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ABSTRACT

GOODNESS-OF-FIT TESTING OF ERROR DISTRIBUTION IN
NONPARAMETRIC ARCH(1) MODELS AND LINEAR MEASUREMENT

ERROR MODELS

By

Xiaoqing Zhu

This thesis discusses the goodness-of-fit testing of an error distribution in a nonpara-

metric autoregressive conditionally heteroscedastic model of order one and in the linear

measurement error model.

For the nonparametric autoregressive conditionally heteroscedastic model of order one,

the test is based on a weighted empirical distribution function of the residuals, where the

residuals are obtained from a local linear fit for the autoregressive and heteroscedasticity

functions, and the weights are chosen to adjust for the undesirable behavior of these non-

parametric estimators in the tails of their domains. An asymptotically distribution free test

is obtained via Khmaladze martingale transformation. A simulation study is included to

assess the finite sample level and power behavior of this test. It exhibits some superiority

of this test compared to the classical Kolmogorov-Smirnov and Cramér-von Mises tests in

terms of the finite sample level and power.

For the linear measurement error model, a class of test statistics are based on the inte-

grated square difference between the deconvolution kernel density estimators of the regression

model error density and a smoothed version of the null error density, an analog of the so

called Bickel and Rosenblatt test statistics. The asymptotic null distributions of the pro-

posed test statistics are derived for both the ordinary smooth and super smooth cases. The

asymptotic powers of the proposed tests against a fixed alternative and a class of local non-



parametric alternatives for both cases are also described. A finite sample simulation study

shows some superiority of the proposed test compared to some other tests.
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Chapter 1

Introduction

One of the classical problems of statistical inference is to test if a given random sample comes

from a given continuous distribution. This is the so called goodness-of-fit testing problem.

A well known test for this problem is Kolmogorov’s tests based on empirical distribution

function, which is asymptotically distribution free. This is desirable because it makes this

test implementable for large or moderate sample sizes. This property is lost as soon as there

is a nuisance parameter present in the testing problem as happens to be case when, for

example, one is fitting a given distribution up to an unknown location parameter or up to

unknown location and scale parameters.

Similarly, analogous tests based on the residual empirical process in regression or in

autoregressive conditionally heteroscedastic time series models are not asymptotically distri-

bution free for fitting a known distribution function (d.f.) to the error d.f. One way to obtain

asymptotically distribution free tests from residual empirical process in these models is to

base tests on its Khmaladze (1981) martingale transform. This has been successfully done

in parametric and non-parametric regression models in Khmaladze and Koul (2004, 2009).

Müller, Schick and Wefelmeyer (2012) developed analogous transformation test based on

certain weighted residual empirical process for fitting a known error d.f. in nonparametric

autoregressive time series models of order 1. Chapter 2 of this thesis pertains to develop-

ing and analyzing analogously transformed process for fitting a known error d.f. to the error

d.f. in nonparametric autoregressive conditionally heteroscedastic time series models of order
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1. The supremum test based on this transform is asymptotically distribution free. A finite

sample study shows accuracy of the asymptotic null distribution of this test, and that its

empirical power dominates that of the Kolmogorov test based on weighted residual empirical

process at all chosen alternatives, levels, and sample sizes.

Another way to obtain asymptotically distribution free tests in these problems is to

assume densities exist and use nonparametric estimators of densities to fit a given density.

For fitting a known density in the one sample set up, Bickel and Rosenblatt (1973) were

the first to investigate the asymptotic null distribution of a test based on a L2-distance

between a kernel type density estimator and its null expected value. The asymptotic null

distribution of a suitably standardized version of this statistics was shown to be standard

Gaussian. Since then numerous papers have appeared proposing tests based on analogs of

this statistics in various models having some nuisance parameters. A desirable property

of this statistics is that its asymptotic null distribution is not affected by not knowing the

nuisance parameters in the one sample location-scale models. Lee and Na (2002), Bachmann

and Dette (2005), Horvath and Zitikis (2006) and Koul and Mimoto (2012) observed that

this fact continues to hold for the analog of this statistics when fitting an error density

based on residuals in parametric autoregressive and generalized autoregressive conditionally

heteroscedastic time series models. A similar fact has been observed to hold by Ducharme

and Lafaye de Micheaux (2004) in parametric autoregressive moving average models, by

Cheng and Sun (2008) in parametric nonlinear autoregressive time series models, by Bercu

and Portier (2008) for multivariate ARMAX models in adaptive tracking, and by Na (2009)

for infinite-order autoregressive models.

The regression models where covariates are not directly observable are abound in real

world applications as is evidenced by the three monographs of Fuller (1987), Carroll, Rup-
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pert and Stefanski (1995), and Cheng and Van Ness (1999). In these models one observes a

surrogate for the covariates with some error. These are known as measurement error regres-

sion models or errors-in-variables regression models. Statistical inference in these models is

highly sensitive to the knowledge of the error distributions. Knowing the regression model

error distribution can help to develop efficient inference for the underlying parameter in

these models. It is thus of interest to develop goodness-of-fit tests for fitting a known error

density to the regression model error density in the presence of measurement error in the

covariates. Chapter 3 of this thesis pertains to developing a goodness-of-fit tests for this

testing problem in linear measurement error regression models. The test statistics are of

the above L2 type distance based on a class of deconvoluted error density estimators and

the smoothed version of null error density. Two types of tail properties of the measurement

error distribution are considered, which are the ordinary smooth case and super smooth

case. For each case, a comprehensive theoretical analysis of the asymptotic distributions of

these statistics under null hypothesis, under a fixed alternative and under a sequence of local

nonparametric alternatives is presented. A member of this class of tests is compared via a

finite sample simulation with some other tests. It dominates several of these tests in terms

of the power at the chosen alternatives when the measurement error is large.
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Chapter 2

