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ABSTRACT

THREE PAPERS IN BAYESIAN EMPIRICAL MACROECONOMICS

By

Paul Richard Corrigan

These three related papers use a variety of Bayesian methods to examine the

specification of “New Keynesian” dynamic stochastic general equilibrium (DSGE)

models and their uses in forecasting and business cycle analysis.

In the first paper, “Forecasting output and inflation with a Bayesian VAR using a

New Keynesian prior,” I evaluate the forecasting performance of a simple New

Keynesian DSGE model. I do this by using the model to calculate a prior mean and

covariance matrix for the coefficients of a VAR forecasting model for output, inflation

and interest rates, using Ingram and Whiteman’s (1994) technique for using DSGE

models to calculate priors for Bayesian vector autoregression (BVAR) forecasting

models. The resulting BVAR generates forecasts of inflation competitive with those from

a BVAR with a atheoretical prior. However, the New Keynesian BVAR results in very

poor output forecasts, particularly in the short run, suggesting some source of

misspecification in the New Keynesian DSGE model.

In the second paper, “Loss—based evaluation of a New Keynesian DSGE model,” I

evaluate and compare the in-sample specification of a simple New Keynesian DSGE

model to a cash-credit model with flexible prices and to an identified Bayesian VAR, in a

manner similar to Schorfheide’s (2000) study of the portfolio adjustment cost model. I

calculate Bayes factors for each model so as to calculate posterior probabilities for all

three models, and construct a benchmark distribution for correlations and impulse



response functions to which I can compare the correlations and impulse responses of the

New Keynesian model, according to a variety of loss functions. I find that with a realistic

monetary rule, both the flexible and New Keynesian DSGEs are competitive on a

posterior odds basis with each other, as well as with the identified VAR. Very different

levels ofprice stickiness, with very different policy implications, are compatible with the

same data, making use of outside prior information crucial in assessing the role of the

Phillips curve and of“supply-side” and “demand-side” shocks in business cycles.

This point is further underlined in the third paper, “Technology shocks versus

monetary shocks: Identifying sources ofbusiness cycle fluctuations with a New

Keynesian DSGE Model.” Following recent papers such as that of Smets and Wouters

(2002), I estimate by Bayesian methods similar to that in the previous paper a three-

variable New Keynesian DSGE model of output, inflation and interest rates, including

habit formation in preferences to improve the model’s dynamics as well as stochastic

price rigidity. I calculate Bayes factors for the model along with several Bayesian VAR

models, and find it competitive with a four-lag BVAR. I use the DSGE model to estimate

series for monetary shocks, technology/supply shocks, and autonomous demand shocks

for the United States since 1965. I find that monetary policy shocks have probably been

of only secondary importance, as compared to that of supply shocks, in movements in US

inflation, as well as output, business cycles since 1965. My results conflict with those of

Smets and Wouters for Europe, who found a larger role for monetary shocks; I argue that

our differing prior assumptions regarding price stickiness are more likely to account for

our different results than institutional differences between the US and Europe.
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INTRODUCTION

In an introduction to a book, especially one distilled from a dissertation for

academic readers, one generally gives a roadmap to a book and explains what each

chapter is about, when in fact that’s what you 'would think an abstract and a table of

contents listing the chapter titles were for. At any rate, the papers have each their own

introductions explaining what they’re actually about, so I suggest you read those instead.

I must say I’m flattered you’ve managed to even read this far, mind you, so as a reward,

and/or on the off chance I win the Nobel Prize and any historians of thought happen to go

back and read this (vain hope on either count) I’ll give you a sneak preview ofmy

forthcoming memoirs and give a bit of background as to how the papers that make up this

dissertation came to be written.

My research program thus far has mostly been devoted to satisfying myself that

there is a marginal value to economic theory in prediction ofmacroeconomic activity and

that I hadn’t been wasting my time taking bunches of courses in economics when a

simple autoregression could tell me all I needed to know about what the economy was

going to do next week. Obviously mathematical macroeconomic models are grossly

oversimplified pictures of macroeconomic reality, but surely not all were not so

oversimplified that they could not have more than pedagogical value. When as a child (at

the University ofToledo) I learned at the knee of James Lesage the rudiments of

economic forecasting using Bayesian vector autoregressions, I quickly grew dissatisfied

with the atheoretical priors that were so often used in these models; surely a simple RBC

model, even if it didn’t fit the data, could be used to add information to a VAR that could

help in forecasting economic fluctuations.



I could swear that it was Gerhard Glomm who referred me to the Ingram and

Whiteman (1994) paper, describing a technique for using an RBC model to derive a prior

for a BVAR, though Dr. Glomm himself doesn’t remember doing so. At any rate, I ran

with it, and my third-year paper at MSU, which eventually became the first chapter of

this dissertation, was an attempt to apply Ingram and Whiteman’s method, to see if New

Keynesian models could help in forecasting output and inflation.

It was an early experiment, and (as will become clear from reading it) not totally

successful. Eventually a more successful exercise, and a somewhat more elegant one,

came to my attention in the form of del Negro and Schorflreide (2003), just as I was

finishing the first paper. However, it was thinking about how and why the forecasting

experiments with the New Keynesian prior failed (was it a prior information problem? A

specification problem?) led me to try to take the New Keynesian model more seriously

and see what would be required to get the New Keynesian model to fit the data properly,

rather than just write it off as useful only as a guide for a less theoretical model.

What resulted was the second chapter of this dissertation. It was started before the

third, obviously, but finished not until a little bit after. In part this was because I didn’t

fully trust what my results were telling me, so, being the perfectionist 1 am, I wound up

tweaking and analyzing the sensitivity ofmy results until the very last moment (much to

the chagrin of Rowena Pecchenino, who’d surely have preferred 1 just put it to bed). It

answered the question of how the model in the first paper had failed—poor dynamics that

were easily corrected with addition of another friction—and the result was a DSGE

model that actually fit the data better and gave more precise results than a vector

autoregression regarding the effects of monetary shocks on output (namely, quite small



overall). What I did find puzzling was that the output and inflation data itself didn’t seem

to have much information at all regarding the amount ofprice stickiness in the

economy—which was rather worrying, given how many studies had essentially mined

just the output and inflation data for evidence on price stickiness in the US economy.

More information was necessary, which meant a bigger model. It also meant

disentangling inflation from other demand shocks and comparing their effects and

importance on the business cycle.

The second chapter was basically an application of Schorfheide’s (2000) method

of assessing the goodness of fit ofDSGE models and evaluating the deficiencies thereof

as compared to other less theoretical models like VARs (though ironically now it was the

VARs that were deficient, in part because they weren’t parsimonious or precise enough).

The third chapter was more analogous to Dejong et al. (2000b), which assessed the role

of various types of non-monetary shocks in economic fluctuations, in investment as well

as output. The third chapter is a similar exercise, as far as that goes, but I was

uncomfortable with not checking the goodness of fit ofmy DSGE model before trying to

construct shocks with my model (if the model doesn’t fit the data, it’s not clear how

meaningful the “shocks” it spits out really are). So I was sure to do that before

constructing series of shocks, and finding that the experiments of the second and third

chapters ofmy dissertation were consistent in this: that monetary shocks were relatively

unimportant in output fluctuations, and that technology shocks explain business cycles

best for reasonable levels of price stickiness. A DSGE model with New Keynesian

features (surprisingly for many people, including myself) is not necessarily incompatible

with a supply-shock driven, essentially “old-style RBC” explanation ofbusiness cycles.



What is also perhaps surprising, but more comforting, is that these DSGE models

are well-specified enough that they can be taken seriously when they try to tell us all this.

Praise be. My economics courses were worthwhile after all.

With Bayesian DSGE models proven to be competitive in forecasting and

goodness of fit with VAR macroeconomic models, and offer greater precision in

analyzing the nature ofbusiness cycles than the VARs can, there is much interest in them

currently (in 2004) at such research institutions as the Federal Reserve Bank of Atlanta

and the Bank of Canada. I probably shouldn’t speculate on whether such models are the

wave of the future in empirical macro—forecasting of any sort is a formidable task.

Research in this area does look promising enough, though, that I do plan to make more

contributions in this area that (please God) will be ofuse to macroeconomic researchers,

perhaps (vain hope) even policymakers. For now, though, this opus will have to do.

On a related note (thanks to Dennis Gilliland for reminding me): Bayesian DSGE

research is a young enough literature (in 2004) that routines for estimating such models

aren’t available “canned” in statistical packages. Therefore being partially out ofmy

mind I decided to cook entirely from scratch my Mathematica 4.1 code for estimating

Bayesian VARs with New Keynesian priors, as well as Bayesian DSGE models, instead

of stealing Ingram and Whiteman’s or Schorflieide’s like Ana Maria Herrera wanted me

to. So if you have Mathematica 4.1 or later and want to amuse yourself on a rainy day by

trying to replicate my results, or just want a sample routine for estimating Bayesian

DSGE models that you can adapt to suit your own research needs, please contact me care

of the MSU Department of Economics and I’ll be happy to send you copies of the code.

Eh bien, continuons.



CHAPTER 1

FORECASTING OUTPUT AND INFLATION WITH A BAYESIAN VAR USING

A NEW KEYNESIAN PRIOR

Introduction

So-called New Keynesian pricing models have become the principal models used

by economists to model inflation and its effects on real variables such as output and

employment. New Keynesian pricing models incorporate “old Keynesian” features into

modern general equilibrium macroeconomic models by incorporating price setting by

imperfectly competitive firms that do not have perfect flexibility in their price-setting,

either because they face menu costs of changing their price in any given period

(Rotemberg 1982, 1987), simply do not have a chance to adjust their price every period

(Calvo 1983), or both. Both infrequent opportunities for price setting, pace Calvo, or

menu costs, pace Rotemberg, lead to processes for inflation of the structure

it, = ,BE,7r,+1 + lime, , where It, is inflation and me, is real marginal cost. Inflation in

Calvo-Rotemberg type models is then the present value of real marginal cost, assumed, in

models with imperfect competition, to be high when output is high.

Part of the popularity ofNew Keynesian pricing models is that such models can

be used to rationalize expectations-augmented Phillips curves, which are widely

depended on as useful models of the output-inflation process in applied macroeconomic

work (e.g. Stock and Watson 1999). However, attempts to estimate the implied New

Keynesian Phillips curve have had at best mixed results, in part because of the lack of a

good measure of deviations of marginal cost from trend. Early studies like that of Roberts

(1995) used a measure of the output gap (deviation of real GDP from a calculated trend)

as a proxy for marginal cost. Roberts found average price fixity for the US economy of



about five quarters. Fuhrer and Moore (1995) criticized Roberts’ study in part because it

attempted to estimate the New Keynesian Phillips’ curve in isolation. Fuhrer and Moore’s

own findings, using full-information techniques including the Phillips curve as pat of a

system also including an equation describing behavior of the output gap, found that a

standard New Keynesian Phillips curve did not fit the output-inflation data very well;

they suggested that the forward-looking New Keynesian Phillips curve be augmented

with elements ofbackward-looking price setting.

A more sophisticated limited-information study by Gali and Gertler (1999) used

labor income share, rather than deviation of output from trend, as their measure of

marginal cost. They, like Roberts, found average price fixity in the rage of four to six

quarters. However, like Roberts, Gali and Gertler estimated the New Keynesian Philips

curve in isolation. Attempts to estimate a more complete model, examining in particular

the implications for output dynamics of an inflation process that fits Calvo-Rotemberg

specifications, are not nearly as favorable to the model. The findings of Kurrnann (2001)

are typical. Kurmann, using full-information econometric techniques, found that the

rational expectations restrictions implied by a Calvo-Rotemberg model that generated

reasonable inflation dynamics implied an effect of inflation on future real marginal cost

(measured by labor income share) that was very much at odds with that implied by an

unrestricted estimation of the forecasting process for real marginal cost would have

implied. Specifically, the unrestricted model of the process for marginal cost (and by

implication output and employment) implied a small and insignificant effect of inflation.

With the rational expectations restrictions imposed, on the other hand, the inflation effect

on marginal cost became implausibly large and the inflation terms summed to near zero,



implying that changes in inflation might be better predictors of marginal cost/output, as

Fuhrer and Moore (1995) argue.

Kurrnann cites two main suspects that might be to blame for the failure of the

Calvo-Rotemberg model under full-information. Either the Calvo-Rotemberg process for

inflation is misspecified (because, in particular, it ignores the possibility ofbackward-

looking inflation setting pace Fuhrer and Moore), or the labor income share, like the

output gap, is a poor proxy for real marginal cost, or both. Almost certainly the answer is

“both.” If we assume some imperfect competition in the economy, average labor

productivity will not equal the marginal product of labor, and real marginal cost will not

be proportional to labor income share. Part of the problem, though, might come from

taking the Calvo-Rotemberg model of inflation too literally, taking it to be a “true” model

rather than as a first approximation to a more complex, unknown inflation process, and

imposing it exactly on the data.

It might be helpful to impose the restrictions on output and inflation dynamics

more loosely on the data, to see if the Calvo-Rotemberg model can give us any guidance

on their probable true form, even if it does not fit exactly. Also, a professional forecaster

less interested in determining the “true” model of inflation, which is unknown (and likely

to remain so) than in making accurate forecasts might be interested in determining the

marginal value ofNew Keynesian theories of the output-inflation relationship in making

predictions about the future behavior of the real and nominal sides of the economy.

In this paper, I attempt to evaluate the forecasting performance of a simple

computable competitive general equilibrium model (DSGE or “RBC” model) that allows

for inflation to affect output by including price stickiness of the Calvo-Rotemberg type. I



do this by using such a model, with structural parameters corresponding to the values in

US. data, to calculate a prior mean and covariance matrix for the coefficients of a VAR

forecasting model for output, inflation and interest rates, using a technique described by

Ingram and Whiteman (1994) for using DSGE models to calculate priors for Bayesian

VAR forecasting models. The Calvo-Rotemberg inflation process, in particular, is

calibrated to the specifications implied by Gali and Gertler (1999). As no good proxies

for real marginal cost exist, I do not attempt to specify a forecasting process for marginal

cost, but rather spin from the New Keynesian model prior information regarding the

dynamics of the output gap and the nominal interest rate, as well as output.

Allowing for a sufficiently wide range for the structural parameters of the model

permits me to add this prior information to the data without imposing exact restrictions.

In particular, the Calvo—Rotemberg inflation process itself is only regarded as a first

approximation to a more general inflation process, which could include longer lags of

output than just the first (as in the Calvo-Rotemberg model), allowing for backward

looking inflation setting of the Fuhrer-Moore type. I do find that that prior information

does allow me to generate forecasts of inflation that are at least competitive, and ofien

significantly better, than those from a leading, atheoretical VAR forecasting model.

However, I also find that even the loose imposition of the output dynamics from the New

Keynesian model results in very poor output forecasts, particularly in the short run,

suggesting that as a model of the output-inflation relationship such models are not

especially promising even as a first approximation.

The structure of the rest of the paper is as follows. Section 2 describes the DSGE

model with New Keynesian features, incorporating Calvo-Rotemberg type price



stickiness to allow inflation to affect output, that I use to generate a New Keynesian prior

for forecasting. Section 3 describes the technique for generating the New Keynesian prior

and imposing it on a Bayesian VAR (BVAR) forecasting model, a technique closely

following Ingram and Whiteman (1994). Section 4 will describe the performance of the

New Keynesian BVAR relative to competing forecasting models, in particular to a

BVAR using a modified version of the popular “Minnesota” prior developed by

Litterman (1984). Section 5 concludes with a discussion of the implications of the results

for theory and for practical forecasting applications.

Model

The economy I use to derive the prior is similar in structure to those used in King

and Wolman (1996), Yun (1996), and others in the New Keynesian literature. The

economy is inhabited by a large number of consumers that supply labor and capital to

monopolistically competitive firms, using the proceeds from wages and rental income to

buy consumer goods and acquire real money balances. I assume consumers demand real

money balances to save them time in making transactions and increase their leisure time.

The typical consumer i has preferences on his own consumption c5 of a composite of

goods supplied by the monopolistically competitive firms, labor hi, and holdings of real

money balances Mg / P, where M5 is his nominal money holdings and P, is the price

level, a composite of the prices of all goods supplied by the firms. (The means by which

goods and prices are transformed into the composite consumer good and price level will

be defined more clearly below.) Those preferences are
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where B is a discount factor assumed to be less than one. The taste shock 8, follows an

autoregressive process such that In a, = (1— g") In 6‘0 + g In £,_1 + ”at , where Q is less than

or equal to one. Allowing for variations in e, is a crude way of modeling changes in

financial technology (a fall in 6, reduces the amount of time one must devote to

shopping, given a certain ratio of money balances to required transactions, allowing one

to reduce one’s money balances).

In each period the consumer starts with M3:1 / P, = (M5.1 / P,_1)x (PH / P,)

worth of real money balances, k54 units of capital and

/P, = (3‘1 /P,_1) x (P,_1 /P,) worth ofbonds, carried over from the previous
d

B ir—lit—l

period. The consumer rents out his k54 units of capital and hf: units of labor to firms in

competitive labor and capital markets, getting in return w,h,§ in wages and a gross return

on his ca ital of (l — 6 + r )k.s_ . He also receives a “helicopter drop” of fresh money
p t it 1

balances from the monetary authority of value x, / P, , along with revenue from

maturation of bonds of BS4 / P, . The consumer can now use his income and his

holdings of real money balances to purchase cg units of consumer goods, M{,1 /P, worth

of real money balances and kis, units of capital, along with Bf; /P, worth ofbonds at

10



l/(l + R, ) dollars per dollar worth ofbonds. The consumer’s budget constraint is

therefore

Pr P: Pr-—l P:

d d

B- P B-
1 —” ———"‘ —"“ —r,k;_1-w,h,=jso

1+R, P, P, P,_1

allowing for free disposal.

d d
M. P_ M._ x

 

Define xii, as the marginal utility of consumption. The first order conditions of the

consumer’s problem are

(Cl: cons. dmd.)

  

/ _1\

141 d _1_:l d L’i

——-— M- 1 P . z
.31 ’11—‘05th I [711‘] 1‘ zi_11_51[_t%t‘] =41?

Ci, 1 _ I Mi!

K /

:2: "I

r 0' PrC‘l 1
(C2: labor supply) (1,6 1— 115 ——-————6, ——§—— = xii,w,

1_ 0' Mir

(C3: money demand)

1 1—1

1-1 d “‘ d
-—-— M- I P - I P

aflt£,cg I n 1‘th " 0' 5t ,c,, Zlir _Et t 417+]

P 1—0' P
t Mg 1+]

 

(C45 capital SUPPIY) Air = Et ((1 — 5 + rt+l)4ir+1)

P

(C5: dmd. for bonds) -——1—— /l,, = E, —’—- 1,, +1

1 + R! PH]
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Some rearrangement and combining (Cl) with (C2), and (C3) with (C2) and (C5), yields

the more manageable consumption and money demand functions

 

51% —1—1

(Cl’) ,Bt(l/cg)= 1+g,c;{ z (Mg/1),) I w, 1,,

d I

M- 1— 1+R

(C3:) —P" =44? ”viii R ’l
l l

The composite consumer good demanded by individuals is a composite, as noted

above, of the individual goods produced by a large number of monopolistically

competitive firms, which I shall index i 6 [0,1] . The outputs Y,, of each firm i are

w/(w—l)

] , where

l _

aggregated into a single output Y, in the fashion Y, = U0 Yum 1)/ wdi

co>l is the elasticity of substitution between the two goods. Minimizing the cost

I

ofP,Y, El P,,Y,-,di , given Y, , results in a demand firnction for firm i of

0

Y,-, = (P,, /P, )_w Y, . Substituting into the cost function yields the composite price index

. 1 1—(0 l/(l—w)

The typical firm’s production function implies increasing returns to scale; there is

a fixed cost to production of ho units of labor (which can be thought of as the

entrepreneur’s labor input), but the function, I’ll assume, is otherwise Cobb-Douglas in

capital input kg and “net” labor input hf,’ — kg. The firm purchases capital at r, a unit

and labor (including the entrepreneur running the firm) at w,. The firm’s cost

12



minimization problem, given output of Y,, , is tc, (i) = grind r,lr,-‘,i + w,h,-‘,i such

hit ’kit

that Y,, 2 [(51—19 (2, (kg — ho ))6 , where z, is a measure of technology following the

autoregressive process 1n 2, = yo + (l — p)7t + pln z,_, + UZ, for p < l and

1n 2, = 70 + 1n z,_1 + 02, for p = 1. Solving the problem results in a cost function of

tc,, = w,h0 + mc,Y,-, , where marginal cost me, = 2,76)”,ng M30604 (1 — 60—0. The

resulting factor demands, along with the production function, are

(F1: labor demand) h,-‘,’ = ho + Yi,z,-6r,l_0w,0-166 (1 — (9)49 = ho + mc, Y,, /w,

(F2: capital demand) k,-‘,’ = Y,, zfgrfg wf’ag“ (1 - a)” = mc, Y,, /r,

- - til-0 d 0
(F3: production function) Y,, = k ,, (2, (h,, — ho ))

The markup at time t, ,u,, is l/mc,. Given that r,k,‘,i = (l — 6)mc,Y,, , it follows that, given

free entry, profits are zero in the long run, the labor share of output is

¢s wh/Y =(1—(1—t9)//1), and so 6 =1—,u(1—¢), whereyis the long run level ofthe

markup (to be derived below) and h is the average amount of labor effort. As in the long

run ch= Y/,u = w(h/h0)+rk, who =(l—1/,u)Y, and so the ratio of ho toh is given

by ho/h=(#-1)/#¢.

