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ABSTRACT

INTEGRATING MULTISPECTRAL REFLECTANCE AND FLUORESCENCE

IMAGING FOR APPLE DISORDER CLASSIFICATION

By

Diwan Prima Ariana

Multispectral imaging in reflectance and fluorescence modes was used to classify

various types of apple disorder from three apple varieties (Honeycrisp, Redcort, and Red

Delicious). Eighteen images from a combination of filter sets ranging from the visible

region through the NIR region and three different imaging modes (reflectance, visible

light induced fluorescence, and UV induced fluorescence) were acquired for each apple

as a basis for pixel-level classification into normal or disorder tissue. Two classification

schemes, a 2-class and a multiple class, combined with four different classifiers, nearest

neighbor, neural network, linear discriminant function and quadratic discriminant

function, were developed and tested in this study. In the 2—c1ass scheme, pixels were

categorized into normal or disorder tissue, whereas in the multiple class scheme, pixels

were categorized into normal, bitter pit, black rot, decay, soft scald, and superficial scald

tissues.

Total classification accuracy of the nearest neighbor classifier under the 2-class

scheme for the full model, using all eighteen images, was 99.1, 96.8, 95.9, and 99.2% for

Honeycrisp, Redcort, Red Delicious, and combined variety respectively. Furthermore, in

the multiple-class scheme, the classification accuracy of Honeycrisp apple for normal,

bitter pit, black rot, decay, and soft scald was 98.7, 99.3, 98.9, 98.5, and 100%



respectively. These results indicate the potential of this technique to accurately recognize

different types of disorder.

Performance result comparison of the four classifiers demonstrated that for

Honeycrisp and combined variety, the nearest neighbor classifier yielded the highest

accuracy followed by neural network, linear discriminant and quadratic discriminant

classifiers. However, there were no significant differences among the classifiers on

Redcort and Red Delicious.

Feature selection analysis to develop reduced-feature models was carried out

through three different approaches, i.e. imaging mode combinations, filter combinations,

and feature combinations. Imaging mode combinations analysis indicates a potential of

integrating UV induced fluorescence and reflectance mode. Furthermore, the use of UV

induced fluorescence alone has a potential to detect superficial scald in Red Delicious,

and was able to classify black rot and soft scald on Honeycrisp with high accuracy, 100

and 99.4% respectively. Several important wavelengths were identified from the filter

combination analysis, i.e. 680, 740, 905 nm. Reflectance at 680 nm relates to red color,

and fluorescence response at 680 and 740 nm relates to the peaks of chlorophyll

fluorescence emission, whereas the 905 NIR responses may relate to tissue physical

characteristics. Feature combination analysis found the best 4—feature model resulted in

total accuracy up to 96.6%, 98.8%, and 99.4% for Honeycrisp, Redcort, and Red

Delicious respectively.
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1. INTRODUCTION

1.1. Background

Internal and external quality are important factors in the highly competitive

market of stored apples. Important quality criteria for consumers are: appearance,

including size, color, and shape; texture; flavor; nutritional value; and presence of defects

or disorders. Many factors influence the quality, but can be generally categorized into

preharvest, harvest, and postharvest factors.

Quality classification of fruits is an important procedure in marketing and

processing. In the past, segregation of high- and low-quality fruit was performed

manually, but in modern packinghouses it is performed automatically, although mainly is

still limited to sorting fruit by color and size. Since manual fruit grading has drawbacks

such as subjectivity, inconsistency, tediousness, labor availability, and cost, efforts to

develop efficient and accurate automated fruit classification systems continue to be

industry priorities.

Automated sorting technology can sort fruit and vegetables rapidly and

consistently. Electronic sorting technology is in place, or is available, for sorting many

commodity quality characteristics. The most sophisticated optical or electronic sorting

equipment available today can sort with “good” accuracy. However, the ability to detect

surface and sub-surface defects, disorders, and diseases is limited. This limitation results

particularly from a lack of data on the spectral range, or set of ranges, needed to

adequately detect as well as classify surface and sub-surface disorders.



Considerable work in the area of noninvasive / nondestructive techniques to

inspect fruits and vegetables has been conducted. The techniques include surface

reflectance and transmittance of various forms of (ultraviolet, visible, NIR, MIR) light

energy, acoustic response, mechanical deformation, x-ray, computed tomography (CT),

fluorescence, and magnetic resonance imaging (MRI). Diffuse reflectance in visible

(VIS) and NIR regions provides useful information to detect bruises, chilling injury,

scald, decay lesions, and numerous other defects (Abbott, 1999).

Diffuse reflectance measurement using spectrometers has been widely

implemented in a variety of applications; however, spectroscopic assessment with

relatively small point-source measurements has disadvantages compared to an imaging

approach that characterizes the spatial variability of a sample material (Kim et al.,

2001b). In particular, imaging techniques are better suited for the detection of localized

effects of a sample material.

Imaging techniques have been successfully used for classification or sorting of

agricultural products. One of the imaging techniques that has been widely used is multi

and hyperspectral imaging that captures a set of images at different wavelengths.

Multispectral and hyperspectral imaging techniques have been adopted in many

disciplines, such as airborne remote sensing, environmental monitoring, medicine,

military operations, factory automation and manufacturing (Gat er al., 1997; Shaw and

Manolakis, 2002). In agricultural product quality assessment, the techniques have been

studied for inspection of poultry carcasses (Park et al., 1998), chicken skin tumor

detection (Chao er al., 2002), defect detection on cherries (Guyer and Yang, 2000),

apples (Kavdir and Guyer, 2002; Lu, 2003; Mehl er al., 2002), citrus (Aleixos et al.,



2002), and tomatoes (Polder et al., 2002). Hyperspectral imaging techniques currently

cannot be directly implemented in an online system for agricultural product sorting

because the time required for image acquisition and analysis is too long. Multispectral

imaging is a faster technique based on discrete spectral analysis at a few wavelengths as

opposed to the continuous spectral analysis used in hyperspectral imaging (Mehl et al.,

2002).

Most of the studies in hyperspectral and multispectral imaging for agricultural

product inspection involve reflectance imaging. An alternative, or additional inspection

technique is fluorescence imaging. Chlorophyll fluorescence in plant/leaf tissue has been

studied extensively but only recently has been applied to fruit post-harvest physiology

and to even lesser degree to physical surface defects arising from handling or disorders.

A fluorometer, which doesn’t provide spatial information as in fluorescence imaging, was

used in the majority of the studies of chlorophyll fluorescence. DeEll et al. (1999)

summarized much of the past work related to fluorescence studies. The majority of the

work focused on stress or disorders involving whole plant or whole commodity response,

such as chilling injury, heat stress, environmental stress and maturity, with limited study

on disorders which involve localized or smaller areas of the surface tissue. Several

chlorophyll fluorescence studies on apples have been reported, such as in relation to

superficial scald development (Mir et al., 1998), heat injury (Song et al., 2001), freezing

injury (Fomey er al., 2000), controlled-atrnosphere disorders (DeEll er al., 1995), and

maturation (Song et al., 1997).

Most plant leaves, when illuminated with UV radiation, exhibit a broad

fluorescence emission with maxima at 440, 525, 685, and 740 nm (Chappelle er al.,



1985). These fluorescence emissions are indicative of the complex interactions of both

physiological and biochemical processes in plants. Changes in fluorescence emission in

response to environmental perturbations can be wavelength dependent and are usually

species dependent as well. A multispectral fluorescence imaging system with UV

excitation has been developed by Kim et al. (2001b) to capture fluorescence images of

leaves in the blue, green, red, and far-red regions of the spectrum, using band pass filters

centered at 450, 550, 680, and 740 nm respectively.

1.2. Objectives and Hypothesis

Although multispectral reflectance and fluorescence imaging have individually

been studied widely in a variety of applications, most of the studies related to object

classifications only deal with one of the two imaging modes at a time. Integrating

reflectance and fluorescence information in the classification model may improve the

classification accuracy considering both reflectance and fluorescence images carry

different information as a result of interaction of light energy and matter. Therefore, the

main objective of this study was to develop a detection technique for defects on apples

based on integrated multispectral reflectance and fluorescence imaging. To accomplish

this overall objective, the following sub-objectives were established:

(1) Design and build a multispectral imaging system to capture images of

apples under reflectance and fluorescence imaging modes.

(2) Determine if imaging of light energy reflectance in the visible and near

infrared regions, as well as imaging of chlorophyll fluorescence under



both visible and UV excitation, can successfully be used to detect different

types of defects or disorders on apples.

(3) Optimize the combination of filters and lighting mode(s) for best

classification success.

Integrating reflectance and fluorescence information in a single classification

model represents the uniqueness of this study, resulting in the hypothesis that integrated

multispectral imaging in reflectance and fluorescence modes can be used to enhance

detection of different types of defects or disorders on apples.



2. LITERATURE AND TECHNICAL REVIEW

2.1. Interaction of Light and Matter

The interaction of light and matter is a highly complex phenomenon. The

absorbing molecules of matter are excited to specific vibrational states or energy levels

dependent on the energy of the incoming radiation. For example, long wavelength

radiations (low energy) such as radio or microwaves can excite gases; short wavelength

radiations (high energy) such as x-rays affect liquids and solids. According to quantum

theory, molecules absorb light in the visible and ultraviolet regions because their

electrons can move to higher energy states. Infrared light does not have enough energy to

excite electrons in molecules. Instead, excitations resulting in molecular absorption come

from vibration and rotation of molecules. Rotational absorption bands are predominantly

in the far infrared. Vibrational absorption bands involve the near infrared, which has

been applied extensively to component analysis of food and agricultural materials (Muir

et al., 1989).

When a light beam falls on an object, part of the incident beam is reflected by the

surface and the rest is transmitted into the object where it is either absorbed, reflected

back to the surface (body reflectance), or transmitted through the object. Part of the

absorbed radiation may be transformed into another form of radiation, such as

fluorescence and delayed-light emission (light emitted from the object after the source

has been removed). The amounts of radiant energy in the reflectance, transmittance,

absorption, or emission depend on the properties of the object and the incident radiation

(Chen, 1978). When a fruit or vegetable is exposed to light, about 4% of the incident



light is reflected at the outer surface, causing specular reflectance or gloss, and the

remaining 96% of the incident energy is transmitted through the surface into the cellular

structure of the product where it is scattered by the small interfaces within the tissue or

absorbed by cellular constituents (Birth, 1976).

Plant tissues are optically dense, which is difficult to penetrate and alters the path

length traveled by the light so that the amount of tissue interrogated is not known with

certainty. Most light energy penetrates only a very short distance and exits near the point

of entry; this is the basis of color. But some penetrates deeper (usually a few millimeters,

depending on optical density) into the tissues and is altered by differential absorbance of

various wavelengths before exiting and therefore contains useful chemometric

information. Such light may be called diffuse reflectance or body reflectance (Abbott,

1999).

2.2. Spectral Imaging

Machine vision provides automated production processes with vision capabilities.

Machine vision can be described as the integration of imaging devices, computers,

algorithms, and robotics for automated inspection, characterization, and control. It has

been applied widely in many sectors of industries, especially in electronic and

automotive, and is increasingly applied in agricultural sectors in recent years.

The most common industrial applications of machine vision are inspection and

quality controls. The majority of inspection tasks are highly repetitive and extremely

boring, and their effectiveness depends on the efficiency of the human inspector. Since

inspection or classification of agricultural products is tedious and repetitive, machine



vision and image processing techniques are useful for agricultural and food industry

applications, particularly in grading and inspection (Park et al., 1998).

An important part of machine vision is imaging devices along with algorithms to

accomplish the purpose of its application, for example to classify objects which are

inspected. There are two main imaging systems currently used, the first captures spatial

information only, the second captures both spatial and spectral information. While

spatial imaging resolves objects into their morphological dimensions, spectral imaging

resolves a phenomenon of the interaction of light and objects to be inspected (Park et al.,

1998).

Spectral imaging involves measuring the intensity of diffusely reflected light from

a surface. The reflected light contains information about the absorbers near the surface of

the material that modifies the reflection. By using different wavelengths across a

waveband, it is possible to construct a characteristic of spectral features for the material

(Muir, 1993). These spectra] images are multi-dimensional and the process of

distinguishing between them is known as spectral pattern recognition. Spectral imaging

also known as imaging spectroscopy, is the application of reflectance/emittance

spectroscopy to every pixel in a spatial image.

Multispectral or hyperspectral imaging systems permit acquisition of images at

many wavelengths. Multispectral imaging system collects images at few, discrete,

noncontiguous wavelengths. On the other hand, hyperspectral images are acquired at

hundreds of narrow and contiguous wavelengths. The spectral image dataset can be

visualized as a cube, with the X and Y dimensions being the length and width of the

image or spatial information (in pixels) and the Z dimension being spectral wavelengths;



each data point is an intensity value. Alternatively, the dataset could be envisioned as a

stack of single wavelength pictures of the object, with as many pictures as the number of

wavelengths used. Since chemical bonds absorb light energy at specific wavelengths,

some compositional information can be determined from spectral data, thus multispectral

or hyperspectral imaging provides information about the spatial distribution of

constituents (pigments, sugars, moisture, etc.) near the product’s surface (Abbott, 1999).

Figure 2.1 shows the conceptual representation of spectral imaging.
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Figure 2.1. Conceptual representation of a volume of hyperspectral image data. Dark

arrows indicate directions for sequential acquisitions to complete the volume

of spatial and spectral data (Kim et al., 2001a); a) wavelength scanning, b)

spatial scanning (pushbroom)

There are two approaches of how a cube of spatial and spectral data can be

acquired in spectral imaging. One approach, illustrated in Figure 2.1a, sequentially

captures a full spatial scene at each spectral band to form a three-dimensional image

cube. Multiple band—pass filters, a liquid-crystal tunable filter, or an acousto-optic



tunable filter can be used for this approach. Another approach (Figure 2.1b) is a

pushbroom method in which a line of spatial information with a full spectral range per

spatial pixel is captured sequentially to complete a volume of spatial-spectral data (Kim

et al., 2001a).

2.3. Fluorescence

Fluorescence is the property of some atoms and molecules to absorb light of

particular wavelengths and after a brief interval, termed the fluorescence lifetime, to re-

emit light at longer wavelengths. Fluorescence requires an outside source of energy, is

the result of the absorption of light, and involves the emission of electromagnetic

radiation (light). This process is different from chemiluminescence, where the excited

state is created via a chemical reaction (Herman, 1998).

Many agricultural materials fluoresce and nearly all horticultural application of

fluorescence refers specifically to chlorophyll fluorescence (Abbott, 1999). Chlorophyll

appears green to our eyes because it absorbs light in the red and blue parts of the

spectrum, so only some of the light enriched in green wavelengths (about 550 nm) is

reflected into our eyes. Equation 2.1 represents the absorption of light in which

chlorophyll (Chl) in its lowest-energy, or ground, state absorbs a photon (represented by

hv) and make a transition to a higher-energy, or excited, state (Chl*).

Chl + hv —) Chl* (2.1)

The distribution of electrons in the excited molecule is somewhat different from the

distribution in the ground state molecules. Figure 2.2 illustrates the absorption and

emission of light by chlorophyll molecules. Absorption of blue light (about 430 nm)
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excites the chlorophyll to a higher energy state than absorption of red light (about 660

nm), because the energy of photons is higher when their wavelength is shorter. In the

higher excited state, chlorophyll is extremely unstable, very rapidly gives up some of its

energy to the surrounding as heat, and enters the lowest excited state, where it can be

stable for a maximum of several nanoseconds (10’9 s) (Taiz and Zeiger, 1998).
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Figure 2.2. Light absorption and emission by chlorophyll (Taiz and Zeiger, 1998);

(a) Energy level diagram, (b) the spectra absorption and fluorescence

In the lowest excited state, the excited chlorophyll has several possible pathways

for disposing of its available energy such as (Taiz and Zeiger, 1998):

(1) Re-emit a photon and thereby return to its ground state, a process known as

fluorescence.

(2) Return to its ground state by directly converting its excitation energy into

heat, with no emission of photon.

(3) Transfer its energy to another molecule, a process known as energy transfer.

(4) Cause a chemical reaction to occur, known as photochemistry.

ll



When the excited chlorophylls fluoresce, the wavelength of fluorescence is almost

always slightly longer than the wavelength of absorption of the same electron state,

because a portion of the excitation energy is converted into heat before the fluorescence

photon is emitted. Conservation of energy therefore requires that the energy of the

fluorescent photon be lower than that of the excitation photon — hence the shift to longer

wavelength, known as stokes shift (Herman, 1998). Chlorophylls fluoresce in the red

region of the spectrum.

Chlorophylls can be found in organized pigment/protein complexes in the

chloroplast membrane. These protein/pigment complexes are referred to as photosystems

I and II, each of which has a ‘reaction center’ wherein the light energy is converted and

utilized. A portion of the absorbed energy is transferred to electrons (from water) in

photosystem II (PSII). The electrons are, in turn, used to fuel the reduction of C02 to

sugar and carbon skeletons in the process of photosynthesis. A small portion of the

energy is not used and is reradiated as fluorescence (Mir et al., 1998).

When the intensity of illuminating light is well below the capacity of the tissue to

process the energy, P811 is able to pass on nearly all the electrons excited by the light to

photosynthetic processes, such that its reaction center is essentially always ‘open’ for

additional energy influx. Under these conditions, the fluorescence intensity is at a

minimum, referred to as dark, background, or initial fluorescence (F0). Conversely,

when the intensity of the illuminating light is well above the capacity of the tissue to

process the energy, P811 is able to pass on only a fraction of the electrons excited by the

light. The reaction center is essentially ‘closed’ to energy influx and the excited electrons
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have a tendency to lose their energy as fluorescence. Under these conditions, the

fluorescence intensity is at maximum, referred to as maximum fluorescence (Fm). The

relationship between these two responses is more commonly expressed as the ratio

between the increase in fluorescence from minimal to maximal (Fm-F0) and the maximal

(Fm). The quantity Fm-Fo is often referred to variable fluorescence (Fv). As long as

P811 is functioning normally, the ratio of Fm to F0 is usually about 0.8. When P811 is

functioning poorly, fluorescence characteristics are altered (Beaudry et al., 1998).

2.4. Apple Disorders

The identification of fruit disorders at harvest, during storage, or after shipping is

of utmost importance to producers, shippers, and consumers. Accurate recognition of

disorders is needed before problems associated with orchard nutrition, cultural practices,

or postharvest treatment can be corrected. In this section, detailed information is given

on several apple disorders found in the samples used in this research including bitter pit,

soft scald, superficial scald, black rot, and decay. It should be noted that some disorder

are difficult for the human eye to distinguish, especially at early stage of disorder

development.

2.4.1. Bitter Pit

Bitter pit is a disorder in which small, brown, somewhat dry, slightly bitter tasting

lesions 3-5 mm in cross section develop in the flesh of the apple (Figure 2.3). The first

symptoms of bitter pit may be small, darkened, slightly depressed spots under the skin,
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usually in the calyx end of the fruit. The disorder does not affect the skin directly. It

may appear before harvest or develop during storage. Internal lesions are often

associated with the vascular elements. In severe cases, several lesions may become

confluent to form larger necrotic areas. With time, the lesions at the skin darken,

sometimes becoming reddish and more sunken, especially in Newton and Golden

Delicious (Meheriuk et al., 1994).

Initiation of symptoms may begin four to six weeks after petal fall when affected

tissues have a higher rate of respiration and ethylene production. This is a period of

greater protein and pectin synthesis with greater migration of organic ions into the

affected areas. Affected areas retain starch grains not seen in healthy tissue. A mineral

imbalance in the apple flesh develops with low levels of calcium and relatively high

concentrations of potassium and magnesium. Low levels of calcium impair the selective

permeability of cell membranes leading to cell injury and necrosis (Meheriuk er al.,

1994).

Honeycrisp is one of the cultivars that are susceptible to bitter pit. This trait is

most pronounced on young, vigorous trees with a small crop load and large fruit. The

occurrence of bitter pit is greatly reduced as the trees mature and the crop load increases.

Foliar applications of calcium also have proven very effective in preventing bitter pit on

Honeycrisp. Avoiding excessive amounts of nitrogen may also help prevent its

occurrence (Bedford, 2001).
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2.4.2. Soft Scald

Soft scald is easily identified by the sharply defined, irregularly shaped, smooth

brown areas in the skin of the apple (Figure 2.3). There may be one or more small

lesions, or the disorder may affect most of the apple, irrespective of skin color, but

usually not at the stem or calyx end. In its various stages, soft scald affects the skin only,

but it may damage hypoderrnal tissue as the lesion continues to develop (Meheriuk et al.,

1994)

Soft scald is a low-temperature—induced disorder of apples. The disorder is likely

to occur when highly respiring susceptible cultivars are cooled rapidly. Delayed cooling

can advance the onset of the climacteric and thus render the fruit more prone to soft scald

upon subsequent rapid cooling. The disorder is prevented if the apples are subjected to

20-30% C02 for 2 days during the cooling period (Meheriuk et al., 1994). Dipping the

fruit in an aqueous solution containing antioxidants such as diphenylamine (DPA) and

edible oil markedly reduce or prevent the disorder (Wills and Scott, 1982).

2.4.3. Superficial Scald

Superficial scald is a postharvest disorder of apples characterized by diffuse

browning of the skin, somewhat roughened in severe cases, which become more

extensive after a few days at room temperature (Figure 2.3). On red cultivars, the scald

lesion is often confined to the unblushed area of the skin (Meheriuk er al., 1994).

A naturally occurring terpene, a—farnesene, has been found in the skin of apples.

Its oxidation products are suggested as the cause of superficial scald. Lipoxygenase, in
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addition to a-farnesene, may be involved in the induction of scald and may be responsible

for the browning (Ingle and D'Souza, 1989).

Factors that increase the severity of the disorder include immaturity, high fruit

nitrogen, low fruit calcium, warm preharvest weather, delayed cold storage, high storage

temperature, high relative humidity in storage, restricted ventilation, extended storage

periods and (in controlled atmosphere storage) slow oxygen reduction and high oxygen

concentration. Effective treatments to prevent the scald are DPA dips, hot water dips,

ethrel sprays, calcium sprays, and fruit coating such as lecithin (Meheriuk er al., 1994).

2.4.4. Decay

Postharvest diseases of fruit crops are caused mostly by fungal infection. The

infected tissue, also known as decay, is typically different from surrounding healthy

tissue in color and/or texture. In most cases, infected tissue forms a discrete zone, known

as a lesion, which extends radially from an infection point in a characteristic pattern

determined by the interaction between the host fruit and the pathogen (Figure 2.3). In

some postharvest diseases, the border between infected and apparently healthy tissue is

sharply defined, in others it is more diffuse (Sugar, 2002). Some of the diseases common

on apples along with the causal fungi are: bitter rot (Glomerella cingulata), black rot

(Physalospora obtusa), gray mold (Botrytis cinerea), blue mold (Penicilium expansum),

bull’s-eye rot (Pezicula malicorticis (Jacks.)), white rot (Botryospheria ribis), flyspeck

(Microthyriella rubz), and side rot (Phialophora marolum) (Pierson et al., 1971).

Organisms rot fruit and vegetables while still immature and attach to the plant or

during the harvesting and subsequent handling and marketing operations. The infection
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process, particularly postharvest, is greatly aided by mechanical injuries to the skin of the

produce, such as fingernail scratches and abrasions, rough handling, insect punctures and

stem cuts. Furthermore, the physiological condition of the produce, the temperature, and

the formation of the periderrn significantly affect the infection process and the

development of the infection (Wills er al., 1998).

2.4.5. Black Rot

Black rot is identified as a firm brown spot on any part of the apple (Figure 2.3).

The affected surface may be marked with concentric zones of different shades of brown,

especially if the fruit rotted on the tree. In advanced rots, which can involve the whole

fruit, the skin is dark brown or even black and sometimes dotted with numerous small

black fungal fruiting bodies called pycnidia. The presence of pycnidia and their random

distribution help to distinguish black rot from most other apple rots (Pierson et al., 1971).

The black rot fungus, Physalospora obtusa, attacks the leaves, wood, and fruits of

apple. While immature fruits may be attacked, the disease is primarily a rot of ripe fruits.