Nonparametric ARCH(1) Models

2.1 Introduction

In recent years, there has been a considerable focus for providing asymptotically distribution

free tests for fitting a known error distribution in regression and autoregressive and mov-

ing average models. Boldin (1982, 1990), Koul (1991, 2002), Khmaldaze and Koul (2004),

Koul and Ling (2006), among others, focus on tests based on residual empirical distribution

function (d.f.) in parametric cases. Khmaldaze and Koul (2009) provide martingale trans-

form tests based on residual empirical d.f. for nonparametric regression models, and Müller,

Schick, and Wefelmeyer (2012) provide similar tests fitting an error distribution in semipara-

metric partially linear regression models.

The focus of the present chapter is to analyze an analog of the above tests for fitting an

error distribution in nonparametric autoregressive conditionally heteroscedastic models of

order 1 (ARCH(1)). One of the main problems faced here is the construction of the nonpara-

metric residuals so that the corresponding residual empirical d.f. obeys uniform asymptotic

linearity expansion up to the first order. Müller et al. (2009) obtained this type of a result for

nonparametric homoscedastic autoregressive time series models of order 1. In this chapter

we extend this result to a class of ARCH(1) models.

The chapter is organized as follows. In section 2, we introduce the local linear estimators

of autoregressive and variance functions and state their uniform strong consistency. The
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asymptotic uniform linear expansion of a suitably standardized weighted residual empirical

process based on the corresponding residuals, and the asymptotic distributions of the test

based on the martingale transform of these weighted residual empirical processes are estab-

lished in section 3. Several examples of error d.f.’s where the results of this chapter are

applicable are also discussed in section 3. A simulation study of section 4 shows that the

finite sample power of the martingale transform test is uniformly higher than that of the

Kolmogorov-Smirnov test based on a weighted residual empirical process at all chosen alter-

natives. This finding is consistent with that reported in Khmaladze and Koul (2009) (KK)

when dealing with nonparametric regression models. The same simulation study also shows

some superiority of the proposed test over the Cramér-von Mises based on a weighted residual

empirical process in terms of the finite sample level and power at the chosen alternatives.

The proofs of some technical results pertaining to nonparametric estimators of autore-

gressive and heteroscedasticity functions and those of the asymptotic uniform linearity of the

weighted residual empirical process are deferred to the last section of this chapter, section

2.5.

One of the novelties of this chapter is in the implementation of the Khmaladze martingale

transform test in ARCH(1) models even when the incomplete Fisher information matrix

is singular. In the location set up alone this matrix is known to be singular for double

exponential error distribution. In this chapter we note that this matrix is singular also for a

class of t-distributions in the present location-scale context, which is unlike in the location

set up where it is nonsingular as was noted in KK.
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2.2 Autoregressive and Variance Functions Estimation

Consider the nonparametric ARCH model of order 1

Xi = m(Xi−1) + σ(Xi−1)εi, i ∈ Z := {0,±1, · · · }, (2.2.1)

where εi, i ∈ Z are independent copies of a standardized random variable (r.v.) ε, and

εi is independent of Xi−1, for all i ∈ Z. Note that then m(x) = E(Xi|Xi−1 = x), and

σ2(x) = E{(Xi −m(Xi−1)2|Xi−1 = x}, x ∈ R, i ∈ Z.

Let F be a known d.f. We are interested in testing the hypothesis that the d.f. of ε is

F . Any test of such a hypothesis has to be based on the estimated residuals, which in turn

needs suitable estimators of the nonparametric functions m and σ.

Several researchers have investigated numerous nonparametric estimators of m and σ in

regression and autoregressive models. In order to use these estimators in the above testing

problem, one needs their uniform consistency. For homoscedastic regression models with

bounded dependent variable, Ojeda (2008) established the Hölder continuity properties of

the local polynomial estimators of the regression function for the one dimensional covariate

case. For heteroscedastic regression models, Neumeyer and Van Keilegom (2010) established

the uniform consistency of the local polynomial estimators for the regression and variance

functions in the case of multidimensional covariates. To estimate the variance function, they

use the estimators of the type â− m̂2 (see also Yao and Tong (1994), where â(x) and m̂(x)

are estimators of E(Y 2|X = x) and m(x), respectively. For homoscedastic autoregressive

models, Masry (1996) proved the uniform consistency over compact sets of multivariate local

polynomial estimators of the autoregressive function, provided the time series is α−mixing.

For stationary and ergodic auto-regressive time series of order 1, MSW proved the uniform
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consistency over a sequence of compact intervals increasing to R of the local linear estima-

tors of the autoregressive function. For the one dimensional α−mixing time series model,

Neumeyer and Selk (2013) proved the uniform consistency over a sequence of compact inter-

vals increasing to R of the Nadaraya-Waston estimators for autoregressive and variance func-

tions. Fan and Yao (1998) provided the asymptotic properties for an efficient fully-adaptive

estimator for the variance function, i.e. the local linear estimator of E((Y − m̂(X))2|X = x)

in the one dimensional β−mixing case. Different from the mixing condition, Wu, Huang

and Huang (2010) gave a moment contracting condition for the dependence properties of

a general autoregressive model, and established the uniform consistency for the Nadaraya-

Waston type estimators of the autoregressive function over a bounded compact set. Based

on the moment contracting condition for one dimensional stationary autoregressive model,

Borkowski and Mielniczuk (2012) established the asymptotic distributional properties of the

efficient fully-adaptive local linear estimator of the variance function E((Y −m̂(X))2|X = x).

