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ABSTRACT

AXISYMMETRIC PROBLEMS IN NONLINEAR ELASTICITY:

EXISTENCE AND GLOBAL INJECTIVITY OF ENERGY MINIMIZERS

AND NEW CLASSES OF EXACT SOLUTIONS

By

Lydia S. Novozhilova

Axisymmetric problems in nonlinear elasticity are investigated from two different

perspectives. In the first part the existence theory for axisymmetric minimizers in

Sobolev spaces, based on the approach suggested in the seminal paper by J. Ball

(1977) and more recent results, is developed, and new classes of hyperelastic materials

are included into the existence analysis. Under suitable assumptions, higher regularity

properties and topological properties of openness and discreteness of the radial and

axial components of the mappings are established. Global injectivity of axisymmetric

minimizers is investigated, and stronger injectivity results are obtained compared

with those known for full three-dimensional case. In the second part some classes of

specialized three-dimensional axisymmetric motions in a neo-Hookean material under

an internal constraint of incompressibility are examined. The original governing

system of equations is found to reduce to a simpler unconstrained system of PDEs

allowing for finding analytical solutions corresponding to various specialized motion

classes. In certain particular cases these closed form solutions reduce to previously

known results. A formal action functional whose Euler-Lagrange equations are given

by the reduced system is also found.
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0.1 Notation

Q C R3 : open and bounded domain occupied by a continuous material body in its

reference (material, undeformed) configuration 80.

89 : boundary of D that is assumed to be strongly Lipschz'tz ([39], Definition 3.4.1).

|G| : m-dimensional Lebesgue measure of m—dimensional set G C R", m S n.

B(a, R) C R" : ball of radius R centered at the point a.

Function (deformation) u : D ——> R3, 11 = (119,112, u3), maps a material point X E 9

into corresponding point x = u(X) E u(§2) in the deformed configuration 3 = um).

MSX3 : set of all 3 x 3 real matrices endowed with the usual Euclidian norm

|A| = (A: A)“.

Mi” : subset of matrices A E M3X3 such that detA > O.

F(u) := Vu : Q —-+ Mi” : differential (deformation gradient) of u E WI'P(Q,1R3).

In Cartesian coordinates it is represented by the matrix of partial derivatives of the

components of u

F(u) = (E,) = (Bui/BXj).

cof F : Q —v M3"3 : matrix of cofactors of the deformation gradient. The adjugate

matrix is the transpose of the matrix of cofactors, adj F = cof FT.

C(u) = FT(u)F(u) : right Cauchy-Green deformation tensor. Positive square roots

of its eigenvalues are called singular values (principal stretches) of the deformation

gradient F(u).



11, 12, 13 : principal invariants of C,

11 = trC = |F|2, 12 = tr cof C, 13 = det C.

Div D : divergence operator on (2.

0(9) : space of continuous functions in Q.

73(9) : space of C°° functions having compact support in D with the standard topol-

ogy defined by uniform convergence on compact subsets.

D’(Q) : space of Schwarz distributions (the dual space to 17(9)).

Di, 2' = 1,2,3 : distributional derivative with respect to i-th coordinate, i.e., for

f e D’, ¢ 6 D

<D.-f,¢>=-<f,¢,.~>.

WI’P(Q,R3) (more generally, WI’P(Q,IR'"), Q C IR"): a triple (m—ple) of functions

from Sobolev space WIND). For p = 3 (p = n) the latter is called Sobolev space

with natural exponent.

Cof u, Det u : matrix of distributional cofactors and the distributional determinant,

respectively, defined by

(COf U)¢‘j = i+2(uj+2uj+l,,-+1 )— Di+1(uj+2uj+1,,+2), Detu = Dj [111(C0f F)j1] ,

where i, j = 1, 2, 3. In the first equation the indices are to be taken modulo 3.

A function f : U —-> R, where U is a subset of a Banach space V, is said to be

weakly lower semicontinuous (w.1.s.c.) if for any sequence uk 6 U converging weakly



to u, uk —* u, the inequality

f(u) 3 lim f(uk)

k—ooo

holds.

N(f, ) : Y —+ N U {0,00} : multiplicity function for a map f : X —) Y. For y E Y the

value N(f, y) is defined as the number of elements in the set {:13 E X : f(1:) = y}.

Henceforth in this work, the conventions of Ogden [44] for tensor calculus are used.

In particular, the divergence of a tensor S in Cartesian coordinates (X1, X2, X3) reads

DIV S = USU/aXi.

Cartesian coordinates of a tensor 8W/6F, W = W(F) being a scalar function of F,

are written in the component form as

(6W/6F)a, = BW/OFm.

Summation over repeating indices is assumed.



Chapter 1

Introduction

This thesis is concerned with the mathematical theory of nonlinear elasticity [44],

[16], [37]. Specifically, the hyperelastic version is regarded as a useful model for solids

undergoing large deformations without energy dissipation. This endows correspond-

ing mathematical problems with a strong variational structure that makes it possible

to use modern powerful machinery of the calculus of variations.

In general, a static variational problem in continuum mechanics, when the ther-

modynamic variables, such as temperature or entropy, are not under consideration,

is to find deformation(s)

u‘:BO-—>1R3

that render absolute minimum to the potential energy E(-) of the medium under

consideration

inf E(u) = E(u’) = min E(u). (1.0.1)

116A uEA



Here the set A of admissible deformations is usually a subset of an appropriate Banach

space (e. g., Sobolev space WI'P(Q,1R3)) faithful to physical restrictions of the problem.

Rigorous mathematical approach to variational theory for general three-dimensional

problems in nonlinear elastostatics was started in 1977 with a seminal paper by

J.M. Ball [4]. He employed the direct method in the calculus of variations to state

and prove his theorems on existence of absolute minimizers for equilibrium problems

in nonlinear elasticity.

More generally, a motion is a time parametrized family of deformations described

by a function

x = 30 X [0,00) -+ R3, X(-,t) = x(wt) E 3(t),

where B(t) is the current (deformed) configuration. The corresponding general varia-

tional problem in elastodynamics is to find motion(s) that render absolute minimum

to the action functional

T

Lab/{Bf éprlde-E(x(-,t)) dt

over curves in a set of admissible deformations. Here p = p(X) is the inertial mass

density in the reference configuration, V := x(-, t), where dot stands for time deriva-

tive, and the first term in the integrand represents the kinetic energy. It is usually as-

sumed that the initial deformation x(-, 0) and the velocity field V(-, 0) are prescribed,

and deformations x(-, t) belong to an admissible set satisfying appropriate physical

requirements. When a problem admits a variational formulation, the equations of



motion, which represent in a differential form the fundamental Balance of Linear

Momentum Principle in continuum mechanics, can be obtained as Euler-Lagrange

equations of the action functional. In the static theory, when the inertia effect is not

an issue, the equations of motion become the equilibrium equations, and they can be

interpreted as necessary condition for minimizers of the potential energy.

To specify the potential energy for a material under consideration a constitutive

relation describing a mechanical response of the material should be included into the

macroscopic model. Mathematical formulation of the constitutive laws must be con-

sistent with available experimental data and satisfy certain physical restrictions such

as frame indifference and (possibly) material symmetry requirements. The formula-

tion must also satisfy mathematical restrictions related to such issues as existence

and uniqueness of solutions to the balance equations. Other simplifying restrictions

are introduced to make rigorous mathematical approach tractable.

A hyperelastic material is assumed to support a strain (stored) energy density

W : Q x Mi” —i IR so that W(X, F) represents the stored energy per unit volume

at a material point X when the elastic body is subjected to deformation u with

deformation gradient F = Vu at this point. The total stored energy in the deformed

volume um) is then 1

E(u) = [0 Wm, Vu)dV. (1.0.2)

Additional physically meaningful assumptions as outlined next simplify the functional

 

1If tractions (external surface forces) are exerted on (part of) the boundary in the reference

configuration, an appropriate surface integral is added to the right hand side.



form of constitutive function.

Frame indifference is the assumption that physical laws are invariant with re-

spect to observer orientation in space. In terms of the stored energy functions frame

indifference translates into the requirement

W(X.QF) = W(X. F)

for all F 6 M1” and all proper orthogonal matrices Q.

Material symmetry refers to a linear isometry P : R3 ——> R3 such that a material

response is unaffected if the material orientation changes from B to P8. In terms of

the stored energy functions this translates into the requirement

W(X,FP) = W(x,F).

A set of all material symmetries GB of the body is called the material symmetry group.

Here we consider only isotropic materials with GB = 50(3) (i.e., all orientations

equivalent).

It can be shown (see, e.g., [16]) that a hyperelastic material is frame indifferent,

isotropic, and homogeneous 2 if and only if W is a function only of the principal

invariants of the right Cauchy deformation tensor C = FTF,

A

W = @(Il,12,13). (1.03)

Some materials exhibit volume preservation property; they are termed incompressible.

 

2i.e., W is independent on X



The deformations possible for such materials must satisfy the constraint

detF = 1 (1.0.4)

and are called isochoric. In particular, many isotropic rubber-like materials are con-

sidered to be incompressible, and they are often modeled by Mooney-Rivlin stored

energy

A

w = <I>(Il,12) = (1(11 — 3) + 3(12 — 3), (1.0.5)

where a, fi 2 0 are material constants. In the limiting case B = 0 the material is

called neo-Hookean and its stored density is usually written as

“ _ H
W — 2(11 —- 3). (1.0.6)

The material response function, the nominal stress tensor S, in the incompressible

case is given via the strain energy function by [44]

aw

3:535—
F", (1.0.7)

p = p(X) being the hydrostatic pressure (Lagrange multiplier) associated with the

constraint of incompressibility (1.0.4).

For compressible materials there is no restriction (1.0.4), and the term pF‘1 does not

appear in (1.0.7). In all cases the Balance of Linear Momentum in the absence of

body forces requires

Div S = px, (1.0.8)

which is the Euler-Lagrange equation associated with minimization of the action

functional.



Ball’s theory was based on the new notion of polyconvexity that ensures weak lower

semicontinuity of the energy functional in an appropriate space of functions. Ball also

showed that polyconvexity implies quasiconvexity. The latter concept was introduced

by GE. Morrey [36] who showed that, modulo some technical assumptions, quasi-

convexity is a necessary and sufficient condition for w.l.s.c. of a multiple integral.

Policonvexity can be effectively characterized in terms of the integrand (i.e., strain

energy function in the setting of nonlinear elasticity), as opposed to quasiconvexity

whose characterization is still an Open question.

Ball has illustrated his theory by applying it to a wide class of isotropic stored

energy functions commonly used in nonlinear elasticity and referred to as Ogden

materials. These functions can be written in the form

M 3 N 3

W(F) = 2a.- (2 Al‘) + ij ( Z (AkAJ’J') + h(det F), (1.0.9)

= k—l '1 1 3:1 k,l=1 kaél

where:

AI: = ,\,.(F) are the singular values of F 6 Mi”;

ai>0i7i>12 lsstibj>036j2171SjS N;

h : (0, +00) —i IR is a convex function.

Emotions (1.0.9) satisfy the hypotheses of Ball’s theory under appropriate choices of

the growth exponents p = max 7,, q = mjax 6,.

Ball’s contribution stimulated investigations into existence theory through a vari-

ety of theoretical lenses. Materials with strain energt density with growth exponents

below the values allowed by Ball’s theory received significant attention in connection



with cavitation [6], [29] and other phenomena involving singularities [7]. Regularity

issues for function classes of mappings u that involve information on both the gradi-

ent F = Du and its adjugate matrix were studied by Sverak [51]. The degree formula

used in [51] was generalized by Miiller, Qi, and Yan [42] and used for weakening Ball’s

constraints on the growth exponents needed for existence of a minimizer in Sobolev

space.

Ball’s conjecture about identicity of pointwise and distributional cofactors and

determinants was proved by Miiller [41] under the assumption that those null La-

grangians (quasiaffine functions) defined in the sense of distributions are functions.

This development allowed one to reformulate the existence theorems by Ball in terms

of pointwise null Lagrangians rather than the distributional ones. Variational prob-

lems with non-convex (non-quasiconvex, non-polyconvex) integrands are currently

intensively studied. The relation between quasiconvexity and relaxation was discov-

ered by Dacorogna (see [18] and references therein). Explicit formulations of relaxed

problems are not in abundance, but when they are available and represented by a

multiple integral, Ball’s existence theory applies if the integrand meets appropriate

requirements. More recent references can be found, e.g., in [8].

Classes of admissible functions introduced by Ball stimulated new developments

in geometric function theory. A class of functions having finite dilatation (distortion),

which includes Ball’s admissible functions, has been defined and investigated from

various points of view (see [31] and references therein). Theory of mappings of finite

10



distortion is a natural generalization of the theory of quasiregular mappings [48]. Well

known topological properties of openness and discreetness of nonconstant quasiregular

mappings were recently carried over to two-dimensional mappings of finite distortion

by Iwaniec and Sverak [30], provided that the dilatation quotient K (see Definition

4.1.1) is an integrable function. For n > 2 the openness and discreetness of n-

dimensional mappings of finite distortion was investigated by Heinionen and Koskela

[26], and Kauhanen, Koskela, Maly [32].

Results in geometric function theory and degree theory allowed one to state condi-

tions ensuring more realistic properties of admissible functions , e.g., global injectivity.

This issue was investigated in different settings by Ball [5], Ciarlet and Necas [15],

and Tang [52], while Fonseca and Gangbo [22] studied local invertibility properties

of Sobolev classes with natural exponent.

Despite the important contributions discussed above, genuine three-dimensional

deformations of some commonly used material models are not covered by Ball’s the-

ory. In particular, as was noted by Ball himself, restrictions imposed by his theory

rule out three-dimensional deformations of neo—Hookean materials (1.0.6). These

materials were the object of numerous investigations (see, e.g., [43] and references

therein). They can also serve as a good source for testing numerical methods. The

neo-Hookean strain energy density has also been suggested as a useful form for mod-

eling the base matrix material response in composite materials, subject to additional

reinforcing, and used for analysis of different aspects of the theory of composites by

11



a number of authors (see, e.g., [46] and references therein). On the other hand, more

complicated expressions for the strain energy density function provide more flexibility

for correlation with experimentally observed deformation behavior, and development

of more sophisticated hyperelastic constitutive models is an active subject (see, e.g.,

[10], where fairly general constitutive relations for the shape memory materials are

developed). Recently, Holzapfel, Gasser and Ogden [28] presented the analysis of

the biomechanics of blood vessels, employing the neo-Hookean strain energy function

for modeling the behavior of the matrix material. This example from biomechanics,

along with other applications using nonlinearly elastic models for bodies of tubular

geometries, motivated investigation of axisymmetric problems in nonlinear elasticity

in this thesis.

