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ABSTRACT

AXISYMMETRIC PROBLEMS IN NONLINEAR ELASTICITY:
EXISTENCE AND GLOBAL INJECTIVITY OF ENERGY MINIMIZERS
AND NEW CLASSES OF EXACT SOLUTIONS

By

Lydia S. Novozhilova

Axisymmetric problems in nonlinear elasticity are investigated from two different
perspectives. In the first part the existence theory for axisymmetric minimizers in
Sobolev spaces, based on the approach suggested in the seminal paper by J. Ball
(1977) and more recent results, is developed, and new classes of hyperelastic materials
are included into the existence analysis. Under suitable assumptions, higher regularity
properties and topological properties of openness and discreteness of the radial and
axial components of the mappings are established. Global injectivity of axisymmetric
minimizers is investigated, and stronger injectivity results are obtained compared
with those known for full three-dimensional case. In the second part some classes of
specialized three-dimensional axisymmetric motions in a neo-Hookean material under
an internal constraint of incompressibility are examined. The original governing
system of equations is found to reduce to a simpler unconstrained system of PDEs
allowing for finding analytical solutions corresponding to various specialized motion
classes. In certain particular cases these closed form solutions reduce to previously
known results. A formal action functional whose Euler-Lagrange equations are given

by the reduced system is also found.
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0.1 Notation

2 C R3 : open and bounded domain occupied by a continuous material body in its
reference (material, undeformed) configuration Bj.

00 : boundary of Q that is assumed to be strongly Lipschitz ([39], Definition 3.4.1).
|G| : m-dimensional Lebesgue measure of m-dimensional set G C R*, m < n.

B(a, R) C R": ball of radius R centered at the point a.

Function (deformation) u: Q — R3, u = (u!,u?,u®), maps a material point X € Q
into corresponding point x = u(X) € u(Q) in the deformed configuration B = u(f).

M3%3 . set of all 3 x 3 real matrices endowed with the usual Euclidian norm
|A| = (A: A)'2.

M3*3 : subset of matrices A € M**3 such that det A > 0.
F(u) := Vu : Q — M3 : differential (deformation gradient) of u € W'?(Q, R3).
In Cartesian coordinates it is represented by the matrix of partial derivatives of the
components of u

F(u) = (F;;) = (0u'/9X;) .
cof F :  — M3*3 : matrix of cofactors of the deformation gradient. The adjugate
matrix is the transpose of the matrix of cofactors, adj F = cof FT.
C(u) = FT(u)F(u) : right Cauchy-Green deformation tensor. Positive square roots
of its eigenvalues are called singular values (principal stretches) of the deformation

gradient F(u).



I, I, I : principal invariants of C,
I, =trC = |[F|?, I, = tr cof C, I; = det C.

Div D : divergence operator on 2.

C(R) : space of continuous functions in .

D(R) : space of C*™ functions having compact support in Q with the standard topol-
ogy defined by uniform convergence on compact subsets.

D'(Q) : space of Schwarz distributions (the dual space to D(f2)).

D;, i = 1,2,3 : distributional derivative with respect to i-th coordinate, i.e., for
feD, ¢€D

<Dif>¢>=—<f1¢n'>-

WLP(Q,R3) (more generally, W'?(Q,R™), Q C R"): a triple (m-ple) of functions
from Sobolev space W'P(Q). For p = 3 (p = n) the latter is called Sobolev space
with natural exponent.

Cof u, Detu : matrix of distributional cofactors and the distributional determinant,

respectively, defined by
(COf u),‘j = .~+2(uj+2uj+l,.<+1 )— D,‘+1(’U.j+2uj+l,,‘+2 ), Detu = Dj [ul (COf F)J]] ,

where ¢,j = 1,2,3. In the first equation the indices are to be taken modulo 3.
A function f : U — R, where U is a subset of a Banach space V, is said to be

weakly lower semicontinuous (w.l.s.c.) if for any sequence u, € U converging weakly



to u, ux — u, the inequality
f(u) < lim f(uy)
k—o0

holds.

N(f,"):Y - NU{0, 00} : multiplicity function foramap f: X — Y. Fory €Y the

value N(f,y) is defined as the number of elements in the set {r € X : f(z) = y}.
Henceforth in this work, the conventions of Ogden [44] for tensor calculus are used.

In particular, the divergence of a tensor S in Cartesian coordinates (X, X, X3) reads
DivS = GS,J/OX,

Cartesian coordinates of a tensor OW/0F, W = W(F) being a scalar function of F,

are written in the component form as
(OW/OF),, = OW/OF,,.

Summation over repeating indices is assumed.



Chapter 1

Introduction

This thesis is concerned with the mathematical theory of nonlinear elasticity [44],
(16], [37]. Specifically, the hyperelastic version is regarded as a useful model for solids
undergoing large deformations without energy dissipation. This endows correspond-
ing mathematical problems with a strong variational structure that makes it possible
to use modern powerful machinery of the calculus of variations.

In general, a static variational problem in continuum mechanics, when the ther-
modynamic variables, such as temperature or entropy, are not under consideration,

is to find deformation(s)

u*: B0 - R3

that render absolute minimum to the potential energy E(-) of the medium under

consideration

inf E(u) = E(u®) = min E(u). (1.0.1)

ucA ucA



Here the set A of admissible deformations is usually a subset of an appropriate Banach
space (e.g., Sobolev space W!?(Q, R3)) faithful to physical restrictions of the problem.