Infections may occur at insect injuries and wound sites. Calyx end infections may follow

spray and frost injury. Core and calyx end rots may result from fungal invasion of the

open calyx tubes in varieties such as Delicious. The disease develops very slowly in

green or immature fruits. Black rot ordinarily does not spread from one fruit to another.

Black rot should be controlled in the orchard (Pierson et al., 1971).
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Figure 2.3. Examples of some disorders on apples. (a) bitter pit, (b) soft scald,

(c) superficial scald, ((1) black rot, (e) decay



2.5. Classification Techniques

Classification, the assignment of an object to one of a number of predetermined

groups, is of fundamental importance in many areas of science and technology. For the

most part, unless the classification is obvious and trivial we still depend on human

expertise to classify on the basis of observation. As the computer has become more and

more accessible so it has become attractive to try and use it to either replace the experts

or at the very least to guide and help them. Classification is an important component in

pattern recognition systems, which usually consists of sensing, segmentation, feature

extraction, classification, and post-processing components (Duda et al., 2001). This

section will present theoretical background of three classification techniques used in the

research, i.e. artificial neural network, discriminant analysis, and k-nearest neighbor.

2.5.1. Artificial Neural Network Classifier

Artificial neural networks (ANN) provide an emerging paradigm for pattern

recognition implementation that involves large interconnected networks of relatively

simple and typically nonlinear units. A neural network is designed to model the way in

which the brain performs a particular task or function of interest. Basically, three entities

characterize an ANN (Schalkoff, 1992):

(1) The network topology, or interconnection of neural units,

(2) The characteristics of individual units or artificial neurons, and

(3) The strategy for pattern learning or training.
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A neuron is an information-processing unit that is fundamental to the operation of

a neural network. The block diagram of Figure 2.4 shows the model of a neuron, which

form the basis for designing ANNs. There are three basic elements of the neuronal

model:

(1) A set of synapses or connecting links, each of which is characterized by a

weight or strength of its own, denoted by ij. A signal xj at the input of

synapse j connected to neuron k is multiplied by the synaptic weight wkj.

(2) An adder for summing the input signals, weighted by the respective synapses

of the neuron; the operation described here constitutes a linear combiner.

(3) An activation function for limiting the amplitude of the output of neuron.
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Figure 2.4. Nonlinear model of a neuron (Haykin, 1999)

The neuronal model of Figure 2.4 also includes an externally applied bias, denoted by bk,

which has the effect of increasing or lowering the net input of the activation function,

depending on whether it is positive or negative, respectively.
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In mathematical terms, we may describe a neuron k by writing the following pair

of equations:

v, = i wkjrj (2.2)

j=l

and

y. = ¢(Vk + b.) (2.3)

where x1, x;, xIn are the input signals; wkl, wkz, wkm are the synaptic weights of

neuron k; vk is the linear combiner output due to the input signal; bk is the bias; (p(-) is the

activation function; and yk is the output signal of the neuron.

The most common form of activation function used in construction of ANNs is

the sigmoid function, whose graph is s-shaped. It is defined as a strictly increasing

function that exhibits a graceful balance between linear and nonlinear behavior (Haykin,

1999). An example of the sigmoid function is the logistic function, defined by:

¢(v) 4 (2.4)
= l + exp(—av)

where a is the slope parameter of the sigmoid function. By varying the parameter a, we

obtain sigmoid functions of different slopes, as illustrated in Figure 2.5.
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Figure 2.5. Sigmoid function with varying slope parameter a (Haykin, 1999)
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Network Architectures

In general, there are three fundamentally different classes of network architectures

(Haykin, 1999): (l) single-layer feedforward networks, (2) multilayer feedforward

networks, and (3) recurrent networks. A multilayer feedforward network is distinguished

from a single-layer feedforward network by the presence of one or more hidden layers,

whose computational nodes are correspondingly called hidden neurons or hidden units.

The function of hidden neurons is to intervene between the external input and the

network output in some useful manner. By adding one or more hidden layers, the

network is enabled to extract higher-order statistics, which is valuable when the size of

the input layer is large (Haykin, 1999). A recurrent neural network distinguishes itself

from a feedforward neural network in that it has at least one feedback loop. The presence

of feedback loops has a profound impact on the learning capability of the network and on

its performance. Feedforward networks with a back-propagation learning algorithm are

commonly used for classification purposes.

Learning Process

A neural network learns about its environment through an interactive process of

adjustments applied to its synaptic weights and bias level. Ideally, the network becomes

more knowledgeable about its environment after each iteration of the learning process.

There are two learning paradigms, first is learning with a teacher or supervised learning

and second is learning without a teacher or unsupervised learning. In supervised

learning, there is a targeted output to which the neural network approaches. The objective
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of the learning process is then to minimize the difference between the target output

(correct class) and the neural network output by adjusting network parameters. The

adjustment is carried out iteratively in a step-by-step fashion with the aim of eventually

making the neural network emulate the teacher. In unsupervised learning there is no

external teacher to oversee the learning process. Rather, provision is made for a task-

independent measure of the quality of representation that the network is required to learn,

and the parameters of the network are optimized with respect to that measure (Haykin,

1999).

Pattern recognition or classification tasks are in the category of supervised

learning. A neural network performs pattern recognition by first undergoing a training

session, during which the neural network is repeatedly presented a set of input patterns

along with the category to which each particular pattern belongs. Later, a new pattern is

presented to the network that has not been seen before, but which belongs to the same

population of patterns used to train the network.

Multilayer feed forward networks, also known as multilayer perceptrons, have

been applied successfully to solve some difficult and diverse problems by training them

in a supervised manner with a highly popular algorithm known as the error back-

propagation algorithm. This algorithm is based on the error-correction learning rule.

Basically, error back-propagation learning consists of two passes through the

different layers of the network; a forward pass and a backward pass. In the forward pass,

an input vector is applied to the sensory nodes of the network, and its effect propagates

through the network layer by layer. Finally, a set of outputs is produced as the actual

response of the network. During the forward pass the synaptic weights of the networks
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are all fixed. During the backward pass, on the other hand, the synaptic weights are all

adjusted in accordance with an error—correction rule. Specifically, the actual response of

the network is subtracted from a desired (target) response to produce an error signal.

This error signal is then propagated backward through the network, against the direction

of synaptic connection - hence the name “error back-propagation”. The synaptic weights

are adjusted to make the actual response of the network move closer to the desired

response in a statistical sense. The error back-propagation algorithm is also referred to as

the back propagation algorithm. The error signal at the output of neuron j at iteration n is

defined by:

e,(n)=d,-(n)-y,-(n) (2.5)

where dJ-(n) is the target response for neuron j; yj(n) is the neural network output of

neuron j at iteration n.

The back-propagation algorithm applies a correction ij,(n) to the synaptic

weight wfi(n) connecting neuron i to neuron j, which is defined by the delta rule:

Awfi (n) = 7761. (n)y,. (n) (2.6)

where 17 is learning rate parameter; 6,- is local gradient and y; is input signal of neuron j.

The local gradient 6,- depends on whether neuronj is an output node or a hidden node.

If neuronj is an output node,

610') : ej (nhj (Vi (n)) (2'7)

If neuron j is a hidden node,

5,-I"): ¢j(vj(n))26k (")ij(n) (2'8)

k
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where k is index for neurons in the next hidden or output layer that are connected to

neuron j.

The back-propagation algorithm provides an “approximation” to the trajectory in

weight space computed by the method of steepest descent. The smaller we make the

learning-rate parameter :7, the smaller the changes to the synaptic weights in the network

will be from one iteration to the next, and the smoother will be the trajectory in weight

space. This improvement, however, is attained at the cost of a slower rate of learning. If,

on the other hand, we make the learning-rate parameter 17 large in order to speed up the

rate of learning, the resulting large changes in the synaptic weights cause the network to

become unstable. A simple method of increasing the rate of learning yet avoiding the

danger of instability is to modify the delta rule of Eq. 2.6 by including a momentum term

as shown by (Rumelhart et al., 1986)

Aw), (n) = aAwfi(n — 1) + 276,.(n)y,(n) (2.9)

where a is usually a positive number called the momentum constant.

2.5.2. Discriminant Functions

Bayes decision theory is a fundamental statistical approach to the problem of

pattern classification (Duda er al., 2001). This approach is based on the assumption that

the decision problem is posed in probabilistic terms, and that all of the relevant

probability values are known. Bayes decision theory is a basis for developing a

discriminant function.
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A decision rule partitions a space into regions (2;, i=1,. . .,N, where N is the

number of classes. An object is classified as coming from class 00,. if its corresponding

vector representation, x, lies in region Q... Bayes rule can be expressed as (Hand, 1981):

 PW- ”): P(xl;'8;’(wi) (2.10)

where P(a),. | x) is posterior probability of co,- given x; P(w.~) is a prior probability for

class (0.; p(x) is the probability that x occurs; p(xl (0,.) is a class—conditional probability

density function. If p(x | (0,) are known then the problem is solved - we simply

substitute the x vector, for the object to be classified, into equation 2.10 and find the

largest value of p(x | a), )P((:)‘ ). But the p(x I (0,.) are usually unknown and are estimated

from the set of classified samples.

If the class-conditional probability density function is assumed Gaussian

distributed, then:

 

l 1 r -1

. = e -— - . Z - . 2.
p(xIQ) (2”)d12 |2|112 Xp[ 2(x #1) (x flr)] ( 11)

where y and 2 are mean and covariance matrix of a class. The parameters (u, 22) are

sufficient to uniquely characterize the normal (Gaussian) distribution. The parameters

([1, 2) are estimated from the training samples using Maximum Likelihood Estimation

(MLE) given as follows:

#=_Zx
(2.12)

2:71:10. -,u)(.—x,u (2.13)

A discriminant function for the i-th class is defined as:
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g.(x)=P(w.- Ix) (2.14)

Given a feature vector x, the classification rule is based on finding the largest

discriminant function. Assuming equal a priori probabilities, this means choosing the

class for which p(xlwg) is largest. Any monotonically increasing function of g.(x) is also a

valid discriminant function. The log function meets this requirement, that is, an

alternative discriminant function is:

em= log{P(w.- I x)} (2.15)

8£(x)=-%(x-#.)TE§‘(x-#.)-%logIIE.-I)+log(P(w.-)) (2.16)

Equation 2.16 is known as a Quadratic Discriminant Function. If we further assume that

the population covariance matrices Z,- are all the same, we can simplify the quadratic

discriminant score in Equation 2.16 into the linear discriminant score:

3,:(X) = #iTZr‘x _%'u’TZ-1fli + 10g(P(wi )) (2-17)

2.5.3. Nearest Neighbor Classifier

The Nearest Neighbor (NM classifier is an example of a nonparametric classifier.

Using the label information of the training sample, an unknown observation x is

compared with all the cases in the training sample. N distances between a pattern vector

x and all the training patterns are calculated, and the label information, with which the

minimum distance results, is assigned to the pattern x. That is, the NN rule allocates the

x to wk class if the closest sample xc is with the label k =L(x¢) (Micheli-Tzanakou, 2000):
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x, = argmin{d(xo,x,.)}, i = 1,2,...,N (2.18)

x0 6 W, = L(xk) (2.19)

The distance measure between the unknown and the training sample has a general

quadratic form:

d(x,xk ) = (x0 - x,‘ )TM(x0 - xk) (2.20)

If the Mahalanobis distance is used, M is equal to E", which is the inverse of the

covariance matrix in the sample. If Euclidean distance is used, M is equal to I, which is

the identity matrix.

The K-Nearest Neighbor (KNN) rule is the same as the NN rule except that the

algorithm finds the K nearest point within the points in the training set from the unknown

observation x and assigns the class of the unknown observation to the majority class in K

points. In the example in Figure 2.6, there are three classes, and the value of K is 5. Of

the 5 closest neighbors, 4 belong to 001 and 1 belongs to 003, so xu is assigned to (01, the

predominant class.

The only parameter that should be determined is “K”, the number of the nearest

neighbors to consider. The value of K depends on the number of training data. With a

larger number of samples, larger numbers of K can be chosen.
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Figure 2.6. 5-Nearest Neighbor classifier in the case of 3 classes

KNN is considered a lazy learning algorithm, which exhibit three characteristics

that distinguish them from other learning algorithms: (1) defers processing of their input

until they receive requests for information; they simply store their inputs for future use,

(2) replies to information requests by combining their stored (training) data, and (3)

discards the constructed answer and any intermediate results. In contrast, eager learning

algorithms have three characteristics: (1) compiles its input data into a compressed

description or model (for example density parameters in statistical pattern recognition

and associated weights in neural network pattern recognition, (2) discards the training

data after compilation of the model, and (3) classifies incoming patterns using the

induced model, which is retained for future requests. There is a tradeoff between the

lazy and eager algorithms, lazy algorithms have fewer computational costs than the eager

algorithms during training, but they typically have greater storage requirements and

higher computational costs on recall (Aha, 1997).
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2.6. Feature Selections

For any given classification problem there is an unlimited number of

measurements that could be made on the objects to be classified. It is therefore necessary

to choose a finite subset of these which leads to good classification results. The most

straightforward reason to use smaller subsets is cost. If it is excessively expensive or

time-consuming to gather measurements, then, the fewer, the better. If an adequate

subset of the original measurements can be found, then only this subset need be measured

on all future objects to be classified. Another reason for reducing the dimensionality of

the space in which classifications are made is simply to eliminate redundancy. There is

no point in measuring a feature that does not add to the accuracy of the classification

achieved without this feature. Furthermore, a lower misclassification rate can sometimes

be achieved by using fewer features (Hand, 1981).

Basically, the feature selection problem is to find the best set of d<D features

from [3] = FK—DDéd—y possible sets, evaluate each one with a selected criteria, and choose

the one which results in the highest classification accuracy. In practice, however, this

. D . . .

often not feasrble because [d] is very large and computationally excessrve for sets of

even moderate size, so heuristic techniques for choosing feature subset are required

(Mucciardi and Gose, 1971). This section will present various feature selection

techniques.
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2.6.1. Branch-and-Bound

Feature selection via exhaustive search can become computationally prohibitive.

However, it may be possible to determine the optimal feature set without explicit

evaluation of all the possible combinations of d measurements with the help of the

branch-and—bound algorithm. The algorithm is applicable under the assumption that a

feature selection criterion satisfies the monotonicity property. Denoting by x,- a candidate

feature set containingj features, the monotonicity property implies that for nested feature

set Xirelated as

21C22C---Cz,-C-~Czo (2-21)

the criterion function J()(,-) satisfies

1(11)s1(zz)s---SJ(1,,) (2.22)

(Kittler, 1986)

To illustrate the basic idea of branch-and-bound algorithm, consider the problem

of selecting two features out of five features. The tree in Figure 2.7 represents all the

possible triplets of features, which include the ones that have to be discarded to obtain the

optimal set of two features. Each node designates an eliminated feature.

Suppose we evaluate our feature selection criterion at every node of the tree in a

top down manner starting with the right most branch. At each node we compare the

. criterion function value with that of the current best feature set, denoted Jo. If the value

exceeds J0, then there is still a chance that a better feature set will be discovered, and the

search must therefore continue along the right most unexplored branch. If we reach the

bottom of the tree and the corresponding criterion value is greater than J0, then this node

defines a new best feature set and Jo is updated accordingly.
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If, on the other hand, the value of the criterion function at some node is less than

Jo, then the branches originating from that node need not be explored, since by virtue of

the monotonicity property the elimination of additional features will only result in a

further decrease of the function value. The search will be particularly efficient if the

features y; for the successor nodes to each node of the tree are selected from left to right

in the order of increasing magnitude of the criterion function (Kittler, 1986).
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Figure 2.7. Tree representation of a branch-and-bound algorithm (Kittler, 1986)

2.6.2. Sequential Forward and Sequential Backward Selection

In many situations the determinations of the optimum feature set will not be

computationally feasible even with the branch-and-bound algorithm. Another alternative

is to seek a suboptimal solution. The simplest suboptimal procedures are the sequential

forward and sequential backward selection algorithms.

Sequential forward selection (SFS) is a bottom-up process. Starting from an

empty set, select the first feature as the individually best feature. At each subsequent

stage the next feature is picked from the remaining available features so that in
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combination with features already selected, it yields the best value of the criterion

function. Sequential backward selection (SBS) is a top-down process. Starting from the

complete set of available features, eliminate one feature at a time. At each stage the

feature selected for elimination is the one that results in the lowest decrease in the value

of the criterion function.

The main source of the suboptimality of SFS is that it has no mechanism for

removing from the feature set, the features that have become superfluous as a result of

including other features. Similarly, once features have been discarded, SBS does not

allow any revision of their merit. From the point of view of computational complexity,

SFS is simpler than SBS since it requires that the criterion function be evaluated at most

in d—dimensional spaces. In contrast, in SBS the criterion function must be computed in

spaces of the dimensionality ranging from d to D. However, the advantage of the SBS is

the ability to monitor continuously the amount of information loss incurred (Kittler,

1986).

2.6.3. Principal Component Analysis

Principal component analysis (PCA) is one of the most widely used multivariate

techniques. The analysis consists of a linear transformation that produces new

uncorrelated features (i.e. components) from the original features. One of its most

popular uses is that of dimensionality reduction, since frequently just a few of these

components are sufficient to represent adequately the original data.

Suppose that p features X1, X2, Xp have been observed on each of 12 individuals and

that the observation vector for the ith individual is denoted by X“) = (X,-1, Xi2,. . ., Xip)’.
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PCA linearly transforms the features X1, X2, Xp to new feature Y1, Y2,..., Yp, the

principal components, and hence the data observation X“) to corresponding principal

component scores Y“) = (Yr), Y,-2,..., Yip)’. Dimensionality reduction is affected if q (<p) of

the components Y,- convey “most of the sample information” inherent in the p features X.

In this case the original observations X“) can be replaced by the first q elements of the

corresponding principal scores. We can then write Y") = (Yu,..., Yiq)’. The major

deficiency of this approach to dimensionality reduction is that, while the dimensionality

of the space may indeed be reduced from p to q, all p original features are, in general, still

needed in order to define the q new features Y,- (Krzanowski, 1987). This deficiency is

also highlighted by McCabe (1984), who states: “In many applications, it is desirable not

only to reduce the dimension of the space, but also to reduce the number of features

which are to be considered or measured in the future”. The use of PCA to discard

redundant features has been outlined and criteria for choosing p features have been

identified in Jolliffe ( 1972), McCabe (1984), and Krzanowski (1987).

2.6.4. Neural Network Weights

A number of heuristic measures have been proposed to estimate the relative

importance or contribution of input features of neural networks to the output variable.

Several saliency measures of input features explicitly consider both input and hidden

weights and their interactions on the network output. An important saliency measure is

proposed by Garson (1991) who partitions the hidden layer weights into components

associated with each input node and then the percentage of all hidden nodes weights

attributable to a particular input node is used to measure the importance of that input
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feature. Many researchers have studied Garson’s measure and some modifications and

extension have been made (Glorfield, 1996; Nath er al., 1997; and Mak and Blanning,

1998).

Nath er al. (1997) experimentally evaluated the Garson’s saliency measure and

conclude that the measure works very well under a variety of conditions. Glorfield

(1996) used a combination of backward elimination procedure and Garson’s method to

build models with different numbers of input features. An optimized backpropagation

network is developed using the full set of available input features. The Garson

methodology is then used to determine the input features’ importance relative to the

output. The feature that makes the smallest contribution to the output is then dropped.

This procedure is repeated for the remaining set of features. This process continues until

only a single input feature remains to develop the final backpropagation network model.

At each step, the output objective function value is recorded. For a classification

network, this value would correspond to the rate of correct classification (or error rate).

2.7. Empirical Studies

In this section, past studies in spectral reflectance and fluorescence related to

fruits, especially apples, are reviewed.

2.7.1. Spectral Reflectance

Assessing fruit quality both for maturity and for defects using spectral reflectance

dates back to the early 1940’s. Lott (1943) used a spectrophotometer (General Electric
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Automatic Recording Photoelectric Spectrophotometer) to measure reflectance of skin

and flesh of several varieties of mature apples in 400 to 700 nm spectral ranges.

Reflectance values in the 400 to 700 nm region are the most important for characterizing

appearance, but information from a wider wavelength region is required for a full

understanding of the optical properties of a sample. Reflectance measurement in a wider

range, 250 to 2100 nm, has been conducted by Bittner and Norris (1968) for selected

varieties of apples, peaches and pears. They used a Cary model 14R spectrophotometer

with a multiplier-type phototube for the visible and ultraviolet region and a lead sulfide

cell for the near-infrared (NIR) region. They suggested ratios of two wavelengths,

580/620 and 670/730, appears promising for indicating stage of maturation. Neither

study, however, included measurement for defective fruit.

The earliest study on bruise detection on apple was conducted by Ingle and Hyde

(1968). Bruised apple pulp consistently had a lower reflectance at 600 nm. Later, it was

recognized that apple bruising ruptured cells releasing cell fluid filling the intercellular

air spaces under the apple skin resulting in a reduction of the near-infrared reflectance

from the apple surface (Brown et al., 1974). They concluded the difference in reflectance

for wavelengths around 800, 1200, and 1700 nm or a ratio of reflectance at some

wavelength between 1400 and 2000 nm might be useful for bruise detection. It was

further suggested that for processed apples, different wavelengths could be used to

discriminate between apple defects, flesh, skin, stem or calyx ends. Further study of the

mechanics of the trimming and orientation mechanisms was indicated to make sensing

feasible (Reid, 1976). Some other spectrophotometric studies on apple bruise using
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reflectance measurement are Pen et al. (1985), Upchurch et al. (1990), and Upchurch et

al. (1991).

These studies, along with the spectral curves presented, demonstrated the ability

of light energy, especially in the NIR region, to distinguish differences in various tissues.

Chemical bonds absorb light energy at specific wavelengths. Williams and Norris (1987)

list some of the major absorption wavelengths for pigments, fats, proteins, carbohydrates

and water. Within the visible wavelength range, the major absorbers are the pigments:

chlorophylls, carotenoids, anthocyanins and other colored compounds. Water,

carbohydrates, fats and proteins have absorption bands in the NIR region. This past

research and related findings were primarily conducted utilizing spectrophotometer or

spectral radiometer instrumentation. With such instrumentation, an object is measured as

one value over a given surface. In other words, the instrument measures the integrated

energy over a certain area with the size of the area defined by the detection set up. These

studies demonstrate that various tissue, in fact, possess different spectral signatures when

illuminated properly, which is potentially very valuable information for defect analysis

and identification. However, past spectral radiometric work has some limitations in only

being capable of providing spectral curves over a relatively large surface area instead of

acquiring sufficient spatial information necessary for detailed defect inspection and

quality sorting (Guyer and Yang, 2000).

Machine vision provides information about the spatial distribution of the intensity

as well as the spectral content of the light. Coupling a camera with a computer enables

machines to automatically perform visual-based inspection tasks. The various functions

performed by a machine vision system include image capture, image processing, and
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pattern recognition (Abbott et al., 1997). Machine vision systems have been used

increasingly in the food and agricultural industry for inspection and evaluation purposes

as they provide suitably rapid, economic, consistent and objective assessment (Brosnan

and Sun, 2002).

The study of apples using machine vision has attracted much interest and can

reflect the progress of machine vision technology for fruit inspection. Machine vision

has been used for such tasks as shape classification, defects detection, and quality

grading. Rehkugler and Throop (1986) developed an apple handling and sorting device

using machine vision for bruise detection and classification into USDA grades with

throughput of 30 apples per minute. A 64 pixels line scan camera with 750 nm highpass

filter was used in the study to capture NIR images. Bruise patterns were determined by

image filtering, differencing, binary image thresholding, and measurement of the shape of

the areas representative of bruises by using thinness ratios. Later, they tried the same

algorithm for detecting defects other than bruising such as scab, bird pecks, insect stings

and hail damage and found out they have grey level NIR reflectance 10 levels below

bruise tissue (Rehkugler and Thr00p, 1989). To increase the speed of image capturing

Davenel er al. (1988) used a rectangular matrix camera instead of line scan camera for

surface defect detection on apple. They used a 208x144 charged coupled device (CCD)

camera equipped with a bandpass filter centered on 550 nm with 100 nm bandwidth. The

best contrast between sound and damaged tissue is obtained at around this wavelength.

