations. Experimental and numerical findings are compared in the picture

below. The discrepancy between experimental and numerical findings can be

a cause of some accuracy issues or even because the strain paths in the

sheet are not linear for all elements. For elements on the boundary of the

deformed sheet the deformation could be assumed to be linear, however it

becomes non-linear as one moves toward the center of the sheet. For the

pure-stretch stamping it has been shown [10,11] that the FLD lowers, in

comparison with linear path deformations. This might explain the difference

between the actual and predicted punch depth at the time of failure. And

finally in all the numerical simulations we have assumed failure occurs when

the strain increment in the imperfection region is ten times the value of the

strain in the homogeneous region, and by assuming an imperfection

parameter. All these assumptions could be partially responsible for the

discrepancy between the experimental and numerical failure punch height.
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Fig30: Experimental and numerical findings
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Appendix A - von Mises

It is the yield function that describes the yield locus of isotropic material.

A1 - Yield function-2d

_—2_ 2 2 2_
¢—0' —0'U+0'W+30'xy 0' 0'

)9’

Where 5 is the yield stress and the variables are the Cauchy stresses in the

x-direction, y direction and the shear stress respectively.

  

 
 

 
 

A2 - First derivative

25 05 = 005

60',I 60,,

Where n refers to xx, yy and xy.

fl¢—-~20' — jig—=20 ‘0'” i=6

60'” "‘ y’ 00'”, yy 00”, ’3

A3 - Second derivative

626" _i 1 62¢ _ 66 ® 63

603.60,, E 2 603.60], 603, 60",

Where n and p refer to xx, yy and xy.

2 2 2

60'; 60'», 60'”,

52¢ 62¢ _ 62¢ 62¢ 62¢ 62¢ _ 0
 

 

603M603y = 60W60xx 60360” — 6030,60“ _
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Appendix B - Barlat Yld96

Many yield functions have been developed to describe more accurately

the plastic anisotropy of sheet metals. Barlat Yld96 [18] has proven to

describe well the plastic behavior of aluminum alloys. Although its convexity

cannot be proven and has complex derivatives, which make it a difficult yield

function to implement,ation it describes the behavior of aluminum alloys very

accurately.

B1 - Yield function-2d

0

¢ = 23“ = a,|s2 —S,|" +a2|33 —S,|" +a3|S, —S2
 

Where 51, $2 and 53 are the eigen values of a stress tensor modified by a

linear operator to obtain anisotropic properties, c? is the measure of the yield

surface size, the coefficients a], (12 and 03 are three functions of the angle [3

defined below and the exponent a, connected to the crystal structure, is

equal to 6 or 8 for BCC and FCC alloys respectively. For plane stress the

eight material coefficients needed to describe the anisotropy are

C1 ’C2 ’C3’C6.ax’ay ’a20,azl
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The stress tensor modified by a linear transformation is:

Sn (C2 +C3)/3 —C3/3 0 0”

SW = —C3/3 (C1 +C3)/3 O 0'”,

SD. 0 0 C6 0'”.

The eigen values of the modified stress tensor are:

 

 

The coefficients on. are found using the transformation rule:

a, = 0, cos2 6+0), sin2 ,6

a2 = a, sin2 ,B+ay cos2 ,6

a3 = 0:20 cos2 2,6 +az, sin2 2,6

Where [3 is the angle between the x direction (rolling direction) and the

direction associated with principal stress 5; and is found easily by:

ZS

2,6 = tan’l —”

S —S»'I!
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B2 - First derivative

6¢ _6¢ x,6Sx65p+6¢X6a,x6,6x

60,, —,6S 68p 60' 60. 6,6 6Sp 60,,
n I

 

2030-1—63 = 6¢

60' 60'

 

Where n and p denote xx, yy and xy and i for 1, 2 and 3.

66—35: —aa23IS —S,aIsign(S3 —S,))+aa3I,—S—S,a—Isign(S, -S2)

a¢

a—I .