To proceed further, we now define the estimators of interest here. Let K and W be

density kernel functions and h1 and h2 be the bandwidths. Define

(â0(x), b̂0(x)) = arg min
α,β

n∑
i=1

{
Xi − α− β(Xi−1 − x)

}2
K
(Xi−1 − x

h1

)
, x ∈ R. (2.2.2)

Note that â0(x) and b̂0(x) are the local linear estimators of m(x) and the first derivative

ṁ(x) of m(x), respectively. Henceforth, m̂(x) = â0(x). To estimate σ2(x), we shall consider

the following two methods. The first one is based on Yao and Tong (1994), where σ̂2(x) ≡

σ̂2
1(x) = â1(x)− m̂2(x), and

(â1(x), b̂1(x)) = arg min
α,β

n∑
i=1

{
X2
i − α− β(Xi−1 − x)

}2
W
(Xi−1 − x

h2

)
. (2.2.3)
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The second estimator is based on the work of Fan and Yao (1998), who suggested an

efficient fully-adaptive procedure, σ̂2(x) ≡ σ̂2
2(x) = â2(x), where

(â2(x), b̂2(x)) = arg min
α,β

n∑
i=1

{
r̂i − α− β(Xi−1 − x)

}2
W
(Xi−1 − x

h2

)
. (2.2.4)

Here r̂i = [Xi − m̂(Xi−1)]2. We shall show that both of these estimators of σ2(x) yield the

same asymptotic result for the proposed goodness-of-fit tests under similar conditions. Here

we shall present some consistency results about these estimators. In order to do so, we need

some assumptions as follows.

In the sequel, for any twice differentiable function g, ġ and g̈ represent the first and second

derivatives of g, respectively. All limits are taken as n→∞, unless specified otherwise.

Assumptions:

(E) There exists some b > 1 +
√

3 such that E[|X0|2b] <∞ and E[|ε1|2b] <∞.

(F) The innovation εj , j ∈ Z, are i.i.d. F . The density f of F is continuously differentiable

and supx∈R |xf(x)| <∞ as well as supx∈R |x2ḟ(x)| <∞.

(H) The sequence of bandwidths hi = αicn, i = 1, 2, αi > 0, cn → 0 and

(log n)η/(nc2+
√

3
n )→ 0, nc4n(log n)η → 0, ∀ η > 0. (2.2.5)

If σ̂2
2(x) is used, cn also satisfies,

(log n)η/(nc3.8n )→ 0, ∀ η > 0. (2.2.6)

(I) The two sequences of real numbers an, bn satisfy the following conditions: an < 0 < bn,
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−an and bn tend to infinity such that for an 0 ≤ r1 < ∞, (bn − an) = O((log n)r1),

and P (X0 ≤ an + λ) + P (X0 ≥ bn − λ) = o((log n)−1), for any λ > 0.

(KZ) For the α−mixing process, the kernel density K is supported on [−1, 1], symmetric

around 0 and three times differentiable, with all three derivatives bounded. Moreover

K(1) = K̇(1) = 0. The kernel W satisfies the same conditions.

(KZ′) For the geometric moment contracting process, the kernel density K is supported on

[−1, 1], symmetric around 0 and three times continuously differentiable. The kernel W

satisfies the same conditions.

(M) The functions m and σ are four times differentiable and there exist constants 0 < d1 <

d2 < ∞, 0 ≤ rq, rs < ∞, and sequences qn, qn,σ such that for all sufficiently large

n, d1 < qn < d2(log n)rq , d1 < qn,σ < d2(log n)rs , supx∈[an−h1, bn+h1] |m(k)(x)| =

O(qn), and supx∈[an−h2, bn+h2] |σ(k)(x)| = O(qn), k = 0, 1, 2, 3, 4, and

(infx∈In |σ(x)|)−1 = O(qn,σ), where h1, h2 are as in (H) above.

(X) The observations Xj , j ∈ Z have a common marginal density g, which is bounded

and four times differentiable with bounded derivatives. The density is also bounded

away from zero on compact intervals. There exists some 0 ≤ rg <∞ such that qn,g =

(infx∈In g(x))−1 = O((log n)rg), where In := [an, bn], with an, bn as in Assumption

(I).

(Z) The process (Xj)j∈Z is α-mixing with mixing-coefficient α(n) = O(n−κ), for some

κ > max
(

2
(3 +

√
3)b+ 2 +

√
3

(1 +
√

3)b− 2(2 +
√

3)
, 7
)
.
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Moreover, supx∈R((|m(x)|+ |σ(x)|)2k)g(x) <∞, and there exists a j∗ ≥ 1 such that

sup
x,x′∈R

((|m(x)|+ |σ(x)|)k(|m(x′)|+ |σ(x′)|)kgX0,Xj−1
(x, x′)) <∞, ∀ j > j∗ + 1,

for k = 1, 2, where gU,V denotes joint density of any two r.v’s (U, V ).

(Z′) Xn = J (· · · , εn−1, εn), which is a σ−field generated by · · · , εn−1, εn. Also (Xt)t∈Z is

geometric moment contracting, i.e. let ‖Y ‖p = (E|Y |p)1/p, for n > 0, some q > 1 and

0 < r < 1, ‖Xn −X∗n‖q = O(rn), where X∗n = J (· · · , ε−1, ε
∗
0, · · · , εn−1, εn) and ε∗0 is

an independent copy of ε0.