The firm, with its output in hand, can now sell it for the amount

(P,, /P, )Y,-, = (P,, /P, )1—‘0 Y, ; profits in the current period are hence given by

((Pil /P,)—mc,)Y,-, ‘ thO = ((Pit Hill-w ‘mcrui'r /Pr)_w)Yr “ th0°

13



If prices were perfectly flexible, profit maximization would be as simple for the firm as

maximizing this fiJnction over (P,, /P, ) and getting (P,, /P,) = w/(a) —1)mc, ;

furthermore, as all firms face the same problem, it would be the case that P,, = P, and so

mc, = (a) —1)/a) for all t. (This gives us the long-run value of the markup,

,u = l/mc = w/(a) —1).) However, the whole point of the model is that prices are not

perfectly flexible. Specifically, following Calvo (1983), in each period firms face a

probability or<1 that they will not be allowed to adjust their price freely in that period, but

will instead be forced to raise their price by a factor of It, the long run inflation rate.

When a firm does get a chance to adjust its price, of which there is a probability l-or (so

that on average a firm gets to adjust its price every l/(l-or) periods, it must face the

probability aj of that the price it sets will remain fixed (except for the rigid adjustments

by a factor of it) forj periods, and adjust the price accordingly so as to maximize the

discounted value of lifetime profits, given Pi, . The firm solves the expected profit

maximization problem

w . o

maXEtZUEBVMHj/41)(((7T1Pir /Pt+j)1—w _mct (”Jpn /Pr+j)_w)Yt+j “ Wt+jh0)

Pit 0

If we define P," as the price chosen by the proportion l-or of firms allowed to adjust their

prices freely in each period, we get

(I)
.

.

Er 20W (4+; /’it)(Yr+j m )mCHthtfjfl—Jw

‘0 0
 

(F4: Price-setting equation) P: =
w

E! Z(a
fl)j (11+j

//I,, )(Yl-i-j
/YI)P[$

}-'17r—
j(w-l)

0

l4



Meanwhile, the form for the price index suggests the function for the evolution of the

1 1/(1—(0)

price P, = [[0 P,-,l‘wdi) is

l to

(M1: Price index process) P27“) 2 (1 — a)P,* + a(7rP,_l )170 .

Finally, defining q, as the economy-wide aggregate for allocation q, the market clearing

conditions for this economy is

(M2: Goods market-clearing condition) cf + k,5 — (1 — 6)k,s_1 = Y,.

(M3: Factor market clearing conditions) h,d = hf , k,d = k[S_,

(M4: Money market-clearing condition) M,d = M,5 = M, = M,_1 + x, .

To close the system completely, I need to define the rule by which the monetary authority

selects the cash payments x, /P, ; the rule, however, is stated in terms of a log-linearized

form of the model I have just described, and so I will put off describing the rule until

later. An equilibrium for this economy is a collection of allocations

{Y, ,C, ,K, ,h, ,B, ,(M /P), }and prices iw, ,r, ,P, ,P,*,R, } such that the consumers’ and

firms’ problems are solved and all markets clear.

To get the prior for the Bayesian VAR, Ingram and Whiteman (1994) suggest log-

linearizing the first—order conditions for the consumers’ and firms’ problems and the

market-clearing conditions and using those to solve for the approximate decision rules

and state-variable transition matrix. Then, the VAR representation of the variables of

interest can be derived and a prior mean and covariance matrix calculated.

Log-linearizing the consumer’s first-order conditions is straightforward, as is the

goods market clearing condition. Letting a circumflex indicate deviation from trend,
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(Cl: cons. dmd.)

 
. R M/PY , — , - , .

c, = O( ) (£,+1——21c,—1——Z—(M/P),+w,)+xi,

(C/Y)(1+R0)+(M/PY) I )5

 (C2: labor supply) xi, + W, = —7 h, — l  

h 1‘h_1[ét+‘”‘(c,—(M/P),)]

(C3: money demand) (M 7P), = 15, +(1— me, + pi), +Ri(1 fr R,)

0

r

l—§+r

 
(C4: capital supply) 1:, = E,/i, +1 + E,f,+1

(C5: dmd. for bonds) 2,, — (1 at R, ) = E, i,“ — E, 721+]

Above Rois the long-run average nominal interest rate, r =(y/B)—1+6 is the long-

run average gross rate of return on capital, (M/PY) is the inverse of velocity, (C/Y) is the

average ratio of consumption to output, and it, a P, / P,-, is the inflation rate. I, the

average portion of each day not devoted to market activities (including shopping), and h

is the average portion of each day spent working; hence l-h-l will be the average amount

 

  

1:1. 1:1

of time spent shopping, viz. £56ng I = I 6( C/Y ] I .The aggregate

1— 1 M 1— x M / PY

1/2’

money demand firnction implies 6‘ = [M / FY) E— R , and so

C / Y ¢Y 1+ R

l—l
  

R

l=1—hl+ I l 0 fi ,orequivalently,h=

1—1¢1+R0PY
 1, z 1 R0 41 ‘
1— z (25 1+ R0 PY

Meanwhile, the log-linearized market-clearing condition for the goods market is

(M2: Goods market-clearing condition) gc, + —Y— k, ———k,_, = Y, .
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As r =(y/B)-1+8, K/Y will equal (l-¢)/r=B(l-¢)/(y-B( 1-5)). It follows that

C/Y=l-I/Y=I-(y-1+5)K/Y.

The log-linearized factor demands are

 (F l: labor demand) iv, = mc, + Y, —

(F2: capital demand) r, = mc, + Y, —k,_1

(F3: production function) Y, = (1 — ,u(1— (15))2, + ,u(1 — ¢)li,_, + ,u¢h,

Log-linearizing (F4) gives us

.33 CD - A A A A

Pt =0 —afl)[z(afl)j(E,mC,+j +Etlr+j +Eth+j +wEtPt+j)]

0

w c A A A

-(l-afl)[2(afl)l (Er’lwwj +Et’lHj +ErYt+j +(w—1)E,P,+j)]

0

= (1 —afl)[2(afl)j(E,rhc,+j +E113t+jl]’

0

implying P: — aflE,P,:, = (l — afl)(rhc, + P, ) .

Log-linearizing the price index process (M1) gives us P, = (1 — (1)1): + aP,_, , given that

in the long run P: = P, . We can use the fact that 7?, = P, — PM to get

7?, =(1— a)(P,* — P, ). Substituting into (F4) (and a little rearrangement) finally gets us

our Calvo-Rotemberg type Phillips curve:

 (1:42 Phillips curve) 72, = 513,72,“ + (1 ‘0‘)“ ‘ afl) ac,
a
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It remains to define the monetary policy rule for this economy. Economic agents

assume (correctly) that the central bank sets the nominal interest rate according to the

rule:

(P1: Policy rule)

Er (1 4L R):+1 = 604? R), +<1— 23095, (Y,.; — 9,1,) + R, (Ewan + E, Yin — Edi ))

This is a combination of a Taylor rule, relating the nominal interest rate target to

deviation of output from “potential” (here assumed to be Yf , the level of output that

would prevail in the absence of price-stickiness) and inflation, and of a nominal income

target rule. A rule resembling this one was estimated by McCallum and Nelson (1999) in

the course of estimating a New Keynesian structural macro model for use in policy

analysis. The l; parameter is a measure of the degree to which the monetary authority

smoothes interest rates, adjusting the nominal interest rate only gradually towards the

target Ry(Y, — 17/ ) + R,, (7?, + Y, — 17,4 ). To be sure, as McCallum and Nelson freely

admit, actual Fed behavior is best described as discretionary rather than as following any

necessarily simple rule like this one. The “rule” used here is probably best thought of as a

crude attempt to summarize a Fed reaction function of a form unknown even to the

policymakers themselves.

Implementation

Given values for the structural parameters

, ,1,§,¢,y,y,p,c§,R .,R ,(M /PY),R , I can derive an a roximate solution for
y 7r 0 pp

the decision rules for variables of interest, as well as the processes for the state variables,

capital k, , technology 2, , the taste shock for money demand 6‘, , and the nominal interest
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rate (1 + R,) . In the interest of making the model parsimonious, and because I am not

interested in estimating money demand separately from output, I set Q=0 and 8, equal to

a constant for all I. That leaves three state variables, capital, technology, and interest

rates, allowing separate estimation of three endogenous variables. I estimate a three-

variable VAR in output Y , inflation 7r, , and the nominal interest rate (1+ R, ) , which

will serve as my measure ofmonetary policy. Detrended capital, technology and the

interest rate are expected to follow the process

A A

k: kr-l (Oi-k (sz (PM

(1) E,£,+1 = S :2, whereS = 0 ,0 0

Et (1 5r R)t+l (1 if R): COR/c £0122 (PRR

Meanwhile, the mapping from the detrended state variables to the detrended endogenous

variables is

Y! kt wyk ¢yz (pyR

(2) 7%! = ? it Where ? = (pair (p/zz ¢7rR

(1 5r R), (1 3r R), 0 0 1

Let y, = [Y, 72, (1410,] and define 15,9,“ = 1:9,. Using (1) and (2), it is

straightforward to show that F=I'ISIT'. The entries in F are completely determined by the

structural parameters of the underlying log-linearized model.

A sixth-order vector autoregression of 5),, , the ith component of y, ,can be

6

written as 53,, = Eryn, , t = l,..., T ,i = 1,2,3 , where T is the number of observations.

0

My prior mean for the elements Fil , the vector corresponding to the first lag coefficients

of equation i, is given by the mean of the associated elements in the ith row of F; my

19



prior mean for the elements of Fy- forJ>l are all zero. The prior covariance matrix for the

first lag coefficients is given by the covariance matrix for the corresponding row of F; the

covariance matrix forjth lag coefficients, wherej>l , are equal to that for the first lag

coefficients divided by a factor of j2 . I combine the prior with the data to obtain a

posterior estimate for each equation by simple Theil-Goldberger mixed estimation (Theil

and Goldberger 1961; Theil 1971) Let X, the data set used in estimation, be the Tx l 8

matrix consisting of observations on y,_, ,. .. y ,_6 , and let )3,- be the Txl vector of

observation on 52,-, . Then we can write the VAR(6) model as 52,- : XB, + e,. Letting B,- be

the prior mean for B,- and Q,- be its prior covariance matrix, the mixed estimate of B ,- is

E _ xlx/ 2 “I 1 I" 2 —I— 1

,‘— 0-,: +0, Xyi/O', +0, Bl

where 0,2 is the estimated variance of the residuals from the corresponding equation

estimated in unrestricted VAR.

It remains to specify a prior mean and covariance matrix for F. I do that by

specifying a prior mean value for the vector of structural parameters

m = ia,,6,1,6,¢,y,y,p,cf,Ry,R,, ,(M/PY),RO}; my prior mean for F will be the value

implied by the prior means of the structural parameters. To calculate the prior covariance,

I assume m has a diagonal covariance matrix with non-zero entries

2 2 2 2 2 2 2 2 2 2 2 2 2
{0a,afl,al,05,a¢,07,0,,,0p,0'§,oRy,0'R,,,a,M,PY),0RO}.lthencantakea

first-order Taylor expansion of F about the prior mean. F is then approximately normally

distributed with mean F(fii) and variance VF(m) * var(fi) * VF(E)T.
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The baseline values for the means and standard deviations of the New Keynesian

model’s structural parameters are given in Table 1.1. The mean values for the discount

factor ,6 , the depreciation rate 6 , the labor share ¢ , and the persistence parameter for

the technology shock p , as well as their standard deviations, are taken from a previous

study by Dejong et al. (2000a), in which a Bayesian technique was used to calibrate a

somewhat different DSGE model. These are well within the range for these variables

used in the RBC literature, and the standard deviations allow for ranges for the variables

the include most of the values used in that literature. The mean value for the gross rate of

per capita economic growth, 7 , is also standard; its standard error was calculated as that

of the trend rate of growth of real GDP estimated over the period 1959:I to 1983le, from

an OLS regression (corrected for serial correlation) of logged real GDP on a constant and

a time trend. For the markup ,u , estimates found in the literature vary widely, from 1.2 to

around 2.0; see Rotemberg and Woodford (1995) for a survey. For the prior mean, I

picked 1.4, near the average for the values found in the literature (and the value used by

Rotemberg and Woodford in their discussion of imperfect competition in DSGE models),

along with a standard error allowing for a fairly wide range (fiom 1.2 to 1.6) for this

parameter.

Moving on to the structural parameters for the “demand side” of the economy, the

means and standard deviations for the mean nominal interest rate R0 and the inverse of

mean velocity, (M /PY)0 , were taken to be the historical means and standard errors over

the 1959:I to 1983le period for the (quarterly) Federal Funds rate and the inverse of the

(quarterly) velocity of the Board of Governors adjusted monetary base. The mean value

for the interest elasticity ofmoney demand, 2’ , is that found for the US economy by
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Goldfeld (1973); the standard error allows for the wide range of values for x found in the

literature. (See Goldfeld and Sichel (1990) for a survey.) 1 should add that for the three

variable VAR discussed here, omitting money, the results simply are not sensitive to

differences in these parameters.

The parameters of the policy rule, 4‘ , Ry and R” , are within the range estimated

for the US economy for the post-1979 period by McCallum and Nelson (1999); however,

the standard errors are much larger than theirs, to reflect the greater uncertainty I have

regarding how well this (or any) assumed policy rule accurately describes the actual

policy behavior of the Federal Reserve.

It remains to set the inflation persistence parameter a . Any given value for a

suggests that opportunities for price adjustment are presented to the typical firm every

77 = 1/(1 — a) quarters. Estimates for the length of time the typical firm takes to adjust

their prices varies widely in the literature. On the industry level, most overall estimates

are from two to six quarters, but estimates vary widely among industries (see Taylor 1999

for a survey). For the economy as a whole, Roberts (1995) derived an estimate for

(1— a)(l -- afl)/ a of about 0.08, corresponding to a value of a of about 0.75. Gali and

Gertler’s (1999) later study derives a number of estimates of a (their 19) that average

about 0.8; as this is of the same order of magnitude as Roberts’ estimate, this is the

estimate I picked for the prior mean, implying average price fixity of about 5 quarters.

However, Gali and Gertler’s results for various subsamples suggest a higher or (around

0.85) for the peiod since 1980 than for before 1980 (for which their estimates of a are

nearer Roberts’ estimate of 0.75, derived with a slightly earlier data set). The prior

standard deviation for a I picked permits a range for the parameter from 0.75 to 0.85.
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The baseline values for the structural parameters imply a prior mean for F of

1.028 — 2.582 0.874

0.00904 0.524 0.1 17

0.00757 - 0.403 1.058

The second row, corresponding to the inflation equation, suggests that expected

inflation is as a first approximation best modeled as a firnction of the output gap and

current inflation, pace Stock and Watson (1999), and that inflation itself should be

modeled as stationary. The third row suggests that the real interest rate

(1 + R, ) — It, should be modeled as highly persistent but stationary, while the nominal

interest rate (1+ R,) is closely tied to the inflation rate (as it should be in any reasonable

model).

Note that the prior implies that the behavior of output, inflation and the interest

rate is well described by a VAR(l) process, with the values of longer lags assumed a

priori to be zero. For inflation in particular, the Calvo-Rotemberg Phillips curve (F4’)

implies expected inflation at time t+1 to be a function only of inflation and the output

gap/marginal cost at time t. However, with the prior standard deviations for the structural

parameters specified here, the imposition of zero values for longer lags is loose enough to

permit a role for longer lags of inflation to enter the process, allowing for a backward-

looking element to that process.

I wish to compare the performance of the VARs using the prior derived from the

New Keynesian DSGE model (hereafter the “New Keynesian BVAR”) to a Bayesian

VAR using a standard atheoretical prior. One popular such prior is the so-called

“Minnesota” prior described by Doan, Litterman and Sims (1984). This time, let X be the

Tx19 matrix consisting of observations on a Tx] vector of ones and vectors

23



y ,_1 ,. . . y 1—6 , where y, is the vector of observations on the levels (not the deviations

from trend) of the three variables, and let y,- be the Tx] vector of observation on the level

of variable i. For the ith equation in the VAR, the Minnesota prior imposes a prior mean

of one on the first autoregressive lag, and a prior mean of zero on all further

autoregressive and all non—autoregressive lags; the implication is that each variable in the

VAR is best described as a first approximation as a random walk. The prior covariance

matrix is a diagonal matrix, with the prior variance for the kth coefficient of variablej in

equation i being 0,12,, =t12/k2 for i=j and 01.12., = (tlztz2 /k2 ) x (0'12- /0',-2 ) for iasi, where t1

is an overall tightness parameter, 12 < l is a parameter determining how strictly imposed

is the prior restriction of zero values for non-autoregressive terms, and s,2 is the estimated

variance of the residuals from a sixth-order AR model of variable i, sf /s,2 serving as a

scaling factor accounting for the differences in magnitude between variables i andj. I

used values of 0.2 for both t1 and t2.

Doan, Litterman and Sims (1984) suggest forecasts can be further improved by

including prior information on the sums of coefficients. Such information is usually

included by adding dummy observations to the data set, before mixed estimation. For

example, in a three variable VAR with four lags of output, employment and interest rates,

I add to X the dummy observations

0 yo 0 0 yo 0 0 yo 0 0 yo 0 0

l3 0 O ITO 0 0 ”'0 O 0 IZ'O 0 0 71'0 O

0 0 0 R0 0 0 R0 0 0 R0 0 0 R0
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When estimating the output equation, the corresponding dummy observations on current

output are t3 [yo 0 0],; similarly, the corresponding dummy observations on inflation

for the inflation equation are t3 [0 7:0 0] , and those for the interest rate equation are

t3 [0 0 R0] . These dummy observations imply that the autoregressive terms in each

equation sum to one (i.e. that each has a unit root), and that the terms for lags of all other

variables sum to zero (i.e. the changes in each variable, assumed to be permanent, have

no permanent effect on any other others).

Even with the sums of coefficients restrictions imposed, the disadvantage of the

Minnesota prior is that it does not take into account cointegrating relationships between

variables, as in this case one would expect between (at least) inflation and the nominal

interest rate. To compensate for this somewhat, Sims (1992) suggests adding to X the

dummy observation (again assuming three variables and four lags)

1411 yo ”0 R0 Yo ”0 R0 yo ”0 R0 yo 7‘0 R0],

with corresponding dummy observation on output t4 DO I , on inflation (4 [no] , and on

the interest rate (4 [ROI- This dummy observation implies a cointegrating relationship

between the output gap, the inflation rate and the nominal interest rate. t3 and t4 are

parameters setting the tightness by which the prior infomation given by the dummy

observations is imposed. yo , 72’0 , and R0, the implied trend values of output, inflation

and interest rates, are measured by the means of the k presample observations, where k is

the number of lags.

Robertson and Tallman (1999), in a recent paper on forecasting with VARs, argue

that a Bayesian VAR estimated imposing the Minnesota/Litterman prior with mixed
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estimation, and including the Doan-Litterman-Sims (1984) and Sims (1992) sums-of

coefficients restrictions, do about as well in forecasting than Bayesian VARs estimated

using more complex methods of imposing prior information (e.g. Sims and Zha 1998).

Hence, it is this modified Litterman BVAR (as I shall call it from now on) that 1 used as

the benchmark for the New Keynesian BVAR. For the modified Litterman BVAR’s

parameter values, I used the values used by Robertson and Tallman in their experiments,

1.6. t] = 0.2,!2 = 0.2,13 = 5.0,2‘4 = 5.0

Results

My data set consisted of quarterly US data on output (seasonally adjusted real

GDP), inflation (quarterly rate of change in GDP chain-type price deflator), and a

nominal interest rate, the Federal Funds rate, for the period 1959:] to 2002:11. The Federal

Funds rate was used for the nominal interest rate, as it is this interest rate that the Federal

Reserve uses in practice as its policy instrument; hence the interest rate does double duty

as a measure of current monetary policy. (I did experiment with other short-term interest

rates, such as the 3-month Treasury Bill rate, but it made little difference; this is not

surprising, as “market” short-term interest rates tend to track the “administered” federal

funds rate closely.)

The Bayesian VARs using the modified Litterman prior contained six lags of the

log of each variable and a constant. The VARs using the New Keynesian prior derived

from the New Keynesian DSGE model (hereafter the “New Keynesian BVAR”) were

estimated without a constant, using six lags of detrended output, inflation and interest

rates. Detrended output was measured as the deviation of log output from a linear time

trend estimated by OLS over the period of the data set used to estimate the VAR, while
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detrended inflation and interest rates were measured as the deviation of inflation and

interest rates from their sample mean over the period of the data set. Such a VAR can be

used to generate out-of-sample forecasts of the deviations of output, inflation and interest

rates from trend. To get forecasts of the level inflation and interest rates, I simply added

the sample mean to the forecast detrended value of each variable; to get forecasts of level

output, I added the forecast deviation of output from trend to the forecast level of trend

output implied by the estimated trend.

