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ABSTRACT

ANALYSIS AND VISUALIZATION OF

VOLUMETRIC DATA SETS

By

Paul Benjamin Albee

The ability to generate volumetric data sets of materials, particularly at sub-millimeter

resolutions, has increased in recent years. The tools to facilitate analysis of non-medical

volumes are still primitive and require substantial user input. This thesis addresses three

tasks of volumetric analysis, producing efficient algorithms for segmentation, interest de-

tection, and view path generation.

The first major contribution is a clustering based segmentation algorithm that was de-

signed to operate on noisy volumetric data. The initial data is a reconstruction from tomog—

raphy or MRI and is inherently noisy. The segmentation algorithm operates by detecting

statistically similar, although possibly non-contiguous, regions and then relabeling the vol-

ume monotonically using a Bayesian classifier based on the detected clusters in the volume.

The second major contribution is the development of a trainable interest detector. A

Radial Mass Transform (RMT) is defined to characterize the local structure at each location

in the volume. This transform is demonstrated to provide a rich characterization of local

structure. The RMT is used as the base input to a Support Vector Machine (SVM) classifier

to generate an application specific interest detector. The user selects a set of interesting

and uninteresting regions in the volume, the SVM is trained using the labeled data, and the

entire volume is classified.

The third major contribution is a view path, or tour, generating algorithm. Once vol-

umes have been processed, a visual representation of the volume is helpful for users to

better understand the structure of the data. An algorithm is developed to automatically



generate view paths that maximize the amount of interest shown in a series of cross sec-

tions. The cross sections can be viewed as an animation, or virtual tour, providing the user

with additional information about the structure of object(s) in the volume.

The algorithms are demonstrated on hundreds of synthetic volumes and dozens of real

volumes, including many microvolumes scanned using the Argonne National Laboratory

APS. Two common threads running through this work are that all techniques were designed

to work on large volumes and to operate in parallel when possible. A typical data set is on

the order of 400—600 megabytes and may require several hours, if not days, of processing

time on a desktop computer. The techniques we have developed are amenable to parallel

processing, reducing processing time from days to hours or minutes.
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Chapter 1

Introduction to the problem

Advances in volumetric data acquisition have allowed researchers to easily collect data on

objects and materials that were previously unable to be evaluated. One large class of data is

non-medical data that is currently being acquired via x-ray tomography at facilities such as

the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The APS is a

high energy x-ray source that can be used to image materials that in the past were too dense

or too small for conventional x-ray tomography. Many of the volumes being collected at

the APS and elsewhere have unknown internal structures reducing the usefulness of those

analysis techniques that require extensive a priori knowledge. My work is to develop

automatic and semi-automatic tools to assist the scientists in evaluating this new data. The

tools being developed will enable the user to semi-automatically evaluate a tomographic

volume. The advantage of using such tools is that the user’s attention can then be guided to

points of interest within the volume that they may either miss, or simply not have time to

find manually. The work presented in this dissertation was originally motivated by micro-

tomographic soil analysis. As the work progressed, other imaging modalities, e.g. MRI and

optical slices, were considered, leading to the development of algorithms aimed at general

volumetric data.



1.1 Medical versus Non-medical Volumetric Imaging

The discipline of volumetric data analysis can be broken into two broad areas, medical

and non-medical volumetric imaging. The fundamental difference between these areas is

the existence of a priori knowledge of object features. In medical analysis there is a large

amount of a priori knowledge with respect to what features are expected. An example of

this would be examining brain images. The shape of the structures in the brain vary slightly

from person to person, but in general the structures are similar. It is this property that allows

analysis tools to be developed, e.g. Duta [28], Cootes and Taylor [18], Bookstein [8], that

learn the shape of the structures of interest. Once the tools have learned the shape, they can

be used to locate and extract instances of the shape from other images.

In non-medical volumetric imaging, depending on the area of interest, there is a wide

range in the amount of available prior knowledge. The amount of prior knowledge can

range from complete knowledge of what should be present to no knowledge about the

object. Objects about which there is complete knowledge include microchips and micro-

machined objects. In both of these cases, CAD models may be available that can be used for

analyzing the objects. Partial knowledge may be available for biological samples, like fruit

flies and ants. Like the brain example in medical imaging the insects are similar within

species with only small variations. However, no knowledge about structure is available

for objects such as soil aggregates and soil percolation tests. The lack of knowledge about

these internal structures is due to the processes that form the materials. Objects without any

available knowledge of their internal structure are interesting since they are often formed

through poorly characterized natural processes. It is hoped that studying these natural

structures will help scientists to better understand the processes that form the structures.
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1.2 Segmentation

In order to to analyze structures within an object, they must first be located and extracted

from the object. This process of segmentation is one of the first steps in most volumetric

analyses. Segmentation is particularly troublesome when there is no knowledge of the

internal structure of the object to be segmented. The lack of prior knowledge of the internal

structure requires that several different segmentation techniques be tried.

1.3 Interest Detection

Once regions have been segmented from an object, features need to be extracted from these

regions. Feature extraction can refer to something as simple as getting the location of

each discrete component or subregion in the segmented region. Feature extraction can also

refer to collecting several high level metrics such as bounding region, moments, statistical

properties, or related measures, that characterize the segmented region. Feature extraction

coupled with good segmentation is vital to performing any meaningful analysis, although

the features themselves may be sufficient for analysis.

Some feature extraction can also be done on non-segmented objects, or prior to seg-

mentation. Among the types of features that can be extracted are population statistics for

the object, determination of the presence of structure within the object, and data quality as-

sessment. Rather than develop a set of specific features, a technique for identifying domain

specific interest is developed in Chapter 5.

1.4 Viewpoint Selection

One of the major problems with visually evaluating volumetric data is locating good view-

points. When viewing volumetric data, there can be an excessive amount of visual infor-

mation presented to the user. When looking at volumetric data, it is important to look at
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it from the right viewpoint. This is illustrated in Figure 1.1(a) and Figure 1.1(b). There

appear to be two different objects, but a connecting tube is occluded in Figure 1.1(a). Once

the viewpoint has been changed, the connection is visible as shown in Figure 1.1(b).

  
(a) (b)

Figure 1.1: (a) Sample objects with apparently two separate objects. (b) Sample objects

showing connection, only one object.

1.5 Thesis Contributions

There are three major contributions in this dissertation: n—ary volume segmentation, interest

detection, and view path determination. The overall goal is to develop a set of analysis

techniques appropriate to volumetric data and to implement the techniques as tools that can

then be used for analyzing volumetric data.

The first contribution is a clustering based algorithm for performing n-ary segmentation

on volumetric data sets. The segmentation algorithm is designed to operate on large noisy

volumetric data sets. The algorithm generates an n-ary segmented volume with monotonic

labels: two voxels labeled j < It implies the voxel with label j was less dense in the original

volume than the voxel labeled k. The segmented results are suitable for noise reduction,

contrast enhancement, illustration generation, and as input to later processing algorithms.

The second contribution is the development of a user trainable interest detection frame-

work. The first component of the interest is based on the Radial Mass Transform, a novel
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feature analogous to both the Radon and Hough transforms. The RMT provides a rich

description of the volume, and provides a rotation- and translation- invariant characteriza-

tion of features within a volume. The second component is an application of a Support

Vector Machine classifier providing a convenient method for the user to train interest point

detection.

The third contribution is a view path generation algorithm for generating smooth tours

through a volume that maximize the presentation of interesting regions within a volume.

1.6 Thesis Outline

The organization of this dissertation is as follows. Chapter 2 presents a literature review

of data collection, preprocessing, segmentation, volume representation, feature extraction,

registration, and visualization techniques. Initial techniques for segmenting volumes and

extracting features from the volumes are presented in Chapters 4 and 5. Chapter 6 presents

an algorithm for automatically generating tours of a 3D volume. Chapter 7 summarizes the

contributions of this dissertation and outlines future work.



Chapter 2

Literature Review

This chapter describes some of the issues and techniques related to the analysis of to-

mographic volumes. Tomographic analysis can be broken into the following steps: data

collection, preprocessing, volumetric reconstruction, segmentation, volume representation

encoding, feature extraction, registration, and visualization. Section 2.1 discusses the data

collection process for tomographic imaging. Basic issues related to projection preprocess-

ing are given in Section 2.2. Once the volume has been reconstructed, the objects of interest

need to be segmented from the volume. Several different techniques for segmentation are

discussed in Section 2.3. The segmented volume can be represented in a variety of ways;

some of the common techniques are described in Section 2.4. After the volume has been

reconstructed, segmented, and stored, features of interest need to be extracted from the vol-

ume. Some feature types and extraction techniques are in Section 2.5. In the case of the

same sample being used in difference acquisition cycles, features in the volume need to be

registered to detect changes from data set to data set. Finally, visualizing the data helps the

user to see the results of analysis that has been done on the volume and to draw insights

from the data. Several visualization techniques are described in Section 2.7.
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2.1 Data Collection

Data collection is the very first step in doing any sort of volumetric analysis. There are

currently four generations of x-ray tomography data collection devices used in the world,

but they all operate in essentially the same manner.

Ultimately, data collection can be viewed as generating a set of projections

”P = {p0, p1, . . . , pn_1, pn} of an object (9. In Figure 2.1(a) a two dimensional phantom

is shown. Figure 2.1(b) shows what is known as a sinogram. The sinogram is constructed

by taking the set of projections ”P as a image. The projection process can be modeled using

the Radon transform [56].

Given a function, the Radon transform can be used to construct a projection of f (as, y)

from some angle 9. The Radon transform is constructed by taking a series of line integrals

along a rotated axis, and combining them to produce a one dimensional projection of the

function f (2:, y). The equation for the line integral is given in Equation 2.1 where (5 is the

Dirac Delta function.

P9051) 21—00 [)0 f(a:,y)6(:z:cos€+ysint9—t1)d:1:d.y (2.1)

The line integral along P9 (t1) is computed for all values of t1. The rotation in the Dirac

function is used to rotate the line integral while the value fl is used to select the distance of

the Dirac function from the origin.

The mechanical setup for microtomographic imaging is shown in Figure 2.2. The sam-

ple is placed on a pin mounted on a rotation stage. The sample is rotated through 180

degrees in the x-ray beam. Images are taken of the scintillator screen at regular intervals

measuring the x-ray attenuation through the sample.
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2.2 Preprocessing

Preprocessing is used to remove noise from the data prior to reconstruction. There are

several types of standard preprocessing that can be done. Among these are Shepp-Logan

[99] filtering, zinger suppression, bar—suppression, white field and black field removal, and

projection alignment [90]. Shepp-Logan filtering is done by reducing the contribution of

low frequency elements from reconstructions. Zinger suppression is done to remove pixels

from the projection where an x-ray, or other high-energy photon, struck and saturated a

sensing element. Bar removal is the process of removing straight line bars from the sino-

gram [83]. The bars in the sinogram correspond to sensor in-homogeneities. Black field

and white field normalization are done to remove the sensor noise floor and x-ray beam

structure respectively.

2.3 Segmentation

Segmentation is the process of extracting objects or regions of interest from a image, or,

more generally, a function of N dimensions. Simple thresholding techniques that rely on

a single metric do not work well in most applications. In tomography and MRI they do

not work for several reasons. Chief among the reasons is the problem of noise in the data.

The reconstruction process is an inherently noisy operation due to a combination of sensor

noise, imprecise alignment of acquired data, partial voxel coverage, and inexact floating

point arithmetic during reconstruction. Additionally, there are problems associated with

smooth, or nearly smooth, variations in density. Several different techniques have tried to

handle segmenting noise volumes.

2.3.1 Snakes

Snakes, also referred to as active contours, are energy driven boundary detectors. Snakes

allow a contour to be placed near a boundary, then forces are applied to the snake to make
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it more closely follow the boundary. Forces that affect the evolution of a snake are smooth-

ness constraints, boundary length constraints, and image forces. The basic form of a snake,

given by Kass et al. in [57], is an energy minimizing contour. The contour is defined as

a spline that tends to minimizes internal bending energy, either minimizes or maximizes

length, and maximizes image energy. The original formulation for the snake energy Esnake

for a contour v from [57] is given in Equation 2.2.

1 2

E......(v(s)) = / (its)
3:0

02

+ 5(8) la—gf — 7|V1(V)|ds (2.2)
  

The first two terms in Equation 2.2 relate to the continuity and smoothness of the snake.

The third term deals with the energy of the image along the snake, in this formulation image

energy is the gradient of the image under the snake. a, 6, andv are weighting parameters.

The snake is initially positioned in the image outside of the region to be segmented. Some

sort of gradient descent algorithm is then applied to move the snake to the boundary of the

region that is being segmented.

Additional work related to snakes has been related to devising better energy functions

by Xu et al. in [112], [113], dual active contours by Gunn et al. in [43], adding statistical

shape information by Leventon et al. in [61], and dynamic programming to support hard

constraints by Amini et al [1]. Mclnerney and Terzopoulos develop an active surface the

can change topology targeted at medical volumes [72].

2.3.2 Clustering

Clustering defines a set of exemplar patterns or feature sets that represent a group of sam-

ples in feature space. A set of features based on the data to be clustered are generated and

then used in the clustering algorithm. Clusters are generated by minimizing intra-cluster

distances and maximizing inter-cluster distances: additionally, there may be a target num-

ber of clusters.
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For clustering-based segmentation, image features such as intensity, intensity variance,

and texture statistics can be used. Once the clusters have been identified and classified,

the image elements can be classified into different categories. Examples of clustering al-

gorithms are given in [54]. Indicator Kriging [77, 108] attempts to binarize a volume by

learning two distributions, and then applying a classifier that incorporates spatial distance

from a known classified voxel end estimated class prior probabilities.

2.3.3 Connected Components Analysis

Connected components analysis (CCA) is a technique for identifying components in a la-

beled image. A connected component is a collection of image elements that have the same

label and are adjacent to each other. A labeled point that is not part of a component in the

region to be labeled is selected and assigned a component label. This point is then used as

a seed point, or starting point, for propagating the new component label. The neighbors of

the seed point are then examined. Neighbors with the same label that are not part of any

component are assigned the component label and added to the set of seed points. After all

of the seed point’s neighbors have been examined, it is removed from the set of seed points.

The propagation continues until there are no more seed points. An example of propagation

,_... "a ”/5551!" :. .;

.1, 0 .1 1, 0 .1.

1 l 0 Lil-T l 0 .1, 1'

Figure 2.3: Example of how labels propagate during connected components analysis.

is shown in Figure 2.3.
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CCA is used when the image has already been labeled. In the case of tomographic data,

the volume may have already been labeled; the next step is to extract the components and

generate per component statistics. Some of the simple statistics that can be generated are

the centroids of each component, minimum enclosing rectangular prisms, major and minor

axes of the components, sizes of the components, and component size distribution.
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2.3.4 Region Growing

Region Growing (RG) is closely related to connected components analysis. Rather than

working on a labeled image to grow components, RG operates on unlabeled images and

generates regions based on some similarity measure. The simplest similarity measure is

requiring that adjacent elements have exactly the same value, indicating that connected

components analysis can be considered a special case of region growing.

Two of the major factors affecting region growing are the choice of similarity measure

and the choice of neighborhoods. Similarity can be specified as a distance between two

elements. Depending on the application, a threshold is used to determine how far apart

two elements are before they are no longer considered similar. In the case of a binary im-

age, the distance threshold is set to zero. For images with scalar values at each element,

the threshold may often be some value greater than zero. For the case of vectors at each

element, some sort of distance metric can be computed, then a scalar threshold can be

applied. The similarity threshold does not necessarily need to be held constant. The thresh-

old may vary based on component statistics or some correction factor to allow for global

image variations, e.g. non-uniforrn sensor response. The choice of neighborhood affects

both the shape of the components and the speed at which points are aggregated. In two

dimensions, edge neighbors and vertex neighbors are defined. Edge neighbors are those

neighbors where there is a common edge between the elements, while vertex neighbors

share only one vertex. In three dimensions there are also face neighbors, which share a

face. In higher dimensions there are additional types of neighborhoods.

2.3.5 [so-Surface Extraction

An iso-surface is a surface where the image values of all the points on the surface are

the same. A variety of techniques exist for generating iso-surfaces. One of the larger

classes is the set of marching methods. Among these are marching cubes [66], marching

triangles [48], and level sets and fast marching methods [96]. The marching cubes and
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Figure 2.4: ISO-surface for value 2.

marching tetrahedron algorithms work by locating where the desired iso-values are located

in a volume. An example of an iso-boundary is given in Figure 2.4. Viola et al. [106] treat

volumetric data sets as texture, and then apply thresholds to filtered versions of the data.

2.4 Representation

There are several broad categories of representation for storing reconstructions: raw volume

reconstructions, lossless compressed reconstructions, lossy compressions and tree encod-

ings. The data may also be stored as a set of iso-surfaces, generalized cylinders, or other

processed representations that store the data as a set of features. Finally the data may be

stored in some transform space, such as a Fourier or wavelet space, a medial axis represen-

tation, or a union of R where R is some primitive such as a sphere or ellipsoid. The nature

of the representation will affect the fidelity of the volume to the original data, how the data

must be accessed for efficient operations, and the types of analysis that can be performed

on the volume.

The discrete space representation of volumetric data is described as simple, yet verbose

and structureless in [101]. A technique for converting the discrete data into a partitioning

tree is presented. The advantage of using a partitioning tree representation is that it allows

for relatively simple axis aligned data removal. That is, rectangular regions aligned with

the data axes are easily removed to reveal previously obscured details.The partitioning
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tree approach is closely related to octree encoding where the volume is encoded using a

hierarchical occupancy description. See [89] for a discussion of octrees.

2.5 Feature Extraction and Analysis

One of the main goals of segmentation is to identify features within the data. Addition-

ally, many features cannot be computed without the data being segmented. Among these

features are volume, surface area, medial axes, fractal dimension, and tortuosity. Wester—

man and Ertl combine segmentation and feature detection into a wavelet based rendering

technique [109]. Rohr provides an overview of feature extraction [86] and landmark based

analysis techniques [85].

2.5.1 Skeletons in the Volume

The Skeleton of an object is a set of points that remain after a modified form of erosion.

When the object is eroded, the removal of points is constrained such that a point is not

removed if its removal would cause the object containing it to be broken into two or more

objects. The process of identifying the skeleton can be further constrained by specifying

the type of neighborhood connectivity required. Closely related to the image skeleton is

the medial axis (MA) [100]. The MA is defined in terms of continuous images where a

set of points is selected that are equidistant from the edges of the containing object. For

a binary object, the MA representation can be used to completely reconstruct the object.

In the discrete representation, the MA is not precisely defined, but can be approximated

reasonably well. Frequently the MA and the skeleton are used interchangeably. While they

are not identical, they are typically close to each other and can be used interchangeably in

practice.

There are several categories of techniques for computing the skeleton or MA of a vol-

ume. The most direct method is constrained binary erosion [87]. While constrained binary
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erosion is conceptually simple, it is expensive since it is an iterative process and becomes

more expensive as the perimeter of the objects increase. Another class of techniques de-

scribed by Russ in [87] is based on thresholding distance maps of the volume being seg-

mented with constraints on connectivity and local maximas. The constraints on connectiv-

ity ensure that the extracted skeleton is connected. Additionally, the local maximas in the

distance map actually correspond to the axis or skeleton, and must be preserved during the

thresholding operation.

