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ABSTRACT

ANALYSIS AND VISUALIZATION OF
VOLUMETRIC DATA SETS

By

Paul Benjamin Albee

The ability to generate volumetric data sets of materials, particularly at sub-millimeter
resolutions, has increased in recent years. The tools to facilitate analysis of non-medical
volumes are still primitive and require substantial user input. This thesis addresses three
tasks of volumetric analysis, producing efficient algorithms for segmentation, interest de-
tection, and view path generation.

The first major contribution is a clustering based segmentation algorithm that was de-
signed to operate on noisy volumetric data. The initial data is a reconstruction from tomog-
raphy or MRI and is inherently noisy. The segmentation algorithm operates by detecting
statistically similar, although possibly non-contiguous, regions and then relabeling the vol-
ume monotonically using a Bayesian classifier based on the detected clusters in the volume.

The second major contribution is the development of a trainable interest detector. A
Radial Mass Transform (RMT) is defined to characterize the local structure at each location
in the volume. This transform is demonstrated to provide a rich characterization of local
structure. The RMT is used as the base input to a Support Vector Machine (SVM) classifier
to generate an application specific interest detector. The user selects a set of interesting
and uninteresting regions in the volume, the SVM is trained using the labeled data, and the
entire volume is classified.

The third major contribution is a view path, or tour, generating algorithm. Once vol-
umes have been processed, a visual representation of the volume is helpful for users to

better understand the structure of the data. An algorithm is developed to automatically



generate view paths that maximize the amount of interest shown in a series of cross sec-
tions. The cross sections can be viewed as an animation, or virtual tour, providing the user
with additional information about the structure of object(s) in the volume.

The algorithms are demonstrated on hundreds of synthetic volumes and dozens of real
volumes, including many microvolumes scanned using the Argonne National Laboratory
APS. Two common threads running through this work are that all techniques were designed
to work on large volumes and to operate in parallel when possible. A typical data set is on
the order of 400-600 megabytes and may require several hours, if not days, of processing
time on a desktop computer. The techniques we have developed are amenable to parallel

processing, reducing processing time from days to hours or minutes.
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Chapter 1

Introduction to the problem

Advances in volumetric data acquisition have allowed researchers to easily collect data on
objects and materials that were previously unable to be evaluated. One large class of data is
non-medical data that is currently being acquired via x-ray tomography at facilities such as
the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The APS is a
high energy x-ray source that can be used to image materials that in the past were too dense
or too small for conventional x-ray tomography. Many of the volumes being collected at
the APS and elsewhere have unknown internal structures reducing the usefulness of those
analysis techniques that require extensive a priori knowledge. My work is to develop
automatic and semi-automatic tools to assist the scientists in evaluating this new data. The
tools being developed will enable the user to semi-automatically evaluate a tomographic
volume. The advantage of using such tools is that the user’s attention can then be guided to
points of interest within the volume that they may either miss, or simply not have time to
find manually. The work presented in this dissertation was originally motivated by micro-
tomographic soil analysis. As the work progressed, other imaging modalities, e.g. MRI and
optical slices, were considered, leading to the development of algorithms aimed at general

volumetric data.



1.1 Maedical versus Non-medical Volumetric Imaging

The discipline of volumetric data analysis can be broken into two broad areas, medical
and non-medical volumetric imaging. The fundamental difference between these areas is
the existence of a priori knowledge of object features. In medical analysis there is a large
amount of a priori knowledge with respect to what features are expected. An example of
this would be examining brain images. The shape of the structures in the brain vary slightly
from person to person, but in general the structures are similar. It is this property that allows
analysis tools to be developed, e.g. Duta [28], Cootes and Taylor [18], Bookstein [8], that
learn the shape of the structures of interest. Once the tools have learned the shape, they can

be used to locate and extract instances of the shape from other images.