In Chapters 2-4 the existence issues for variational formulation of axisymmetric

problem are studied. It seems natural to expect that restrictions on growth exponents

in the framework of Ball’s theory will be milder if one confines analysis to a subclass

of three-dimensional deformations. This is true for plane deformations that can be

viewed as a subclass of three-dimensional deformations. We introduce a general class

of axisymmetric deformations of the form

r=r(R,Z), 0=w+r(R,Z), and z=z(R,Z), (1.0.10)

where (R,w, Z), (r,9, z) are cylindrical coordinates in the reference and deformed

configurations, respectively. Reduced restrictions on the growth exponents for the

strain energy densities of Ogden materials (1.0.9) subjected to deformations (1.0.10)

12



are then obtained in the spirit of Ball’s existence theory. Although not necessary for

essential conclusions, for simplicity attention is restricted to isochoric deformations

with boundary condition of place on a subset I‘ of the boundary 80 in the absence of

external surface forces on the remainder of the boundary. To ensure the coerciveness

inequality in axisymmetric setting, the body in the reference configuration is assumed

to be cylindrically hollow.

Under a natural assumption that the radial component is nonnegative almost ev-

erywhere, improved regularity of two-dimensional mapping determined by the radial

and axial components of isochoric deformation,

v = (r, z) e WI’P(D, 1R2) (1.0.11)

with p = 2, is established. Here D is half of the axial cross-section of the undeformed

body. It is also found that the two-dimensional mapping v is Open and discrete. This

is one of the most novel and original result in this development, and it does not have

an analogue in three-dimensional existence theory. Based on improved regularity and

the topological property of openness of the mapping v, injectivity of minimizers is

established in a stronger form than that stated in [5] and [15]. For technical reasons,

if the angular deformation function r is present, a stronger restriction on the radial

deformation is imposed, namely, it is assumed that originally hollow cylindrical body

remains hollow after deformation.

Beginning with Chapters 5, we turn from existence issues for static axisymmetric

problems in variational formulation to analysis of axisymmetric motions in differ-

I3



ential form. Specifically, a time dependent version of (1.0.10) subject to additional

specialization is considered. Attention is restricted to neo-Hookean material response.

Less is known about existence and uniqueness for elastodynamics than for elas-

tostatics (see, e.g., [37] on some aspects of what is currently known). Closed form

three-dimensional solutions to the equations of motion are rare, and most such solu-

tions involve both specialized material response and a priori symmetry assumptions

that impose severe structural restrictions on the unknown functions. Known explicit

dynamical solutions for incompressible materials include the radial oscillatory solu-

tions due to Knowles [33] and the circularly polarized finite amplitude wave motions

studied by Carroll [13, 14]. For a Mooney—Rivlin material, detailed analysis of fi-

nite amplitude plane wave motions is given by Boulanger and Hayes [11, 12]. More

references on exact solutions in finite elastodynamics can be found in [43].

The focus in chapters 5-7 is on deriving the governing differential equations for

the specialized forms of three-dimensional motions in neo—Hookean material and ob-

taining new physically meaningful explicit solutions. The motions presented here give

both space and time variation in all three principal stretches and naturally describe

various wave forms in tubular geometries. In certain particular cases they reduce to

previously known results.

Here is an outline of the content of the thesis.

In Section 2.1 an outline of Ball’s theory is given providing a framework for fol-

lowing existence analysis. In Section 2.2 the axisymmetric variational problem is

14



described. By a straightforward computation it is shown that the Euler-Lagrange

equations for the reduced variational problem are equivalent to the equilibrium equa-

tions for the physical problem under consideration. New dependent variables that

simplify the description and allow one to apply the direct method of the calculus of

variations in the spirit of Ball’s theory are introduced.

Two existence theorems for isotropic strain energy densities with and without

dependence on the cofactor matrix are stated and proved in Chapter 3. Here cases

with and without assumption that the distributional cofactor matrix and determi-

nant are functions are examined, and we employ the result of [41]. Although, as

expected, the restrictions on the growth parameters are significantly reduced due to

the axial symmetry, materials with neo—Hookean rate of growth (p = 2) represent a

marginal case for the existence theorem in the admissible set without restriction on

the distributional determinant.

The goal of Chapter 4 is twofold: to extend the existence results to integrands

with rate of growth p = 2 and without conditions on the cofactor matrix, and to

examine injectivity of admissible mappings. The cylindrical description of admissible

mappings is used. Under a natural assumption that the radial component of defor-

mation is nonnegative, some remarkable properties of two-dimensional mapping v,

defined in (1.0.11) for a mapping u E W1'2(D, R3) from a set of admissible functions,

are presented in Section 4.1. Firstly, it has been proven that v has finite dilatation.

Furthermore, it is also shown that for functions of finite distortion in Sobolev space

15



with natural exponent the mapping

L : Wl'"(fl,lR") —+ C(G,R"), L(f) 2 fig, (1.0.12)

where G C Q C IR" is a relatively compact domain in D, is compact. Consequently,

for any relatively compact G CC D weak convergence of a sequence of admissible

functions 11), = (rk, rk, 2k) in W1’2(D,IR3) implies uniform convergence of the corre-

sponding sequence (up to a subsequence) vk = (rk, 2k) in G. It is worth noting that

the general fact of compactness of the embedding (1.0.12) is of interest in its own

right. The most remarkable properties of the two-dimensional mapping v, established

in this section, are openness and discreteness that follow from the result in [30] on

Stoilow type factorization.

In Section 4.2 two additional conditions are introduced for admissible sets. The values

of the radial component are assumed to be separated away from zero, that is,

r(R, Z) 2 a > 0 (1.0.13)

for a fixed positive number a and almost all (R, Z) 6 D, and an axisymmetric

counterpart of the well-known injectivity condition of [15] is imposed. For this smaller

set of admissible mappings, existence of minimizers with p = 2 is proved, and the

injectivity of minimizers almost everywhere is established for p 2 2 along the lines

of [15]. In the border case p = 2 the argument of [15] needs to be modified, and

we use some results from geometric function theory. Furthermore, making use of

the openness of the two—dimensional mappings (1.0.11), one concludes that under

16



the injectivity condition these mappings are in fact homeomorphic. For p > 2 this

implies that corresponding axisymmetric deformation is a homeomorphism too, which

represents a substantial improvement compared with relevant results known for the

three-dimensional case.

For a two-dimensional isochoric deformation from appropriate Sobolev class, the

Stoilow type factorization is also readily available. This observation allows one to

sharpen previously known results on injectivity a.e. when they apply to this class of

mappings, although two-dimensional deformations are not a focus in this work.

Global injectivity for Dirichlet problem presented in this section relies on the result

in [5]. For the two-dimensional case, the condition on the adjugate matrix introduced

in [5] is found to be automatic for the mapping (1.0.11). Therefore, except for that

condition, the statement about global injectivity for the Dirichlet problem in this

section is otherwise identical to that in [5].

In Chapter 5 a specialized class of motions is considered. In cylindrical coordinates

it is given in terms of axially varying twist function T(Z, t), radial inflation/deflation

function s(Z,t), and axial contraction/glongation function z(Z, t) by the following

ansatz

r = Rs(Z,t), 0 = w + r(Z, t), z = 2(Z,t). (10-14)

(These motions are referred to as TIE motions.)

The general governing equations for axisymmetric motion of neo—Hookean mate-

rial, derived in Section 2.2, are reduced here for the specialized ansatz (1.0.14) to a
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second order system of two coupled nonlinear partial differential equations for func-

tions 3 and r. This system contains two material constants, the inertial mass density

p and the neo—Hookean shear modulus p, as well as an arbitrary function of time C(t)

that results from a general integration. The neo—Hookean shear wave speed is given

by c... = \/p/—p, a parameter that has special significance with respect to the various

motions described herein.

Chapter 6 presents four various classes of specialized solutions to the governing

system for TIE motions.

e Equilibrium deformation solutions of three different forms depending on the

neo-Hookean shear wave speed c... One of the well known universal deformations

for incompressible hyperelasticity emerges as a special case.

0 Travelling wave solutions of the same three forms as above at arbitrary wave

speed. Further, at the neo—Hookean shear wave speed 0. additional travelling

wave solutions are also available.

0 Motions with specialized forms of the twist function. For the special case of

zero twist the governing equations reduce to a single linear partial differential

equation which can be treated by standard means.

0 Motions for which both the twist function r and the inflation/deflation function

3 are constant on rays Z/t = constant. Although we are unable to obtain

explicit solution in this general case, an analytic expression is given for a special
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case when one of the parameters in the governing system of ODE vanishes.

In Chapter 7 Cartesian descriptions of TIE and TIES motions are derived. It is

shown that the reduced governing system of PDE for the radial and angular compo-

nents of TIE motion, found in Chapter 5, admits a variational formulation. Formal

change of dependent variables transforms the Lagrangian of this variational problem

‘ into quadratic expression with respect to new dependent variables therefore leading

to a linear system of Euler-Lagrange equations. For a particular case, when the

function C(t) involved in these equations is a constant, the system reduces to two

identical telegraphy equations, which can be treated by standard means. In Section

7.2 more general class of motions, termed TIES, are considered. The motions include

transverse ghear in addition to twist, inflation/deflation, and contraction/elongation,

describing TIE motion. Although two unknown functions accounting for the in-plane

shear are introduced, the governing system for TIES motion is shown to decompose

into four identical decoupled linear equations of the same type as for TIE motion. In

Section 7.3 the governing system for general axisymmetric motions in neo-Hookean

solid in Cartesian coordinates is derived, and it seems to be more convenient for

further analysis than the original one, derived in terms of cylindrical coordinates.

To the best of my knowledge, presented in this thesis results on existence, in-

jectivity, and regularity for axisymmetric minimizers, as well as the development on

specialized elastodynamic equations of motion and their explicit analytic solutions,

are new and have not been discussed in the literature up to now.
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Chapter 2

Setting axisymmetric variational

problem

2.1 Overview of Ball’s existence theory

Let a material body 80 in its reference configuration occupy an open and bounded

domain 9 C R3 with strongly Lipschitz boundary BS2. Given a material point X E Q,

a mapping u : O —> R3 describes the material deformation with x = u(X) E u(Q)

the corresponding point in the deformed configuration, and F := Vu the deformation

gradient.

The material of the body 80 is assumed to be hyperelastic with the stored energy

function W satisfying the requirements of frame indifference and, unless stated oth-

erwise, isotropy. Thus the total stored energy in the deformed volume u(Q) is defined

by (1.0.2), and corresponding minimization problem is then given by (1.0.1), where
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a set of admissible deformations A is a subset of Sobolev space WIND, R3) satisfy-

ing appropriate physical restrictions of the problem, e. g., boundary condition of place

11 = no on 1" C 69, [F] > 0, (uo E WIND, R3) being a given function), specified trac-

tion values on the remainder of the boundary, and the incompressibility constraint

(1.0.4).

For the successful application of the direct method of the calculus of variations to

problems in nonlinear elasticity, one needs to formulate physically realistic hypotheses

on both the stored energy density W and the admissible set A so that the following

major argument can be realized:

Step—1. Ensure finiteness of the infimum of the total energy functional E(-) over

the admissible set A and show existence of a minimizing sequence nn 6 A that

converges weakly to some a for a suitable choice of p.

_S_tep_2. Show that weak limits of minimizing sequences belong to the admissible

set A.

_St_ep__?: Verify that the total energy functional E() is w.l.s.c.

Then the inequality

E(fi) 3 lim E(un)=‘i1161f1E(u) S E(fi) (2.1.1)
n-ooo

implies that a is a minimizer.

To ensure the application of the above three steps to three-dimensional problems in

nonlinear elasticity, J. Ball [4] assembled the following hypotheses (with appropriate
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modifications of W and A in different settings) on the stored energy function :

(H1) Polyconvexity: For almost all X 6 fl there exists a continuous convex function
 

W(X’ ‘13) 3 M3” X M3” x IR —+ IR such that

WlxiF) = W(X,F,C0f F,det F) fOl' all F E Mai-X3,

and W(-,F,H,6) is measurable over 9 for every (F,H,6) E M3X3 x M3X3 x IR.

(H2) Coercivity: There exist real numbers a > 0, B, p > 1, q > 1, s > 1 such that

for almost all X E Q

W(X,F,cof F,det F) 2 a (IFIP + Icof Fl" + (det F)’) + )6. (2.1.2)

(H3) Finiteness: There exists an admissible deformation u E A such that E(u) < 00.

It was also shown that Ogden materials (1.0.9) satisfy the hypotheses (H1) and

(H2) with p = max 7, and q = max 63-. A typical existence result obtained by employ-

: .7

ing Ball’s theory within the context of the above hypotheses is given by the following

Theorem 2.1.1 Let a stored energy function W satisfy (H1)-(H3) with 1

p22 and 42—3—

p-l'

Let

lim W = 00.

det F—90+

 

1In [42] it was shown that the right hand side of the inequality for parameter q can be replaced

by 3/2.
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Then the total energy (1.0.2) assumes its minimum in the admissible set A given by

A := {u E Wl’p(Q,IR3) 3 = ‘10 a.e. in F, COI F E Lq(QaM3X3)v

detF E L’(§l), detF > 0 a.e. in Q},

where F C 39, [F] > 0, and no is a specified function in WI'P(Q,IR3).

Proof (Sketch). Existence of a minimizing sequence 11,. and boundedness of the cor-

responding gradients in LP(Q,M3"3) follow from the finiteness and the coercivity

hypotheses, respectively. Boundedness of the sequence 11,. in LP(I2, R3) is proven via

the generalized Poincaré inequality (see Theorem 6.1.8 (b) in [16])

P

/|f|Pda:gc /|Vf|de+ ffda . (2.1.3)

9 Q I‘

applied to the components of uk. The displacement boundary condition imposed on

admissible functions is needed here to ensure that the second term on the right hand

side is bounded (in fact, it is a constant). Thus 11), is bounded in WIND, R3), and the

existence of a weakly convergent subsequence follows from the reflexivity of Sobolev

space Wl'l’ with p > 1.

The most technical part of the proof is establishing that the weak limit resides

in the admissible set. It includes proof of weak continuity of the minors of the

deformation gradient, and this dictates the restrictions on the growth exponents p, q.