A technique that utilizes two different distance maps for computing the skeleton of a

volume is presented by Zhou et al. in [115]. A distance map based on a modified Man-

hattan distance map, called the ssField, is computed with respect to a point likely to be

on the skeleton. A second map, the bsField, that approximates a Euclidean distance map

is computed for the same volume. The ssField is used to generate a set of clusterings of

voxels where each cluster contains one point in the skeleton. The values in bsField that

correspond to a cluster in the ssField are used to select the medial point of each cluster. In

addition to generating the skeleton of the object, the graph representation used for Skeleton

construction encodes the presence of holes within the volume.

Once the skeleton has been extracted from the volume there are several techniques for

deriving further information about the volume for the MA representation.

2.5.2 Extended Gaussian Image

The Gaussian image (G1) is a technique for encoding directional information from a func—

tion in a position independent manner. Conceptually the GI can be thought of as taking the

gradient at some position in a function, and then projecting it onto the surface of a sphere.

An example EGI for a soil aggregate is shown in Figure 2.5. The Extended Gaussian Image

(EGI) is defined and discussed in [51]. The EGI has several interesting properties; among

these are ease of computation and uniqueness for convex objects.

15



 
Figure 2.5: Gaussian Image for a soil aggregate.

2.6 Registration

When change detection is done on volumes, registration between different acquisition cy-

cles must be done. In the case of volumes generated from materials such as soil aggregates,

there are no explicit fiducial points. The reason for the lack of fiducial points is that the

act of placing fiducial points in the samples would act to damage or destroy the samples.

Other materials may not be amenable to fiducial placement because of issues related to

beam hardening, closeness to x—ray absorption edges for either the sample or the fiducial

marker, or the fiducial markers can not remain in place during the treatment of the samples

between acquisition cycles.

Interest operators have been defined for two dimensional data. Typically the interest op-

erators work by identifying high variance regions in the image, then computing a transform

that will align corresponding points in multiple images. See Chapter 9 of [98] for more

details on interest operators and their applicability to image registration. Rohr provides a

discussion of a wide range of feature detectors and interest operators in [86].
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2.7 Visualization

The results from reconstruction, feature extraction, and analysis need to be presented in

a form that is meaningful to a person. This need leads to the problem of visualization.

There are three main parts to the visualization problem —- display technique, efficiency,

and interaction.

A variety of techniques exist for presenting volumetric data to a user. At a high level

there are projective techniques and (quasi-)immersive techniques. Projective techniques are

those that present the user with a two dimensional projection of the data being visualized

[32]. Immersive and quasi-immersive techniques are techniques that present the user with

a three-dimensional display of the data. Immersive displays can range from a desktop

system with a pair of LCD glasses to a fully immersive environment like a CAVE[20].

These display devices, coupled with adequate compute resources, allow the user to “move”

through the displayed data. The motion may be some predetermined path, or may be driven

by interactive navigation [11].

For more detailed information on visualization, refer to [94]
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Chapter 3

Proposed Research

3.1 Introduction

There are three major contributions proposed for this thesis: volume segmentation, inter-

est detection, and view path generation. The overall goal is to develop a set of analysis

techniques appropriate to volumetric data and to implement the techniques as tools that can

then be used for analyzing volumetric data.

3.2 Volume Segmentation

The first subproblem to address is segmenting volumes. One set of samples used in this

thesis are tomographic volumes of soil aggregates. With a soil aggregate there is a large

amount of internal structure. The pores, or air and water channels, within the aggregate are

the structures of interest to soil scientists. These structures need to be extracted from the

aggregate and quantified in some meaningful fashion. The extraction of the pores requires

identifying not only the pore boundary, but also the aggregate boundary and the pore end-

points where the pore breaks the surface of the aggregate. An accurately quantified pore

network can be used to support simulation of transport phenomena.

The primary problem associated with soil aggregate segmentation is the lack of a priori
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structure knowledge. The only thing known about the structure of a soil aggregate prior

to evaluation is that it has some sort of structure. Techniques that are able to segment the

different materials in a soil aggregate are needed as one of the first steps in analysis.

Tools that are developed to evaluate soil structures should also be applicable for ana-

lyzing other types of volumetric data. Some of the classes of data where these techniques

might be applicable are as follows. Some classes of medical data could be evaulated where

there is no a priori structure knowledge, specifically bone and fine tissue structure. Failed

microchips could be analyzed; while a working chip is highly structured, the flaws that lead

to chip failure may not have a characteristic structure. Composite materials are becoming

common in industrial and commerical applications, and are sensitive to flaws in their mi-

crostructure. Catastrophic failures would begin at these microstructure flaws and propagate

through the material, causing an integrity failure.

3.3 Interest Detection

The second subproblem to address is detecting interesting regions within a volume.

One of the major problems associated with volumetric data, or any large data set, is finding

the areas of interest within the data set. In a large volume there may be features of interest

that are not visible from most viewpoints, may be small and therefore easy to miss, or may

simply be hard to identify visually. Interest detectors that can detect salient features within

the volume can assist users in making more efficient use of their time. Techniques to detect

interest should be adaptable to different applications, and flexible enough to allow the use

of a wide range of features.
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3.4 View Path Generation

The third subproblem is generating a view path through the volume that covers the interest-

ing regions within the volume. When viewing a volume, some viewpoints are better than

others. If the appropriate volume cross sections and viewpoints are selected, features of

interest can then be presented to the user. If poor viewpoints are selected, then important

features may be missed. Since rendering a large volume takes a significant amount of time,

help in selecting optimal, or nearly optimal, viewpoints will help to minimize the amount

of time Spent looking for good viewpoints.

In a large volume it is likely that there will be more than one viewpoint that satisfies

some optimality or interest criteria. Ideally the user will be able to select which interest and

optimality criteria are going to be used. The software will then extract a set of viewpoints

that meet the user’s requirements. Once the viewpoints have been selected, they need to

be presented to the user. The simple approach is to simply show each view to the user.

Simply stepping through viewpoints does not necessarily show any inter-viewpoint infor-

mation and in an immersive display system will likely disorient the user. To alleviate these

problems, a good viewing path between different viewpoints can be constructed. The view-

ing path would have to satisfy smoothness, continuity, and length constraints in order to be

considered as a good path. The advantage of a viewing path that satisfies some smoothness

constraints is that the constraints can be constructed so that a user in an immersive system

does not become disoriented or nauseated.
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Chapter 4

Segmentation

In this chapter two segmentation techniques are explored. The first technique is based on

the Extended Gaussian Image (EGI) [51], while the second is based on single-link clus-

tering. A set of criteria for segmenting volumetric data sets is developed. The EGI based

algorithm is developed, evaluated, and found to not satisfy the criteria. The single-link clus-

tering algorithm is then developed, evaluated, and found to satisfy the algorithm criteria.

The single-link algorithm is then used to segment a collection of test volumes.

4.1 Problem Description

Segmentation is the problem of separating one or more objects in an image from the back-

ground. The goal of developing techniques to facilitate volumetric data analysis leads to

the following set of criteria for the segmentation algorithm:

1. Simplicity of computation.

2. Robust in the presence of noise.

3. Allows for n-ary segmentation, in addition to binary segmentation.
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4. Generates intermediate state information that enables a scientist to drive the segmen-

tation towards a desired goal.

These criteria are discussed in the following sections.

4.1.1 Simplicity of computation

A typical reconstructed volume acquired at the APS is on the order of 512 megabytes in

size. Future data sets may grow to be as large as 4 gigabytes for a full resolution volume.

With these data sizes in mind, simplicity of computation encompasses two factors. The

first factor is that any algorithm should be computationally affordable. An algorithm that

requires more than polynomial effort is unacceptable. The second factor is that any algo-

rithm should minimize the number of iterations through the data. An additional desirable,

but not necessary, property of an algorithm is for it to be parallizable.

4.1.2 Robustness

The volumes being segmented are noisy due to both the original data collection environ-

ment and also the reconstruction process itself. During the original image acquisition sev-

eral noise processes are present. These processes include scattered radiation from the x-ray

source, electrical noise in the sensor, defects in the sensor, variations in the scintillator

crystal, beam hardening and crystalline and positioning errors in the sample holder. During

the reconstruction process, noise can also be introduced through missing samples in the

data set, imprecise floating point arithmetic, poor filter selection, inability to correct for

imaging errors, centering correction error and inappropriate scaling. Given the wide range

of possible noise sources, it is necessary to construct algorithms that behave well in the

presence of noise, and in particular should take globally derived information into account

rather than strictly local information.
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4.1.3 N-ary segmentation

While simply extracting object(s) from a volume via binary segmentation is useful, it is

desirable to be able to perform some sort of hierarchical segmentation. Taking into account

the size of data mentioned previously, being able to perform n-ary segmentation, where

n 2 2 for multiple values of n, from a single segmentation cycle allows us to maximize the

amount of information we can generate. In the soil samples used to develop and validate

these techniques, more than one type of material is present. A segmentation algorithm

that provides only binary segmentation does not allow us to readily extract the different

materials from the volume, an example of this is shown in Figre 4.11.

4.1.4 Intermediate state information

The segmentation algorithm should allow multiple segmentation cycles from a single initial

processing stage. This ability would allow a scientist to explicitly identify the classes of

materials detected during the initial segmentation stage as either object or background as

well as perform segmentation analogous to band-pass filtering where background features

may be discontinuous. The practical application is not only excluding the medium the

sample is in, but also excluding materials in the volume that may not currently be of interest.

4.2 Segmentation Techniques

4.2.1 Extended Gaussian Image/Polyhedral Histogram

The Extended Gaussian Image (EGI) is one where the observed gradients of a signal or

function are computed, and then mapped to quantized spherical coordinates [51, 63, 67].

A straightforward extension is projecting quantized gradients onto the facets a polyhedron,

thus producing a type of histogram using the facet indices as bin indices. The resulting

map can then be used to detect symmetries (see [102]) by detecting ring-like protrusions
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for rotational symmetries or paired protrusions at the antipodes of the polyhedra. Sun

[102] uses a tessellated icosahedron with the triangular facets merged to produce a set of

hexagons and pentagons for the surface mesh. This approach helps to reduce the amount of

computation when generating the EGI at the cost of having projection regions with different

areas. Rather than using the EGI to detect symmetries, we are using it to detect the presence

of features within a volume.

There are three main motivations for using the EGI or polyhedral histogram (PolyHist).

The first is a compact encoding of approximate gradient information. PolyHist utilizes

two scalar fields. The first field is a vector magnitude field, denoted as VMF, computed

from gradients in the input volume. The second field is the facet encoding field, denoted by

FEF. The values in the FEF correspond to the facet indices of the polyhedra being used to

generate the PolyHist. The FEF provides an approximation for the gradient vector at each

sample point, as well smoothing out much of the noise inherent in gradient approximations

of sampled functions.

The second motivating factor is the ability of the EGI to be used in a multi-resolution

mode. With each subdivision of a triangular facet, the resolution of the histogram is in-

creased by a factor of four. With careful bookkeeping, lower resolution EGIS can be com-

puted from higher resolution EGIS. Conversely, the lower resolution tessellations can be

used to speed up the initial generation of the EGI by using a hierarchical search of the

facets. Additionally, some sort of fractal analysis of the gradient direction may be possible

by taking advantage of the different tessellation levels.

The third motivating factor is that EGIS are simple to compute. The value in the FEF

is set to the index of the facet whose normal would produce the largest value when dotted

with the gradient vector. After the FEF has been generated, the EGI of any sub-volume

can be computed by examining the FEF and the VMF. The dual-field representation

also allows for thresholds based on vector magnitude, integer histograms, and continuous

histograms, all from the same representation. Additionally, the major cost of computing
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the EGI is paid once, while several different analyses can then be performed.

Example EGIS

EGIS encode information about the direction of gradients and their magnitude. In general

EGIS are computed for surfaces, but we have instead computed them for any gradient above

some threshold within a volume. The first EGI example is for a cube phantom, shown in

Figure 4.1. Note the dominant gradient energies are aligned with the coordinate axes. The

 

Figure 4.1: EGI for cube phantom. All gradient energy in the EGI is approximately aligned

to the coordinate axes.

second example EGI is from a cylinder phantom, Shown in Figure 4.2. The phantom is

constructed in such a way that the cylinder passes through the volume so there are no ends

in the volume. The radial symmetry of the cylinder produces an EGI where all the energy

is on a narrow band that circles the polyhedron. The third example EGI is from a sphere

phantom, shown in Figure 4.3. The energy for this phantom is distributed approximately

uniformly. The variation in the energy distribution is due to the use of a gradient estimator,

and the fact that a significant number of the phantom voxels are partially occupied, con-

tributing to gradient estimation error. The fourth example EGI is from a soil aggregate, and

is shown in Figure 4.4. The aggregate is asymmetric, and this asymmetry is reflected in the

asymmetrical distribution of energy in the EGI.
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Figure 4.2: EGI for cylinder phantom.

 

Figure 4.3: EGI for sphere phantom.

 

Figure 4.4: EGI for soil aggregate.
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PolyHist Field Generation

As noted previously, two fields, VMF and FEF, need to be generated. The gradient is

estimated using the Zucker—Hummel gradient estimator given in [5]. Equation 4.1 defines

the neighborhood where the estimator will be applied. Equation 4.2 Shows the convolution

that computes the partial derivative for :2: of the neighborhood.

F(;r, y, z) = 3 x 3 x 3 Neighborhood centered at (110,3), 2) (4.1)

P ' 23 a a e e a “
8F( ) 3 2 3 3 2 3

11"? ryiz _ ‘ _ \/— fl 2

———81. — F(1,y,z) ® 5? 1 72 [0] 7 1 g (4.2)

£3 1.5 L5 fl Q Q
L _ 3 2 3 . L 3 2 3 j _      

The estimators for 9% and {if—(5%) are produced by rotating the convolution ma-

trix in Equation 4.2 appropriately. Once the gradient has been estimated, the magnitude is

computed and used to normalize the gradient vector. The magnitude is then stored in the

VMF, while the normalized gradient vector is intersected with the polyhedron being used

for the EGI. The resulting facet index is stored in the FEF. Figure 4.5(a) shows a sam-

ple aggregate slice whose FEF and VMF are shown in Figure 4.5(b) and Figure 4.5(c),

respectively. The EGI for the sample aggregate is shown in Figure 4.4.

PolyHist Generation

After the fields have been produced, the histograms must be generated. The simplest his-

togram is one where each index value in the FEF is counted. This procedure will give a

histogram that indicates if there is any dominant direction in the volume being considered.
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Figure 4.5: Soil Aggregate

(c) VMF ((1) Components

 

(a) Input Slice (b) FEF

 



Component Extraction

Once the encoding fields have been generated, it is possible to extract boundaries from the

volume. By taking advantage of the gradient magnitudes in the VMF and connectivity

constraints provided by the FEF, a variant of region growing can be performed on the

encoding fields.

The extraction algorithm operates by searching the encoding fields until an unlabeled

voxel is found with a magnitude exceeding some user specified threshold. Using the unla-

beled voxel as a seed point, a region is grown that tracks the boundary. In order to keep the

region from straying from the boundary, the region is allowed to grow only by including

neighboring voxels whose FEF value is adjacent to the FEF value for the seed voxel. This

technique allows the extracted surface to wrap around objects, but prevents the merging of

voxels whose gradients point in radically different directions. Figure 4.5(d) shows a cross

section of the soil aggregate with the extracted components.

Extracted Interfaces

The following sets of figures are surfaces extracted from a soil sample volume using the

EGI based technique described in this section. Figure 4.6(a) and Figure 4.7(a) Show the

largest component extracted from the volume. This component corresponds to the outer

surface of the aggregate and is similar to the view from an optical microscope. Figure 4.8(a)

and Figure 4.9(a) show the internal pores that were detected. With the pores separated from

the aggregate, they are now available for use in generating population statistics related to

pore size and distribution. The (b) subfigure for Figures 4.6 — 4.9 are anaglyphs that are

used for 3D viewing. An anaglyph is a stereo-pair rendered by combining red and blue

images. A pair of glasses with red and blue filters are used to provide a separate to each

eye.
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(a) Outer surface of aggregate

 
(b) Anaglyph of outer surface of aggregate

Figure 4.6: View of external boundary extracted from soil sample volume.
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(a) Outer surface of aggregate

 
(b) Anaglyph of outer surface of aggregate

Figure 4.7: Alternate view of external boundary extracted from soil sample volume.
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(a) Internal pore boundaries

 
(b) Anaglyph of internal pore boundaries

Figure 4.8: View of internal pores extracted from soil sample volume.
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(a) Alternate view of internal pore boundaries

 
(b) Anaglyph of internal pore boundaries

Figure 4.9: Alternate view of internal pores extracted from soil sample volume.
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Suitability of PolyHist

The PolyHist approach works reasonably well in extracting strong interfaces from a vol-

ume. However, while interface extraction is valuable, the algorithm suffers from being ex-

tremely expensive. During the construction of the encoding fields, two more full-resolution

volumes are generated to encode the magnitude and directions of the EGI. After these fields

are computed, the region-growing algorithm traverses the data in a depth-first manner. This

traversal technique results in potentially inefficient memory accesses.

In terms of satisfying the criteria established in Section 4.1, this algorithm fails to meet

criteria 2 and 3. The robustness criteria is not met since the computation of the EGI is

susceptible to noise, and the n-ary segmentation criteria is not met since interfaces are

detected rather than regions.

4.2.2 Thresholds

In order to segment an aggregate from the surrounding medium, a threshold is used. A

global threshold is used to clip the entire aggregate from the volume. A histogram of

the intensities of the voxels is generated from the input volume. Treating the histogram

as a continuous function, a first derivative is computed and used to identify maxima and

minima in the histogram. The two largest local maxima are identified. The threshold is then

set to the intensity with the minima point between the maxima. If the actual data is well-

approximated by a bi-modal Gaussian distribution, then the threshold will be the smallest

minima between the maxima. Figure 4.10 shows an example of a placing the threshold

in a histogram of a Kenyan soil aggregate. The first derivative is shown, along with the

locations of the two assumed distribution means, and the minima between them.
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Figure 4.10: Histogram of Kenyan aggregate with minima and maxima marked.

Extract Aggregate From Background

The aggregate is extracted from the background in order to define a boundary for surface

breaking pores. The boundary of the aggregate is determined using a convex hull on a

per slice basis. Areas outside of the hull are indicated using a sentinel value. The initial

separation of the soil aggregate from the background is done by thresholding a median-

filtered version of the slice. This threshold produces a binary image of the aggregate and

some noise in the background around the aggregate. Erosion and dilation operations are

then applied to the binary image to remove the noise in the background region. A Roberts

edge detector is then applied to the cleaned image. Strong edge points identified by the

edge detector are then used to construct a convex hull. Once the hull has been constructed,

all points outside of the hull are labeled with a sentinel value to indicate that they are not

part of the soil aggregate.
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(a) Input (b) Segmented (c) Extracted Pores

Figure 4.1 1: Aggregate Data

An input image is shown in Figure 4.11a, and the segmented image is shown in Fig-

ure 4.1 lb. Note that there are background regions around the edges of the aggregate in

the segmented image. These spaces may correspond to either surface breaking pores or

concavities in the surface of the soil aggregate. Once all the slices are processed, they are

recombined to generate the segmented soil aggregate volume, which is shown in Figure

4.11c.