Tables 1.2a through 1.20 presents performance statistics, the Theil-U, for the two

competing models (modified Litterman and New Keynesian). The statistics are calculated

as follows. Each model is estimated over the first 100 periods (1959:I to 1983:1V), and

forecasts are calculated for one quarter, two quarters, four quarters (one year), eight

quarters (two years) and twelve quarters (three years) ahead of 1983:1V. The actual

observation for 1984:I is then added to the data set, forecasts are calculated for one, two,

four, eight and twelve quarters ahead of 1984:I, and so forth; in all 63 sets of one, two,

four, eight and twelve step ahead forecasts were generated (the last VAR being estimated

over the 1959:] to 1999:11). The Theil-U is given by the ratio of the forecast mean

squared error from the model in question to that from a naive forecasting model (random

walk with drifi); a value above one indicates that the model forecasts are worse than

those from a naive random-walk model. Lower Theil-U’s indicate better forecasting

performance.

Along with the Theil-U’s, I also calculated the test statistics for equality of loss-

differentials for each model, to both the naive model and each other (corrected for serial

correlation in the loss differentials, i.e. differences in squared forecast errors between
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each model), as suggested by Diebold and Mariano (l 995) as a measure of improvement

or worsening of forecast performance. Under the null that forecast performance is equal,

this statistic should follow a t-distribution; hence large Diebold-Mariano (DM) statistics

suggest rejection of the hypothesis that forecast performance is equal.

Table 1.23 gives the forecast performance statistics for the entire period (1984:1-

1986:IV through 1999:111-2002211). For the nominal side of the economy, the New

Keynesian prior does surprisingly well. For inflation and interest rates, the New

Keynesian BVAR easily beats the random walk model, and for inflation, the New

Keynesian BVAR consistently beats the modified Litterman BVAR, with the largest DM

statistics being those for one year to two years ahead. For the nominal interest rate, the

New Keynesian prior is also competitive with the modified Litterman BVAR, beating it

at horizons of a year or more. While none of the DM statistics are significant, this

suggests that the New Keynesian BVAR is at least competitive with the modified

Litterman BVAR for forecasting nominal variables.

There, however, is where the good news ends. The forecasts generated by the

New Keynesian BVAR for output are consistently worse than those from a naive model,

let alone those from the modified Litterman BVAR. (The difference is statistically

significant at near horizons, and substantial at all.) Some comparison of the Litterman

and New Keynesian prior is in order here. The Litterman prior constrains the inflation

and interest terms in the output equation to zero fairly tightly. The sums of coefficients

dummy observations, moreover, constrain the long-run effect of level changes in inflation

to zero; this can be interpreted as implying that if anything, it is changes in inflation, pace

Fuhrer and Moore, that affect output, not necessarily the level of inflation as such. The
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New Keynesian prior, on the other hand, allows the inflation and interest terms to have

coefficients that have values that are individually, and sum to, far from zero.

The prior mean values for the first lags (and, hence, the details ofhow the New

Keynesian pricing model predicts inflation will affect output) are probably less important

here for the results than the prior covariance matrix from the New Keynesian BVAR,

which puts much looser restrictions on the values of the inflation and interest terms. In

effect, the New Keynesian prior assumes much less information on just what those values

should be. As a result, these terms are much more determined by the data, when

estimating the BVAR, than would be the case if a Litterman prior were used. Given that

the Litterman prior (which holds that “(level) inflation doesn’t matter” for output, and

restricts its effect to zero) does better than the New Keynesian prior (which holds that

“inflation matters”, and allows its estimated effect to be large) in predicting output, a

reasonable conclusion to draw is that “(level) inflation doesn’t matter,” or at any rate its

effect is exaggerated by the Calvo-Rotemberg model.

To check the stability of the results, I also calculated Theil U’s and DM statistics

for two sub-periods, 1984:1—1986:IV through 1991:IV-1994:III (32 sets of forecasts) and

1992:1-1994:IV through 1999:111—2002:II (31 sets of forecasts). For the earlier period, the

advantage of the New Keynesian BVAR over the modified Litterman BVAR for inflation

is even greater; the Theil-U’s for the New Keynesian BVAR are significantly below one

at any reasonable confidence level, and forecasts of inflation a year or more ahead are

significantly better than those from the modified Litterman BVAR. However, the New

Keynesian BVAR is still significantly worse at forecasting inflation than a naive model at

shorter horizons (and certainly than the Litterman model).
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For the later period, the picture is somewhat different. The Internet boom and

inflation rates far below (postwar) historical levels would be bound to hamper forecasting

using models estimated by necessity with data from earlier periods. For inflation, the

199221-1994le through 1999:111-2002zll period is not a banner period for either model,

with Theil-U’s well above one for periods of a year or more ahead. However, the New

Keynesian BVAR fares relatively worse, actually being beaten by the Litterman model

for forecasts of inflation a year or more ahead. This is not surprising, as the New

Keynesian BVAR (as well as the detrending method used to estimate it) assume inflation

is stationary, while the Litterman prior assumes a unit root in inflation. Given that, the

Litterman prior can be expected to fare better in the face of an apparent trend shift in

inflation. For output, again, neither model fares well, with Theil U’s well above one;

however, the New Keynesian model’s relative disadvantage remains (though the DM

statistics no longer indicate significance).

A few general conclusions can be drawn. The good news (for those favoring New

Keynesian models of inflation) is that the New Keynesian BVAR does surprisingly well

at forecasting inflation. Generally speaking, it can be trusted to be at least competitive

with a leading atheoretical forecasting model (barring trend shifts in inflation). The bad

news is that the forecasts for output generated by the New Keynesian BVAR cannot even

beat a random walk model, let alone more sophisticated atheoretical models. This result

is robust to all the specification changes I have tried, including, but not limited to, large

changes in the prior means for the “supply side” structural parameters ([3, 8, (I), p, and p)

and increases in their prior standard deviations (particularly for p), to loosen the prior for

the output equation. Starkly put, a New Keynesian prior using reasonable values for the
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prior means of the structural parameters and standard deviations, and generating

reasonable forecasts for nominal variables, cannot generate adequate forecasts for output.

The implication is that a New Keynesian prior specified so as to generate good inflation

forecasts implies a relationship between output and inflation that is inconsistent with the

data.

To get some measure of the “overall fit” of the New Keynesian BVAR, I followed

Ingram and Whiteman (themselves following Doan, Litterman and Sims (1984)) by

calculating the log determinants of the forecast covariance matrices for the naive model,

modified Litterman BVAR and “baseline” New Keynesian BVAR at each horizon. These

are reported in Table 1.3, along with the log determinants of the forecast covariance

matrices for New Keynesian BVARs with lesser (or=0.75) and greater (or=0.85) price

stickiness.

In general, the New Keynesian BVARs, while certainly beating naive models, are

inferior to the modified Litterman BVARs in overall forecasting performance, except at

very long forecast horizons (over which the advantage of the Litterman over the New

Keynesian BVAR, or any model, tends to vanish). Among the New Keynesian BVARs,

those with higher or’s tend to do better at shorter horizons (over which prices are more

likely to be sticky), while those with lower or’s do better at farther horizons (where price

stickiness is likely to be less important).

More generally, the New Keynesian BVAR tends to catch up with the modified

Litterman BVAR as the forecast horizon increases, a tendency robust to sample period.

(Looking back at the DM statistics confirms that for each variable the advantage of the

New Keynesian BVAR over the modified Litterman BVAR increases with forecast
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horizon, for inflation and interest rates, and its relative disadvantage decreases.) My own

conjecture is that the New Keynesian BVAR does a better job of capturing long-run

tendencies in the data (say, between inflation and interest rates) than does a Litterman

BVAR, even supplemented with Sims-type dummy observations to allow for

cointegration. However, this is clearly insufficient to allow the New Keynesian BVAR’s

overall forecasting performance to be up to the standard of the competition.

Conclusions

The results of the forecasting experiments here suggest, at least at first sight, that

a “reasonable” New Keynesian model for predicting inflation is incompatible with a

reasonable model for predicting output. This finding parallels that of recent research on

New Keynesian models ofthe output-inflation relationship such Kurrnann (2001), who

found that a New Keynesian model of the Calvo—Rotemberg type that generated

reasonable inflation dynamics was incompatible with reasonable dynamics for real

marginal cost, and, by extension, output and employment.

The Bayesian (or quasi-Bayesian) techniques used here to impose loosely the

restrictions on output and inflation dynamics implied by the model allow much more

room for misspecification than did Kurrnann’s (classical) full-information techniques.

The Ingram-Whiteman technique imposes only inexactly the restriction on output

dynamics implied by a DSGE model with Calvo-Rotemberg type New Keynesian

features. However, even these loose restrictions clearly degrade forecasts of output, to the

point where even a naive random walk does better; this result is robust over a variety of

forecast periods. More generally, any theoretical model that suggests a large amount of

information content in inflation (and nominal variables in general) for forecasting output
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seems to do poorly compared to models that do not (like the modified Litterman prior,

which assumes a priori no such role). Given that, the relevance of Calvo-Rotemberg type

New Keynesian models for modeling the output-inflation relationship is put into question

by these results.

How disastrous one finds all this, of course, will depend on one’s loss function.

For those more interested in accurate forecasts than proving one theoretical model or

other to be “true” in some sense, the New Keynesian BVAR does generate forecasts

competitive, and, provided inflation can be reasonably assumed to be stationary, superior

to those from competing atheoretical models. (Altering the BVAR to allow for trend

shifts in inflation, as apparently occurred in the 1990’s, should be straightforward;

alternatively, one could simply correct for secular bias in the forecasts generated by the

model in formulating actual forecasts.) If one is interested in forecasting output as well, a

BVAR for forecasting could very easily be estimated using a New Keynesian prior for

the inflation equation, and an atheoretical prior along the lines of the modified Litterman

BVAR for the output equation. An obvious objection on the grounds of logical

consistency could be defended along these lines. The New Keynesian prior, in a VAR

model with more than one lag, does allow for a non—zero term for long inflation lags,

permitting a backward-looking element to the inflation process along the lines of Fuhrer

and Moore (1995). The sums-of-coefficients restrictions on the inflation terms in the

Doan-Litterman-Sims dummy observations, as well, do allow for changes in inflation,

though not levels, to affect output. The hybrid model could then be defended as an

attempt to convey the idea that what effects inflation has on output occur along the lines

of a Fuhrer-Moore sticky-inflation model.
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In a sense, what this amounts to is accepting the New Keynesian model as the best

model of inflation economics has to offer, and accepting that one should try to forecast

outpout without pretending to have too much theory. What is admittedly not at all

obvious from this exercise, however, is that the failure of the New Keynesian DSGE

model necessarily has to do with the New Keynesian elements, as opposed to other

elements of the DSGE model that make for rather poor dynamics and could easily be

corrected. For instance, adjustment costs in capital or investment could improve the

dynamics of the model. It is also possible that my prior information is bad; Gali and

Gertler’s estimates of price stickiness are on the high end of those estimated in the

literature, and possibly the lower estimates suggested by survey data (e. g. Blinder 1994)

would be appropriate. Examining which modifications of the model would get the New

Keynesian DSGE prior to improve performance on the real side (to see, as it were,

whether it’s a prior problem or a specification problem) would be an interesting exercise,

but if one is going to go to that trouble, one might as well take the plunge and try to

estimate a Bayesian New Keynesian DSGE model, and see what chances it has ofbeing

as true a model as the BVAR. It is that approach, checking what modifications the DSGE

model needs to “fit the data,” that I will be taking in the next chapter.
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Table 1.1: Prior means and standard deviations for structural parameters of New

 

 

Keynesian DSGE model

Parameter Mean SD.

fl 0.988 0.001

6 0.016 0.004

¢ 0.72 0.025

p 0.97 0.015

y 1.004 0.0005

la 1.4 0.1

R0 0.016 0.004

(M / PY)0 0.40 0.032

I 0.3 0.1

g 0.8 0.2

Ry 0.2 0.2

R” 1.5 0.5

a 0.8 0.025
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CHAPTER 2

LOSS-BASED EVALUATION OF A NEW KEYNESIAN DSGE MODEL

Introduction

Part of the reason that I only loosely imposed the restrictions on the data implied

by my DSGE model, rather than just estimating a firlly-specified New Keynesian DSGE

model, was an a priori belief that “DSGE models (unaided) just don’t fit the data.”

Certainly the restrictions on economic data imposed DSGE models, especially the older,

simpler ones, are frequently rejected by classical hypothesis tests. If the null is rejected,

however, a simple hypothesis test does not provide a superior alternative model to which

the DSGE model can be compared, so it cannot tell us where to go next or what to

correct.

Many recent studies (like Watson (1993) and Diebold et a1. (1998)) of DSGE

models assume the DSGE is certainly misspecified (i.e. the probability that the DSGE

model is the “true” model is assumed to be zero), and in essence propose measures ofjust

how far off the mark the DSGE models are from an atheoretical reference model (like an

identified VAR). Watson measures misspecification by how much uncertainty must be

introduced to the model to make it match sample moments (such as correlations and

impulse responses); Diebold et a1. measure misspecification using loss functions

penalizing deviations of sample from model moments. However, such an approach

assumes, in effect, that the model can itself teach us nothing that the sample can’t about

how (say) the impulse response of output and inflation to various shocks should look.

Given the improvements in the dynamics ofDSGE models over the earlier, simpler ones

that failed classical hypothesis tests, it is no longer possible to make that assumption with
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confidence, unless one really believes that a given DSGE model cannot possibly be the

“true” model of the economy, or at any rate a good description of a subset of time series.

A study by Schorflreide (2000) of a cash-in-advance model with partial

adjustment costs uses just such a method. Schorfheide takes a middle-of-the-road

approach, allowing for a non-zero probability that the DSGE model fits the data better

than a given competitor, a probability that can be updated after looking at the data.

Specifically, he compares a standard cash-in-advance model and a cash-in-advance

model with portfolio adjustment costs, both including (permanent) technology shocks and

(temporary) monetary shocks, to an identified VAR with disturbances disaggregated into

permanent and transitory shocks pace Blanchard and Quah (1989). The specifications of

the cash-in—advance model and the model with portfolio adjustment costs provide

likelihood functions for the data which can be evaluated using a Kalman filter algorithm;

combining the likelihood function with prior distributions for the structural parameters

gives a posterior distribution for the parameters. Schorfl'reide calculates posterior

probabilities that each model describes the data and overall posterior estimates of the

population characteristics, using so-called Bayes factors (e.g. Kass and Raftery 1995).

Unlike classical model selection criteria, which are generally functions of the maximum

likelihood of a given model, the Bayes factor is a measure of the average likelihood of

the model, given the prior density on the model parameters.

Given posterior probabilities, Schorfheide can construct a probabilistic

representation of the data, a weighted mixture of the DSGE models and the identified

VAR, as a benchmark to which he can compare the DSGE models. He can then calculate

the posterior distributions of various moments of interest, such as correlations and
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impulse response functions. He goes on to assess the ability of the DSGE models to track

US output and inflation time series, generate plausible correlation patterns between

output and inflation, and describe the response of output growth to a monetary expansion;

this ability is measured by the values of loss functions penalizing the deviations of the

DSGE model’s moments from those of the benchmark.

The use of a mixture of the DSGE models and the identified VAR in constructing

the benchmark for comparison allows us in effect to learn from the models regarding how

the data should look. In Schorfheide’s actual application, however, the posterior

probabilities that the cash-in-advance model and the model with portfolio adjustment

costs were true turned out to be vanishingly small. This indicated that we could learn very

little from these models about inflation and output dynamics in the actual US economy.

Given that the New Keynesian model is compatible with a negative correlation of output

grth and inflation of a magnitude more in line with the data, as King and Watson

(1996) argue, and with a potentially much larger positive response of output to a

monetary shock, a natural question to ask is whether adding New Keynesian features

would not correct the discrepancy between model and posterior.

My purpose in this paper, then, is to evaluate and compare a simple New

Keynesian monetary DSGE model, assessing the discrepancy between its predictions and

a posterior distribution of population characteristics such as cross-correlations and

impulse-response functions, similar to that done by Schorfheide (2000) for the portfolio

adjustment cost model. A necessary first step in this process is to estimate a monetary

DSGE model with a New Keynesian Phillips curve using US data for output and

inflation, using Bayesian methods to impose prior information regarding the values of the
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structural parameters. In particular, 1 use a prior assumption for the measure of price

stickiness in the economy consistent with that found in survey data such as Blinder

(1994). In so doing I obtain an estimate of the degree of price-stickiness in the US

economy, conditional on the model’s being correctly specified. This is an interesting

exercise in itself, as far as it goes, corresponding to the exercise conducted by Dejong et

al. (2000a, 2000b) for the Greenwood et a1. (1988) variable capital utilization model.

However, given that there is a non-zero chance that the New Keynesian DSGE

model is misspecified, it is only a first step towards a full evaluation of the model; my

real purpose is to evaluate just how well specified such a model, estimated with a prior

using conventional values for the parameters, really is (and so how “plausible” such

values are) and whether it can succeed where the portfolio adjustment cost model failed

in teaching us something about the output-inflation relationship. In particular, 1 want to

see if assuming prices to be somewhat sticky (and as a first approximation as sticky as

limited information studies suggest) actually correct some of the problems that cash-in-

advance models with flexible prices have in matching inflation dynamics and the effect

of monetary shocks on output. To make my results comparable to Schorflreide’s, 1

compare the New Keynesian DSGE model to a cash-in-advance model without price

stickiness and to an identified Bayesian VAR. I estimate all three models to allow me to

calculate posterior probabilities for each model, allowing me to construct a benchmark

distribution for correlations and impulse response functions to which I can compare the

correlations and impulse responses of the New Keynesian model, according to a variety

of loss functions.
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Among the things I find in what follows are that a New Keynesian DSGE model

with sufficiently rich dynamics, contrary to Schorflreide’s results, is competitive and in

fact superior in fit to a Bayesian VAR in output and inflation, with the DSGE being the

model with a much greater posterior probability than the VAR. I find, however, that the

goodness of fit derives from modifications of the basic model—a more realistic monetary

policy in terms of inflation rather than money growth as Schorflreide used, and well as

costs of adjusting investment—that have little to do with the New Keynesian features of

the model as such. The output and inflation data for the US since the mid 1960’s, while

certainly compatible with an amount of price stickiness found in survey data, turn out to

not be especially informative themselves regarding the amount of price stickiness. This is

at least partly because inflation shocks can account for very little ofUS output

fluctuations, and so there is not likely to be much information about the impact of an

inflation or money shock on output in the data. What the DSGE model does allow us to

do is to add a good deal of precision regarding out estimation of the output-inflation

relationship and the impact of a monetary/inflation shock on output, given our best prior

information on price stickiness.

Loss-Function Evaluation of DSGE Models

Before I begin, I should describe the Schorfheide method of loss-function

evaluation ofDSGE models in more detail. (My discussion will be somewhat informal;

for the finer details, see Schorfheide (2000).)

Before I do so, some shorthand is in order. Let M, denote model 1 (say, the

flexible-price cash-credit model) and M2 denote model 2 (say, the New Keynesian

model). Let 60') be the parameter vector for model M2 . Also, let y, be the n x 1 vector
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of the values of the n observables to be used in estimation at time t, and let

YT = L)», ,..., YTI be the full n x T data set. The specification of each model M,- provides a

likelihood function for Y7‘, denoted hereafter as p(YT l 90') ,Mi); the product of this

likelihood and the prior distribution for 60-) , p(t9(,-) | M,- ) , is proportional to the posterior

density for (9“), p(6(,-) |YT,M,-) oc p(YT |6(,-),M,~)p(6(,-) |M,-). As there is a good

chance that both DSGE models are misspecified, I also consider an identified VAR as a

reference model, which I shall call model 0 orM0 ; hence the parameter vector for the

identified VAR will be labeled 6(0) , its likelihood function p(YT |0(0),Mo), and its

prior density p(9(0) | M0) .

There are three steps to the model evaluation:

Step I

With the posterior densities p(0(,-) | YT ,M,) in hand for each model, we can

compute posterior distributions for each model’s parameters (9“) . For model 0, the

identified VAR, this can be done analytically; for the DSGE models, however, the

posterior densities will be analytically intractable, and so the posterior distributions for

0(1) and 0(2) will have to be derived numerically. The means by which the DSGE model’s

parameter distributions are computed will be discussed in Section 4.