Rigorous mathematical approach to variational theory for general three-dimensional
problems in nonlinear elastostatics was started in 1977 with a seminal paper by
J.M. Ball [4]. He employed the direct method in the calculus of variations to state
and prove his theorems on existence of absolute minimizers for equilibrium problems
in nonlinear elasticity.

More generally, a motion is a time parametrized family of deformations described

by a function
X : B0 x [0)00) - R31 X("t) = X(-,t) € B(t)a

where B(t) is the current (deformed) configuration. The corresponding general varia-
tional problem in elastodynamics is to find motion(s) that render absolute minimum

to the action functional

T
Loo = [ {E/ SAAVIAX — B(x(,1)) p de

over curves in a set of admissible deformations. Here p = p(X) is the inertial mass
density in the reference configuration, V' := x(-,t), where dot stands for time deriva-
tive, and the first term in the integrand represents the kinetic energy. It is usually as-
sumed that the initial deformation x(-,0) and the velocity field V (-, 0) are prescribed,
and deformations x(-,t) belong to an admissible set satisfying appropriate physical

requirements. When a problem admits a variational formulation, the equations of



motion, which represent in a differential form the fundamental Balance of Linear
Momentum Principle in continuum mechanics, can be obtained as Euler-Lagrange
equations of the action functional. In the static theory, when the inertia effect is not
an issue, the equations of motion become the equilibrium equations, and they can be
interpreted as necessary condition for minimizers of the potential energy.

To specify the potential energy for a material under consideration a constitutive
relation describing a mechanical response of the material should be included into the
macroscopic model. Mathematical formulation of the constitutive laws must be con-
sistent with available experimental data and satisfy certain physical restrictions such
as frame indifference and (possibly) material symmetry requirements. The formula-
tion must also satisfy mathematical restrictions related to such issues as existence
and uniqueness of solutions to the balance equations. Other simplifying restrictions
are introduced to make rigorous mathematical approach tractable.

A hyperelastic material is assumed to support a strain (stored) energy density
W : Q x M3® — R so that W(X, F) represents the stored energy per unit volume
at a material point X when the elastic body is subjected to deformation u with
deformation gradient F = Vu at this point. The total stored energy in the deformed
volume u(f?) is then !

E(u) = /Q W(X, Vu)dV. (1.0.2)

Additional physically meaningful assumptions as outlined next simplify the functional

If tractions (external surface forces) are exerted on (part of) the boundary in the reference

configuration, an appropriate surface integral is added to the right hand side.



form of constitutive function.
Frame indifference is the assumption that physical laws are invariant with re-
spect to observer orientation in space. In terms of the stored energy functions frame

indifference translates into the requirement
W(X,QF) = W(X,F)

for all F € M3*3 and all proper orthogonal matrices Q.
Material symmetry refers to a linear isometry P : R® — R3 such that a material
response is unaffected if the material orientation changes from B to PB. In terms of

the stored energy functions this translates into the requirement
W(X,FP) = W(X,F).

A set of all material symmetries G of the body is called the material symmetry group.
Here we consider only isotropic materials with Gg = SO(3) (i.e., all orientations
equivalent).

It can be shown (see, e.g., [16]) that a hyperelastic material is frame indifferent,
isotropic, and homogeneous ? if and only if W is a function only of the principal

invariants of the right Cauchy deformation tensor C = FTF,
W =&, L, I;). (1.0.3)

Some materials exhibit volume preservation property; they are termed incompressible.

%j.e., W is independent on X



The deformations possible for such materials must satisfy the constraint
detF =1 (1.0.4)

and are called isochoric. In particular, many isotropic rubber-like materials are con-
sidered to be incompressible, and they are often modeled by Mooney-Rivlin stored
energy

W =&, ) = a(l — 3) + B(I; - 3), (1.0.5)
where a, 3 > 0 are material constants. In the limiting case 8 = 0 the material is

called neo-Hookean and its stored density is usually written as
ir_ M
W= E(Il -3). (1.0.6)

The material response function, the nominal stress tensor S, in the incompressible

case is given via the strain energy function by [44]

oW

S=%F

—pF 1, (1.0.7)

p = p(X) being the hydrostatic pressure (Lagrange multiplier) associated with the
constraint of incompressibility (1.0.4).
For compressible materials there is no restriction (1.0.4), and the term pF~! does not
appear in (1.0.7). In all cases the Balance of Linear Momentum in the absence of
body forces requires

Div S = px, (1.0.8)
which is the Euler-Lagrange equation associated with minimization of the action

functional.



Ball’s theory was based on the new notion of polyconvezity that ensures weak lower
semicontinuity of the energy functional in an appropriate space of functions. Ball also
showed that polyconvexity implies quasiconvexity. The latter concept was introduced
by C.B. Morrey [36] who showed that, modulo some technical assumptions, quasi-
convexity is a necessary and sufficient condition for w.l.s.c. of a multiple integral.
Policonvexity can be effectively characterized in terms of the integrand (i.e., strain
energy function in the setting of nonlinear elasticity), as opposed to quasiconvexity
whose characterization is still an open question.

Ball has illustrated his theory by applying it to a wide class of isotropic stored
energy functions commonly used in nonlinear elasticity and referred to as Ogden
materials. These functions can be written in the form

M 3 N 3
WEF) =D a (Z ,\;*) +) b ( > (/\k,\,)"f) + h(det F), (1.0.9)
i=1 k=1 j=1 k=1 k#l

where:

M = M (F) are the singular values of F € M3*3;

J ;>0,7%2>1,1<i<M;5>0,4;>21,1<j< N;

h : (0,4+00) — R is a convex function.