Suitability of Simple Threshold

A simple threshold is not suitable since it fails to meet criteria 3 in Section 4.1. While a

simple threshold may work to binarize the data, it does not readily allow for n-ary segmen-

tation. The assumption that the data falls into two classes also causes this algorithm to fail

the n-ary segmentation criteria.

4.3 Proposed Modified Single-Link Algorithm

We propose a segmentation algorithm that develops a set of Gaussian distributions describ-

ing the volume using a non-spatial clustering algorithm.
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4.3.1 Description of Algorithm

The segmentation algorithm is essentially a single-link clustering algorithm, similar to al-

gorithms discussed in [54], coupled with a Bayesian classifier. This algorithm operates by

extracting a set of non-spatially—related clusters from the input volume. The features being

clustered are the mean and variance of all non-overlapping M x M x M neighborhoods.

The variance and mean, 036,9,“ pneigh, are computed for each neighborhood. A neighbor-

hood is merged with an existing cluster if it satisfies the condition

l/t-nmgh — itciusterl < a (4.3)

where a is a similarity parameter set by the user. The merging process involves updating

11mm, and 031%,“. for the cluster that satisfies the merge criteria. If the condition is not

satisfied, a new cluster is created using 0,3th and Mneigh- This process continues until all

voxels have been clustered. Additionally, a forcing step may be performed. Forcing merges

clusters by iteratively taking the two closest clusters, by aciuster, from the set of all clusters

and merging them until a user-indicated target number of clusters has been reached. Details

are given in Algorithm 1.

Once the data has been clustered, the original volume is classified using a Bayesian

classifier, described in [27]. Currently the cluster with the lowest mean is set as the back-

ground; all other clusters are set as foreground. The user of the software can iteratively

segment subvolumes to determine the appropriate assignment of clusters as foreground or

background. After the cluster classes have been assigned each voxel in the original volume

is classified.

Algorithm Validation

Since the techniques developed in later chapters depend on good segmentation, the pro-

posed segmentation algorithm was validated using both synthetic data and real data.

37



Algorithm 1: Clustering Algorithm

Input: The volume Volume to be clustered, distance threshold 0, cluster-

ing window width N, forcing flag ForceFlag, desired number of clusters

NumClusts

Output: Ordered table containing clusters

CLUSTER(Volume, a, N, ForceFlag, N'umClusts)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

rows = ROWS(Volume)

0013 = COLS(Volume)

slices = SLICES(V01UTII€)

ClustTab = 0

foreach r E {0, . . . ,rowsKr — LN/2j mod N) = 0}

foreach c E {0, . . . ,cols|(c - [N/2j mod N) = 0}

foreach s E {0, . . . ,slz’ces|(s — LN/2j mod N) = 0}

CandClust = GENCANDCLUST(Volume, r, c, S, N)

ClustRef =

FINDCLOSEST(ClustTab, CandClust, a)

if ClustRef 75 NULL

ClustRef = UPDATECLUST(ClustRef, CandClust)

else

ClustTab = ClustTab U CandClust

repeat

anymerged = false

foreach CurrClust E ClustTab

repeat

merged = false

foreach TestClust E ClustTab

if CurrC’lust 75 TestClust

if W1TH1NTHRESH(CurrClust, TestClust, a)

anymerged = true

merged = true

CurrClust =

UPDATECLUST(CurrClust, TestCl-ust)

ClustTab = ClustTab \ TestClust

until merged == false

until anymerged == false

if (ForceFlag == true ) and (lClustTabl > NumClusts)

while IClustTabl > NumClusts

ClustPairs = {{a, b}|Va, b E ClustTab and a 7g b}

(ClustA, ClustB) = CLOSESTPA1R(ClustPai'/‘s)

ClustA = UPDATECLUST(ClustA, ClustB)

ClustTab = ClustTab \ ClustB

ClustTab = SORTBYCLUSTMEAN(ClustTab)

return ClustTab
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Simulated Data

The segmentation algorithm was initially validated using a suite of synthetic phantoms.

Phantoms were used in order to provide absolute ground truth. The basic validation pro-

cedure was to generate a synthetic volume, and add Gaussian noise to the volume in in-

creasing levels. After the synthetic volumes were prepared, the clustering algorithm was

applied, followed by the segmentation algorithm. Confusion matrices were then generated

for the resulting labeled and segmented volumes.

Each phantom simulated a mass of homogeneous rods. The generation algorithm drew

a random number of randomly oriented straight lines through the volume. Once a set of

lines were drawn, a Euclidean distance map was used to compute the distance of each

voxel from the lines through the volume. The distance map was then thresholded such that

all voxels with a distance greater than an arbitrary threshold were set to zero, while the

remaining voxels were set to one. A sample volume is shown in Figure 4.12.

 
Figure 4.12: Homogenous rod phantom, rendering of volume iso-surface.
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Phantom Testing Methodology

The phantom was used to provide insight into the performance of the segmentation algo-

rithm in the presence of noise. To exercise the segmentation algorithm, the synthetic data

set along with sets of target Gaussian distributions was used to generate noisy data sets to

segment. After the noised phantoms were generated, the clustering algorithm was applied

for a range of a values. The noised volumes were then labeled and confusion matrices were

generated.

Performance on Phantom

The results from the experimental runs described above for the rod phantom are given in

Tables 4.1 — 4.8. The timing information given in Tables 4.1, 4.3, 4.5, and 4.7 is the time

in seconds per voxel in the volume. The values in the Tables 4.2, 4.4, 4.6, and 4.8 are the

number of clusters detected in the volumes. The timing information and the cluster counts

are the average of 20 repetitions for each set of parameters. The same set of seeds was used

for noise generation for each set of parameters.

In this set of experiments, there were three parameters. The first parameter was the a

parameter, while the second and third parameters were the Standard deviations, 01 and 02

respectively, for the noise generators. Holding 01 and 02 constant, we observe that the time

per voxel decreases as the 01 parameter increases. For the same 01 and 02 we also see that

the number of clusters detected decreases. This behavior is consistent with the clustering

algorithm allowing larger inter-cluster distances for merging clusters as the a parameter

increases. The decrease in execution time is a consequence of a smaller average cluster set,

reducing the amount of time needed to determine the disposition of each new neighborhood

as the volume is processed.

The effect of changing the a parameter can be seen in Figures 4.13 — 4.16. The

original data had two clusters with the distributions in = 0, 01 = 0.2 and p2 = 1, 02 = 0.2

respectively. The corresponding confusion matrices are given in Tables 4.9 — 4.12. Shown
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Table 4.1: Average time to detect clusters with a = 0.25 over 20 trials. Time is given in

seconds per voxel.

 

01 02

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 10

 

0.1 0.147 0.145 0.142 0.141 0.139 0.133 0.132 0.129 0.127 0.124
 

0.2 0.134 0.145 0.143 0.133 0.136 0.135 0.131 0.125 0.127 0.124

 

0.3 0.142 0.140 0.139 0.135 0.132 0.133 0.130 0.127 0.126 0.123
 

0.4 0.138 0.137 0.135 0.132 0.130 0.127 0.129 0.126 0.124 0.122

 

0.5 0.137 0.135 0.133 0.130 0.127 0.127 0.124 0.124 0.124 0.119
 

0.6 0.131 0.131 0.128 0.128 0.124 0.124 0.124 0.122 0.121 0.121
 

0.7 0.131 0.129 0.128 0.128 0.124 0.124 0.124 0.121 0.120 0.119
 

0.8 0.125 0.126 0.127 0.123 0.123 0.121 0.121 0.122 0.120 0.119
 

0.9 0.120 0.123 0.123 0.121 0.120 0.119 0.119 0.120 0.118 0.117

  1.0   0.120  0.121  0.121  0.120  0.119  0.119  0.119  0.116  0.118  0.118
 

 

Table 4.2: Average number of clusters detected with a = 0.25 over 20 trials.

 

01 02

0.6

7.5

7.5

7.3

7.0

6.6

6.5

6.3

6.2

5.8

5.8

 

0.8

7.2

6.8

6.5

6.5

6.5

6.3

6.2

5.9

5.5

5.7

0.9

6.7

6.5

6.6

6.6

6.3

6.0

6.0

5.8

5.5

5.5

1.0

6.7

6.3

6.3

6.4

6.1

5.8

5.7

5.7

5.5

5.5

0.7

7.0

7.1

6.8

6.7

6.5

6.5

6.3

6.0

5.8

5.7

0.4

8.2

8.0

7.8

7.7

7.1

6.8

6.6

6.5

6.2

6.0

0.5

8.0

7.8

7.6

7.3

7.0

6.7

6.7

6.3

6.2

5.9

0.1

9.4

8.8

8.3

8.2

7.6

7.2

7.2

6.2

5.8

5.8

0.2

8.7

8.6

8.2

8.0

7.5

7.3

6.9

6.5

6.5

6.2

0.3

8.6

8.2

8.0

7.8

7.4

7.0

6.7

6.5

6.3

6.1

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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Table 4.3: Average time to detect clusters with a = 0.50 over 20 trials. Time is given in

seconds per voxel.

 

01 02
 

0.1 02 03 04 05 06 07 08 09 10
 

0.1 0.099 0.102 0.103 0.102 0.101 0.099 0.098 0.096 0.096 0.095
 

0.2 0.094 0.105 0.104 0.095 0.103 0.101 0.099 0.099 0.099 0.095
 

0.3 0.099 0.105 0.102 0.103 0.101 0.100 0.101 0.098 0.097 0.094
 

0.4 0.099 0.104 0.103 0.101 0.100 0.099 0.097 0.095 0.095 0.096
 

0.5 0.099 0.101 0.100 0.100 0.098 0.099 0.097 0.095 0.097 0.096
 

0.6 0.098 0.102 0.100 0.099 0.097 0.098 0.096 0.095 0.096 0.094
 

0.7 0.096 0.098 0.095 0.098 0.096 0.096 0.096 0.096 0.098 0.094
 

0.8 0.091 0.098 0.097 0.097 0.098 0.097 0.095 0.093 0.095 0.093
 

0.9 0.090 0.092 0.094 0.095 0.097 0.096 0.094 0.095 0.097 0.094
 

1.0 0.089 0.091 0.094 0.094 0.097 0.095 0.095 0.095 0.095 0.094              
 

Table 4.4: Average number of clusters detected with a = 0.50 over 20 trials.

 

0'1
02

0.1 0.2 0.3 0.4 0.5 0.6

3.2 4.0 4.0 4.1 4.0 3.6

3.2 4.0 4.2 4.1 4.0 3.6

3.2 4.0 4.0 4.0 3.9 3.5

3.2 4.0 4.0 4.0 3.5 3.5

3.3 4.0 4.0 3.7 3.6 3.4

3.6 3.9 3.7 3.5 3.5 3.5

2.8 3.3 3.3 3.4 3.4 3.3

2.4 3.2 3.3 3.3 3.2 3.2

2.3 2.9 3.1 3.1 3.1 3.1

2.2 2.5 3.0 3.0 3.0 3.0

 

1.0

3.0

3.1

3.1

3.2

3.1

3.0

3.0

3.0

3.0

3.0

0.7

3.5

3.5

3.5

3.4

3.2

3.3

3.3

3.0

3.0

3.0

0.8

3.2

3.4

3.4

3.4

3.2

3.3

3.1

3.0

3.0

3.0

0.9

3.1

3.2

3.3

3.2

3.2

3.1

3.0

3.0

3.0

3.0

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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Table 4.5: Average time to detect clusters with a = 0.75 over 20 trials. Time is given in

seconds per voxel.

 

0'1 02
 

0.1 0.2 0.3 0.4 05 0.6 07 08 09 10
 

0.1 0.090 0.090 0.091 0.092 0.090 0.089 0.091 0.088 0.090 0.088
 

0.2 0.090 0.091 0.092 0.083 0.092 0.091 0.085 0.090 0.090 0.080
 

0.3 0.090 0.089 0.091 0.091 0.091 0.088 0.089 0.089 0.087 0.088
 

0.4 0.089 0.088 0.088 0.089 0.091 0.090 0.088 0.090 0.088 0.086
 

0.5 0.089 0.090 0.089 0.090 0.090 0.089 0.089 0.088 0.090 0.086
 

0.6 0.087 0.088 0.089 0.090 0.090 0.089 0.089 0.089 0.089 0.088
 

0.7 0.088 0.086 0.090 0.088 0.090 0.088 0.088 0.088 0.090 0.086
 

0.8 0.089 0.089 0.088 0.088 0.089 0.089 0.087 0.089 0.088 0.089
 

0.9 0.089 0.088 0.089 0.089 0.088 0.089 0.087 0.089 0.088 0.087
  1.0   0.087  0.088  0.086  0.089  0.089  0.088  0.087  0.087  0.088  0.089
 

 

Table 4.6: Average number of clusters detected with a = 0.75 over 20 trials.

 

0'1
02

0.1 0.2 0.3 0.4 0.5 0.6

2.0 2.2 2.5 2.6 2.5 2.5

2.0 2.1 2.5 2.6 2.5 2.5

2.0 2.1 2.4 2.5 2.5 2.4

2.0 2.1 2.2 2.5 2.4 2.3

2.0 2.0 2.1 2.3 2.3 2.3

2.0 2.0 2.0 2.2 2.3 2.3

2.0 2.0 2.0 2.1 2.2 2.2

2.0 2.0 2.0 2.0 2.1 2.1

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

 

0.7

2.3

2.4

2.4

2.3

2.3

2.2

2.2

2.1

2.1

2.0

0.8

2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.1

2.0

2.0

0.9

2.1

2.1

2.1

2.1

2.1

2.1

2.1

2.1

2.0

2.0

1.0

2.1

2.1

2.1

2.1

2.1

2.1

2.1

2.0

2.0

2.0

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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Table 4.7: Average time to detect clusters with a = 1.0 over 20 trials.

seconds per voxel.

Time is given in

 

01 02
 

0.1 02 03 0.4 0.5 06 07 08 09 10
 

0.1 0.087 0.086 0.088 0.085 0.087 0.087 0.088 0.086 0.089 0.087
 

0.2 0.091 0.091 0.087 0.088 0.090 0.089 0.081 0.088 0.090 0.082
 

0.3 0.089 0.088 0.088 0.088 0.088 0.088 0.086 0.086 0.086 0.087
 

0.4 0.088 0.088 0.088 0.089 0.088 0.089 0.088 0.087 0.086 0.086
 

0.5 0.087 0.089 0.088 0.086 0.087 0.087 0.088 0.089 0.086 0.085
 

0.6 0.088 0.088 0.088 0.088 0.089 0.087 0.087 0.088 0.089 0.087
 

0.7 0.088 0.088 0.088 0.087 0.087 0.088 0.087 0.087 0.085 0.087
 

0.8 0.088 0.088 0.088 0.086 0.088 0.086 0.087 0.088 0.088 0.088
 

0.9 0.081 0.083 0.086 0.087 0.090 0.086 0.086 0.084 0.088 0.089
  1.0   0.077  0.080  0.081  0.083  0.084  0.088  0.086  0.085  0.088  0.087
 

 

Table 4.8: Average number of clusters detected with a = 1.0 over 20 trials.

 

0'1 02

0.1 0.2 0.3 0.4 0.5 0.6

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0

1.0 1.1 1.6 2.0 2.0 2.0

1.0 1.0 1.1 1.4 1.9 1.9

 

0.7

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.8

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.9

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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Figure 4.13: Detected clusters for wire phantom with 111 = 0, 1,12 = 1, 01 = 02 = 0.2 and

a = 0.25. Cluster 0: (a : —0.0335,0 = 1.01), Cluster 1: (11 = 0.378, 0 = 1.04), Cluster

2: (,u : 0.877,0 = 1.03), Cluster 3: (,u 2 1.220 = 0.978), Cluster 4: (a = 159,0 =

0.929).
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Figure 4.14: Detected clusters for wire phantom with ,ul 2 0,112 = 1, 01 = 02 = 0.2 and

a = 0.5. Cluster 0: (,u = 0.04980 2 1.03), Cluster 1: (,u = 0.926, 0 = 1.03), Cluster 2:

(,u =1.51,0 21.01).
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Figure 4.15: Detected clusters for wire phantom with 11.1 = 0,112 = 1, 01 = 02 = 0.2 and

a = 0.75. Cluster 0: (11 = 0.132, 0 = 1.06), Cluster 1: (11. = 1.09, 0 = 0.980).
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Figure 4.16: Detected clusters for wire phantom with 1.1.1 2 0,112 = 1, 01 = 02 = 0.2 and

a = 1.0. Cluster 0: (a = 0.224,0 = 1.09), Cluster 1: (it = 1.37, 0 = 0.969).
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Table 4.9: Confusion matrix for wire5 phantom using 01 = 02 = 0.2 and a = 0.25.
 

 

 

0 1 2 3 4

0 170887 0 12219 4255 17433

1 28014 0 6381 2670 20285        
 

Table 4.10: Confusion matrix for wire5 phantom using 01 = 02 = 0.2 and a = 0.50.
 

 

 

0 l 2

0 181207 11037 12550

1 33293 7467 16590     
 

in Tables 4.13 — 4.16 are the classification error rates for the wire phantom. For volumes

where more clusters were detected than were actually present in the ground truth, a detected

cluster is identified as corresponding to the true class that had a majority of the detected

voxels. For example, in Table 4.9 detected clusters (0,2,3) are assigned to true class 0,

while detected cluster (4) is assigned to to true class 1.

Examining the misclassification rates for the wire phantom indicates average misclas-

sification rates up to approximately 22%. The highest error rates occurred when 01 2 0.9.

The error rate is attributable to several factors. The first factor is in the test cases where

there is significant overlap between the two classes. When 01 = 1.0, its standard deviation

is the same as the distance to the second class. The error rate also tends to increase as 02

approaches 1.0. This leads to the second factor: the classifier is biased towards classes with

lower means, and classes with more members.

On synthetic data, the segmentation algorithm performs well, provided the data are rea-

sonably separated. In the case of the synthetic data, the two classes fell into 81.9% back-

ground, and 18.1% foreground. In a data set where the classes are more evenly distributed,

the error rate should decrease.

Table 4.1 1: Confusion matrix for wire5 phantom using 01 = 02 = 0.2 and a = 0.75.
 

 

 

   

0 1

0 1 89949 14845

1 38945 1 8405   
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Table 4.12: Confusion matrix for wire5 phantom using 01 = 02 = 0.2 and a = 1.0.

0 1

0 195770 9024

1 43812 13538

 

 

 

    
 

Table 4.13: Misclassification rates for a = 0.25 over 20 trials. The percentage of the voxels

that were misclassified is given.