6S,—=aa,IS, —S,aIs,ign(S —S)—aa,IS, -SZI Slgn(SI ’52)

g: = ——aaIS2 —S,‘HI sign((,S -S,))+aa,IS3 —,HSI sign(S —S,)

If A is not equal to zero the derivative below can be calculated:

A =(S,,,r -SW)2 +4Sfy

  BileIJLSa.‘ 652-1(1312‘1) ass _IfiiéiIfll

 

 

  

 
 

 

as” 2 J3 , as“ 2 J; ) as” as,“ as“

as, 1 S... —S,,) as2 1 S... -S,.‘ as f as as I
_:__1___ __1+____ 3 :_ 1+ 2 =__1

68,, 2 JZ ) 6S” 2 JZ , as” (as, as” ,

6S1 = 250 6S, ___ _Efl 6S3 _ ( 65, 619,)— 0

a8, JX as, «E as” ’ — as”, + as”, , "  
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6Sn =L

60'
P

 

Where L is the linear transformation matrix used to find the modified stress

 

  

 

 
 

 
 

tensor.

(C, +C3)/3 —C,/3 0

L = —C,/3 (C, +C3)/3 0

0 0 C6

2g=IS,—S,a %-=(a,—ax)sin2,6 Biz—i1

60, 6,6 65” A

6¢ =IS3—S,a (702 :(ax—a))sin2fl
_a_fl__S_n

a , (M as”, A

611’ =ISI ’52 0 6a} — 2(a I 'azo)sm4fl afl SIX —Svy
aa, 5,5 as = A

xy

B3 - Second derivative

62¢ 62¢ 65,- 68. a¢ 625.- 65. 62¢ 6a.- an 65.
-—-= X X 'I' X X + X X X

60,60, 6S,60', 6Sp 60,, 65, 6Sp60, 60,, 60,60, 6,6 6Sp 60','

2 2

+6¢X6a, xaflxasp+a¢xaaix 6’6 anp

60,. 6,660, 6S 60' 60. 6,3 6Sp60'q 60,,
p n I

  

p

2— 2 _ _.

6 0' : El-“ _1_ 6 ¢ _(a _1) 80' ® 60' {-7.072

60,60], 20 60,60}, 60" 60'

Indices n, p and q denote for xx, yy and xy and i for 1, 2 and 3.
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Where:

a2 a2 as. as a2 60. a as

as,a:, zasgxasraap +6S,6¢:z,x a/i xaéxaap

azs, = a2s, xas,

aspaa, aspas, 60',

62¢ z 62¢ XBS.XBS.
605,60, 60,65, 65,, 60',

620, :aza,xa,ax68,,

6,660,, apz as, 60'

am = am xas,

aspao, aspas, 60

  

q q

 

q

q

oThe second derivative of function Ip with respect to S. is a symmetric

second order tensor (3-3). The elements of this tensor are written below.

 

   

 

  

   

 

 

 

  

a2 .- a- 62 62 (P

as? ”(a-11015341 2.....5, —s, 2) fig'ags‘mla-Uais. —s2 2

a2 .- a- 62 62 "-6S? =a(a—1Xa,IS, —S3 2 +a3IS, -—S, 2) 6S 6‘: = 6S 6: = -0(a—1)a,IS3 ’SI 2
2

l 3 3 1

a2 ._ ._ 62¢ 62¢ 0'
as? =a(a-1)(al|52 ’53 2 +a,|s, -51 2) 6S26S3 = as3as, =’a(a_1)a‘lsi —S’ 2
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. The second derivative of the stress vector 5. with respect to the stress

tensor Sn is a third order tensor (3-3-3). The non-zero elements of this

matrix are derived below.

   

azs,:_ 525, =_ 525, zflzl JZ-(S—nfi A

asf, asuasw as,yas,“ as; 2 JZ

azS1 __ aZSI _ 6251 __ 62SI __2 (Sn —Sy.v 0 A

asnasn, asyyasxy aswasn asxyas, JX

azs, _ _ 4S3,

.7511“ IV]

azs,=_ 525, :_ 525, :azS,=_l .fA—_i§£_—_§J A

as; asnasyy aswasn as;y 2 JZ

azs2 __ azs2 _ azs, __ azs2 _2 (Sn—5,, ,, A

asnasxy asyyas, asgasu asxyasyy JZ

als, _ 453,

as; "ZII‘F' JZ VA]

625, __ a2s, + azs2

as,as, as,as, as,as,

azs, _

as,as,
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. The second derivative of function (p with respect to a.- and S. are second

order tensor (3-3). The elements of this tensor are written below.