Functions (1.0.9) satisfy the hypotheses of Ball’s theory under appropriate choices of
the growth exponents p = max i, ¢ = mjax d;.

Ball’s contribution stimulated investigations into existence theory through a vari-
ety of theoretical lenses. Materials with strain energy density with growth exponents

below the values allowed by Ball’s theory received significant attention in connection



with cavitation [6], [29] and other phenomena involving singularities [7]. Regularity
issues for function classes of mappings u that involve information on both the gradi-
ent F = Du and its adjugate matrix were studied by Sversk [51]. The degree formula
used in [51] was generalized by Miiller, Qi, and Yan [42] and used for weakening Ball’s
constraints on the growth exponents needed for existence of a minimizer in Sobolev
space.

Ball’s conjecture about identicity of pointwise and distributional cofactors and
determinants was proved by Miiller [41] under the assumption that those null La-
grangians (quasiaffine functions) defined in the sense of distributions are functions.
This development allowed one to reformulate the existence theorems by Ball in terms
of pointwise null Lagrangians rather than the distributional ones. Variational prob-
lems with non-convex (non-quasiconvex, non-polyconvex) integrands are currently
intensively studied. The relation between quasiconvexity and relaxation was discov-
ered by Dacorogna (see [18] and references therein). Explicit formulations of relaxed
problems are not in abundance, but when they are available and represented by a
multiple integral, Ball’s existence theory applies if the integrand meets appropriate
requirements. More recent references can be found, e.g., in [8].

Classes of admissible functions introduced by Ball stimulated new developments
in geometric function theory. A class of functions having finite dilatation (distortion),
which includes Ball’s admissible functions, has been defined and investigated from

various points of view (see [31] and references therein). Theory of mappings of finite
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distortion is a natural generalization of the theory of quasireqular mappings [48]. Well
known topological properties of openness and discreetness of nonconstant quasiregular
mappings were recently carried over to two-dimensional mappings of finite distortion
by Iwaniec and Sversk [30], provided that the dilatation quotient K (see Definition
4.1.1) is an integrable function. For n > 2 the openness and discreetness of n-
dimensional mappings of finite distortion was investigated by Heinionen and Koskela
[26], and Kauhanen, Koskela, Maly [32].

Results in geometric function theory and degree theory allowed one to state condi-
tions ensuring more realistic properties of admissible functions , e.g., global injectivity.
This issue was investigated in different settings by Ball [5], Ciarlet and Necas [15],
and Tang [52], while Fonseca and Gangbo [22] studied local invertibility properties
of Sobolev classes with natural exponent.

Despite the important contributions discussed above, genuine three-dimensional
deformations of some commonly used material models are not covered by Ball’s the-
ory. In particular, as was noted by Ball himself, restrictions imposed by his theory
rule out three-dimensional deformations of neo-Hookean materials (1.0.6). These
materials were the object of numerous investigations (see, e.g., [43] and references
therein). They can also serve as a good source for testing numerical methods. The
neo-Hookean strain energy density has also been suggested as a useful form for mod-
eling the base matrix material response in composite materials, subject to additional

reinforcing, and used for analysis of different aspects of the theory of composites by

11



a number of authors (see, e.g., [46] and references therein). On the other hand, more
complicated expressions for the strain energy density function provide more flexibility
for correlation with experimentally observed deformation behavior, and development
of more sophisticated hyperelastic constitutive models is an active subject (see, e.g.,
[10], where fairly general constitutive relations for the shape memory materials are
developed). Recently, Holzapfel, Gasser and Ogden [28] presented the analysis of
the biomechanics of blood vessels, employing the neo-Hookean strain energy function
for modeling the behavior of the matrix material. This example from biomechanics,
along with other applications using nonlinearly elastic models for bodies of tubular
geometries, motivated investigation of axisymmetric problems in nonlinear elasticity
in this thesis.

In Chapters 2-4 the existence issues for variational formulation of axisymmetric
problem are studied. It seems natural to expect that restrictions on growth exponents
in the framework of Ball’s theory will be milder if one confines analysis to a subclass
of three-dimensional deformations. This is true for plane deformations that can be
viewed as a subclass of three-dimensional deformations. We introduce a general class

of axisymmetric deformations of the form
r=71(R,2), 0=w+7(R,Z), and z=2z(R,2Z), (1.0.10)

where (R,w, Z), (r,0,z) are cylindrical coordinates in the reference and deformed
configurations, respectively. Reduced restrictions on the growth exponents for the

strain energy densities of Ogden materials (1.0.9) subjected to deformations (1.0.10)

12



are then obtained in the spirit of Ball’s existence theory. Although not necessary for
essential conclusions, for simplicity attention is restricted to isochoric deformations
with boundary condition of place on a subset I of the boundary 912 in the absence of
external surface forces on the remainder of the boundary. To ensure the coerciveness
inequality in axisymmetric setting, the body in the reference configuration is assumed
to be cylindrically hollow.