 

01 02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0 0.1 0.4 1.1 2.1 3.1 3.9 3.4 3.3 3.4

0.2 0.1 0.5 1.6 3.0 4.4 5.3 5.8 6.1 6.5 7.0

0.3 1.0 2.4 3.9 5.4 6.4 7.3 7.9 8.5 8.8 8.8

0.4 2.9 5.3 7.4 8.9 9.4 10.3 10.9 10.8 10.8 11.0

0.5 5.6 8.6 10.6 11.7 12.2 13.2 13.8 13.6 12.9 12.8

0.6 6.8 10.7 13.0 14.1 14.7 15.2 15.3 15.3 15.0 14.4

0.7 7.7 12.5 15.4 16.7 17.1 17.1 16.9 16.7 16.4 16.1

0.8 9.4 14.5 17.6 19.1 19.3 19.0 18.6 18.2 17.9 17.5

0.9 10.6 16.1 19.4 20.8 21.2 20.9 20.4 19.9 19.4 19.0

1.0 11.1 15.9 19.9 21.6 21.8 21.9 21.9 21.5 21.0 20.5

 

 

 

 

 

 

 

 

 

 

              
 

Table 4.14: Misclassification rates for a = 0.50 over 20 trials. The percentage of the voxels

that were misclassified is given.

 

0'1 02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0 0.1 0.3 1.1 2.1 3.1 4.0 4.8 5.6 6.3

0.2 0.1 0.8 2.1 3.0 4.0 4.8 5.5 6.0 6.5 7.1

0.3 1.1 2.1 3.8 5.3 6.8 7.5 8.0 8.3 8.5 8.7

0.4 3.2 4.9 6.9 8.2 9.6 10.4 10.7 10.8 10.8 10.8

0.5 5.5 8.1 10.1 11.2 12.1 13.1 13.3 13.2 13.1 12.9

0.6 6.8 10.5 12.8 14.1 14.6 14.9 15.2 15.3 15.2 14.9

0.7 13.6 12.6 15.2 16.6 16.9 16.9 16.8 16.6 16.4 16.3

0.8 18.0 14.3 16.9 18.6 19.1 19.0 18.6 18.2 17.8 17.5

0.9 19.8 17.2 18.2 20.2 21.1 21.0 20.5 19.9 19.4 18.9

1.0 20.1 19.5 19.3 21.5 21.9 21.9 21.9 21.7 21.1 20.5
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Table 4.15: Misclassification rates for o = 0.75 over 20 trials. The percentage of the voxels

that were misclassified is given.

 

01 02

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 

0.1 0.0 0.0 0.6 1.8 3.2 4.6 5.9 7.1 8.5 99

 

0.2 0.8 0.8 1.5 2.8 4.1 5.4 6.5 7.7 8.9 10.2

 

0.3 3.3 3.3 4.2 5.3 6.4 7.3 80 88 97 10.7

 

0.4 6.5 6.5 7.4 8.5 9.3 9.9 10.2 10.6 11.0 11.6

 

0.5 9.8 9.8 10.8 11.8 12.4 12.6 12.7 12.7 12.7 12.9

 

0.6 12.9 13.0 14.0 14.9 15.3 15.3 15.1 14.9 14.6 14.4

 

0.7 15.3 15.6 16.8 17.7 17.9 17.8 17.4 17.0 16.4 16.0

 

0.8 16.0 16.9 18.6 20.0 20.3 20.1 19.5 18.9 18.2 17.6

 

0.9 15.3 16.8 19.3 21.3 21.9 21.8 21.5 20.7 19.9 19.1

  1.0   13.8  16.1  19.3  21.8  21.9  21.9   21.9 21.9  21.3   20.5

 

Table 4.16: Misclassification rates for a = 1.0 over 20 trials. The percentage of the voxels

that were misclassified is given.

 

 

 

 

 

 

 

 

 

 

 

 

     

01 02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0 0.1 1.0 2.6 4.4 6.0 7.8 9.6 l 1.2 12.3

0.2 0.4 0.5 1.7 3.3 5.0 6.5 8.1 9.9 11.4 12.5

0.3 2.3 2.6 3.8 5.2 6.5 7.7 8.9 10.4 11.8 12.8

0.4 5.3 5.6 6.9 8.2 9.1 9.8 10.4 11.3 12.3 13.2

0.5 8.6 9.0 10.3 11.4 12.0 12.3 12.5 12.8 13.3 13.9

0.6 11.1 11.9 13.4 14.5 14.9 14.9 14.7 14.6 14.7 14.9

0.7 11.4 13.5 15.8 17.2 17.5 17.3 16.9 16.5 16.3 16.1

0.8 9.6 13.8 17.1 18.9 19.5 19.2 18.7 18.2 17.8 17.5

0.9 21.9 21.6 19.6 20.0 20.8 20.9 20.4 19.8 19.3 18.8

1.0 21.9 21.9 21.7 21.8 21.9 21.9 21.9 21.3 20.6 20.1       
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4.3.2 Real Data

Synthetic data is useful for validating the algorithm’s performance, but it is necessary to

evaluate the performance on real data. To this end, 10 data sets have been prepared, as

described in Table 4.17. Since the ground truth for the real data sets is not known, eval-

uation of the segmentation is done in two steps. The first step is to apply the clustering

algorithm to each data set for four a values, and compare the summed distributions to the

real histograms of density/absorption for each data set. The second step will be to apply

the Bayes classifier to the data and examine the clustered and segmented volumes.

Table 4.17: Real data sets used for testing the segmentation algorithm.
 

 

 

 

 

 

 

 

 

 

 

I Data Set Rows Columns I Slices | Description I

5atah1_a 658 658 31 1 Podzol soil aggregate.

5atah2-a 658 658 290 Podzol soil aggregate.

5atah3_a 658 658 250 Podzol soil aggregate.

5ath] _a 658 658 386 Podzol soil aggregate.

5ath2_a 658 658 403 Podzol soil aggregate.

5ath4_a 658 658 258 Soil aggregate.

5btah2_a 658 658 293 Soil aggregate.

5btah4_a 658 658 3 16 Soil aggregate.

Scutigera 512 5 12 3 15 Small crustacean.

Data set has some

reconstruction errors

that cause ghosting of

the scutigera in the air

region of the volume.

impregnated_bullion-a 341 341 381 Peat in acrylic resin,

machined into a cylin-

der.

 

      
 

Prior to running the tests, each sample volume was first cropped to remove most of the

air surrounding the objects in the volume. The cropping step was done to reduce the size

of the data and the compute time. After each volume was cropped, it was median filtered

using a kernel of width 3 to eliminate some of the noise in the volume. The primary effect

was to remove outliers from the data, while still preserving the majority of the structure in

the volume.
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The first round of tests were run using a E [0.25, 0.5, 0.75, 1.0]. The number of detected

clusters and processing time as a function of the a parameter are shown in Tables 4.18—

4.27.

Table 4.18: Data set 5atah1_a a parameter performance. Dimensions = (6582 x 311)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 58 325 2.414e-06 5.603e-1-00

0.5 23 166.77 1.239e-06 7.251e+00

0.8 17 109.35 8.121e-07 6.4326+00

1.0 13 84.46 6.272e-07 6.497e+00
 

Table 4.19: Data set 5atah2_a a parameter performance. Dimensions = (6582 x 290)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 75 364.51 2.903e-06 4.860e+00

0.5 35 174.26 1.388e-06 4.979e+00

0.8 23 120.36 9.586e-07 5.233e+00

1.0 15 88.38 7.039e-07 5.892e+00
 

Table 4.20: Data set 5atah3_a a parameter performance. Dimensions = (6582 x 250)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 59 246. 13 2.274e-06 4.172e+00

0.5 27 130. 85 1.209e-06 4.846e+00

0.8 17 82.97 7.665e-07 4.881e+00

1.0 1 1 69.18 6.391e-07 6.289e+00
 

 

 

 

Figure 4.17 shows cluster labeled slices from the Scutigera data set. Each sub-image

corresponds to a different a parameter, showing how the different clusters merge as the a

parameter increases.

The number of clusters and execution time decreased as (1 increased in the test cases.

The decrease in the number of clusters is due to the relaxing of the similarity and the time

decrease is due to the reduced number of clusters being searched in each iteration of the

clustering algorithm.
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Table 4.21: Data set 5ath1-a a parameter performance. Dimensions 2 (6582 x 386)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 57 436.05 2.609e-06 7.650e+00

0.5 25 218.95 1.310e-06 8.7586-1-00

0.8 17 142.15 8.506e-07 8.362e+00

1.0 12 l 12.25 6.717e-07 9.354e+00
 

Table 4.22: Data set 5ath2_a a parameter performance. Dimensions = (6582 x 403)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 55 406.67 2.331e-06 7.394e+00

0.5 23 204.77 1. 174e-06 8.903e+00

0.8 15 135.15 7.746e-07 9.010e+00

1.0 10 l 12.17 6.429e-07 1.122e+01
 

Table 4.23: Data set 5ath4_a a parameter performance. Dimensions 2 (6582 x 258)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 46 255.88 2.291e-06 5.563e+00

0.5 22 128.47 1. 150e-06 5.840e+00

0.8 14 82.9 7.421e-07 5.921e+00

1.0 8 66.03 5.91 le-07 8.254e+00
 

Table 4.24: Data set 5btah2-a a parameter performance. Dimensions = (6582 x 293)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 83 445.71 3.513e-06 5.370e+00

0.5 35 209.3 1 1.650e-06 5.980e+00

0.8 22 133.2 1.050e-06 6.055e+00

1.0 16 95.77 7.549e-07 5.986e+00
 

Table 4.25: Data set 5btah4-a a parameter performance. Dimensions = (6582 x 315)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 77 423.14 3.103e-06 5.495e+00

0.5 35 211.8 1.553e-06 6.051e+00

0.8 22 133.58 9.794e-07 6.072e+00

1.0 16 98.67 7.235e-07 6.167e+00
 

Table 4.26: Data set Scutigera a parameter performance. Dimensions = (5122 x 316)
 

 

 

 

 

      

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 40 170.46 2.058e-06 4.261e+00

0.5 17 87.76 1.059e-06 5.162e+00

0.8 8 60.24 7.272e-07 7.530e+00

1.0 8 49.78 6.009e-07 6.223e+00
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Table 4.27: Data set impregnated_bullion_a a parameter performance. Dimensions =

(3412 x 381)
 

 

 

 

 

     

a Clusters Total Seconds Seconds/Voxel Seconds/Cluster

0.2 108 257.94 5.822e-06 2.388e+00

0.5 49 1 17.49 2.652e-06 2.398e+00

0.8 32 69.46 1.568e-06 2.171e+00

1.0 17 50.1 1.131e-06 2.947e+00  
 

   

   

(a) a = 0.1

 

(f)a = 0.6

(b) o = 0.2

(g) a = 0.7

(c) a = 0.3

(h) a = 0.8

(d) a = 0.4

(j)a=1.0

Figure 4.17: Scutigera showing different cluster labels for varying values of Oz. The number

of clusters is [51, 25, 17, 11, 10, 9, 8, 6, 6, 6].
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The Bhattacharrya distance [26] is used to compare the distance between the actual

histogram, and the weighted sum of the clusters. In order to perform the comparisons,

the histograms and the weighted sums were all scaled such that they summed to 1. A

discrete form of the Bhattacharrya distance, shown in Equation 4.4, is used to compute the

distances [97]. The scaled histogram and the scaled weighted sum of Gaussians are K1 and

K2 respectively.

.1.

(1(K1, K2) 2 (I — EN: \/K1(n; T1) * K2(n;T2)) (4.4)

11:1

 

The distances are shown in Table 4.28, with smaller values indicating a closer match

between the histogram and the weighted sum. With the exception of the impreg-

nated_bullion-a sample, the distance between the histogram and the weighted sum of Gaus-

sians decreases as the a parameter decreases. As the a parameter decreases, more clusters

are generated allowing for a better fit. In the case of the impregnated_bullion_a sample, the

clustering algorithm over-fit the histogram. While the maximum error approaches 40% for

a = 1.0, the maximum error for a = 0.25 is 13.22%. The two main sources of error are

not accurately fitting the main peak in the histogram, and that the actual absorption values

are not drawn from a set of Gaussian distributions.

To qualitatively evaluate the detected clusters requires generating a sum of Gaussian

distributions from the cluster table, where each Gaussian contribution is weighted by the

number of voxels it covers. The scale on the vertical axis for the histogram and the sum

of Gaussians differs, but the shapes of the distributions should be similar. The histograms

for each of the test volumes, along with their associated weighted sum of Gaussians, are

shown in Figures 4.18—4.27.

Examination of the sum of Gaussian distributions and the histograms indicates the clus-

tering algorithm detects a set of Gaussians that closely matches the shape of the underlying

histogram in the real data. Close examination reveals some of the fine features of the his-
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Table 4.28: Bhattacharyya distance between histogram and sum of weighted Gaussians

from clustering algorithm.
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Figure 4.18: Comparison of 5atah1_a histogram with sum of Gaussians from clustering

algorithm
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Figure 4.19: Comparison of 5atah2_a histogram with sum of Gaussians from clustering

algorithm.
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Figure 4.20: Actual histogram of 5atah3 _a data versus the detected distributions.
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Figure 4.21: Comparison of 5athl_a histogram with sum of Gaussians from clustering

algorithm.
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Figure 4.23: Actual histogram of 5ath4_a data versus the detected distributions.
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algorithm.
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Figure 4.27: Comparison of impregnated-bullion_a histogram with sum of Gaussians from

clustering algorithm.

togram are lost as (1 increases, but the gross distribution shape is still preserved.

Examination of the histograms indicates a set of Gaussian distributions can be found to

approximate the underling distribution of the data. Using this result allows for re-coding

of the data using the cluster labels. The most immediate advantage is simple thresholding

can be used to perform binarization and n-ary segmentation. While the absolute value of

a classified voxel is lost, the cluster-labeled voxels retain their relative order. Two side-

effects of labeling the voxels with the cluster labels are intensity range normalization, and

contrast enhancement. These side-effects may simplify some processing operations, but

the user must be aware that smooth gradients will be eliminated.

Volume 5atah1_a, shown in Figure 4.28, has a piece of soil material hanging from the

side. In Sub-Figures 4.28(a)—4.28(c) a cross section of the protruding material is visible

as a small region to the left of the image. In Sub-Figure 4.28(d) the protruding material

is visible, again to the left of the image. The segmentation algorithm was able to preserve

the structure that connects the main body of the aggregate to the small piece hanging to the

side. The disk shaped structure at the bottom of the image is the head of the acrylic pin on

which the sample was mounted. In Figure 4.29(a) an elliptical area can be seen surrounding
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a brighter region on the right side of the aggregate. In the corresponding clustered slice,

Figure 4.29(b), the same feature is present indicating the clustering algorithm does preserve

structured regions. Figure 4.30(a) shows a cross section of a scutigera crustacean. By using

the clustered volume a three dimensional rendering of the crustacean can be generated

similar to Figure 4.30(d). Figure 4.31(a) shows a cross section of an acrylic impregnated

peat sample. The clustering algorithm is able to separate the acrylic resin from the peat.

During the rendering process, the acrylic resin was removed from the volume revealing the

structure of the soil, shown in Figure 4.31(d). For comparison, the original sample is shown

in Figure 4.32. Additional segmented volumes may be found in Appendix A.

Suitability of Algorithm

Four criteria the segmentation algorithm must meet were identified at the beginning of this

chapter.

1. Simplicity of computation.

2. Robust in the presence of noise.

3. Allows for n-ary segmentation, in addition to binary segmentation.

4. Generates intermediate state information allowing a scientist to drive the segmenta-

tion towards a desired goal.

The computation performed by the clustering algorithm is simple. Each voxel in the

volume is visited once during the clustering phase, once during the labeling phase and

once during each classification cycle. The clustering algorithm processes a 483.9 megabyte

volume in 445.71 seconds. For each n3 neighborhood, the algorithm performs 9(n3) ad-

ditions, 8(n3) multiplications, l subtraction, and 1 square root, giving the neighborhood

computation a computational complexity of 9(n3). Merging two clusters is a constant time

operation. The order of the elements in the cluster table is maintained using an m >1: log(m)
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(3) Input Slice (b) Clustered Slice

  
(c) Segmented Slice (d) Volume Rendering

Figure 4.28: 5atah1_a segmentation results
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(a) lnput Slice (b) Clustered Slice

  
(c) Segmented Slice ((1) Volume Rendering

Figure 4.29: 5atah2_a segmentation results
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(c) Segmented Slice (d) Volume Rendering

Figure 4.30: Scutigera segmentation results



  
(a) Input Slice (b) Clustered Slice

 

(c) Segmented Slice (d) Volume Rendering

Figure 4.31: impregnated_bullion_a segmentation results
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Figure 4.32: Photograph of impregnated_bullion_a original sample.
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sorting algorithm, where m is number of clusters in the table. In the worst case merging

clusters is an 0(m2) operation if a merge operation causes all clusters to merge into one.

Since the cluster table order is maintained, merging clusters is on average an 0(m) oper-

ation. The most expensive phase of the clustering algorithm is typically maintaining the

table order, but since the table size tends to be small on average the cost is not significant.

Since the algorithm operates by building large non-contiguous regions for its cluster

statistics, it is robust in the presence of noise until there is almost no interclass separation.

Furthermore, the classification stage uses a Bayesian decision process causing clusters with

little support to have a low contribution to the classification phase. The a parameter allows

the user to control how closely the clustering algorithm matches the data. For noisier data

sets, a can be increased to generate larger clusters whose statistics are more stable.

The clustering algorithm discovers a number of classes that can be used to perform

either binary segmentation or n-ary segmentation. The user of the algorithm can experiment

with different partitionings of the clusters to drive different classifications from a single

clustering cycle.

The cluster table is amenable to later merging to allow the user to generate broader

clusters without having to rerun the clustering algorithm. This flexibility allows the user to

drive the segmentation towards a target number of clusters when a priori knowledge of the

number of true classes is present.

This technique satisfies the criteria listed at the beginning of the chapter, and provides

a fast solution to exploring arbitrary data sets.

4.4 Conclusion

The clustering algorithm proposed in this chapter satisfies the four criteria established at

the beginning of the chapter. In addition to satisfying the basic criteria, the algorithm is

amenable to the application of other similarity criteria. Finally, the algorithm is domain
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independent in the sense that the only a priori knowledge required for segmentation is that

separable structures are present in the volume being operated on. The clustering algorithm

can generate a set of weighted Gaussians that closely match the shape of histogram on real

data. This was demonstrated on 10 real data sets.
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Chapter 5

Interest Detection

Interest detection is the process of finding interesting or potentially interesting points, and

presenting them to the user or to algorithms downstream. While exactly what points in

a volume are interesting is application-specific, it is possible to provide a framework that

allows for a variety of types of interest to be identified. This chapter develops a general

method for detecting user-identified interest points using a new interest operator and sup-

port vector machines (SVM) [10].

5.1 Existing Interest Detectors

There are structure detectors such as the Harris-Stephens comer edge detector [44], the

Kitchen-Rosenfeld gray-level comer detector [58], the Canny edge detector [14], the

Hough transform [52] and its derivatives. There are detectors that measure the amount

of symmetry in an image, gradient discontinuities, uniformity in a region, energy or vari-

ance, or other low-level features [117]. Salience measures [95] attempt to find important

points in the image, often in the context of perceptual importance or as it relates to image

compression. There are operators that detect points that are also candidates for matching

across multiple images based on correspondences between points at the intersection of lines

that form approximately right angles [116]. The discrete mass transform and discrete sym-
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metry transform act to detect points that are symmetric near an edge [39]. Corner detectors

can be applied to detect 3D comers in a volume [84]. Structure tensor methods examine the

gradient structure of images [68, 69, 4, 34]. Wavelet coefficients are used to detect features

that are present across multiple scales [95].