The above assumptions (E), (F), (H), (I), (KZ), (M), (X) and (Z) are similar to the condi-

tions in Neumeyer and Selk (2013) for the mixing processes. Assumption (Z ′) is similar as in

Borkowski and Mielniczuk (2012) when the process satisfies the moment contracting condi-

tion, and the kernel conditions (KZ′) are similar to those in Müller, Schick, and Wefelmeyer

(2009) (MSW). The relation (2.2.6) in assumption (H) is needed only for the analysis of

σ̂2
2(x).

We are now ready to state a uniform consistency result for the above estimators of m

and σ2. Its proof is deferred to the last section. Throughout the chapter, In := [an, bn],

with an, bn as in Assumption (I).

Lemma 2.2.1 Suppose (2.2.1), (F), (H), (I), (KZ) or (KZ′), (X), (Z) or (Z′), and (M)

hold. Then

sup
x∈In

∣∣∣m̂(x)−m(x)

σ(x)

∣∣∣ = Op

((
c
−1/2
n n−1/2(log n)1/2

)
Qn

)
, (2.2.7)

sup
x∈In

∣∣∣ σ̂i(x)− σ(x)

σ(x)

∣∣∣ = Op

((
c
−1/2
n n−1/2(log n)1/2

)
Q2
n

)
, i = 1, 2, (2.2.8)
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where Qn = qnqn,gqn,σ.

The next section describes the proposed weighted empirical d.f. F̂, the Khmaladze mar-

tingale transform test based on F̂, its asymptotic distribution under null hypothesis and

computation of the test statistics for several distributions.

2.3 Goodness-of-fit Tests

2.3.1 Asymptotic expansion for the weighted empirical distribu-

tion function

To begin with we need to introduce the weighted residual empirical d.f. Unlike in the re-

gression case, MSW noted that the dependency and unboundedness of the observations

create some technical difficulties in autoregressive time series models because of the poor

performances of the estimator m̂(x) for large values of x. They used only those residuals

ε̂j = Xj − m̂(Xj−1), for which Xj−1 falls in the interval In = [an, bn]. Analogously, we use

the following weighted residual empirical process.

Fix a λ > 0. Let ωn(x) ∈ (0, 1) be a sequence of functions arbitrarily defined for x in

the intervals [an, an + λ) and (bn − λ, bn]. In addition, assume that ωn(x) is three times

differentiable in x with uniformly three bounded derivatives, i.e., supn∈N supx∈R |ω
(j)
n (x)| <

∞, j = 1, 2, 3, and satisfies

ωn(x) =
{ 1, x ∈ [an + λ, bn − λ],

0, x 6∈ [an, bn].

(2.3.1)
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Let ωnj = ωn(Xj−1) and

ω̄j =
ωnj∑n
i=1 ωni

, j = 1, · · · , n.

Let ε̂j := (Xj − m̂(Xj−1))/σ̂(Xj−1), where µ̂, σ̂ are as in the previous section. Then the

weighted residual empirical d.f. of interest is

F̂(x) =
n∑
j=1

ω̄jI(ε̂j ≤ x), x ∈ R. (2.3.2)

We also need the empirical d.f. based on the true errors

Fn(x) =
1

n

n∑
j=1

I[εj ≤ x], x ∈ R.

For the one dimension autoregressive homoscedastic regression model, where ε̂j = Xj −

m̂(Xj−1), MSW established, under the null hypothesis and under some conditions, that

sup
x∈R
|F̂(x)− Fn(x)− f(x)

1

n

n∑
j=1

εj | = op(n
−1/2).

Neumeyer and Selk (2013) obtained an analogous result for the ARCH(1) model (2.2.1) by

using nonparametric residuals based on Nadaraya-Waston type estimators of autoregressive

and variance functions. Under some conditions, they proved that

sup
x∈R

∣∣∣F̂(x)− Fn(x)− f(x)
1

n

n∑
j=1

[εj +
x

2
(ε2
j − 1)]

∣∣∣ = op(n
−1/2). (2.3.3)

Theorem 2.3.1 below shows that this result continues to hold when residuals are based
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on the local linear fitting of m(x) and σ2(x) as defined in (2.2.2)–(2.2.4).

Theorem 2.3.1 Under the assumptions (2.2.1), (E), (F), (H), (I), (KZ) or (KZ′), (M),

(X) and (Z) or (Z′), (2.3.3) continues to hold.

2.3.2 Khmaladze martingale transformation

The classical tests for the goodness-of-fit testing of an error distribution are the Kolmogorov-

Smirnov (KS) and Cramér-von Mises (CvM) tests. Using the the asymptotic expansion

(2.3.3) we readily obtain the following

Corollary 2.3.1 Under the conditions of Theorem 2.3.1,

KS = n1/2 sup
x∈R
|F̂(x)− F (x)| →d sup

x∈R
|R(x)|,

CvM = n

∫
(F̂(x)− F (x))2dF̂(x)→d

∫
R2(x)dF (x),

where R(x) is a zero-mean Gaussian process with covariance function

Cov(R(x1), R(x2)) = E
{[
I(ε ≤ x1)− F (x1) + f(x1)(ε+

x1

2
(ε2 − 1))

]
×
[
I(ε ≤ x2)− F (x2) + f(x2)(ε+

x2

2
(ε2 − 1)

]}
.