Under a natural assumption that the radial component is nonnegative almost ev-
erywhere, improved regularity of two-dimensional mapping determined by the radial

and axial components of isochoric deformation,

v = (r,z) € W'P(D,R?) (1.0.11)

with p = 2, is established. Here D is half of the axial cross-section of the undeformed
body. It is also found that the two-dimensional mapping v is open and discrete. This
is one of the most novel and original result in this development, and it does not have
an analogue in three-dimensional existence theory. Based on improved regularity and
the topological property of openness of the mapping v, injectivity of minimizers is
established in a stronger form than that stated in [5] and [15]. For technical reasons,
if the angular deformation function 7 is present, a stronger restriction on the radial
deformation is imposed, namely, it is assumed that originally hollow cylindrical body
remains hollow after deformation.

Beginning with Chapters 5, we turn from existence issues for static axisymmetric

problems in variational formulation to analysis of axisymmetric motions in differ-
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ential form. Specifically, a time dependent version of (1.0.10) subject to additional
specialization is considered. Attention is restricted to neo-Hookean material response.

Less is known about existence and uniqueness for elastodynamics than for elas-
tostatics (see, e.g., [37] on some aspects of what is currently known). Closed form
three-dimensional solutions to the equations of motion are rare, and most such solu-
tions involve both specialized material response and a priori symmetry assumptions
that impose severe structural restrictions on the unknown functions. Known explicit
dynamical solutions for incompressible materials include the radial oscillatory solu-
tions due to Knowles [33] and the circularly polarized finite amplitude wave motions
studied by Carroll [13, 14]. For a Mooney-Rivlin material, detailed analysis of fi-
nite amplitude plane wave motions is given by Boulanger and Hayes (11, 12]. More
references on exact solutions in finite elastodynamics can be found in [43].

The focus in chapters 5-7 is on deriving the governing differential equations for
the specialized forms of three-dimensional motions in neo-Hookean material and ob-
taining new physically meaningful explicit solutions. The motions presented here give
both space and time variation in all three principal stretches and naturally describe
various wave forms in tubular geometries. In certain particular cases they reduce to
previously known results.

Here is an outline of the content of the thesis.

In Section 2.1 an outline of Ball’s theory is given providing a framework for fol-

lowing existence analysis. In Section 2.2 the axisymmetric variational problem is
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described. By a straightforward computation it is shown that the Euler-Lagrange
equations for the reduced variational problem are equivalent to the equilibrium equa-
tions for the physical problem under consideration. New dependent variables that
simplify the description and allow one to apply the direct method of the calculus of
variations in the spirit of Ball’s theory are introduced.

Two existence theorems for isotropic strain energy densities with and without
dependence on the cofactor matrix are stated and proved in Chapter 3. Here cases
with and without assumption that the distributional cofactor matrix and determi-
nant are functions are examined, and we employ the result of [41]. Although, as
expected, the restrictions on the growth parameters are significantly reduced due to
the axial symmetry, materials with neo-Hookean rate of growth (p = 2) represent a
marginal case for the existence theorem in the admissible set without restriction on
the distributional determinant.

The goal of Chapter 4 is twofold: to extend the existence results to integrands
with rate of growth p = 2 and without conditions on the cofactor matrix, and to
examine injectivity of admissible mappings. The cylindrical description of admissible
mappings is used. Under a natural assumption that the radial component of defor-
mation is nonnegative, some remarkable properties of two-dimensional mapping v,
defined in (1.0.11) for a mapping u € W'?(D, R®) from a set of admissible functions,
are presented in Section 4.1. Firstly, it has been proven that v has finite dilatation.

Furthermore, it is also shown that for functions of finite distortion in Sobolev space

15



with natural exponent the mapping

L W, R") — C(G,R™), «(f) = fle, (1.0.12)

where G C 2 C R" is a relatively compact domain in , is compact. Consequently,
for any relatively compact G CC D weak convergence of a sequence of admissible
functions ux = (rx, 7x, ) in W2(D,R3) implies uniform convergence of the corre-
sponding sequence (up to a subsequence) vy = (rx, 2¢) in G. It is worth noting that
the general fact of compactness of the embedding (1.0.12) is of interest in its own
right. The most remarkable properties of the two-dimensional mapping v, established
in this section, are openness and discreteness that follow from the result in [30] on
Stoilow type factorization.

In Section 4.2 two additional conditions are introduced for admissible sets. The values

of the radial component are assumed to be separated away from zero, that is,

rR,Z)>a>0 (1.0.13)

for a fixed positive number a and almost all (R,Z) € D, and an axisymmetric
counterpart of the well-known injectivity condition of [15] is imposed. For this smaller
set of admissible mappings, existence of minimizers with p = 2 is proved, and the
injectivity of minimizers almost everywhere is established for p > 2 along the lines
of [15]. In the border case p = 2 the argument of [15] needs to be modified, and
we use some results from geometric function theory. Furthermore, making use of

the openness of the two-dimensional mappings (1.0.11), one concludes that under

16



the injectivity condition these mappings are in fact homeomorphic. For p > 2 this
implies that corresponding axisymmetric deformation is a homeomorphism too, which
represents a substantial improvement compared with relevant results known for the
three-dimensional case.
For a two-dimensional isochoric deformation from appropriate Sobolev class, the
Stoilow type factorization is also readily available. This observation allows one to
sharpen previously known results on injectivity a.e. when they apply to this class of
mappings, although two-dimensional deformations are not a focus in this work.
Global injectivity for Dirichlet problem presented in this section relies on the result
in [5]. For the two-dimensional case, the condition on the adjugate matrix introduced
in [5] is found to be automatic for the mapping (1.0.11). Therefore, except for that
condition, the statement about global injectivity for the Dirichlet problem in this
section is otherwise identical to that in [5].