5.2 Interest Detection Algorithm Criteria

The goal of developing techniques to facilitate interest detection leads to the following set

of criteria:

1. Simplicity of computation.

2. Adaptability to different types of data.

3. Generates and preserves intermediate state information that enables a scientist to

drive the interest detection towards a desired goal.

4. Amenable to incremental refinement.

5. The framework should be extendible as new interest detection techniques are devel—

oped.

These criteria are discussed in the following sections.

5.2.1 Simplicity of Computation

A typical reconstructed volume acquired at the Advanced Photon Source is on the order of

512 megabytes in size. Future data sets may grow to be as large as 4 gigabytes for a full

resolution volume. With these data sizes in mind, simplicity of computation encompasses

two factors. The first factor is that any algorithm should be computationally inexpensive.
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An algorithm that requires more than polynomial effort is unacceptable. The second fac-

tor is that any algorithm should minimize the number of iterations through the data. An

additional desirable, but not necessary, property of an algorithm is for it to be parallizable.

5.2.2 Adaptability to Different Types of Data

Volumetric data sets can be generated from a wide range of materials, and may have al-

most no inter-sample similarities. Techniques for detecting interest should be adaptable to

disparate data sets, particularly those for which there is a minimum of a priori knowledge

regarding the structure of the material.

5.2.3 State Preservation

Since the data sets are large, any intermediate data should be storable in such a way that

it can be reused later. This reuse is important both for facilitating further data exploration

and for amortizing the cost of any expensive processing steps.

5.2.4 Incremental Refinement

Since there may be no a priori knowledge about the structure of the data, users may need

to explore the data. The techniques used for interest detection should allow users to refine

their interest detection by building on previous attempts.

5.2.5 Extendible Framework

As mentioned earlier, there is a wide array of existing interest detectors. It is probable that

more interest detectors will be developed in the future. Therefore, the interest detection

framework must be flexible enough to accommodate new interest detectors and features as

they are developed. This extensibility is essential not only for future developments, but

also to allow the user to select appropriate features for the current work.
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5.3 Proposed Interest Detection Framework

Rather than attempting to develop a single interest detector that is appropriate across all

possible inputs, a flexible framework is proposed that combines the results from a variety

of different interest operators or feature detectors. The goal is to combine the outputs of a

diverse set of operators in such a way that users of the system can teach the interest detector

the appropriate features to consider for the specific class of volumes being examined.

The proposed framework has three major stages. The first stage is the training stage,

where the user provides sets of interesting and non-interesting points. In the second stage a

classifier for labeling interesting and non-interesting classes is constructed. The third stage

is the classification of all points in the volume into an interest class. A high-level diagram

of the framework is given in Figure 5.1.

The first stage of the interest detection process is to have the user provide two sets of

training examples, i.e. interesting and uninteresting points. Since interest is in general ill-

defined, this approach will provide users from different domains the opportunity to specify

those points that are relevant to their analysis needs.

The second state of interest detection is training the Support Vector Machine (SVM)

to classify the points identified by the user as interesting and uninteresting. After each

training and partial classification pass, the user can either accept the training results or can

retrain the SVM with additional training points.

The third stage is the classification of the entire volume. The model developed from

training the SVM in stage two is applied to all voxels in the volume being classified. The

final classification can generate either a binary result or a range of confidence values.

5.4 Support Vector Machines

At the core of the interest detection framework is the classifier used to identify the interest-

ing points in the volume. The classifier selected for this application is the Support Vector
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Machine (SVM) [42]. SVMs have several properties that make them desirable for detecting

user-specified features. Among these properties are fast training, non-linear classisification,

and robust behavior in the presence of noise.

SVMs provide a robust mechanism for classifying data where the inter-class boundaries

are non-linear. The classification problem being addressed in this work is locating areas in a

volume that are perceptually similar, as well as identifying multiple types of interest points,

e. g. edges and comers. The SVM has been demonstrated in experiments to produce reliable

results with relativly small training sets of postive and negative examples [10, 7, 42]. The

Torch3 SVM implementation is used in this work [17].

5.5 Proposed Radial Mass Transform Interest Detector

The detectors mentioned in Section 5.1 are based on a variety of different computation

techniques; some are and some are not suitable for application to three dimensional data.

The radial mass transform (RMT) is designed to provide a basis for extracting rotation-

and translation-invariant features from a volume. The radial mass transform integrates the

mass (density, intensity, etc.) at distance r from some arbitrary fixed point p0 in space. The

area of integration for a 2D image is shown in Figure 5.2. Let V denote either a 3D volume

or a 2D slice or image. The spherical Radon transform (see Tanimoto [103]) integrates

all mass in f at radius p from p0 and is shown in Equation 5.1. The continuous radial

mass transform integrates mass centered at p0 creating a 1D function of radius r as defined

in Equation 5.5 using an abuse of notation given for its intuitive value only. Each point

130 E V is mapped to a 1D signature (function) that gives the mass in V at distance p from

p0. f (p) is the mass (density, intensity, etc.) at point p. In continuous 3D space, we are

integrating the mass in a spherical shell, and in a 2D slice, we are integrating the mass over

a circumference. The RMT captures a great deal of structure/texture of the neighborhood

of a point Npo and is therefore an efficient representation for segmentation, clustering or
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determination of interest points.

 
Figure 5.2: Cross section of spherical shell describing region of integration for RMT.

 

+00 +00 +00

H (pom) = / OO/m -00 f (p) 5(p,p,po) drv dy dz (5.1)

If I)—— \/(1‘ — $0)? + (y — yo)2 + (Z - z0)2

6 (10,11,110) = (5-2)

otherwise

Po = (£0 110120) (5.3)

p = (221112) (5.4)

m (17020) % 116/[111v - poll = pl f(p)dV (5-5)

The formulation of the RMT in Equation 5.5 will result in increasing values as p in-

creases. As a consequence of this property, the RMT as initially formulated is inappropriate

for later use in classification since the values for m (p0, p) when p is large will have greater

variance for homogeneous regions than the absolute values of m (p0, p) when p is small.

To rectify this problem, the RMT is normalized by the surface area of the region involved
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in the integral. The reformulated RMT with the normalizing factor is shown in Equation

5.6. Unless otherwise noted, all further discussion of the RMT will refer to this normalized

version.

prV [Hp — poll : p] f(]))dV

47rp'2

 
m (1111-, P) 2 (5-6)

5.6 Discrete Radial Mass Transform Computation

The discrete radial mass transform (RMT) operates by integrating the mass surrounding a

discrete point at a discrete set of radii: the computation is outlined in Algorithm 2. The

benefits of this transform are two-fold. The first benefit is that we are able to characterize

the structure of a region of (27‘ + 1)3 voxels centered at a point with a vector of length 7‘ + 1.

The second benefit is that this characterization is, in the continuous space, rotationally and

translationally invariant. The two benefits should allow for more robust analysis of data

and provide a degree of data dimension reduction.

The data dimension reduction comes at a cost of significant computational overhead.

A naive implementation will have each voxel in the volume contributing to approximately

3

3
7rr3 mass accumulation computations. In other words, to compute the RMT for a single

voxel requires a computational effort proportional to the volume of a sphere of radius r.

This effort will be required at each voxel at which the RMT is desired. The overall running

time of this transform, assuming a stride of 1 during computation, is O('r3 x rows x cols x

slices).
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Algorithm 2: Discrete radial mass transform.

Input: Volume V, Origin for transform p0, Maximum radius rum

Output: Discrete radial mass transform RMTP0

RMT(V, 100, max)

(1) for r = 1 to rum

(2) RMTPOJ‘ = O

(3) foreach offset 6 RIVITlook'upr

(4) RMTpo.r = RMTpo.r + Vpo+offsct

(5) return RMT],0

The computational requirements are such that this transform is best suited to a parallel

implementation. Additionally, it is beneficial to compute the transform only in regions

where structure is likely to be present. After computation, the RMT can be viewed as a

vector field that encodes neighborhood information for each voxel.

5.6.1 Theoretical RMT Error

One of the sources of error in the discrete RMT is the quantization of the spherical shells

that are used to integrate the mass. In Table 5.1 the volume of the discrete RMT shells

is compared to the volume of continuous RMT shells. The volume of a continuous RMT

shell of width 1 is:

4 7r ((7" + 0.5)3‘ + (r — 0.5)3')

3

 
RMTVolurnecont (r) = (5.7)

The volume of the discrete RMT shell RMTVolumediSC (r) is derived from the size of

the RMTlookupr table used for computing the transform. The relative error for radius r is

defined as:

RMTVolumediSC (r) — RMTVolumeCOm (r)

RMTVolumeCOm (r)

 VolError (r) = (5.8)

The largest relative error is at radius 1, with an overall average relative error of 0.103.

This error should serve as an upper bound on the error for the discrete RMT versus the
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Table 5.1: Volumes of continuous and discrete RMT shells

 

 

 

 

 

 

 

 

 

 

 

Radius Continuous Discrete Discrete Error

1 13.6136 18 0.322

2 51.3127 62 0.209

3 114.145 98 -0.141

4 202.109 210 0.039

5 315.206 350 0.110

6 453.437 450 -0.008

7 616.799 602 -0.024

8 805.295 762 —0.054

9 1018.92 1142 0.121

10 1257.68 1250 -0.006      
 

continuous RMT. The source of error in the discrete RMT is that voxels cover more than

one radii, but in the discrete computation contribute only to one mass integration. When

the discrete RMT is computed in uniform areas, there is no error. Errors arise when the

RMT includes non-uniform regions, since partially covered voxels contribute more or less

than they should to the integral. While the discretization process introduces some error, it

does not appear to be a serious problem. The effects of the discretization errors can been

seen in rotational invariance tests in Section 5.7. 1.

The partial occupancy error may be resolvable by introducing a contribution factor for

each voxel at a given radius, shown in Algorithm 3. The addition of this factor would, as a

minimum, double the time required to compute the transform.

Algorithm 3: Discrete radial mass transform with partial occupancy.

Input: Volume V, Origin for transform 190, Maximum radius rmax

Output: Discrete radial mass transform RMTP0

RMT PARTIAL(V, p0, 'rmax)

(1) forr= ltormx

(2) RMTW = 0

(3) foreach {offset,scale} E RMTlookupr

(4) RMTW = RMTPO, + (14,01,033... x scale)

(5) return RMTP0
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5.6.2 Discrete RMT Features

Features that characterize the underlying data can be computed from the RMT itself. These

features, and others, are implicitly used when the RMT is used as a feature for the SVM

classification. The features that have been generated for explicit use are jaggedness, jagged-

nessZ, sum of squares of rmt, sum of squares of inter-radii differences, and the scaled sum

of squares of inter-radii differences. The jaggedness feature measures the smoothness of

the vector by constructing a set of vectors from the RMT for a point p0, and then computing

the cosine of the angles between the vectors. The resulting cosine is then shifted and scaled

to give a response that increases with the angle. The exact formulation of the jaggedness

measure is given in Equations 5.9 - 5.11.

pn —2
m 1 — 9 (rmtpmi, rnltp(,‘,-+1,I‘mtpo,1+2)
 

   

jaggedness (RMTpO) = Z 2 (5.9)

i=1

RMTpO = (rmtpo'l, rmtpog, . . . ,rmtpo‘pmu) (5.10)

O(a,b,c) = (a_b)x(b_c)+l (5.11)

\/((a — b)2 +1) x \/((b — c)? +1)

The jaggednessZ measure is similar to jaggedness, but instead sums the absolute cosines

of the angles between vectors constructed from the RMT. The formulation for jaggedness2

is given in Equation 5.12.

p-max _2

jaggedness? (RMTpO) = 2 IO (rmtpw,rrntp0,,-+1,rmtp0,,-+2)| (5.12)

i=1

The sum of squares of rmt (SSR) feature computes the L2 norm, or vector length of the

RMT. The sum of squares of inter-radii differences (SSIRD) feature is used to measure the

amount of change in the RMT by looking at the length of the vector produced by taking the

difference of the adjacent elements in the RMT. The scaled sum of squares of inter-radii

differences (SSSIRD) is the ratio of the SSIRD to the SSR. The formal definitions of these
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features are given in Equations 5.13—5.15.

 

 

 
 

pmar

SSR(RMTp0) = \ (Z rmtfm‘i) (5.13)

i=1

)Omax‘l

SSIRD (RMTpO) :: \ ( Z ”11th —rmtl2,0‘i+1) (5.14)

i=1

SSIRD (RMTpO)

' MT 5.15SSSIRD (R ()0) SSR (RMTpO) ( )

Examples of each of these features is given Section 5.7.3.

5.7 Experiments

5.7.11 Validation of Discrete RMT Rotational Invariance

The RMT property of rotational invariance is essential for detecting similar features in

different regions in an image and for detecting the same features in different data sets of

the same object. To test how close the discrete RMT is to being rotationally invariant,

in the first test, a set of 421 different phantoms were constructed. The phantoms were

cylinders with a radius of 5 units inside a cubic region 21 units on a side. The cylinders

were specified via a line segment and radius. One end of the line segment was placed at

the center of the volume, while the other end was placed at 421 regularly spaced locations

on one face of the cube. The second test for rotational invariance was done using two

sets of synthetic volumes that were generated from a real spinal MRI and a single vertebra

MRI. The procedure for generating each phantom was to select a sub-region of the real

volume and generate a series of rotated versions of the volume. All rotations were done

first about the y-axis, and then about the z-axis. The rotated volume was then sampled to

construct a new volume for computing the RMT. The rotation and sampling procedure was

conducted for rotation angles from — 7r to 71 using 3% steps. For each generated volume,
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the RMT was computed and stored. For both sets of synthetic volumes, the error in the

RMT was then computed by computing the Euclidian distance between the RMTs for each

orientation and the RMT for the unrotated volume. The errors for the RMT computation in

these experiments are shown in Figures 5.3—5.5.

In Figure 5.3 the error is symmetric, indicating that for the cylindrical phantom, the

RMT is rotationally invariant within the constraints imposed by discretizing the transform.

The error plots for the MRI derived phantoms, shown in Figures 5.4 and 5.5, while not ex-

Flelative RMT Error for Rotated Cylinder
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Figure 5.3: Relative error plot for RMT cylinder phantom

hibiting the symmetry of the cylinder phantom, are periodic. The difference in the errors is

due in part to the interpolation algorithms used to generate the phantoms. The error results

in Table 5.2 indicate that the largest error was 2.82%, for the phantom generated from a
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single vertebra. As previously noted, one of the sources of error in the RMT computation

is the problem of partial voxel occupancy.
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Figure 5.4: Relative error plot for RMT spine phantom. MR experimental data provided

by James E Siebert, MSU Radiology. Project was approved by the MSU Committee for

Research Involving Human Subjects; subject written informed consent was obtained.
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Figure 5.5: Relative error plot for RMT vertebra phantom. MR experimental data provided

by James E Siebert, MSU Radiology. Project was approved by the MSU Committee for

Research Involving Human Subjects; subject written informed consent was obtained.
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5.7.2 RMT Response

As the RMT is computed, mass is integrated in a spherical shell around the center of the

transform. When the RMT is computed near an edge in an otherwise uniform volume, it

will begin responding when the center is within pm” voxels of the edge. As the center of

the transform moves closer to the edge, the response moves towards p0 in the RMT.

Figure 5.6 shows the response of the RMT as it is applied to a phantom that contains a

sphere of radius 1 at the geometric center of an otherwise uniform volume. When the RMT

is computed at slices < 31 there is no response, that is the RMT is zero, since the sphere

has not been encountered. At slice 31, the sphere is encountered for the RMT component

p10, while the rest of the RMT has a zero response. As the slice increases, the portion of

the RMT that shows a response moves towards p1 until the RMT is centered on the sphere.

Once the RMT moves off the sphere, the response moves towards pm until the center of

the RMT is at slice 53 where it has a zero response again. Figures 5.7—5.9 show the same

computation for phantoms with spheres of radii 4, 8, and 10. In all cases the response of

the RMT is symmetric. For the sphere of radius 10, the response will not contain zeros at

p10 since the RMT is smaller than the sphere causing the response.
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RMT for sphere radius 1

 
 

 

 

Figure 5.6: RMT response for sphere phantom with radius 1
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Figure 5.7: RMT response for sphere phantom with radius 4
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Figure 5.9: RMT response for sphere phantom with radius 10
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RMT for sphere radius 10

Figure 5.8: RMT response for sphere phantom with radius 8
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5.7.3 RMT Feature Tests

Ideally the RMT will generate a non-smooth transform in the presence of texture but a

relatively smooth transform when structure is not present. To test this behavior, several

different phantoms were generated. All phantom volumes were 1283. After the volumes

were generated, the RMT was computed for each volume with p E [1, 10]. From the RMT

a set of features was computed. Several of the phantoms are discussed below along with

their RMTs and derived features. Additional phantoms are given in Appendix B.

1. Uniform volume. A volume with a single value is generated. The RMT should give

a flat response to this phantom, since there is no variation dependent on radius in the

volume.

In the experiments, the RMT for the uniform volume phantom, Figure 5.10, had a

completely flat response. The lack of response in a uniform area is appropriate if we

apply the heuristic that the interior of uniform regions is uninteresting. The square

regions in the figure correspond to the mass for radius r with the transform centered

at that voxel. A schematic of this layout is shown in Figure 5.11.

 
 

0 1

Figure 5.10: Discrete RMT of length 10 for uniformVolume phantom slice 64.
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Figure 5.1 1: Schematic for graphical RMT display.

2. Single ramp. A gradient is generated that goes from 0 to 1 across the volume as in

Figure 5.12.

0.00775

Figure 5.13 shows a graphical representation of the RMT. For this phantom, the RMT

was computed using a maximum radius of 10. The figure displays the normalized

 

Figure 5.12: singleRamp phantom slice 64.

 

 

0.9'92

integrated mass at each of the radii of the RMT for a particular slice.

The RMT returns a smooth response to a smooth gradient, with the jaggedness mea-

sure for the RMT uniform when the RMT is computed for smooth regions. The

jaggedness response is shown in Figure 5.14. The jaggednessZ response is the same
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and is not shown.

The SSR feature, Figure 5.15, shows a smooth gradient response similar to the orig-

inal input.

The SSIRD and SSSIRD features, Figures 5.16 and 5.17, do not show a smooth

response. The non-smooth response is a function of looking at the squared amount

of change as a function of the radius in the RMT. The advantage of this type of

response is that we are able to generate a response in regions with a uniform gradient,

but non-uniform intensity.
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0 0.515

Figure 5.13: RMT for single ramp gradient phantom.
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Figure 5.14: Jaggedness feature singleRamp phantom slice 64.

 

 

 

0 2.139

Figure 5.15: SSR feature singleRamp phantom slice 64.
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Figure 5.16: SSIRD feature singleRamp phantom slice 64.

 

 

 

0 6.841e-09

Figure 5.17: SSSIRD feature singleRamp phantom slice 64.
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3. Single radial gradient. A single line is run between two comers of the volume and

the Euclidian Distance Map (EDM) is generated. Figure 5.18 shows a slice of the

phantom, while Figure 5.19 shows the RMT for the same slice.

 

 

 

0 90.1

Figure 5.18: Slice of single radial gradient phantom.

In the RMT image, a blurring effect can be seen where the image energy is spread

more as the radius from the center of the transform increases.