Their system was able to analyze more than five fruit per second with a classification

accuracy of 69% with selective thresholding within a zone image processing algorithm.
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Various other techniques based on monochrome imaging have been explored for

detecting blemishes and bruises on apple. These approaches include cooccurrence

texture analysis (Throop et al., 1995), structured lighting (Yang, 1993), and a flooding

algorithm (Yang, 1994). The flooding algorithm can overcome the difficulties caused by

the variation in light reflectance. It was found that this method of feature identification is

applicable to other types of produce with uniform skin color. This technique was

improved by Yang and Marchant (1996) who applied a ‘snake’ algorithm to closely

surround the defects. Li et al. (2002) used fractal features as neural network inputs for

identifying defects and stem-calyx area of Fuji apples from apple images captured at

840 nm. Crowe and Delwiche (1996a) and Crowe and Delwiche (1996b) developed a

unique prototype of hardware for fruit handling and image acquisition. A combination of

structured illumination (from laser line generated at 780 nm) and uniform diffuse

illumination was used to illuminate fruit. Two cameras with 750 and 780 nm bandpass

filters respectively were used to generate a composite image. A narrow band centered at

750 nm was used for detection of dark spots under diffuse illumination and a second band

centered at 780 nm allowed concavity identification (stem/calyx) with structured

illumination.

There are many studies in color imaging for detection of agricultural product

quality. Heinemann er al., (1995) used color imaging to discrirrrinate russet in Golden

Delicious apples using a global approach and mean hue on the apples. A discriminant

function sorted the apple as accepted or rejected. The accuracy reached 82.5%, which is

poor compared with European standards (Heinemann et al., 1995). Other studies

involving Golden Delicious apples were performed for the purpose of classification into
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yellow or green groups using HSI (hue, saturation, intensity) color system method (Tao er

al., 1995). The results show that an accuracy of over 90% was achieved for the 120

samples tested. To segment defects, Leemans et al., (1998) used Mahalanobis distance

between each pixel of an apple color image and a global model of healthy apples. The

algorithm gave satisfactory results to detect various defects such as bruises, russet, scab,

fungi, and wounds. Another method of defect segmentation from color images is based

on a Bayesian classification process (Leemans er al., 1999). Nakano (1997) used two

neural network models for pixel-based color grading of apples and whole apple grading.

Steinmetz er al., (1999) investigated sensor fusion for the purpose of sugar content

prediction in apples by combining image analysis and a near-infrared spectrophotometric

sensor.

Multispectral imaging provides spectral information at two or more wavelengths

in addition to spatial information. Color imaging is a special case of multispectral

imaging, which uses broad bandwidth signals (Abbott er al., 1997). Multispectral

imaging is not limited to color; multiple images can be captured at different wavelengths

in the visible and near-infrared regions. Generally, an interference filter on the lens of

the camera allows an image to be acquired at a specific wavelength (narrow band);

however, a filter wheel or multiple cameras are required when more than one wavelength

is specified. More advance multispectral imaging systems use acoustical optical tunable

filters (AOTF) and liquid crystal tunable filters (LCI‘F).

Aneshansley et al. (1997) gathered visible and NIR reflectance images for a large

number of defects found in five varieties of apples, i.e. Red Delicious, Golden Delicious,

Crispin, McIntosh, and Empire. There were eighteen defects reported. Some of the apple
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defects found were bitter pit, blister spot, codling moth, flyspeck, leaf roller, rot, russet,

scab, scald, and sunburn. They used two camera/lens/tunable filter combinations. The

first one is to capture visible images ranging from 460 to 750 nm, the second one is to

capture NIR images ranging from 750 to 1030nm. They concluded there are 4

wavelengths, 540, 750, 970, and 1030 nm, for specific groups of defects that give the

greatest contrast, measured by Mahalanobis distance, between damage and undamaged

tissue.

A similar study by Miller et al. (1998) used the same imaging device as

Aneshansley et al., (1997) was conducted to analyze 8 varieties of apples from two fall

harvest seasons, i.e. Empire, Gala, Golden Delicious, Granny Smith, Red Delicious,

Rome, Red Stayman, and York. Pattern recognition models based on back propagation

neural network, nearest cluster, K-nearest neighbor, and unimodal Gaussian were

compared. Overall, the back propagation neural network models provided the highest

correct classification rate ranging from 83 to 85% for 1996 data and from 94 to 96% for

1995 data. They concluded the most significant wavelengths were in the 690-750 nm

range and 530 nm when considering data from both seasons.

Wen and Tao (2000) proposed a dual camera system to solve a persistent problem

in the discrimination between true defects and the stem—end/calyx of fruit. A near-

infrared (NIR) camera and a mid-infrared (MIR) camera were used simultaneously to

capture apple images. The NIR camera at 700 to 1000 nm is sensitive to both stem-

end/calyx and true defects; whereas the MIR camera at 3400 to 5000 nm or 8000 to

12000 nm is only sensitive to the stem-endlcalyx. True defects can be quickly and

reliably extracted by logical comparison between the processed NIR and MIR images. A
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98.86% recognition rate for stem-ends and a 99.34% recognition rate for calyxes were

achieved using this system.

Another method to capture multispectral images is using a monochrometer as the

illumination source. Guyer and Yang (2000) used a combination of an enhanced NIR

black and white camera with sensing range of 400-2000 nm and a monochrometer

controlled light source to detect defects on cherries. Spectral images were collected over

the 680 — 1280 nm range at increments of 40 nm. Genetic artificial neural networks were

applied to pixel-based classification. An average of 73% classification accuracy was

achieved for correct identification as well as quantification of all types of cherry defects.

Kavdir and Guyer (2002) acquired apple images using the same imaging configuration.

They used the image-based classification instead of pixel-based for the classification

using neural networks. Classification accuracy of 89.2 to 100% was achieved-in the 2-

class model to separate defective apples and non-defective apples without confusing the

stem-end/calyx with defects.

The Instrumentation and Sensing Laboratory, USDA at Beltsville, Maryland, has

developed a laboratory-based hyperspectral imaging system for food safety and quality

research (Kim et al., 2001a). The system is capable of reflectance and fluorescence

measurements in'the 430 to 930 nm region with 1 mm spatial resolution. The system

uses a line-by-line scanning technique to acquire hyperspectral images. Mehl et al.

(2002) used the hyperspectral imaging system to acquire hyperspectral images of three

apple cultivars. A principal component analysis of the hyperspectral image of normal

and abnormal apples (with defects including bruises, diseases, and soil contaminations)

was performed to help in choosing the best three potential wavelengths to be used in a
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multispectral imaging system with a three-channel common aperture camera for

discriminating all the defects. The three selected bands are 705340, 575120, and 460120

nm. In their study, good separation between normal and defective apples is obtained for

Gala (95%) and Golden Delicious (85%), however, separation is limited for Red

Delicious (76%). The laboratory-based hyperspectral imaging system has also been used

for study on fecal contamination on apples in reflectance mode (Kim et al., 2002a) and

fluorescence mode (Kim et al., 2002b). An imaging spectrograph combined with an

InGaAs area array camera used by Lu (2003) to acquire hyperspectral images on apples

in the extended NIR region of 900-1700 nm that has not been much explored before for

bruise detection. A combination of principal component analysis and noise fraction

transforms was used to detect both new and old bruises resulting in a correct detection

rates up to 88% for Red Delicious and up to 94% for Golden Delicious. The study found

that the 1000-1340 nm region was the most appropriate for bruise detection.

2.7.2. Fluorescence

The response of plants to a diverse range of environmental, chemical, and

biological stresses has been assessed by changes in chlorophyll fluorescence. However,

application of chlorophyll fluorescence techniques to the field of fruit postharvest

physiology has been made only recently, even though the kinetics and fluorescence

emission spectra of several fruits are similar to those of green leaves (DeEll et al., 1999).

Application of chlorophyll fluorescence as a rapid nondestructive technique to

detect low-Oz or high-CO; stress in apples during storage has been evaluated by DeEll et

al. (1995). Chlorophyll fluorescence was determined using a fluorometer. Apple fruit
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stored in 1% to 1.5% 02 or 11% to 12% CO2 for five days caused variable fluorescence

(Fv) to decrease compared to those held in standard atmospheres, and suggested that

chlorophyll fluorescence techniques can detect low-O2 and high-CO2 stress in apples

before the development of associated disorders. Another application of chlorophyll

fluorescence in apple measured by a fluorometer is as an indicator of freezing injury

(Fomey et al., 2000). The reductions on chlorophyll fluorescence were associated with

freezing damage in treated Northern Spy apples held at -8.5°C for 24 hours. Chlorophyll

fluorescence also decreases in heat-treated apples thus it is useful for indicator of heat

injury in apples (Song et al., 2001).

Most of the study of chlorophyll fluorescence imaging is evaluation of

fluorescence from leaves. One of the earliest applications of plant fluorescence imaging

was reported by Omasa et al., (1987). They captured chlorophyll fluorescence patterns

with a single-band imaging system. Meyer and Gentry (1998) also reported the use of

chlorophyll fluorescence imaging system for photochemical yield of photosystem II

(PSII) of Rosa rubiginosa leaflets. Multispectral laser-induced fluorescence (LIF)

imaging systems were reported by several investigators (Lang et al., 1996; Lichtenthaler

et al., 1996). They used pulse lasers as the excitation source where the laser beam was

expanded (~20—cm-diameter area) to illuminate the entire surface of leaf samples for

imaging applications. Kim et al. (2001b) used a stable nonpulsed light as the excitation

source for their multispectral fluorescence imaging system applied to plant leaves. The

system captures fluorescence images at four spectral bands using interference filters

attached to a filter wheel in the blue, green, red and far-red regions of the spectrum



centered at 450, 550, 680, and 740 nm respectively. A UV lamp with a 400 nm low pass

filter was used as the excitation source.

Application of chlorophyll fluorescence imaging for fruit quality evaluation has

not been fully explored. A study by Nedbal et al. (2000) used chlorophyll fluorescence

imaging to predict lemon quality. The technique is able to distinguish between mold-

infected areas that will eventually spread over the surface of the fruit, and damaged areas

that do not increase in size during lemon ripening. A laboratory-based hyperspectral

reflectance and fluorescence imaging system has been used to explore the characteristic

of fluorescence images of defective apples (Kim et al., 2001a). Fluorescence images at

530 nm show fungal contamination (sooty blotch) and bruised spots on apples with

greater contrast than the reflectance images. Furthermore, they used the imaging system

to detect fecal contamination on Red Delicious, Fuji, Golden Delicious and Gala apples

(Kim et al., 2002b). Their result indicates that the multispectral fluorescence technique

can be used to effectively detect fecal contamination on apple surfaces. They identified

four optimal bands (450, 530, 685, and 735 nm) for discrimination of contaminated apple

surface. Codrea er al. (2002) used a chlorophyll fluorescence imaging system for apple

classification with blue actinic light as an excitation source and a red filter to capture

fluorescence images at the red region.

45



3. MATERIALS AND METHODS

3.1. Multispectral Imaging System

A multispectral imaging system (Figure 3.1) was designed and built to capture

images of apples under reflectance and fluorescence modes. One important consideration

in the design of the imaging system was to be able to capture apple images at different

wavelengths (multispectral) and under different lighting modes without moving the

apple.
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Figure 3.1. Schematic diagram of the multispectral imaging system



The main components of the multispectral imaging system were:

(1) Monochrome CCD camera

Pulnix TM-9701 (Pulnix America Inc., Sunnyvale, California) was used as an

image sensor. The camera spatial resolution was 640 x 480 with 8-bit grayscale. Two

different lenses were mounted to the CCD camera head: a 16 mm lens with maximum

aperture 1.4 and a close up lens #4. The combination of the lenses allowed a captured

whole apple image to fill the frame at a distance of 220 mm. The camera integration was

enabled through a microcontroller to allow control of exposure time. Extended exposure

time (around 5000 ms) was needed for fluorescence measurement due to the low

fluorescence energy emission.

(2) Filters

Seven bandpass filters (450, 550, 680, 740, 880, 905, and 940 nm peak

transmittance) and a 710 nm high pass filter were used in capturing images as a means to

create multispectral data. Bandpass filters at 450, 550, and 680 nm are associated with

blue, green and red color respectively. Additionally, past study on plant leaf fluorescence

indicates leaves exhibit fluorescence emission with a maximum at 450 nm and a shoulder

peak at 530 nm as well as narrower emission at 680 and 740 nm (Kim et al., 2001b). The

bandpass filters 880, 905, and 940 were selected to capture NIR images. These

wavelengths may relate to starch, cellulose, and water respectively (Williams and Nonis,

1987).
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All bandpass filters used in this research had 10 nm FWHM (full width half

maximum) properties. The filter transmittance characteristic (measured by FieldSpec FR

spectroradiometer, Analytical Spectra Device Inc., Boulder, Colorado) along with camera

sensitivity provided by the manufacturer is shown in Figure 3.2.
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Figure 3.2. Spectral characteristics of the camera, filters, and light sources

The filter assembly made of a filter wheel (model AB300, CVI Laser Corp.,
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Albuquerque, New Mexico) stacked with a lab-made sliding filter frame was used to hold

the filters and was positioned underneath the camera lenses. The filter wheel held up to 5

circular filters and the sliding filter frame was also manufactured to hold up to 5 circular

filters. The filters placed in the filter wheel were the 450, 550, 680 and 740 bandpass

filters; the remaining one empty slot in the filter wheel was used to allow the light to pass
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to the other filters placed in the sliding filter frame (880, 905, 940 nm bandpass filters

and 710 nm highpass filter). The sliding filter frame also had one empty slot, which

could be used in combination with one empty slot from the filter wheel to capture images

in broad range (without any filter). An AB300 filter wheel controller and stepper motor

with microcontroller were used to control the movement of the filter wheel and sliding

filter frame, respectively.

(3) Light sources

Two different light sources were used independently to provide illumination for

fluorescence and reflectance measurement. Two UV-A fluorescent lamp assemblies

(model XX-15A 365 nm, Spectronics Corp., Westbury, New York) were used for UV-

induced fluorescence measurements. The fluorescent lamp assemblies were arranged at

45° to the top surface of the apple and positioned under the filter wheel at the front and

rear of the imaging system enclosure. Each fluorescent lamp assembly contained two

fluorescent light bulbs coated with UGl filter material to prevent transmittance of

radiations greater than approximately 400 nm, thus providing radiation below 400 nm as

the excitation source. The other light source was a tungsten halogen light source

powered by a regulated DC power supply (Fiber-Lite A-240P, Dolan-Jenner Industries,

Inc., Lawrence, Massachusetts) for visible-light-induced fluorescence and visible and

NIR (VNIR) reflectance measurements. The spectrum of UV-A lamp and tungsten

halogen lamp is shown in Figure 3.2. Light from a 150 W tungsten halogen bulb was

transmitted through two randomly arranged rectilinear fiber bundles. These line lights

were positioned under the filter wheel on the left and right side of the imaging enclosure
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at 45° to the top surface of the apple. To prevent specular reflectance and provide

uniform illumination, 3 hollow-truncated-cone-shaped diffuser was used to cover the

apple during image acquisition under this light source. The diffuser was made of two

layers of material, transparent plastic sheet in the inner surface and white copier paper in

the outer surface. The dimension of the truncated-cone diffuser was 140, 55, and 180

mm for base diameter, top diameter, and height, respectively. The tungsten halogen light

source was set to remote mode to allow adjustment of light intensity by an external

rrricrocontroller through a 8-bit data line, thus an integer value between 0 to 255 was used

as the digital light level value. The relationship between digital light level value and

actual light intensity measured by an illuminometer measured at the apple surface

point/location (Model 93-1065, Greenlee Textron Inc., Rockford, Illinois) is shown in

Figure 3.3. For visible-1ight-induced fluorescence measurements only, a 675 run low pass

filter was placed in a slot positioned between the tungsten halogen light source and the

fiber optic to prevent light transmittance greater than 675 nm (Figure 3.1), thus, providing

radiation below 675 nm as the excitation source. A stepper motor was used to slide the

low pass filter in or out the slot.

A micro controller (model BasicX-24, Net Media Inc., Tucson, Arizona) along

with custom made software in Microsoft Windows environment were used to automate

the image acquisition process including control of camera’s exposure time, filter wheel

movement, lighting, and communication with the imaging software QuantIm (Zedec,

Inc., Morrisville, North Carolina).
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Figure 3.3. Relation between digital light level value and light intensity of tungsten

halogen light model A—240P Dolan-Jenner Industries, Inc. (measured at 160

mm distance)

3.2. Apples

Honeycrisp, Redcort (a strain of Cortland), and Red Delicious varieties were used

for the experiments. The apples were harvested from Michigan State University

experimental orchards in Clarksville (Clarksville Horticultural Experiment Station) in

September-October 2002, and were kept in cold storage at 0°C or 3°C for 4 months.

These temperatures were selected, as they were likely to induce certain disorders. The

selection of apple variety was based on the known occurrence of disorders in these

varieties after storage. Bitter pit, soft scald, black rot, and decay were found on

Honeycrisp apples, and superficial scald was found on Redcort and Red Delicious apples.

The number of apples for multispectral image acquisition was 91, 83, and 19 of
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Honeycrisp, Red Delicious, and Redcort, respectively. Apples were held at room

temperature for 2 hours before image acquisition.

3.3. Image Acquisition

Three imaging modes were used in data acquisition:

(1) Visible and NIR (VNIR) reflectance using tungsten-halogen light (referred to

as R).

(2) Visible light induced fluorescence using a tungsten-halogen light filtered by a 675

nm low pass filter (referred to as FVIS),

(3) UV induced fluorescence using UV-A fluorescent lamps with a built-in 400 nm

UGl low pass filter (referred to as FUV).

The three modes of imaging used different filter sets. Even though there were 3

imaging modes and 8 filters available, a preliminary study showed that not all the

imaging mode and filter combinations provided acceptable response based on reflectance

and fluorescence captured by the camera. Table 3.1 shows images captured for each

imaging mode. A total of 18 images per apple were captured with these three modes and

filter combinations. A different camera exposure time was used for each of the 18

images captured to take advantage of the full 8-bit dynamic range, therefore, avoiding

under exposed or over exposed images. The lowest acceptable camera exposure time was

50 ms, beyond that the camera produced images with inconsistent brightness/exposure.

This limitation, therefore, forced the use of different light levels for each filter in
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reflectance mode. Exposure time ranged from 50 to 5000 ms in fluorescence mode, and

50 to 400 ms in reflectance mode (Table 3.2.).

Table 3.1. Acquired image for each imaging mode and filter combinations

(indicated by ‘1)

 

FiltersI VNIR Reflectance VIS-induced fluorescence UV-induced fluorescence
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I Numbers indicate peak wavelength (nm) of bandpass filters except 710 is cut-off wavelength

(nm) of the highpass filter; NF=no filter.

Table 3.2. Lighting level and exposure time for each imaging mode and filter

 

 

 

 

combinations

Imaging Mode FiltersI Lighting Level Exposure Time (ms)

VNIR reflectance (R) 450 255 400

550 150 200

680 150 100

740 120 100

880 255 100

905 255 200

940 255 300

710 50 100

NF 50 50

VIS-induced fluorescence (FVIS) 680 255 800

740 255 5000

710 255 500

UV-induced fluorescence (FUV) 450 - 2000

550 - 5000

680 - 1500

740 - 1500

905 - 5000

710 - 50
 

1 Numbers indicate peak wavelength (nm) of bandpass filters except 710 is cut-off wavelength

(nm) of the highpass filter; NF=no filter.
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Images were collected in a dark room with only the light source, coming through

either two optic fibers to a line light illuminator from the tungsten-halogen source or from

the UV-A fluorescent lamps, cast on the apple. Dark images were collected prior to the

measurements. Presentation of apples to the camera was done by hand randomly with the

location of defect on the apple facing the camera. Once an apple was positioned in its

desired orientation on a black matte background, all eighteen images were acquired

without moving the apple. After finishing an image acquisition session, color digital

images of the same orientation of apples were captured using a digital color camera.

These images were used as a tool to guide selection of the defective area pixels.

The distance between the camera and the surface of the apples being imaged was

about 220 mm. Resolution of the original images was 640 x 480 pixels in 8-bit grayscale

tagged image file (TIF) format.

3.4. Image Processing

Original images were cropped to 480 x 480 pixels to reduce the image size by

discarding background pixels on the left and right. Dark images and reference images

from a white reference panel (Model Spectralon, Labsphere, Inc., Sutton, New

Hampshire), obtained in reflectance mode using the same light level and camera’s

exposure time as each corresponding sample image, were used for reflectance image

corrections. The following equations were used to create corrected reflectance images:

_ IS, — ID,
_ 3.1

’ (lg—ID, ( )
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where IC is corrected image; IS is sample image; ID is dark image; and IR = reference

image.

Since the nature of fluorescence is different than reflectance, fluorescence image

correction employed the following equation:

CE

IC = IS —ID x -——‘— 3.2r ( i .) [CC/1X01] ( )

where IC is corrected image; IS is sample image; ID is dark image; CC is camera

sensitivity factor; CF is filter factor; and CE is exposure time factor. The lens

characteristic factor was assumed to have flat absorption spectral over the visible and

NIR range, therefore, it is not included in equation 3.2.

Filter factors and camera sensitivity factors were extracted from normalized

values of the camera sensitivity and filter characteristic chart shown in Figure 3.2. Filter

factors were obtained from the peak values at the corresponding band pass filter and the

camera sensitivity factors were obtained from the camera sensitivity curve at the

particular wavelength. Since the fluorescence response was very low, exposure time

needed to be set longer in fluorescence mode than in reflectance mode without sacrificing

image quality due to noise. Exposure time of 5000 ms was the maximum value that still

yielded good image quality and was used as a basis for fluorescence image correction.

Therefore, CE was calculated as 5000 divided by actual exposure time for a particular

band pass filter.

Using MATLAB (The Math Works Inc., Natick, Massachusetts), each set of

eighteen corrected images from an apple sample was then put together into one multi-

image TIF file to be more manageable for further analysis.
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3.5. Pixel Sampling

Pixel gray values from the multispectral reflectance and fluorescence images were

the only features for classification. A graphical user interface program written in

MATLAB was developed for interactive sampling of pixels from apple images to create a

data set of multispectral pixel gray values. The program allowed viewing four apple

images simultaneously from different imaging mode and filter combinations to better

guide in pixel selection. Pixels were randomly selected but represented various defective

and normal tissues. The total number of sampled pixels was 1320, selected from the

three apple varieties (Table 3.3).

Table 3.3. Total number of pixels selected for each tissue type from images of

Honeycrisp, Redcort, and Red Delicious

 

 

 

 

 

 

 

 

Variety Tissue type Number of selected pixel

Honeycrisp (91 apples) Normal 395

Bitter Pit 125

Black Rot 125

Decay 125

Soft Scald 130

Total Honeycrisp 900

Redcort (83 apples) Normal 125

Superficial Scald 125

Total Redcort 250

Red Delicious (19 apples) Normal 95

Superficial Scald 75

Total Red Delicious 170

Total Selected Pixels 1320
 

Once a pixel was selected from an image, the program captured 18 values at the

same coordinate from the corresponding 18 images in the image set and assigned a label

specifying the kind of defective tissue the pixel represented. Verification of defect types

on the apples was confirmed by experts from Department of Horticulture, Michigan State
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University. These values served as the tissue spectral signature and as the 18 inputs to

the classifier.

3.6. Classification

In this study, classification was applied to the sampled pixels. Since pixels are the

building blocks of an image, pixel-based classification could be extended to image-based

classification to classify the apple. Figures 3.4 illustrates the concept of pixel

classification.

Four different classifiers were used for classifying pixels into different disorder

classes, i.e. backpropagation neural network, nearest neighbor, linear discriminant

function, and quadratic discriminant function. The first two are non-parametric and the

last two are parametric classifiers.

Two schemes of classification, 2-class and multiple-class were developed and

evaluated. Apple tissues were categorized into normal tissues or disorder tissues in the 2-

class scheme, with bitter pit, black rot, decay, soft scald and superficial scald pixels

grouped into a single disorder tissue class. For the multiple-class scheme, each sampled

pixel was labeled as one of six different types of tissues, i.e. normal, bitter pit, black rot,

decay, soft scald and superficial scald.