In Chapter 5 a specialized class of motions is considered. In cylindrical coordinates
it is given in terms of axially varying twist function 7(Z,t), radial inflation/deflation
function s(Z,t), and axial contraction/elongation function z(Z,t) by the following

ansatz

r = Rs(Z,t), 0=w+1(2,1), z = z(Z,t). (1.0.14)

(These motions are referred to as TIE motions.)
The general governing equations for axisymmetric motion of neo-Hookean mate-

rial, derived in Section 2.2, are reduced here for the specialized ansatz (1.0.14) to a
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second order system of two coupled nonlinear partial differential equations for func-
tions s and 7. This system contains two material constants, the inertial mass density
p and the neo-Hookean shear modulus y, as well as an arbitrary function of time C(t)
that results from a general integration. The neo-Hookean shear wave speed is given
by ¢, = \/m, a parameter that has special significance with respect to the various
motions described herein.

Chapter 6 presents four various classes of specialized solutions to the governing

system for TIE motions.

e Equilibrium deformation solutions of three different forms depending on the
neo-Hookean shear wave speed c,. One of the well known universal deformations

for incompressible hyperelasticity emerges as a special case.

e Travelling wave solutions of the same three forms as above at arbitrary wave
speed. Further, at the neo-Hookean shear wave speed c, additional travelling

wave solutions are also available.

e Motions with specialized forms of the twist function. For the special case of
zero twist the governing equations reduce to a single linear partial differential

equation which can be treated by standard means.

e Motions for which both the twist function 7 and the inflation/deflation function
s are constant on rays Z/t = constant. Although we are unable to obtain

explicit solution in this general case, an analytic expression is given for a special

18



case when one of the parameters in the governing system of ODE vanishes.

In Chapter 7 Cartesian descriptions of TIE and TIES motions are derived. It is
shown that the reduced governing system of PDE for the radial and angular compo-
nents of TIE motion, found in Chapter 5, admits a variational formulation. Formal
change of dependent variables transforms the Lagrangian of this variational problem

"into quadratic expression with respect to new dependent variables therefore leading
to a linear system of Euler-Lagrange equations. For a particular case, when the
function C(t) involved in these equations is a constant, the system reduces to two
identical telegraphy equations, which can be treated by standard means. In Section
7.2 more general class of motions, termed TIES, are considered. The motions include
transverse shear in addition to twist, inflation/deflation, and contraction/elongation,
describing TIE motion. Although two unknown functions accounting for the in-plane
shear are introduced, the governing system for TIES motion is shown to decompose
into four identical decoupled linear equations of the same type as for TIE motion. In
Section 7.3 the governing system for general axisymmetric motions in neo-Hookean
solid in Cartesian coordinates is derived, and it seems to be more convenient for
further analysis than the original one, derived in terms of cylindrical coordinates.

To the best of my knowledge, presented in this thesis results on existence, in-
jectivity, and regularity for axisymmetric minimizers, as well as the development on
specialized elastodynamic equations of motion and their explicit analytic solutions,

are new and have not been discussed in the literature up to now.
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Chapter 2

Setting axisymmetric variational

problem

2.1 Overview of Ball’s existence theory

Let a material body By in its reference configuration occupy an open and bounded
domain Q C R3 with strongly Lipschitz boundary 9. Given a material point X € Q,
a mapping u : 2 — R3 describes the material deformation with x = u(X) € u(Q)
the corresponding point in the deformed configuration, and F := Vu the deformation
gradient.

The material of the body By is assumed to be hyperelastic with the stored energy
function W satisfying the requirements of frame indifference and, unless stated oth-
erwise, isotropy. Thus the total stored energy in the deformed volume u(f?) is defined

by (1.0.2), and corresponding minimization problem is then given by (1.0.1), where
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a set of admissible deformations A is a subset of Sobolev space W1?(Q, R3) satisfy-
ing appropriate physical restrictions of the problem, e.g., boundary condition of place
u=uoonI C 99, || >0, (up € W'P(Q, R?) being a given function), specified trac-
tion values on the remainder of the boundary, and the incompressibility constraint
(1.0.4).

For the successful application of the direct method of the calculus of variations to
problems in nonlinear elasticity, one needs to formulate physically realistic hypotheses
on both the stored energy density W and the admissible set A so that the following
major argument can be realized:

Step 1. Ensure finiteness of the infimum of the total energy functional E(-) over

the admissible set A and show existence of a minimizing sequence u, € A that
converges weakly to some # for a suitable choice of p.

Step 2. Show that weak limits of minimizing sequences belong to the admissible
set A.

Step 3. Verify that the total energy functional E(-) is w.ls.c.

Then the inequality

E(a) < lim E(u,) = ‘illelf‘E(u) < E(a) (2.1.1)

n—00
implies that 4 is a minimizer.
To ensure the application of the above three steps to three-dimensional problems in

nonlinear elasticity, J. Ball [4] assembled the following hypotheses (with appropriate
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modifications of W and A in different settings) on the stored energy function :
(H1) Polyconvexity: For almost all X € 2 there exists a continuous convex function

WX, ) M3 x M®3 x R — R such that
W(X,F) = W(X,F,cof F,detF) for all F € M3*3,

and W(-,F, H, §) is measurable over Q2 for every (F,H,§) € M3*3 x M3*3 x R.
(H2) Coercivity: There exist real numbers a > 0, 5, p > 1, ¢ > 1, s > 1 such that

for almost all X € 2
W(X,F,cof F,detF) > a (|F|P + | cof F|? + (det F)®) + 3. (2.1.2)

(H3) Finiteness: There exists an admissible deformation u € A such that E(u) < oo.