 

 

 

0 77'.7

Figure 5.19: RMT for slice of single radial gradient phantom.

The jaggedness feature for the single radial gradient phantom, Figure 5.20, gives a

strong response close to the origin of the radial gradient. There is a weaker response
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along a set of lines within the slice that correspond to artifacts in the phantom from

the EDM algorithm. The jaggedness2 feature had a flat response and is not shown.

 

 

—_ 1
0 00188

Figure 5.20: Jaggedness feature singleRadialGradient phantom slice 64.

 

The SSR feature, Figure 5.21, can be considered as the magnitude of the total energy

of the RMT. Even in a situation where the RMT has a smooth response, the SSR

feature will have a stronger response as the amount of integrated energy increases.

This response is used later in the SSSIRD feature as a scaling factor.

 

I

243

Figure 5.21: SSR feature singleRadialGradient phantom slice 64.

 

The SSIRD feature, Figure 5.22, has a high response when the RMT is jagged, and

when the RMT has a steep slope. Here the response is strong near the center of the

radial gradient, and along the regions where there are EDM artifacts. In the artifact

93



regions it is strong where the jaggedness feature had a strong response, and where

the jaggedness feature had very little response. The SSSIRD feature, Figure 5.23, is

the SSIRD feature scaled by the SSR feature. The scaling causes the SSSIRD feature

 

to have a stronger response where the RMT magnitude is low.

0 2.113

Figure 5.22: SSIRD feature singleRadialGradient phantom slice 64.

0 0.146

Figure 5.23: SSSIRD feature singleRadialGradient phantom slice 64.

 

 

 



4. Multiple radial gradients. The phantom, Figure 5.24, is generated by running a set

of lines through the volume, and then generating an EDM from the lines.

 

 

0 86.6

Figure 5.24: multipleRadialGradients phantom slice 64.

 

The RMT, Figure 5.25, shows the blurring effect where sharp features become less

pronounced as the radius of the transform increases.

 

 

 

' 1

0 72.9

Figure 5.25: Discrete RMT of length 10 for multipleRadialGradients phantom slice 64.

The bright ridge in the phantom shows up as a ridge in the jaggedness feature, Figure

5.26. The dark ridges also show up in the jaggedness feature. In general, local

maxima and minima will produce a non-zero response in the jaggedness feature.
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Figure 5.26: Jaggedness feature multipleRadialGradients phantom slice 64.

 

 

72'.
Figure 5.27: SSR feature multipleRadialGradients phantom slice 64.
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The SSIRD, Figure 5.28, shows a high response in the regions of the phantom with

local maxima and minima. The response falls off as the transform moves away from

the maxima and minima. The SSSIRD, Figure 5.29, shows a similar response, but is

weighted towards regions in the phantom with low energy.

  
 

 

. . A...

0 2.4

Figure 5.28: SSIRD feature multipleRadialGradients phantom slice 64.

‘
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o 0.147

Figure 5.29: SSSIRD feature multipleRadialGradients phantom slice 64.
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5. Multiple tubes. A multiple radial gradient phantom is generated, and then thresh-

olded to generate a binary volume, Figure 5.30.

Again, the response of the RMT in uniform regions should be flat, while near the

edges of the cylinders it will be non—smooth. The junctions between cylinders should

also give a non—smooth response. In Figure 5.31. a response in the region between

two cylinders can be seen in the bottom row.

 

 

 

0

Figure 5.30: multipleTubes phantom slice 64.
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Figure 5.31: Discrete RMT of length 10 for multipleTubes phantom slice 64.

The SSR feature, Figure 5.32, shows a strong response on the tubes in the phantom,
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and then falls of quickly as the center of the transform moves away from the tubes.

The SSSIRD feature, Figure 5.33, has a stronger response at the center of the region

between the two tubes. This response is caused by a nearby junction between the

tubes.
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Figure 5.32: SSR feature multipleTubes phantom slice 64.
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Figure 5.33: SSSIRD feature multipleTubes phantom slice 64.
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6. Subvolume of scutigera. A portion of a scutigera head is used as a phantom (Figure

5.34). The RMT, Figure 5.35, shows a blurring effect where the transform is aver-

aging mass at progressively greater radii. The RMT for the Scutigera has negative

values where the average value of the voxels in a spherical shell was negative.
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Figure 5.34: ScutigeraSub phantom slice 64.
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Figure 5.35: Discrete RMT of length 10 for ScutigeraSub phantom slice 64.

The jaggedness feature, Figure 5.36, shows the strongest responses near comers in

the volume. The SSR feature, Figure 5.37, shows the strongest responses in bright

regions of the volume. The SSIRD and SSSIRD features, Figures 5.38 and 5.39,
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have their responses concentrated along linear structures in the volume. These linear

structures correspond to the exo- and endo-skeleton of the scutigera.

 

 

 

0 1.19'e-05

Figure 5.36: Jaggedness feature ScutigeraSub phantom slice 64.

 

 

 

0 0.0511

Figure 5.37: SSR feature ScutigeraSub phantom slice 64.
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0 0.00801

Figure 5.38: SSIRD feature ScutigeraSub phantom slice 64.
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0 1.2

Figure 5.39: SSSIRD feature ScutigeraSub phantom slice 64.
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7. Jack. A model of a children’s jack was constructed as a phantom with a variety of

regular features.

The RMT of the jack is shown in Figure 5.41.

 

 

 
 

 

0 255

Figure 5.41: Discrete RMT of length 10 for jack phantom slice 64.

The jaggedness feature for the jack phantom in Figure 5.42.
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Figure 5.42: Jaggedness feature for jack phantom slice 64. 1

 

O 8

Figure 5.43: Jaggedness2 feature for jack phantom slice 64.
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Figure 5.44: SSR feature for jack phantom slice 64.
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Figure 5.45: SSIRD feature for jack phantom slice 64.
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Figure 5.46: SSSIRD feature for jack phantom slice 64.
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5.7.4 Performance

The computational cost of the RMT algorithm is high. For a realistic volume, the total

amount of CPU time consumed is measured in hours, if not days. One approach to min-

imizing the wall-clock time is to compute the RMT in parallel and store it for later use.

Table 5.3 summarizes the size and number of transforms for several real data sets. Tables

5.4 — 5.9 show the results from a set of performance experiments on these data sets.

Table 5.3: Sizes of real data sets and number of transforms in millions.

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Number of Transforms

Data Set Rows Columns Slices pmax = 2 pmax = 5 pmaa: = 10

5atahl _a 658 658 311 131.3 126.4 118.4

5atah2_a 658 658 290 122.3 1 17.6 109.9

5atah3-a 658 658 250 105.2 100.8 93.6

5athl_a 658 658 386 163.4 157.9 149.0

5ath2_a 658 658 403 170.7 165.0 155.9

5ath4_a 658 658 258 108.6 104.1 96.9

5btah2_a 658 658 293 123.6 118.8 111.1

5btah4-a 658 658 315 133.0 128.1 120.1

Scutigera 512 512 ‘ 316 80.5 77.1 71.7

imp._bullion_a 341 341 381 42.8 40.6 37.2

spine 512 512 68 16.5 14.6 11.6

all phantoms 128 128 128 1.9 1.6 1.3
 

 

 
All of the phantoms have the same size, shown in the last row of Table 5.3. Tables 5.4 —

5.6 show that the computational effort for the RMT is constant for a given pm” regardless

of the underlying contents of the data. Variations in the wall-clock times are attributable to

network congestion and waiting for commands from the job server.

The real data sets were run using the same experimental setup, with the results shown in

Tables 5.7 — 5.9. For data sets with the same slice dimension, the per-slice execution times

were within 1 second. With the exception of the Scutigera data set, the execution times

increased as the number of voxels increased. The Scutigera data set had a slice dimension

of 512 by 512. This data size may have resulted in poor performance with the CPU data-
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Table 5.4: RMT Performance on phantom data using 18 hosts, pmax = 2. Times are given

in Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

ScutigeraSub 0:00: 10 0:00:42 0:00:27 0:01:19 0:00:01 0:00:11

jack 0:00:10 0:00:42 0:00:27 0:01:18 0:00:01 0:00:11

multipleRadialGradients 0:00:10 0:00:41 0:00:27 0:01: 18 0:00:01 0:00:18

multipleRadialGradients-100 0:00:10 0:00:41 0:00:27 0:01 :18 0:00:01 0:00:1 l

multipleTubes 0:00: 10 0:00:42 0:00:27 0:01:18 0:00:01 0:00:11

pointGradients 0:00:10 0:00:42 0:00:27 0:01:19 0:00:01 0:00: 12

singlePointGradient 0:00:10 0:00:42 0:00:27 0:01 : 18 0:00:01 0:00: 12

singleRadialGradient 0:00: 10 0:00:42 0:00:27 0:01:19 0:00:01 0:00:22

singleRamp 0:00: 10 0:00:42 0:00:27 0:01 :18 0:00:01 0:00:1 1

singleSphere 0:00:10 0:00:42 0:00:27 0:01:19 0:00:01 0:00: 12

singleTube 0:00:10 0:00:42 0:00:27 0:01:19 0:00:01 0:00:] 1

spheres 0:00:10 0:00:41 0:00:27 0:01:18 0:00:01 0:00:12

spheres_100 0:00:09 0:00:41 0:00:27 0:01:18 0:00:01 0:00:11

uniformVolume 0:00:10 0:00:42 0:00:27 0:01:19 0:00:01 0:00: 12
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Table 5.5: RMT Performance on phantom data using 18 hosts, pnm = 5. Times are given

in Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

ScutigeraSub 0:00:19 0:04:39 0:00:39 0:05:37 0:00:03 0:00:28

jack 0:00:19 0:04:38 0:00:39 0:05:36 0:00:03 0:00:29

multipleRadialGradients 0:00:18 0:04:38 0:00:39 0:05:35 0:00:03 0:01:10

multipleRadialGradients-100 0:00:19 0:04:38 0:00:39 0:05:37 0:00:03 0:00:28

multipleTubes 0:00:19 0:04:38 0:00:39 0:05:36 0:00:03 0:00:29

pointGradients 0:00:19 0:04:38 0:00:39 0:05:36 0:00:03 0:00:27

singlePointGradient 0:00:19 0:04:38 0:00:39 0:05:37 0:00:03 0:00:27

singleRadialGradient 0:00:20 0:04:38 0:00:39 0:05:36 0:00:03 0:00:28

singleRamp 0:00:20 0:04:38 0:00:39 0:05:37 0:00:03 0:00:28

singleSphere 0:00:20 0:04:38 0:00:39 0:05:37 0:00:03 0:00:30

singleTube 0:00:20 0:04:38 0:00:39 0:05:36 0:00:03 0:00:31

spheres . 0:00:20 0:04:38 0:00:39 0:05:37 0:00:03 0:00:29

spheres-100 0:00:19 0:04:38 0:00:39 0:05:37 0:00:03 0:00:27

uniformVolume 0:00:19 0:04:38 0:00:39 0:05:37 0:00:03 0:00:27
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Table 5.6: RMT Performance on phantom data using 18 hosts, pm“. 2 10. Times are given

in Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

ScutigeraSub 0:00:32 0:26:58 0:00:47 0:28:17 0:00:16 0:01:54

jack 0:00:31 0:27:00 0:00:47 0:28:19 0:00:16 0:01:53

multipleRadialGradients 0:00:32 0:26:57 0:00:47 0:28: 16 0:00: 16 0:01:56

multipleRadialGradients-100 0:00:32 0:26:58 0:00:47 0:28:17 0:00:16 0:01:51

multipleTubes 0:00:32 0:26:57 0:00:47 0:28:16 0:00: 16 0:01:52

pointGradients 0:00:32 0:26:59 0:00:47 0:28:17 0:00:16 0:01:52

singlePointGradient 0:00:32 0:26:59 0:00:47 0:28:18 0:00:16 0:01:51

singleRadialGradient 0:00:33 0:26:58 0:00:47 0:28:18 0:00:16 0:01:46

singleRamp 0:00:32 0:26:58 0:00:47 0:28:17 0:00:16 0:01:44

singleSphere 0:00:32 0:26:58 0:00:47 0:28:18 0:00:16 0:01:49

singleTube 0:00:32 0:26:57 0:00:47 0:28:16 0:00:16 0:01:54

spheres 0:00:31 0:26:59 0:00:47 0:28:17 0:00:16 0:02:00

spheres_100 0:00:32 0:26:57 0:00:47 0:28:15 0:00:16 0:02:01

uniformVolume 0:00:32 0:26:59 0:00:47 0:28:17 0:00:16 0:02:00
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cache.

Table 5.7: RMT Performance on real data using 18 hosts, ,0me = 2. Times are given in

Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

Satah1-a 0:05:45 0:42:02 0:36:24 1:24:11 0:00:16 0:09:42

5atah2_a 0:05:21 0:39:08 0:33:39 1:18:08 0:00:16 0:10:14

5atah3_a 0:04:35 0:33:38 0:29:15 1:07:29 0:00:16 0:09:27

5ath1_a 0:07:09 0:51:58 0:45:39 1:44:46 0:00: 16 0:13:46

Sath2_a 0:07:28 0:54: 18 0:47:47 1:49:32 0:00:16 0:13:51

5ath4_a 0:04:47 0:34:34 0:30:39 1:09:59 0:00:17 0:08:50

5btah2_a 0:05:24 0:39:32 0:34:06 1:19:01 0:00:16 0:09:57

5btah4-a 0:05:48 0:42:34 0:36:39 1:25:01 0:00:16 0:10:59

Scutigera 0:03:37 0:29:53 0:21:15 0:54:45 0:00:11 0:06:59

imp._bullion_a 0:02:05 0:13:50 0:10:35 0:26:31 0:00:04 0:03:46

spine 0:00:44 0:06:05 0:04:20 0:11:09 0:00:10 0:01:50
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Table 5.8: RMT Performance on real data using 18 hosts, pm“, 2 5. Times are given in

Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

SatahLa 0:12:18 5:38:02 0:59:53 6:50:12 0:01:22 0:27:20

5atah2_a 0:11:27 5: 14:38 0:55:34 6:21 :40 0:01 :22 0:25:35

5atah3_a 0:09:49 4:29:41 0:47:43 5:27:13 0:01:22 0:21:54

5athl_a 0:15:22 7:02:36 1:15:03 8:33:01 0:01:22 0:33:51

5ath2_a 0:16:05 7:21:44 1:18:11 8:56:00 0:01:22 0:35:02

5ath4-a 0:10:08 4:38:44 0:49:13 5:38:04 0:01:22 0:22:39

5btah2_a 0:11:34 5:18:00 0:56:18 6:25:53 0:01:22 0:26:02

5btah4_a 0:12:27 5:42:43 1:00:44 6:55:54 0:01:22 0:28:14

Scutigera 0:07:50 4:39:48 0:34:28 5:22:05 0:01:03 0:20:30

imp.-bullion_a 0:04:27 1:49:02 0:17:17 2: 10:46 0:00:21 0:09: 15

spine 0:01:28 0:53:05 0:06:26 1:00:59 0:01:03 0:04:42  
 

Table 5.9: RMT Performance on real data using 18 hosts, pm” 2 10. Times are given in

Hours:Minutes:Seconds.

 

 

 

 

 

 

 

 

 

 

 

 

 

        

CPU Time Wall

Volume Slice Time

Data Set Load Process Store Total Total Total

5atah1_a 0:22:49 39:03:25 1:41:59 41:08:14 0:08:29 2:34:34

5atah2_a 0:21:13 36:14:02 1:34:50 38:10:05 0:08:29 2:24:33

5atah3_a 0:18:04 30:51:50 1:20:38 32:30:31 0:08:29 2:07:28

5athl_a 0:28:45 49:06:55 2:08:12 51:43:52 0:08:29 3:13:20

5ath2-a 0:30:08 51:23:47 2:14:18 54:08: 12 0:08:29 3:24:23

5ath4-a 0:18:48 31:56:16 1:23:36 33:38:40 0:08:29 2:08:51

5btah2_a 0:21:34 36:38:44 1:35:50 38:36:09 0:08:29 2:28:25

5btah4_a 0:23:18 39:36:06 1:43:34 41:42:58 0:08:29 2:36:03

Scutigera 0:14:24 33:46:41 0:51:18 34:52:24 0:07:04 2:07:33

imp._bu11ion_a 0:08:11 12:12:53 0:24:55 12:45:58 0:02:07 0:49:07

spine 0:02:21 5:28:50 0:08:23 5:39:35 0:07:04 0:23:10
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Table 5.10 highlights the performance gains from parallelizing the execution of the

RMT and interest detection computations. While the total CPU time for the parallel ex-

ecution exceeded 1 day, the wall-clock times were relatively short. The best wall-clock

performance comes from running the interest detection on a volume without using a cached

RMT. Computing the RMT alone takes more time than the combined execution due to the

overhead of generating the cache files, but provides the opportunity to reuse the stored re—

sults in later processing. The interest classification alone took the longest wall-clock time

but was actually the fastest in terms of CPU time. This apparent discrepancy was caused by

bottle necks in network data transfer. To minimize multiple interest classifications, the best

approach would be to use cached RMTs with a parallel version of the interest classifier.

Table 5.10: RMT Performance

 

 

 

 

 

 

CPU Time Wall

Volume Slice Time

Activity Hosts Load Process Store Total Total Total

Interest/RMT 36 0:00:01 38: 13:37 0:00:50 38:14:28 0:08:24 1:10:07

RMT 34 0:21:05 41:40:01 1:14:05 43:15:11 0:09:30 2:07:32

Interest 1 0:17:13 0:52:17 0:00:42 1:10:12 0:00:15 2:47:08          
 

Figure 5.47 displays the timing results from each of the experimental runs, and a func-

tion fitted to the timing data for pmaa: E {2, 5, 10}. The spurious data points for pmax = 10

and pmacl: = 5 are from the Scutigera sub-volume. One possible explanation for the excess

execution time is that the Scutigera data slices were sized in such a way that data-cache

misses were induced at a higher than normal rate.

Experiment Environment

The performance experiments were run using eighteen Sun Blade 1005, one Sun Ultra 10,

and one Sun Fire V420. Figure 5.48 provides a schematic of the experiment environment.

For the experiments, a job server is run on the Sun Ultra 10 that generates commands

for running jobs on partial volumes. Each of the Sun Blades runs a client that receives
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Figure 5.47: Execution time of RMT as a function of the number of voxels processed.

the commands from the server, and then executes the commands. All files that comprise

a volume are stored on a RAID served by the Sun Fire V420. The client computers are

connected via a 100 megabit-per-second connection to a gigabit switch. The gigabit switch

in turn connects to a gigabit network that also hosts the file server. The job server is

connected via a 100 megabit network link to the gigabit network hosting the file server.

All timing information, with the exception of the wall-clock times, was collected from

system timing information.

Each of the client computers was a sun Blade 100 with a 502 MHz CPU, and 128 MB

of RAM. Each computer also had approximately 8 GB of available temporary storage for

intermediate processing results. During the timing runs, the computers were used solely

for computing the RMT.

The file server was connected to a RAID that provided access to the files that made

up each volume. The file server was also responsible for storing the RMT results and the
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performance logs.