Clearly these limiting null distributions depend on F in a complicated fashion and to

date no theoretical results about their quantiles are available, which makes it impractical to

implement these tests in practice, even for large samples. Instead, we propose to use the

Khmaladze martingale transformation of F̂ to obtain asymptotically distribution free tests.
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To proceed further, as in KK, assume F has an absolutely continuous density f with

almost derivative ḟ . Let ψf (x) = −ḟ(x)/f(x). We assume

I(f) =

∫
ψ2
f (x)dF (x) =

∫ ( ḟ
f

)2
dF <∞. (2.3.4)

Note that Eε2 <∞ and (2.3.4) imply

∫
[xψf (x)− 1]2dF (x) <∞. (2.3.5)

Thus (2.3.4) and (2.3.5) guarantee the finiteness of the Fisher information for location and

scale parameters.

Consider the extended score function vector h(x) = (1, ψf (x), xψf (x)−1)T , for location-

scale family F ((y − θ)/σ) with respect to both θ and σ, at θ = 0 and σ = 1. Define the

incomplete information matrix

ΓF (x) =

∫ ∞
x

h(y)hT (y)dF (y)

=


1− F (x) f(x) xf(x)

f(x)
∫∞
x (ḟ2(y)/f(y)dy

∫∞
x (f(y) + yḟ(y))ḟ(y)/f(y)dy

xf(x)
∫∞
x (f(y) + yḟ(y))ḟ(y)/f(y)dy

∫∞
x (f(y) + yḟ(y))2/f(y)dy

 .

Suppose ΓF (x) is nonsingular, for all x ∈ R, and define, as in KK, for a signed measure v,

K(x, v) =

∫ x

−∞
hT (y)Γ−1

F (y)

∫ ∞
y

h(z)dv(z)dF (y), x ∈ R. (2.3.6)
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If we define a vector function

H(x) =

∫ x

−∞
hdF = (1− F (x),−f(x),−xf(x))T ,

then analogous to (2.4) of KK, we obtain

HT (x)−K(x,HT ) = 0, ∀x ∈ R. (2.3.7)

Let

v̂n(x) =
√
n[F̂(x)− F (x)], vn(x) =

√
n[Fn(x)− F (x)], x ∈ R.

The Khmaladze martingale transformed processes Ûn and Un are defined as

Ûn(x) =
√
n[F̂(x)−K(x, F̂)] = v̂n(x)−K(x, v̂n), (2.3.8)

Un(x) =
√
n[Fn(x)−K(x, Fn)] = vn(x)−K(x, vn).

Based on the asymptotic expansion (2.3.3), we can rewrite

Ûn(x) = Un(x) + ηn(x), ηn(x) = ξn(x)−K(x, ξn),

ξn(x) = v̂n(x)− vn(x)− f(x)
1√
n

n∑
j=1

[εj +
x

2
(ε2
j − 1)],

sup
x
|ξn(x)| = op(1).

If the matrix ΓF (x) is singular, then Γ−1
F (x)

cannot be uniquely defined. But, the above

transformation is still well defined as is evidenced in the following lemma. This lemma is an
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extension of Lemma 2.1 of KK, suitable for the location-scale set up. As mentioned in KK,

it is an adaptation and simplification of a more general argument presented in Nikabadze

(1987) and Tsigroshvili (1998).

Lemma 2.3.1 Suppose, for some x0, such that 0 < F (x0) < 1, the matrix ΓF (x), for x > x0

degenerates to the form

ΓF (x) = (1− F (x))


1 1 x

1 1 x

x x x2 + 1

 , ∀x > x0, (2.3.9)

or

ΓF (x) = (1− F (x))


1 k

x k

k
x

(k+1)2k

(k+2)x2
k2
x

k k2
x k2

 , ∀x > x0, some k > 0. (2.3.10)

Then in both cases, the equalities (2.3.7) and, hence, (2.3.8) are still valid. Besides, for

(2.3.9),

hT (x)Γ−1
F (x)

∫ ∞
x

h(y)dvn(y) = −
2vn(x)−

∫∞
x vn(y)dy

1− F (x)
, x ∈ R; (2.3.11)

for (2.3.10),

hT (x)Γ−1
F (x)

∫ ∞
x

h(y)dvn(y) = −(k + 1)

k

2vn(x) + (k + 2)x
∫∞
x

vn(y)

y2 dy

1− F (x)
, x ∈ R.(2.3.12)

The conclusions (2.3.11) and (2.3.12) continue to hold with vn replaced by v̂n.
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Proof. The proof of this lemma is similar to that of Lemma 2.1 of KK, which was proved

for the location model only where the analog of Γ is 2× 2. In the present set up Γ is 3× 3

matrix, which creates some complexity. For the sake of self containment and completeness,

we give details here to deal with this situation.

When ΓF (x) is degenerate of the form (2.3.9), h(x) = (1, 1, x − 1)T . The image of the

linear operator in R3 of ΓF (x) is

I(ΓF (x)) = {b : b = ΓF (x)a, for some a ∈ R3}

= {b : b = (1− F (x))(β, β, βx+ γ), β, γ ∈ R},

and the kernel of this operator is

K(ΓF (x)) = {a : ΓF (x)a = 0}

= {a : a = α(1,−1, 0), α ∈ R},

To prove the equalities (2.3.7), it suffices to show that for any b ∈ I(ΓF (x)), a ∈ K(ΓF (x)),

h(x)TΓ−1
F (x)

ΓF (x)(b+ a) = h(x)T (b+ a).

Note that for any b ∈ I(ΓF (x)), a ∈ K(ΓF (x)),

ΓF (x)(b+ a) = ΓF (x)b = (2β + βx2 + γx, 2β + βx2 + γx, 3βx+ βx3 + γx2 + γ)T .
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For any g = (λ, λ, λx+ η) ∈ I(ΓF (x)), if ΓF (x)g = ΓF (x)b, then

2λ+ λx2 + ηx = 2β + βx2 + γx, 3λx+ λx3 + ηx2 + η = 3βx+ βx3 + γx2 + γ.