Satisfaction of the boundary condition for the weak limit relies on the compactness

of the trace operator tr 6 [I (WI’P(D); LP(F)) and is proved in a standard manner by

extracting a subsequence converging almost everywhere on F.
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The polyconvexity of the integrand implies its quasiconvexity [4], which is essen-

tially equivalent to the weak lower semi—continuity of the energy functional [36]. This

completes the proof. I

As was pointed out in [4], for three-dimensional deformation of an incompressible

hyperelastic material with stored energy function independent on cof F, the bound

on the growth exponent needed for the weak continuity of the determinant (distri-

butional determinant) is p 2 3 (p > 9/4). The optimality of these bounds has been

demonstrated in [19]. Consequently, any of these restrictions rules out neo-Hookean

materials.

In Chapters 3 and 4 new existence theorems for variational formulation for iso—

choric, axially symmetric deformations of hyperelastic materials will be presented,

and some regularity and injectivity properties of minimizers of may will be estab-

lished. It is always assumed that certain boundary conditions of place are prescribed

on the part of the boundary and the rest of the boundary is traction free. It is also

assumed that the following conditions are satisfied.

0 W(X, F) is frame indifferent and, unless stated otherwise, isotropic;

e W(X, F) satisfies the hypotheses (H1), (H2);

0 Function uo prescribing boundary condition of place for an admissible set A

belongs to this set, and I(no) < 00.

The existence theorems cover some classes of hyperelastic incompressible materials
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with stored energy functions that do not satisfy growth conditions of Ball’s existence

theory in genuine three-dimensional case, in particular, the class of neo-Hookean

materials. The detail will be provided only for proving the fact that weak limits

belong to appropriate admissible sets, since the rest of the argument sketched above is

standard (see [4], [16], [18], and references therein). Parameters p, q always denote the

growth exponents in the coercivity hypothesis (2.1.2) for the stored energy function

under consideration.

2.2 Description of the axisymmetric problem

In this section we describe the axisymmetric setting in both cylindrical and Cartesian

coordinates, adjust the total energy functional to this setting, and prove the equiva-

lency of the equilibrium equations for the physical problem under consideration and

the Euler - Lagrange equations of the reduced minimization problem.

Let a hyperelastic body in its reference configuration occupy a domain (2 6 1R3

given in cylindrical coordinates X = (R,w, Z) by

Q := {(R,w, Z) : X' := (R, Z) 6 0,0) 6 [0, 27r)}, (2.2.1)

where D C R2 is an open domain with strongly Lipschitz boundary 0D such that

min R = R.- > 0. (2.2.2)
X’ED

Introduce a class Ari(Q) of almost everywhere isochoric, axisymmetric deformations

f1 : Q —» R3 with components (r, 9, z) of the form given by (1.0.10).
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The deformation gradient of a E Axi(Q) takes the form

r _

T,1 0 T,3

F: rr,1 r/R rr,3 (2'2'3)

  2,1 0 2,3 J

with the corresponding right Cauchy-Green deformation tensor given by

I .

731 2 + (T731 )2 + 2,12 T2731 /R 731 733 +7‘2T,1 7,3 +2.11%

C = ... (r/R)2 131,3 /R , (224)

L r,32+(rr,3)2+z,32 _] [—

where the ellipses stand for appropriate symmetric expressions. Here and throughout

  

this work we adopt the notation

 f,12=Gf/GR £22: Bf/Bw and f’32= Bf/BZ run:

for any scalar function f(R,w, Z).

The incompressibility condition (1.0.4) takes the form

%(r,1 2,3 —r,;; 2,1) = 1. (22-5)

In the three-dimensional Cartesian setting, the first invariant 11 = trC = [F]2 of

the Cauchy-Green strain tensor C is a sum of the squares of all partial derivatives

of the Cartesian components of deformation. Consequently, if the total energy is

finite, those partial derivatives belong to LP due to the coercivity inequality (2.1.2).

However, as follows from (2.2.3), in cylindrical coordinates the first invariant has the

form

1. = IFI2 = m2 +(r'r,1)2 + 2.12 + war + r32 + (m3 )2 + m 2, (22.6)
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so that the derivatives of r in this expression are directly coupled with r. Hence,

for a minimizing sequence of deformations f1" 6 1111(9), one can only conclude from

the coercivity inequality that the functions r,f , 2,? , r“r,[c , i = 1, 3, converge weakly

in the space [f(D) thereby preventing determination of appropriate Sobolev space

for the limiting angular deformation function r. One way of resolving this problem

is to assume that the radial component r in the deformed configuration is uniformly

bounded below away from zero, r(R, Z) Z a > 0, for almost all (R, Z) 6 D. This

possibility will be explored in Chapter 4.

The problem of decoupling functions 7' and r can be also eliminated through the

introduction of the new dependent variables

£=§(R,Z) :=rcosr and n=n(R,Z) :=rsinr. (2.2.7)

In fact, then corresponding right Cauchy-Green strain tensor and its first invariant

11(C) in terms of u = (5, n, 2) take the forms

I .

6’1 2 + 77,1 2 + 271 2 (7771 E _ "€11)/R £11613 +7711 ")3 +211 273

C = --- (£2 + 720/122 (72,3 6 - 176.3 )/R (2'28)

  {.3 +0.3 +2.3

and

I. = 2 (6.3.. +0.3. +2.3. ) + (£2 + 05/122. (22-9)

m=l,3

Remark. It should be noted at this point that nothing prevents the radial component

r from taking negative values.2 Therefore, the unique determination of the cylindrical

 

2The existence theorems of Ball [4] also assert only that under certain assumptions a minimizer
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coordinates r, 0, z of the image of a point (R, w, Z) in terms of (E, n, z) is not possible.

However, using (1.0.10), (2.2.7), and the standard relations

zr=rcosd, y=rsin0, z=z(R,Z)

with 0 = w + r, the corresponding image can be described in Cartesian coordinates

(1:, y, 2) by the formulae

X Y Y X

33 — R6 — Eli, y — R6 + E77, 2 — 2(R, Z) (2210)

with X = Rcosw, Y = Rsinw. These equations will be referred to as Cartesian de-

scription of deformation. It follows from the equations (2.2.10) that the new depen-

dent variables € and n have clear physical meaning: these are the first two Cartesian

coordinates of the image of the axial cross-section w = 0 in the deformed configura-

tion,

€= $(R,0.Z), 7) = y(R.0.Z)-

If one defines a matrix valued function

5.1 “77/3 5,3

Fo<u>= 71,1 é/R 71.3 (22-11)

211 0 213   
corresponding to an axisymmetric deformation 1‘1 6 Axim), then a direct computa-

tion shows that

C = FTF .—. Fg‘Fo,

 

u exists. Injectivity of a minimizer is another problem that was later stated and investigated in

different settings, cf. . [5], [15], [52].
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so that F and F0 have the same singular values. Using the chain rule, it is easy

to show that the deformation gradient F(fi) in Cartesian coordinates satisfies the

equation

F = Q F0 QT)

where
F -

cos a) — sin a) 0

Q = sin a) cos a) 0

0 0 I I  
This representation implies that the polyconvexity hypothesis (H1) and the coercivity

hypothesis (H2) hold for axisymmetric deformations with F replaced by F0 due to

the frame indifference and the isotropy assumptions. It also follows from the above

representation that F0 is the deformation gradient in Cartesian coordinates restricted

to the section a) = 0 of the cylindrical body (2, F0 = F(R, 0, Z).

The incompressibility condition (2.2.5) in terms of §, 17, 2 reads

(£2 + 772))1z13 _(62 + 772),:3 z31: 2R- (2.212)

For (’1 E Axi(Q), the three-dimensional minimization problem (1.0.1) formally reduces

to

inf RW(X,F(u))dede,
“EA 0

where X = X(R, 0.), Z). To reduce the dimensionality of the underlying space we have

to assume that W depends on X, Y only through the variable R = (X2 + Y2)1/2.
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Then the energy functional of the problem (1.0.1) takes the form

I(u) :2 3.23 RW(X’, F(u)) da (2.2.13)

D

with u = (r, r, 2), F given by (2.2.3), da the area element in D, and X = (R, Z). For

Cartesian description of deformation,

ueA

I(u) :2 inf / RW(X', Fo(u)) da. (2.2.14)

D

with u = (5,17,21) and F0 given by (2.2.11). In each case A represents a set of

admissible ordered triplets of functions that is assumed to be a subset of appropriate

Sobolev space Wl'p(D, IR3) faithful to physical restrictions of the problem including

the incompressibility constraint and boundary conditions to be specified later. Note

that by virtue of (2.2.2) the coercivity hypothesis (2.1.2) holds for the integrand in

(2.2.14), provided it is true for the strain energy density W(X, F, cof F).

Before proceeding with the existence analysis, the reduced variational formulation

needs to be justified from mechanical point of view. Specifically, one must show that

the equilibrium equations for the problem under consideration coincide with (more

exactly, are equivalent to) the Euler-Lagrange equations for the reduced functional

to which an appropriate term accounting for the incompressibility constraint must

be added. In the absence of body forces, the equation of motion (1.0.8) transforms

into the equilibrium equation

Dw3=a mam)

where S is the nominal stress tensor (1.0.7).
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In the next lemma the equivalency between the Euler-Lagrange equations for the

reduced functional (2.2.13) and equilibrium equation (2.2.15) is shown. For simplicity,

it is assumed that the strain energy density function W does not depend explicitly

on the spacial variables.

Lemma 2.2.1 Let

1. u = (r, 9, z) : (I -> R3 be the triplet offunctions corresponding to a deformation

u E Axi(§2), where Q is defined by (2.2.1), (2.2.2);

2. The strain energy density W = W(F) is frame invariant and isotropic;

3. The Lagrange multiplier does not depend on the angular variable, i.e., p =

p(R, Z)-

Then the Euler-Lagrange equations for the functional in (2.2.1.?) differ from the equi-

librium equations by a factor R and therefore are equivalent to the equilibrium equa-

tions.

Proof. For a material satisfying the requirements of isotropy, frame indifference,

homogeneity, and incompressibility the strain energy density can be written in the

form W = W(Il,12), where 11, [2 are the principle invariants of the right Cauchy-

Green deformation tensor C = FTF, and the formula (1.0.7) becomes [45]

_ 8W 8W T 6W T _,
S_2(611+11612)F 26,1ch pF. (2.2.16)

Assume temporarily that W = W(Il), and let the prime denote differentiation with

respect to 11. It follows from (2.2.15), (2.2.16) that the equilibrium equation under
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the assumptions of lemma becomes

2W’ Div FT + 2W”F V1l — F‘T Vp = 0, (2.2.17)

where we used the gradient operator V in cylindrical coordinates

a 1 a a

V — ERGR + EwREU—J + Ez-a—Z,

and Piola identity [16], Pg. 39, which for isochoric deformation takes the form

Div F‘1 = 0.

To compute the first term in (2.2.17) note that the transpose deformation gradient

can be written in the form

FT = T,1ER®8,-+T,3Ez®€r+TT,1ER®€9+T/REw®eg

+ TTisEz®€9+ 2,1 Ea®ez +ZisEz®€r

Then direct calculation gives

Div FT = e,.(Ar — i~(vr)2 + (17R),1 ) + e9(rAr + 2% - vi— + (T/R)T,1)

+ez (A2 + z,1/R).

The calculation uses the fact that the operator Div is the gradient operator followed

by contraction [44] and the following elementary formulae for the derivatives of the

basic vectors

(ER)72 : Eu): (E(u))? = ’ER) (er)i2 : 897 (99))? : —err

(er)1i: 806,51 (99))i : —e7‘0,i 2 = 1’ 3
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It is easy to verify that the second term in (2.2.17) is given by the expression

e,Vr -V11 + engr - V11 + ezV2 - V11.

To compute the last term note that the inverse of F reads

  

r2,3 /R 0 -7‘7‘,3 /R

F—l _

— T(Ta3 zil _T31Z73) r/R T(T,3 Til —T,1 T13)

—r2,1/R O rr,1/R

implying that

r

F_T VP = R (er(Pi1 2,3 —Pi3 2,1) - ez(19i1 Tia ‘pis 2,1 ))

Combining the above computations one obtains the following equilibrium equations

W’ [Ar — TNT)? + (r/R),1] + W”vr1 .vr

—(r/2R)(pal 213 —p13 Zal) = 0) (2”218)

W’ [rAr + 2Vr - VT + (r/R)r,1] + W”rVIl - Vr = 0, (2.2.19)

W' [A2 + 2,1/R] + W"VII - V2 + (r/2R)(p,1r,3 —p,3 r,1) = 0. (2.2.20)

Derivation of the Euler-Lagrange equations is standard. Under the assumptions of the

lemma the energy functional in (2.2.14) modified to incorporate the incompressibility

constraint takes the form

I(u) = f R (W(Il) — p [%(r,1 2,3 —r,3 2,1) — 1]) deZ.

D
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Then the first Euler-Lagrange equation is

  

I 611 I 611

[R (W 6(T,1) pTZ,3 /R)] 11 + R (W 8(T,3) +przil /R) 13

I

_ R (WI-8871 - p(rrl 233 -r13 z)1)/R) : 0

Using (2.2.6) one arrives after elementary computations at the first equilibrium equa-

tion (2.2.18) multiplied by 2R. Derivation of the other two equations is similar.

The same argument applies when the strain energy density depends on the second

invariant [2, but it requires more technically involved computations. I

Remark. For neo-Hookean stored energy density (1.0.6) the equilibrium equations

stated in the lemma become

”(Ar — r (voz + (r/R). ) - g0. —p,. z.) = 0, (2.2.21)

rAr + 2Vr - Vr + (r/R)r,1 = 0, (2.2.22)

7'

p.(AZ + 2,1/R) + E(pd T,3 '—p,3 7,1) = 0. (2.223)

Relative simplicity of the system suggests that for a priori simplified forms of func-

tions r, r, 2 finding exact solutions could be possible. Some such possibilities will be

explored in Chapters 5-7.
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Chapter 3

Existence theorems

In this chapter admissible sets appropriate for the Cartesian description of the ax-

isymmetric deformations defined in the previous section will be introduced, and the

main existence results for stored energy densities with and without dependence on

the cofactor matrix will be stated and proved.