Let ”0,0 , ”1,0 , and ”2,0 be the prior probabilities we place on models 0, 1, and 2

being the “correct” model, before estimating the models. By Bayes’ rule, the posterior

model probabilities 7:0] , ”LT , and a2,T are
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”i,0P(YT 1M1)

2 ’

ZizoflifipO/T iMi)

 

”LT 5 [WW 1Y1“) =

where p(YT |M,) = I p(YT |6(,-),M,-)p(t9(,-) | M,)d6,- is the marginal data density, or

Bayes factor, given model M,. Intuitively p(YT I Mi) , Which is the average likelihood of

model M,- given the prior distribution p(t9(,) | M,- ) , can be thought of as the probability

that an economy that was well described by model M,- could have produced time series

YT; a relatively large/small p(YT | M,-) will result in a relatively large/small posterior

probability It” is the correct model.

Step 2

The population characteristics (correlations, impulse response functions and so

forth) that we obtain from each model will, of course, be functions of their parameters

60-) . Let a) be an m x 1 vector of population characteristics of interest. With the

posterior distributions of 60-) in hand, we can obtain posterior distributions of a)

conditional on model M,- , for short p(a2 | YT ) , for each model. The overall posterior

distribution of (0, given the data Y7- , is a weighted average of the densities p((p | YT,M,- ) ,

2

namely 10(4)! Y7) = Zia-119091 Yr,Mr).

i=0

Step 3:

With the posterior distribution of a) in hand, we can now calculate the minimum

expected loss Lx ((0,5)) associated with each model in terms of the deviation of the “best
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estimate” of value of a) (which 1 will label a3) given by each model from the “actual”

value a).

(a) For each model M,- , find the value £13,,- for the population characteristic vector (0 that

minimizes the expected value of loss function Lx ((0,0)) , given that M,- is the true model.

That is,

arm- = arg minwzQ jL,(w,a3)p(w | YT,M,-)da)

(b) Then, the expected loss or risk Rx (‘bxu' | YT ) associated with the “optimal” estimate

03,,”- for model M, is the expected value of Lx ((0,0), ,) , given the overall posterior

distribution p((o | YT ) derived in step two. In other words,

tha‘a, 1 Y2“) = lerw,wx,.-)p(wl Yndw

Following Schorflreide (2000), I use three loss functions. Of course, other loss functions

are possible. The virtue shared of the three used here is that the a"), ’8 they imply are

reasonably easy to compute. (See Judge et a1. (1985, chap. 4), for further discussion of

loss functions commonly used in Bayesian applications.) The first, Lp (for “L-p-value”),

is

Lptm) = 1{p(a‘)l YT) > pier m}

where I {x} is an indicator function that equals one when condition x is true and zero

otherwise. The expected Lp -loss provides a measure ofhow far (I) lies in the tail of the

posterior distribution for a).
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The second loss function, L 2 ( for “L-chi-square”) is defined as follows. Let

I

Va, be the posterior covariance matrix of a) given density p(a)| YT). Define the function

C12 (gal YT) as a weighted deviation of a) from its posterior mean E(a) | YT) , namely

C12 (wl YT):(a)—E(a)iYT))'V(;](w_E(wIYT))

The loss functionL 2 itself is

I

L a), (I) = I C a) Y > C a) Y12( ) {12(1T) 12( lrl}

Expected L12 -loss amounts to a measure of the weighted discrepancy of (p from

the posterior mean E(a) | YT) . The third loss function Lq (“L-quadratic”), is

L, (M) = (<0 - WWW - 43)

where W is a subjective weighting matrix. One virtue of L,, is that it has a

straightforward solution for the expected risk, viz.

R,(a‘2.,,.- IYT)=(a‘2q,i — E(wl Yr»'W(a‘)q,.- — 15th YT»-

It can be shown that the estimate a3“, that minimizes expected L,, -loss given

model M,- is the posterior mode of p(a)| YT,M,-) , while expected L12 - and Lq -loss are

minimized by the posterior mean estimate (5,1,,- = E((p | YT ,M,).

Flexible Prices Versus Sticky Prices: Two Monetary DSGE Models

To estimate and compare the monetary DSGE models, it is necessary to describe

them in more detail.

48



Once upon a time there were two economies. Both were inhabited by a large

number of individuals (normalized to one) who supplied labor and rented out capital (in

perfectly competitive resource markets) to a large number (also normalized to one) of

imperfectly competitive firms. Each firm used labor and capital to produce a particular

differentiated good. All of these goods were then aggregated to produce a single good

which individuals could use either as a consumer good or as a capital good to be added to

their existing stocks of capital. The amount of the composite good y that could be

produced, given amounts of the individual goods y, produced by each firm i, was

1 (54)“ 8/(8-1)

where a > 1. It is a standard result (Dixit and Stiglitz 1977) that minimizing the cost of

producing y units of the composite good results in a quantity demanded y,- of the good of

firm i ofy,-

yi:(Pi/P)—gy’

where P is the aggregate price level, given by

l l/(l—s)

P = 00 gl‘gdr) .

Consumer ’5 problem

In both economics, the preferences of each individual in terms of consumption

and labor could be described in terms of the lifetime utility function

2161111161: +(1-l)ln021 ‘51:),

t=0

49



where h is labor supply and c is consumption (in terms of the composite good). As in all

good model economies, each consumer attempted to maximize the expected value of

their lifetime utility function in each period. To ensure that there was a demand for

money (following Cooley and Hansen 1989), the custom prevailed in both countries that

a subset of the consumer goods (labeled c1) could only be bought with cash, while the

others (c2) could be bought either with cash or on credit. The weight of cash goods in the

preference function is given by 1.

At the beginning of each period t each individual carried forward bonds with a

nominal value of b,_1 dollars, money balances with a nominal value of m,_1 dollars, and

k,_1 units of the (composite) capital good from the previous period t— 1. He (for so I

shall call the individual for short) would sell h, units of labor in the competitive labor

market at the real wage rate w, per hour, and would rent out his capital stock to firms in

a competitive capital market, getting back r, k,_1 units, r, being the market rental rate.

Finally, the individual received a helicopter drop ofx, dollars on top of the receipts from

maturing bonds of b,_, dollars, leaving him with total cash balances of b,_1 + m,_1 + x,

dollars. He could then purchase consumer goods (either cash or credit), investment goods

i, , bonds and money balances subject to the budget constraint

it] 1 br_bt—l+flt_ 7771-1 x,
cl,+c2,+i,+<1) 7— + —

’t—l ”RIP: P: P: B P:

where R, is the prevailing nominal interest rate. Following Smets and Wouters (2002), I

add a cost of adjustment of investment, with the cost function (I) equaling zero in the
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steady state and having a constant second derivative, so that (13(7) = mill—3:? = (o >

DSGE models of all kinds are notorious for their poor dynamics; adding these adjustment

costs improves the dynamics considerably in the DSGE models used here, and hence, as

will become evident below, their fit to the data (and posterior probabilities).

We have related that cash goods c1 could only be bought with real money

balances. The custom also prevailed bonds could only be bought with cash; so,

individuals were also subject to the cash-in-advance constraint

 

in both economies, ensuring a demand for money.

Firm ’5 problem

Each firm i purchased labor and capital in perfectly competitive labor markets to

produces good y,. The amount of good y,- that firm i could produce in period twith labor

input h,-, and capital input k,-, was given by the production function

]_

J’ir = k,, (p (Zr (hit _ ’10))"; a

ho being a fixed cost of production in terms of labor (which serves as a barrier to entry)

and 2, was the level of technology. z, evolved according to the random walk process

lnz,—lnz,_1=ln7 +82, ,

where the technology shock 62, is white noise, so that technology grew on average at a

rate of? per period. The cost minimization problem of firm i was

min tc,, = w,h,-, + r, k,, such that y,-, = k,‘,“” (z, (h,, — ho ))<”.
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The solution of that problem can be expressed (Yun 1996) in the form

tc,, = w,h0 + mc, y,-, , where me is the real marginal cost of producing an additional unit

ofy. The instantaneous real profit of firm i at time t was then

“it = (Pit ”’1”?! _tcit = (Pit /Pt))’ir - tho —mclyil

=(P,-,/P,)1‘£y,——w,h0—mc,(P,-,/P,)_£y, .

The difference between the two economies lay in the flexibility with which firms

could set their prices. In one economy, the “flexible-price” economy, firms could adjust

their prices as often as they pleased, and did so as to maximize profit. As all firms were

identical, it always turned out that P,-, = P, and me = (a — l)/£ in each period. Hence, in

the flexible-price economy, real marginal cost was always a constant.

However, in the other economy, the “New Keynesian” economy, prices were not

perfectly flexible, and the real marginal cost of output could vary over the business cycle.

In the “New Keynesian” economy, following a queer custom first described in Calvo

(1983), a fraction (1 > 0 of firms, chosen by lot, were not allowed to freely adjust their

price, but only to raise it by the average rate of inflation Ito. This is a standard

assumption in the New Keynesian literature, meant to convey the idea that firms might be

locked into long-lasting price contracts. Its chief drawback is not allowing the degree of

price flexibility to change over time, particularly in response to long-lasting changes in

the average rate of inflation (ruled out by assumption, as the long-run rate of inflation is

assumed given). The remaining fraction 1— a of firms were allowed to adjust their prices,

and did so so as to maximize the expected present value of their profits, allowing for the

chance that the chance was or" that the firm might not be able to change that price for k

periods in the future, no matter what the price level was doing.
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Now as the lucky I— a firms in the group that could adjust their prices were

identical to each other, as were the a unlucky firms in the group that could not, the price

charged by each firm in each group was the same, so that the price level at time t was

given by

—8

P,” = (1 — a)(P,"‘)I + aPtljlg,

where P: was the price charged by the firms allowed to adjust their prices in period t.

Monetary policy

We do not know exactly what was the method by which the helicopters

determined x,, but several methods come to mind. The choice ofmethods calls for

wisdom. Schorflieide (2000) assumed a rule ofmoney growth without feedback, so that

the rate ofmoney growth followed an AR(1) process such that

lay, =(1—pm)1n,u0 +pmln,u,_1+8m,,gm, ~ N(0,0',3,),0 3 pm <1.

While such a policy is very simple, a money growth model without feedback does not at

all resemble US monetary policy during the post-1959 period (with the possible

exception of the “monetarist” experiment from 1979 to 1982). Among the side effects of

assuming such a policy is that, with no feedback to account for supply shocks (in either

direction), is an effect on the price level from a permanent supply shock that is far too

large, which Schorfheide (2000) observed in his experiments with monetary DSGE

models, as well as a spike in the price level from a monetary shock. These are generally

not observed in VARs, however monetary and supply shocks are measured. Also, in

practice, monetary policy accommodates supply shocks to at least some degree.
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In many papers in the New Keynesian literature, monetary policy would be

specified in terms of a Taylor rule, with the nominal interest rate being written in terms of

the output gap and inflation. However, given that I will be estimating my models with

only output and inflation data, I cannot expect the data to be all that informative

regarding the Taylor rule. For that reason, and the fact that all the real effects ofmoney in

New Keynesian DSGE models come from its effects on inflation, I will specify monetary

policy in terms of the resulting behavior of inflation. Inspection of a VAR process for

output and inflation suggests that logged inflation, 1n 7r,, is well described by an AR(1)

process, so that

Inn, 2 (1 —p)7ro + prr,_1+8,,,

where 1n IIO = 1n ,uo —ln7 and 8,, is an inflation term with variance 0,7; that is

correlated with the technology shock 82. Specifically, 8,, = 7:28, + 8m , where 7r, < 0is

the contemporaneous response of inflation to a technology shock and am is the portion of

inflation shocks uncorrelated with technology, which I assume to be the monetary shock.

With the correlation of technology and inflation shocks corr(z,7r) in hand it is

. a
straightforward to calculate II, = corr(8z , 8,, )—”—.

Z

Empirical Analysis

Given that there are only two shocks in my DSGE models (technology/”aggregate

supply” and money/inflation/”aggregate demand”), to ensure non-degenerate

distributions for the data I can only estimate my models for two time series at a time. As

my interest is primarily in the relationship between output and inflation, I estimated each

of the competing models with data on output (real GDP deflated by population) and the
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price level (chain-type GDP price deflator), logged and differenced to obtain series on

(per capita) economic growth and inflation. The data is quarterly data for the United

States from 1964:] to 2003:].

As a reference model, I will be using a VAR in output growth and inflation:

B(L)y, = u, = Ae,

where y, = [d1nGDP,,7r,]' , B(L) is a lag polynomial and e, = [82,,8 ] is a 2x1 vector of

a technology shock and a monetary shock, related to the prediction errors 11, for output

and inflation by the 2x2 matrix A. To identify the four elements ofA requires one

restriction above and beyond those given by the correlations of the prediction errors from

the VAR. I do so here by imposing the restriction that the long-run effect on output of the

temporary monetary shocks is zero, as implied by both the cash-in-advance and New

Keynesian models. So, following Blanchard and Quah (1989), I disaggregate the

prediction error into a permanent element, with a long-run effect on output, and a

temporary element, which does not, and assume that the permanent shock measures

technology and the temporary shock money. (I do this a bit reluctantly, as the temporary

shock could easily be measuring non-monetary types of demand shocks, such as

government spending shocks.

Key to my analysis is calculating posterior model probabilities, which requires

that I estimate the VAR with a proper Bayesian prior. There are several ways ofdoing

this; here, I supplemented my VAR models of output and inflation with a version of the

Normal-Wishart variant on the Minnesota prior suggested by Kadiyala and Karllson

(1997). Kadiyala and Karllson (1997) assumed a priori that the prior covariance matrix of

the disturbances from the VAR equations followed an inverse Wishart distribution with
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low degrees of freedom, while the coefficients of the VAR conditional on the covariance

matrix of the disturbances followed a multivariate normal distribution centered on the

random-walk process assumed by Litterman (i.e. first own lag coefficient equals one, all

other lag coefficients equal zero). They set the parameters of their prior so that prior

variances of the lag coefficients in the BVAR satisfied:

7r, / k for the kth own lag;

7r,s,2 Hts} for the kth lag of variablej; and

7:33,? for the constant term in equation i.

Following Kadiyala and Karllson It, was set to 0.012, suggesting a range of the own lags

from 0.8 to 1.2. For 7r3 , a value of 0.3 was used. The inverse Wishart distribution used

four degrees of freedom. The prior means of the BVAR coefficients differed slightly

from those of Kadiyala and Karllson’s original Kadiyala-Karllson prior. The prior mean

of the constant in the output equation was set at 0.005 (not zero). The prior for the first

lagged term in the BVAR output equation was set to zero, not one, to imply a random

walk in output (not output growth). The last modification was to discard, when drawing

from the BVAR, any draw that implied non-stationarity in the system.

The prior distributions for the DSGE model parameters were chosen to fit the

domain of the structural parameters. As calculated posterior probabilities can be

somewhat sensitive to prior distributions, I imposed highly informative priors only on

parameters for which I was fairly sure there was little if any information in the data; if I

judged the data were highly informative, 1 used as loose a prior as I could while keeping

the prior proper (which is necessary for calculating posterior probabilities). A couple of

parameters were fixed a priori. When the weight of cash goods ,1; in the preference
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function was allowed to float between zero and one, the data strongly favored values near

zero; I set it a priori to 0, thus shutting down inflation tax effects which the data suggest

are not very important (Very similar results would have obtained for small but positive

values for Z .) The data also strongly favor very low values for the markup ,u, tending

towards one (perfect competition); as there is much evidence in recent years that markups

are fairly low (cite someone here), but I need to keep the markup above one to ensure

monopolistic competition, I set ,u to 1.01.

The prior distributions for the rest of the DSGE model parameters are given in

table 2. l a. The mean and standard deviation for the normal priors of the growth rate In ?

and inflation rate In p center the distributions near the sample means for the period, while

allowing a wide range for the parameters, so as not to make these priors too informative.

With a view to a minimally informative prior on the inflation process, I also use a flat

(uniform) prior on the autoregressive term for the inflation process p (between 0 and 1),

the correlation between technology shock and inflation disturbance corr(8z , 8,, ) ,

(between -1 and 0, given that this correlation is almost certainly negative). The variance

terms for technology 0'? and inflation 0,2, are given inverse gamma prior distributions,

with 2 degrees of freedom (resulting in infinite prior variances for these terms). For the

investment adjustment cost parameter (p , I wanted a reasonably diffuse but still proper

prior. To ensure that, instead of estimating 90 itself, I estimated (p/(l — (p) , which is

constrained to fall between zero and one, assuming a prior distribution for (p /(1 — go)

uniform between zero and one.
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The data have very little information for the depreciation rate d and the labor

share of output (15; I chose priors that allow most values for these parameters used in the

RBC literature to fall comfortably within two standard deviations of the mean. The

discount rate ,6 is also not identified. The best analogy to the nominal interest rate in my

model is a short-term interest rate such as federal funds, the real mean value over most of

the sample period would suggest a ,6 = 1),er
+

 

ofjust about one; 1 set the prior mean in the

end at 0.999. This results in a capital-output ratio that is probably too high; however, the

results presented here are not sensitive to reasonable prior distributions for 6', ¢ or ,B.

As for price stickiness, I have stated the prior in terms of the average period of

price stickiness in quarters, l/(l — a). Most micro surveys of firms’ price behavior

suggest a range for this parameter of two to four quarters; an estimate of 2.5 to 3.5 is

obtained by a macro study by Sbordone (2002) using a measure of marginal cost instead

of output, so I picked a prior constraining 1/(1 - a).to be above one and assuming the

most probable values (within two standard errors) to be two to four. Gali and Gerlter

(1999) found rather higher estimates in the 5 to 6 range, but they conjecture that these are

probably biased upward, and are sensitive to sample period; at any rate, as labor contracts

and the “menus” of various firms are usually revised at most annually, there is no reason

to expect l/(l — a) to be much above four.

Step I

As the posterior distributions of the Bayesian VARs are Normal-Wishart like the

priors, it is straightforward to take draws from them, and calculating moments of interest

(as well as posterior probabilities). However, the posterior distribution of the DSGE
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models, being the product of the likelihood (evaluated using a Kalman filter algorithm)

and prior distributions of various shapes, clearly isn’t analytically tractable, so 1 cannot

generate draws from them directly. So, I used a Metropolis-Hastings algorithm to

generate parameter draws from the distribution. The results reported here are based on

80,000 draws from that algorithm. The posterior means and standard errors for the

parameter draws from the Metropolis algorithm, for both the flexible-price and New

Keynesian models, are given in Table 2.1b. Studying these gives some preliminary clues

regarding the performance (good or bad) of the DSGE models.

Starting on a positive note, for both models the posterior distributions for the

parameters suggest not a great deal of misspecification. For the structural parameters,

neither model updates the prior distributions very much, suggesting that for both models

the data is quite compatible with reasonable values of 6, (15 or ,6. For both models the

measure of investment adjustment costs (0 /(l —— (p) is substantial, though the estimated

range is quite wide. The inflation process in both models is fairly well behaved as well;

the persistence term pin both models is around 0.9, with a fairly small error. corr(z,rr)

is constrained to be negative; this constraint seems to be binding, but not unduly so, for

the flexible price model (zero falling within two standard errors of the mean), while for

the New Keynesian model it seems not to be too binding at all.

In the New Keynesian model, the posterior mean average price fixity l /(1 - a) is

almost spot on at three quarters. Hence the data on output and inflation and their behavior

are compatible with survey data on the stickiness of prices. However, given no obvious

signs of misspecification in the flexible-price model, it is fair to ask whether the data
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really suggest an average price fixity of three quarters, or whether the data are simply

uninforrnative about average price fixity and so are compatible with a range of priors.

This is confirmed by the calculated posterior odds for the various models, given in

Table 2.2. I assigned prior probabilities of one-third to both DSGE models (flexible price

versus sticky price/New Keynesian), leaving a probability of one-third for the reference

model (the VAR). Choice of lag length is always a matter of uncertainty with VAR

models, so I split the one-third probability four ways, with one-twelfth probability each

going to VARs with one, two, three and four lags.

The posterior model probabilities are proportional to the Bayes factors, for which,

again, the formula is p(YT 1M,) 2 Jp(YT 10(i),M,-)p(0(,-) |M,-)dt9,- . For each model 1

calculated a modified harmonic mean estimator (Geweke 1999) of the Bayes factor of the

form

1 "Sim f(9((lis)) )

”Sim 5:1 P(YT [6((5),M,-)p(9((3) lMi)

  

PHM(leMi)=

_ . —1/ — _. — —

where f(6) = (27:) d’ /2 iVBaii 2 exp[—- 0.5(0 — 6,)1/9: (t9 — 9,)], (9“) being the calculated

posterior mean of 60) and V9,,- being the posterior covariance matrix of 60-) generated

1/ 2

by the Metropolis algorithm. The IVg,,-l term can be interpreted as penalizing high

dimensionality, as do more common model selection criteria as the Schwarz criterion

(which can be interpreted as a rough approximation to the Bayes factor; see the next

chapter below and Kass and Raftery 1995 for more details).

One clear result is that the DSGE models dominate the Bayesian VARs; the

combined probabilities of the two DSGE models compared to the VARs suggest a
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DSGE/BVAR posterior odds of 104:1. Changes in the BVAR prior distribution might

alter those odds somewhat, but what is clear is that the DSGE models are not only

competitive in fit but also possibly superior. Among the advantages of the DSGE models

are greater parsimony (11 free parameters for the New Keynesian model versus 21 for the

best of the BVARs, the BVAR(4)) allowing for greater precision in estimation of

moments.