From these two equations we obtain λ = β and η = γ. Then Γ−1
F (x)

is any linear operator on

I(ΓF (x)) such that

Γ−1
F (x)

ΓF (x)b = b+ a1, a1 ∈ K(ΓF (x)).

From this fact we obtain that for any a ∈ K(ΓF (x)), h
T a = 0,

h(x)TΓ−1
F (x)

ΓF (x)(b+ a) = h(x)TΓ−1
F (x)

ΓF (x)b = h(x)T (b+ a1) = h(x)T (b+ a).

Similarly, one proves (2.3.7) in the case ΓF (x) is degenerate of the form (2.3.10). This

completes the proof of (2.3.7), which in turn yields the claims (2.3.11) and (2.3.12) for vn

and v̂n, in an obvious way.

Sometimes it is convenient to use the time transformation t = F (x), un = vn(F−1(t)),

û = v̂n(F−1(t)), γ(t) = h(F−1(t)), and Γt =
∫ 1
t γ(s)γ(s)T ds, 0 ≤ t ≤ 1. Now consider a

function parametric version of the u- and un-processes and their transforms:

u(ϕ) =

∫ 1

0
ϕ(s)du(s), un(ϕ) =

∫ 1

0
ϕ(s)dun(s),

K(ϕ) = K(ϕ, u) =

∫ 1

0
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(s)du(s)dt,

Kn(ϕ) = K(ϕ, un) =

∫ 1

0
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(s)dun(s)dt,

b(ϕ) = u(ϕ)−K(ϕ), bn(ϕ) = un(ϕ)−Kn(ϕ), ϕ ∈ L2[0, 1].
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Write b(t) and bn(t) for b(ϕ) and bn(ϕ(·)), respectively, when ϕ(·) = I(· ≤ t). Then

b(t) = u(t)−
∫ t

0
γT (z)Γ−1

z

∫ 1

z
γ(s)du(s)dz, t ∈ [0, 1], (2.3.13)

bn(t) = un(t)−
∫ t

0
γT (z)Γ−1

z

∫ 1

z
γ(s)dun(s)dz, t ∈ [0, 1].

If Φ ⊂ L2[0, 1] is a subset of square integrable functions such that the sequence un(ϕ), n ≥

1, is uniformly in n equicontinuous on Φ, then un →d u in `∞(Φ), where u is standard

Brownian bridge, and `∞(Φ) is the set of all uniformly bounded real valued functions on Φ

(see van der Vaart and Wellner (1996)).

The following theorem describes the weak convergence of the process Kn(ϕ), ϕ ∈ Φ. It

is an extension of Theorem 2.1 of KK, which is valid for the location model only, to the

location-scale model.

Theorem 2.3.2 (i) Let L2,ε ⊂ L2[0, 1] be the subspace of all square integrable functions

which are equal to 0 on the interval (1− ε, 1]. Then, Kn →d K, on L2,ε, for any 0 < ε < 1.

(ii) Let, for any arbitrarily small but fixed ε > 0, C < ∞, and α < 1/2,Φε ⊂ L2[0, 1] be

a class of all square integrable functions satisfying the following right tail condition:

|ϕ(s)| ≤ C[γT (s)Γ−1
s γ(s)]−1/2(1− s)−1/2−α, ∀ s > 1− ε. (2.3.14)

Then, Kn →d K, on Φε.

The following theorem describes the weak limit of the bn process and is an extension of

Theorem 2.2 of KK to the location-scale set up. Recall that as in van der Vaart and Wellner

(1996), the family of Gaussian random variable b(φ), φ ∈ Φ, Φ ⊂ L2[0, 1], is continuous on

Φ, with covariance function Eb(φ)b(φ′) =
∫ 1

0 φ(t)φ′(t)dt is called Browian motion on Φ.
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Theorem 2.3.3 (i) Let Φ be a Donsker class, that is, let un →d u in l∞(Φ). Then, for

every ε > 0,

bn →d b in `∞(Φ ∩ Φε),

where {b(ϕ), ϕ ∈ Φ} is standard Brownian motion.

(ii) If the envelop function Ψ(t) of (2.3.14) tends to positive (finite or infinite) limit at

t = 1, then for the process (2.3.13) we have

bn →d b on [0, 1].

2.3.3 Examples

Here, we shall assess the behavior of γT (s)Γ−1
s γ(s), as s → 1, for some well known dis-

tributions. This is needed to understand the behavior of the bound in (2.3.14), which in

turn sheds some light on the class of functions ϕ one can use in this testing problem. Many

technical details are similar to those appearing in KK when dealing with the location model

only where Γs is 2 × 2 matrix. In the current set up we are dealing with the 3 × 3 matrix,

which makes the details of derivations a bit more involved.

First, let F be standard normal d.f. Then h(x) = (1, x, x2 − 1)T . With ζ ≡ ζ(x) =
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f(x)/(1− F (x)), we obtain

ΓF (x) = (1− F (x))


1 ζ xζ

ζ xζ + 1 (1 + x2)ζ

xζ (1 + x2) 2ζ + (x+ x3)ζ

 ,

Γ−1
F (x)

=
(1− F (x))−1

2− 3ζ2 + 3xζ + xζ3 − 2x2ζ2 + x3ζ
×

2− ζ2 + 3xζ − x2ζ2 + x3ζ −2ζ ζ2 − xζ

−2ζ 2 + xζ − x2ζ2 + x3ζ −ζ + xζ2 − x2ζ

ζ2 − xζ −ζ + xζ2 − x2ζ 1− ζ2 + xζ

 ,

and

hT (x)Γ−1
F (x)

h(x) =
1

(1− F (x))

3− 4ζ2 + 4xζ + x2ζ2 + x4 − 2x3ζ

2− 3ζ2 + 3xζ + xζ3 − 2x2ζ2 + x3ζ
.