To handle the incompressibility constraint (2.2.12), it is convenient to introduce

the following expressions that are similar to the pointwise and the distributional

determinants in genuine three-dimensional setting

del (11) = (£2 + 772))l Z13 —(€2 + "2)13 3111 (301)

Del (11) = D1 ((g2 + 172)2,3) —- 193 ((§2 + 772)2,1) . (3.0.2)

Now (2.2.12) takes the form

del(u) = 2R a.e. in D.
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Next we define four classes of admissible ordered triplets of functions 11 = (E, n, 2):

AM 2: {u E W””(D, 1R3) : u = no a.e. in I‘, cof F0 6 L"(D,M3"3),

del (u) = 2R a.e. in D}

A3” := {u e W1»P(D, a3) : u = no a.e. in r, Cof F0 6 L"(D,M3"3),

del(u) 2 2R a.e. in D}

A" := {u E Wl’P(D,IR3) : u = no a.e. in F, del(u) = 2R a.e. in D}

A5 := {u E Wl’p(D,IR3) : u = no a.e. in I‘, Del (11) = 2R a.e. in D}

where I‘ C OD, [F] > 0, and no is a specified function in W1’1’(D, IR3).

Although the deformation (1.0.10) is in general three—dimensional, the integrand

in the energy functional depends only on two variables. It is this reduction of the

space dimension that allows for the relaxation of Ball’s a priori restrictions on the

growth exponents p and q in the coercivity hypothesis.

In the lemma below relations between certain pointwise and distributional null La-

grangians are established. The lemma relies on the following theorem from [41].

Theorem 3.0.1 Let fl C IR” be open, 1 S p < n, v E WIND), and a' E L‘1(D; IR")

for I/p + 1/q — l/n S 1. If the distributional divergences Diva' and Div(v a') belong

to L1(Q), then Divva’ = Vv(x) ~a'(x) + v (x) Div 0(x) ' a.e. in 52.

Lemma 3.0.1 Let u E W1’3(D,IR3).

1. Ifs 2 4/3, then

Cof Fo(u) E L1 => Cof Fo(u) = cof Fo(u).

36



2. Ifs 2 3/2, then

Del (11) E L1(Q) => Del (11) = del (11).

The equalities hold a.e. in D.

Proof. Part 1 is proven in [41]. To prove Part 2, we set v = {2 + 172, a’ = (2,3, —2,1),

3 = 3/2 and check the hypotheses of Theorem 3.0.1. Clearly, q = 3/2, Diva = 0,

and Div(v a) 2 Del (11) E L1(D). By Sobolev embedding theorem (continuous em-

beddings) E, n E L”, where s‘ := 2s/(2 — s) = 6 is the critical Sobolev exponent.

Using Hblder’s inequality, it is easy to verify that v e Wl’6/5. In fact,

1/5 4/5

/ Ira. IG/Sda s f |€l6 f |€,.- Imda < oo, i: 1.3.

D D D

The identical argument applies to 77m. Now the statement of Part 2 follows from

Theorem 3.0.1 since p = 6/5 is a borderline case for the inequality relating parameters

in his theorem. I

Remark. Note from Lemma 3.0.1 that AZ” C AW1 and A3 C A”.

The following theorem gives sufficient conditions for the existence of a minimizer

of the reduced stored energy functional (2.2.14) when the stored energy density W

depends explicitly on both F and cof F. The first statement ensures the existence

of a solution to the minimization problem under weaker restrictions on the growth

exponents p and q, but in a smaller set of mappings for which the entries of the

distributional cofactor matrices are functions.
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Theorem 3.0.2 Let W(F) = W(F,c0f F) and q > 1. Then the energy functional

(2.2.14) assumes its minimum in admissible set A in each of the following cases:

1. A = A3”, p > 4/3, and p-1+ q'1 g 3/2.

2. A = A“, p 2 2.

The only fact that needs to be proven is that the admissible sets are closed with

respect to weak convergence of mappings u and corresponding cofactors. The rest

of the argument is standard (cf. discussion in Section 2.2). To begin, we need the

following lemma concerning weak continuity properties of Cof (), Del (-), and del (-).

Lemma 3.0.2 1. Let p > 4/3. Then the mapping Cof 0 : WI’P(D,IR3) —» ’D’

defined by Cof 0(u) = Cof Fo(u) is weakly continuous, i.e.,

u)c —* u in Wl’P(D,IR3) => [Cof Fo(uk)],j —> [Cof F0(u)],j in D’(D).

2. Let p > 3/2. Then the mapping Del : Wl'f’ ——> D’ is weakly continuous, i. e.,

11,, —\ u in W”p(D,IR3) => Del (uk) —> Del (11) in D’(D).

,3. Letp > 4/3, q >1, and p’1 + q‘1 S 3/2. Then

{11,c —\ u in Wl'p(D,IR3) and cof Fo(uk) —* cof F0(u) in L"(D,M3"3)}

=> del (uk) —-» del (11) in D’(D).

Proof. 1. This fact is well known (cf. . [4], [16]) and is stated here for completeness.
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2. From Relich-Kondrakov theorem (compact embeddings) we have that weak

convergence of the sequence uk in WI'P ensures strong convergence of some subse-

quence (not relabelled) 11,. in L9 for any q such that 1 < q < p‘, where p‘ is the

critical Sobolev exponent. In particular, for p > 3/2 this yields

(€92 —> 52 and (0")? —> 02 in L3.

Since l/p + 1/3 < 1, it follows from Holder’s inequality that products of the form

(8)2235" and (0")22fjn for m = 1,3, are integrable in D. Consequently, Del (uk) 6 D’

and therefore for any fixed 45 E D(D)

< Del (u.),¢ >:= — f (05")2 + (77")2) (z,§¢,i —z,'; 3,, ) da —. < Del (u),¢> >,

D

thereby proving the second part of the lemma.

3. First note that

del (uk) = {k (cof F0(uk))22 — n" (cof F0(uk))12.

As in Part 2, it can be inferred that there exist subsequences 6", 17" such that 5" ---2 g

and r)“ —> 17 in L" for 1 < s < p“. Combining this observation with the assumed weak

convergence of the cofactor matrix and bounds on the growth exponents concludes

the proof. I

Proof of Theorem 3.0.2 . 1. By Lemma 3.0.1, Part 1, Cof Fo(u) = cof Fo(u) for

u 6 AZ”, and existence of a weakly convergent in WI'I’(D, 1R3) minimizing sequence

uk = (5",17",2"), as well as boundedness of cof Fo(uk) in L” are established in a
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standard way. (cf. discussion in Section 2.2). Hence, for some subsequence 11;, (not

relabelled) we have

cof Fo(uk) —\ H in L".

Now by Lemma 3.0.2, Part 1, one concludes that H = Cof F0(u), thus proving that

Cof Fo(u) 6 L9.

Consequently, the assumptions of Lemma 3.0.2, Part 3, hold, thereby implying that

del(u).) —) del (11) in ’D’. Weak convergence of del (uk) to 2R in L' for any r > 1

follows from the incompressibility constraint. Hence del (11) = 2R a.e. and therefore

11 E 5’”, proving Part 1 of the theorem.

2. If u 6 WM”, p 2 2, the pointwise and distributional cofactor matrices of Fo(u)

coincide, since for any fixed function it E D(D) and for any fixed pair of indices

i,j, 1 S i,j S 3, the functionals

g,(..) = / (cof Fan»... ctda and Mn) =< (Cof Fem»... i) >
D

coincide on the dense set 02(D,1R3) C W1’1’(D, R3) and are continuous in Wl'P(D, 1R3)

norm. (cf. [16], Theorem 7.5.1.) Therefore Part 2 is a particular case of Part 1 of

the theorem. I

Remark. To compare the assertions of Theorem 3.0.2 with analogous results in the

genuine three-dimensional case, recall that the restrictions on the growth exponents

for the analog of the second statement of the theorem are p Z 2, q _>_ 3/2 [42]. If one

seeks a minimizer in a set

{11 6 W11”: Cof F e L", DetF 6 L1},
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the restrictions are p 2 3/2, p”1 + q"1 S 4/3 [41].

The next theorem provides conditions for the existence of a minimizer when the

stored energy density does not depend on cof F. As in Theorem 3.0.2, the first

statement ensures the existence of a solution to the minimization problem under

weaker restrictions on the growth exponent p, but in a smaller set of mappings u for

which the distributional counterpart (3.0.2) of the expression del (11) is a function.

Theorem 3.0.3 Let W = W(F). Then the energy functional (2.2.14) assumes its

minimum in admissible set A in each of the following cases:

1. A: A5, p>3/2.

2. A = A”, p > 2.

Furthermore, for p > 2 any minimizer u belongs to Hb'lder space Go'“(D) with

0 S a S 2/p, and there exists a minimizing sequence 11), converging to u in

C°'°‘(D)—norm for 0 S a < 2/p.

Proof. 1. It follows from Lemma 3.0.2, Part 2, that for any minimizing sequence u)c

converging weakly in W14" to a function 11 one has

Del(uk) —> Del (11) in D'.

On the other hand, the definition of the admissible set A]: implies

Del (uk) —> 2R a.e. in D

for some subsequence (not relabelled). Therefore Del (11) = 2R a.e. in D. The rest of

the proof is standard.
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2. For p > 2 there exists a minimizing sequence 11,. and some q > 1 such that

cof F0(uk) —\ cof F0(u) in Lq.

Then the weak closedness of the admissible set follows immediately from Lemma

3.0.2, Part 3.

The statement about regularityand convergence in Holder spaces follows from Sobolev-

Relich-Kondrakov theorems. I

Remark. Note that the first statement of the Theorem 3.0.3 ensures the existence

of a minimizer for neo—Hookean materials in the admissible set A3,. It is tempting to

obtain existence result for the case p = 2 in the larger set A2. This would be possible

if W1'2(D) C Lfifc(D), but it is well known that in general a function f E Wmt’m),

D C R" with mp = n, and n > 1, does not belong to L°°(Q). An example is provided

by a function f = [log [3“1-2/(n-1), n 2 2, defined in the ball B(0,r), r < 1, [55].

However, as will be shown in the next chapter, the existence theorem can be extended

to the marginal case p = 2 under an additional constraint on the radial component

in cylindrical description of the deformation.
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Chapter 4

Global injectivity of axisymmetric

minimizers

The mere existence of a minimizer for a problem in nonlinear elasticity is not quite

satisfactory. It is desirable to ensure some realistic properties of solutions, e.g., in-

jectivity, which physically means that interpenetration of matter does not occur. For

smooth mappings u 6 01(0) local invertibility follows from positivity of the deter-

minant. However, this does not prevent overlapping of parts of the image u(Q). In

this chapter the global injectivity of minimizers for cylindrical description of axisym-

metric deformations is investigated. We make use of some properties of mappings of

finite distortion that are collected in Section 4.1. The results on global injectivity of

admissible functions as well as the extension of Theorem 3.0.3 to the case p = 2 are

stated and proved in Section 4.2.
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If a uniform positivity assumption (1.0.13) is imposed on the radial component,

the direct method of the calculus of variations applies to axisymmetric deformations

in cylindrical description, 11 = (r, r, 2). Then existence of a minimizer for the problem

(2.2.14) in the admissible set Ap for p > 2, stated in the second part of Theorem 3.0.3,

can be obtained in exactly the same manner for the minimization problem (2.2.13)

in the admissible set of triplets of functions 11 = (r, r, 2) defined by

A2 := {u E W””(D,IR3) : u = no a.e. in I’, (2.2.5), (1.0.13) hold a.e. in D}

with a > 0.

4.1 Some properties of mappings of finite

distortion

Ball’s existence theory in nonlinear elasticity motivated introduction of a class of

mappings of finite distortion since the admissible functions he introduced belong to

this class. A class of mappings of finite distortion includes well known mappings

of bounded distortion (or, equivalently, quasiregular mappings) [48]. The latter is

a generalization of classical quasiconformal mappings [1], [25]. In this section some

properties of functions of finite distortion needed in the sequel are stated. These prop-

erties will allow one to obtain essentially sharper injectivity results in axisymmetric

setting compared with those presented in [5], [15], and [52].

Definition 4.1.1 Let Q be a bounded connected, open subset in IR".
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A mapping f : 9 —-> IR" is said to be a mapping of finite distortion (MFD) if

1. f e Wilma”)
loo

2. The Jacobian J(2:, f) of f is locally integrable and does not change sign in Q.

3. There is a measurable function K : 9 —> IR such that K(x) Z 1, finite almost

everywhere, and f satisfies the dilatation inequality

|Df(:r)|" S K(r)|J(:r,f)] a.e. in 9. (4.1.1)

The smallest of such functions K(), K(:17, f), is called the dilatation, or dis-

tortion, quotient.

In the theorem below some of the properties of functions of finite distortion are listed.

The theorem is similar to Theorem 1.3 in [26] (parts 1, 3, 5 in both theorems are

identical.)

Theorem 4.1.1 Let f E Wl'"(Q,IR") be a MFD. Then

1. f has a continuous representative.

2. The following estimate of the modulus of continuity holds

Irv - ill ’1”

2R

 

 
|f($) - f(yll S C(niB)IIVfIILn(m 108 (4-1-2)

 

with arbitrary :L‘, y E B(a, R) C B(a,2R) C Q.

3. f is differentiable a.e.
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4. For every measurable set G C Q the inequality

man s f |J(a:.f)|dx

0

holds.

5. f satisfies condition (N), i.e., |f(E)| = 0 whenever E C Q and [E] = 0.

Proof. See Theorem 1.3 in [26] for references to proofs of assertions in Parts 1, 3, 5.

Part 2 is a particular case of Theorem 7.5.1 from [31]. The theorem is stated there

for weakly monotone functions in Orlich-Sobolev spaces WP(Q) with Orlich function

P satisfying the following conditions:

°° dt
/ P<t>,,—,;,— = 00.
l

the function t H P (t(2"+1)/(2"2)) is convex.

Clearly, function P(t) = t", corresponding to Sobolev space WIND), satisfies those

conditions. Without introducing the notion of weak monotonicity, we refer to The-

orem 7.3.1 in [31], which states that the coordinate functions of a mapping f E

Wl'"(fl, IR") with finite dilatation has this property.

Part 4 follows from Theorem 1.4 in [25], Pg.274. The assumptions of the theorem

are ensured by Part 3 and Part 5 of Theorem 4.1.1, and by local integrability of the

Jacobian J(:r,f). I

In the following lemma it is shown that for any relatively compact set G E Q a

bounded set of MFD from Sobolev space with natural exponent is pre—compact in

C(o).
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Lemma 4.1.3 Let a sequence gk 6 Wl'“(f2, IR") of mappings offinite distortion con-

verge weakly in Wl’"(Q,IR") to some mapping g. Then for any relatively compact

domain G C 9 there exists a subsequence converging uniformly in G. 1

Proof: We show that a sequence of it“ components gig of mappings g)c is equicon-

tinuous and uniformly bounded. To simplify notation introduce the scalar functions

fl, = 9;, f = 9‘. Clearly, it follows from (4.1.2) that given 6 > 0 one can find

6, 0 < 6 < dist(G, BID/2, such that for any pair x, y, E G, [x — y] < 6, the left hand

side in (4.1.2) will be less than c. This proves equicontinuity of the sequence fk.