Here, however, the good news for New Keynesians ends. As expected, the

posterior probability is greater for the New Keynesian than the flexible-price model.

However, the posterior odds of the sticky-price model are only about three to one; as it

were, if we allow price flexibility and price stickiness to be equally likely a priori (as my

prior probabilities imply), we wind up not being able to “reject the null” of perfect price

flexibility at any reasonable level (above 90%, that is, a nine to one ratio). To be sure, to

put a one-half prior probability on price flexibility implies a prior distribution assigning a

probability of one-half on 1 /(1 — a) equaling one, when my actually prior beliefs are the

gamma distribution on 1/(1 — a) centered at three and giving a prior probability of

1/(1 — a) equaling one of zero. More consistent with such a prior belief would have been

to set the prior probability of the flexible price model equal to zero. Relaxing that

assumption, however, brings into sharper reliefjust how little information the inflation

and output data really possess; this calls into question the usefulness of such macro

studies as those of Gali and Gertler (1999) or Sbordone (2002), who essentially mine the

output and inflation data in search of the most plausible value of 1/(1— a).

To underline the point that the evidence from the output and inflation data alone

that there is substantial price stickiness and/or New Keynesian elements in the business

61



cycle, I re-estimated the New Keynesian model, this time with a flat prior on a (i.e. a

uniform prior between 0 and l). The posterior mode of a was about 0.77, suggesting

average price fixity of slightly over a year, and consistent with Gali and Gertler’s results

using a classical generalized method of moments estimator. However, the posterior

distribution was very flat, with values for a from as low as 0.2 to as high as 0.85 not

possible to rule out. The modified harmonic mean estimator of the Bayes factor for the

“flat prior” New Keynesian model was about 1188.22, below that for the flexible price

model that restricted or to zero; Occam’s razor would then suggest taking the flexible-

price model as a benchmark, and assuming no price-stickiness at all. It is clear that prior

information on the amount price-stickiness has to be imposed from without for us to be

able to learn much about inflation’s impact on output, given that the data are compatible

with such a wide range of degree of price stickiness.

The difference between the results here and Schorflieide’s (2000) results that

found monetary DSGE models come far less from the imposition ofNew Keynesian

effects as with other changes to the model. By stating monetary policy in terms of

inflation instead of monetary growth, the “spike” in inflation generated by a persistent

change in monetary growth, which is inconsistent with the data, is removed here. The

addition of investment adjustment costs also improves output dynamics to the degree that

the overall fit of the model is much improved. If (p is restricted to zero, the Bayes factor

of the flexible price model falls to 1180.74 and that of the New Keynesian model to

1182.93, leaving posterior odds of about 7:1 in favor of the BVAR(4).
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Step 2

The good in-sample fit of (correctly-specified) DSGE models is encouraging, but

probably ofmore interest is the behavior these models imply for the output-inflation

relationship. It would also be helpful to know along what lines the “bad” models (the

VARs) fail. To do this, 1 calculated loss functions based on predicted population

characteristics. Specifically, following Schorheide, 1 considered: (a) correlations between

output growth and inflation corr(A 1n GDP, , A In P, + h ), h = —2,...,2 , and (b) the responses

of output growth dA In GDP/ d6“, and inflation dA In P/ d8, to a permanent technology

shock that increases technology by one standard deviation, and the responses of output

growth dA 1n GDP/ (18", and dA In P/ d8m to a one standard deviation monetary shock.

To calculate the posterior distribution of the correlations and the IRFs, I obtain the

means and covariance matrices of the vectors of correlations and IRFs from each model.

Then I assume the posterior density of the correlations and IRFs to be approximately

normal with mean

2

51601 YT]: gfliJEiwl YTaMi]

,2

and covariance matrix

2

leYT = [241,Tin1YT,M, + Elw'wl YTaMiil] — Elw'wl le-

i=0

1 have argued above why my prior beliefs suggest I should set the prior (and so

posterior) probability of the flexible price model equal to zero, and so ignore it in

calculating posterior distributions of moments. Since the posterior probabilities of the

Bayesian VAR models are also very low, I can also ignore those, and take the posterior
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distributions from the New Keynesian model as my posterior distribution. In what

follows, then, the loss functions calculations taking the distributions from the New

Keynesian model to be the “true” one can be regarded as the “true” values of the loss

functions. However, 1 also calculate for most moments the loss functions assuming the

BVAR(4) to be the “true” model, for two reasons. First, it is of some interest to examine

just how the DSGE and BVAR models differ. It will turn out that, in general, the

distribution of the moments is tighter under the DSGE models than under the BVAR,

resulting the DSGE moments fitting nicely within the BVAR moment distributions, but

the BVAR moments having minimal probability under the DSGE models. Also, in most

of the literature classical and Bayesian VARs are the models actually used to study the

effects ofmonetary shocks, and in Schorflreide (2000) the VAR was taken as the “true”

or benchmark model, so that the loss functions for the DSGEs, calculated taking the

BVAR(4) to be the “true” or reference model, are most closely analogous to those for the

DSGE models examined in his paper.

Step 3

Correlations

The posterior distributions for the cross correlations, and the Lp -losses for the

correlations implied by the DSGE models taken individually, are given in table 2.3a. At

each lead and lag the posterior (that is, the New Keynesian model) suggests a correlation

between output growth and inflation between zero and -0.2 at all leads and lags. By

contrast, the flexible price model given a range between zero and —0.1 for correlation of

current output with leads of inflation, but a tight constraint around zero for correlations of

current output with lagged inflation. The lower absolute values for the flexible price
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model are in part due to the lower estimated correlation between technology and inflation

disturbances; the zero correlations with lagged inflation are due to the effect of a

monetary/inflation shock being constrained to zero.

In contrast to the narrower range for correlations of the flexible price model (a

special case of the New Keynesian model), the BVAR(4) suggests a much wider range of

the correlations, between zero and —0.4 for all leads and lags. The distribution of the

correlations from the BVAR(4) nest those for the New Keynesian and the flexible-price

models comfortably. The flexible-price correlations are on the high end of the range

suggested by the BVAR(4), but at no lead or lag are the Lp -risks higher than 0.95; in the

case of the New Keynesian model, all are well below 0.9. However, the mean of the

correlations for the BVAR (approximating the mode) is on the low end of the plausible

levels from the New Keynesian models, and well beyond those from the flexible price

model; the Lp -risks of the BVAR correlations assuming flexible prices are all essentially

one, and assuming the New Keynesian model all above 0.99 (calling for the BVAR

model’s “rejection at the 99% level”). The BVAR(4) correlation distribution can be

interpreted as the range of correlations between output and inflation compatible with the

data; the contribution of the restrictions on dynamics given by the DSGE model is to

improve the precision of the correlation estimates. If we assign a substantial posterior

probability to the hypothesis that the DSGE models are the “true” models, as the Bayes

factors suggest we should, then the lower precision of the BVAR estimates makes for a

much greater expected loss from using the results of the BVAR over the DSGE.

By the same token, if we assign a high prior probability (and so a high posterior

probability) to the idea that prices are perfectly flexible, the New Keynesian model turns
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out to be substantially riskier than the flexible price model, given the wider range of

correlations it allows without a substantially higher posterior probability (unless the prior

odds in favor of price stickiness are extremely higher). The New Keynesian models’

distribution of correlations nests the flexible price correlations fairly comfortably; in no

case, given the distribution from the New Keynesian model, are the Lp -risks of the

flexible price mean correlations higher than 0.95, and most are below 0.9. However,

given the distribution from the flexible price model, which essentially restricts the

correlations of output and lagged inflation to zero (which the New Keynesian model does

not), the Lp -risks of the New Keynesian model’s mean correlations of output and lagged

inflation are essentially one, though the risks for the correlations with current and leads of

inflation are well below 0.9.

The cash-in-advance model suggests a slightly too negative correlation between

current output and future inflation; the New Keynesian model compensates for that

somewhat, as indicated by L,, -losses closer to 0.5 which would indicate a “perfect fit.”

(The New Keynesian model, as it were, includes the Phillips curve relation allowing high

output to spur an eventual rise in inflation.) Under the cash in advance model, there is

essentially no correlation between current output and past inflation; the New Keynesian

model allows for a more realistic negative correlation between output and inflation

lagged one period, but for essentially none before then.

The fit for the correlations individually is considerably better than that reported in

Schorflreide (2000), especially for the relation between output and current inflation,

which he found to be too sharply negative, and the relation between output and future

inflation (which he found not negative enough). The reason for the better fit, both by the
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“eyeball metric” and by Lp -loss measure, has, however, as much to do with the more

general preferences in my model as opposed to Schorfheide’s. In particular, the

(implausibly) low risk aversion parameter makes consumption (and hence real money

balances) more closely related to the capital stock and less sensitive to technology

shocks, reducing fluctuations in consumption (and so inflation) over the cycle.

To get a sense ofhow risky overall is each model, 1 evaluated the L,, -losses of all

five correlations jointly. The probability map, | Y,) of the posterior modes of the

correlations from the DSGE models is approximately if!j, T p(a‘)q,,- | YT,MJ-), the

j=0

posterior mean of the probabilities of the posterior means of the DSGE correlations. In

Table 2.3b are reported the probabilities of the posterior mean of each model, given each

model’s distribution, where the distributions are assumed to be multivariate normal

distributions with the mean and covariance matrices being the posterior mean and

covariance matrices of the correlation draws from each model taken from the Metropolis

algorithm. If the New Keynesian model is taken to be the true model (so that

”2] = land 7:0, T ,rrl, T = 0 , the probability of the BVAR(4) mean correlations (model

0) are essentially zero, while those from the flexible price model (model 1) are only about

8% as likely as the mean from the New Keynesian model (model 2). By that formulation,

clearly not assuming price stickiness is riskier than assuming it. However, this result is

sensitive to the assumption that the chance of price stickiness is negligible; if we put take

the posterior odds for model 1 versus model 2 given in Table 2.2, the implied probability

2 30.6 times that
 

27.1] 19-90

of the flexible price mean correlations is (0.224)e 392 4+ (0.760)e 22 47

_ (0.224)e‘ ' + (0.760)e '

67



of the New Keynesian mean correlations. In effect, unless one assumes the probability of

perfect price flexibility is very low a priori, the least risky hypothesis a posteriori is that

ofperfect price flexibility—or in other words, that inflation-related demand shocks have

no impact on output fluctuations.

A fairly similar conclusion can be drawn from the calculated L 2 -losses for the

I

competing models. The L 2 -losses of a given model i given another modelj can be

I

approximated by the p-value of a test of the null hypothesis

H0 : C12 ((5%,- | YT,Mj) ~ 12 with five degrees of freedom. Taking the BVAR(4) first

as the benchmark, the weighted distance C12 ((5%,- | YT , MO) between the mean

correlations from the two DSGE models and the means from the BVAR(4) give the edge

to the New Keynesian model. However, for both DSGE models the L12 -risks are low

enough to make “rejection” impossible at any reasonable confidence level. If we take

instead the flexible-price model as the benchmark, the values for C12 (pm | YT ,M1)

reported here imply L12 -losses of near one for both the BVAR(4) and the New

Keynesian model (and rejection ofboth models, as it were). Taking finally the New

Keynesian model as the benchmark, the value for C12 ((qu | YT ,Mz) reported for the

flexible price model has an implied L12 -loss that cannot allow rejection at any

reasonable confidence level; however the value C12 (gbqfl | YT , M2) reported for the

BVAR(4) implies an L12 -loss of about one (and clear rejection). Clearly, unless a priori
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perfect price flexibility is ruled out, inference using a model assuming perfect price

flexibility is a much less risky proposition, in part because inflation effects on output are

small enough, given the size and persistence of inflation disturbances that theycan be for

many purposes be ignored in analyzing output fluctuations.

Impulse-responsefunctions

Looking (in Figure 2.1) at the posterior means of the impulse responses of output

growth and inflation to one-standard-deviation shocks in technology and in money (i.e. in

inflation disturbances unrelated to technology shocks) will help make this clear. Looking

first at the impact of a technology shock on output, the impulse-response function for the

flexible price and for the New Keynesian model are visually indistinguishable. On the

other hand, that from the BVAR(4) using Blanchard-Quah ordering suggests a much

lower impact of technology on output—and by implication a much larger role for

monetary/aggregate demand shocks in output fluctuations. The posterior mean response

from the BVAR(4) of a monetary shock on output growth is more than twice that of the

New Keynesian model. (By assumption, the impact of a monetary shock on output in the

flexible price model is zero.)

The mean impact of a technology shock on inflation implied by the BVAR(4) is

also more than twice that of the New Keynesian model, while that for the flexible price

model is only about a third that of the New Keynesian model. These results match those

found with the correlations, with the highest correlations between output and inflation

coming from the BVAR and the lowest from the flexible price model. The BVAR

suggests a larger role for technology/supply shocks in inflation determination than do the

DSGEs, and a correspondingly smaller role for monetary/demand shocks; the difference
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between the mean responses of inflation to a monetary shock for the two DSGE models is

small, and both are considerably higher than that implied by the BVAR(4).

Simply looking at the posterior means is a little misleading, however, for in fact,

again, the DSGE provides a good deal more precision in disaggregating output and

inflation into technology and monetary shocks than the BVAR can. Figure 2.2 reports

90% confidence intervals for the IRFs from the New Keynesian DSGE model along with

those from the BVAR(4). Except for the money-on-inflation IRF, the BVAR(4)

confidence interval for each IRF comfortably nests the New Keynesian IRF confidence

interval. The BVAR(4) confidence intervals for technology and money shocks on outpupt

are particularly wide; for both shocks the 90% confidence interval allows for an impact of

essentially zero to up to 0.8 percent, near the average size of an output disturbance in

quarterly US GDP growth data. In other words the data is compatible with either all

output disturbances being attributed to permanent (technology) shocks, all being

attributed to temporary (monetary/demand) shocks, or any case in between. The

restrictions imposed by the Blanchard-Quah identification scheme alone are not strict

enough to shed light on which shock, temporary or permanent, plays a larger role in

output fluctuations. The restrictions imposed by the DSGE model go far enough beyond

those of the Blanchard-Quah scheme (though inasmuch as technology shocks are

permanent and inflation shocks temporary, the Blanchard-Quah restrictions are satisfied

as well) to greatly increase the precision of the IRFs and reveal, at last, that permanent

technology shocks are by far the more important, the impact of a technology shock being

near the maximum the Blanchard-Quah identification scheme would allow as plausible.
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Table 2.4 reports the loss function calculations for the IRFs (taken at lags 0

through 11) of the various competing models, given as benchmarks either the New

Keynesian model or the BVAR(4). (As the distribution of dA 1n GDP/ d8", is degenerate

for the flexible price model, being zero at all lags, L12 -risk for any other model

implying non-zero responses; hence, L12 -risks taking flexible-price as the benchmark

are not reported.) For the most part, they confirm what the “eyeball metric” suggests for

the precision, and the compatibility of the various models. Taking the New Keynesian

model as benchmark, the calculated C12 (gbqp | YT ,M2 ) values for all four BVAR(4)

mean IRFs are enormous and L12 -risk essentially one. However, the calculated

C12 ((5%, | YT , M2 ) values for the four flexible-price IRFs are extremely low. For all but

dAln GDP/ d8”, , L12 -risk is close to zero, and for dA 1n GDP/ d8m itself L12 -risk is

only about .31, suggesting that a hypothesis of zero (or rather negligible) impact of

inflation on output cannot be rejected at any reasonable confidence level. Meanwhile, if

we take the BVAR(4) as a benchmark, the L12 -risks are very low for the mean IRFs of

both DSGE models, indicating they are well within the range of possibilities suggested by

the VAR. For all but the response of inflation to a temporary (monetary) shock, the

L12 risks are near zero; only for dAln P/ (18", are they even above .1, and even then

none are less than .4.

I also report the L,, ~losses, given either the New Keynesian model or BVAR(4)

as benchmark, for the competing models, using as a weighting matrix a 12 x 12 identitiy
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matrix times 1/12 (giving the average square deviation of the benchmark IRF from the

competing model). Using the New Keynesian model as benchmark, the BVAR(4) has

consistently larger Lq -losses than the flexible price model; for dA 1n GDP/ d8z , in

particular, the L,, -losses are over 25 times greater, and for dAln P/ d8m nearly ten times

greater. Using the BVAR(4) on the other hand, the margins between the two DSGE

models are not nearly as large; however, the New Keynesian model’s losses are

consistently lower. If one takes, as many would, the BVAR to be the true model, the New

Keynesian DSGE would appear to be the least risky. However, when a substantial or

even overwhelming probability exists that the DSGE is the true one, the BVAR(4)

becomes much riskier by several orders of magnitude.

Conclusions

The loss-fimction based evaluation of a New Keynesian DSGE model estimated

using Bayesian methods leads to several conclusions. Contrary to Schorflreide’s (2000)

findings for a cash-in-advance Bayesian DSGE model, it is possible to construct and

estimate Bayesian DSGE models with New Keynesian features that are competitive, if

not superior, in fit to a Bayesian vector autoregression in output and inflation. The

advantage of the Bayesian DSGE model is its ability to greatly improve the precision of

estimates of such moments as correlations between output and inflation as well as

impulse response functions, without an undue cost in terms of fit.

Another conclusion may be more surprising. The improved performance of the

New Keynesian DSGE model used here comes from elements such as investment

adjustment costs and a monetary rule in terms of inflation (not, as in Schorflieide, a

monetary growth rule without feedback) that have little to do with the New Keynesian
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features of the model. Disappointingly, perhaps, for a researcher devoted to a New

Keynesian explanation ofbusiness cycles, the output and inflation data bear surprisingly

little information about the average price stickiness in the US economy. The problem is

that inflation shocks have contributed such a small amount to US business cycles (enough

that they can easily be regarded as negligible) that the amount of information one could

reasonably expect the US GDP series alone to bear regarding the impact of inflation on

output is quite small. One conclusion that could easily be drawn is that studies that mine

output data, or marginal cost data derived from output data, for information on the slope

of the New Keynesian Phillips curve may well be best abandoned in favor ofmicro

surveys of price stickiness, and plausible levels of price stickiness imposed on the data a

priori for the purpose of analyzing the impact of monetary shocks.

It should be added that there are, naturally, other sources of information besides

improved priors, that is, other sources of data such as nominal interest rates. If anything,

the monetary policy model in this paper is unrealistically simple, not least because central

banks set nominal interest rates, not inflation as such. Also, it is rather doubtfirl all the

variation in output attributed to temporary shocks in the Blanchard-Quah identification

scheme comes from monetary/inflation shocks; much could easily come from non-

monetary sources of demand shocks, such as government spending and preference

shocks. In the next chapter, we will take a closer look at how to disaggregate data using a

DSGE model into technology, money and non-monetary demand shocks, and explore

each one’s roles in business cycle fluctuations.
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Table 2. l a: Prior distributions for structural parameters ofDSGE models
 

 

Parameter Range Density Mean Std. deviation

1n 7 93 Gaussian 0.005 0.005

In 77 9? Gaussian 0.010 0.005

)6 [0,1] Beta 0.999 0.0005

6 [0,1] Beta 0.015 0.0025

¢ [0,1] Beta 0.700 0.025

go /(1 — (0) [0,1] Uniform 0.5 0.289

P [0, 1] Uniform 0.5 0.289

corr(8Z , 8”) [- l ,0] Uniform -0.5 0.289

a /(1 — a) 93+ Gamma 2 0.5

Scale d.f.

0', ‘R + Inverse gamma 0.008

0',r s}; + Inverse gamma 0.002

 

Table 2.lb: Posterior distributions for structural parameters ofDSGE models
 

 

 

 

Model

Flexible price New Keynesian

Parameter Mean Std. deviation Mean Std. deviation

1n y 0.0053 0.0009 0.00512 0.0009

In 7? 0.0102 0.0021 0.0103 0.0018

,3 0.999 0.0005 0.999 0.0005

6 0.0150 0.0025 0.0149 0.0024

¢ 0.700 0.0251 0.701 0.0237

(0/(1- (0) 0.361 0.161 0.301 0.154

,0 0.891 0.0378 0.878 0.0327

corr(82,8,,) -0.0932 0.0577 -0.312 0.130

1 /(1 — a) 3.099 0.467

0', 0.0116 0.0012 0.0118 0.0012

0",, 0.0028 0.0002 0.0028 0.0002

 

Table 2.2: Posterior odds for competing models
 

 

Flex. price N—K
Model DSGE DSGE BVAR(l) BVAR(Z) BVAR(3) BVAR(4)

Priorprob. 1/3 1/3 1/12 1/12 1/12 1/12

17033363 1188.36 1189.58 1184.70 1184.94 1185.95 1186.32

Post. prob 0.224 0.760 0.001 0.002 0.005 0.007

Post. odds,

, , 1 3.39 0.006 0.008 0.022 0.032

”1,7: ”LT
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Table 2.3a: Distributions and loss firnction values for output-inflation correlations of

competing models, taken individually

 

Correlations, corr(A 1n GDP, , A In P, + h )

 

Model

Flex. price

Distributions N-K

BVAR(4)

Benchmark

Flex-price

-riskL

1’ N-K

BVAR(4)

Mean

Std. err.