All 18 multiSpectral pixel gray values (referred to as the full model) were used as

input features to the classifiers. The reduced models used subsets of the 18 features.

Feature selection methodologies were used to find optimal subsets and are discussed

separately in section 3.7 .
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Figure 3.4. Pixel classification from multispectral images

Classification of pixels was evaluated for three varieties of apples, i.e.

Honeycrisp, Redcort and Red Delicious. “Combined variety” was also evaluated by

unifying the three data sets, to evaluate the performance of the classifier over the large

variation of data.
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A K-fold cross validation technique was used to assess the performance of the

classifiers. In this study, K equal to 10 was chosen. This value is recommended and

sufficiently accurate for practical purposes (Glorfield, 1996). The basic K-fold

methodology is as follows. Data is split randomly into K groups of approximately equal

size. The first of the K groups is held out for model testing while the actual model is

trained using the remaining K-l groups. The classifier is developed using the combined

K-l group sample and its performance is assessed with the held-out group sample. The

second group is then removed from the K-1 group sample and the first group is included

in this sample. Again, the model is developed with K-l group samples and its

performance is determined using the held-out second group. This process is repeated K

times. The total performance is the average from each held-out group. For the neural

network classifier, in addition to one held-out group for testing, three held-out groups

were used as validation sets for the early stopping method. Thus, the remaining K—4

groups were used for training.

Performance of the classifiers was evaluated by calculating the classification

accuracy for each class and the total accuracy from a confusion matrix. The confusion

matrix is an n x n contingency table of actual group to classified group. For the 2-class

scheme, the accuracy for normal tissues was calculated as the percentage of normal tissue

pixels classified into normal tissue. Similar calculation was applied to the accuracy for

disorder, i.e. the percentage of disorder tissue pixels classified into disorder tissue. The

total accuracy was calculated as the percentage of total correctly classified pixels.

Similar calculation was applied to the multiple-class scheme for each disorder class.
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3.6.1. Classification Using Artificial Neural Network

An Artificial Neural Network (ANN) with feed forward multilayer topology and

backpropagation learning was used as the classifier. A MATLAB code using Neural

Network toolbox was used for the classification. The number of input nodes was 18 for

the full model; each was connected to the multispectral pixel gray values. The number

of neurons in the output layer was two for the 2-class scheme and six for the multiple-

class scheme. One hidden layer was the most efficient configuration with 20 neurons on

the layer based on trial and error. Using two or more hidden layers was avoided, as it

would increase the training time. A log-Sigmoid transfer function was used in each layer

of neurons. The function generates outputs between 0 and 1 as the neuron’s net input

goes from negative to positive infinity.

Before training, the weights and biases were randomly initialized. Early stopping

method was used, by splitting sampled pixel data into three subsets, to improve

generalization of the ANN classifier. The first subset was the training set, which was used

for computing the gradient and updating the network weights and biases. The second

subset was the validation set. The error on the validation set was monitored during the

training process. The validation error will normally decrease during the initial phase of

training, as does the training set error. However, when the network begins to overfit the

data, the error on the validation set will typically begin to rise. When the validation error

increases for a specified number of iterations, the training is stopped, and the weights and

biases at the minimum of the validation error were returned. The third subset was the test

set. It was used to test the performance of the neural network classifier when it is exposed

to the new data set.
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A typical method of assessing the performance of a neural network is to run a

number of simulations, each beginning from a different starting point in weight space.

Ten simulations for each one held-out testing group were performed and the results were

averaged.

3.6.2. Classification Using Discriminant Functions

The theoretical background of the Bayes rule as a basis for discriminant functions

was explained in detail in section 2.5.2. Data was assumed to have multivariate Gaussian

distribution given in Equation 2.11. Prior probabilities of P(co.-) in Equation 2.10, where

i=1,2 for the 2-class scheme and i=1,..,5 for the multiple class scheme, were assumed to

be equal for each class. Unknown parameters ofp and 22', which are the mean and

covariance matrix for each class, were estimated from the training data set using

Equations 2.12 and 2.13.

All the calculation of the parameters and discriminant functions for each class was

performed by DISCRIM procedure in SAS (SAS Institute Inc., Cary, North Carolina)

statistical software with METHOD options set to NORMAL. Two types of discriminant

functions were calculated: a linear discriminant function (the within-class covariance

matrices are assumed to be equal) and a quadratic discriminant function (the within-class

covariance matrices are assumed to be unequal).
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3.6.3. Classification Using K-Nearest Neighbor

Detailed information on the K-Nearest Neighbor (KNN) classifier is given in

section 2.5.3. Since this classifier is a nonparametric approach, no assumptions of the

data distribution were made. The only parameter that had to be chosen was the value of

K, which was the number of the neighbor members included in the distance

measurements. K equal to one was the best value based on trial and error. Procedure

DISCRIM from SAS was used to perform all the calculations with METHOD options set

to NPAR.

3.7. Feature Selection

The full model of this system utilized 18 images (each image refer to as a feature)

from a combination of lightings and filters to be captured for each apple; thus the model

would not be feasible for practical implementation of an automatic sorting technique that

requires fast image acquisition and processing. Furthermore, problems can occur when

developing multivariate models and the best sets of input to use are not known. This is

particularly true when using a neural network. Unrequired inputs can significantly

increase learning complexity. Input feature selection is aimed to determine which input

features are required for a model. Problems that can occur due to poor selection of inputs

according to Back and Trappenberg, (2001): 1) as the input dimensionality increases, the

computational complexity and memory requirements of the model increase, 2) learning is

more difficult with unrequired inputs, 3) misconvergence and poor model accuracy may

result from additional unrequired inputs, and 4) understanding a complex model is more

difficult than simple models which give comparable results.
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Three approaches were used in feature selection. The first approach was grouping

features (images) by imaging mode(s). The second approach was grouping features by

individual filters, and the third approach was individually considering each of the 18

features. A complete search method, meaning evaluating the performance of all possible

combinations, was used in the first two approaches to find best combinations of grouped

features. In the latter approach, various search methods including complete search,

backward elimination, principal component analysis, and neural network weights were

used to find best feature subsets from the 18 features.

3.7.1. Imaging Mode Combinations

There were 7 possible combinations of imaging modes to incorporate in the

classification models, i.e. three single-imaging modes (FUV, FVIS, and R), three dual-

imaging modes (FUV+FVIS, FUV+R, and FVIS+R) and one triple-imaging mode

(FUV+FVIS+R). Any classification model involved all images in the imaging mode(s)

that appeared in a combination, noting that each imaging mode contains different

numbers of features or filters (Table 3.1). The number of features (images) acquired for

FUV, FVIS, and R was 6, 3, and 9 respectively. Features included in each imaging mode

combination are shown in Table 3.4.
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Table 3.4. Features included in imaging mode combinations (indicated by \l)
 

 

 

Feature2

Waugh/lode 89.89.89.882
Combinationl emcbmhgaaagggggge
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FUV JVTJFV

FVIS
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FUV+R x/x/x/«lxlxl tvvvrriri

FVIS+R vvvvvvvvvvvv

FUV+FVIS+RVNINI~IVVVVV~IVVV~IVVVV
 

I FUV=UV-induced fluorescence, FVIS=visible-light-induced fluorescence, R=reflectance

2 Prefixes referred to in 1; Numbers followed after FUV, FVIS, or R indicate peak wavelength

(nm) of bandpass filter except 710 is cut-off wavelength (nm) of the highpass filter, and NF=no

filter

3.7.2. Filter Combinations

Two different approaches were used in filter combinations. In the first approach,

feature groups were based on filters. The number of features for each filter was different

depending on whether a particular imaging mode captured an image at the selected filter.

The number varies from 1 to 3. There were 9 filters (including NF) used in the

experiment. The classification models were built based on combinations of filters from 1

to 9 filters. Any classification model involved all images related to the filter that

appeared in a combination. An example of features included in the model for the l-filter

models is shown in Table 3.5 . The purpose of this approach is to find the best filter

combination if multiple-imaging modes are involved in the model.

In the second approach, filter combinations involved only features within a given

imaging mode. Only FUV and R modes were used using the second approach, because

preliminary study showed classification accuracy for FVIS was low. The purpose of this



approach is to find the best filter combination if a single imaging mode is used in the

model.

Table 3.5. Feature included in l-filter model (indicated by V)

 

 

 

Feature2

Filterl essseeéé’é’

”WOFO‘Fr/Jmmooooomoo
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LL. 0.051204129404040:

450 «I .1

550 «l «J

680 \l «I «I

740 «I «I \I

880 .1

905 \l «I
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710 «I «l «1
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1 Numbers indicate peak wavelength (nm) of bandpass filters except 710 is cut-off wavelength

(nm) of the highpass filter; NF=no filter.

2 Prefixes FUV=UV-induced fluorescence, FVIS=visible-light-induced fluorescence,

R=reflectance; Numbers followed prefixes referred to in l.

The optimum number of filters was determined by selecting a combination with

the least number of filters that statistically is not different from the full model.

3.7.3. Feature Combinations

The total number of combinations from a 1-feature model through an 18-feature

model is 262,143 combinations, which is computationally very exhaustive if we want to

find the best subsets by searching through all the combinations. Several search methods

were used to find best subsets by avoiding an exhaustive search.
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3.7.3.1. Complete Search

A feature selection method using a complete search is guaranteed to find the

optimal subset of features among the available features. However, as the number of

features increased, the number of combinations to be evaluated could become

computationally exhaustive. Up to four—feature combinations were evaluated in this

study using the complete search. The number of combinations for 1, 2, 3, and 4-features

from the full set of 18 features is 18, 153, 816, and 3060 combinations.

3.7.3.2. Backward Elimination

Backward elimination started from the full model (involving 18 images). In each

step, one feature (image) was eliminated from the model until the model contained only

one feature. The feature to be eliminated in each step was selected based on the

evaluation of the total accuracy in the test data set. The feature being least detrimental to

the total accuracy when it was eliminated from the model was selected from elimination

in that step.

The optimum model was determined by selecting the simplest model, the model

with least features, which statistically was not different from the full model.

3.7.3.3. Principal Component Analysis

Two methods described by Jolliffe (1972) were used for feature selection.

Principal component analysis was performed on all original K features (K=18 in this
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study), and the eigenvectors (principal components) along with their eigenvalues were

inspected. In the first method, referred to as Method B2, ifp features are to be retained,

the K-p principal components, which had smallest eigenvalues, are selected, starting with

the component corresponding to the smallest eigenvalues, then to the second smallest

eigenvalues and so forth. One feature associated with the highest eigenvector coefficient

(i.e. the highest loading) is then discarded from each of the K—p components. Method B4

retains features by starting with the first p components with highest eigenvalues and

keeping the feature with the highest loading from each selected component.

The optimum model was determined by selecting the simplest model, the model

with least features, which statistically was not different from the full model.

3.7.3.4. Neural Network Weights

Neural network models with the full set of available inputs (18 inputs) were

trained using 10-fold cross validation described in section 3.6. A model yielding

maximum total accuracy was selected for further analysis of its connection weights for

feature selection purposes. The Garson methodology (Garson, 1991) was used to

determine the input features’ importance relative to the output using equation 3.3.
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Where Vpr is the feature importance measure for the P'” input feature, tip is the number

of input feature, n” the number of hidden layer processing elements, lIle is the absolute

value of the hidden layer weight corresponding to the P”I input feature andj”I hidden

layer processing element, and |0[,~ is the absolute value of the output layer weight

corresponding to the j‘“ hidden layer processing element.

The feature that makes the smallest contribution to the output was then dropped.

This procedure was repeated for the remaining set of features. This process continues

until only a single input feature remains to develop the final neural network model. At

each step the output objective function value was recorded, in this case, the classification

accuracy.

The optimum model was determined by selecting the simplest model, the model

with least features, which statistically was not different from the full model.
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4. RESULTS AND DISCUSSION

4.1. Captured Images

Example images of how various types of apple defects appeared under different

filters and three imaging modes, reflectance (R), visible light induced fluorescence

(FVIS), and UV induced fluorescence (FUV) are shown in Figure 4.1. Fluorescence

images from FVIS at 880, 905, and 940 nm and also fluorescence images from FUV at

880 and 940 nm were not acquired because the camera was not sensitive enough to

capture low fluorescence emission at these wavelengths.

Under reflectance mode, bitter pit on Honeycrisp appeared clearly through 450,

680 and 740 nm bandpass filters and also broadband images through the 710 nm highpass

filter and the image captured without filter (NF). It was unclear in the 550 nm image and

in NIR images captured through 880, 905 and 940 nm bandpass filters. Under FVIS

mode, bitter pit was also clearly visible through 680 and somewhat visible at 740 nm

bandpass filter and 710 nm highpass filter. Highest contrast of bitter pit was achieved

under FUV mode through the 680 nm filter. However, FUV mode did not reveal bitter pit

at all through 550 and 905 nm filters (Figure 4.1a).
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Figure 4.1. Examples of single apple image sets with various defect types. (a) bitter pit

on Honeycrisp, (b) soft scald, decay, and black rot on Honeycrisp,

(c) superficial scald on Red Delicious. (Each individual image was linearly

stretched to achieve optimal visual contrast). Imaging modes: reflectance

(R); visible—light-induced fluorescence (FVIS); and UV—induced

fluorescence (FUV). Filters: numbers indicate peak wavelength (nm) of

bandpass filters except 710 is cut-off wavelength (nm) of the highpass filter

and NF=no filter.
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Combined defects of soft scald, decay and black rot on a single Honeycrisp apple

appeared in some samples (for example Fig 4.1b). Through this mix of defects in images,

we can better compare how each defect appears under different lighting modes. Black rot

and decay appeared in all filters under reflectance mode except with the 450 nm filter

where only decay appeared predominantly compared to black rot. These defects were

hardly detectable under FUV mode through 450 and 550 nm filters. Soft scald and its

border were only clearly distinguishable under reflectance mode through the 550 nm

filter and under FUV mode through the 550 and 680 nm filters.

Superficial scald on Red Delicious apple (Fig 4.1c) was clearly visible only under

, reflectance mode through the 550 nm filter and FUV mode through 550 and 680 nm

filters, with the latter yielding the best contrast among the three.

4.2. Spectral Responses

4.2.1. Reflectance

Each type of disorder, as well as normal tissue, exhibits a unique spectral

signature. Disorders on Honeycrisp (Figure 4.23) generally had separation in response at

many of the observed wavelengths, which is likely to benefit classification. Under

reflectance mode, multiple comparisons tests showed that normal tissues were

significantly different from some defective tissues at the following filters: 550, 680, 740,

905 nm bandpass filters and 710 nm highpass filter. From those wavelengths, 680 and

740 nm bandpass filters as well as 710 nm highpass filter were able to distinguish all five

tissue types on Honeycrisp (Table 4.1). These results demonstrate the potential of NIR

images at 740 nm and a broadband NIR image greater than 710 nm to detect different
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types of defects on apple. At other NIR wavelengths such as 880, 905 and 940, decay

and black rot tissues were indistinguishable. The use of a 680 nm bandpass filter, which

is a red filter, has a potential to differentiate defects on apple.

Normal tissues exhibited patterns similar to that of superficial scald tissue on

Redcort and Red Delicious. Reflectance response in the visible region at 450, 550, and

680 nm, both on Redcort and Red Delicious, resulted in significantly different response

between normal and superficial scald tissue with the exception of reflectance response at

550 nm on Red Delicious.

NIR region response at 880, 905, 940 nm on Redcort (Figure 4.2b) demonstrated

a level of difference as well as at 740 nm on Red Delicious (Figure 4.2c), as did the

broadband NIR image using the 710 nm highpass filter for both varieties (Table 4.2).

In general, the responses at 450 and 680 nm were lower than at other wavelengths

(Figure 4.2), especially for normal tissue. This lower value might be due to strong

absorption of chlorophyll-a at blue (about 430 nm) and red (about 660 nm) portions of

the spectrum (Taiz and Zeiger, 1998).
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(C)

Response of VNIR reflectance of sampled pixels for various disorders of

a) Honeycrisp, b) Redcort, and c) Red Delicious apple. Values are the

average of the selected pixels (Table 3.3). Filters: R indicate reflectance

mode, numbers indicate peak wavelength (nm) of bandpass filters except

710 is cut-off wavelength (nm) of the highpass filter and NF=no filter,

* indicates significantly distinguished all tissue types.
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Table 4.1. Means1 of normalized sampled pixel values on Honeycrisp for each type of

tissue

 

 

Normal Bitter Pit Black Rot Decay Soft Scald

Filters2 (n=395) (n=125) (n=125) (n=125) (n=l 30)

FUV450 0.0943 0.044C 0.036c 0.074b 0.066b

FUV550 0.0533 0.028Bc 0.0210 0.0463 0.034b

FUV680 0.117b 0.033C 0.047c 0.101b 0.2413

FUV740 0.5223 0.372D 0.073e 0.444b 0.417c

FUV905 0.2003 0.187A 0.026b 0.2003 0.1923

FUV710 0.2103 0.173B 0.0370 0.2043 0.184b

FVIS680 0.312b 0.200C 0.101d 0.120d 0.3953

FVIS740 0.1073 0.062B 0.009c 0.05% 0.1003

FVIS710 0.1663 0.092C 0.019d 0.1553b 0.132b

R450 0.1383 0.086B 0.099b 0.018c 0.1343

R550 0.3123 0.078D 0.075d 0.252b 0.182c

R680 0.232b 0.093d 0.057e 0.3213 0.185c

R740 0.730b 0.409d 0.1 13e 0.7863 0.550c

R880 0.406b 0.45 1 ab 0.1090 0.1 16c 0.4773

R905 0.370b 0.4363 0.096c 0.1230 0.4123

R940 0.324b 0.3983 0.096c 0.105c 0.330b

R710 077% 0.475d 0.123e 0.9073 0.629c

RNF 0.6983 0.371c 0.134d 0.7203 0.558b
 

I Means with the same letter in a row are not significantly different at a=0.05

2 Prefixes FUV=UV-induced fluorescence, FVIS=visible-light-induced fluorescence,

R=reflectance; Numbers followed prefixes indicate peak wavelength (nm) of bandpass filters

except 710 is cut-off wavelength (nm) of the highpass filter and NF=no filter.
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Table 4.2. Means1 of normalized sampled pixel values on Redcort and Red Delicious

 

 

 

for each type of tissue

Redcort Red Delicious

Normal Superficial Scald Superficial Scald

Filters2 (n=125) (n=125) Normal (n=95) (n=75)

FUV450 0.1583 0.1473 0.1393 0.115b

FUV550 0.0933 0.072b 0.0403 0.0373

FUV680 0.3173 0.206b 0.1333 0.046b

FUV740 0.6753 0wa 0.5153 0.378b

FUV905 0.2463 0.2583 0.2123 0.176b

FUV710 0.2203 0.2163 0.1953 0.168b

FVIS680 0.3893 0.438b 0.4383 0.338b

FVIS740 0.2213 0.2133 0.1353 0.101b

FVIS710 0.2663 0.2613 0.1703 0.136b

R450 0.2243 0.204b 0.1283 0.102b

R550 0.5173 0.444b 0.1403 0.1233

R680 0.1393 0.163b 0.1663 0.147b

R740 0.7063 0.7233 0.7113 0.571b

R880 0.5463 0me 0.5693 0.5493

R905 0.4843 0.54% 0.5033 0.4963

R940 0.4193 0.470b 0.4413 0.4383

R710 0.7563 0.811b 0.8113 0.728b

RNF 0.5393 0.5663 0.6623 0.585b
 

1 Means with the same letter in a row for a variety are not significantly different at 3:005

2 Prefixes FUV=UV-induced fluorescence, FVIS=visible-light-induced fluorescence,

R=reflectance; Numbers followed prefixes indicate peak wavelength (nm) of bandpass filters

except 710 is cut-off wavelength (nm) of the highpass filter and NF=no filter.

4.2.2. Fluorescence

Average values of normalized responses of sampled pixels from visible light

induced fluorescence and UV induced fluorescence images are shown in Figure 4.3 and

Figure 4.4. In most cases, normal tissues have higher chlorophyll fluorescence emission

than defective tissues, except for Redcort (Figure 4.3b) This might be due to the fact that

necrotic tissues are much less likely to fluoresce (Abbott er al., 1997).

Measured filter characteristics (Figure 3.2) show that the cut-off wavelengths of

the 675 run low pass intersects the 680 nm bandpass filter. Thus, in visible light induced
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fluorescence, some portion of reflected excitation energy was captured in the 680 nm

fluorescence emission band resulting in higher response compared to 740 nm due to

combined response between reflectance and fluorescence. Emission from visible light

induced fluorescence had better separation of defects at 680 nm compared to 740 nm and

broadband emission with the 710 nm highpass filter. For all three varieties, emission at

680 nm from visible light induced fluorescence was able to distinguish all types of tissue

except black rot and decay on Honeycrisp (Table 4.1 and Table 4.2) with the recognition

of the fact that it was a combined response between reflectance and fluorescence.

Emission at 740 nm from visible light induced fluorescence was not able to differentiate

normal from superficial scald tissues on Redcort, or normal from soft scald and bitter pit

from decay tissues on Honeycrisp. Broadband emission greater than 710 nm was also

unable to distinguish normal and soft scald from decay tissues on Honeycrisp, and normal

from superficial scald tissues on Redcort under visible light induced fluorescence.

Under UV induced fluorescence mode, the emission patterns were similar for

normal tissues and defective tissues except for black rot tissues (Figure 4.43). Again, the

normal tissues tended to give higher response compared to defective tissues. Unlike

emission at 740 nm from visible light induced fluorescence, UV induced fluorescence at

this bandpass resulted in better separation of defects. All types of tissues were

distinguishable from each other for all three varieties at 740 nm under UV induced

fluorescence. Emission at 680 nm from UV induced fluorescence also resulted in good

separation of defects on Redcort and Red Delicious. On Honeycrisp, emissions at 450

and 550 nm, and broadband emission greater than 710 nm were not able to distinguish all

types of tissues.
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Figure 4.3.

FVISSBO" I FVIS740' I FVIS710'

Filters

(C)

Response of visible induced fluorescence of sampled pixels for various

disorders of a) Honeycrisp, b) Redcort, and c) Red Delicious apple varieties.

Values are the average of selected pixels (Table 3.3) . Filters: FVIS indicate

visible induced fluorescence mode, numbers indicate peak wavelength (nm)

of bandpass filters except 710 is cut-off wavelength (nm) of the highpass

filter and NF=no filter, * indicates significantly distinguished all tissue

types.
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Response of UV induced fluorescence of sampled pixels for various

disorders of a) Honeycrisp, b) Redcort, and c) Red Delicious apple varieties.

Values are the average of selected pixels (Table 3.3). Filters: FUV indicate

UV induced fluorescence mode, numbers indicate peak wavelength (nm) of

bandpass filters except 710 is cut-off wavelength (nm) of the highpass filter

and NF=no filter, * indicates significantly distinguished all tissue types.
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4.3. Full Model Classification

Four classifiers, neural network, linear discriminant, quadratic discriminant and

nearest neighbor were used to classify different disorders on apples. Table 4.3 and Table

4.4 show the classification accuracy of the full model (involving all 18 images) from two-

class and multiple-class schemes respectively. Only Honeycrisp is shown under the

multiple-class model as it was the only variety with multiple classes (>2) of tissues. Each

entry of the tables represents the mean value from 10-fold cross validations results.

4.3.1. Two-class scheme

The total classification accuracy of Red Delicious was generally higher than the

other two varieties with neural network, linear discriminant, and quadratic discriminant

classifiers. The total accuracy of Red Delicious was 100% using quadratic discriminant,

meaning all normal and disorder pixels were correctly classified. The classification

accuracies of Red Delicious for disorder tissues were also 100% with all classifiers

except with nearest neighbor classifier the accuracy was only 94%. However, the nearest

neighbor classifier was superior in Honeycrisp and combined variety.

Superficial scald was the only disorder associated with Redcort and Red Delicious

and thus a 2-class scheme was the only one applicable. The classification accuracy for

Honeycrisp was somewhat lower than that for Redcort and Red Delicious with all

classifiers except with nearest neighbor. This likely may be because of the greater

number of disorders involved, i.e. bitter pit, black rot, decay, and soft scald.