It was also shown that Ogden materials (1.0.9) satisfy the hypotheses (H1) and

(H2) with p = max~; and ¢ = maxJ;. A typical existence result obtained by employ-
i j

ing Ball’s theory within the context of the above hypotheses is given by the following

Theorem 2.1.1 Let a stored energy function W satisfy (H1)-(H3) with !

p>2 and qZL.
p—1

Let

lim W =o0.
det F—00+ .

In [42] it was shown that the right hand side of the inequality for parameter ¢ can be replaced

by 3/2.
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Then the total energy (1.0.2) assumes its minimum in the admissible set A given by

A = {ue W'P(Q,R? : u=u, ae. inT,cof F e LY(Q,M>*3),

detF € L*(Q), detF >0 a.e. in Q},
where T' C 8Q, |T'| > 0, and ug is a specified function in W1P(Q, R3).

Proof (Sketch). Existence of a minimizing sequence u, and boundedness of the cor-
responding gradients in LP(2, M3*3) follow from the finiteness and the coercivity
hypotheses, respectively. Boundedness of the sequence u; in LP(f2, R®) is proven via

the generalized Poincaré inequality (see Theorem 6.1.8 (b) in [16])

/Iflpdec(/|Vf|"dx+ /fdap . (2.1.3)
[1] Q r

applied to the components of u,. The displacement boundary condition imposed on
admissible functions is needed here to ensure that the second term on the right hand
side is bounded (in fact, it is a constant). Thus uy is bounded in W'P(Q, R®), and the
existence of a weakly convergent subsequence follows from the reflexivity of Sobolev
space WP with p > 1.

The most technical part of the proof is establishing that the weak limit resides
in the admissible set. It includes proof of weak continuity of the minors of the
deformation gradient, and this dictates the restrictions on the growth exponents p, q.
Satisfaction of the boundary condition for the weak limit relies on the compactness
of the trace operator tr € £ (WP(D); LP(T')) and is proved in a standard manner by

extracting a subsequence converging almost everywhere on I'.
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The polyconvexity of the integrand implies its quasiconvexity [4], which is essen-
tially equivalent to the weak lower semi-continuity of the energy functional [36]. This
completes the proof. B

As was pointed out in [4], for three-dimensional deformation of an incompressible
hyperelastic material with stored energy function independent on cof F, the bound
on the growth exponent needed for the weak continuity of the determinant (distri-
butional determinant) is p > 3 (p > 9/4). The optimality of these bounds has been
demonstrated in [19]. Consequently, any of these restrictions rules out neo-Hookean
materials.

In Chapters 3 and 4 new existence theorems for variational formulation for iso-
choric, axially symmetric deformations of hyperelastic materials will be presented,
and some regularity and injectivity properties of minimizers of energy will be estab-
lished. It is always assumed that certain boundary conditions of place are prescribed
on the part of the boundary and the rest of the boundary is traction free. It is also

assumed that the following conditions are satisfied.
° W(X, F) is frame indifferent and, unless stated otherwise, isotropic;
o W(X,F) satisfies the hypotheses (H1), (H2);

e Function uy prescribing boundary condition of place for an admissible set A

belongs to this set, and I(ug) < oo.

The existence theorems cover some classes of hyperelastic incompressible materials
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with stored energy functions that do not satisfy growth conditions of Ball’s existence
theory in genuine three-dimensional case, in particular, the class of neo-Hookean
materials. The detail will be provided only for proving the fact that weak limits
belong to appropriate admissible sets, since the rest of the argument sketched above is
standard (see (4], [16], [18], and references therein). Parameters p, ¢ always denote the
growth exponents in the coercivity hypothesis (2.1.2) for the stored energy function

under consideration.

2.2 Description of the axisymmetric problem

In this section we describe the axisymmetric setting in both cylindrical and Cartesian
coordinates, adjust the total energy functional to this setting, and prove the equiva-
lency of the equilibrium equations for the physical problem under consideration and
the Euler - Lagrange equations of the reduced minimization problem.

Let a hyperelastic body in its reference configuration occupy a domain Q € R3

given in cylindrical coordinates X = (R,w, Z) by
Q:={(R,w,2):X":=(R,Z) € D,w € [0,27)}, (2.2.1)
where D C R? is an open domain with strongly Lipschitz boundary 8D such that

min R = R; > 0. (2.2.2)
X’eD

Introduce a class Azi(Q2) of almost everywhere isochoric, axisymmetric deformations

u : Q — R® with components (r, 6, z) of the form given by (1.0.10).
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The deformation gradient of & € Azi(Q2) takes the form

T 0 T3

F=1rr, r/R 77,3 (2.2.3)

251 0 2,3

with the corresponding right Cauchy-Green deformation tensor given by

2 2 2 .2 2
T+ (rma ) +2,% 1 /R rara+ritaT3+2,: 2,3

C= . (r/R)? 13 /R v (224)

T,32 + (TT,3 )2 + 2,3 2

where the ellipses stand for appropriate symmetric expressions. Here and throughout

this work we adopt the notation
f1:=0f/0R f2:=0f/0w and f3:=0f/0Z -

for any scalar function f(R,w, Z).