The performance of the distributed execution can be improved without optimizing the

implementations by adding more client computers to the compute pool, or by using faster

computers with more RAM. The nature of the RMT is such that adding additional comput-

ers will improve performance until there is one computer per slice, or the file servers and

network become the bottleneck.

Compute Client x 18
 

Sun Blade 100

128 MB RAM

8 GB Local Storage -

 

Job Server
 

Sun Ultra 10

1 GB RAM

88 GB Local Storage

 

 

100 Mb f100/1000Mb\ 1000 Mb
 

 
Network

File Server

 

 

Sun V240

4 GB RAM

867 GB Local Storage

 

Figure 5.48: Schematic of performance experiment setup.
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5.7.5 Future RMT Directions

In addition to using the RMT as a feature for interest detection, there may be some addi-

tional applications of the RMT. The RMT may facilitate registration by providing a mecha-

nism for selecting discriminating regions within a volume. Discriminating regions may be

identifiable by selecting regions where the RMT has a jagged response. By selecting the

RMTs with the highest jaggedness measure, a constellation of points can be identified for

use in other registration algorithms. The RMT may be useful for performing sphere-fitting

operations on a n-ary segmented volume.

5.8 Interest Detection

One of the main purposes of studying the RMT is to use it as a feature for interest detection.

The interest detection framework, outlined in Figure 5.1 on page 73, uses an SVM and the

RMT.

The first stage of the interest classification process is having the user identify a set of

interesting points B and a set of uninteresting points Pu such that P,- O Pu = 0. The two sets

0f points provide the basis for generating the data model for the SVM. The RMT for each of

the selected points is generated, and then used as labeled input to the SVM. In Figure 5.50,

Cross sections of a volume are presented, along with labeled interest points. The interesting

POints, as identified by the user, are shown as red cubes, while the uninteresting points are

shown as blue diamonds.

5~8. 1 Test Cases

The first test case is the jack phantom from Section 5.7.3. The phantom is shown in Figure

5‘49. The training points for the jack were automatically selected during the phantom

construction. The interesting points were points that were at the junction of two or more

prlrnitives at the surface of the phantom during construction. The points of interest fell in
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the creases at the center of the jack, and at the intersections of the limbs of the jack where

they connected to the spherical ends.

 
Figure 5.49: Rendering of jack phantom. The surface mottling is from the anti-aliasing

used during phantom construction

The locations of the jack interest points for training the SVM are shown in Figure

5.50. There were 62 interesting and 59 uninteresting points used for training with all points

located in one octant of the volume.

The result of the interest classification is shown in Figure 5.51. The central cube—

like region corresponds to the ridges at the core of the jack. The four annular structures
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Figure 5.50: Training interest points for jack phantom. Cubes are interesting while dia-

monds are uninteresting.
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correspond to the junctions of the limbs of the jack with the large spheres. The two dot-like

regions correspond to the junction of the limbs of the jack with small spherical caps. Also

faintly visible near the annular structures are interesting points where the surfaces of the

large spheres caused a relatively weak interest response due to aliasing effects when the

phantom was constructed.

 
Figure 5.51: Interesting points for jack phantom.
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For the soil sample. interesting points are at the junction of regions of dissimilar ma-

terial. The interesting and uninteresting points were selected by hand. then used to train a

SVM on the initial volume. The sample points are shown in Figure 5.52. After the model

 
Figure 5.52: Interest points in soil aggregate.

was trained. the volume that contained the slice shown in Figure 5.53(a) was classified pro-

ducing the interesting points shown in Figure 5.53(b). The original slice and the interest

slice were then combined to highlight the interesting points in the original slice, shown in

Figure 5.53(c). The model that was used for the volume in Figure 5.53 was also used on

the volume shown in Figure 5.54. Since the texture of the volume was very different. few

points in the second volume were classified as interesting. This phenomenon highlights
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(a) Input Slice (b) Interest (c) Interest Overlay

Figure 5.53: Overlay of detected interest points on soil sample used for training.

the fact that the interest detection framework relies on having been trained on a represen-

tative sample of interesting and uninteresting points in order to effectively perform interest

classification. Ultimately this behavior is caused by the SVM, since it generates the model

used for classification directly from the training samples.

   
(a) Input Slice (b) Interest (c) Interest Overlay

Figure 5.54: Overlay of detected interest points on soil sample not used for training.
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The last of the samples is the base of the bee stinger. In this sample, the interesting

regions were the boundaries of the stinger with the air. The training points from the second

round of interest selection are shown in Figure 5.55. Owing to the reconstruction artifacts

 
Figure 5.55: Training interest points for stinger; cubes are interesting while diamonds are

uninteresting.

in the volume due to phase contrast tomography, there are large regions with smoothly

varying intensity. Initial attempts to train and classify the volume were not successful.

and are shown in Figure 5.56. Switching to the clustered version of the stinger volume

allowed the interest classification to pick out the boundaries within the stinger, shown in

Figure 5.57. The interest detection system was able to highlight the outer boundaries of the
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(a) First Training Iteration (b) Second Training Iteration

Figure 5.56: Unsuccessful interest classifications of stinger. In the first iteration misclassi-

fied points form a cloud around the outside of the stinger. In the second iteration misclas-

sified points form a circle on the inside of the stinger.

 

Figure 5.57: Successful interest classifications of stinger.
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stinger, as well as the boundaries of the tube located inside the stinger. A 3D rendering of

the detected stinger boundaries is shown in Figure 5.58.

 
Figure 5.58: Rendering of interesting regions of stinger.

The SVM provides a robust mechanism for classification of a volume into interesting

and uninteresting voxels. The classification can be either a binary classification or a contin-

uous classification can be generated to provide information on how interesting a particular

voxel is. The computational costs for the SVM are relatively low when compared to the

cost of computing the RMT. When using the SVM for classification, the user must be sure

that the classification of the original training points is correct. Future work in this area will

include developing techniques to tune the SVM for interest classification.
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5.9 Satisfaction of Interest Detection Criteria

Five criteria the interest detection algorithm must meet were identified at the beginning of

this chapter.

1. Simplicity of computation.

2. Adaptability to different types of data.

3. Generates and preserves intermediate state information that enables a scientist to

drive the interest detection towards a desired goal.

4. Amenable to incremental refinement.

5. The framework should be extendible as new interest detection techniques are devel-

oped.

While the RMT is computationally expensive, it is readily amenable to parallel com-

putation, thus reducing wall-clock times to reasonable levels. The classification using the

SVM is fast for single samples and is also amenable to parallel computation. The actual

computations that are performed are simple; the cost in computation comes from process-

ing large data sets. The individually inexpensive computations performed in parallel allow

the interest detection algorithm to satisfy the criteria requiring computational simplicity.

The RMT can be computed for any type of data that is represented as a scalar field,

independent of the origin of the data. The RMT can be extended to support vector fields

at a cost of increased compute time. The SVM as used in the interest detection framework

requires a vector as input, again independent of the source of the data. The simple input

requirements of the RMT and SVM allow the interest detection algorithm to be applied

to a wide range of data sources, satisfying the criteria that the algorithm be adaptable to

different data types.

In order to amortize the cost of computing the RMT, it is computed once for a volume

and then is reused in later processing. Training data is stored and can be used as a basis for
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further training. Training the SVM takes at most several seconds. The ability to quickly

retrain the SVM allows the user to explore different training sets easily. Since intermediate

data is stored, it is easy to pursue different interest classifications from a common start—

ing point. These factors allow the the criteria requiring storage of intermediate state and

incremental refinement to be satisfied.

Finally, the SVM component of the feature detection framework is able to work with

any form of data that can be given as a vector of scalar data. The SVM will operate best

if all inputs are in similar ranges, requiring only that features be normalized. The sim-

plest extension of the interest detection framework would be to augment the RMT vectors

with second-order features computed from the RMT and other non-RMT based scalar fea-

tures. The ability of the SVM to operate on longer input vectors that satisfy a simple range

requirement allows the framework to satisfy the extendibility criteria.

5.10 Conclusions

The RMT is a novel feature that encodes information about the structure of the volume in

a rotation- and translation-invariant manner. While the the RMT is expensive to compute

sequentially for an entire volume, it is trivial to compute in parallel. Additionally the cost

of computing the RMT can be amortized over several different classification cycles. The

information encoded in the RMT is sufficient to allow for the generation of meaningful

second-order features about the volumes. These features can, in future work, be used in

addition to the raw RMT for performing classification. Additionally, the RMT shows some

promise for performing volumetric registration.

Using the SVM along with the RMT allows for user specified interest detection without

explicit encoding of a priori knowledge of interesting features. The framework presented in

this chapter is amenable to the addition of other features to allow for a more robust interest

classification system. While this framework is not suitable for fully automatic analysis, it
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should provide assistance to the human expert in evaluating volumetric data.
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Chapter 6

View Path Generation

The human visual system is capable of extracting 3D shape information from a series of 2D

images. The focus of this chapter is developing a technique for generating a video stream

that presents a series of cross sections of a volume to a user. The purpose of the producing

a video stream is to help the user understand the structure of objects in the volume and to

aid in the presentation of portions of the volume with high interest.

6.1 Problem Statement

View path generation addresses the problem of identifying a set of good viewing positions

and the transitions between those viewing positions. This chapter focuses on identifying

sets of cutting planes that maximize the amount of interest covered in a volume. After the

planes are identified, a path satisfying a smoothness constraint is generated to move the

view from cutting plane to cutting plane.

The goal of developing techniques to facilitate volumetric data analysis leads to the

following criteria for the view path selection algorithm:

1. The path generation algorithm should be automatic.

2. The path should be smooth.
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3. The path produced should maximize interest.

4. Multiple alternative paths should be generated during a path generation cycle.

5. The path generating system should allow user interaction, if not intervention.

6. The computational complexity should be low.

These criteria are discussed in the following sections.

6.1.1 Automatic Path Generation

Given a volume with n voxels there are potentially "Pm possible paths of length 1 g

m g n if a path is restricted to visiting each voxel only once. If the restriction of visiting

a voxel only once is relaxed, there are potentially an infinite number of paths through a

volume. Given the size of the path space, the generation algorithm must be able to produce

acceptable paths without user intervention. Manual intervention is problematic since re-

slicing a volume is a computationally expensive operation, and many of the possible paths

will not cover any interesting portions of the volume.

6.1.2 Smooth Paths

The paths that are generated should be smooth. If the path is non-smooth, the presentation

of the path to the user may be disorienting. Jumps in the path through the volume will tend

to hinder the user developing a model of structure present in the volume. In extreme cases,

non-smooth or rapidly changing views may induce nausea in some users [53]. Non-smooth,

or oscillating paths, may also cause a failure in 3D shape recovery for a user [65].

6.1.3 Interest Maximization

As noted above, the path space is extremely large. View paths selected by the path gen-

eration algorithm should maximize the amount of interest displayed along the path. By
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requiring that the paths cover interesting portions of the volume, the computational effort

of generating the rendering can be better justified.

6.1.4 Multiple Paths

For a volume with non-trivial structure there may be more than one path satisfying the

smooth path and interest maximization criteria. The path generating algorithm should pro-

duce multiple paths, allowing for better coverage of the volume. The generation of multiple

paths simultaneously allows for amortizing the cost of path generation.

6.1.5 User Interaction

While users may not be able to drive the path generation directly, they should be able to

select from the available paths produced by the algorithm. The user may also be able to

specify locations in the volume that must or must not be visited during a tour.

6.1.6 Computational Complexity

For any number of interest points 71 the number of potential paths that visit each point once

is O (71!). The consequence of this fact is that an exhaustive search of the path space for

10 interest points leads to over 3 million possible paths. A typical volume may have a

minimum of 1000 interesting points, making exhaustive searches infeasible.

6.2 General Algorithm

The general algorithm for path generation takes as its input a set of it interesting points.

As its output it produces a set of paths specified in terms of a set of cutting planes; each

plane is specified in terms of a plane origin and normal. The components of the general

algorithm are shown in Figure 6.1.
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Figure 6.1: General algorithm for view path generation
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The view path generation is related to identifying optimal projections. Hypothesized

planes that maximize the amount interest that they display can be considered optimal. The

remainder of this chapter discusses view path generation, but the techniques described for

generating cutting planes are appropriate for for single projection selection.

6.3 Possible Approaches

There is a range of possible approaches to determining a path through the volume. The

simplest approach is to simply scan along the coordinate axes in the volume. Simple scan-

ning algorithms fail to meet the interest maximization and multiple path criteria identified

in Section 6.1. The interest maximization criteria is not met since view planes maximiz-

ing interest may not be axis aligned. Simple axis scanning algorithms will fail when the

structure in a data set is not axis aligned, see Figure 6.2 for an example. At the other ex-

treme is examining all possible paths through the volume. Any exhaustive search algorithm

will violate the computational complexity criteria. Graph theoretic approaches construct a

graph using the interest points in a volume, and then compute the path via some traversal

algorithm. The primary problems with this approach are determining where to place the

graph vertices, the level of vertex connectivity, and the appropriate weighting for the edges.

Computational geometry approaches attempt to take advantage of the geometric relations

between the vertices. One computational geometry approach is using the Delaunay trian-

gulation [23] and it’s dual the Voronoi diagram to construct graphs suitable for some graph

theoretic approach. Another computational geometry approach is to hypothesize cutting

planes in the volume that satisfy some coverage property with respect to the interest points

in the volume. The planes can be hypothesized via techniques such as the Delaunay trian-

gulation and the Hough transform [52]. Once the planes have been hypothesized, a sorting

algorithm can then be used to order the planes for display.

131



 

Figure 6.2: (a) Set of 1024 points viewed using an arbitrary projection. (b) Same set of

points as (:1) using a projection that highlights the structure of the points.

6.4 Proposed Algorithm

An approach to generating a set of viewing paths through a volume is given below.

1. Select a subset of high interest points from an interest classified volume.

2. Use a Hough transform parameterized as plane specifications in polar form to hy-

pothesize cutting planes.

3. Perform non-maximal suppression to cull the candidate planes to those at local max-

ima in the plane parameter space. The non-maximal suppression serves to select

planes for the path generation.

A . Construct a Delaunay triangulation of the culled plane parameterizations to construct

a graph encoding smooth plane to plane transforms. (Use the QHull algorithm[6])

U
I

. Construct a set of cutting planes from the plane specification graph using Dijkstra’s

single source shortest path algorithm [19].

C
h

. Generate a view path using an interpolating spline to move the cutting plane location

and normal through the volume.
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6.4.1 Satisfaction of algorithm criteria

The algorithm proposed above satisfies all the criteria given in Section 6.1. Once the thresh-

old has been selected for the interest points, none of the steps outlined in the algorithm

require user intervention. Using a parameterization of the plane space in spherical coordi-

nates enforces that spatially close points in the accumulator will have similar normals. The

use of spline interpolation will ensure that the path itself will satisfy reasonable smoothness

criteria. The Hough transform will accumulate interest along planes and the non-maximal

suppression will select a subset of planes that have maximum interest in the accumulator

space. Dijkstra’s algorithm produces a tree structure. The current algorithm does not allow

users to specify where in the volume the path will visit, but they may select among the

paths that are generated. The traversal from the tree root to a leaf specifies a path. All

of the sub-algorithms are computationally inexpensive, leading to an overall computation-

ally inexpensive algorithm. A more detailed discussion of the computational complexity is

given in the next section.

6.4.2 Computational complexity of algorithm

Each of the stages of the algorithm is performed once, allowing the summation of the com-

putational costs. The cost of thresholding a volume is O (n) for a volume with n voxels,

since thresholding visits each voxel in the volume once. The cost of the Hough transform

is dictated by the number and resolution of the free parameters in the transform space and

the number of values to be transformed. For this algorithm the Hough transform has 2 free

parameters 6, (b and 1 dependent parameter p. Assuming that the free parameters are quan-

tized the same into m levels, the cost of the Hough transform has a computational cost of

0 (m2) for each value transformed. The total cost of the Hough transform is O (n x m2).

The non-maximal suppression operation examines the neighborhood of each voxel once,

leading to a computational cost of O (m3) where the m is the number of levels in the quan—

tizations of the parameters in the accumulator. The Delaunay triangulation has incremental
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O (nigl) algorithms where there are 71 input points in 01 dimensions [40]. Dijkstra’s al-

gorithm with a trivial implementation is O (V2) where V is the number of vertices in the

graph. A simple modification of the algorithm allows for O (E lg V) running time where

E is the number of edges in the graph. Since the path generation algorithm operates by

constructing a Delaunay triangulation of the candidate points the number of edges E in

the candidate path graph will be relatively small. Spline generation is an O (n) algorithm

where n is the number of points being interpolated.

6.5 Experimental Results

To test the view path generation algorithm, two data sets were tested. The first data set was

the jack phantom, while the second was the base of the bee stinger. Each data set is a cube

128 units on a side with a real-valued interest level at each voxel. The first processing step

was to compute the Hough transform for interest points in the volumes. For the stinger data

set, voxels whose interest level was greater than or equal to 4 were used. For the jack data

set, voxels whose interest was greater than 0 were used. For both data sets, each parameter

in the Hough transform space was quantized into 128 levels.

The accumulator volumes were then passed through a non-maximal suppression filter

to select local maxima in the accumulator array. By removing non-maximal points from

the accumulator the candidate planes with the most local interest are preserved. After the

suppression step, the accumulator indices for the non-zero planes were extracted. For both

data sets approximately ten thousand cutting planes were extracted from the accumulator.

A Delaunay triangulation was then constructed for the candidate planes, generating a

connected graph. The vertices in the graph represent the parameters for the plane, while the

edges indicate acceptable plane to plane transitions. Dijkstra’s single source shortest path

algorithm was then applied to the graph, starting at the first candidate plane extracted from

the accumulator. All paths that covered at least 20 candidate planes were then extracted.
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Figure 6.3 shows all of the extracted paths for the stinger volume. The stinger volume

produced 776 different candidate paths, with the longest path covering 33 cutting planes.

Figure 6.4 shows the extracted paths from the jack volume. The jack volume produced

2490 different candidate paths, with the longest path covering 87 cutting planes. After the

path tree was extracted, the candidate plane normals were decoded and plane centers were

generated from the set of voxels contributing to the plane.
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Figure 6.3: Candidate paths for stinger data set. All paths are generated from a single point.

Figure 6.5 is subset of 40 of the rendered cross-sections of the interest labeled version

of the stinger data set. The path that specifies the cross-sections was automatically gener-

ated. The rendering starts by cutting the stinger length-wise, then rotates the cutting plane

through the part of the stinger that connects to the bee. After the base of the stinger has

been covered, the cutting plane is then reoriented such that the plane normal is parallel to

the long axis of the stinger. The plane then moves along the length of the stinger. Figure

6.6 follows the same path shown in Figure 6.5, but the rendering is done on the original
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Figure 6.4: Candidate paths for jack data set. All paths are generated from a single point.

reconstruction data rather than the interest classified data.

Figures 6.7 and 6.9 are renderings of the interest labeled jack phantom. Two paths were

chosen arbitrarily from the set of generated paths. In Figure 6.7 the cutting plane is initially

centered on the high interest structure at the center of the phantom. In the third and fourth

rows, the cutting plane has rotated to cover the small spherical caps on the short limbs of

the jack. The remaining rows have the cutting plane rotating around the center region of

the jack. The corresponding raw volume is rendered in Figure 6.8.