Using the asymptotic expansion for the tail of the normal d.f. for ζ(x) we obtain, as in KK,

ζ(x) =
x

1− S(x)
, where S(x) =

n∑
i=1

(−1)i−1(2i− 1)!!

x2i
=

1

x2
− 3

x4
+

15

x6
− · · · .

From this one can derive that

3− 4ζ2 + 4xζ + x2ζ2 + x4 − 2x3ζ

2− 3ζ2 + 3xζ + xζ3 − 2x2ζ2 + x3ζ
→ 9/5, x→∞,

and hence h(x)TΓ−1
F (x)

h(x) ∼ 9(1− F (x))−1/5, x→∞, equivalently,

γT (s)Γ−1
s γ(s) ∼ 9(1− s)−1/5, s→ 1.
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This result is similar to the one obtained in KK for the location model only, where 9/5 is

replaced by 2.

Next, consider logistic d.f. F (x) with scale parameter 1, or equivalently ψf (x) = 2F (x)−

1. Then h(x) = (1, 2F (x)−1, x(2F (x)−1)−1)T or in terms of s = F (x), γ(s) = h(F−1(s)) =

(1, 2s− 1, F−1(s)(2s− 1)− 1)T , and when s is close to 1,

Γs ∼ (1− s)


1 s xs

s
1− 2s+ 4s2

3

s+ x(1− s)2

3
+ xs

xs
s+ x(1− s)2

3
+ xs 3− 9x2 − 6(x− 3x2)s+

π2 + 12x2

9(1− s)


s=F (x)

.

From this formula, one can verify that γT (s)Γ−1
s γ(s) ∼ (1 − s)−1, for s → 1. This result

is different from the one reported in KK, where analogous γ and Γ satisfy γT (s)Γ−1
s γ(s) =

4(1− s)−1, for all 0 ≤ s < 1.

Next, consider the double exponential d.f. with density f(x) = e−|x|/2. For x > 0, we

get h(x) = (1, 1, x−1)T , and ΓF (x) is degenerate and equals to (2.3.9). An argument similar

to the proof of Lemma 2.3.1 yields h(x)TΓ−1
F (x)

h(x) = 2(1 − F (x))−1, for all x > 0 with

F (x) < 1.

Finally, consider student tk-distribution with degrees of freedom k. In this case,

f(x) =
1√
πk

Γ((k + 1/2))

Γ(k/2)

1

(1 + x2/k)(k+1)/2
.
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As shown in KK, using the results of Soms (1976), for every k ≥ 1,

1− F (x) ∼ 1 + x2/k

x
f(x) ∼ dk

k

1

xk
, dk =

1√
π

Γ((k + 1/2))

Γ(k/2)
kk/2,

f(x) ∼ dk
xk+1

, ψf (x) =
k + 1

k

x

1 + (x2/k)
∼ k + 1

x
, x→∞.

Hence, h(x) = (1, ψf (x), xψf (x)− 1)T ∼ (1, (k + 1)/x, k)T , and ΓF (x) degenerates and has

the form as in (2.3.10). This is unlike the location model case where KK observed that

the analog of ΓF (x) is non-degenerate. Nevertheless, one still continues to have the same

right tail behavior for the quadratic from γ(s)TΓ−1
s γ(s) as in the location model case, viz,

γ(s)TΓ−1
s γ(s) ∼ {2(k + 1)/k}(1− s)−1, s→ 1.

2.3.4 Limiting process

In this section we discuss the weak convergence of the Ûn process. Towards this goal we

assume the same tail conditions for v̂n as in KK, which is that for some 0 < β < 1/2,

sup
y>x

|v̂n(y)|
(1− F (y))β

= op(1), as x→∞, (2.3.15)

uniformly in n. To simplify the notation, we let

ψ1(x) = −ḟ(x)/f(x), ψ2(x) = −xḟ(x)/f(x)− 1,

and denote the right tail mean of ψ1 and ψ2 by

Exψi = E[ψi(e1)|e1 > x], ψi0 = ψi − Exψi,

Varx(ψi) = Var[ψi(e1)|e1 > x], Covx(ψ1, ψ2) = Cov[ψ1(e1), ψ2(e1)|e1 > x] i = 1, 2.

23



Now we formulate three more conditions on F :

(a) For any ε > 0, the function ψi(F
−1), i = 1, 2, is monotone on [1− ε, 1].

(b) For some δ > 0, ε > 0 and some C <∞, and for all x, such that F (x) > 1− ε,

∣∣∣hT (x)Γ−1
F (x)

(0, ψ10(x), 0)T
∣∣∣ =

|ψ2
10Varx(ψ2)− ψ10ψ20Covx(ψ1, ψ2)|

Varx(ψ1)Varx(ψ2)− Covx(ψ1, ψ2)

≤ C(1− F (x))−2δ,∣∣∣hT (x)Γ−1
F (x)

(0, 0, ψ20(x))T
∣∣∣ =

|ψ2
20Varx(ψ1)− ψ10ψ20Covx(ψ1, ψ2)|

Varx(ψ1)Varx(ψ2)− Covx(ψ1, ψ2)

≤ C(1− F (x))−2δ.