The incompressibility condition (1.0.4) takes the form
T
E (7',1 2,3 —T,32,1 ) =1 (225)

In the three-dimensional Cartesian setting, the first invariant I; = trC = |F|? of
the Cauchy-Green strain tensor C is a sum of the squares of all partial derivatives
of the Cartesian components of deformation. Consequently, if the total energy is
finite, those partial derivatives belong to L? due to the coercivity inequality (2.1.2).
However, as follows from (2.2.3), in cylindrical coordinates the first invariant has the

form
L=F2=r?+ 1)l +z,%+ (r/R + 132+ (r73)* + 2,32, (2.2.6)
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so that the derivatives of 7 in this expression are directly coupled with . Hence,
for a minimizing sequence of deformations G* € Azi(f2), one can only conclude from
the coercivity inequality that the functions r,¥, z,¥, r¥7.% i = 1,3, converge weakly
in the space LP(D) thereby preventing determination of appropriate Sobolev space
for the limiting angular deformation function 7. One way of resolving this problem
is to assume that the radial component r in the deformed configuration is uniformly
bounded below away from zero, r(R,Z) > a > 0, for almost all (R,Z) € D. This
possibility will be explored in Chapter 4.

The problem of decoupling functions 7 and 7 can be also eliminated through the

introduction of the new dependent variables

E=&(R,Z):=rcost and n=n(R,Z):=rsinT. (2.2.7)

In fact, then corresponding right Cauchy-Green strain tensor and its first invariant

I,(C) in terms of u = (¢, n, z) take the forms

F €1’ +m1%+ 207 (0a€—161)/R §1€a+n1M3+20 2,3
C= - (E@+n)/R* (na€~-1n6a)/R (228)
i £i+m3+z3 |
and
Li= Y (€L+nk+22) + (& +7)/R (229)
m=13

Remark. It should be noted at this point that nothing prevents the radial component

7 from taking negative values.? Therefore, the unique determination of the cylindrical

2The existence theorems of Ball [4] also assert only that under certain assumptions a minimizer
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coordinates r, 0, z of the image of a point (R,w, Z) in terms of (§, 7, z) is not possible.

However, using (1.0.10), (2.2.7), and the standard relations
x =rcos, y =rsinéd, 2=2(R,Z)

with # = w + 7, the corresponding image can be described in Cartesian coordinates
(z,y, z) by the formulae

Y

il z2=2(R,2Z) (2.2.10)

Y, X
y“‘R R’%

X
T = E{ -
with X = Rcosw, Y = Rsinw. These equations will be referred to as Cartesian de-
scription of deformation. It follows from the equations (2.2.10) that the new depen-
dent variables £ and 7 have clear physical meaning: these are the first two Cartesian
coordinates of the image of the axial cross-section w = 0 in the deformed configura-

tion,

€ =1z(R,0,Z), n=y(R0,2).

If one defines a matrix valued function

€1 —n/R &3
Fo(u) = UD! é/R 7,3 (2211)
2,1 0 2,3

corresponding to an axisymmetric deformation @ € Azi(f2), then a direct computa-

tion shows that

C = FTF = FTF,,

u ezists. Injectivity of a minimizer is another problem that was later stated and investigated in

different settings, cf. . [5], [15], [52].
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so that F and Fy have the same singular values. Using the chain rule, it is easy

to show that the deformation gradient F(a) in Cartesian coordinates satisfies the

equation
F=QF,Q",
where
- -
cosw —sinw 0
Q= | sinw cosw 0
0 0 1

This representation implies that the polyconvexity hypothesis (H1) and the coercivity
hypothesis (H2) hold for axisymmetric deformations with F replaced by Fy due to
the frame indifference and the isotropy assumptions. It also follows from the above
representation that Fy is the deformation gradient in Cartesian coordinates restricted
to the section w = 0 of the cylindrical body 2, Fo = F(R,0, Z).

The incompressibility condition (2.2.5) in terms of &, 7, z reads
€+ 1) 23— +77)i3 21 = 2R (2.2.12)

For 4 € Azi(Q), the three-dimensional minimization problem (1.0.1) formally reduces

to

inf / RW (X,F(u))dRdwdZ,
ueA 0

where X = X(R,w, Z). To reduce the dimensionality of the underlying space we have

to assume that W depends on X, Y only through the variable R = (X2 + Y2)!/2,
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Then the energy functional of the problem (1.0.1) takes the form
I(u) = inf / RW(X', F(u))da (2.2.13)
u
D

with u = (r,7,2), F given by (2.2.3), da the area element in D, and X = (R, Z). For

Cartesian description of deformation,
I(u) := inf / RW (X', Fo(u)) da. (2.2.14)
u
D

with u = (§,7,2) and Fy given by (2.2.11). In each case A represents a set of
admissible ordered triplets of functions that is assumed to be a subset of appropriate
Sobolev space W'P(D,R?) faithful to physical restrictions of the problem including
the incompressibility constraint and boundary conditions to be specified later. Note
that by virtue of (2.2.2) the coercivity hypothesis (2.1.2) holds for the integrand in
(2.2.14), provided it is true for the strain energy density W (X, F, cof F).