 

  

 

   

 

  

 

a2¢ a2¢ a2¢ ..-.
=0 =— = s -s ' s —s

6a,6S, aa,as2 aa,as, ”I 2 3 “gm 2 3)

62¢ a2¢ a2¢ .4
= =— :05 —S si nS —S

6a,6S, 6a,6S, aa,as, l 3 ' g ( 3 ‘)

62¢ a2¢ a2¢ ..

062305. aa,as, 60,65, al ‘ 2 S’g"( ‘ 2)

. The second derivative of function a,- with respect to B is a vector of three

elements derived below.

 

 

 

2

(2;; = 2(0), — ar )cos 26

620
6622 = 2(0I,I —a, )c0526

620
6623 = 8(az, - 0,0)cos 46

o The second derivative of the angle 6 with respect to 5p is a second order

tensor (3-3).

azfl azfl 2 Sxy(Sxx -80)
  
 

  

  

  

 

as; = as; A2

aZfl = azfl =—2 50(5)“ —Syy)

019305”, 6Syy6Sx, A2

62:6 _ _ azfl _ — (Sn —Sy.v)2 + 4Sxy

6511,65,), aSyyaSW A2

6% _ _ am _ -(S... -S....)’ +48.

65,965,“ 659619”, A2

626 = —8 Sxy(Sxx —S_Iy)

as; A2
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Appendix C - Barlat Yld2000

This is a new yield function that has been proposed by F. Barlat [19] to

overcome the weakness of yield96 where it is proven to be convex and its

mathematical formulation is less complicated. This yield function was

developed for aluminum alloys and has been shown to describe well the

anisotropic behavior of aluminum sheets.

C1 - yield function-2d

a

¢=2a°=|X,—X,
 
“+px+nr+pn+x

 

Where X1, X2, Y1 and Y; are the eigenvalues of a stress tensor X modified by

a linear operator L to obtain anisotropic properties, the exponent a,

connected to the crystal structure, is equal to 6 or 8 for BCC and FCC alloys

respectively, 6 is the measure of the yield surface size. For plane stress the

eight material coefficients needed to describe the anisotropy and the linear

operator L are written below.

ai’azravauas’asaawas

 

 

‘—2 2L,,, 2/3 0 'L,,,1 8 —2 a,

L,,, —1/3 0 o'a, L,,, 1 1 —4 —4 4 0 a,

L,,, 0 -1/3 0 a, 1.2,, 5 4 —4 —4 1 0 a,

L,,, 0 2/3 0 _a, L,,, —2 8 2 —2 0 a,

L,66 0 0 1_ _L,,,_ _ 0 0 0 0 9__a,_   
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The linear operator L is found by a linear transformation form the anisotropy

coefficients. The modified stress tensor X can be found by a linear

transformation with L:

  

”Xx. _

X}? 0

X”, n

X = Lu Y- = L 0,,

xx 0x ’

Y}? )

_ Y... _

  

  

  

 

X +X X +X 2 Y +Y Y +Y 2

X1: ”2 W+J£ ”2 W] “I'Xxyz 1: n2 yy-I-J[ ”2 W] +ny2

X +X X +X 2 Y +Y Y +Y 2

X,= ”2 W—I/I ”2 ”I +sz zzuzw—IIHZWI +13,2

C2 - First derivative

60 z a¢ x 6X.- an.