Mean

Std. err.

Mean

Std. err.

Model

N-K

BVAR(4)

Flex-price

BVAR(4)

Flex-price

N-K

h = —2

-0.009

0.007

-0.090

0.045

~0.258

0.128

h = -2

~l

~1

0.930

~l

0.948

0.810

h = -1

-0.014

0.010

-0.083

0.043

-0.253

0.128

h = —l

~l

~l

0.891

~l

0.939

0.817

h = 0

-0.054

0.037

-0.092

0.059

-0.247

0.129

h = 0

0.702

~1

0.478

0.991

0.866

0.771

h =1

-0.047

0.031

-0.080

0.051

-0.219

0.130

h = 1

0.698

~1

0.477

0.994

0.809

0.71]

h = 2

-0.042

0.027

-0.070

0.043

~0.l98

0.132

h = 2

0.690

~l

0.475

0.997

0.763

0.669

Table 2.3b: Loss function values for output-inflation correlations of competing models,

taken jointly

 

1415142,,- 1M,11

J' = 0 j =1 J' = 2

LP‘IOSS i = 0 (BVAR(4)) 12.16 -5876 453.45

i = 1 (flex-price) 8.92 27.11 19.90

i = 2 (N-K) 10.97 -3924 22.47

C12 (wqj lYTan)

J' = 0 j =1 j = 2

i = 0 (BVAR(4)) 11807 951.79

i =1 (flex-price) 6.48 0 5.10

L 2 -risk i=2(N-K) 2.38 839.09 0

l L 2 -I‘ISI(

I

j = 0 j = j = 2

i = 0 (BVAR(4)) ~1 ~1

i=1 (flex-price) 0.737 0 0.596

i = 2 (N-K) 0.205 ~1 0
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Table 2.4: Loss function values for impulse response functions of competing models,

 

 

   

taken jointly

Impulse response functions

dA 1n GDP dA In P dA 1n GDP dA In P

d8Z d8, d8m d8m

Benchmark

1 = 0 0.0086 0.0033 0.0086 0.0033

i = 1 0.00023 0.0012 0.0046 0.00034

New C 2 (,oq l. l YT) = 0 1.12E12 8.09E11 3.42E12 3.78E12

Keynesian I ’ z 1 1.67 2.78 9.14 0.92

r = 0 ~1 ~1 ~1 ~1

i — 1 0.00023 0.0031 0.309 9.01E-6

i 1 0.0116 0.0084 0.0260 0.0050

i - 2 0.0086 0.0033 0.0086 0.0033

. i —-1 5.38 6.05 4.86 10.03

BVAR(4) C12 ((0‘“ | YT ) = 2 4.36 3.76 1.87 9.77

r 1 0.056 0.087 0.038 0.386

i - 2 0.024 0.012 0.00042 0.363
 

76



Technology on outputgrowth TechnologI on inflation

0.8 _ 0025

0.6

- 605
’/¢D

- 0.075 ,x” w,....----:'

0.4 - 0.1 ,.—-

'\ - 0.125 ,-

0.2 \ - 015 /'

=M ' 01.75 ’.

 

 
Moneyon outputgowth

 

 

 

Figure 2.1: Posterior means of impulse response functions from estimated cash-credit

DSGE model (dotted lines), New Keynesian DSGE model (dashed lines) and BVAR(4)

model (dotted-dashed lines)
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Figure 2.2: 90% confidence bands of impulse response functions from New Keynesian

DSGE model (dashed lines) and BVAR(4) model (dotted-dashed lines).
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CHAPTER 3

TECHNOLOGY SHOCKS VERSUS MONETARY SHOCKS:

IDENTIFYING SOURCES OF BUSINESS CYCLE FLUCTUATIONS WITH A

NEW KEYNESIAN DSGE MODEL

Introduction

To answer the questions of “What does monetary policy do?” and “Does

monetary policy generate recessions?” we need to be sure, keeping the critique of

Rudebusch (1998) in mind, that the measure ofmonetary policy shocks used by our

models make sense. Most of the methods used to identify monetary shocks in the vector

autoregression (VAR) literature, which still comprises the bulk of empirical literature on

the effects of monetary policy, are not wholly satisfactory in that regard. The most widely

used method for identifying monetary shocks are zero restrictions on contemporaneous

effects (e.g. Bemanke and Mihov 1998; Christiano, Eichenbaum and Evans 1996, 1998;

Leeper et a1. 1996), but the institutional rigidities used to defend these restrictions are at

best debatable.

Other restrictions that have sometimes been used are long-run restrictions on the

effects of shocks (e.g. Gali 1992) and sign restrictions on their effects (e.g. Uhlig 1999);

Identification schemes based on the heteroskedasticity of structural shocks have also been

proposed, for example by Rigobon (2003). Identification schemes restricting signs and

long-run effects of temporary monetary shocks can be defended with a number of

models, among them so-called “New Keynesian” models, which have become quite

popular in recent work on monetary policy and its effects (e. g. Clarida, Gali and Gertler

2000; Leeper and Zha 2001; McCallum and Nelson 1999). New Keynesian models are

dynamic stochastic general equilibrium models (DSGE models) of various levels of
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elaboration, descended from the “real business cycle” (RBC) models of Kydland and

Prescott (1982). New Keynesian models add such features as imperfect competition and

price and wage stickiness to a basic RBC model to permit monetary and other demand

disturbances to play a larger role in economic fluctuations. The long-run effect

restrictions imposed by Gali (1992) were inspired by restrictions that would be imposed

by an IS-LM model, or a modern New Keynesian DSGE equivalent.

Arguably more appealing from a theoretical (or an aesthetic) standpoint would be

to have done with ad-hoc identification schemes and use an estimated DSGE model to

identify sets of monetary shocks. In practice, however, little attention has been paid to the

possibility of identifying monetary shocks with DSGE models. The purpose of this paper

is to fill that gap.

The earliest papers in the DSGE literature devoted to estimating series of shocks

(e.g. Hansen and Prescott 1993) did so using calibrated models. The implicit assumption

was that DSGE models were too highly stylized to be worth estimating. However, more

recent, richer DSGE models have done a better job of fitting US macro time series than

their predecessors. A large literature now exists using classical maximum likelihood

methods and/or generalized method ofmoments (e.g. Christiano and Eichenbaum 1992;

McGrattan 1994; McGrattan et a1. 1997) to fit RBC models containing several shocks to

the data. More recent work has used Bayesian methods to estimate and assess non-

monetary DSGE models. Dejong et al. (2000a, 2000b) studied a non-monetary DSGE

model containing total factor productivity and marginal efficiency of investment shocks.

Among the advantages of a Bayesian approach is the ability to supplement the data with
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prior information on structural parameters, which is helpful when parameter estimates

conflict markedly with other evidence.

Several recent papers answer the common criticism that DSGE models, monetary

or non-monetary, are not competitive with classical VAR models in terms of fit. Kim

(2000) finds a monetary DSGE model with a realistic monetary rule fits the output,

inflation, money supply and interest rate data about as well as a classical VAR. del Negro

and Schorfheide (2003) found that a stylized monetary DSGE model could be used to

construct a prior for a Bayesian VAR that performed as well, or better, than the random-

walk “Minnesota” prior (Litterman 1986) in forecasting US output and inflation. Smets

and Wouters (2002) estimated a DSGE model of the euro area using seven data series and

ten types of shocks, including such real rigidities as habit formation as well as nominal

wage and price rigidity. They assessed the fit of their model by calculating Jeffreys-

Bayes posterior odds (Zellner 1971), and found it comparable to that of a Bayesian VAR

using a Minnesota prior for each time series.

The present paper tries to use a monetary DSGE model to answer the question:

Do monetary policy shocks generate recessions? For that matter, have they been as

important as supply shocks in US business cycles? The approach used here to answer the

question is to estimate a series of technology/supply shocks, monetary shocks and non-

monetary demand shocks using a well-fitted DSGE model, and examine what

information content these shocks—in particular monetary shocks—can provide in post-

war US business cycles.

The technique of the paper is similar to Dejong et al. (2000a, 2000b). The DSGE

model used is estimated with output, inflation and interest rates only, similar to the del
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Negro and Schorflieide (2002) study. Following Dejong et al., the likelihood firnction

implied by the monetary DSGE model is combined with a prior distribution for the model

parameters to derive a posterior distribution for model parameters, impulse responses and

series of shocks.

Dejong et al. found that their model forecast output and investment about as well

as a Bayesian VAR using a “Minnesota” prior, but did not directly compare in-sample fit.

To compare the fit of this paper’s DSGE model to that of competing models, and assess

how trustworthy the model is for business cycle analysis, this paper follows Schorflieide

(2000) and Smets and Wouters (2002) in calculating Bayesian posterior odds for the

DSGE model versus a competing model, specifically a Bayesian VAR model of output,

inflation and the interest rate. The DSGE model is competitive with the Bayesian VAR,

suggesting that it describes the dynamics of output, inflation and interest rates about as

well as the BVAR. Among the advantages ofusing the DSGE model (as opposed to a

BVAR ofroughly equal fit) lies in its identifying the shocks with direct appeal to the

theoretical model, giving the shock series firmer basis in theory than the ad hoc methods

used to construct monetary shocks from a VAR. Another is that the restrictions fiom the

DSGE allow a good deal more precision in describing the relationships of the various

time series used to estimate the model.

With the various shock series in hand, it is possible to study the behavior and

interactions of the shocks around NBER recessions. As a rule, monetary shocks lead US

recessions, while supply shocks coincide with recessions. However, supply shocks are a

more reliable indicator ofNBER recessions. Logit models ofthe probability of
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recessions, estimated using current and lagged shock series as explanatory variables,

yield accurate predictions of the turning points.

This paper’s results differ fiom those of Smets and Wouters in their implications

for the relative importance of shocks. Smets and Wouters found technology shocks to be

of secondary importance in European business cycles compared to preference and labor

supply shocks, as well as monetary shocks. Most of the explanatory power from the logit

model for NBER recessions estimated here comes from supply shocks. Models omitting

supply shocks are inadequate, and by standard model selection criteria suggest the

evidence that monetary shocks have had much predictive content for recessions,

particular post-1982 recessions, is quite weak.

The main source of the difference between the results below versus those of

Smets and Wouters, this paper will argue, is the different prior assumptions about the

levels of nominal price rigidity and intertemporal substitution of consumption. The prior

distributions for nominal price rigidity used here restricts it to levels that micro data

suggest are most plausible for the US economy. The prior used for intertemporal

substitution of consumption reflects the very low estimates found in the consumption

literature (e. g. Hall 1988). Given the fairly steep IS curves and Phillips curves that result,

demand-side shocks generally, and monetary shocks in particular, are given less role in

business cycles as compared to supply or real technology shocks than Smets and Wouters

implied for Europe. The results below come closer to the conclusions of the VAR

literature that has found for the most part “responses of real variables to monetary policy

shifts are estimated as modest or nil, depending on specification” (Sims 1998, p. 933).

A Small Scale New Keynesian Macro Model
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The model used in what follows is similar to models used in del Negro and

Schorfheide (2002) and Smets and Wouters (2002), the biggest difference being a

modification to make preferences compatible with balanced growth. Consumers'

preferences also allow for habit formation in consumption and leisure, following recent

research such as Fuhrer (2000). Nominal rigidity is added by following Calvo (1983) and

allowing imperfectly competitive firms only a positive probability (less than one) of

being able to adjust their prices in a given period. The systematic part of monetary policy

is taken to be a modified Taylor rule (Taylor 1993), which specifies the interest rate

target as a function of output and inflation.

Preferences

A large number of consumers have preferences that can be expressed by the

lifetime utility function

 
0° 1 1— 1— )

E,Z,Bt(8,l ((xt‘¢Xt—1) 0+(mt/Pt) a ,
_ — 0'
t—0

m, /P, is individual holdings of real money balances at time t, with m, being holdings of

nominal balances and P, being the economy-wide price level. x, is a composite of

consumption and leisure so:

x = 81—771”
t r r a

where c, is individual consumption and 1, =1 — h, , where h, is the fraction of period t

engaged in labor. (In this section small letters will denote individual decision variables,

and capitals will denote economy-wide aggregates.)

Economy wide average consumption and leisure (denoted by X,_1 ), which

individuals take as given, enters individual utility functions to generate habit formation in
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consumption and leisure; the parameter (15 determines the amount of habit formation.

Lifetime expected utility has a finite value if and only if,6 = [gym—’7)(1'0) < 1 .

The term 8, measures shifts in preferences that follow the AR(1) process

It will become clear that the effect of these shocks is to raise output, employment

and inflation, suggesting an aggregate demand shock. With that in mind, preference

shocks will be referred to as "autonomous demand shocks" or just “demand shocks” fiom

now on.

While labor/leisure is homogeneous in this economy, consumer goods are not. c,

is a composite of a large number of imperfectly substitutable consumer goods c,, , each

produced by an individual firm i. Specifically, aggregate consumption as a function of the

individual goods is

)6/(6—1)

1 5—1/5
C, :(J-Ocl‘t ) (11

where 6> 1. Cost minimization yields individual demand functions for each good c,, of

the form

—6

Cir =(Pi: /Pt) Ct,

where p,, is the price of good i. 6 then is the elasticity of demand for each good i. P,

can be expressed in terms of the individual p,, ’s as

I 15 l/(l—5)
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At the beginning of each period t each individual canies forward bonds with a

nominal value of b,_1 dollars, and money balances with a nominal value of m,_1 dollars.

Individuals sell h, units of labor in the competitive labor market at the real wage rate w,

per hour. They also receive dividends from ownership ofmonopolistically competitive

firms in the amount of r, . Finally, individuals receive a helicopter drop of x, dollars each

on top of the receipts from maturing bonds of b,_1 dollars, leaving them with total cash

balances of b,_1 + m,_, + x, dollars. Individuals then purchase consumer goods,

privately issued bonds and money balances subject to the budget constraint

b b

c,+ 1 —’——Ll—+fl—-’—nt—_l-—x—t—w,h,—r,50,

1+RiP, Ii P, P, P,

 

R, being the prevailing nominal interest rate.

The first order conditions of the consumer’s problem are

(c1: consumption demand) (1 — q)c,"7 (1 — h)? (x, — ¢X,_, )‘0 = 2,,

 

(C2: labor supply) 77c,1 _'7 (1 — h)?1 (x, - ¢X,_1)_0 = w, x1, ,

I P.
(C3: demand for bonds) xi, = E, —/1,+1 ,

1‘I'Rt Pt+l

(C4: money demand) (m /P )‘a = xi —E fi—xl =i4 .
- r t r r Pr+1 r+1 1+Rr 1

(Cl) and (C2) easily yield

(C5)
 

while (C1) and (C4) yield
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Rt

1+R,

 (C4’) (1— r7)c,"’(1 — h)? (x, — ¢Xt—1)_0 = (mi N”: I",

the money demand function for this economy.

The assumed preferences for consumption and leisure fix the marginal rate of

substitution between consumption and leisure at one. This ensures balanced growth, with

individual consumption and the wage rate following the same trend, and labor effort

being a constant [T at the steady state.

Production

Consumers own, and supply labor to, monopolistically competitive firms that

produce according to a technology expressible as

(F1: Technology) ya = (2, (hi. — hoi).

where y,-, is the output of firm i, h,, is the amount of labor used by that firm and z, is

economy-wide level of technology, the evolution process for which follows a random

walk with drift process

_ .. _ 2 _ 2

A In 2, — 1117 + V2, ,Vz,lld, E,_1VZ, — 0, E,_1Vz, — OZ ,

the technology shock v2, being white noise and y being the long-run rate of economic

growth. ho is a fixed cost in terms of labor that ensures a nontrivial barrier to entry.

Technology can be broadly interpreted here as an aggregate of non-labor inputs to

production, including institutional factors (for instance, regulatory regimes) as well as

technology. Supplies of natural resources are also a “supply-side” constraint on

productive capacity; the measure of technology shocks reported below will certainly pick

up the disruptions in oil supplies that so commonly caused economic disruptions in recent
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US history. Given this, “supply shocks” and “technology shocks” will be used

interchangeably in what follows.

The cost minimization problem of firm i is

mintc,, = w,h,-, + r, such that y,, = (2, (h,, —h0 )).

The solution of that problem can be expressed in the form tc,, = w,h0 + mc, y,, , where

me, is the real marginal cost of producing an additional unit of y,- , given as

(F2: Labor demand) me, = w, / z, .

The instantaneous real profit of firm i at time t is then

“it = (Pit ”ilk: “’Ciz :(pit /Pt)yit _Wth0 —mctyil

1—6 -6

=(Pir/Pt) yt_wth0—mct(pit/Pt) Yr

where Y, is economy-wide aggregate supply. Under perfect price flexibility, maximizing

 profits would imply (p,, /P, ) = mc, for all firms; as it would be the case, all firms

6 -1

. . . . 6 —1
being identical, that p,, = P, , 1t would follow that me, = —6_ for all t. The average

Y . .

economy wide markup would be ,u E t = —1— = A. While this 18 indeed the long-
 

run trend of the markup, it will not hold in general for all firms if prices are not perfectly

flexible.

The precise mechanics of price-stickiness, as in the previous sections, follow that

in Calvo (1983). Each firm faces a probability a > 0 of getting a “stop signal” and being

unable to adjust their prices as it wishes, being only able to raise it by the long-run

average rate of inflation I? . The remaining fraction 1- a of firms receives a “go signal” to
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adjust their prices freely. If a firm is allowed adjust its price, its choice for its product’s

price is the solution to the maximization problem

00

"ii," 5. gram} (4..., M, )(«zrjpi ”3.,- )'”" — me, (7:1 pa /.Pi+,- )"‘5>Y,+,- — win-ho).

which has the solution

(F3: Price-setting equation)

00 .

'

E! ZWfl)! (’ltirj Mt )(Yr+j /Yt )ma+thij7
r_J§

4 5 0

Pt:
 

oo
.

.

EtZ(afl)J
(/li+j /1,)(Y,_,_

j/YI)PI{;I
”—j(§—l)

0

Meanwhile, firms whose prices are “stopped” choose the price p,-, = 77p,,_1 . As all firms,

given their status as “stop” or “go” firms, are otherwise identical, these first order

1/(1—6)

) imply a

1 _

conditions and the price level aggregation function P, = U0 p}, 6di

process for the price level obeying

1

(F4: Price-level evolution process) P,1_5 = (1 — a)p: + a(7rP,_1)1_6 .

Monetary policy

To close the system completely requires specifying a monetary rule for the central

bank. Here it is assumed the central bank follows a monetary rule that can be expressed

in the form

(MP1: Monetary policy)

(1+ R, ) = v,,R((l + R,_, ), Y, /(2, (ii — 120)),27, , Y, / Y,_1,7r, /7r,_1).
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That is, the Fed sets the interest rate with regard to the output gap (the deviation of

aggregate output Y, from its long-run trend 2, (h — ho) where h is the long-run average

for h,, the current inflation rate 7r,, the economic growth rate Y, / Y,_] , and the rate of

change of the inflation rate, It, /2r,_1. The central bank also smoothes changes in the

interest rate, so that the lagged interest rate (1 + R,_1 ) enters the reaction function. Also

influencing the target interest rate is a multiplicative, non-systematic and iid monetary

shock v,, which has the properties E,_1 1n v,, = 0, E,_1 (In vr, )2 = 0,2 .

Market clearing

The aggregate demand and supply for consumer goods are equal, so that

(MKl: Goods market clearing) c, = }’,;

there being no inventories, this is a result of all firms selling their production at the going

price for their good, so that Cir = y,, for all 1'. Labor demand and supply also equalize at

the competitive wage rate w, , so that

l

(MK2: Labor market clearing) h, = H, = Ih,,d,'.

0

Aggregate demand and supply for money and bonds also equalize. In the case of bonds,

as all individuals are identical, net demand for bonds is zero at the market interest rate.

We have

(MK3: Money market clearing) m, = M, .

(MK4: Bond market clearing) b, = 0,

How To Estimate The Model
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The model above must be log-linearized and put in state-space form to make estimation

feasible. Log-linearizing (C 1) through (C4), imposing the goods market clearing

condition (MKI) (which log-linearizes as C, = 13,) and a little manipulation, gives me at

last

CS’ Y=vlf- J},( ) i i ,_h t

where the deviation of a variable from its long-run trend is denoted by marking it with a

circumflex. Log-linearizing the production function (F1) yields

(F1 ’) i, = 741,;

The fact that the output gap 1;, is proportional to employment 12, can be used to write

(C3) in the form of an expectations-augmented Phillips curve. (C5) and the fact that in

the long run Y, = ,uw, h, can be used to write the leisure preference parameter in terms of

the average markup and the average labor effort as 77 = —1_h— . With those facts in

1— h + ,uh

hand, and the fact that the demand shock process log-linearizes

as 8, = ,0,8H + 133, implying E, 8,1,, = p58, , the log-linearized form of (C3) can be

written in the form of an expectations-augmented IS curve, so:

(142R): —E,7?,+1

(IS) =o[1- (l—h)#+h I ] EY MY,+—¢—Y,_1—%I,-vz,]
 

 

#(l—h+‘u]
7) 1_¢ tt+1‘1_¢

1_¢

1-5 )7
.