The total classification accuracy for combined variety was only 83 and 88% with

linear and quadratic discriminant classifiers respectively, but accuracy was good with
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neural network and nearest neighbor classifiers with a total accuracy of 94 and 99%

respectively, which was about the same as its performance with Honeycrisp alone with

nearest neighbor. However, the need for combined variety classification is unlikely to

occur in real applications because usually the packinghouses only run batches of apples

of the same variety. It was included in the analysis to test the performance of classifier

with a broader range of data.

Table 4.3. Classification accuracy1 of full model for 2—class scheme
 

 

 

 

 

 

 

 

 

ClassifierNariety Normal Disorder Total

Neurgl Network

Honeycrisp 94.23 (0.95) 95.60(0.5 1) 94.90(0.67)

Redcort 96.57 (1 .88) 98.60(1.03) 98.00(0.89)

Red Delicious 98.00 (2.00) 100.00(0.00) 99.40(0.60)

Combined2 92.80 (0.95) 95.53 (0.80) 94. 17 (0.53)

Linear Discriminait

Honeycrisp 92.63 (1.12) 89.97 (1 .28) 91 .30(1.04)

Redcort 95.08 (1.79) 97.47 (1.32) 96.27(1.28)

Red Delicious 98.00(2.00) 100.00(0.00) 99.00(1.00)

Combined2 84.15 (1.47) 82.35 (1 .21) 83.25 (0.78)

Quadratic Discriminalr;

Honeycrisp 89.21 (1.50) 89.32 ( 1 .48) 89.26 (0.73)

Redcort 95.32 (2.01) 99.00(1 .00) 97.16(1. 17)

Red Delicious 100.00(0.00) 100.00(0.00) 100.00(0.00)

Combined2 90.67 (1 .07) 85.82 (1 .45) 88.24(0.73)

legrest Neighbor

Honeycrisp 98.68 (0.61) 99.36 (0.32) 99.1 1 (0.32)

Redcort 97.29 (1 .1 l) 96.62(1.40) 96.80(0.80)

Red Delicious 98.09(l .27) 94.05 (2.44) 95.88(1.53)

Combined2 98.85 (0.42) 99.44 (0.30) 99. 16(0. 18)
 

1 means (standard error), 3:10.

2 Honeycrisp + Redcort + Red Delicious
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The analysis of variance to compare the classifiers in each variety resulted in no

significant differences among the classifiers for Redcort and Red Delicious at 95%

confidence level except the total accuracy of Red Delicious with nearest neighbor was

significantly low. In contrast, classification accuracies for Honeycrisp and combined

variety were significantly different among the four classifiers. For Honeycrisp, the

nearest neighbor classifier yielded the highest accuracy followed by neural network,

linear discriminant and quadratic discriminant with the same order for normal, disorder

and total accuracy. Similarly for combined variety, the highest accuracy was from

nearest neighbor followed by neural network, quadratic discriminant, and linear

discriminant consistently in this order for normal, disorder and total accuracy.

4.3.2. Multiple-class

Honeycrisp was the only variety with multiple disorders; therefore, in addition to

the combined variety, it was included in multiple-class scheme classification. There were

some significant differences among classifiers at the 95% confidence level both for

Honeycrisp and combined variety. The nearest neighbor classifier yielded the highest

total accuracy for both cases (Table 4.4), with total accuracy of 99.0% for each. The

classifier perfectly recognized soft scald tissue on Honeycrisp and decay on combined

variety.

Compared to the two-class scheme classification, linear and quadratic

discriminant performance in multiple-class scheme was better. This might be because of

the assumption of unimodal Gaussian distribution in the two-class scheme was not true,
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since there were actually more than one class in the ‘disorder’ category, therefore

resulting in a multi-modal distribution.

Table 4.4. Classification accuracy1 of full model for multiple-class scheme
 

 

 

 

 

Classifier/ Normal Bitter pit Black rot Decay Soft scald Superficial Total

Variety Scald

Neural

Network

Honeycrisp 91.6(1.7) 98.3(1.0) 94.3(2.2) 87.0(4.3) 99.3(0.5) - - 93.6(0.9)

Combined2 91.2(1.l) 96.0(1.7) 90.8(l.9) 81.0(3.7) 93.9(4.0) 91.8(1.5) 91.1(0.7)

Linear

Discriminant

Honeycrisp 77.3(1.7) 99.0(1.0) 98.9(1.1) 91.8(1.2) 97.7(1.2) - - 92.9(0.5)

Combined2 63.2(l.0) 98.5(1.0) 99.1(0.9) 100.0(0.0) 98.9(1.l) 87.7(2.0) 91.2(0.5)

Quadratic

Discriminant

Honeycrisp 92.2(1.2) 97.8(l.5) 98.1(1.3) 95.2(1.8) 99.4(0.6) - - 96.5(0.8)

Combined2 88.9(1.1) 97.0(l.8) 98.2(1.2) 96.2(1.7) 96.9(1.6) 97.4(1.l) 95.8(0.5)

Nearest

Neighbor

Honeycrisp 98.7(0.6) 99.3(0.7) 98.9(1.1) 98.5(1.0) 100.0(0.0) - - 99.0(0.3)

Combined2 98.9(0.4) 99.2(0.8) 99.3(0.7) 100.0(0.0) 99.4(0.6) 98.9(0.8) 99.0(0.2)
 

1 means (standard error), n=10.

2 Honeycrisp + Redcort + Red Delicious

4.4. Feature Selection

To find optimum subsets of the full model set of 18 features, three approaches

were used: grouping features by imaging mode, grouping features by filter, and treating

features individually. Then, search method(s) were applied to find optimum subsets.
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4.4.1. Imaging Mode Combinations

The imaging mode combinations analyses were mainly aimed to assess the

importance of each imaging mode and their combinations compared to the full model.

The classification accuracy of imaging mode combinations for each classifier and variety

is shown in Appendix Table A.l through A.6. Figures 4.5 and 4.6 show the result of

total classification accuracy for the 2—class and the multiple-class scheme respectively

based on the nearest neighbor classifier. The nearest neighbor classifier significantly

yielded the most accurate classification compared to the other three classifiers (neural

network, linear discriminant, and quadratic discriminant) for each image mode

combination on Honeycrisp and combined variety.

The three mode (FUV+FVIS+R) combination was equal to the full model

presented in Table 4.3 and 4.4, and was the most effective combination based on the

nearest neighbor classifier in all varieties although statistically was not significant from

some other combinations. Therefore, there is potential to use simpler models using

subsets of the 18 features, with their classification performance equal to the full model.
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Figure 4.5. Total classification accuracy of imaging mode combinations in 2-class

scheme (based on nearest neighbor classifier). Imaging mode combinations

with the same letter for a variety are not significantly different at 3:005.
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Dual-imaging models such as FUV+FVIS, FUV+R, or FVIS+R can be

considered as the absence of one imaging mode from the full model, in this case the

absence of R, FVIS, and FUV respectively. For all varieties, when FVIS was not present,

the classification accuracy was not significantly different from the full model possibly

because there were only three features in FVIS. The absence of R, or the FUV+FVIS

combination, resulted in significantly lower accuracy than that of the full model in

Honeycrisp. Furthermore, the FUV+FVIS combination, which can be considered

fluorescence information, resulted in no significant difference in accuracy compared to R

in both classification schemes indicating the classification potential of fluorescence

features.

The FUV+R combination had highest accuracy of the possible dual-imaging

mode combinations and was not significantly different from the full model both in the 2-

class and multiple-class scheme. This result indicates the importance of integration of

fluorescence and reflectance imaging for classification.

The single-imaging mode, FVIS, resulted in significantly lower accuracy

compared to that of the full model for all varieties. FUV or R modes individually were

significantly lower than the full model on Honeycrisp and combined variety in both

classification schemes. Although FUV mode was not different from the full model in

Red Delicious, its accuracy was higher (99.4%) than the full model (95.9%), indicating a

potential of FUV mode to be used in detecting superficial scald in Red Delicious. FUV

mode also classified black rot and soft scald on Honeycrisp with high accuracy, 100 and

99.4% respectively (Table A5 in Appendix A).
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4.4.2. Filter Combinations

The results of filter combinations using all images available at 3 particular filter

are tabulated in Appendix Table B.l through B.6. Only the top-five combinations from

each number of filters that yielded high total accuracy are presented in the table.

Similarly for filter combinations within FUV and R mode only; the results are presented

in Appendix Table C.1 through C6, and DJ through D.6. All calculations of

classification accuracy were based on the nearest neighbor classifier. The maximum

value of classification accuracy from each number of combined filters is plotted in Figure

4.7, 4.8, and 4.9 for all available image, FUV mode only, and R mode only respectively.

Generally, total accuracy increased as number of filters used in the model

increased, but this is not the case for Redcort and Red Delicious. The total accuracy

decreased after 6 and 5 filters in the model for Redcort and Red Delicious respectively

(Fig 4.7 and F1g 4.9). This result suggests that classification accuracy is not a monotonic

function, which is as the number of input features increase, the function output also

increases. Therefore, the use of the branch and bound method to find optimum subsets

might not be appropriate using classification accuracy as the evaluation function.
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Figure 4.9. Maximum total classification accuracy from each number of combined

filters within reflectance mode

The optimum number of filters was determined as the least number of filters that

is not significantly different from the full model. For Honeycrisp, Redcort, Red

Delicious, and combined variety the optimum number of filters was 3, 3, 2, and 4 with

total classification accuracies of 98.4, 99.6, 98.2, and 98.6% respectively in the 2-class

scheme. For the multiple-class scheme of Honeycrisp and combined variety the optimum

number of filters was 3 and 4 with total classification accuracy 98.3 and 98.4%

respectively (Table 4.5)

Filter combinations analysis derived from using all available images appeared to

yield higher accuracy compared to filter combination analysis under FUV or R mode

only. Eventhough the analysis using all available images resulted in a smaller filter
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subset, the actual number of images for the analysis was greater because it involved all

three imaging modes.

The filter combination analyses under FUV or R mode alone are actually similar

to the feature combinations we will discuss in Section 4.4.3, but here the combinations

are restricted among features associated to FUV or R images only. These two approaches

were employed based on practical consideration in 3 real application. It is easier to

develop a sorting system with single imaging mode than multiple imaging modes.

The filter combinations analysis with three different approaches resulted in

different filter sets. However, there were some filters that appeared often in each set that

might be indicating the importance of the filter for the classification. For instance, the

680 and 740 nm bandpass, and 710nm high pass filters often appeared in high

classification accuracy filter combinations for Honeycrisp. The 680 nm bandpass filter

was also selected in most high accuracy subsets for Redcort and Red Delicious. The total

accuracy of the 680 nm bandpass filter under combined imaging mode at 680 nm was

95.9% for Red Delicious (Appendix Table B.3); the major contribution was from the UV

induced fluorescence image, which gave 91.2% total accuracy (Appendix Table C3).

The importance of 680 and 740 nm bandpass filter may be associated with the peak of

chlorophyll fluorescence emission at 680 and 740 nm (Kim et al., 2001b).

Red Delicious was the only variety that required only two filters to get high

(>95%) classification accuracy; under the FUV mode the best filter combination was 450

and 680 nm bandpass filters, whereas under R mode it was the 740 and 905 nm bandpass

filters. As indicated in the imaging mode combinations, FUV or R mode alone surpassed
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the full model on Red Delicious, therefore supporting the findings in the filter

combination analysis.

Table 4.5. Optimum number1 of filters for each variety following filter combination

 

 

 

 

 

 

 

approach

Variety All available images FUV images only R images only

Honeycrisp 3 (98.44) 4 (95.67) 5 (97.00)

(2-Class) {680,740,710} {450,680,740,710} {740,880,905,940,710}

Redcort 3 (99.60) 4 (94.00) 3 (97.20)

(2-Class) {550,680,905} {450,550,680,905 } {740,905,NF}

Red Delicious 2 (98.24) 2 (97.06) 2 (96.47)

(2-Class) {740,905} {450,680} {740,905}

Combinedz 4 (98.56) 5 (94.39) 6 (96.52)

(2-Class) {450,680,740,940} {450,680,740,905,710} {450,550,680,740,905,710}

Honeycrisp 3 (98.33) 4 (94.56) 5 (97.00)

(mulmfle-class) {680,740,7 10} {450,680,740,710} {740,880,905,940,7 10}

Combined2 4 (98.41) 5 (93.11) 6 (95.83)

(multiple-class) {450,680,740,940} {450,550,680,740,710} {450,550,680,740,905,NF}

I Numbers in parentheses indicate total classification accuracy; numbers in curly bracket indicate

filter set

2 Honeycrisp + Redcort + Red Delicious

 

4.4.3. Feature Combinations

Four search methods to find the best subsets of features were employed, i.e.

complete search, backward elimination, principal component analysis, and neural

network weights.

4.4.3.1. Complete Search

Feature selection using a complete or exhaustive search can become

computationally infeasible, even though the optimality of the feature subset is

guaranteed. The branch and bound method has been introduced to find optimal subsets
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without doing a complete search, however, this method required the assumption of a

monotonic function during the search of optimal subsets (Narendra and Fukunaga, 1977).

Classification accuracy or classification error is not a monotonic function as shown in the

results in section 4.4.2.

In this study, a complete search method from subset features of size one through

four is still computationally feasible and was employed to find optimal subsets from the

18 features. The choice of subsets up to four features was based on practical

consideration in real applications. Common aperture cameras with up to four filters have

become increasingly popular in multispectral imaging applications.

Table E.1 through E6 in Appendix shows the top-five highest accuracy feature

combinations resulting from the complete search with the nearest neighbor classifier from

one through four feature combinations. The plot of classification accuracy of each of the

18 features is shown in Figure 4.10. Using only one feature (images), the average total

classification accuracy under 2-class scheme was only about 60%. However, FUV680

for Red Delicious yielded 95% total accuracy, a quite high accuracy considering only one

feature involved. FUV680 significantly yielded higher accuracy than R680 on Redcort

and Red Delicious. FUV740 also yielded high total accuracy (about 75%) for

Honeycrisp, Red Delicious and combined variety and significantly higher than R740.

These results demonstrate the value of fluorescence mode especially its emission at 680

and 740 nm.
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Figure 4.10. Total classification accuracy based on nearest neighbor using single image:

a) 2-class scheme, b) multiple-class scheme on Honeycrisp. Prefixes

FUV=UV-induced fluorescence, FVIS=visib1e-light—induced fluorescence,

R=reflectance; Numbers followed prefix indicate peak wavelength (nm) of

bandpass filters except 710 is cut-off wavelength (nm) of the highpass filter

and NF=no filter.
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In the multiple-class scheme on Honeycrisp, black rot could easily recognized

with several single different features, such as FUV740, FUV710, R740, and R710 with

accuracy 97.3, 97.3, 90.1, and 90.2% respectively. Similarly, decay can be recognized

using R450 with accuracy 86.6%.

Total classification accuracy of Honeycrisp in the 2-class scheme reached a

maximum of 93% using three features (FUV680, FUV740, and FUV710), and 96.6%

using four features (FUV680, FUV740, FUV710, and FVIS740). For Redcort, the two-

feature combination R905 and R710 yielded 94.4% accuracy, three-feature combination

R740, R905, and RNF yielded 97.2% accuracy, and four-feature combination FUV680,

R740, R905, and RNF yielded 98.8% accuracy, surpassing the full model accuracy

(96.8%). The combination of fluorescence images FUV450 and FUV680 for Red

Delicious yielded 97.1% accuracy, three-feature combination FUV740, FUV905, and

FUV710 achieved 99.4% accuracy, and four-feature combination FUV680, R740, R905,

and R710 achieved 99.4%, all surpassing the full model accuracy (95.9%). From these

optimum subset features, either fluorescence imaging alone, or combined with reflectance

imaging, make a significant contribution to the classification accuracy.

4.4.3.2. Backward Elimination

Figure 4.11 shows the performance of total accuracy as features were eliminated

from the full model. For Honeycrisp in the 2-class scheme, the total accuracy started to

significantly decrease after elimination of 11 features. At this point the total accuracy

was 98.3% and the remaining features in the model were FUV450, FUV680, FUV740,

FUV710, R450, R880, and R940. For Redcort, the accuracy started to decrease after
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elimination of 13 features. Total accuracy was 98.4% and the remaining features in the

model were FUV740, R550, R680, R740, and R905. For Red Delicious, total accuracy

started to decrease significantly after elimination of 16 features, meaning only two

features were left in the model, where total accuracy was 94.7% and the remaining

features were R740 and R940. For Honeycrisp in multiple-class scheme, after

elimination of 11 features, the total accuracy started to significantly decrease. At this

point the accuracy was 98.0% and the remaining features in the model were FUV740,

FVIS740, R450, R740, R880, R940, and RNF. Some important filters identified from

filter combination analysis such as 680 and 740 nm also appeared in the results of the

backward elimination process.
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Figure 4.11. Total classification accuracy based on nearest neighbor on each step of

backward elimination process
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A heuristic search such as backward elimination results in suboptimal subsets

compared to a complete search that is guaranteed to find optimal subsets. This

suboptimality can be seen from the Red Delicious result. The complete search found

FUV450 and FUV680 to be the best 2-features combination with 97.1% accuracy,

meanwhile, backward elimination found R740 and R940 combination with 94.7%.

However, the backward elimination process has the advantage of having a lower

computational load.

4.4.3.3. Principal Component Analysis

The first four principal components contributed to at least 90% of the variation of

the data set. There was similarity in the pattern of the absolute value of the eigenvector

coefficient for each feature for each variety. The most important features were identified

from each principal component as a base for feature selection. For example, in the first

and second principal component the most important features were R710 and R880 for

Honeycrisp (Figure 4.12).

The results of principal component analysis were different from the results of

backward elimination, but some features were selected in both the backward elimination

method and PCA, such as FUV680 and FUV740 on Honeycrisp. Generally, the optimum

number of features based on PCA is larger than findings based on the backward

elimination process. For example, PCA concluded the optimum number of feature for

Honeycrisp was 10 with total accuracy 98.3% (Table 4.6); meanwhile, the backward

elimination result was only 7 features with the same accuracy.
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second principal component

(b)

Figure 4.12. Absolute value of eigenvector coefficient of: a) first principal component, b)
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Table 4.6. Optimum number1 of filters for each variety based on PCA method
 

 

 

 

 

Variety Method B2 Method B4

Honeycrisp 10 (98.33) 10 (98.00)

{FUV:680,740,905, {FUV:680,740,905,

FVIS:710} FVIS:710,

R:550,680,740,940,710,NF} R:550,680,740,880,710,NF}

Redcort 5 (98.00) 5 (96.80)

{FUV:680,905, {FUV:680,905,

FVIS:680, FV152680,

R:550,880} R:550,710}

Red Delicious 5 (97.06) 4 (96.47)

{FUV:740, {FUV:680,905,

FVIS:680, FVIS:680,

R:550,905,NF} R:NF}

Combinedz 10 (97.95) 10 (97.95)

{FUV:680,740,905, {FUV:680,740,905,

FVIS:680,710, FVIS:680,710,

R:550,740,905,710,NF} R:550,740,880,710,NF}
 

’ Numbers in parentheses indicate total classification accuracy; numbers in curly bracket indicate

feature

2 Honeycrisp + Redcort + Red Delicious

PCA method B2 and method B4 resulted in the same number of features except in

Red Delicious; and also the selected features were similar, only one or two features were

different.

The advantage of this analysis compared to backward elimination was less

computation load, because determination of selected features in each step is based on

rank of eigenvector coefficients and is not based on classifier evaluation.
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4.4.3.4. Neural Network Weights

Table 4.7 summarizes the result of applying neural network weight methodology

for feature selection. Note that the classification accuracy presented in the table was the

nearest neighbor results because its result surpassed the neural network’s; although neural

network was used to select features by examining its weights in each backward

elimination step.

The optimum subset selected by the neural network weight evaluation method

was different compared to previous methods such as backward elimination and principal

component analysis. The accuracy of the optimum subset features resulting from the

neural network method was somewhat lower compared to the regular backward

elimination and principal component method. It might be because the instability of the

neural network. Small changes in training data or learning parameters could lead to a

very different model. An ensemble solution has been proposed (Cunningham et al.,

2000), but it would lead to 3 more complex model.

Despite the results, the interpretation of neural network weights as a means to

select input features takes 3 definite step toward overcoming what is possibly the primary

criticism of neural networks as complex and mysterious black boxes.
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Table 4.7. Optimum number of filter for each variety based on neural network weight

 

 

 

 

 

 

 

method

Variety Number of Accuracy1 Feature list

features

Honeycrisp 9 97.78 {FUV:450,680,

(2-class) FVIS:740,710,

R:550,680,905,940,710}

Redcort 6 94.00 {FVIS:740,710,

(2-class) R:740,905,940,710}

Red Delicious 4 90.59 {FUV550,

(2-class) R:450,905,710}

Combinedz 9 97.73 {FUV:550,740,

(2-class) FVIS740,

R:450,550,740,905,940,710}

Honeycrisp 8 97.78 {FUV:550,710,

(multiple-class) FVIS:740

R:450,550,680,940,7 10}

Combinedz 9 97.20 {FUV:550,

(multiple-class) FVIS:740,710,

R:450,550,740,905,940,710}
 

I calculated based on nearest neighbor classifier

2 Honeycrisp + Redcort 4» Red Delicious
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5. CONCLUSIONS

5.1. Spectral Responses

Spectral reflectance responses at 680 or 740 nm were able to distinguish all five

different tissue types on Honeycrisp. These results demonstrate that the utilization of a

680 nm bandpass filter, which is 3 red filter, and also NIR images at 740 nm, have a

potential to differentiate defects on apple.

Normal tissues exhibited spectral patterns similar to those of superficial scald

tissue on Redcort and Red Delicious. However, NIR reflectance at 880, 905, and 940 nm

on Redcort demonstrated a level of difference between the two tissue types. Tissue

response differences for Red Delicious were noted at 740 nm. Broadband NIR images

using the 710 nm highpass filter showed tissue differences for both Red Delicious and

Redcort.

Emission at 680 nm from visible light induced fluorescence was able to

distinguish all types of tissue for all three varieties, except black rot and decay on

Honeycrisp. However, emission at 680 nm from UV induced fluorescence was only

effective in distinguishing normal from defective tissue for Redcort and Red Delicious.

Fluorescence emission at 740 nm from UV excitation was also able to distinguish all

different types of tissue for all three varieties.
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5.2. Full Model

For the full model, integrating all three imaging modes, the total classification

accuracy from the nearest neighbor classifier under the 2-class scheme was 99.1, 96.8,

95.9, and 99.2% for Honeycrisp, Redcort, Red Delicious, and combined variety

respectively. Furthermore, in the multiple-class scheme, the classification accuracy of

Honeycrisp apple for normal, bitter pit, black rot, decay, and soft scald was 98.7, 99.3,

98.9, 98.5, and 100%, respectively. These results demonstrate the potential of this

technique to accurately recognize different types of disorder.

For Honeycrisp and combined variety, the nearest neighbor classifier yielded the

highest accuracy followed by neural network, linear discriminant and quadratic

discriminant classifiers. There were no significant differences among classifiers on

Redcort and Red Delicious.

5.3. Reduced-feature Models

Classification accuracy from the dual-imaging mode of FUV+R performed

equally to the full model in the 2-class scheme for all varieties. Especially on Honeycrisp,

the classification accuracy of single imaging mode FUV or R alone is significantly lower

than that of the full model, but the combination of the two imaging modes, FUV+R, is

equal to that of the full model. This result demonstrates the potential of integrating

fluorescence and reflectance.

The FUV mode has a potential to detect superficial scald in Red Delicious. The

FUV mode also classified black rot and soft scald on Honeycrisp with high accuracy, 100

and 99.4% respectively. Furthermore, FUV680 yielded significantly higher accuracy
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than R680 on Redcort and Red Delicious. FUV740 also yielded higher total accuracy

than R740 for Honeycrisp, Red Delicious and combined variety. These results

demonstrate the value of fluorescence mode especially its emission at 680 and 740 nm.

These results, especially fluorescence emission at 740 nm agreed with Beaudry er al.,

(1998) who found this wavelength useful for non-destructive detection of fruit and

vegetable quality.

Several important wavelengths were identified from the filter combination

analysis, i.e. 680, 740, 905 nm. Reflectance at 680 relates to red color, and fluorescence

response at 680 and 740 relates to the peaks of chlorophyll fluorescence emission,

whereas, the 905 NIR responses may relate to tissue physical characteristics.