6X, 6Xp 60,,

 

 

60',

2670-1 60- : 6¢

60,, 60",

Where i denote indices for 1, 2 and n, p for xx, yy, xy.
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flzaIX, —X2

6X,
 

 

6X,

1

 

2.?— : 2aI2),2 + I],

61’
2

If Ax and Av are not equal to zero the derivative below can be calculated:

Ax = (Xxx —ny)2 +4X3)’

 

 

 

 

 

 

i=lK1+————X’“-X’W
aXn 2( JE

6X. =1,__X_n'_Xw

6X. 21 W37
_6_XL—2X”

aXU E

ayl 1[ Yu-Yw\
=_ 1+

61’,“ 2 A, )

ElileI—Y“—Y”\
61’” 2 Ay )

61’,_2ny

6Y 7.];

0431.3"(XI —X2)

065 =—aIX1‘X2Ia_15ig"(XI—X2)

I

\

 

 

%= 2al2Y. + Y,|"“sign(2Y. + Y. )+ aIZYz + Y. 1051318425 + Y1)

“"‘sign(2Y, + Y. )+ aIZYI + BIO-131842"! + Y2)

AY : (Yr: —YY)')2 +412:

6X2 1[1_Xxx—XYY\

,IA,r )

\

8X2 1[1+_/Y_X_";X:£
 

 

  

any-Z J3 /

6X, =_2X,,

5X... J4:

  

  

 

  

airy, - 2 JAT ,

6Y, =_ 2Y0

er. i4?
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C3 - Second derivative

 
 

  

 

 

62¢ _ 62¢ anianq+a¢x 62X.- anq

60,60, 6X,.60'p 6X4 60'" 6X, 6Xq60'p 60”,,

2— 2 _. _

60' :E,_,, _1_ 6¢ _(a_1)60'®60' 6'“

60,60], 20 603,60}, 60",, 60,,

Where:

62¢ 62¢ 6X; 6X,
 
 : X X

6X,60'p 6X,6Xj 6X" 60“,,

62X, ex,
= X

axqaap max, 60’

62X.
1

P

oThe second derivative of function (p with respect to X. is a symmetric

second order tensor (4-4). The non- zero elements are written below.

  

 

 

2 2

6 (1:: 6 f =a(a—1]X, —X2 “.2

6X, ax,

2 2

6¢ = 6¢ =—a(a—1)X,—X2 “-2

aX,aX, aX,aX,
 

 

  

 

  

2

(if: = a(a -1)(4|2Y, + Y2 “‘2 +|2Y2 + Y, ““2)

l

2

:1}: = a(a -—1)(4|2Y2 + Y, “‘2 +|2Y, + Y2 “‘2)

2

62¢ 62¢
 “—2)= 2a(a —1)(sz, + Y2 “‘2 +|2Y2 + Y,

  

aY,aY2 ___ 6Y26Y,
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. The second derivative of the stress vector X. with respect to Xn is a third

order tensor (4-6-6). The non-zero elements are written below.

   

62X,__ 62X, __ 62X, _aX-X,__1_ A _(X, —X,,

an, aXUaX, aXWaX, an, 2 X ,/A,

_6_X.___ XX. z XX: ___X_X____2 (X X )X
aXuaX, aX,,aX,, aXWaX, aXWaXW ,/A, AX

:2 A, ———,_A. A,

6X; [ AX

52X, 62X, 62X, 62X, 1 ,— (X,,,-—X,,.)2
———3—:——:— = 2 :-—— AX— AX

6X, aXuaX, aXWaX, 6X”, 2 ,/A,

.122--sz z 222, ___a_£__2 (X,_X,,.)x, 2
aXnaX, anyaX, 6XU6XU 6XW6XW A, X

62X, 4X3,
.—.—2 ,/A ———- A

6X; [l 2 FAX]/ J
2 2 2 2 _ 2

a);,:_ aY, =_ 6Y2 =a§=l ,[AT—(YX‘ Y“) A,

aY, aYnaY, anaY, aYW 2 ,/A,

62),] :— 62),] = 62),] :_ 62"! :_2 (YXJ —Y)'.V)yxy A

aYuaY, aYyyaY, aYngH aYnan A, ’

é

 
 

 

  

  

 

   

    
 

  

62y,:_ azy, _ azy2 __22_6Y «(Elk—Y”?

aY; aY,aY,, aY,aY, "'26ng 2

622,2 _— 622,2 _ aZYz __ azYz _2 (YU_Y)O')YX)’ A

6Y,,6Y,y anaY, aYUaY, aYnaY, ,/A, ’

: —2 A), — —4— A}:

an: [ FA,
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