Figure 6.9 again begins by rotating about the center of the jack. The rotation about

the center continues until the fifth row where the cutting plane then rotates to cover the

interesting regions on the ends of two limbs. The last two rows have the cutting plane

rotating and aligning itself with one of the volume axes passing through one of the annular

interest regions on a jack limb ending with a large sphere. The corresponding raw volume

is rendering in Figure 6.10.
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Figure 6.5: Rendering of interest classified stinger volume along an automatically gener-

ated path. The frames go from left to right, and top to bottom. Every 20th frame from the

animation is shown. The full video is 58 seconds and should be available on theW at

http://www.cse.msu.edu/"a1beepau/.
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Figure 6.6: Rendering of original stinger volume along an automatically generated path.

The frames go from left to right, and top to bottom. Every 20th frame from the animation

is shown. The full video is 58 seconds and should be available on theW at http:

//www.cse.msu.edu/'albeepau/.
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Figure 6.7: Rendering of interest classified jack volume along an automatically generated

path. The frames go from left to right, and top to bottom. Every 20th frame from the

animation is shown. The full video is 58 seconds and should be available on the WWW at

http://www.cse.msu.edu/"a1beepau/.

139



 
Figure 6.8: Rendering of raw jack volume along an automatically generated path. The

frames go from left to right, and top to bottom. Every 20th frame from the animation is

shown. The full video is 58 seconds and should be available on theW at http:

//www.cse.msu.edu/"albeepau/.
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Figure 6.9: Rendering of interest classified jack volume along an automatically generated

path. The frames go from left to right, and top to bottom. Every 20th frame from the

animation is shown. The full video is 58 seconds and should be available on theW at

http://www.cse.msu.edu/"albeepau/.
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Figure 6.10: Rendering of raw jack volume along an automatically generated path. The

frames go from left to right, and top to bottom. Every 20th frame from the animation is

shown. The full video is 58 seconds and should be available on the WWW at http:

//www.cse.msu.edu/"albeepau/.
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The two paths generated for the jack phantom cover the center of the volume, and then

diverge to cover different portions of the volume. The difference in coverage is apparent in

Figures 6.8 and 6.10.

6.5.1 Discussion

The animations produced from the automatically generated paths are reasonable. In the

case of the stinger animation (Figure 6.5) the view path covers the interest points in the

volume very well. The path is particularly satisfying since it visits the large pore at the

bee end of the stinger and then flies through the tube along the length of the stinger. The

animations for the jack, Figures 6.7—6. 10, provide good coverage of the jack but are not as

satisfying. The stinger is densely covered with interesting points while the jack phantom

has the interesting points located in a few relatively small regions.

The automatic path generation algorithm generates a wide range of paths very quickly.

The path collection generation time for the test data sets is approximately two minutes.

User input would be appropriate to select the path(s) to be rendered, since rendering the

test volume takes 23 seconds per frame. Giving the user the ability to suggest that certain

planes be considered or avoided could be addressed by adjusting the Hough accumulator.

The quality of the paths is still to be determined, since the algorithm enforces smooth-

ness constraints on the path graph generation in terms of plane specification, but does not

enforce any smoothness constraints on the path center determination. These experiments

point to a need to develop a technique to measure the quality of a path through the volume

in terms the smoothness of the path location. An additional measure of path quality would

be determining how well the path covers the volume, and the level of redundancy in the

coverage.

The graph generation algorithm relies on computing the Delaunay triangulation. While

the Delaunay triangulation helps to enforce plane parameter smoothness constraints, it may

introduce an unacceptable level of cost when considering a large number of potential inter-
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est points. One solution to enforcing overall smoothness constraints would be to add three

more parameters to the Hough transform computing the centroid of the points contribut-

ing to the hypothesized plane. Delaunay triangulation becomes prohibitively expensive for

data whose dimensionality exceeds 3.

6.6 Conclusions

The simple path generation algorithm presented in this chapter was successful in generating

acceptable view paths through a volume. The overall algorithm is relatively simple and

computationally reasonable for the parameterization used in the Hough transform. The

primary bottle neck in constructing a collection of rendered view paths is the time required

to re-slice and render a volume. With the application of a parallel renderer, the time to

generate a collection of rendered paths should be reasonable.

Study of the overall algorithm reveals several areas where additional work would be

fruitful. Among these are improved plane hypothesizing via a more complex plane param-

eterization or some other plane fitter. Construction of the view path graph can be enhanced

to facilitate enforcing final path smoothness constraints. The view path graph may be elim-

inated completely through the use of a different plane selection system. Human studies to

assess the quality of the 3D structure presentation and path quality would provide guidance

on what constraints are relevant for path generation. Finally, user interaction and interven-

tion should be facilitated. Techniques using active contours may be appropriate for tracking

paths through the accumulator that maximize overall path interest.
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Chapter 7

Conclusions and Future Work

The overall goal of this thesis was to develop a suite of new algorithms and tools to support

analysis and visualization of volumetric data sets. Early research was strongly oriented

towards microtomographic volumes of soil. As the the research progressed, the emphasis

shifted to volumes in general. Volumetric data sets from medicine, soil science, geology,

and material science share some attributes making general analysis algorithms desirable.

The data sets are generally large, requiring a significant amount of effort for manual anal—

ysis. The data acquisition processes are subject to a wide range of noise processes. The

structure of the data sets is often unknown, reducing the utility of analysis techniques that

require a priori knowledge of the structures. In order to address these commonalities,

three major subproblems were pursued in this dissertation. The first subproblem was the n-

ary segmentation problem for volumetric data sets. The second subproblem was detecting

user-specified interest regions in volumetric data sets. The third subproblem was generating

virtual tours of a volume that provide users with insight into the structure of the volume.

The n-ary segmentation problem was approached by developing a clustering based al-

gorithm that is efficient and provides n-ary segmented volumes with the degree of seg-

mentation controlled by one parameter. The interest detection problem was addressed

through developing a novel transform that encodes structural information in a rotation- and
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translation- invariant manner. The results of the transform were then used in a supervised

learning system to develop an interest classifier that is both domain specific and extendible.

View path generation was approached through a combination of transform space encod-

ing using the Hough transform [52], computational geometry, and graph theory. A more

detailed review of each of the three contributions follows.

7.1 Segmentation

The clustering-based segmentation algorithm proposed in Chapter 4 satisfies the four cri-

teria established for an acceptable algorithm, which were that the algorithm be computa-

tionally simple, be robust in the presence of noise, provide n-ary segmentation, and sup-

port user-driven segmentation. In addition to satisfying the basic criteria, the algorithm is

amenable to the application of other cluster similarity criteria. Finally, the algorithm is do-

main independent in the sense that the only a priori knowledge required for segmentation

is that separable density distributions are present in the volume. The clustering algorithm

can generate a set of weighted Gaussians that closely matches the shape of the histogram

of real data, with the ability to trade-off the fidelity of the histogram match with execution

speed. The algorithm was validated on both synthetic and real data sets using both quan-

titative measures and qualitative comparisons. The algorithm has the advantages of being

fast to compute and producing monotonic segmentation results.

The segmentation algorithm’s execution time is dependent on the size of the volume, the

a parameter controlling cluster merging, and the actual distribution of the elements in the

volume. The time to process a volume in excess of 637 megabytes was less than 9 minutes

on a Sun Ultra 10. The worst case performance for the algorithm is O (nm2), where n is

the number of voxels being processed, and m is the number of clusters. The expected order

is 0 (nm) since the m2 term only arises when all detected clusters are merged into one

cluster. In the expected case, the algorithm is efficient and provides good performance for
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large data sets.

The segmentation results produced by the algorithm is an integer relabeling of the vol-

ume. The relabeling is monotonic with respect to the original data. This monotonicity

property allows the data to be interpreted in a manner similar to that of the original data.

The labeling has the added advantage of reducing noise within the volume and enhancing

boundaries between regions of dissimilar material. The various displays and downstream

use of the segmentation data lend support to its value.

Future directions for the segmentation algorithm include operating on multi-channel

data, automatic setting of the a parameter, improving the cluster merging criteria, and

parallelizing the algorithm. Currently the algorithm operates only on scalar data. Some

imaging modalities (optical thin-sections, confocal microscopy, and MRI) produce a vec—

tor at each image point. Extending the clustering algorithm to handle multi-channel data

would take advantage of the richer statistics available from such data. The a parameter is

currently set by the user at the beginning of clustering. The Bhattacharrya distance [26],

or some other goodness-of—fit measure, could be used to automatically set the a parame-

ter. Automating parameter setting would allow the algorithm to be used more readily by

non-experts. Closely related to the a parameter is the merging criterion. Distances such as

the Mahalanobis distance [54] may be more appropriate for setting the a parameter driving

cluster merging, particularly if the segmentation algorithm is extended to multi-channel

data sets. The segmentation algorithm is currently a serial algorithm. Improvements in

performance may be possible if the algorithm is parallelized.

7.2 Interest Detection

Interest detection is the process of locating points or regions within the volume that are

salient with respect to the user’s needs. Deriving a single criterion for interest is ineffective

since interest is a domain and application specific concept. The approach taken for inter-
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est detection was two-fold. The first part was developing the normalized discrete Radial

Mass Transform (RMT) and the second was to perform supervised Ieaming using a Sup-

port Vector Machine (SVM) to classify data transformed using the RMT as interesting or

uninteresting.

The RMT is a novel feature that encodes information about the structure of a volume

in a rotation- and translation-invariant manner. The RMT was first defined as a continuous

function that integrated the mass on the surface of a sphere centered at a point. The RMT

was then normalized by the surface area of the sphere defining the area of integration. Fi-

nally, the RMT was discretized to support computation using a uniformly sampled volume.

The continuous RMT exhibits rotational and translational invariance. The discretized RMT

is not rotationally invariant but is close to being so. The discretization effects that cause

some rotational variance can be eliminated with a modified RMT at the cost of significant

compute time using a weighted computation. The discrete RMT is translation invariant for

discrete steps.

The richness of the RMT was also shown via a set of second order features computed

from the RMT. The second order features demonstrated that the RMT can be used to detect

a variety of different structures within a volume. The second order features were not studied

further, but will be of interest in future work.

The computation of the RMT requires O (r371) effort, where r is the maximum radius

of the RMT and n is the number of positions where the RMT is computed. While the

RMT is expensive to compute sequentially for an entire volume, it is trivial to compute

in parallel. Additionally, the cost of computing the RMT can be amortized over several

different classification cycles. The information encoded in the RMT is sufficient to allow

for the generation of meaningful second-order features about the volumes. These features

can, in future work, be used in addition to the raw RMT for performing classification.

Additionally, the RMT shows promise for performing volumetric registration.

Using the SVM along with the RMT allows for user-specified interest detection without
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explicit encoding of a priori knowledge of interesting features. The framework presented

in Chapter 5 is amenable to the addition of other features to allow for a more robust interest

classification system. While this framework is not suitable for fully automatic analysis, it

should provide assistance to the human expert in evaluating volumetric data.

The RMT is useful since it generates a a concise description of the regions for which

it is computed. This description has been demonstrated to provide a rich basis for further

feature generation, as well as serving as a good feature for interest classification. The RMT

coupled with the SVM satisfies the criteria identified in Chapter 5. The RMT is simple to

compute and when computed in parallel allows for a speedup proportional to the number of

compute nodes available. The RMT does not require the data to fall in any particular ranges

for computation, making it adaptable to different data types. The RMT is easily stored,

allowing it to be used for multiple applications. The SVM, using the RMT as a feature, can

be iteratively trained to support incremental refinement of interest classifications. Finally,

the interest framework is able to accommodate other features in addition to the RMT for

interest classification.

The RMT may facilitate registration by providing a mechanism for selecting discrim-

inating regions within a volume. Discriminating regions may be identifiable by selecting

regions where the RMT has a jagged response. By selecting the RMTs with the highest

jaggedness measure, a constellation of points can be identified for use in other registra-

tion algorithms [85, 86]. The RMT may also be extended to facilitate multi-channel data

analysis, allowing for better characterization of data sets.

7.3 View Path Generation

The path generation algorithm presented in Chapter 6 was successful in generating ac-

ceptable view paths through a volume that highlighted the structures in regions of dense

interest. The overall algorithm is conceptually simple and computationally reasonable for
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the parameterization used in the Hough transform. The computational effort for path gen-

eration depends on the number of interest points used to build the accumulator 71,-"), the

quantization of the accumulator m, the number of points extracted from the accumulator

naCC and the number of edges 71....de generated during the path construction. The total com-

putational effort is O (nimm3 + 1136C + hedges lg mm). In general, naCC will be 1 to 3 orders

of magnitude less than rim, leading to an expected computational cost of O (nintm3). The

primary bottleneck in constructing a collection of rendered view paths is the time required

to re-slice and render a volume. Approximately 20 seconds are required to render each

slice in a 1283 unit volume. With the application of a parallel renderer, the time to generate

a collection of rendered paths should be reasonable.

The view path generation algorithm satisfies the criteria identified in Chapter 6. It auto-

matically generates a set of paths derived from a set of interest maximizing cutting planes.

The user can select one or more of the paths for rendering, with future work including

developing techniques to support direct user intervention in path generation.

The overall algorithm admits several opportunities where additional work would be

fruitful. Among these are improved plane hypothesizing via a more complex plane param-

eterization, or some other plane fitter. Construction of the view path graph can be enhanced

to facilitate enforcing final path smoothness constraints. The view path graph may be

eliminated completely through the use of a different plane selection system. Finally, user

interaction and intervention should be facilitated. Techniques using active contours may be

appropriate for tracking paths through the accumulator that maximize overall path interest.

7.4 Parallel Computing

A common thread through each of the subproblems in the dissertation was the application

of parallel computing techniques. Typical data sets are on the order of400 — 600 megabytes,

leading to serial execution times measured in hours or days. The parallel versions of the
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presented algorithms reduced the execution times to minutes or hours. There is further

work to be done in parallelizing the entire suite of analysis tools.

7.5 Overall Applicability

We envision different types of usage of the new tools. First, is direct support for the sci-

entist sampling the material. The scientist would need substantial computing resources to

analyze and visualize material in one work day. Current computational resources can be

utilized in parallel to support exploratory data analysis using the techniques that have been

developed. The second type of user is the scientist on the Internet viewing the products

of the algorithms in this thesis. A scientist may use these tools to provide representative

samples to colleagues who lack access to the materials, or the means to directly work with

materials being studied. The algorithms in this thesis may also provide means for develop-

ing presentations to explain the material being studied to students, funding agencies, and

the general public.
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Appendix A

Segmented Volumes

This appendix contains additional segmentation output produced by the method in Chapter

4.
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(a) Input Slice (b) Clustered Slice

  
(c) Segmented Slice ((1) Volume Rendering

Figure A. 1: 5atah3_a segmentation results
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(8) Input Slice (b) Clustered Slice

  
(c) Segmented Slice (d) Volume Rendering

Figure A.2: 5ath1_a segmentation results
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(a) Input Slice (b) Clustered Slice

  
(c) Segmented Slice (d) Volume Rendering

Figure A.3: 5ath2_a segmentation results
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(a) Input Slice (b) Clustered Slice

  
(c) Segmented Slice (d) Volume Rendering

Figure A.4: 5ath4_a segmentation results
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(a) Input Slice (b) Clustered Slice

  
(c) Segmented Slice (d) Volume Rendering

Figure A.5: 5btah2_a segmentation results
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(3) Input Slice (b) Clustered Slice

 

(c) Segmented Slice ((1) Volume Rendering

Figure A.6: 5btah4_a segmentation results
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Appendix B

RMT Figures

This appendix contains additional results from the methods of Chapter 5.

o 100 radial gradients. 100 lines are placed in the volume, and the Euclidian Distance

Map (EDM) is generated.
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Figure B. l: multipleRadialGradients 100 phantom slice 64.
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Figure B.3: Jaggedness feature multipleRadialGradients 100 phantom slice 64.
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Figure B.4: SSR feature multipleRadialGradients 100 phantom slice 64.
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Figure B.5: SSIRD feature multipleRadialGradients 100 phantom slice 64.
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Figure B.6: SSSIRD feature multipleRadialGradients 100 phantom slice 64.
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0 Single point gradient. A single point is placed in the center of the volume, and the

EDM is generated.
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Figure 8.7: singlePointGradient phantom slice 64.
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Figure B.8: Discrete RMT of length 10 for singlePointGradient phantom slice 64.
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Figure B.9: Jaggedness feature singlePointGradient phantom slice 64.
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Figure B. 10: SSR feature singlePointGradient phantom slice 64.

0 3.25

Figure B] l: SSIRD feature singlePointGradient phantom slice 64.
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Figure B. 12: SSSIRD feature singlePointGradient phantom slice 64.
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o Point gradients. The point gradients are generated by randomly placing points in

the volume, and generating a EDM.

When the RMT is centered on a point gradient, it will have a ramp structure, and will

be non-smooth as it moves away from the centers.
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Figure B.13: pointGradients phantom slice 64.
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Figure B.14: Discrete RMT of length 10 for pointGradients phantom slice 64.
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0 0.035

Figure B. 15: Jaggedness feature pointGradients phantom slice 64.
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Figure B. 16: SSR feature pointGradients phantom slice 64.
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Figure B. 17: SSIRD feature pointGradients phantom slice 64.
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Figure B.18: SSSIRD feature pointGradients phantom slice 64.
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0 Single sphere. A single point gradient is thresholded.
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Figure B. 19: singleSphere phantom slice 64.
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Figure B.20: Discrete RMT of length 10 for singleSphere phantom slice 64.
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Figure B.21: Jaggedness feature singleSphere phantom slice 64.
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Figure B.22: SSR feature singleSphere phantom slice 64.

 

 

0 0.9'34

Figure 8.23: SSIRD feature singleSphere phantom slice 64.
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Figure 8.24: SSSIRD feature singleSphere phantom slice 64.
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0 Single tube. A single radial gradient is thresholded.

(—

Figure B.25: singleTube phantom slice 64.
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Figure B.26: Discrete RMT of length 10 for singleTube phantom slice 64.
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Figure B.27: Jaggedness feature singleTube phantom slice 64.
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Figure B.28: SSR feature singleTube phantom slice 64.
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Figure B.29: SSIRD feature singleTube phantom slice 64.
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Figure B30: SSSIRD feature singleTube phantom slice 64.
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o Spheres. A multiple point gradient is thresholded. As the RMT is computed with

it’s center with p units of the sphere, it will produce a response proportional to the

degree of overlap between the sphere and the shells that define the RMT.
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Figure B31: spheres phantom slice 64.
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Figure B32: Discrete RMT of length 10 for spheres phantom slice 64.
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Figure B.33: Jaggedness feature spheres phantom slice 64.
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Figure B.34: SSR feature spheres phantom slice 64.
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Figure B.35: SSIRD feature spheres phantom slice 64.
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Figure 8.36: SSSIRD feature spheres phantom slice 64.
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Figure B.37: spheres 100 phantom slice 64.
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Figure B38: Discrete RMT of length 10 for spheres 100 phantom slice 64.
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Figure 8.39: Jaggedness feature spheres 100 phantom slice 64.
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Figure B.40: SSR feature spheres 100 phantom slice 64.
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Figure B.41: SSIRD feature spheres 100 phantom slice 64.
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Figure B.42: SSSIRD feature spheres 100 phantom slice 64.
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