Red Delicious required only two filters to achieve high classification accuracy; in

the FUV mode the best filter combination was 450 3nd 680 nm bandpass filters with

accuracy 97.1%, whereas in R mode the best combination was 740 and 905 nm bandpass

filters with accuracy 96.5%. Honeycrisp and Redcort both required 4 filters in FUV

mode; 5 and 3 respectively in R mode.

Complete search found the best 4-feature model under 2—class classification

scheme for Honeycrisp was FUV680, FUV740, FUV710, and FVIS740 with 96.6%

accuracy; for Redcort it was FUV680, R740, R905, and RNF with 98.8% accuracy,

surpassing the full model accuracy (96.8%); for Red Delicious was FUV680, R740,

R905, and R710 with 99.4% accuracy, also surpassing the full model accuracy (95.9%);

and for combined variety it was FVIS710, R740, R905, and R710 with 94.7% accuracy.

Three heuristic search methods: backward elimination, principal component

analysis and neural network weights were also used to find the best subsets of features.
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Although the results were suboptimal compared to a complete search, these methods

provided the versatility of less computational load to evaluate subsets. The methods

resulted in different subsets of features.

5.4. General

It was demonstrated multispectral imaging under fluorescence and reflectance

modes is a useful tool for apple disorder classification. In addition to spatial information,

multispectral imaging gives spectral information, which is useful for distinguishing

different types of disorders.

The classifier performed better in single variety training as opposed to combined

variety training. This result is also in line with the current operation in packing houses

that runs batches of apples of the same variety.
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6. APLICATIONS AND PERSPECTIVE

6.1. Image-based classification

Pixel-based classification was demonstrated to have 3 potential in classification of

normal from disorder tissue on apple, furthermore recognizing specific types of disorder

on apple. Throughout the dissertation the use of multispectral images, especially the

spectral dimension, has been explored mainly for the purpose of feature (image) selection

to be used in practical application. However, the spatial information from the

multispectral images has not been fully utilized. In this section, an example is showed of

how we can extend the pixel-based classification to image-based classification by

utilizing spatial information, which is truly the important factor in the real application.

The best subset of the 4-features models from the complete search method on

Honeycrisp under the multiple-class scheme was FVIS710, R740, R905 and R940.

Figure 6.1 displays the raw image of an apple captured on wavelength under FUV mode

and the classification results using all features and the optimum 4-fe3tures. Figure 6.13

shows composite disorder image of Honeycrisp containing soft scald (large irregular

area), decay (area inside soft scald) and black rot (black area inside decay). The result of

pixel-based classification with the full model clearly segmented these disorder areas

(Figure 6.1b). In Figure 6.1b, the outer border pixels of apples were classified to black

l'Ot.
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  (a)

Figure 6.1. Images built from pixel-based classification. (3) Original FUV550 image,

(b) Full model, (c) 4-feature model.

On the other hand, the classification model using 4-features produced results with

less clear separation of disorders (Figure 6.1c). In the 4-feature model the classification

of pixels near the edge of the apple were not properly classified and some soft scald area

was classified into normal tissue. This problem might be affected by the apple curvature.

As curvature of the apple comes strongly into play, further utilization of imaging and

image processing potential by incorporating spatial information becomes an important

step in apple disorder detection. Some image enhancement techniques in the spatial

domain applied to original multispectral images and/or to classification result images

may be used to obtain better segmentation of disorder areas. An adaptive spherical

image transform proposed by Tao and Wen (1999) has been proven to effectively

compensate for the reflectance intensity gradient on curved objects such as apple, and it

may be applied to the original multispectral data. Furthermore, as an example, spatial

filtering such as smoothing, which takes into consideration neighboring pixels, may be
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applied to classification result images to enhance classification of the specific areas of

tissue.

Computation speed becomes a main concern in on—line applications, therefore, an

efficient algorithm needs to be applied. Although from the classification results the

nearest neighbor classifier performed better than the neural network classifier,

computation-wise, neural network is preferred during the classification task of new

images. Neural networks have more computational load during training compared to

nearest neighbor; on the other hand, neural networks have less computational load during

classification of new images compare to nearest neighbor operations.

6.2. Generality of the classification model

It might be preferable if there is 3 set of features that works for all different

varieties. The best 4-feature model from combined variety resulting from the complete

search method was chosen to assess the performance of a set of features when it is

applied to every different variety. Randomly selected pixels from Honeycrisp, Redcort

and Red Delicious were classified with this model using the nearest neighbor classifier.

The result is shown in Table 6.1.

Table 6.1. Classification accuracy of the best 4—fe3ture model (FVIS710, R740, R905,

R710) of combined variety applied to each variety (based on nearest

 

 

neighbor classifier)

Variety Normal Disorder Total

Honeycrisp (n=225) 91.8 96.9 94.7

Redcort (n=62) 96.4 91.2 93.5

Red Delicious (n=42) 85.7 81.0 83.3
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There is a considerable classification accuracy drop if we compare the total

accuracy from Table 6.1 to the total accuracy if we select the best 4-feature model for

each variety (see Appendix Table E.l through E.3), which is 96.6, 98.8, and 99.4% for

Honeycrisp, Redcort, and Red Delicious respectively. Thus, the convenience of having a

set of features that works for all varieties resulted in lower classification accuracy.

Another issue related to the generality or robustness of the classification model is

how well the classification model with an optimal combination of features applies to the

same variety of apples from different orchards or from different harvest seasons.

Inclusion of data acquired from different orchards and harvest seasons in the training set

may produce more robust classifiers.

6.3. Recommendations

It has been demonstrated that fluorescence imaging has a potential to detect

disorder on apples. However, due to low fluorescence emission, longer exposure time is

needed to acquire the image, which may not be feasible for on-line application. To

shorten exposure time, the use of more sensitive and cooled cameras to reduce noise is

recommended in addition to methods to increase incident light onto the apples.

Uniform illumination is very important in machine vision applications; therefore,

better lighting design is 3 critical step. A good diffuser design is necessary to provide

uniform illumination, however, it must be noted that diffusers also block some light

energy. Dome-like light housing incorporated with LED lighting may be a good

alternative for illumination.
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APPENDIX A. Classification accuracy of imaging mode combination models

Table A.l. Classification accuracyI of imaging mode combination models on

Honeycrisp (2-class scheme)

 

 

 

 

 

 

 

Lighting Mode Normal Disorder Total

Ng‘al Networl_<_

FUV 82.80(3.21) 73.87(l .77) 77.44(1 .66)

FVIS 11.66(2. 17) 97 . l7(0.61) 59.63(1.51)

R 88.07(1.43) 92.70(1.32) 90.70(1 . 12)

FUV+FVIS 84.90(1 .25) 85.09(l.93) 84.78(O.96)

FUV+R 93.22(0.91) 96.29(0.69) 94.93(0.50)

FVIS+R 87.70(1.86) 92.98(0.95) 90.63(O.93)

FUV+FVIS+R 92.63(0.94) 95.97(0.65) 94.44(O.52)

Linear Discriminant

FUV 86.500 .48) 76.9l(l.71) 8 1 .71(O.80)

FVIS 73.00(1.87) 70.88(2.26) 71.94(l .07)

R 77.98(1.72) 81.22(l.52) 79.60(l .30)

FUV+FVIS 85.68(2.23) 81 .45(1 .96) 83.56(1.06)

FUV+R 90.26(l.45) 87.52(1.44) 88.89(1.02)

FVIS+R 80.93(1.37) 84.41(l.04) 82.67(0.79)

FUV+FVIS+R 92.62(1.12) 89.97(1.28) 91.30(1.04)

Quadratic Discriminant

FUV 90.58(1.43) 79.91(1.32) 85.24(l .09)

FVIS 63.28(2.92) 77.61(l.46) 70.44(l .67)

R 79.6l(2.03) 85.94(l.10) 82.77(1.32)

FUV+FVIS 87.74(1.83) 86.76(l .43) 87.25(0.60)

FUV+R 90.34(l.71) 89.89(l.33) 90.12(0.99)

FVIS+R 84.63(1.80) 84.3 1(1. 19) 84.47(1.34)

FUV+FVIS+R 89.21(1.50) 89.32(1.48) 89.26(0.73)

Nearest Neighbor

FUV 94.27(l.19) 98.61(0.53) 96.67(0.72)

FVIS 74.05(2. 19) 85.16(1.85) 80.44(l .13)

R 96.23(0.69) 99.01 (0.33) 97.78(0.44)

FUV+FVIS 95.6l(0.94) 98.40(0.51) 97.23(0.34)

FUV+R 98.69(0.70) 99.60(0.27) 99.22(0.29)

FVIS+R 96.50(0.90) 99. l7(0.47) 98.00(0.59)

FUV+FVIS+R 98.68(O.61) 99.36(0.32) 99.11(0.32)
 

I means (stande error), n=10.
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Table A.2. Classification accuracy] of imaging mode combination models on Redcort

(2-class scheme)

 

 

 

 

 

 

 

Lighting Mode Normal Disorder Total

Neural Network

FUV 93.94(2.23) 96.93(1 .35) 95.60(1 .50)

FVIS 58. l9(6.29) 79.58(4.76) 70.27(3.58)

R 93.58(2.30) 94.80(1.93) 94.67(1.38)

FUV+FVIS 93.09(2.69) 96.99(1.35) 95.60(1.27)

FUV+R 96.98(2.01) 98.61(1.03) 98.13(O.98)

FVIS+R 96.61(1.33) 96.35(1.28) 96.67(0.75)

FUV+FVIS+R 96.78(l .88) 98.61(1.03) 98.13(0.87)

Linear Discriminant

FUV 87.49(3.27) 93.55(2.00) 90.52( 1 .90)

FVIS 66.98(4. 19) 71 .54(3.32) 69.26(2.18)

R 91.8l(3.6l) 97.26(l.40) 94.53(1.99)

FUV+FVIS 89.03(2.80) 93.62( 1 .57) 91.32(1 .69)

FUV+R 95.08(1.79) 99.00(1.00) 97.04(1.07)

FVIS+R 93.73(2.63) 96.63(1.41) 95.18(1.58)

FUV+FVIS+R 95.08(1.79) 97.47(1 .32) 96.27(1.28)

Quadratic Discriminant

FUV 94.36(2.54) 91 .5 1 (2.45) 92.93(1 .96)

FVIS 70.82(1.75) 72.18(3. 18) 71 .50(2.08)

R 93.30(2.71) 94.48(1.99) 93.89(1.36)

FUV+FVIS 94.31(2.34) 92.44(2.06) 93.38(1 .38)

FUV+R 91 .9 l (3.74) 97.6l(1.25) 94.76(1 .79)

FVIS+R 94.1 1(1 .78) 99.00(1.00) 96.55(1.04)

FUV+FVIS+R 95.32(2.01) 99.00(l .00) 97.16(1.l7)

N_earrest Neighbor

FUV 92.50(3.36) 94.62(2.45) 94.00(1.81)

FVIS 71 .63(4.45) 71 .60(3.52) 72.00(3.21)

R 95.87(l .78) 94.79(1.90) 95.60(1.11)

FUV+FVIS 91 .65(3.33) 96.75(l .85) 94.80(1.20)

FUV+R ' 97.17053) 95.62(l.48) 96.40(1.11)

FVIS+R 92.56(2.77) 93.21(2.74) 93.20(1 .47)

FUV+FVIS+R 97.29(1.1 l) 96.62(1.40) 96.80(0.80)
 

I means (standard error), n=10.

110



Table A.3. Classification accuracy1 of imaging mode combination models on Red

Delicious (2-class scheme)

 

 

 

 

 

 

 

Lighting Mode Normal Disorder Total

NeuraiNetworg

FUV 99.00(1 .00) 100.00(0.00) 99.4 1 (0.59)

FVIS 83.67(3.28) 45.19(8.03) 67.45(3.97)

R 96.06(2.26) 97.86(l.68) 96.86(1.90)

FUV+FVIS 97.33(2.04) 99.44(O.56) 98.63(1 .01)

FUV+R 98.36(1.33) 99.72(0.28) 99.22(0.60)

FVIS+R 96.70(2.l l) 99.17(0.83) 98.04(l .24)

FUV+FVIS+R 97.70(l .99) 100.00(0.00) 99.22(0.60)

Linear Discriminant

FUV 96.00(2.21) 100.00(0.00) 98.00(1.11)

FVIS 67.43(4.67) 81 .15(4.04) 74.29(2.91)

R 96. 1 8(2. 16) 100.00(0.00) 98.09(1.08)

FUV+FVIS 98.00(2.00) 100.00(0.00) 99.00(1.00)

FUV+R 97.09(2. 10) 100.00(0.00) 98.55(1.05)

FVIS+R 96.18(2.55) 98.57(l .43) 97.38(l.35)

FUV+FVIS+R 98.00(2.00) 100.00(0.00) 99.00(l .00)

Quadratic Discriminant

FUV 99.00(l .00) 100.00(0.00) 99.50(0.50)

FVIS 64.84(5.34) 83.45(4.64) 74.15(3.86)

R 97.09(2.10) 94.96(2.16) 96.03(l .54)

FUV+FVIS 100.00(0.00) 99. 17(0.83) 99.58(0.42)

FUV+R 100.00(0.00) 99. 17(0.83) 99.58(0.42)

FVIS+R 100.00(0.00) 100.00(0.00) 100.00(0.00)

FUV+FVIS+R 100.00(0.00) 100.00(0.00) 100.00(0.00)

Nearest Neighbor

FUV 99.00(l.00) 100.00(0.00) 99.41(0.59)

FVIS 81 .55(3.63) 77.54(5.99) 80.00(3.94)

R 96.09(2.19) 96.63(1.77) 96.47(l.30)

FUV+FVIS 96.18(1.56) 98.33(l .67) 96.47(1.30)

FUV+R 95.27(2.17) 97.74(1.57) 95.88(1 .26)

FVIS+R 98.00(1.33) 96.03(2.04) 97.06(1.31)

FUV+FVIS+R 98.09(1.27) 94.05(2.44) 95.88(l.53)
 

1 means (standard error), n=10.
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Table A.4. Classification accuracy1 of imaging mode combination models on combined

variety (2—class scheme)

 

 

 

 

 

 

 

 

 

Lighting Mode Normal Disorder Total

NeuflNetwork

FUV 84.98(1.l l) 66.09(l.12) 74.97(0.77)

FVIS 22.42(2.14) 90.50(1.27) 58.84(0.94)

R 88.04(1.39) 90.18(0.75) 89.12(0.58)

FUV+FVIS 84.76(1 . 13) 83.44(1.04) 84.04(0.46)

FUV+R 91.28(1.32) 95.29(0.48) 93.36(0.71)

FVIS+R 87.01(l .05) 91 .64(0.45) 89.47(0.38)

FUV+FVIS+R 91 .88(1.08) 94.90(0.78) 93.51(0.38)

Linear Discriminant

FUV 84.12(1.58) 68.80(l.73) 76.46(1.19)

FVIS 65.9l(l.86) 64.47(l.82) 65.19(l.38)

R 74.87(1.93) 74.95(0.9l) 74.91 (0.77)

FUV+FVIS 80.83(1.61) 71 .20(1 .54) 76.01(1.05)

FUV+R 83.50(l .74) 81.51(1.25) 82.50(0.77)

FVIS+R 75.47(1.69) 75.51(1.10) 75.49(0.9l)

FUV+FVIS+R 84. 15(1 .47) 82.35(l .21) 83.25(0.78)

Quadratic Discrinrinamt

FUV 87.80(1.54) 69.86(l.18) 78.83(1.03)

FVIS 50.95(1.66) 72.09(1.69) 61.52(1.31)

R 79.50(l .42) 80.26(l .48) 79.88(0.78)

FUV+FVIS 82.57(1.25) 76.48(1.36) 79.53(0.59)

FUV+R 90. 19(1.32) 84.02(l .16) 87.10(0.84)

FVIS+R 77.67(1 .73) 83.27(1. 10) 80.47(1.14)

FUV+FVIS+R 90.67(1 .07) 85.82(1.45) 88.24(0.73)

Ne_arest Neighbor

FUV 93.00(0.74) 97.77(0.56) 95.53(0.55)

FVIS 71.72(2.20) 80.30(1.07) 76.36(1.23)

R 96.14(0.75) 97.87(0.78) 97.05(0.4l)

FUV+FVIS 96.75(0.63) 98.46(0.48) 97.65(0.48)

FUV+R 98.36(0.56) 99.29(0.24) 98.86(0.23)

FVIS+R 97.75(0.42) 98.70(0.73) 98.26(0.52)

FUV+FVIS+R 98.85(0.42) 99.44(0.30) 99. 16(0. 18)
 

1 means (standard error), n=10.
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APPENDIX B. Classification accuracy of filter combination models using available

 

 

 

 

 

 

 

 

 

 

images.

Table B.1. Classification accuracy of filter combination models using available images

on Honeycrisp (2-class scheme)

Normal Disorder Total Filter Combinations

86.21 90.66 88.78 740

78.04 88.67 84.00 710

79.74 85.43 82.78 680

65.53 78.73 72.78 450

65.29 76.48 71.67 550

94.76 98.38 96.89 680 740

95.15 98.05 96.78 680 710

95.05 97.77 96.67 740 710

91.49 96.56 94.44 740 NF

87.89 97.96 93.67 550 740

97.67 98.96 98.44 680 740 710

96.79 99.17 98.22 680 740 NF

96.35 99.14 98.00 680 740 940

96.23 99.20 97.89 450 680 740

96.09 98.99 97.78 550 740 710

98.99 99.38 99.22 680 740 940 710

98.49 98.95 98.78 680 740 940 NF

98.65 98.77 98.78 680 740 880 710

97.97 99.40 98.78 450 680 740 880

97.92 99.18 98.67 680 740 905 710

99.02 99.59 99.33 680 740 940 710 NF

98.49 99.79 99.22 680 740 880 940 710

99.01 99.38 99.22 450 680 740 940 NF

98.81 99.43 99.11 450 680 740 940 710

98.36 99.60 99.11 450 680 740 880 940

99.31 99.79 99.56 680 740 880 940 710 NF

98.75 99.58 99.22 550 680 740 940 710 NF

98.46 99.79 99.22 450 680 740 905 940 710

99.01 99.38 99.22 450 680 740 880 940 NF

98.65 99.57 99.22 450 550 680 740 940 710

98.46 99.79 99.22 450 680 740 880 905 940 710

98.63 99.57 99.22 450 550 680 740 940 710 NF

98.37 99.79 99.22 450 550 680 740 880 940 710

98.81 99.45 99.11 450 680 740 880 940 710 NF

98.91 99.18 99.11 450 550 740 905 940 710 NF

98.64 99.79 99.33 450 550 680 740 880 940 710 NF

98.42 99.81 99.22 450 680 740 880 905 940 710 NF

98.65 99.57 99.22 450 550 680 740 880 905 940 NF

98.61 99.39 99.11 450 550 740 880 905 940 710 NF

98.68 99.36 99.11 450 550 680 740 905 940 710 NF

98.68 99.36 99.11 450 550 680 740 880 905 940 710NF
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on Redcort (2-class scheme)

Table 8.2. Classification accuracy of filter combination models using available images

 

 

 

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

80.22 85.55 83.20 680

77.15 78.74 78.00 740

73.16 69.67 71.60 710

72.44 70.10 70.40 550

66.54 70.74 68.40 905

95.68 97.45 96.80 450 680

95.49 97.09 96.40 740 905

95.11 95.17 95.60 550 680

93.99 96.33 95.20 905 710

93.98 96.45 95.20 680 740

99.33 100.00 99.60 550 680 905

99.33 99.29 99.20 450 680 905

100.00 97.17 98.80 740 905 710

98.50 99.00 98.80 680 880 NF

100.00 96.33 98.40 740 880 NF

100.00 100.00 100.00 550 680 880 905

100.00 99.41 99.60 680 740 880 NF

99.33 100.00 99.60 550 680 905 NF

98.89 100.00 99.60 550 680 905 940

98.22 100.00 99.20 550 680 940 NF

100.00 100.00 100.00 550 680 880 905 940

98.89 100.00 99.60 550 680 905 940 NF

98.89 100.00 99.60 550 680 880 940 NF

99.33 100.00 99.60 550 680 880 905 NF

98.75 100.00 99.60 550 680 740 880 NF

100.00 100.00 100.00 550 680 880 905 940 NF

100.00 100.00 100.00 550 680 740 880 940 NF

99.33 99.17 99.20 550 680 740 905 940 NF

98.67 100.00 99.20 550 680 740 880 905 NF

99.33 99.29 99.20 450 550 680 880 940 NF

99.33 99.17 99.20 550 680 740 880 905 940 NF

98.50 98.17 98.40 550 680 740 905 940 710 NF

98.67 98.58 98.40 450 680 740 880 905 940 710

97.83 99.29 98.40 450 550 680 905 940 710 NF

98.67 98.45 98.40 450 550 680 740 905 710 NF

98.67 97.68 98.00 450 550 680 740 905 940 710 NF

97.95 98.45 98.00 450 550 680 740 880 905 710 NF

98.67 96.33 97.60 550 680 740 880 905 940 710 NF

97.12 98.45 97.60 450 550 680 740 880 905 940 NF

98.67 96.62 97.60 450 550 680 740 880 905 940 710

97.29 96.62 96.80 450 550 680 740 880 905 940 710 NF
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on Red Delicious (2-class scheme)

Table B.3. Classification accuracy of filter combination models using available images

 

 

 

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

95.93 95.79 95.88 680

87.05 90.75 88.82 740

75.07 84.09 78.82 710

56.95 63.33 61.18 550

62.02 57.78 60.00 450

97.00 99.17 98.24 740 905

98.09 99.17 98.24 550 680

95.50 99.17 97.06 680 940

97.75 96.63 97.06 450 680

95.84 97.50 96.47 680 740

97.09 100.00 98.82 740 905 NF

100.00 97.74 98.82 740 905 710

98.00 99.17 98.82 740 905 940

98.00 100.00 98.82 680 940 NF

98.09 100.00 98.82 680 940 710

100.00 99.17 99.41 740 880 905 940

97.00 100.00 98.82 740 880 905 NF

98.00 100.00 98.82 680 880 940 NF

98.09 100.00 98.82 680 880 940 710

98.00 100.00 98.82 680 740 940 NF

98.00 100.00 99.41 680 740 880 905 710

98.09 100.00 98.82 740 880 905 940 NF

99.00 98.57 98.82 450 680 880 940 NF

98.00 97.74 98.24 740 880 905 710 NF

97.84 98.57 98.24 680 740 905 940 710

99.09 97.74 98.24 740 880 905 940 710 NF

96.84 100.00 98.24 680 880 905 940 710 NF

98.09 99.17 98.24 680 740 880 905 710 NF

99.00 97.74 98.24 550 680 880 940 710 NF

98.09 98.57 98.24 550 680 880 905 940 NF

99.09 97.74 98.24 550 740 880 905 940 710 NF

98.09 98.57 98.24 550 680 880 905 940 710 NF

97.00 98.57 98.24 450 550 740 880 940 710 NF

97.18 98.57 97.65 450 550 680 880 905 940 NF

96.00 98.57 97.65 450 550 680 740 940 710 NF

95.00 97.14 97.06 450 550 680 740 880 940 710 NF

97.75 94.88 96.47 550 680 740 880 905 940 710 NF

98.09 94.05 95.88 450 550 740 880 905 940 710 NF

97.09 95.48 95.88 450 550 680 740 905 940 710 NF

97.00 94.05 95.88 450 550 680 740 880 905 710 NF

98.09 94.05 95.88 450 550 680 740 880 905 940 710 NF
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Table B.4. Classification accuracy of filter combination models using available images

on combined variety (2-class scheme)

 

 

 

 

 

 

 

 

 

 