+[IE(1-l—il::1’7)l
(Em+l_Y‘)+(l—Ps)6i

-

Log-linearizing (F3) yields
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At 00 - .. .. A .

Pt =(1—afl)[z(afl)J(E,mC,+j +Et4t+j +Eth+j +£tpt+j)]

O

— (1 — afl)[2(afl)j (E,n‘ic,+,- + 5,1,,,- + 15,19,“- + (a —1)E,P,+,.)]

0

oo

= (1— afl)[2(afl)l (E,mc,+j + E,P,+j )J ,

0

. . . :1: ,. a: . ..

Implwng pt - aflEi pt+l = (1- ($qu + Pi ).

Log-linearizing the price index process (F4) gives us P, = (l — a)P,* + aP,_1 , given that

in the long runP* = P . The fact that 7? =P —P_ implies it =(1-a)(P* —P).
t t t t r 1 r r t

Substituting into (F3) (and a little rearrangement finally gets us our Calvo-type Phillips

 

curve:

9 A A I— a 1— a ,,

(F3) 77: =flE,/Z',+1+( )2 '8) mc,.

(F2) implies

(F2’) the, = ii), ,

so that combining (F2’), (F3’) and (CS’) gives a Phillips curve of the form:

1-}? hl— 1- ~ ~ ~

Illa—)5:
( a); afl)Yt=7rt—i6Et”t+l-

 
(Phillips curve)

Finally, taking the elasticity of the target interest rate with regard to each of the

endogenous variables to be constant, log-linearizing the monetary policy reaction

function gives a rule of the form

_ (1in)=prtliR,_i)+0-prxryfi +4.74)
(Monetary policy) . . . . .

+rAy(Yt ’Yt—l +Vzr)+”da(”z ‘flt—l)+vrt°
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The three equations of the model can be written as

(IS curve)

(171 R): ‘EI’THI

l-h h 1 . 1 ~ ~
 

 

tic—hat?)

(1—ii')p+1? ~ _ ~ _ .

+(#(l—h+#h)l(Eth+l
Ytl+(1 pg)?”

, (11116)=prrliR,_i)+(1—p.)<er3we)
(Monetary policy) . . . . .

+rAy(Yt -Yt—l +vzt)+rA7r(7rt -7rt—l)+vrt’

where p, is the interest rate smoothing parameter, and

p(1—h)_+h (l—a)(1—a,8));

40—h) a ’

 (Phillips curve) = 7?, — ,6E,7i, +1.

The log-linearized system can be interpreted as an expectations-augmented IS-

LM model. Positive demand shocks influence aggregate demand by shifting the 1S curve,

while monetary shocks do so by shifting the “LM curve” formed by targeting of the

interest rate. However, the hill impact of the shocks on aggregate demand is not felt in

the period of the shock because of habit formation. The Phillips curve describes the

deviation of aggregate supply from trend Y, as proportional to the current inflation rate

minus expected future inflation.

The log-linearized version of the model can be written (following Hamilton 1994)

in the state space form:
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The vector of observable variables is y, = {A In GDP, , A In P, , ln(1 + R), }' . The vector of

deterministic variables is x, = {In 7,1n 77, In ,6} for all t, mapped into the constant terms

1 0 0

for the dependent variable equations by A = 0 1 0 . The state variables

1 1 —1

are ?, = {132, , 8, , 13,, , (1 5r R,_] ), Y,_1, 721—1 } , and the mapping matrix H and the transition

matrix F are

1+ (oyz (Dye ioyv (pyr (0y); —1 (Dy/r

H’ = (on: was (071v (Dar my PM and

5012 (are (Orv (prr (07y Cor/r

( 0 O 0 0 O 0

0 pg 0 0 0 O

0 0 O O O 0

Prz (pre Prv (Orr (pry (0,7,

(”yz (Pye (pyv 90yr (oyy (I’yir

((Pnz ip/re (Dav (0727 (pay (”Int J  

where the go’s are complicated functions of the model parameters. The mapping matrix

uses the fact that the observables can be approximated by

AlnGDP, =9, +Y, —Y,_,

AlnP, =ln7?+/i,

1n(l+R), =1ny+1na—1np'+(141i),.

The shock vector v, = {122, ,v,, ,0, v,, ,0,0} has the covariance matrix
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The Kalman filter can easily be used to calculate the likelihood L(Y | B), of the system,

where Y = {y , } ,T: 1 are the 3xT matrix observations of y, over the full period from time 1

to time T, andB = {7,P,p,h,o,a,a,pg,p,,ry,r,,,rAy,rA,,,0'2,0'£,0',} is the vector of

the model’s structural parameters. Combining the likelihood with a suitable prior

distribution fpm, (B) will imply a posterior distribution with a PDF satisfying

rpm, (B) cc L(Y | BMW... (B).

By taking draws from the posterior, it is straightforward to calculate posterior

distributions for the moments of interest. These include the structural parameters, impulse

response functions, and the values of the structural shocks {vz, , v8, , vr, } at time t. In a

Kalman filter framework (see Hamilton 1994 for details) it is straightforward to calculate

a historical series of the values of the state variables, given the information we have at

time T, ?r|T , with the values for the expectation of the states at each time t given

information up to t-l , ? ,|,_1 .With those in hand, the historical series of shocks, given the

data up to time Tand a certain value of B , arejust thT,B = ?tlT,B — F?t—IIT,B'

0n the data and the priors

The data used to calculate the likelihood were quarterly data from 1965:] to

2003:] on economic growth (logged growth rate ofper capita real GDP), inflation (logged
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growth rate of the chain type GDP deflator) and the federal funds rate. These were

obtained from the Federal Reserve Bank of St. Louis FRED database. Data from 1959:]

to 1964:]V were used to initialize the Kalman filter, but not to actually estimate the

likelihood.

The prior used to estimate the Bayesian VARs were Normal-Wishart priors of the

Kadiyala-Karllson type, similar to those used in chapter 2; the hyperparameter values

used for the experiments in chapter 2 were also used here, and so it is pointless discussing

the prior for the VARs in detail here. Ofmore interest is the prior distributions for the 17

model parameters for the DSGE model are given in table 3.1. All the prior distributions

must be proper (i.e. integrate to one) for estimated Bayes factors to be meaningful (Kass

and Raftery 1995). However, the results were for the most part not sensitive to the priors

(with a few exceptions), so most were picked to be in line with values common in the

literature, where the data were likely to be uninformative, or as “gently uniform” as

possible when the data were likely to be informative. The prior distributions for the

economic growth rate rand the long-run inflation rate ii are centered on their sample

means for the 1965-2003 period. Large prior standard deviations were assumed to

prevent either prior from being too informative.

The standard deviations of the technology shock 02 , the demand shock 0,. and

the monetary shock a, were assumed to have inverse gamma distributions with 2 degrees

of freedom, implying an infinite prior variance. The scale parameters 8 were picked after

some experimentation, guided by results from estimation with a truly diffuse prior.

Uniform distributions were used on the persistence parameter for demand shocks pg and

on the monetary policy smoothing parameter p,. The prior distributions on the output
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gap term ry and the inflation term r,, were picked so as to center them at values

consistent with Taylor's original rule, giving values of 0.5 for the output gap and 1.5 for

inflation. There was less guidance regarding the output growth term rm and the inflation

growth term rA”; some experimentation suggested prior means of 0.125 for rAy and 0.5

for rm, , with wide standard deviations. All the terms in the monetary rule were assigned

gamma distributions, to constrain them above zero. The data were also fairly informative

regarding the discount factor ,6, suggesting a value in the ballpark of 0.99875 for

quarterly data (essentially one).

The prior mean for the average markup p was 1.2, in line with the fairly low

estimates for the parameter found in recent studies (e.g. Basu and Femald 1995). The

distribution was a gamma distribution in terms of ,u—l , to ensure a value for ,u above one.

The prior mean of average amount of free time devoted to labor h , was 0.3, a common

value in the RBC literature. The prior distribution of habit formation ¢, was assumed

uniform between 0 and 1.

More critical are the priors for the price fixity parameter, a, and the curvature

parameter for the utility function, 0'. Many older studies (Roberts 1995; Gali and Gertler

1999) suggested price fixity in the range of five to six quarters; however, this is at odds

with survey data (e.g. Blinder 1994) that suggests price fixity for a typical firm is closer

to three quarters. Some more recent macro studies (e.g. Sbordone 2002) concur. The

results below assume a prior gamma distribution on a /(l —- a) =1/(1 — a) —1 centered at

three with a standard deviation of one; this implies values for l/(l — a) from two to six, 3

97



range most researchers would find plausible, and centers average price fixity a priori at

one year.

The value of the reciprocal of the curvature parameter for the utility function, 1/a,

is related to the intertemporal elasticity of substitution of consumption. The value of this

parameter remains somewhat controversial; what little has been determined regarding the

intertemporal elasticity of substitution of consumption in the US economy suggests that it

is probably not large. A large literature starting with Hall (1988) has been unable to show

that intertemporal elasticity of consumption is much above zero with aggregate

consumption data. By contrast, research with DSGE models generally assumes values for

the reciprocal of the intertemporal elasticity of consumption from one to five; in the

Bayesian New Keynesian DSGE literature, del Negro and Schorflreide use a prior

implying a range for the reciprocal from one to three, while Smets and Wouters center

their prior for the reciprocal at one.

The results reported below assume a gamma prior distribution for 1/0', with a

prior mean of 0.01 and one degree of freedom, so that the prior variance of ois infinite

and the prior mode of 1/oitself is zero. The implication of the prior for intertemporal

elasticity can be best understood by recalling the IS equation

(171R): —Et7?t+l

(IScurve) =o{l— (1hW+h I 1 El; —+—¢f: +‘Lr—l—fi'vzt]
 

 

yu— hut?) 1——¢ ”“ —Y’¢ 1—¢

(l—h),u+h _ __
+[ ,u—(l-h+,uh)J(El Yt+1 Yt)+(l p£)£l’
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Ignoring habit formation, the response of the output gap to a unit change in the

  interest rate is not l/obut rather 1/£0[1— (1—h),u +£ )+( (l-hl’LH-é j]; the prior

#(l-h +flh) #(l—h HM)

mean for this term has a value of about 0.1, Hall’s (1988) point estimate for intertemporal

elasticity of substitution of consumption.

Estimation results

Posterior distributions ofstructural parameters

Following Schorflreide (2000) and Smets and Wouters (2002), the well-known

Metropolis-Hastings algorithm was used to get the DSGE model’s posterior distribution

and the posterior odds. (See, for example, Geweke (I 999) for a discussion of the

Metropolis-Hastings algorithm.) Table 2a gives the posterior means and standard

deviations of the structural parameter values drawn from the Metropolis-Hastings

algorithm. Most values are not far from their prior means, and in most cases standard

deviations are smaller, suggesting that the data is informative and that the priors are

consistent with the data. The demand shock persistence parameter is high, approximately

in the 0.9 range, as is the interest rate smoothing parameter. The amount of habit

formation is substantial, with a posterior estimate of (15 of around 0.3.

The posterior mean of 1/(1 — a) is slightly higher than the prior mean, suggesting

price fixity of about four quarters (a bit longer than a year). l/ois also not too far from its

prior mean; its value along with the value of habit formation suggests intertemporal

substitution of around 0.07. Both have posterior variances not far from the prior,

suggesting little updating. The lack ofupdating suggests though that the data are actually

fairly uninformative about l/(l — a) and 1/0', and so of the IS and Phillips curves.
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Compare the results in Table 2a to those of Smets and Wouters (2002), who,

using a rather different prior, get different results for Europe. As noted above, they use a

prior suggesting a prior mean of 1/oof around one, along with a loose prior on a

restricting it to be between 0.5 and 1. Their model also fits about as well as a Bayesian

VAR. However, their posterior estimate for a is about 0.9, suggesting average price fixity

1/(1 — a) of about ten quarters. Other evidence suggests price stickiness is much less than

this, in Europe as well as in the US. Gali, Gertler and Lopez-Salido (2001) find a more

realistic estimate of I/(l — a) for the euro area would be closer to three or four. Like Gali

and Gertler (1999), Smets and Wouters do not trust their high point estimate for

a, attributing it to misspecification of the marginal cost process.

The finding of counterfactually high 6;, however, is not robust to the prior

distribution, particularly a more informative one on a constraining it away from such

values. Part of Smets and Wouters’ problem derives from their relatively uninformative

prior for a, which places a non-trivial weight on values well above plausible levels. The

real problem, however, is subtler than this. Study of the posterior correlation matrix (not

reported in full here) suggests that draws of a and 1/0' are positively correlated; the

correlation coefficient is about 0.3. The data, then, are somewhat informative for a

combination of the two parameters, but not for each individually. The data are compatible

with both high price fixity and high intertemporal elasticity of consumption/output (and a

large role for monetary and other demand shocks), or for both low price fixity and low

intertemporal elasticity of consumption (and a small role for monetary and demand

shocks).
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In essence we have an identification problem, in that the data alone do not give

the model much guidance in disaggregating disturbances into supply, demand or

monetary shocks. To be able to say anything useful about which shocks are important in

the business cycle, then, we need the best prior information we have available regarding

parameters for price fixity and intertemporal elasticity of consumption. The marginal

value of Bayesian estimation, where outside information on these parameters can be

taken into account, is clearly positive here.

What about regime shifts in monetary policy?

The time period of the data set used here is similar to that of data sets commonly

used in VAR studies, but it spans a period usually considered to contain several policy

regimes. Rudebusch (1998) strongly objected to use of such data sets to estimate VARs.

Rudebusch claimed that one reason monetary policy shocks from VAR models did not

make sense was their counterfactual assumption of a time-invariant reaction function.

It turns out that splitting the sample to allow for the policy to vary over different

time periods (especially the 1979-1982 period) did not alter the qualitative nature of the

results. Among the more noticeable effects was a reduction in the estimated long-run rate

of inflation—allowing for a higher volatility of shocks in the 1979:111-1982:II period (the

period of the Volcker “monetarist” experiment) down-weights these observations

somewhat, and this period was marked by high inflation. The policy rules for the pre-

Volcker experiment period (1965:]-1979:11) and post-Volcker experiment period

(1982:111-2003zl) were also more accommodating; during the Volcker experiment,

monetary shocks were less persistent than during the Martin-Burns-Miller and late

Volcker-Greenspan periods. However, the differences were not large enough to affect
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overall conclusions. The models with multiple regimes did soundly beat the model

without regime shifts, on a posterior odds basis, but most ofthe improvement came from

allowing for the variance of monetary shocks (and to a lesser extent, supply shocks) to

vary over periods.

Posterior odds-based evaluation ofthe model

Following the method described in chapter 2, to compare the DSGE model to the

competition, posterior odds were calculated for the DSGE model as well as a number of

Bayesian VARs, estimated with up to four lags, by calculating Bayes factors for each

model. As in Chapter 2, the approximate Bayes factor reported for each model is the

modified harmonic mean estimator suggested in Geweke (1999). Table 3 gives the

estimated Bayes factors and posterior odds for the DSGE model along with those

estimated for BVARs with the Normal-Wishart prior. For the DSGE model, the results

are based on 50,000 draws from the Metropolis-Hastings algorithm; for the BVARs, they

are based on 10,000 draws from the Neutral-Wishart posterior.

Ofthe BVARs, the model with four lags is best from a posterior odds viewpoint.

However, the posterior odds of the BVAR (4) are lower than those for the DSGE model.

Using the prior distribution in Table l, the posterior odds are more than 5 to 1 in favor of

the DSGE model versus the BVAR (4). For the DSGE versus all the BVARs, it is slightly

less than 4 to 1. The margin is nowhere large enough to suggest abandoning VAR models

entirely in favor ofDSGE models. However, it does suggest that the DSGE model is

competitive in fit compared to a four lag BVAR, and so is well specified enough to be

useful in business cycle analysis. The Bayes factor results parallel the results of the

forecasting experiments of Dejong et al. (20003). Geweke (1999) argues that Bayes
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factors can be interpreted as a measure of forecasting performance over the sample period

and so the results here suggest that the forecasting performance of the DSGE model is

roughly that of the BVAR.

The impulse responses: What do monetary policy shocks do?

The 95% confidence bands for estimated impulse responses of output, inflation

and interest rates to a one-standard deviation shock of each type are illustrated in Figure

1. The distributions are taken from 10,000 draws from the posterior distribution of the

DSGE model.

All three sets of impulse responses are of reasonable shape. A technology shock

raises output, and also lowers inflation slightly. The response of interest rates to a

technology shock is ambiguous; the median is slightly above zero, but the confidence

band nests zero easily. Less ambiguous is the response of economic variables to a

demand shock. A demand shock raises inflation and output, and also raises interest rates,

partly from higher expected future inflation, partly from anti-inflationary monetary

policy. A monetary policy shock raises the interest rate and lowers output and inflation.

However, notice that the scale of output responses to “average” demand and monetary

shocks is considerably smaller in magnitude than the responses of output to the

technology shock. Visual inspection of the impulse responses alone suggests that the

contribution of typical monetary shocks to the movement of output will be minor

compared to that of technology.

Because of habit formation, the full effects of shocks on output only come with a

slight lag. The lag, however, is not nearly as long for monetary shocks as VAR studies

often imply; the output effect peaks here at two quarters, whereas in many VAR studies

103



output does not “hit bottom” in response to a monetary shock until up to three years after

the shock, which seems too long for a transitory shock. Also encouraging is the

unambiguously negative response of inflation to the monetary shock; the “price puzzle”

that arises in small-scale VARs, which postulate a positive response of inflation to a

monetary shock, is absent here.

Moving from real to nominal variables, study of the impulse responses of

inflation and interest rates to the various shocks suggests that the demand shock is most

important for determining inflation, with monetary shocks of at most secondary

importance. Finally, the systematic portion of monetary policy seems to be mostly made

up of responses to demand shocks, not so much technology shocks. This is as it should

be, if we presume countercyclical monetary policy is designed to moderate deviations of

output from the long-run trend determined by technology, not to counteract expansions

driven by genuine growth in the economy’s productive capacity. This fact adds to the

plausibility of the model’s measure ofmonetary shocks (which are deviations from the

demand shock-driven systematic policy). Thanks to interest rate smoothing, the fill]

adjustment of the target only comes with a lag ofup to two quarters.

What might not be obvious from the impulse responses is that a positive

technology shock results in output rising by less than the full proportion of the

technology shock. Price stickiness results in firms being unable to adjust their prices

quickly enough to be able to sell a proportionately large number of goods. The response

of firms whose prices are "stuck" to a technology shock that lowers marginal cost is to

lay off workers, rather than increase output. Hence labor demand, real wages and

employment fall in response to a technology shock.
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This is a common phenomenon in New Keynesian models, interesting here mostly

for its implications for the importance of demand versus supply shocks. The data favor

(in both VAR and DSGE models) a mildly countercyclical inflation rate. If prices are

assumed to be stickier than they actually are, the response of output to a technology

shock will be measured as much smaller than is the case. As a result inflation will be too

countercyclical; to patch up the problem demand side shocks that imply a procyclical

output-inflation relationship will be assigned a excessive role in recessions by the model.

Cross-correlations oftime series: How do the BVARs and the DSGE difler?

An "identification-free" method ofcomparing the implications of the competing

models for the data is to compare the correlations at various leads and lags of the various

series implied by the DSGE model versus a BVAR. These are reported in Tables 3.3a-c.

Only the cross-correlations for the best—fitting BVAR (the BVAR (4)) are reported. The

95% confidence intervals of the cross-correlations for both the BVAR and DSGE models

are calculated from 10,000 draws from the posterior distributions of each.

The DSGE and BVAR agree on a negative correlation between output and

inflation, though the DSGE model's correlations are smaller in magnitude. They also

agree on a positive correlation between inflation and nominal interest rates. Where they

differ qualitatively is the correlations between output and nominal interest rates; while the

correlation between present output and future (nominal) interest rates is negative in the

BVAR, it is positive in the DSGE. This is consistent with the positive relation of

economic growth and monetary policy assumed in the monetary rule. The correlation of

lagged nominal interest rates and present output is positive in both, but those for the
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DSGE are much smaller in magnitude, the median being about 0.03, essentially zero,

versus the median from the BVAR of about 0.3.

Another qualitative difference in the DSGE versus the BVAR correlations is the smaller

standard errors of the DSGE correlations. To quantify the greater precision of the DSGE

correlations versus the BVAR correlations, I calculated the minimal L 2 -losses from

I

using each model’s set of correlations, given that the other was the true model (for

details, see chapter 2). The L 2 —loss statistic penalizes imprecision, and it is obvious that

Z

the BVAR’s estimates of the correlations are much less precise across the board; the

BVAR’s L12 -losses are anywhere from 30 to 200 times larger than those of the DSGE.