For a fixed 6 as above, there exists a finite covering B,- = B(xg, 6), j = 1,... ,N, of G.

By Relich-Kondrakov compact embedding theorem the sequence f)‘ is pre—compact

in any space L’, s _>_ 1. Since for any sequence of functions converging strongly in L"

there exists a subsequence that converges almost everywhere, one can assume that for

some subsequence, not relabeled, fk(x(’,) —) f(x3) for every j. Uniform boundedness

of fk in G then follows from the inequality

Ifk($)l S lfk(rv) - fk(1'3)l+ lfk(1‘l)- f(1‘3)|+ max [f(rlfl.
ISjSN

where x E 8,. Note that the first term on the right is uniformly bounded due to

equicontinuity. The statement of the lemma then follows from Arzela-Ascoli theorem.

 

1It was known to Lebesgue [34] that a family of continuous and monotone functions with bounded

Dirichlet integral is equicontinuous.
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If a nonconstant mapping f has finite distortion with integrable dilatation quotient

(by definition f is called quasiregular in this case), then, by a fundamental result of

Reshetnyak [48], the mapping is open and discrete. Here ’discrete’ means that the

preimage of a point y e f(9) is a discrete subset of Q, i.e., it does not have cluster

points. These properties were recently carried over to two-dimensional MFD with

integrable dilatation quotient [30] . The result is stated in the theorem below.

Theorem 4.1.2 Let Q be a bounded domain in the complex plane (C,o(2)), 0(2)

being the area element, and f E W1’2(Q,C) with J(z,f) Z 0 and K(-,f) E L’(Q).

Then there exists a homeomorphism h : (2’ -> (2, with Q’ = h‘1(Q) and a holomorphic

function (f) : Q’ —r R2 such that

f=¢°h”l-

Remark. If the conclusion of the Theorem 4.1.2 holds, function f is said to admit

Stiolow’s type factorization. Then, obviously, f is open and discrete.

We will need also a change of variables formula for functions of finite distortion

from Sobolev space Wl'"(fl, IR"). The following fragment of Theorem 2.2 from [48],

Pg. 99, will be sufficient for our purposes.

Theorem 4.1.3 Let Q be an open set in IR", and f : Q —+ IR” a continuous mapping.

Assume that

1. f has property N;

2. f is differentiable almost everywhere in Q;
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3. Function x --+ J(x, f) is locally integrable in 0.

Then for every nonnegative function g : Q -—2 IR the function

y->N(y.f.g),1\’(=y.f,g)=z 9(rr

f‘(y)

is measurable in IR" and

/ N(y,f,g)dy = /g(x)lJ(x.f)ldw. (4.1.3)
R7!

Q

A particular version of this theorem with g E 1 will be used in a sequel. Note that

N(y, f, 1) is simply a multiplicity function.

Let p 2 2. Introduce a set of triplets of functions

A3 := {u e Wl’P(D,IR3) : r 2 0, (2.2.5), hold a.e. in D} (4.1.4)

and recall the definition (1.0.11) of two-dimensional mapping corresponding to any

u = (r, r, 2),

v: D —2 R2, v(X') = (r(X'), 2(X')), X' = (R, Z) 6 D.

In the lemma below two remarkable properties of the two-dimensional mapping v

corresponding to u 6 A3 are stated.

Lemma 4.1.4 Let u = (r, r, 2) 6 A3. Then the mapping v = (r, 2) is an open and

discrete MFD.

Proof We show that v is MFD. The notation in Definition 4.1.1 translates according

to

|Df(x)]" = ]VV]2, J(x,f) = det Vv, K(x,f) = K(X',v) = [Vvlz/det Vv.

49



Now the definition of A3 implies that the Jacobian of v, det Vv = R/r is positive

a.e. in D, and the dilatation quotient is finite almost everywhere.

To prove openness and discreteness we employ Theorem 4.1.2. Since D is strongly

Lipschitz and lies in the half plane {(R, Z) : R > O}, we can find a sequence of open

relatively compact strongly Lipschitz subdomains G,- C {(R, Z) : R > a.- > 0} such

that

GICGICch..., D=Uo,-. (4.1.5)

It suffices to show that for any relatively compact subset G in D the dilatation

quotient of the mapping f = vlg is integrable. In fact, due to the incompressibility

constraint the dilatation quotient satisfies the inequality

r r 2 (T/R) r 2_ I 2

K<X ,f) s IDV(X )l /detv s WIDVM )l — (r/R)IDV(X )I

almost everywhere in G. By Theorem 4.1.1, Part 1, the mapping f is continuous in

C7 and therefore bounded. Recall that for all points (R, Z) of the domain D we have

R > R4- > 0. Therefore there exists a positive constant C so that

K(X’, f) S CIDV(X’)I2,

and the integrability of the dilatation quotient in G follows. Since any open set E C D

can be represented as a union of open relatively compact sets, E = U321 G,- H E, this

completes the proof. I

Remark. In the compressible case, if u = (r, r, z) E W1'2(D,1R3) and

7' .

detF = —(r,12,3 —r,;; 2,1) > O a.e. in D,

R
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then the two-dimensional mapping v still has finite distortion provided r _>_ 0 a.e., and

therefore Theorem 4.1.1 remains valid for the mapping. But openness and discrete-

ness are not available for v in this case without additional assumption, for example,

detF 2 B > 0 a.e. in D.

4.2 Global injectivity theorems

Now we are in a position to examine the injectivity of axisymmetric minimizers.

For Dirichlet boundary conditions, the main result in [5] on global invertibility can

be applied to the two-dimensional mappings v corresponding to u from an appropriate

admissible set without imposing any condition on the adjugate matrix. This is shown

in the next theorem.

We recall that a domain U 6 IR" is said to satisfy the cone condition if for all

a: E U a set {x + E(e(:r))} is a subset of U, where E(e(x)) is the right circular cone

of fixed radius and height with vertex at the origin, and a vector e(:r:) specifies the

direction of the axis of the cone.

Theorem 4.2.4 Let p > 2, A = Afyl with I‘ = (9D. If no, defining the boundary

condition of place, is such that the corresponding v0 is continuous in D, one-to-one

in D, and v0(D) satisfies the cone condition, then any 11 E A (in particular, any

minimizer) is a homeomorphism of D onto v0(D), and the inverse function X’()

belongs to Wl'P(v0(D)).

If v0(D) is strongly Lipschitz, then v : D —i vo(D) is a homeomorphism.
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Further, in the former (latter) case corresponding three-dimensional deformation

(R,w, Z) —-> (r,w + r, z)

is also a homeomorphism of f2 { 5—?) onto its image.

Proof. All assertions of the theorem, except for the last one, are identical to those in

Theorem 2 of [5] with the only missing condition

/ |(Vv)"l(X')|p det Vv(X') dX' < 00.

D

This condition can be established in exactly the same manner as the integrability of

the dilatation quotient in Lemma 4.1.4.

The last statement follows from the well-known general fact that a one-to-one,

continuous, and Open mapping f : U —> V of topological space U into topological

space V is a homeomorphism of U onto f(U) I

To examine the injectivity of minimizers when boundary condition is prescribed

only on the part of the boundary, we need an analogue of the famous injectivity

condition by Ciarlet and Neéas [15], viz.

fdetF(u)dX S |u(Q)|. (4.2.6)

o

For isochoric axisymmetric deformation this condition simplifies to

fRdX’ S / rdx’, x’ = (r,z), (4.2.7)

D v(D)

which can be recast into

fdet Vw dX’ S |w(D)|, (4.2.8)

D
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where the mapping w is defined as

w : D —> R2 W(X') = (p, z) := (r2, 2), (4.2.9)

where the incompressibility constraint (2.2.5) was employed. Inequality (4.2.8) is the

injectivity condition for axisymmetric setting.

Remark. Although for isochoric deformations (4.2.7) looks simpler, the injectivity

condition in the form (4.2.8) is similar to commonly used three-dimensional version

(4.2.6) and, more importantly, can be used for the compressible case as well.

Now we are ready to carry over the injectivity results obtained in [15] and [52]

to the axisymmetric problem under consideration with essential sharpening due to

higher regularity and the openness of the two-dimensional mapping v. For a fixed

a > O introduce an admissible set

A? := {u 6 AZ such that (4.2.8) holds}.

The next theorem is the main result of this section.

Theorem 4.2.5 Let W = W(F) and p Z 2. Then

I. The energy functional (2.2.14) assumes its minimum in 44’}.

2. For any 11 E A’,’ (in particular, any minimizer) the corresponding two - dimen-

sional mappingv : D —> v(D) is a homeomorphism, and v‘1 6 W13.” (v(D), 1R2) .

3. If p > 2 then for any admissible function (in particular, any minimizer) u =

(r, r, z) E A? a mapping (1 := (r, w + r, z) is a homeomorphism off? onto 13(9).
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Proof. 1. It suffices to show that the incompressibility condition and the injectivity

condition are preserved by weak limits of the elements from 44’}. Let uk 6 A’}, 11,. —\ u

in W1*P(D,R3).

Incompressibility condition for u will follows from weak continuity of the mapping

del : Wl’p(D, 1R3) ——> ’D’(D).

Note that condition r(R, Z) Z 01 > 0 combined with the incompressibility constraint

implies that

det Vv,c = R/r S C a.e. in D

with a constant 0 independent on k, C 2 maxb R/a. Therefore for an arbitrary

fixed 3, t > 1, there exists a subsequence uk (not relabelled) such that rk -> r in L’

and det Vv,c —* det Vv in L‘. Since del (uk) = 2r det Vvk, the weak continuity of the

mapping del follows.

To prove that the injectivity condition (4.2.8) is preserved by weak limits, it suffices

to show that the injectivity condition holds for any G CC D, i.e.,

/deti dX’ 5' |w(G)| (4.2.10)

G

for any w corresponding to a weak limit of a sequence of admissible functions. Indeed,

then writing this condition with G = Gk, where Gk is a subdomain from (4.1.5), and

passing to the limit as k —> 00, we obtain the injectivity condition in D.

Firstly, we prove (4.2.10) for any w corresponding to a mapping u 6 A’}. By
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Theorem 4.1.1, Part 4, for any measurable set E C D the inequality

|w(E)| g / detwdR dZ (4.2.11)

E

holds. If we assume that for some G C D (4.2.10) does not hold, then, by virtue

of injectivity condition (4.2.8), there must be a set E C D of positive measure such

that the inequality opposite to (4.2.11) must hold.

Note that this contradiction implies even more than was claimed. In fact, it has

been proven that for any G C D (4.2.10) holds with strict equality.

Secondly, we prove that (4.2.10) is preserved by weak limits. Note that Theorem

7.9.1 from [16] does not apply directly to two-dimensional mappings wk in case p = 2

because these mappings belong to the space W1'2(G, 1R2) while wk 6 W149 with p > 2

is needed. However, the argument, used in the theorem, applies since it relies on the

following facts:

0 Functions wk, w have (N) property.

0 Functions wk are continuous, and the sequence converges to w uniformly in C.

o det Vw)c —\ det Vw in L9 for some q > 1.

The last property is just the weak continuity of the function del, which is proved

above, the other two follow from Theorem 4.1.1, Parts 1, 5, and Lemma 4.1.3. Using

those facts we reproduce the argument of Theorem 7.9.1 [16] below with appropriate

modifications.
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Since the set W(G) is compact, whence measurable, there exists, by a classical

property of the Lebesgue measure, an open set 0(6) such that

W(G) C 0(6). |0(6) \W(C7)| < 6-

Then it is easy to show [16] that there exists a number 6(6) > 0 such that

U3 (3136(6)) C 0(6).

where the union is taken over all y’ E W(G). Hence there exists an integer K = K(e)

such that

wk(C—}') C 0(6), for all k 2 K,

since wk converges to w uniformly in C7. Employing (4.2.10) one obtains

/ dethkdx' s Iw.(G)I = Iw.(é)l s l0(e)l, for all k .2 K,

G

where we used the fact that functions wk have (N) property.

Passing to the limit as k —> 00 one obtains

/detidX' s 10(6)) = Iw<é>| + l0(e) \w<G)I s IW(G)I + .,

G

where (N) pr0perty of the function w was used. Since 6 is arbitrary, this proves

(4.2.10) for weak limits and therefore completes the proof of Part 1.

2: Making use of the change of variables formula (4.1.3) with g E 1

fdetidX'= [N(w,y’)dy’,

D W(D)
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where y’ = (p, z) = (r2(X’), z(X’)), and following the argument in [16] one derives

|w(D)| = / dpdz g / N(w, y’)dy’ = /detidX’ g |w(D)|.

W(D) W(D) D

Since N(w,y’) = N(v, x’), this implies that N(v,x’) = 1 for almost all x’ E v(D).

Suppose N(v, x’) > 1 for some x’ E v(D). By Lemma 4.1.4 the mapping v is open.

Therefore there exists a neighborhood U C D of x’ such that N(v, x’) > 1, V x’ E U.

This contradiction implies that N(v, x’) = 1 for all x’ E v(D). Noting that a

continuous, open, and bijective mapping is a homeomorphism, the proof of the first

statement in Part 2 is complete.

The second statement follows from Theorem 3.1 in [22].

3. If p > 2 the tree-dimensional mapping 1‘: is continuous, open and bijective. I

Remark 1. A version of Theorem 4.2.5 can be proved in the compressible case with

appropriate modifications.

The argument used for proving the weak continuity of the determinant in Part 1

of the theorem fails. However, this property can be established as follows.

Let uk -—* u in W1'2(D, 1R3), del (11) > O a.e., and r 2 or > 0 a.e. Then corresponding

two-dimensional mappings vk are continuous, and for any relatively compact G CC D

we have (up to a subsequence, not relabeled)

rk rkm, —\ rr,m in L2(G).

Now the weak continuity of

del (u) = (r2,1, 72,3) - (2,3, —Z,1)
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follows from the compensated compactness theorem [53].

Injectivity almost everywhere for weak limits in compressible case can be estab—

lished via the injectivity condition (4.2.8) in the same manner as in Part 2 of Theorem

4.2.5, but without the openness of the mapping v stronger assertions of the theorem

are not in general true for the compressible case.