Norma] Disorder Total Filter Combinations

79.53 86.07 83.03 740

73.29 80.35 77.12 710

73.41 79.72 76.67 680

60.38 69.69 65.23 450

58.08 65.82 62.20 550

93.18 96.78 95.08 680 740

92.04 96.72 94.55 680 710

92.85 94.79 93.86 740 710

88.23 97.43 93.11 550 740

87.29 94.61 91.21 450 740

97.78 97.62 97.65 740 905 710

96.27 98.46 97.42 450 680 740

95.92 98.56 97.35 680 740 940

95.99 98.15 97.12 550 680 710

95.20 98.59 97.05 550 680 740

97.87 99.15 98.56 450 680 740 940

98.08 98.47 98.26 680 740 905 710

97.75 98.74 98.26 740 905 940 710

97.10 99.30 98.26 680 740 940 710

97.40 99.02 98.26 550 680 740 710

98.18 99.70 99.02 450 680 740 880 940

98.41 99.16 98.79 680 740 905 940 710

98.50 99.00 98.79 450 550 680 740 905

97.41 99.72 98.64 550 680 740 940 710

97.71 99.44 98.64 550 680 740 880 710

98.85 99.45 99.17 450 550 680 740 905 710

98.38 99.72 99.09 550 680 740 940 710 NF

98.40 99.72 99.09 550 680 740 905 940 710

98.38 99.58 99.02 550 680 740 880 710 NF

98.50 99.30 98.94 450 550 680 740 940 710

99.01 99.44 99.24 450 550 680 740 905 940 710

98.85 99.44 99.17 450 550 680 740 905 710 NF

98.35 99.72 99.09 550 680 740 880 940 710 NF

98.55 99.59 99.09 550 680 740 880 905 940 710

98.66 99.29 99.02 450 550 680 740 880 905 940

99.01 99.45 99.24 450 550 680 740 880 905 940 710

98.85 99.43 99.17 450 550 680 740 905 940 710 NF

98.52 99.57 99.09 450 550 680 740 880 940 710 NF

98.70 99.29 99.02 450 550 680 740 880 905 710 NF

98.40 99.44 98.94 550 680 740 880 905 940 710 NF

98.85 99.44 99.17 450 550 680 740 880 905 940 710 NF
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Table B.5. Classification accuracy of filter combination models using available images

on Honeycrisp (multiple-class scheme)

 

Normal

86.21

78.04

79.74

63.83

65.53

95.15

94.76

95.05

91.49

87.89

97.67

96.79

96.35

96.09

96.23

98.99

97.92

98.65

97.97

98.49

99.02

98.49

98.81

98.21

99.01

99.31

98.65

98.42

98.75

98.46

98.63

98.37

98.81

98.46

98.91

98.64

98.42

98.61

98.65

98.68

98.68

Bitter

pit

79.21

85.73

76.70

39.23

52.07

96.42

96.91

97.14

91.50

92.67

98.68

97.68

100.00

97.19

96.91

99.44

98.40

97.07

98.12

98.44

99.44

100.00

99.23

98.45

98.68

100.00

99.23

100.00

98.52

99.29

99.23

100.00

99.44

99.29

98.73

100.00

99.44

98.45

100.00

99.29

99.29

Black

rot

98. 17

98. 17

85.71

87.96

44.01

98.89

97.89

98.89

98.89

98.89

98.89

97.89

97.89

98.89

97.89

100.00

100.00

98.89

97.89

97.89

98.89

100.00

100.00

100.00

99.00

100.00

100.00

100.00

99.00

98.89

100.00

100.00

100.00

98.89

98.89

99.00

98.89

98.89

97.89

98.89

98.89

Decay

95.47

93.60

87.48

72.01

84.77

100.00

100.00

100.00

97.57

96.79

100.00

100.00

99.17

99.29

100.00

100.00

100.00

100.00

100.00

99.17

100.00

100.00

99.33

100.00

100.00

100.00

99.29

99.29

100.00

100.00

99.29

99.29

99.33

100.00

99.29

99.29

100.00

99.29

98.45

98.45

98.45

Soft

scald

63.10

59.34

73.83

39.66

52.75

96.19

95.92

93.51

88.66

95.74

97.35

99.09

96.63

99.29

99.29

98.26

98.26

98.26

100.00

97.35

99.09

99.09

99.29

100.00

98.26

99.09

100.00

100.00

100.00

100.00

100.00

100.00

99.29

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

Total

84.89

81.33

80.44

61.67

61.00

96.67

96.56

96.44

93.11

92.44

98.33

98.00

97.67

97.56

97.56

99.22

98.67

98.67

98.56

98.44

99.22

99.22

99.11

99.00

99.00

99.56

99.22

99.22

99.11

99.11

99.22

99.22

99.11

99.11

99.1 1

99.22

99.11

99.00

99.00

99.00

99.00

119

Filter Combinations

740

710

680

905

450

680 710

680 740

740 710

740 NF

550 740

680 740 710

680 740 NF

680 740 940

550 740 710

450 680 740

680 740 940 710

680 740 905 710

680 740 880 710

450 680 740 880

680 740 940 NF

680 740 940 710 NF

680 740 880 940 710

450 680 740 940 710

550 680 740 940 710

450 680 740 940 NF

680 740 880 940 710 NF

450 550 680 740 940 710

450 550 680 740 905 710

550 680 740 940 710 NF

450 680 740 905 940 710

450 550 680 740 940 710 NF

450 550 680 740 880 940 710

450 680 740 880 940 710 NF

450 680 740 880 905 940 710

450 550 740 905 940 710 NF

450 550 680 740 880 940 710

450 680 740 880 905 940 710

450 550 740 880 905 940 710

450 550 680 740 880 905 940

450 550 680 740 880 905 940 710

450 550 680 740 880 905 940 710 NF

%
%
%
%

 



Table B.6. Classification accuracy of filter combination models using available images

on combined variety (multiple-class scheme)
 

Nor-

mal

Bitter

pit

Black

rot

Decay SoftSuper- Total

scald ficial

scald

Filter Combinations

 

79.53

73.29

73.41

60.38

58.20

93. 18

92.04

92.85

88.23

87.29

96.27

97.78

95.92

96.46

95.99

97.87

98.08

97.93

97.75

97. 10

98.18

98.41

98.43

98.50

98.34

98.85

98.40

98.72

98.50

98.85

99.01

98.55

98.66

74.51

79.40

74.17

45.65

33.55

94.56

93.75

87.88

87.36

86.76

97.95

96.69

99. 17

97.42

97.42

86.14

34.83

87.38

93.06

92.05

88.87

84.08

71.70

98.42 100.00

99.09 100.00

99.09

99.09

99.09

98.89

98.82

96.76

98.42 100.00

99.09 100.00

98.42 100.00

96.99 100.00 100.00

94.53 100.00 100.00

97.95 98.42100.00

98.52 990910000

97.95 100.00 100.00

97.68 990910000

99.29 990910000

100.00 98.42 100.00

49.40 64.18 76.97

48.11 52.02 72.27

54.32 60.91 72.05

36.87 41.06 53.71

23.36 35.61 53.03

96.10 92.19 94.55

94.75 93.53 94.02

90.50 87.54 92.50

92.30 91.11 91.06

91.77 87.55 89.77

99.44 96.88 97.27

92.04 95.83 97.12

97.46 97.25 97.12

98.44 94.49 96.97

99.44 96.06 96.89

99.4-4 99.12 98.41

98.02 96.85 98.18

99.44 97.34 98.18

99.00 97.13 98.11

98.73 98.65 98.11

99.44 99.60 98.86

98.52 99.09 100.00 100.00 97.47 98.64

99.23 100.00 100.00 99.44 97.22 98.64

97.74 98.42 100.00 100.00 98.15 98.64

97.95 99.33 100.00 99.44 98.51 98.56

99.23 100.00 100.00 99.44 98.83 99.09

99.23 99.09 100.00 100.00 99.26 98.94

99.17 99.09 100.00

98.38 100.00 98.42 100.00

99.38 99.33 100.00

99.17 100.00 100.00

98.42 100.00

99.09 100.00 100.00 99.31 99.02

99.33 100.00 99.44 98.78 98.94

99.23

99.23

99.23

98.25 100.00

98.85 100.00

99.01 99.23

98.52 100.00

99.44 98.10 98.86

99.44 99.26 98.86

99.44 98.59 98.86

99.44 98.91 99.09

99.44 99.18 99.09

99.09 100.00 100.00 99.26 98.94

98.42 100.00 99.44 99.26 99.09

99.33 100.00 99.44 98.83 99.09

99.33 100.00 99.44 99.26 99.02

98.70 99.17 100.00 100.00 99.44 98.91 99.02

98.40 100.00 99.09 100.00 100.00 98.91 98.94

98.85 99.23 99.33 100.00 99.44 98.91 99.02

120

740

710

680

450

905

680 740

680 710

740 710

550 740

450 740

450 680 740

740 905 710

680 740 940

450 680 710

550 680 710

450 680 740 940

680 740 905 710

450 680 740 710

740 905 940 710

680 740 940 710

450 680 740 880 940

680 740 905 940 710

450 680 740 905 710

450 550 680 740 905

450 680 740 940 NF

450 550 680 740 905 710

550 680 740 905 940 710

680 740 880 905 940 710

550 680 740 940 710 NF

450 550 680 740 940 710

450 550 680 740 905 710 NF

450 550 680 740 905 940 710

550 680 740 880 905 940 710

450 550 680 740 880 905 940

550 680 740 905 940 710 NF

450 550 680 740 905 940 710 NF

450 550 680 740 880 905 940 710

450 550 680 740 880 940 710 NF

450 550 680 740 880 905 710 NF

550 680 740 880 905 940 710 NF

450 550 680 740 880 905 940 710

NF

 "'3'.
1



APPENDIX C. Classification accuracy of filter combination models using UV-

induced fluorescence (FUV) images.

Table C.1. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on Honeycrisp (2-class scheme)

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

72.12 76.13 74.56 740

57.77 70.18 65.00 550

61.26 66.53 64.56 710

48.16 65.96 58.33 450

51.08 61.83 57.22 905

76.56 83.38 80.56 740 905

75.10 83.33 79.89 740 710

77.91 80.36 79.33 550 740

73.44 80.50 77.78 450 740

73.50 80.56 77.44 680 740

91.58 94.26 93.00 680 740 710

85.67 91.50 89.00 550 740 710

84.48 90.63 88.00 450 680 740

80.99 90.71 86.56 550 680 740

83.18 89.26 86.44 680 740 905

93.88 97.05 95.67 450 680 740 710

89.85 97.02 93.89 550 680 740 710

91.42 95.08 93.44 680 740 905 710

88.89 95.01 92.33 450 680 740 905

89.59 93.95 92.00 450 740 905 710

94.74 98.25 96.67 450 680 740 905 710

94.17 97.98 96.33 550 680 740 905 710

91.71 97.12 94.78 450 550 740 905 710

91.64 96.99 94.67 450 550 680 740 710

87.38 96.55 92.56 450 550 680 740 905

94.26 98.61 96.67 450 550 680 740 905 710
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Table C.2. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on Redcort (2-class scheme)

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

61.32 64.66 62.40 680

61.83 56.06 59.60 740

57.17 59.16 58.80 550

52.45 56.72 54.00 710

51.88 53.23 53.20 450

74.74 81.80 78.40 550 680

78.56 76.55 76.80 450 550

76.17 76.17 76.40 450 680

75.59 75.28 75.60 740 710

71.27 75.04 73.60 680 905

88.20 93.73 91.20 450 550 680

80.39 85.20 83.60 450 550 740

81.21 84.85 82.80 450 740 710

82.65 81.65 82.40 740 905 710

76.39 84.66 80.80 450 680 740

91.49 96.86 94.00 450 550 680 905

91.25 95.03 93.60 450 550 740 905

89.61 95.09 92.80 450 550 680 710

87.52 96.45 92.40 450 550 680 740

87.25 94.34 91.20 450 550 740 710

93.68 95.40 94.80 450 550 740 905 710

91.12 95.45 93.60 450 550 680 740 905

89.78 95.68 93.20 450 550 680 740 710

93.54 92.25 93.20 450 550 680 905 710

90.96 93.50 92.80 450 680 740 905 710

92.50 94.62 94.00 450 550 680 740 905 710
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Table C.3. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on Red Delicious (2—class scheme)

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

94.02 87.06 91.18 680

80.16 86.31 81.76 740

70.70 63.29 65.88 710

65.59 53.81 61.76 550

65.27 51.27 59.41 450

97.09 97.74 97.06 450 680

96.84 94.60 95.88 550 680

96.84 93.81 95.29 680 905

93.84 95.24 94.71 740 710

95.36 92.50 93.53 680 710

99.00 100.00 99.41 740 905 710

98.09 100.00 98.82 550 680 905

97.75 100.00 98.82 450 550 680

99.09 97.50 98.24 680 905 710

98.09 99.17 98.24 550 680 710

99.00 100.00 99.41 680 740 905 710

98.75 99.17 98.82 450 550 680 905

98.00 98.57 98.24 550 740 905 710

98.00 99.17 98.24 450 740 905 710

96.75 100.00 98.24 450 550 680 710

99.00 100.00 99.41 550 680 740 905 710

99.00 100.00 99.41 450 550 680 905 710

99.00 100.00 99.41 450 550 680 740 905

99.00 99.17 98.82 450 680 740 905 710

99.00 98.57 98.82 450 550 740 905 710

99.00 100.00 99.41 450 550 680 740 905 710
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Table C.4. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on combined variety (2-class scheme)
 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

61.81 67.53 64.85 740

54.76 63.30 59.39 680

55.03 62.34 58.86 710

55.98 56.11 56.21 550

51.48 58.77 55.38 905

75.24 74.80 75.08 550 740

69.80 76.98 73.64 740 710

70.67 74.35 72.65 450 740

67.95 73.74 71.14 680 740

66.96 74.82 71.14 740 905

85.55 89.87 87.80 680 740 710

80.72 86.60 83.86 550 740 710

78.73 85.50 82.42 450 680 740

77.42 84.80 81.36 550 680 740

81.05 81.57 81.29 740 905 710

87.80 92.79 90.45 450 680 740 710

86.53 92.91 89.92 550 680 740 710

88.12 91.56 89.92 680 740 905 710

85.72 93.00 89.70 450 680 740 905

85.94 92.79 89.62 450 550 740 710

92.66 95.91 94.39 450 680 740 905 710

90.94 96.33 93.86 450 550 680 740 710

90.54 95.17 93.03 550 680 740 905 710

88.74 95.52 92.35 450 550 740 905 710

87.77 95.80 92.05 450 550 680 740 905

93.00 97.77 95.53 450 550 680 740 905 710
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Table C.5. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on Honeycrisp (multiple-class scheme)

 

 

 

 

 

 

 

Normal Bitter Black Decay Soft Total

pit rot scald Filter Combinations

72.12 44.68 97.34 22.43 25.49 58.33 740

61.26 24.11 97.34 26.80 24.65 51.00 710

51.08 15.90 71.49 27.81 14.42 40.78 905

57.77 9.42 32.59 29.27 36.35 40.56 550

49.45 32.65 29.36 15.93 46.41 39.11 680

75.10 73.29 97.34 58.27 50.25 71.89 740 710

73.50 59.72 96.46 42.79 79.30 71.33 680 740

73.44 58.51 97.17 47.37 39.07 66.67 450 740

77.91 46.10 96.75 51.09 36.87 66.56 550 740

67.83 56.00 93.62 43.34 63.32 66.00 680 710

91.58 83.12 98.17 78.57 90.55 89.44 680 740 710

85.67 82.57 98.17 83.92 76.81 85.67 550 740 710

84.48 79.52 97.89 78.36 89.07 85.44 450 680 740

82.60 89.07 97.17 78.70 72.47 83.44 450 740 710

80.99 78.86 97.17 72.53 90.31 83.11 550 680 740

93.88 92.34 98.89 95.54 93.66 94.56 450 680 740 710

89.85 92.95 98.17 91.73 94.17 92.44 550 680 740 710

88.89 87.85 97.89 86.48 93.79 90.33 450 680 740 905

91.42 85.45 98.17 82.21 89.48 90.00 680 740 905 710

86.92 89.14 98.17 92.25 88.97 89.89 450 550 740 710

94.74 93.98 100.00 94.51 96.84 95.56 450 680 740 905 710

94.17 94.03 98.17 94.10 96.84 95.11 550 680 740 905 710

91.64 94.11 98.89 95.30 96.16 94.22 450 550 680 740 710

91.71 90.49 100.00 93.71 91.74 93.11 450 550 740 905 710

87.38 88.75 97.89 92.07 98.50 91.56 450 550 680 740 905

94.26 95.90 100.00 95.97 99.41 96.22 450 550 680 740 905 710
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Table C.6. Classification accuracy of filter combination models using UV-induced

fluorescence (FUV) images on combined variety (multiple-class scheme)
 

 

 

 

 

 

 

Normal Bitter Black Decay Soft Super- Total Filter Combinations

pit rot scald ficial

scald

61.81 30.60 95.61 21.06 13.79 18.21 46.82 740

55.03 19.21 97.42 27.14 12.78 18.84 43.41 710

54.76 15.13 28.38 23.44 29.26 24.84 38.48 680

55.98 14.45 31.80 18.40 15.43 26.37 37.5 550

51.48 8.79 71.92 19.05 11.00 17.09 36.89 905

69.80 55.76 95.85 58.89 46.56 53.05 65.08 740 710

70.67 57.47 96.76 38.62 33.37 41.27 60.91 450 740

67.95 46.44 96.52 37.40 67.42 34.36 60.53 680 740

75.24 39.26 96.52 35.58 30.22 33.21 59.39 550 740

66.15 36.82 96.76 43.37 36.95 37.00 56.82 450 710

85.55 70.09 98.42 74.73 82.90 66.66 80.98 680 740 710

80.72 73.95 97.42 75.59 70.32 65.30 77.95 550 740 710

79.66 83.48 97.76 73.74 67.70 65.93 77.88 450 740 710

78.73 75.84 98.42 65.86 86.23 60.30 77.12 450 680 740

77.78 76.11 97.67 71.33 77.37 60.22 76.14 450 680 710

87.80 91.06 99.33 95.13 93.50 79.40 89.09 450 680 740 710

85.94 87.77 97.76 93.07 87.80 84.88 87.8 450 550 740 710

86.53 82.17 98.42 87.08 91.73 75.98 86.21 550 680 740 710

83.61 84.03 98.67 87.82 87.88 85.10 85.91 450 550 680 710

85.72 82.58 99.09 81.32 89.30 78.42 85.38 450 680 740 905

90.94 92.23 98.42 97.45 94.29 93.51 93.11 450 550 680 740 710

92.66 90.64 100.00 90.55 95.64 86.33 92.12 450 680 740 905 710

90.54 82.85 98.42 95.91 95.03 85.15 90.45 550 680 740 905 710

88.74 89.57 98.42 94.61 89.48 87.42 90.08 450 550 740 905 710

87.77 88.08 99.09 89.01 96.92 85.34 89.55 450 550 680 740 905

93.00 92.91 100.00 94.08 98.19 91.92 94.24 450 550 680 740 905 710
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APPENDIX D. Classification accuracy of filter combination models using

reflectance (R) images.

Table D.l. Classification accuracy of filter combination models using reflectance (R)

images on Honeycrisp (2-class scheme)
 

 

 

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

60.12 69.26 65.44 550

58.71 65.24 62.22 880

57.17 66.09 62.00 710

58.81 64.27 61.89 905

53.90 67.38 61.56 450

79.79 83.57 81.89 905 710

78.79 83.20 81.22 740 710

77.53 81.44 79.67 880 710

76.59 81.98 79.67 740 905

78.13 79.57 78.89 740 940

90.86 93.72 92.44 740 905 NF

90.58 93.03 91.89 740 905 710

90.80 92.01 91.44 740 880 710

89.29 92.39 91.00 740 710 NF

87.78 92.88 90.67 550 905 940

94.58 96.48 95.56 740 905 710 NF

93.44 96.44 95.11 740 880 710 NF

93.66 95.88 94.89 740 905 940 710

91.92 97.11 94.78 550 680 740 NF

92.77 95.61 94.56 680 740 710 NF

96.75 97.29 97.00 740 880 905 940 710

95.64 97.88 96.78 550 680 740 905 NF

95.85 97.33 96.56 550 680 740 880 NF

95.57 97.03 96.44 680 740 880 940 NF

96.17 96.51 96.33 740 880 940 710 NF

95.94 98.80 97.56 680 740 880 905 940 710

96.53 98.43 97.56 450 550 680 740 905 710

97.08 97.80 97.44 740 880 905 940 710 NF

96.51 98.28 97.44 450 550 680 740 905 NF

96.50 98.07 97.33 450 550 680 740 880 NF

97.02 98.99 98.11 450 550 680 740 905 710 NF

96.70 99.20 98.11 450 550 680 740 905 940 710

95.97 99.22 97.78 550 680 740 880 905 940 710

96.52 98.82 97.78 450 550 680 740 880 940 NF

96.26 98.65 97.56 450 740 880 905 940 710 NF

96.44 99.20 98.00 450 550 680 740 905 940 710 NF

96.76 99.04 98.00 450 550 680 740 880 940 710 NF

96.81 98.82 97.89 450 550 740 880 905 940 710 NF

96.02 98.83 97.56 450 550 680 740 880 905 940 NF

95.41 99.04 97.44 550 680 740 880 905 940 710 NF

96.23 99.00 97.78 450 550 680 740 880 905 940 7 0
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Table D.2. Classification accuracy of filter combination models using reflectance (R)

images on Redcort (2-class scheme)

 

 

 

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

69.48 65.48 66.40 7 10

62.1 1 60.57 60.80 905

57.42 60.76 60.40 880

58.64 61.17 59.60 NF

56.00 56.77 56.80 940

95.19 93.00 , 94.40 905 710

88.44 90.69 90.00 905 NF

86.21 88.21 88.40 740 940

87.48 87.17 88.00 740 905

88.97 86.12 88.00 740 880

97.98 95.66 97.20 740 905 NF

96.89 95.03 96.00 740 905 710

94.24 95.30 95.20 680 905 710

92.20 96.82 95.20 680 740 880

94.34 94.44 94.80 905 710 NF

98.12 97.20 97.60 450 680 905 710

99.29 94.59 97.20 450 740 905 710

96.20 96.70 96.80 680 740 905 NF

96.48 96.73 96.80 680 740 880 905

93.93 99.09 96.80 550 680 905 710

98.62 99.17 98.80 550 680 740 880 905

98.62 98.45 98.40 550 680 740 905 940

97.90 99.00 98.40 450 680 740 905 710

97.25 98.09 98.00 680 740 880 905 710

96.67 98.40 97.60 550 680 740 905 NF

98.62 98.54 98.40 550 680 740 880 905 NF

98.57 98.33 98.40 550 680 740 880 905 940

97.37 99.17 98.40 450 550 680 740 880 905

98.56 97.17 98.00 450 680 740 905 940 710

97.12 99.17 98.00 450 550 680 740 905 NF

98.04 96.88 97.60 550 680 740 880 905 940 NF

97.85 97.83 97.60 450 550 680 740 880 905 NF

98.62 96.92 97.60 550 680 740 880 905 710 NF

97.90 97.33 97.60 550 680 740 880 905 940 710

98.62 95.85 97.20 450 550 680 740 905 940 710

97.79 96.62 97.20 550 680 740 880 905 940 710 NF

95.87 95.92 96.00 450 550 680 740 880 905 710 NF

93.02 96.62 95.20 450 550 680 880 905 940 710 NF

95.80 94.94 95.20 450 550 680 740 905 940 710 NF

94.68 95.24 95.20 450 550 680 740 880 905 940 NF

95.87 94.79 95.60 450 550 680 740 880 905 940 7
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images on Red Delicious (2-class scheme)

Table D.3. Classification accuracy of filter combination models using reflectance (R)

 

 

 

 

 

 

 

 

 

 