In non-medical volumetric imaging, depending on the area of interest, there is a wide
range in the amount of available prior knowledge. The amount of prior knowledge can
range from complete knowledge of what should be present to no knowledge about the
object. Objects about which there is complete knowledge include microchips and micro-
machined objects. In both of these cases, CAD models may be available that can be used for
analyzing the objects. Partial knowledge may be available for biological samples, like fruit
flies and ants. Like the brain example in medical imaging the insects are similar within
species with only small variations. However, no knowledge about structure is available
for objects such as soil aggregates and soil percolation tests. The lack of knowledge about
these internal structures is due to the processes that form the materials. Objects without any
available knowledge of their internal structure are interesting since they are often formed
through poorly characterized natural processes. It is hoped that studying these natural

structures will help scientists to better understand the processes that form the structures.
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1.2 Segmentation

In order to to analyze structures within an object, they must first be located and extracted
from the object. This process of segmentation is one of the first steps in most volumetric
analyses. Segmentation is particularly troublesome when there is no knowledge of the
internal structure of the object to be segmented. The lack of prior knowledge of the internal

structure requires that several different segmentation techniques be tried.

1.3 Interest Detection

Once regions have been segmented from an object, features need to be extracted from these
regions. Feature extraction can refer to something as simple as getting the location of
each discrete component or subregion in the segmented region. Feature extraction can also
refer to collecting several high level metrics such as bounding region, moments, statistical
properties, or related measures, that characterize the segmented region. Feature extraction
coupled with good segmentation is vital to performing any meaningful analysis, although
the features themselves may be sufficient for analysis.

Some feature extraction can also be done on non-segmented objects, or prior to seg-
mentation. Among the types of features that can be extracted are population statistics for
the object, determination of the presence of structure within the object, and data quality as-
sessment. Rather than develop a set of specific features, a technique for identifying domain

specific interest is developed in Chapter 5.

1.4 Viewpoint Selection

One of the major problems with visually evaluating volumetric data is locating good view-
points. When viewing volumetric data, there can be an excessive amount of visual infor-

mation presented to the user. When looking at volumetric data, it is important to look at
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it from the right viewpoint. This is illustrated in Figure 1.1(a) and Figure 1.1(b). There
appear to be two different objects, but a connecting tube is occluded in Figure 1.1(a). Once

the viewpoint has been changed, the connection is visible as shown in Figure 1.1(b).

(a) (b)

Figure 1.1: (a) Sample objects with apparently two separate objects. (b) Sample objects
showing connection, only one object.

1.5 Thesis Contributions

There are three major contributions in this dissertation: n-ary volume segmentation, interest
detection, and view path determination. The overall goal is to develop a set of analysis
techniques appropriate to volumetric data and to implement the techniques as tools that can
then be used for analyzing volumetric data.

The first contribution is a clustering based algorithm for performing n-ary segmentation

on volumetric data sets. The ion algorithm is d

gned to operate on large noisy
volumetric data sets. The algorithm generates an n-ary segmented volume with monotonic
labels: two voxels labeled j < k implies the voxel with label j was less dense in the original
volume than the voxel labeled k. The segmented results are suitable for noise reduction,
contrast enhancement, illustration generation, and as input to later processing algorithms.

The second contribution is the development of a user trainable interest detection frame-

work. The first component of the interest is based on the Radial Mass Transform, a novel
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feature analogous to both the Radon and Hough transforms. The RMT provides a rich
description of the volume, and provides a rotation- and translation- invariant characteriza-
tion of features within a volume. The second component is an application of a Support
Vector Machine classifier providing a convenient method for the user to train interest point
detection.

The third contribution is a view path generation algorithm for generating smooth tours

through a volume that maximize the presentation of interesting regions within a volume.

1.6 Thesis Outline

The organization of this dissertation is as follows. Chapter 2 presents a literature review
of data collection, preprocessing, segmentation, volume representation, feature extraction,
registration, and visualization techniques. Initial techniques for segmenting volumes and
extracting features from the volumes are presented in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>