Remark 2. Clearly, by Theorem 4.1.2, two-dimensional isochoric deformations from

Sobolev space W14’(Q, R2), 9 C R2, p 2 2, are open and discrete. This observation

can be used in exactly the same manner as in the proof of Theorem 4.2.5, Part 2, for

sharpening the injectivity results of [15], [52] for this class of deformations, but we

do not pursue this issue here.
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Chapter 5

Governing equations for TIE

motion

Beginning with this chapter, more specialized axisymmetric deformations than those

examined in the previous chapters are considered, but they are assumed to depend

on the time variable. Here the governing elastodynamic equations for motions involv-

ing axially varying twist, radial inflation/deflation, and axial contraction/glongation

(TIE) and introduced by the equations (1.0.14),

r = Rs(Z, t), 6 = w + r(Z, t), z = z(Z, t),

are derived.

Attention is henceforth restricted to neo-Hookean materials whose strain energy

density is given by (1.0.6).

The nominal stress tensor S, given in the incompressible case by (1.0.7), reduces
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for neo—Hookean material to

S = ”FT — pF-l. (5.0.1)

Direct computation shows that for TIE motion the isochoric constraint (1.0.4) be-

comes

Bz 1

— = —. 5.0.2

BZ 32 ( )

Utilizing the standard expression of the acceleration vector in cylindrical coordinates

and the equilibrium equations for neo-Hookean material (2.2.21)-(2.2.23) enables the

linear momentum balance ( 1.0.8) to be written as

M [AT ‘ 7' (VT)2 + (r/R),1] — (r/R)(p.1 2,3 ‘R3 2,1) = P0; - ”2), (50-3)

u [rAr + 2Vr - Vr + (r/R)r,1] = p(r‘f + 2%), (5.0.4)

A2 + z,1/R + (r/uR)(p,1r,3 —p,3 r,1) = p2. (5.0.5)

For TIE motion these equations transform into

#R(s,3s-sr,§)-p,1z,3s = pR(§—s+2). (5.0.6)

”(‘37-’33 +23,3 7'73) = p(ST+2ST)7 (5"07)

HZ,33+RSS,3P,1—32P,3 = pi (5-0-8)

We seek to investigate controllable motions associated with this system. Here the

term ‘controllable’ is used in the sense that the motion (or deformation) is sustainable

by surface tractions alone. For our purposes, a suitably smooth set of functions

s(Z,t) > 0, r(Z, t), z(Z, t) defined on [21,22] x [t1,t2] (where Z] and 22 may take
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infinite values) is said to define a controllable axially varying TIE motion via (1.0.14)

for a neo-Hookean material if:

(a) the mapping in cylindrical coordinates defined by (1.0.14) at fixed t is one-to-

one,

(b) the constraint (5.0.2) is satisfied,

(0) there exists p(R, Z, t) such that (5.0.6)—(5.0.8) are satisfied.

Recall [44] that the surface traction per unit area on the vector area element

da in B(t) is denoted by t and is given by

t da = STN dA = STdA, (5.0.9)

where dA is the corresponding vector area element in 30 with associated unit normal

N.

Note that F = F(R, Z, t) and x = )2(R, Z, t) implying that

p = p(R, Z. t). (5.0.10)

Next we simplify the system (5.0.6)-(5.0.8) by eliminating the pressure. To this end

equations (5.0.6) and (5.0.8) can be solved for p] and p3,:

10,1 = #R8(s.33 -sr,§) — pRS(§ - 3+2), (5.0.11)

19,3 = ,U (R23,3 (8,33 —ST,§) + 2,3 Z,33) — p (R28,3 (S — 37.2) + 2,3 Z) ,(5H012)

where (5.0.2) gives certain simplifications. Equating the cross-derivatives of p gives

an equation

3 (u(s,33 —sr,§) — p(§ — 3+2)),3 — 3,3 (u(s,33 —sr,§) — p(s' — 3+2» = 0.
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Integration then provides

#(Scs _STd) — PCS. — 3+2) ‘ C(t)s = 0,

where C(t) is, in general, an arbitrary function of time.

Thus the system (5.0.6) - (5.0.8) reduces to the following system of two coupled

nonlinear PDE for r, r:

u(s” — sr’z) — p(.§ — si'z) — C(t)s = 0, (5.0.13)

u(sr” + 2s’r’) — p(si‘ + 25+) = 0, (5.0.14)

where prime stands for differentiation with respect to Z.

Note from (5.0.11) and (5.0.13) that p3 = RszC(t) whereupon

p(R, Z, t) = §C(t)st2 + p(z, t), (5.0.15)

with (5.0.12)—(5.0.15) providing

133 = —2,us_5s,3 —ps‘22 4:) p = g54 — p/s‘zi dZ + po(t). (5.0.16)

The determination of controllable motions now reduces to the determination of suit-

able functions s(Z, t) and r(Z, t) that satisfy the governing system given by the two

second order nonlinear partial differential equations (5.0.13) and (5.0.14). The func-

tion C(t) may be arbitrarily chosen. The axial contraction/elongation 2(Z, t) then

follows from integration of (5.0.2) and so is determined up to an arbitrary function

of time that represents an axial rigid body displacement. The pressure p(R, Z, t) fol-

lows from (5.0.15) and (5.0.16), and so is also only determined to within an arbitrary
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function of time. One finds that the principal stretches A1, A2, A3 are given in terms

of functions 3, r by

1

A? = %(’n + '72)/32, A3 = §t('Yl - 72)/sz, and A3 = 32, (5.0.17)

with 71 2 1+ 5, 72 = {-4s6 + (1 + fl)2}1/2, ,6 = st4s,§ +36(1 + R2r,§ ). Thus,

in general, all three principal stretches vary in both space and time. For the case

r(Z, t) = r(t) it is seen that eg is a principal direction on B(t). For the case s(Z, t) =

s(t) it is seen that e, is a principal direction on B(t).

A case of some physical interest is that for which [30 is a cylinder whose cross-

section is an annulus with inner radius R1 2 0 and outer radius R2 > R1. Notice

that cross-sections of constant Z map into cross-sections of constant z. On the lateral

surfaces R = R1 and R = R2, N = :hER giving

sTN = 4043(2, t) — p(R, Z,t)/s(Z, t))e. i Rp(R, z, t)s(Z, t)s’(Z, t) e, (5.0.18)

and thus determining sustaining surface tractions via (5.0.9). In addition, tractions

associated with ends at any fixed Z = Z require a resultant axial force N and a

resultant twisting moment M given by

 

N(Z,t) := 24 R232,(R,Z,t)RdR

R]

7m ((192))2-(0‘31)2 7r 4 4 4
——2—- 32m” — ZG(t)s (Z, t) ((122) — (R1) )

 — MW) ((422)? — (R1)”) (10.0) — p/ $842)”) .
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(R?)

M(Z,t) :2 24 / r(R,Z,t)Szg(R,Z,t)RdR

R1

= gusz(Z,t)r’(Z, t) ((152)4 — (air).

As a premliminary and very simple example consider the case s(Z, t) = constant. In

order to restrict rigid body motion, take 2(0, t) = 0 so that (5.0.2) gives 2(Z, t) =

Z/sz. Then (5.0.14) requires r(Z, t) = h+(Z+ Mt)+h_(Z— Mt) for arbitrary

functions hi, and h_, whereupon (5.0.13) gives that either r(Z, t) = h+(Z + Mt)

or r(Z, t) = h- (Z — Mt). The motion is thus a single travelling wave. In addition,

C(t) = 0 and the pressure p = po(t). According to (5.0.18), this solution is supported

by uniform normal traction on the lateral surfaces R = R1 and R = R2. This

includes the case of traction free lateral surfaces obtained by taking po(t) = #32. The

resultant axial force N(Z, t) associated with this traction free solution is N(Z, t) =

7r,u/2((R2)2 — (R1)"’)(s‘2 — s4), also a constant. In particular, N < 0 for axial

contraction (s > 1) and N > 0 for axial elongation (s < 1). The twisting moment is

given by M(Z,t) = 7ru/232((R2)4 — (R1)4)szh§t(Z :l: \/u/—pt), where prime denotes

derivative with respect to the argument. Thus M, unlike N, varies with the passage of

the travelling wave. More general travelling wave motions wherein s is not necessarily

constant are discussed in the next chapter, where we obtain closed form solutions for

the following four classes of controllable motion:

0 controllable deformation, which is the special case for which 3 = s(Z), r = r(Z),

z: 2(Z);
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o controllable travelling waves, which is the special case for which 5 = s(Z — ct),

r = r(Z _ ct), z = 2(Z — ct) where c is a constant;

c controllable simple twist motion, which is the special case for which 7' = aZ +

ro(t) where a is a constant;

0 controllable motion with a Riemann type similarity variable, which is the special

case for which 3 = s(Z/t), r = r(Z/t).
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Chapter 6

Closed form solutions for TIE

motion

6.1 Controllable deformations

Controllable deformations s = 5(2), 1' = r(Z), z = z(Z) provide equilibrium so-

lutions to the equations of motion (5.0.6)-(5.0.8). Then the equations (5.0.14) and

(5.0.13) (under the replacement C —+ [10) give

sr" + 2s’r’ = 0, s” — s'r’2 — C's = 0. (6.1.1)

The first equation in (6.1.1) gives r”/r’ = —2s’/s, which upon integration provides

1" = cl/sz, (6.1.2)

where c; is a constant of integration. Substitution from (6.1.2) into (6.1.1)2 gives

3” — (cf/s3) - C's = 0. (6.1.3)
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Introducing q(s) := s’ and using the relation 3” = q(dq/ds) permits (6.1.3) to be

rewritten as q(dq/ds) = Cs + c§/s3, so that integration provides

q2 = 032 — (cg/s2) + c2,

where c2 is another integration constant. Since q = ds/dZ, one obtains

 := :l:Jc. 

Z = :l: / sds

\/C's4 + 0232 — cf

Evaluation of Jc is sensitive to the sign of C giving results as follows from subsequent

elementary calculations:

(i) If C < 0 then

2
, s -B

arcsm —— —c3,J0: A

1

2\/-C

where c3 is an integration constant, and the new constants A > 0, B > A take the

place of c1, c2. Since Cl is necessary for the determination of r(Z) from (6.1.2), it is

noted that c1 = :t,/G(A2 — 32). Hence in this case

1/2

s(Z) = (B + Asin 24(42 + 4.)) (0.1.4)

with a = \/—C and c1 = :i:a\/B2 — A2.

(ii) If C > 0 then a corresponding calculation yields

1

24/5

 

 Jc= lnlsz—B+\/(s2—B)2—A2]—c3,

where A, B with A2 > 82 replace c1, c2. In this case

2

s(Z) = (B + éexp (2a(iZ + c3)) + 52— exp ( — 2a(:l:Z + c3))) 1/2 (6.1.5)
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with a = MG- and c1 = :l:a\/A2 — B2.

(iii) If C = 0 then

s(Z) = (B2 + A2(Z + c3)2)1/2 (6.1.6)

with c1 = :tAB.

The functions s(Z) given in (6.1.4)—(6.1.6) provide the framework for a family of

controllable deformations. Given any such s(Z) the associated 7(2) and 2(2) follow

respectively from (6.1.2) and (5.0.2) and so differ from the integral

only by (distinct) multiplicative factors and (distinct) constants of integration. If

s(z) is given by (6.1.4) then, to within an integration constant,

HZ _ 1 t Btana(Z+c3):l:A

<>-;——./B—2_—.42a‘”“ ./——32_.42 -
 

If s(z) is given by (6.1.6) then, to within an integration constant,

H(Z) = Zl—B—arctan—é—(Eg—(i)

If s(z) is given by (6.1.5) then H(Z) can again be expressed in terms of elementary

functions, but the expression is rather cumbersome; the particular case B = 0 gives,

to within an integration constant,

H(Z) = fiarctan exp2a(4Z + 63). 

The following theorem summarizes this development.
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Theorem 6.1.6 For arbitrary constants a, c3, c4 and 05, and constants A, B sub-

ject to the restrictions listed below, each of the following sets of functions represent

controllable TIE deformation for a neo-Hookian solid on an appropriate interval in

Z.

(i) For [B] > [A] and any Z—interval of a length less than 1r/a:

1/2

’

r(R, Z) = B(B + Asin 2a(Z + 03))

Btana(Z + c3) + A

«E27747 ”4’
 6(a), Z) = w :t arctan

1 Btana(Z+c3)+A+
 2(2) = —————arctan

an??? m

(ii) For [A] > [B] and any Z-interval:

r(R, Z) = R3(2),

dZ

6(w,Z) = wiaVAz—sz— +c4,

32(2)

dZ

2(2) = [Md—C5,

where s(Z) is given by (6.1.5).

(iii) For arbitrary A, B and any Z—interval:

r(R, Z) = R(B2 + A2(Z + c3)2)1/2,

0(w,Z) = wimctanflBigl+c4,

z(Z) = Elgarctanw-l-cg

C5.

In the above formulae, constants c4, c5 represent rigid body motion, whereas constant

c3 is a simple offset distance for the dependence on axial coordinate Z. Symmetry
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with respect to clockwise and counterclockwise twist is provided by the :l: in the

formulae for 6(a), Z). The associated pressure is determined directly from (5.0.11)

and (5.0.12) to be

H R 4 l‘ 2

p(RZ) = Elm) — 504m, 2)) +p.

where p0 is an arbitrary constant and a = 0 for case (iii) above. Formally one may

take p0 = po(t) if desired.

It is worth noting that Theorem 6.1.6(i) with A = 0 gives the relatively simple

deformation

4:44—33, Ozwia(Z+c3)+c4, z=(Z+c3)/B+c5

in which twist (characterized by the parameter a) decouples from the radial inflation/de—

fiation and axial contraction/elongation (characterized by parameter B). This spe-

cial case represents one of the universal deformations for an arbitrary homogeneous,

isotropic, incompressible, hyperelastic material [21]. Other than this special case, the

deformations described in this section do not correspond to a universal deformation

for an arbitrary homogeneous, isotropic, incompressible hyperelastic material. This

deformation also represents the only solution that is physically meaningful for the

infinite Z-interval. For the periodic solution in Theorem 6.1.6(i), the Z-interval is

restricted by the period of the solution; for solutions in Theorem 6.1.6(ii) and (iii),

the radial deformation grows without bound as Z —* ioo.