Normal Disorder Total Filter Combinations

62.05 60.95 62.94 550

64.50 58.49 61.76 740

65.77 55.75 60.59 450

61.89 53.69 58.24 905

57.00 58.21 57.65 710

96.00 96.67 96.47 740 905

94.09 95.56 94.71 740 940

90.11 92.18 91.18 740 880

87.02 82.06 85.88 905 NF

84.86 81.75 84.71 880 NF

97.00 98.33 98.24 740 905 NF

97.00 96.94 97.06 740 905 710

95.09 97.22 96.47 550 880 NF

95.09 97.74 96.47 740 905 940

95.00 97.74 96.47 680 740 905

97.00 98.89 98.24 740 905 710 NF

97.09 99.17 98.24 740 905 940 710

97.00 98.89 98.24 680 740 905 NF

96.00 98.89 97.65 740 880 940 NF

95.00 100.00 97.65 740 880 905 NF

98.00 100.00 99.41 550 680 740 905 710

99.00 99.17 98.82 740 880 905 940 710

99.00 98.89 98.82 680 740 880 905 710

96.09 100.00 98.24 550 740 905 710 NF

97.00 98.89 98.24 550 680 740 905 NF

99.00 98.89 98.82 680 740 880 905 940710

98.00 98.89 98.82 550 680 740 880 905 710

96.09 100.00 98.24 740 880 905 940 710 NF

96.09 100.00 98.24 550 680 740 905 710 NF

97.00 98.89 98.24 450 680 740 880 905 710

97.00 97.46 97.65 680 740 880 905 940 710 NF

96.00 98.89 97.65 550 680 740 880 905 710 NF

95.75 98.89 97.65 450 740 880 905 940 710 NF

96.00 98.89 97.65 450 680 740 880 905 710 NF

96.09 97.46 97.06 550 740 880 905 940 710 NF

97.00 98.89 98.24 450 680 740 880 905 940 710 NF

97.00 97.46 97.65 550 680 740 880 905 940 710 NF

98.09 96.63 97.06 450 550 740 880 905 940 710 NF

96.09 97.22 96.47 450 550 680 740 880 905 940 710

95.09 95.56 95.29 450 550 680 740 880 940 710 NF

96.09 96.63 96.47 450 550 680 740 880 905 940 710NF
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Table D.4. Classification accuracy of filter combination models using reflectance (R)

images on combined variety (2-class scheme)

 

 

 

 

  

 

 

 

 

 

Normal Disorder Total Filter Combinations

59.55 61.51 60.61 740

53.85 62.50 58.41 710

54.12 60.66 57.50 NF

50.60 62.44 56.97 880

55.21 58.19 56.67 550

79.42 82.56 81.06 905 710

75.67 80.75 78.41 740 905

75.76 79.44 77.58 880 710

74.34 78.69 76.74 740 880

73.27 77.08 75.30 905 NF

89.79 91.57 90.76 740 905 NF i

88.25 91.02 89.77 740 905 710 E

86.20 90.65 88.56 740 880 NF 2

86.08 88.89 87.58 905 710 NF '

84.98 89.71 87.58 740 880 710

91.71 95.22 93.56 550 740 905 NF

91.51 94.14 92.95 740 905 940 710

91.27 94.21 92.88 740 905 710 NF

91.39 94.16 92.88 550 740 905 710

91.82 92.94 92.42 740 905 940 NF

93.97 95.47 94.77 450 680 740 905 NF

92.97 96.35 94.77 550 680 740 905 NF

92.36 96.35 94.47 550 680 740 940 NF

92.86 95.74 94.39 550 740 905 710 NF

92.73 95.89 94.39 550 740 880 940 710

95.62 97.30 96.52 450 550 680 740 905 710

95.29 97.32 96.36 450 550 680 740 905 NF

94.98 97.19 96.14 450 550 680 740 880 NF

94.16 97.44 95.91 450 550 680 740 940 710

95.51 96.08 95.76 450 680 740 905 940 NF

95.82 97.87 96.89 450 550 680 740 905 940 710

95.95 97.46 96.74 450 550 680 740 905 710 NF

95.79 97.44 96.67 450 550 680 740 880 905 NF

95.48 97.45 96.52 450 550 680 740 905 940 NF

95.76 97.06 96.44 450 550 740 880 905 940 710

96.14 97.74 96.97 450 550 680 740 880 905 710 NF

95.96 97.75 96.89 450 550 680 740 905 940 710 NF

96.12 97.44 96.82 450 550 680 740 880 905 940 NF

95.52 97.88 96.74 450 550 680 740 880 905 940 710

94.73 97.76 96.29 550 680 740 880 905 940 710 NF

96.14 97.87 97.05 450 550 680 740 880 905 940 710NF
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Table D.5. Classification accuracy of filter combination models using reflectance (R)

images on Honeycrisp (multiple-class scheme)
 

Normal Bitter

pit

Black

rot

Decay Soft

scald

Total Filter Combinations

 

57.17

55.79

58.81

58.71

60.12

79.79

78.13

76.59

74.06

73.86

90.86

90.58

90.80

87.78

89.17

94.58

93.44

93.66

92.77

93.72

96.75

95.64

95.57

96.17

95.06

95.94

97.08

96.53

96.18

95.75

95.97

97.02

96.70

96.52

96.26

96.76

96.81

96.44

95.41

96.02

96.23

38.00

37.68

18.66

30.79

44.39

94.20

80.46

84.36

75.10

70.56

94.08

97.91

94.27

88.73

99.44

98.68

99.44

96.63

98.06

99.4-4

98.52

99.44

97.89

99.44

97.34

99.29

98.52

98.68

99.44

98.52

100.00

99.44

99.44

99.23

98.52

98.46

98.52

99.44

100.00

98.52

98.52

91.07

91.83

68.04

59.49

38.13

98.06

98.89

98.06

93.99

98.89

97.47

98.89

98.30

95.11

98.89

98.89

98.89

98.89

97.89

98.89

98.89

97.30

98.30

98.89

98.89

98.89

98.89

98.89

98.89

98.89

98.89

98.30

97.89

99.41

98.30

100.00

98.30

97.30

98.89

98.89

98.89

31.32

29.66

53.72

50.76

42.20

72.68

74.10

86.18

84.12

87.67

91.50

81.56

81.56

89.02

77.58

91.58

90.81

89.82

88.69

89.68

94.54

93.40

92.23

91.61

92.86

96.83

95.29

95.12

93.57

95.12

97.83

96.79

97.79

96.40

96.95

97.79

97.79

97.79

97.17

97.12

33.31

33.77

37.92

32.53

29.75

67.57

65.09

52.81

70.87

63.22

88.08

93.51

85.27

96.29

88.48

94.65

95.47

97.25

96.31

91.91

97.01

99.29

98.45

96.06

100.00

100.00

98.18

99.29

99.29

100.00

100.00

99.29

99.29

100.00

100.00

100.00

100.00

99.29

100.00

100.00

97.79 100.00

52.33

51.22

50.89

49.56

48.11

81.56

78.89

78.78

77.78

77.56

91.78

91.78

90.33

90.33

90.22

95.22

95.00

94.67

94.33

94.33

97.00

96.44

96.22

96.22

96.22

97.56

97.44

97.33

97.11

97.11

97.78

97.78

97.78

97.67

97.44

98.00

97.78

97.56

97.44

97.44

97.67
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710

740

905

880

550

905 710

740 940

740 905

550 940

680 940

740 905 NF

740 905 710

740 880 710

550 905 940

740 940 710

740 905 710 NF

740 880 710 NF

740 905 940 710

680 740 710 NF

680 740 940 NF

740 880 905 940 710

550 680 740 905 NF

680 740 880 940 NF

740 880 940 710 NF

550 740 905 940 710

680 740 880 905 940 710

740 880 905 940 710 NF

450 550 680 740 905 710

680 740 880 940 710 NF

550 740 880 905 940 710

550 680 740 880 905 940 710

450 550 680 740 905 710 NF

450 550 680 740 905 940 710

450 550 680 740 880 940 NF

450 740 880 905 940 710 NF

450 550 680 740 880 940 710

450 550 740 880 905 940 710

450 550 680 740 905 940 710

550 680 740 880 905 940 710

450 550 680 740 880 905 940

450 550 680 740 880 905 940 710 NF

NF

NF

NF

NF

NF

 



Table D.6. Classification accuracy of filter combination models using reflectance (R)

images on combined variety (multiple-class scheme)
 

Nor-

mal

Bitter Black Decay Soft Super- Total

plt rot scald ficial

scald

Filter Combinations

 

59.55

53.85

51.70

50.60

50.80

79.42

75.67

75.76

73.27

70.16

89.79

88.25

86.08

85.30

83.52

91.51

91.27

91.71

91.82

91.39

92.97

93.97

92.36

92.86

93.25

95.29

95.62

94.03

95.51

94.16

95.82

95.95

95.79

95.76

95.48

96.14

95.96

96. 12

95.52

95.64

96. 14

31.72

29.53

24.83

20.69

14.12

85.52

82.28

76.49

57.34

61.57

89.97

94.75

91 .39

85.36

84.61

98.45

97.23

94.80

96.79

96.28

99.29

97.68

98.66

97.74

96.97

97.74

95.38

100.00

98.45

96.61

99.29

97.74

97.62

98.45

99.29

97.62

99.29

98.45

98.45

98.45

99.17

91.03

91.79

47.48

62.32

64.79

98.59

98.59

98.59

98.59

92.94

97.68

99.09

97.76

98.59

99.09

99.09

99.09

98.18

98.18

99.09

97.52

98.18

98.18

98.42

99.09

98.18

99.09

99.09

98.18

100.00

98.42

98.18

100.00

99.09

98. 18

99.09

98. 18

99.09

99.09

98. 18

99.09

16.17

19.75

51.53

55.61

56.23

76.64

88.46

82.58

81.83

81.86

87.21

83.90

87.76

86.81

85.54

91.95

89.77

88.79

90.48

88.97

92.29

91.22

92.29

90.70

94.10

94.29

95.17

93.39

94.57

93.83

95.17

96.28

94.88

95.72

95.40

96.94

96.28

95.40

95.83

95.72

96.94

21.88

23.83

31.56

20.64

23.13

53.26

48.06

36.43

47.74

66.1 1

72.17

79.02

68.97

86.14

83.05

97.26

89.88

92.80

96.37

90.61

97.22

94.26

97.50

96.46

98. 15

97.22

97.28

98.06

98.05

98.06

99.44

97.84

98.06

99.44

99.44

98.06

99.44

99.44

99.44

99.44

99.44

22.80

22.90

28.38

29.05

26.56

52.04

53.17

49.82

59.18

52.00

77.72

73.95

82.33

71.52

78.13

83.34

90.31

89.34

83.19

84.61

94. 16

93.69

93.51

91.34

87.01

95.36

93.24

95.18

91.82

95.42

96.13

95.91

96.44

94.34

94.76

97.06

95.16

95.39

96.81

94.60

96.01

46.44

44.32

43.26

43.11

42.35

74.85

73.33

70.76

70.15

69.7

86.67

86.14

85.53

84.47

84.32

92.2

92.12

92.05

91.82

91.36

94.47

94.32

94.09

93.79

93.79

95.83

95.76

95.61

95.45

95.45

96.74

96.52

96.52

96.44

96.36

96.89

96.74

96.74

96.74

96.29

97.05

132

740

710

940

880

905

905 710

740 905

880 710

905NF

550 940 g

740 905NF E

740 905 710 i

905 710NF

905 940 710

905 94ONF

740 905 940 710

740 905 710NF

550 740 905NF

740 905 940NF

550 740 905 710

550 680 740 905NF

450 680 740 905NF

550 680 740 94ONF

550 740 905 710NF

450 740 905 940 710

450 550 680 740 9OSNF

450 550 680 740 905 710

550 680 740 880 905 710

450 680 740 905 940NF

450 550 680 740 940 710

450 550 680 740 905 940 710

450 550 680 740 905 710NF

450 550 680 740 880 90sz

450 550 740 880 905 940 710

450 550 680 740 905 94ONF

450 550 680 740 880 905 710NF

450 550 680 740 905 940 710NF

450 550 680 740 880 905 940NF

450 550 680 740 880 905 940 710

450 550 740 880 905 940 710NF

450 550 680 740 880 905 940 710

NF

 



APPENDIX E. Classification accuracy of feature combination models

Table E.l. Classification accuracy of feature combination models on Honeycrisp

(2-class scheme)

 

 

 

 

 

Normal Disorder Total Feature combinations

80.63 74.21 77.42 FUV740

58.05 78.65 68.35 R550

54.54 81.81 68.17 FUV550

70.14 64.92 67.53 FVIS740

71.11 63.52 67.31 R940

62.77 71.59 67.18 R450

69.43 64.72 67.08 FUV710

68.33 64.50 66.41 R880

66.20 66.02 66.1 1 FVIS710

68.62 63.30 65.96 R905

65.71 63.03 64.37 FVIS680

62.16 64.19 63.17 RNF

67.21 58.52 62.86 R680

66.63 58.94 62.79 R710

65.16 57.50 61.33 R740

49.52 69.60 59.56 FUV450

62.82 55.14 58.98 FUV905

61.74 55.23 58.48 FUV680

80.36 84.72 82.89 FUV740 FVIS710

79.79 83.57 81.89 R905 R710

78.79 83.20 81.22 R740 R710

77.27 83.53 80.78 FUV740 FVIS740

78.25 82.39 80.67 FVIS710 R940

91.58 94.26 93.00 FUV680 FUV740 FUV710

90.86 93.72 92.44 R740 R905 RNF

90.58 93.03 91.89 R740 R905 R710

90.80 92.01 91.44 R740 R880 R710

87.39 94.15 91.11 FUV680 FUV740 FVIS740

95.17 97.89 96.56 FUV680 FUV740 FUV710 FVIS740

95.50 97.09 96.33 FVIS710 R740 R905 R940

93.46 97.41 95.78 FVIS710 R905 R940 RNF

93.39 97.47 95.67 FUV680 FUV740 FUV710 R905

94.72 96.49 95.67 FVIS710 R740 R905 R710
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Table E.2. Classification accuracy of feature combination models on Redcort

(2-class scheme)

 

Normal Disorder Total Feature combinations
 

 

 

 

67.76 59.88 63.82 R710

59.13 66.33 62.73 RNF

63.36 61.60 62.48 FUV680

60.14 64.24 62.19 R905

59.21 60.93 60.07 FUV740

57.42 61.72 59.57 R940

61.86 54.70 58.28 R880

56.17 60.17 58.17 R550

55.40 58.84 57.12 FVIS680

57.13 56.28 56.70 FVIS710

52.27 60.61 56.44 FUV550

46.15 61.40 53.77 R680

54.37 51.86 53.12 R740

50.07 52.40 51.24 FUV450

46.41 55.86 51.13 R450

46.69 54.52 50.61 FUV710

55.01 45.88 50.44 FUV905

41.74 44.58 43.16 FVIS740

95.19 93.00 94.40 R905 R710

88.44 90.69 90.00 R905 RNF

86.21 88.21 88.40 R740 R940

87.48 87.17 88.00 R740 R905

88.97 86. 12 88.00 R740 R880

97.98 95.66 97.20 R740 R905 RNF

97.31 95.08 96.40 FUV680 R905 R710

95.49 96.33 96.40 FUV680 R740 R905

96.89 95.03 96.00 R740 R905 R710

94.24 95.30 95.20 R680 R905 R710

98.75 98.26 98.80 FUV680 R740 R905 RNF

98.17 98.09 98.40 FUV680 R680 R740 R880

96.87 98.29 98.00 FUV680 FVIS710 R740 R880

96.16 99.00 98.00 FUV680 FVIS740 R740 R880

95.54 99.17 97.60 FUV680 R740 R880 R905
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(2-class scheme)

Table E.3. Classification accuracy of feature combination models on Red Delicious
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Normal Disorder Total Feature combinations

94.02 96.11 95.07 FUV680

76.25 81.51 78.88 FUV740

67.27 77.58 72.43 FUV710

59.64 72.06 65.85 FVIS710

62.43 63.57 63.00 R740

57.05 67.82 62.43 FUV450

58.1 1 63.37 60.74 R450

52.82 64.37 58.59 R550

55.84 59.84 57.84 R710

53.07 60.60 56.83 FVIS740

48.82 63.53 56.17 R905

49.98 62.30 56.14 FUV550

62.20 48.89 55.55 FVIS680

45.07 56.63 50.85 R880

42.36 55.99 49.18 R940

44.68 53.13 48.91 FUV905

43.27 52.54 47.91 R680

43.18 47.90 45.54 RNF

97.09 97.74 97.06 FUV450 FUV680

96.00 96.67 96.47 R740 R905

96.84 94.60 95.88 FUV550 FUV680

95.84 94.40 95.29 FUV680 R740

95.59 94.96 95.29 FUV680 FVIS680

99.00 100.00 99.41 FUV740 FUV905 FUV710

98.09 100.00 98.82 FUV550 FUV680 FUV905

97.75 100.00 98.82 FUV450 FUV550 FUV680

97.00 98.33 98.24 R740 R905 RNF

98.09 99.17 98.24 FUV680 R450 R550

100.00 99.17 99.41 FUV680 R740 R905 R710

100.00 99.17 99.41 FUV680 R680 R740 R905

100.00 99.17 99.41 FUV680 R550 R880 R905

100.00 99.17 99.41 FUV680 FVIS710 R905 R710

99.00 100.00 99.41 FUV680 FVIS710 R740 R940
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Table E.4. Classification accuracy of feature combination models on combined variety

(2-class scheme)

 

 

 

 

 

Normal Disorder Total Feature combinations

81.81 68.00 74.91 FUV740

65.69 63.78 64.73 FVIS710

52.28 75.01 63.65 FUV550

67.76 58.94 63.35 R710

67.83 56.76 62.29 FUV710

66.58 57.91 62.24 FVIS740

63.04 60.38 61.71 R450

68.67 54.00 61.33 FVIS680

61.16 60.16 60.66 RNF

62.42 58.68 60.55 FUV680

65.43 54.64 60.03 R880

61.89 58.18 60.03 R740

53.87 65.53 59.70 R550

58.72 57.29 58.01 R680

63.51 51.63 57.57 R940

52.62 62.45 57.53 FUV450

63.96 50.21 57.08 R905

60.98 51.47 56.22 FUV905

79.42 82.56 81.06 R905 R710

75.67 80.75 78.41 R740 R905

75.76 79.44 77.58 R880 R710

75.77 78.65 77.35 FUV740 FVIS710

74.34 78.69 76.74 R740 R880

89.79 91.57 90.76 R740 R905 RNF

88.25 91.02 89.77 R740 R905 R710

86.20 90.65 88.56 R740 R880 RNF

85.55 89.87 87.80 FUV680 FUV740 FUV710

86.08 88.89 87.58 R905 R710 RNF

93.66 95.60 94.70 FVIS710 R740 R905 R710

93.11 95.21 94.24 FVIS710 R740 R905 RNF

91.90 95.36 93.71 FV18740 R740 R880 RNF

91.71 95.22 93.56 R550 R740 R905 RNF

89.92 96.49 93.41 FUV680 FUV740 FUV710 FVIS740
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Table E.S. Classification accuracy of feature combination models on Honeycrisp

(multiple-class scheme)

 

Normal Bitter Black

pit 1'01

Decay Soft

scald

Total Filter Combinations

 

36.28

57.74

33.33

30.31

13.11

35.98

40.67

25.64

18.89

26.76

34.54

32.23

35.71

36.74

31.16

18.20

21.30

24.38

79.43

53.29

57.63

55.28

57.44

66.86

61.60

53.88

57.69

50.66

46.61

52.06

42.61

42.57

41.72

49.46

23.66

36.29

79.88

97.34

65.39

90.13

92.25

84.64

44.70

65.61

66.30

66.86

97.34

55.23

81.93

78.49

21.44

43.80

82.07

32.53

66.15

53.98

76.44

60.17

70.27

39.34

77.22

73.52

63.16

54.32

46.26

63.57

45.18

52.61

86.58

33.49

34.18

19.57

39.02

26.53

51.54

46.22

44.70

49.18

50.69

47.01

58.90

60.74

28.39

49.98

43.62

22.03

50.69

62.17

20.71

39.98

60.15

57.78

56.86

56.42

55.55

55.20

54.98

53.13

52.99

51.87

50.63

50.62

49.81

46.49

46.32

41.42

36.39

30.55

FV1S7 10

FUV740

R880

R740

R710

FVIS740

R550

R905

R680

FVIS680

FUV710

R940

FUV550

RNF

R450

FUV680

FUV905

FUV450
 

79.79

78. 13

76.59

78.25

74.06

94.20

80.46

84.36

77.66

75. 10

98.06

98.89

98.06

87.60

93.99

72.68

74.10

86.18

90.26

84.12

67.57

65.09

52.81

58.02

70.87

81.56

78.89

78.78

78.67

77.78

R905 R710

R740 R940

R740 R905

FVIS710 R940

R550 R940
 

90.86

90.58

90.80

87.78

89.17

94.08

97.91

94.27

88.73

99.44

97.47

98.89

98.30

95.11

98.89

91.50

81.56

81.56

89.02

77.58

88.08

93.51

85.27

96.29

88.48

91.78

91.78

90.33

90.33

90.22

R740 R905 RNF

R740 R905 R710

R740 R880 R710

R550 R905 R940

R740 R940 R710
 

95.50

95.17

94.72

93.46

93.66

98.89

95.36

98.68

99.44

98.23

98.89

98.17

98.89

98.89

98.89

96.79

97.56

93.67

96.54

95.68

92.33

95.91

94.58

92.10

94.34

96.1 1

96.00

95.67

95.44

95.44

FVIS710 R740 R905 R940

FUV680 FUV740 FUV710 FVIS740

FVIS710 R740 R905 R710

FVIS710 R905 R940 RNF

FVIS740 R550 R680 R940
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Table E.6. Classification accuracy of feature combination models on combined variety

(multiple-class scheme)

 

Nor-

mal

Bitter Black

p11 rot

Decay Soft

scald

Super-

ficial

scald

Total

 

30.22

22.36

7.86

12.54

39.51

21.95

9.60

16.91

20.43

11.96

17.94

26.07

25.91

13.73

25.45

19.97

14.67

20.96

78.43

61.55

39.86

50.04

48.08

60.93

54.18

36.15

50.72

53.42

52.45

40.65

41.88

32.52

41.48

52.00

17.40

35.62

81.73

85.30

64.95

92.70

95.61

41.74

67.1 1

58.56

62.79

64.38

88.88

96.52

82.12

21.62

77.82

37.26

80.82

29.08

60.82

42.22

83.59

64.98

54.34

71.22

76.84

66.00

60.46

66.19

37.03

48.35

32.00

97.00

41.05

32.28

35.00

18.52

40.96

46.76

40.92

34.80

26.28

46.69

36.82

50.63

41.65

41.90

39.16

19.20

42.72

44.55

18.09

41.29

16.61

34.42

43.31

50.81

55.31

34.30

24.82

45.78

42.76

52.50

39.21

33.98

26.69

27.26

32.54

37.30

34.21

34.44

31.26

49.22

55.91

51.50

48.75

48.23

48.10

48.05

47.88

46.79

45.87

45.30

43.69

43.01

42.86

41.12

39.68

36.21

32.63

31.30

Filter Combinations

FVIS710

FVIS740

R905

R710

FUV740

R550

R880

R940

FVIS680

R680

R740

FUV710

FUV550

R450

RNF

FUV680

FUV905

FUV450
 

79.42

75.67

75.76

73.27

70.16

85.52

82.28

76.49

57.34

61.57

98.59

98.59

98.59

98.59

92.94

76.64

88.46

82.58

81.83

81.86

53.26

48.06

36.43

47.74

66.1 1

52.04

53.17

49.82

59.18

52.00

74.85

73.33

70.76

70.15

69.70

R905 R710

R740 R905

R880 R710

R905 RNF

R550 R940
 

89.79

88.25

86.08

83.77

85.30

89.97

94.75

91.39

86.39

85.36

97.68

99.09

97.76

98.42

98.59

87.21

83.90

87.76

98.68

86.81

72.17

79.02

68.97

65.27

86.14

77.72

73.95

82.33

81.19

71.52

86.67

86.14

85.53

84.70

84.47

R740 R905 RNF

R740 R905 R710

R905 R710 RNF

FUV740 FUV710 FVIS740

R905 R940 R710
 

93.66

91.51

91.27

93.01

92.64

96.28

98.45

97.23

96.25

98.45

99.09

99.09

99.09

99.09

99.09

96.56

91 .95

89.77

97.56

96.49

88.67

97.26

89.88

87.83

89.05

89.94

83.34

90.31

82.33

82.04

93.56

92.20

92.12

92. 12

92.05

FVIS710 R740 R905 R710

R740 R905 R940 R710

R740 R905 R710 RNF

FVIS710 R740 R905 R940

FVIS740 R740 R905 R940
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