Also reported is the CDF of the L12 -loss given a chi-square distribution with 7

degrees of freedom; taking as a first approximation that the distributions of each set of

correlations in each model are approximately multinormal, this will provide a test of the

hypothesis that a given model could have produced the posterior mean ofthe correlations

from the other model. The p-values of the posterior means of the BVAR correlations

given the DSGE are all about one; clearly, the BVAR’s estimates of the correlations are

inconsistent with the restrictions of the DSGE. Meanwhile, the cross-correlations of

output and inflation, and inflation and interest rates, reported by the DSGE cannot be

rejected by the BVAR, as it were, at any reasonable significance level. However, the

BVAR does reject the DSGE’s estimates of the output-interest rate relationship at the

95% level.

The greater restrictions placed on the data by the DSGE result in much greater

precision being put on the ranges in which the cross-correlations may fall; as a result, the
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BVAR correlations have a much lower probability of being produced if the DSGE is the

"true" model than vice versa, suggesting a much greater risk from choosing the BVAR

estimates if the choice is wrong. Among the benefits of using the DSGE model is that it

permits greater precision regarding the relationships of economic time series by adding

more information about economic structure, without large costs in terms of fit.

The shocks themselves: Do monetary policy shocks generate recessions?

It is safe to conclude at this point that the DSGE model is well specified; its fit is

competitive with a VAR, and it generates well-behaved impulse responses. It also allows

more precision regarding the relationship of economic variables. Given this, some

confidence is possible in assessing the effects of individual shocks as measured by the

DSGE model in particular US business cycles.

The lowest-cost way ofdoing this is to visually inspect the shock series and their

behavior around individual recessions. In figures 3.2a-c are reported, in standard

deviation terms, the medians of the distributions of the technology (3.2a), demand (3.2b)

and monetary (3.2c) shocks. By far the best indicator ofNBER recessions (marked in the

graphs by vertical lines) is the technology shock series; above-average and persistent

technology shocks coincide with all the recessions of the post-1965 period (1970, 1974-5,

1980, 1981-2, 1990-1, 2001). All but the 1970 and 2001 recessions were associated with

disruptions in oil supplies. More likely culprits for the 1970 and 2001 recessions, both

fairly mild, were a decline in investment demand after the prolonged booms both

followed, coupled with changes in tax policy just before the 1970 and the 1990-1

recessions.
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The demand shock series that by rights should best capture shocks to investment

demand, unrelated to long-run technology, has a much harder time matching the

historical record of cycles. The 1974-5 recession is associated with a positive demand

shock; while there was a negative shock in the 1970 recession, it was no larger than

average for the pre-I982 period. There is no obvious demand shock associated with the

1990-1 recession; there is for the 2001 recession, however. A possible interpretation is

that both the observed demand and technology shocks capture some elements of the

decline in investment after the end of the 1990’s boom.

Looking at monetary shocks, perhaps the best general conclusion isthat a

recession is generally associated with a lagged monetary shock; this is apparent for the

1974-1975, 1980 and 1981-2 recessions, as well as the 2001 recession, before which the

Greenspan Fed was often taken to task for excessively tight monetary policy in response

to the boom. However, shocks of the scale seen before the 2001 recession occurred

without incident in the 19808 and 19908, and no such shock is obvious before 1970 or

1990-1.

As a test of a DSGE model’s ability to account for business cycles, Dejong et al.

(2000b) suggested estimating a logit model of the probability ofNBER recessions

(explained variable equals one if a quarter was within an NBER recession, 0 otherwise),

using as explanatory variables the current values and values lagged up to four quarters of

the standardized levels of each shock series. The estimated probabilities ofNBER

recessions from the various logit models are reported in Figure 3.3. For each model,

results are reported from the model with a lag length that maximized the Schwarz

criterion; the motivation for using this criterion will become clearer.below. The best
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model using all the shock series does a good job of picking out recessions; all the genuine

recessions are predicted, and ifwe take a predicted probability of 0.5 as predicting a

recession, only one "false recession" is predicted, in the mid 1990's.

More informative regarding the sources of recessions is examining how well each

shock series does individually in predicting recessions. The performance of logit models

using only demand shocks and/or monetary shocks is not promising. The pure demand

shock model picks out the 1974-5, 1980 and 1981—2 recessions, all three of which were

associated with disinflation; however, it cannot pick out the non-inflationary recessions

of the 1990's. The pure monetary shock model is not much better; it picks out the 1979-

82 recessions, associated with the large variations in interest rates during the Volcker

period, as well as the 1970 and 2001 recessions, but misses the much larger 1974-5

recession, and is prone to predicting false recessions, most obviously in 1995. By

contrast, a model using only technology shocks does much better; it picks all the post-

1965 recessions (with only one possible "false alarm" in the late 1970's), and the false

1995 recession disappears.

Contrasting that "supply-side" model to a model with a demand side model

(including only demand and monetary shocks) is instructive. During the 1970's, when

volatile monetary policy and high and volatile inflation prevailed, a "demand-side" model

ofrecessions does about as well as a supply-side one with technology shocks. However,

in the 1980's and 1990's, the "demand-side" model's performance deteriorates, while the

"supply-side" model does not. To the extent that aggregate demand shocks can generate

business cycles, they clearly have taken a back seat to supply shocks in the 1980’s and

1990's. This is not entirely surprising, of course; much of it is due to stricter adherence to
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systematic policy (and hence smaller variance of deviations from policy) during the

tenure of Chairman Alan Greenspan than during the tenures of Chairmen Martin, Burns

and Miller. Even for the 1970's, however, the effects ofmonetary shocks are hard to

disentangle from those of supply shocks (i.e. oil shocks).

The last two logit models reported, one with supply and monetary shocks and one

with supply and demand shocks, are hard to distinguish visually from the pure supply

shock model. To figure out if accounting for monetary shocks adds anything to the pure

supply shock model, it would help to calculate posterior odds for the various logit

models. Complicating calculation of Bayes factors is a lack of prior information on the

values of the logit model parameters. However, Kass and Raftery (1995) argue that the

Schwarz criterion can be used as a rough "prior-free" approximation of the average

likelihood. So, the Schwarz criteria are reported in Table 3.4 as approximations of the

Bayes factors for each logit model.

The probabilities ofmodels omitting supply shocks are near zero, confirming the

inadequacy of purely "demand-side" theories of the cycle. As a general rule, models

including non-monetary demand shocks are inferior to models without them; monetary

shocks appear to be the best candidate for the source of the demand-side shocks that have

buffeted the US economy. The “demand shock only” model is particularly bad, unable to

beat a naive model assuming recessions to be equally likely each period.

However, a pure supply shock model dominates all the models including

monetary and other demand shocks; the next best model is a model including monetary

shocks, but the posterior odds are about 7 to 1 against that model. While this is not a

decisive rejection of the importance ofmonetary shocks in recessions, it is fair to
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conclude that they have at best been of secondary importance to supply or technology

shocks. Such a result is not surprising in the context ofmuch of the previous identified

VAR literature on the effects ofmonetary shocks; Sims (1998) summarizes the

literature’s findings by stating that the effects ofmonetary shocks in business cycles is

“modest to nil.” In the context of the DSGE model, however, a structural interpretation of

why this is so is much easier to propose; given the fairly steep IS curve the model

assumes, only monetary shocks on the scale observed during the 1979-1982 period are

likely to disrupt the real economy appreciably.

Correlations between shocks and time series

An alternative perspective on the role of the various shocks in the cycle is to look

at the distributions of the cross-correlations of the shock series with output, inflation and

interest rates. The results are reported in detail in Tables 3.5a-c. The signs of

relationships between the shock series and the time series can, however, be summed up

succinctly in the following table:

 

 

Technology Demand Monetary

Lags Current Leads Lags Current Leads Lags Current Leads

GDP growth + + 0 - + + - - +

Inflation - - - + + + 0 - 0

Fed. funds - - - + + + + + +
 

For output growth these correlations largely confirm what eyeballing the shock

series and the estimated logit models did. The contemporaneous correlation of the supply

shock with output growth is very high (it is no lower than 0.8 and may be as high as

0.95). For the other two shocks it is much weaker. Correlations of output growth with

demand shocks range between 0.17 and 0.36 for the demand shocks. The correlations for
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monetary shocks are if anything even weaker; they are no lower than -—0.3 and may well

be approximately zero. It is clear supply shocks are the best indicator for fluctuations in

economic growth.

For nominal variables such as inflation and interest rates, the situation is more

ambiguous, but some general tendencies can be noted. The highest median correlation for

inflation is with demand shocks, between 0.3 and 0.5. Next highest in absolute value are

supply shocks, fairly precisely estimated at around -0.22 to -0.27. Weakest, again, were

monetary shocks, with correlations ranging from about zero to at most -0.25. The

evidence is quite weak for a role in monetary shocks (as opposed to systematic policy)

having had a great impact on inflation or output in the post-1965 period. Even for

inflation the case for supply shocks (i.e. oil and other supply shocks) being more

important for inflation fluctuations overall is more persuasive. Inflation was not

obviously “always and everywhere a monetary phenomenon” even in the 1970s;

monetary shocks were very large, but so were oil shocks.

The correlation ofthe rate with demand shocks and monetary shocks is

unambiguously positive. However, the correlation with supply shocks is negative,

suggesting that nominal interest rates fall in response to a supply shock. This result

conflicts with the impulse response results reported above, which suggest interest rates

should rise. One interpretation is that the positive effects on the target rate from a rise in

output from the shock are swamped by the negative effect on inflation, with which the

federal funds rate is strongly correlated.

Looking now at leads and lags of the shock series, lagged supply is positively

correlated with output growth, but leads of supply are essentially uncorrelated with
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output. However, inflation and nominal interest rates are negatively correlated with

supply at all leads and lags. Since supply shocks are assumed to be white noise, the

correlations of the leads of the shocks with endogenous variables should all be zero. So,

to the extent that the leads deviate from zero, they suggest potential sources of

misspecification. The supply shock series is highly enough correlated with output growth

to give the negative correlation with inflation and interest rates that we saw in the BVAR.

The correlations of lagged demand shocks are better behaved: lagged demand is

negatively correlated with output growth, as output peaks in the period of the shock then

falls back towards trend; correlations of lagged demand with inflation and interest rates

are positive. However, while leads ofdemand shocks are uncorrelated with the federal

funds rate, with confidence intervals all nesting zero, leads of demand shocks are

positively correlated with current output growth, and, more weakly, with inflation.

Lagged monetary shocks are negatively correlated with output growth, and essentially

uncorrelated with inflation, and, unsurprisingly, positively correlated with interest rates.

Leads ofmonetary shocks are essentially uncorrelated with inflation and interest rates;

more problematic is the unambiguously positive correlation of leads ofmonetary shocks

with output growth, that is, of current monetary shocks with lagged output growth. This

suggests that the monetary shock series is still picking up policy responses to output

growth not captured in the monetary rule. Steps should be taken in future work to

minimize this problem and improve the accuracy ofmonetary policy shock estimates.

Conclusions

To sum up, then, there is little evidence, fi'om the results reported above, that the

DSGE model's estimated monetary policy shocks have had much information content for
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the real business cycle, at least since the 1980's. The estimated logit models for NBER

recessions do not indicate that adding monetary shocks adds much to a model estimated

using just supply shocks in explaining recessions. Also, the correlation between the

model’s estimate of monetary shocks with inflation as well as output growth is fairly

weak. There is also little evidence that other, non-monetary demand-side shocks have

much impact on the real business cycle either. Given the best evidence on price stickiness

and intertemporal substitution of consumption, the chief culprits for US business cycles,

contrary to Smets and Wouters' results for Europe, appear to be supply and technology

shocks. What is apparent for now is that the degree of culpability for business cycles that

a Bayesian DSGE model assigns to supply shocks versus monetary shocks is sensitive to

its priors on the structural parameters, as these determine how our models disaggregate

disturbances into various shocks. Our ability to learn the causes of recessions from

Bayesian DSGE models depends on how well we specify our prior knowledge about the

structure of the economy, and, by extension, how well that prior knowledge can be

refined. Let that stand as the moral to this whole tangled tale.

The results are naturally conditional on the accuracy of the shock series, and their

refinement is certainly possible. Information from other measures of output, inflation and

interest rates (differentiated by measurement error) could be mined for information on the

timing of monetary, supply, and other shocks. DSGE models could give a structural

interpretation to the dynamic factors estimated from big data sets that have proven useful

for forecasting business cycles (Stock and Watson 2002a, 2002b). Unfortunately, such a

study must be left to future research, that is, to another day.

Slcin agat agus beannacht Dé leat.
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Table 3.1a: Prior distributions for structural parameters ofDSGE model

 

Parameter Distribution Range Mean Standard deviation

Long-run trend parameters

In 7 Normal (-oo,oo) 0.005 0.005

In 7: Normal (-oo,oo) 0.010 0.0075

Preference parameters

73‘ Beta [0,1] 0.99875 0.000625

¢ Uniform [0,1] 0.500 0.289

1/0 Gamma [0,oo) 0.010 0.010

I? Beta [0,1] 0.300 0.050

p5 Uniform [0,1] 0.500 0.289

Nominal/real rigidity parameters

,u-l Gamma [0,oo) 0.200 0.100

a/( 1 - a) Gamma [0,oo) 3.000 1.000

Monetary policy parameters

Pr Uniform [0,1] 0.500 0.289

ry Gamma [0,oo) 0.125 0.050

r,, Gamma [0,oo) l .500 0.250

rAy Gamma [0,oo) 0.125 0.050

rA ,, Gamma [0,oo) 0.500 0.250

Shock variance parameters

8 v

0' z Inverse gamma [0,oo) 1.00 2

0",: Inverse gamma [0,oo) 3.00 2

0’, Inverse gamma [0,oo) 0.25 2
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Table 3.1b: Posterior distributions for structural parameters ofDSGE model

 

 

 

 

 

Parameter Quantile

0.025 0.50 0.975

ln 7 0.00324 0.00522 0.00716

In it 0.00656 0.0101 0.00140

,5 0.99752 0.99886 0.999649

45 0.199 0.333 0.474

1/0 0.00333 0.0105 0.0227

h 0.195 0.290 0.387

Pg 0.864 0,919 0.966

p 1.051 1.163 1.420

l/(l -a) 3.423 4.532 6.058

Pr 0.832 0.887 0.927

ry 0.051 1 0.126 0.271

r,, 1.194 1.535 2.073

"Ay 0.0843 0.134 0.201

rm, 0.269 0.476 0.720

oz 1.025 1.237 1.536

0'5 3.089 4,903 8.853

0r 0.255 0,293 0.343

Table 3.2: Posterior odds for competing models

Model DSGE BVAR(I) BVAR(2) BVAR(3) BVAR(4)

Prior probability 1/5 1/5 1/5 1/5 1/5

Approx. Bayes factor
(Modified harmonic mean) 1873.01 1869.47 1868.65 1870.20 1871.26

Posterior probability 0.78 0.02 0.01 0.05 0.14
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Table 3.3a: Cross-correlations ofGDP growth and inflation

Model Quantile '=-3 i=-2 '=-1 i=0 i=1 i=2 '=3

0.025 -0.165 -0. 185 -0. l 97 -0.2 1 3 -0.136 -0.104 -0.086

DSGE 0.50 -0.095 -0.1 10 -0.122 -0.124 -0.058 -0.034 -0.024

0.975 -0.047 -0.055 -0.065 -0.050 -0.002 0.015 0.019

L12 |BVAR = 5.60, p = 0.412

 

0.025 -0.583 -0.584 -0.577 -0.571 -0.560 -0.548 -0.525

BVAR(4) 0.50 -0.210 -0.226 -0.218 -0.210 -0. 180 -0.156 -0.1 17

0.975 0.015 0.005 0.01 1 0.019 0.045 0.069 0.106

1.)!2 |DSGE =1077,p e1

 

Table 3.3b: Cross-correlations ofGDP growth and federal firnds rate

Model Quantile i=-3 i=-2 i=-1 i=0 i=1 i=2 i=3

0.025 -0.066 -0.066 -0.048 -0.010 0.041 0.047 0.044

DSGE 0.50 -0.029 -0.027 -0.014 0.064 0.098 0.104 0.098

0.975 -0.007 -0.005 0.013 0.155 0.169 0.177 0.168

L12 | BVAR = 16.9, p = 0.982

0.025 -0.606 -0.621 -0.623 -0.587 -0.560 -0.545 -0.533

BVAR(4) 0.50 -0.293 -0.329 -0.338 -0.255 -0.179 -0. l 39 -0.1 15

0.975 -0.099 -0. l 33 -0. 142 -0.060 0.020 0.059 0.086

L12 loser-3 =l394,p zl

 

 

Table 3.3c: Cross-correlations of inflation and the federal funds rate

Model Quantile '=-3 i=-2 '=-l i=0 '=l i=2 i=3

0.025 0.123 0.158 0.197 0.238 0.237 0.232 0.222

DSGE 0.50 0.374 0.416 0.462 0.510 0.519 0.518 0.510

0.975 0.686 0.713 0.744 0.776 0.785 0.788 0.785

L12 | BVAR = 2.63, p = 0.083

0.025 0.084 0.135 0.178 0.216 0.220 0.227 0.217

BVAR(4) 0.50 0.505 0.552 0.598 0.639 0.653 0.660 0.658

0.975 0.893 0.903 0.913 0.924 0.929 0.931 0.931

L12 |DSGE=71.1,pz1

 

 

 

Table 3.4: Schwarz criteria and posterior odds for estimated logit models.

Model Naive T D M TD TM TDM DM

Lag length NA 2 3 4 2 2 2 3

Prior prob. 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Schwarz crit. -73.44 -36.63 -73.52 -68.82 -40.93 -38.45 -41.88 -69.57

Posterior prob. 9E-l 7 0.846 8E-17 9E-15 0.01 1 0.138 0.004 4E-15

Code in “Model” row denotes series included: T=technology, D=demand, M=monetary.
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Table 3.5a: Cross-correlations from estimated DSGE of supply shocks with endogenous

 

 

variables

Model Quant. i=-3 i=-2 '=-1 i=0 i=1 i=2 i=3

0.025 0.085 0.196 0.185 0.797 -0.081 0.072 -0.020

Output growth 0.50 0.095 0.123 0.230 0.903 0.031 0.120 -0.073

0.975 0.102 0.239 0.262 0.959 0.144 0.162 0.023

Inflation 0.025 -0.1 14 -0. l 78 -0.21 1 -0.278 -0.130 -0. 173 -0.132

0.50 -0.095 -0.162 -0.189 -0.249 -0.077 -0.132 -0.097

0.975 -0.080 -0.145 -0.166 -0.220 -0.008 -0.077 -0.056

Federal funds 0.025 -0.072 -0.094 -0.l34 -0.240 -0.302 -0.260 -0.l65

0.50 -0.048 -0.078 -0.1 16 -0.215 -0.255 -0.203 -0.109

0.975 -0.031 -0.064 -0.093 -0.178 -0.192 -0. l 32 -0.044
 

Table 3.5b: Cross-correlations from estimated DSGE of demand shocks with endogenous

 

 

 

 

 

variables

Model Quantile '=-3 i=-2 z—-1 '=0 i=1 i=2 i=3

0.025 -0.139 -0.264 -0.085 0.172 -0.069 0.050 0.112

Output growth 0.50 -0.108 -0.219 -0.032 0.263 0.021 0.089 0.148

0.975 -0.079 -0.l69 0.016 0.361 0.1 17 0.124 0.176

0.025 0.183 0.178 0.243 0.302 -0.087 -0.028 0.021

Inflation 0.50 0.272 0.270 0.337 0.398 0.047 0.088 0.126

0.975 0.358 0.364 0.437 0.509 0.190 0.213 0.243

0.025 0.212 0.169 0.143 0.1 10 -0.099 -0.116 -0.108

Federal funds 0.50 0.318 0.284 0.271 0.240 0.004 -0.016 -0.012

0.975 0.429 0.408 0.41 1 0.3 86 0.132 0.104 0.105

Table 3.5c: Cross-correlations from estimated DSGE ofmoney shocks with endogenous

variables

Model Quantile i=-3 '=-2 i=-1 i=0 i=1 i=2 i=3

Output growth 0.025 -0.102 -0.290 -0.209 -0.319 0.104 0.050 -0.049

0.50 -0.075 -0.239 -0.255 -0.151 0.182 0.104 0.001

0.975 -0.047 -0. l 84 -0.158 0.007 0.245 0.151 0.049

0.025 -0.1 33 -0.106 -0.156 -0.254 -0.073 -0.075 -0. I 48

Inflation 0.50 -0.023 0.006 -0.039 -0.126 0.057 0.037 -0.047

0.975 0.055 0.085 0.047 -0.027 0.155 0.1 18 0.025

Federal funds 0.025 0.061 0.095 0.189 0.249 -0.007 -0.016 -0.006

0.50 0.137 0.171 0.267 0.331 0.081 0.067 0.067

0.975 0.214 0.249 0.345 0.417 0.173 0.152 0.140
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Figure 3.3: Estimated probabilities of NBER recessions from logit models using series of

shocks from estimated DSGE model
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