Figures 1 and 2 depict the deformation of the coordinate plane 0) = 0 for conditions

representative of Theorem 6.1.6(i) and (ii), respectively. The left part of each figure
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Figure 1: Deformation of the coordinate plane to = 0 for a case in Theorem 6.1.6

with B > A.

depicts the plane in the reference configuration for Z1 5 Z S Z2, 0 S R S R0. In

both cases the values of the parameters a, A, B were chosen a priori, and the other

three parameters, c3, c4, c5, found by precluding deformation of the section Z = 21

via s(Z1)=1,r(Zl)= 0 and 2(Zl) = Z1.

Figure 1 depicts the case A = 0.5, B = 1, a = 0.3 with Z1 = —4, Z2 = 4, R0 =

2. It illustrates radial inflation combined with axial contraction (when —4 < Z <

7r/(2a) — c3) and radial deflation coupled with axial elongation (when 1r/ (2a) — c3 <

Z < 4).

Figure 2 depicts the case A =1, B = 0, a = 1 with Z1: 0, Z2 =1, R, = 1. It

illustrates radial inflation combined with axial contraction.

Notice that assigning the resultant force and moment for the section Z = 22
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Figure 2: Deformation of the coordinate plane 02 = 0 for a case in Theorem 6.1.6

with B < A.

generates two additional conditions that can in principle be associated with the de-

termination of A and B (or equivalently c1 and c2.) The constants p0 and a remain

unrestricted in this assignment.

6.2 Traveling waves

Traveling waves in the axial direction are motions in which the dependence on Z and

t is via the similarity variable 17 := Z — ct. The constant c is the traveling wave speed.

Consequently, s = s(Z — ct), r = r(Z — ct), z = z(Z — ct). The special case c = 0

retrieves the static deformations discussed in the previous section. For the purpose

of the present section, the prime notation will denote differentiation with respect to

the similarity variable argument 1) = Z — ct. Introducing s = s(n),r = r(n) into
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(5.0.14) and (5.0.13) gives

(u - pc2)(sr” + 2s’r') = O, (u — pc2)(s” - sr’2) — C's = 0. (6.2.7)

For any suitably smooth functions 3 and 7‘, this system is satisfied with C = 0 for

traveling wave motion at the neo-Hookean shear wave velocity, c. := iW/lT/P-

Alternatively, if s and r satisfy (6.1.1), then they satisfy (6.2.7) under the re-

placements Z —+ n and C -i (u — pc2) C'. As in (6.1.1) it is necessary to take C

independent of t in order to obtain solutions for this second alternative.

In summary, TIE traveling waves are supported in a neo-Hookean material. For

propagation at the shear wave velocities :hc.., any appropriately invertible functions

s(n) > 0, r(n) define such a controllable traveling wave via

r(R, Z, t) = Rs(n), 9(Z, t) = w + r(n), 2(Z, t) = /;%, n = Z :l: c..t.

At all other traveling wave speeds c aé :l:C,.., TIE traveling waves are supported in the

forms defined in Theorem 6.1.6 provided that the independent variable Z is replaced

by Z :1: ct and the constant C is replaced by (u — pc’) C. Notice for fixed C of the

static deformation, that, under these replacements, the associated traveling waves

change their form in transitioning from the subsonic case c < c. to the supersonic

case C > C...
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6.3 Simple twist motion

Controllable simple twist motion is here defined as r = aZ + r0(t), where a is a

constant, so that (5.0.14) and (5.0.13) become

II

P2uas’ -— p(srb + 2571,) (6.3.8)

II _
o

u(s” — azs) — p(s — 37‘02) — C(t)s (6.3.9)

For the purpose of the present section, the prime notation will denote differentiation

with respect to Z. We consider three special cases.

(i) Suppose To is constant and a sf 0. Then (6.3.8) is satisfied if and only if s = s(t)

whereupon (6.3.9) gives

5 + p-1(C(t) + [102)3 = 0. (6.3.10)

Hence any sufficiently smooth s(t) > 0 is consistent with such motion by taking

C(t) = —ua2 — p.’s'/s. Note that (6.3.10) is of the general and standard form

,7) + h(t)y == 0. (6.3.11)

This equation has been intensively studied from a variety of perspectives. (See, for

example, [9].) When h(t) is periodic it is called Hill’s equation, whereupon a formal

series solution is readily obtained [40].

In our framework it is possible to reduce the order of the equation (6.3.11) using

the positiveness of s(t). The new dependent variable u = ln s transforms the equation

into

u” + (u’)2 + h(t) = 0.
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One more change of the dependent variable v = u’ results in the first-order ordinary

differential equation

v' = —v2 — h(t),

which can be treated by appropriate standard methods.

(ii) More generally, suppose s = s(t). Then (6.3.8) integrates so as to give

1'0 = 61/52 (6.3.12)

with Cl a constant. Substitution from (6.3.12) into (6.3.9) gives

5' - (cfi/si‘) + p"1(C(t) + uaz)s = 0. (6.3.13)

Once again, any sufficiently smooth s(t) > 0 gives rise to controllable simple twist

motion, now by taking C(t) = —ua2 — ps/s + pcf/s‘l. The choice c1 = 0 retrieves

the results for case (i). Alternatively, if s is not assigned and if C(t) = C, a con-

stant, then, somewhat surprisingly, (6.3.13) is of the same form as (6.1.3) although

the independent variable is now t instead of Z. Accordingly, the various solution

forms (6.1.4)—(6.1.6) can be appropriated with simple modification. For an arbitrary

C’ = C(t), (6.3.13) can be examined by appropriate numerical or qualitative methods

for ordinary differential equations, although we do not pursue this issue here.

(iii) Suppose To is constant and a = 0. Then (6.3.8) is satisfied identically whereas

(6.3.9) becomes a single linear partial differential equation,

us” — ps — C(t)s = 0. (6.3.14)

75



Solving (6.3.14) for C(t) and requiring C’ = 0 gives

III I II

u(ss — s s ) — p(ss' - 3’5) = 0 (6.3.15)

as a necessary and sufficient condition for s(Z, t) to satisfy (6.3.14) for some C(t).

The particular solution of (6.3.15) given by s = s(t) retrieves a motion corresponding

to (ii). Separation of variables on (6.3.14) formally gives two sets of solutions. The

first set involves either

3 = b(t) sinh/fl/uZ) or s = b(t) cosh/fl/uZ), (6.3.16)

where B > 0 is an arbitrary constant and b(t) satisfies

5+ p‘1(C(t) + 6):; = 0. (6.3.17)

The second set involves either

8 = b(t)exp(\/fl/MZ) or s = b(t) exp(-\/B/#Z). (6.3-18)

where B > 0 is an arbitrary constant and b(t) satisfies

25+ p‘1(C(t) — 6)!) = 0. (6.3.19)

Both equations (6.3.17) and (6.3.19) are of the form (6.3.11).

In view of the linearity of (6.3.17) and the arbitrariness of G(t), any superposition

of solutions (6.3.16) and (6.3.18) with )6 = Bk, b(t) = bk(t), k = 1,2,... will also

provide a formal solution. At issue then is the positivity requirement on s. This

requirement would provide restrictions on {51:4 bk(t)} that incorporate, for example,

the length of the Z-interval on which the motion holds.
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Note also for C(t) = C, a constant, that (6.3.14) is the classical telegraphy equa-

tion for which there are standard treatments (see, for example, [17]). In particular,

integral representations for solutions of various initial/boundary value problems in

terms of corresponding Green’s functions are given in [54].

6.4 Motion with a Riemann type similarity

variable

For wave propagation problems in one spatial dimension, solutions in terms of the

similarity variable 5 := Z/t are central to the analysis of initial value problems

characterized by step function initial data [50]. Riemann’s problem in gas dynamics,

and shock tube problems in general, provide standard examples. In the present case

(5.0.2) is inconsistent with non-trivial solutions such that both 3 = 3(5) and z = 2(5).

However, solutions with s = 3(5) and r = r(5) can be considered, whereupon, as

discussed previously, 2 = 2(Z, t) and p = p(R, Z, t) follow from (5.0.2), (5.0.11)

and (5.0.12). For the purpose of the present section, the prime notation will denote

differentiation with respect to 5 = Z/t. Introducing 3 = 3(5), r = r(5) into (5.0.14)

and into (5.0.13) followed with multiplication by t2/p gives, respectively,

(c. — 52)(3r” + 23’r’) — 2537" = 0, (6.4.20)

(c. — 52)(s” — s—r’z) — 253' — git—’93 = 0. (6.4.21)
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Note from (6.4.21) that solutions consistent with this framework can be constructed

only if

C(t)/p = kot’z, (6.4.22)

where k0 is a constant. Equation (6.4.20) can be written as

[(c,. - 52)sr’]’ + (c. — 52)s’r’ = 0.

Dividing by the expression in brackets gives

[1n ((c. - 52)sr’)]’ + (1n 3)’ = O,

whereupon integration and solving for r’ gives

I 61

T = (c. —e>s2’
(6.4.23)

where Cl is a constant of integration. Entering (6.4.21) with both (6.4.22) and (6.4.23)

then leads to

(of - 52)?! — 2(c3 - {2)53’ — 53-3 — ko(c3 — 52)s = 0. (6.4.24)

We now show that (6.4.24) can be recast so as to eliminate first derivatives. This

recasting is somewhat different for subsonic waves (|5| < c.) and supersonic waves

(It! > 04):

(i) For —c. < 5 < c..., introduce the new independent variable

c4+5
 C = ln (6.4.25)

«
m

5
‘
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so that

2c.. _4__c,.5 2 4c3eC
r_ n_ _2_

C‘cz—e’ 4 (c2—4—2‘?’ 6* “(M1)?

After standard manipulations equation (6.4.24) for s = 3(5) becomes

d23 eC
_ —3 _ _ =

kls k°(eC + 1)23 0, (6.4.26)

where k1 = cf/(4cf) 2 0.

(ii) For both 5 < —c. and 5 > c.., introduce the new independent variable

{+0.
 ( = 1n 5 _ c. (6.4.27)

so that

(I = —&__, C” = ——4—-——C*€ , C3 — £2 : —._‘.1£3£(__

c3 — 42 ("ca—_-42)? (e< - 1)?

After standard manipulations equation (6.4.24) for 3 = 3(5) becomes

dzs _3 eC

d—C2 - kls + [Cows = 0, (6.428)

where again k1 = cf/(4cf).

Note that (6.4.26) and (6.4.28) are of the same form as (6.3.13) (with an appro-

priate choice of C(t)), although the independent variable is now 5 instead of t. Those

equations are potentially more convenient than (6.4.24) for numerical computation.

They are also convenient for further analysis as described next. Here we only consider

the separate special cases of k1 = O and k0 = 0.

Case k1 = 0 implies c1 = 0 and it follows from (6.4.23) that the motion is twist-

free in the sense of Section 5. The case k1 = 0 can therefore be developed directly
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from (6.3.14) by requiring the additional specializations (6.4.22) and s(Z, t) = s(Z/t).

Both (6.4.26) and (6.4.28) are then of the general form (6.3.11), and the comments

following that equation apply.

In the case k0 = 0 both (6.4.26) and (6.4.28) reduce to a common form. This

form is integrable after multiplication by ds/dC giving (ds/dC)2 + k1 /s2 = k2, where

kg 2 0 is the integration constant. Yet another integration yields

1 /

C + In 163 = 76; [$382 — ’61, (6.429)

where the integration constant is written as In k3 with k3 > 0. For subsonic waves,

solving (6.4.29) for s > 0 and invoking (6.4.25) gives

+5 2 1/2

_ C4

3(5) _ (13+ (141143“ _ 6) ) , (6.4.30)

where k, = k1/k§ _>_ 0. It is readily verified that (6.4.30) applies also to the supersonic

 

waves (where 5 is given by (64.27)) provided that k3 < 0. It is to be noted that 3 as

given by (6.4.30) is unbounded as Z/t —* :lzc...

In summary, TIE motions such that s = s(Z/t), r(Z/t) are supported in a neo-

Hookean material. On the subsonic characteristic curves, the function 3 must satisfy

the second-order ordinary differential equation (6.4.26) where k1 Z 0 and k0 are

otherwise arbitrary. On the supersonic characteristic curves, the function 3 must

satisfy (6.4.28) where, again, k; 2 0 and k0 are otherwise arbitrary. In both cases,

1' then follows from (6.4.23) using C, = i2c.\/k_1, in general giving rise to a five

parameter family of solutions for s and r.
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Chapter 7

Cartesian description of TIE and

TIES motions

In this chapter we obtain Cartesian descriptions of TIE and TIES motions. It is

found by trial that the reduced nonlinear system of PDE for the radial and angular

components of TIE motion, derived in Chapter 5, admits a variational formulation.

Formal change of dependent variables transforms the Lagrangian of the correspond-

ing variational problem into quadratic expression with respect to new dependent

variables therefore leading to a linear decoupled system of Euler-Lagrange equations.

Governing equations for a more general class, called TIES motions, are also derived.

Although in addition to twist, infiation/deflation, and contraction/elongation func-

tions, describing TIE motion, two unknown functions accounting for in-plane 3hear

are introduced into the ansatz for TIES motions, the governing system is shown to

81



decompose into four identical decoupled linear equations of the same type as for TIE

motions. The governing system for general axisymmetric motions of neo-Hookean

body is also transformed in the same manner as TIE motion into a system that

seems to be more convenient for further investigations than the original one.

7.1 TIE motion in Cartesian description

Consider the system of nonlinear PDE (5.0.13), (5.0.14) for functions 3, 1' which

determine the radial and the angular components of TIE motion. The system can be

recast under replacement C' —+ pC' into

3' -— cfs” — s(r'r2 — c3712) + C(t)3 = 0,

3(7" — GET”) + 2(5+ — cfs’r’) = 0.

Direct computation shows that these are Euler-Lagrange equations of variational

problem with Lagrange density given by

c = (5'2 — c330 + (3+)2 —— c3(sr’)2 — can?) (7.1.1)

N
I
H

Introducing new dependent variables by formulae

5=3cosr, 17=ssinr

the Lagrangian (7.1.1) becomes

4 = g (£2 + r — «3(3) + 0’2) — 000(42 + 42)) .
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Indeed,

3’2 + (457’)2 = ——(€:;:’:72’)2 + —————(”’€€,;’:§)2 = (5’)2 + (17’)?

'Ifansformation of the terms involving time derivatives is identical.

Euler-Lagrange equations corresponding to the transformed Lagrangian take the

form

5" — c325" + C(t)5 = 0, 4') — c347" + on)" = 0. (7.1.2)

These equations are of the form (6.3.14), and the comments after that equation apply,

except for the one concerning positivity of solutions, since neither of functions 5, r)

needs to be positive.