Before proceeding with the existence analysis, the reduced variational formulation
needs to be justified from mechanical point of view. Specifically, one must show that
the equilibrium equations for the problem under consideration coincide with (more
exactly, are equivalent to) the Euler-Lagrange equations for the reduced functional
to which an appropriate term accounting for the incompressibility constraint must
be added. In the absence of body forces, the equation of motion (1.0.8) transforms
into the equilibrium equation

Div S =0, (2.2.15)
where S is the nominal stress tensor (1.0.7).
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In the next lemma the equivalency between the Euler-Lagrange equations for the
reduced functional (2.2.13) and equilibrium equation (2.2.15) is shown. For simplicity,
it is assumed that the strain energy density function W does not depend explicitly

on the spacial variables.
Lemma 2.2.1 Let

1. u=(r0,z): Q — R3 be the triplet of functions corresponding to a deformation

a4 € Azi(Q), where Q is defined by (2.2.1), (2.2.2);
2. The strain energy density W = W (F) is frame invariant and isotropic;

8. The Lagrange multiplier does not depend on the angular variable, i.e., p =

p(R, Z).

Then the Euler-Lagrange equations for the functional in (2.2.13) differ from the equi-
librium equations by a factor R and therefore are equivalent to the equilibrium equa-

tions.

Proof. For a material satisfying the requirements of isotropy, frame indifference,
homogeneity, and incompressibility the strain energy density can be written in the
form W = W (I, I;), where I}, I, are the principle invariants of the right Cauchy-

Green deformation tensor C = FTF, and the formula (1.0.7) becomes [45]

(W W\ g W o
5‘2(611+11612)F 255 CFT —pF " (2.2.16)

Assume temporarily that W = W(I}), and let the prime denote differentiation with

respect to I;. It follows from (2.2.15), (2.2.16) that the equilibrium equation under
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the assumptions of lemma becomes
2W'DivFT + 2W"F VI, —F TVp =0, (2.2.17)

where we used the gradient operator V in cylindrical coordinates

o) 190 0
V= ER_@E + Ewﬁ% + Eza—z—,

and Piola identity [16], Pg. 39, which for isochoric deformation takes the form
DivF~! = 0.
To compute the first term in (2.2.17) note that the transpose deformation gradient

can be written in the form

FT = r,Er®e,+73E;Qe,+17,ErQes+1/RE,® ey

+ m73Ez®e€+2,1Er®e; +23EzQe€,.
Then direct calculation gives

Div FT = e, (Ar —r(VT)? + (r/R),s ) + e (rAT +2Vr-Vr+ (T/R)T,l)

+e, (Az + 2, /R).

The calculation uses the fact that the operator Div is the gradient operator followed
by contraction [44] and the following elementary formulae for the derivatives of the

basic vectors
(ER)’2 = EW’ (Ew)ﬂ = '—ER, (er)a2 = €y, (e9)72 = —€,,
(er)i=e€gb,i, (e9),i=—eb, i=13.
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It is easy to verify that the second term in (2.2.17) is given by the expression
e,Vr . VI] + eg’I‘VT . VIl + e,Vz . VI[

To compute the last term note that the inverse of F reads

[ rz,3 /R 0 -rr3/R -
F'= r(T320-Ta23) T/R r(ramy—ra73)
I -rz,1 /R 0 rray /R |
implying that
FTVp= %(er(p:l 2,3=P32n) — €:(p1T3—Py3 2, ))-

Combining the above computations one obtains the following equilibrium equations

W' [Ar — (V7?2 + (r/R)n | + W'V, - Vr
_(r/zR)(p,l 2,3 —PH3 251 ) = 0, (22.18)
W' [rAt +2Vr - V71 + (r/R)Ty |+ W'V - VT = 0, (2.2.19)

W [Az+ 2, /R + W'V -Vz+ (r/2R)(pyT3—p3Tn) = 0. (2.2.20)

Derivation of the Euler-Lagrange equations is standard. Under the assumptions of the
lemma the energy functional in (2.2.14) modified to incorporate the incompressibility

constraint takes the form

I(u) = / R (W(Il) —p [%(r,l 23 —Ta2,1) — 1]) dRdZ.

D
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Then the first Euler-Lagrange equation is

. oI, , dl,
[R (W 3(7‘,1 ) prz,3 /R)] i+ R (W a(T,a) +PTZ,1 /R) »3

- R (W'%—?— —p(ryz,3-T32, )/R) =0.

Using (2.2.6) one arrives after elementary computations at the first equilibrium equa-
tion (2.2.18) multiplied by 2R. Derivation of the other two equations is similar.

The same argument applies when the strain energy density depends on the second
invariant I3, but it requires more technically involved computations. ll

Remark. For neo-Hookean stored energy density (1.0.6) the equilibrium equations

stated in the lemma become

(AT — 1 (V7)2 + (r/R),1 ) — -]%(p,1 23-pazy) = O, (2.2.21)
rAT+2Vr-V7r+ (r/R)1y = 0, (2.2.22)
uw(Az+ 2, /R) + 112(1)’1 T3 —P3Tyn) = O. (2.2.23)

Relative simplicity of the system suggests that for a priori simplified forms of func-
tions r, 7, z finding exact solutions could be possible. Some such possibilities will be

explored in Chapters 5-7.
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Chapter 3

Existence theorems

In this chapter admissible sets appropriate for the Cartesian description of the ax-
isymmetric deformations defined in the previous section will be introduced, and the
main existence results for stored energy densities with and without dependence on
the cofactor matrix will be stated and proved.

To handle the incompressibility constraint (2.2.12), it is convenient to introduce
the following expressions tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>