Axisymmetric description (1.0.14) of TIE motion translates in terms of functions

5, r), 2 into the following Cartesian description

dZ

a3: X5—Yn, y=Y5+Xr7, z = /—§2+712 +zo(t), (7.1.3)

where functions 5, 77 satisfy equations (7.1.2), and 20 is an arbitrary function of t.

7.2 TIES motion in Cartesian description

Here we consider more general than TIE class of motions for neo-Hookean body given

by the ansatz

:13 = X€(Zrt) — YTKZJ) + f(th)) y = Y6 + X77 + 9(ZiT)a Z = Z(Zat)' (7"24)

For f = g = 0 (7.2.4) reduces to a Cartesian description of the previous TIE motion.

The addition of nonzero f and 9 can be interpreted in terms of transverse ghear.

83



Hence (7.2.4) will be referred to as TIES motion. The motions investigated in [47],

[2] are particular cases of TIES. In [47] it is assumed that r) = 0 (twist free motion)

and 5 = 5(t), n = h(t) (no dependence on the axial coordinate in 5, n). The model

in [2] does not include inflation/deflation, and therefore, due to incompressibility,

elongation/contraction.

To simplify derivation of the governing equations for TIES motion the following

simple technical lemma, aimed at eliminating the pressure terms in the governing

equations, will be helpful.

Lemma 7.2.5 Let a motion of a neo-Hookean solid be determined by functions

xi = $(X12X21X3atla 2:11213)

that are three times continuously differentiable. Then

If the body is simply connected, corresponding pressure can be foundfrom the equations

pik : xiJcDxi) 2:: k = 1,213 (7.2.6)

Here and below notation E] := uA — p82/8t is used for d’Alambertian operator.

Proof. Since the nominal stress of neo-Hookean material is given by (5.0.1), the

general equation of isochoric motion for hyperelastic material (1.0.8) translates for

this material into

Div(uFT — pF‘l) = pv.
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Using Nanson’s formula this can be rewritten as

p Div(FT) — F’TVp = pv. (7.2.7)

Pre-multiplying (7.2.7) by FT one obtains

W = ”FT Div(FT) — pFTv, (7.2.8)

which is a vector form of (7.2.6).

Applying the cross product operation with the Operator V to both sides of (7.2.8)

gives

av x (FTDiv(FT)) = W x (FTv).

In tensorial notation this reads

Gmnk (Iwajjl‘m - P51543343) m = 0, 01' Gmnk ((D $01543) m = 0-

Since emnkr,,kn = 0 this implies

6mule“:l $i)m 5134,14 = 0:

which is (7.2.5) in tensorial notation. I

Next we apply the vector equation (7.2.5) to TIES motion (7.2.4). The equation

will be shown to split into a system of five equations for unknown functions 5, n, f, g,

and C = G(t), where C is an auxiliary function simplifying the structure of the system

just as in the case of TIE motion.

To this end we need to compute the left hand side of the equation

V(D x) x Va: + V(C| y) x Vy + V([:l z) X Vz = 0. (7.2.9)
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Clearly, the last term on the left hand side is zero for the ansatz (7.2.4).

From (7.2.4) we derive

Vx=[s. —n, X€’-Yn’+f’]’DV$=[D£, —Dn. XD€’-YDn’+Df’]-

Then

-Dn(X€' - Yn’ + f’) + u(XClé’ - YD 71’ + EIf’),

p

CIVx x Va: = axing — mn'+ Df’) — maxg' — Yn’ + f’).

  EDn-nflé

Similarly,

D€(Y€’ +Xn’ +9’) - {(Yflé’ + X00’ + 09’),

 

DVyxVy= nurmhem:fi+U¢)—DMY€+XW+3%

603-006

Now equation (7.2.9) can be written in the following scalar form

  

A(€,n)X+B(€,n)Y+an’-€Dg’-f’Un+g'C|€ = 0, (7-2-10)

-B(€.n)X+A(€.n)Y+€Df’+an’-f’D€-g’Dn = 0, (72-11)

5077 — nCl5 = 0, (7.2.12)

where

A = -€Un+nD€+nTM-£Ud=4dflfl“-@Dnfl U213

B = n’Cln — 77C] 77’ + 5’Cl5 - 5D 5' = —(97;71)’172 — (~E%)I52. (7.2.14)

Equation (7.2.12) implies

D_’Z_%

7) €’
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which can be written as

D5—C5=0 Eln—Cr)=0 (7.2.15)

with an arbitrary function G = C(Z, t). These equations are identical to (7.1.2).

Equations (7.2.10), (7.2.11) imply

2405.77) = 0, B(€.n) = 0, (7.2.16)

77C] f’ — 5E] g’ — f’Clr] + g’Cl5 = 0, (7.2.17)

5D f’ + 77!] g’ — f’D5 -— g'Dr] = 0, (7.2.18)

where A, B are defined by (7.2.13), (7.2.14). The first condition in (7.2.16) is true

identically by virtue of (7.2.15), while the second implies

C ’(é2 + 772) E 0-

Assuming 52 + n2 aé 0, this means that function C does not depend on the axial coor-

dinate, i.e., G = C(t). From (7.2.17), (7.2.18) one obtains after some manipulations

le’ — Gf’ = 0, Elg’ — Cg’ = O, or, equivalently,

Elf -— Cf 2: D1(t) Clg — Cg = D2(t) (7.2.19)

with arbitrary functions D1, D2.

Next we compute the pressure for TIES motion. Equations (7.2.6) become

12.1 = €(XD€ - YUn+ l31f) + 7I(XCln + YES + C19).

122 = -n(XU€ - YDn + Elf) + E(XUn + YD€ + By).

P43 = x’(XD5-—YEln+Df)+y'(XCln+YEl5+Elg)+z'Clz.
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Making use of (7.2.4, (7.2.15), and (7.2.19) these equations simplify to

P41 = 0X32 + C(ff + 977) + 016 + 02774 (72-20)

12.2 = CYS2 + C(fn + 96) + D17] + D26. (7.2.21)

1 , ,

p4 = 50042 + W32) + X(C(f€ + 44) + 0.5 + 024)

+ Y(C(g5 — fr) + f2/2 + 92/2) — D17; + D25), + z'Cl 2, (7.2.22)

where the notation s2 = 52 + n2 is used for simplicity. Equations (7.2.20), (7.2.21)

imply

p(x, Y. z, t) = $042 + WW + 42) + X(C(f€ + 94) + 0.4 + 024) +

+Y(C(g€ — fn) — Dm + 0.4) + pow. t). (7.223)

Substituting this function into the equation (7.2.22) one obtains after simple manip—

ulations

C

190 = E(f2 + 92) + D1(t)f + D2(t)g + [2’0 2 dZ + 13(t), (7.2.24)

where p is an arbitrary function of t.

In summary, TIES motion (7.2.4) is supported in neo-Hookean body by the pres-

sure given by (7.2.23), where functions 5(Z, t), 17(Z, t), f(Z, t), g(Z, t) solve the

equations (7.2.15), (7.2.19), respectively, function po(Z, t) is determined by (7.2.24),

and functions C, D1, D2, p are arbitrary functions of the time variable.
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7.3 Cartesian description of general axisymmetric

motion of neo—Hookean body

Imitating derivation of the system of governing equations for TIE motion in Section 7.1,

we substitute new dependent variables defined by the equations

5=rcosr n=rsinr

into equations of motion (5.0.3),(5.0.4) and after direct calculation obtain

r r

D5 +2571 + #(§€,1+777741)/(TR) — #723 - 130% 2,3 —P,3 2,1) = 0,

E

T

E

1.

C177 - 2136 + u(ém -n€.1)/(TR) = 0-

Solving for U5, Dr) and simplifying, one obtains

1

[35 + £5541 -—,’,’-§€ - E(pil 2,3 —P,3 Z41)€ = 0,

1

D77 +%7741 ‘fi’l .- §(pal 213 _py3 2,1)” = 0'

Introducing notation

1

C(R: Z) 5: E(Pn 2,3 ‘1743 2,1) + 7534 (73-25)

the system (5.0.3)-(5.0.5) in terms of 5, 17, 2 takes the form

(:15 + 745,. /R — 05 = 0, (7.3.26)

II

9Dr) + #7741 /R — 01) (7.3.27)

1
(:1 z + #2,, /R + E (42,. (g2 + 172).:4 —10,3(52 + 172),.) = 0. (7.3.28)
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Equations (7.3.25) and (7.3.26)-(7.3.28) together with the isochoric motion con-

straint (5.0.2) represent a system with five unknown functions. Due to one more

unknown function G, added by the equation (7.3.25), the structure of this system

seems to be more convenient for further, possibly, numerical investigation than the

original system of four coupled nonlinear equations (5.0.3)-(5.0.5), (5.0.2). This will

be the subject of future analysis.
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Chapter 8

Conclusions and discussion

Axisymmetric problems arising in nonlinear elasticity were investigated from two

different perspectives.

Under certain restrictions on the integrand, the existence problem for axisymmet-

ric minimizers in Sobolev spaces was solved in the spirit of John Ball’s theory. Re-

duced restrictions on the growth exponents of the integrand in the energy functional

allowed new classes of hyperelastic isotropic materials, not covered by Ball’s theory in

the genuine three-dimensional case, to be included into the existence analysis. Under

the assumption that the radial component of admissible mappings (deformations) is

nonnegative almost everywhere, higher regularity properties of the radial and axial

components of admissible mappings and topological properties of openness and dis-

creteness were discovered. Using these properties and assuming in addition that an

originally hollow cylindrical body remains hollow after deformation, global injectivity

results were obtained in a stronger form compared with those known for the genuine
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three-dimensional case.

In the other part of this work more specialized but time-dependent axisymmetric

deformations for a neo—Hookean materials were examined, and several classes of exact

solutions were found.

Below some possibilities for further research relevant to the results presented here

are discussed.

1. Regularity of minimizers is one of the key issues in the calculus of variations,

and there is a significant number of works devoted to this problem (see [23] for up-

to—date account and relevant references). In the multidimensional case the best one

can expect is that a minimizer is of class 01*“ off a set of measure zero. All presently

known variational approaches to regularity rely on the upper bound on the integrand

of the form

|f(:1:,u, Du)| S CIDqu + b(rc)|u|7 + a(a:), (8.0.1)

where 1 < p S 7 < p“. Consequently, this rules out problems of nonlinear elas-

ticity since for compressible materials f(:c,u, Du) —> 00 when detF —) 0, and for

incompressible ones the integrand takes infinite value when the incompressibility con-

straint is violated. Thus the limited partial regularity presented in this work (viz.,

r, z E Gl(D) a.e.) gives a nontrivial example of regularity problem solved for the

integrand with physically relevant behavior. New approaches are needed for further

advances in regularity analysis for variational problems in nonlinear elasticity.

2. Polyconvexity employed in this work implies quasiconvexity, which is essentially
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equivalent to weak lower semicontinuity. Many important for applications integrands

do not enjoy this property. Hence the problem of quasiconvexification (QC) arises. At

the present no effective systematic QC technique is known, but for specific integrands

some approaches have been deveIOped (see, for example, [20]). The integrand of

the reduced functional obtained in axisymmetric settings in this work depends on

the rectangular matrix Du, u = (5,17,z), and under suitable assumptions may be

amenable to the method developed for such functions in [49]. In [49] the problem of

constructing the semiconvex envelope 1 for so called invariant integrands2 depending

on m x n, m > n, matrices is reduced to the same problem for an associated function

defined on n x n matrices. If the strain energy density depends only on the first

invariant II, it is easy to verify that the integrand for the reduced axisymmetric

variational problem is invariant, so that the method in [49] applies with appropriate

modifications.

The case of nonconvex anisotropic problem is more challenging. To show this, consider

the following simple example of the stored energy function modeling so called fiber

reinforced material (see [28] for more detail)

W = Wiso(Ila 12) + Waniso(14)) (8H02)

where Wm represents the stored energy due to deformation of the isotropic incom-

pressible matrix material, and Wm,” accounts for the effect of reinforcing. A partic-

 

1this is a unifying term for convex, polyconvex, quasiconvex, and rank one convex envelopes

2A function f : me" —4 R is said to be invariant if f(QAR) = f(A) for each

A 6 MM", Q e 30(m), R e SO(n).
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ularly simple form for the reinforcement term is

f(14) = 7(14 - 1)2/2, (803)

where 'y > 0 is a positive constant depending on the fiber material, 14 = T C a is the

pseudo-invariant of C, and a unit vector a represents the preferred direction of the

fibers. This form has been used by a number of authors to analyze different aspects

of the theory of transversely isotropic materials (see, for example, [46] and references

therein). Even if neo-Hookean response is chosen for a matrix material,

Wm = u(Il — 3)/2, (8.0.4)

constructing the QC envelope for the overall strain energy density (8.0.2) is a chal-

lenging task. The method developed in [20] does not apply since the reinforcement

term cannot be represented as a function of the singular values (principal stretches)

alone. Moreover, justification of the dimensionality reduction for isotropic integrands

described in Section 2.2 needs to be modified for this anisotrOpic case. Yet another

problem is to choose an appropriate functional space to accommodate different gowth

exponents for partial derivatives with respect to R and Z (the pseudo-invariant 1.,

contains partial derivatives with respect to Z of power four that may be different

from the growth exponents of the isotropic part). A new relaxation theorem that

does not make use of the bound (8.0.1) is also needed for this and other physically

relevant situations.

3. Dimensionality reduction of three-dimensional problems due to an assumption

that the problems under consideration have certain types of symmetry is crucial in
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this work. It is desirable to justify this reduction using a more elegant and systematic

approach than the straightforward and tedious computation in Section 2.2 or ad hoc

considerations in Chapters 5 and 7. The derivation of lower dimensional theories for

domains which are thin in one or more directions has a long history (detailed account

on this issue and further references can be found in [3]). Recently results rigorously

justifying some classical theories for rods, plates, and membranes (see, for example,

[38]) were obtained using F-convergence technique. Another approach, based on the

principle of virtual power as a starting point, was developed by Antman [3], and

its application for derivation of the governing equation for TIE motions in a rod-

like bodies may be mathematically tractable. But the method needs modification to

incorporate the incompressibility constraint.

4. Exact solutions for TIE motions of neo—Hookean body found in Chapter 6 can

be used in perturbations methods for problems whose strain energy density includes

neo-Hookean energy as the leading term. An example is provided by Mooney-Rivlin

material (1.0.5) with B < a.
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