Note that in terms of the above notation, with t = F (x),

γT (t)Γ−1
t γ(t)

=
1

(1− F (x))
×
[
1 +

ψ2
10Varx(ψ2) + ψ2

20Varx(ψ1)− 2ψ10ψ20Covx(ψ1, ψ2)

Varx(ψ1)Varx(ψ2)− Covx(ψ1, ψ2)

]
.

Hence, condition (b) implies

γT (t)Γ−1
t γ(t) ≤ C(1− t)−1−2δ, ∀ t > 1− ε. (2.3.16)

(c) For some 0 < C <∞ and β > 0 as in (2.3.15),

∣∣∣ ∫ ∞
x

[1− F (y)]βdψi(y)
∣∣∣ ≤ C|ψi0(x)|, i = 1, 2.

Remark 2.3.1 As mentioned in KK, (2.3.15) also holds for vn for any 0 < β < 1/2. Conditions

(a), (b) and (c) are easy to check for all the examples in Section 2.3.3 by following similar
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procedures even with δ = 0 in condition (b), so we omit the details here.

Now we consider the asymptotic behaviors for the K(ψ, ξn), which is

K(ψ, ξn) =

∫ 1

0
ψ(t)γT (t)Γ−1

t

∫ 1

t
γ(s)ξn(F−1(ds))dt,

and for a given indexing class Φ of functions from L2[0, 1]. Let Φ ◦ F = {ϕ(F (·)), ϕ ∈ Φ}.

We can prove the similar limiting process for Ûn as Theorem 4.1 in KK.

Theorem 2.3.4 (i) Suppose conditions (2.3.15) and (a)-(c) are satisfied with β > δ. Then,

on the class Φε as in Theorem 2.3.2, with α < β − δ, we have

sup
ϕ∈Φε

|K(ϕ, ξn)| = op(1), n→∞.

Therefore, if Φ is a Donsker class, then, for every ε > 0,

Ûn →d b in `∞(Φ ∩ Φε ◦ F ),

where {b(ϕ), ϕ ∈ Φ} is standard Brownian motion.

(ii) If, in addition, δ < α, then for the time transformed process Ûn(F−1(·)) of (2.3.8),

Ûn(F−1(·))→d b(·) in D[0, 1].

Proof. The proof below is similar to that of Theorem 4.1 in KK.
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Note that

γT (t)Γ−1
t (0, a1, 0)T =

[ψ10Varx(ψ2)− ψ20Covx(ψ1, ψ2)]a1

Varx(ψ1)Varx(ψ2)− Covx(ψ1, ψ2)
;

γT (t)Γ−1
t (0, 0, a2)T =

[ψ20Varx(ψ1)− ψ10Covx(ψ1, ψ2)]a2

(1− F (x))[Varx(ψ1)Varx(ψ2)− Covx(ψ1, ψ2)]
.

The above equalities used with ai =
∫ 1
t (1− s)βdψi(F−1(s)), i = 1, 2, combined with condi-

tions (b) and (c), yield

|γT (t)Γ−1
t (0, a1, a2)T | ≤ C(1− t)−1−2δ, ∀ 1− ε < t < 1. (2.3.17)

Now we prove the first claim.

(i) Denote ξ′n(t) = ξn(x) with t = F (x). Because of the singularities at t = 0 and t = 1

in both integrals in K(ϕ, ξn), we will isolate the neighborhood of t = 1. The neighborhood

of t = 0 can be treated more easily. First assume Γt > 0 for all t < 1. Then,

∫ 1

0
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(t)ξ

′
n(ds)dt =

∫ 1−ε

0
ϕ(t)γT (t)Γ−1

t

∫ 1−ε

t
γ(t)ξ

′
n(ds)dt

+

∫ 1−ε

0
ϕ(t)γT (t)Γ−1

t

∫ 1

1−ε
γ(t)ξ

′
n(ds)dt

+

∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(t)ξ

′
n(ds)dt.

We shall show that each of these three terms are op(1).

First consider the third summand on the right-hand side. By definition,

ξ′n(t) = ûn(t)− un(t)− f(F−1(t))n−1/2
n∑
i=1

[εi +
F−1(t)

2
(ε2
i − 1)].
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The third summand is then sum of the two terms, one corresponding to the difference ûn−un

and the other corresponding to the remaining term. Now, since df(F−1(s)) = ψf (x)f(x)dx

and dF−1(s)f(F−1(s)) = [1 + xψf (x)]f(x)dx, F (x) = s, then

∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(t)(df(F−1(s)) + dF−1(s)f(F−1(s)))dt

is the sum of the second and the third coordinate of
∫ 1

1−ε ϕ(t)γ(t)dt, and is small for small ε

anyway. Assumption (a) guarantees the monotonicity of ψf (F−1) and dF−1(s)f(F−1(s)),

so the integration by parts is justified, and we obtain

∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t

∫ 1

t
γ(t)ûn(ds)dt

=

∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t

[
− γ(t)ûn(t)−

∫ 1

t
ûn(s)dγ(s)

]
dt.

Using assumption (2.3.14) on ϕ and (2.3.16), we obtain

∣∣∣ ∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t γ(t)ûn(t)dt
∣∣∣

≤ C

∫ 1

1−ε
[γT (t)Γ−1

t γ(t)]1/2
1

(1− t)1/2+α−β dt sup
t>1−ε

|ûn(t)|
(1− t)β

≤ C

∫ 1

1−ε

1

(1− t)1+α+δ−β dt sup
t>1−ε

|ûn(t)|
(1− t)β

,

which is small for small ε as soon as α < β − δ.

Note that
∫ 1
t ûn(s)dΓ(s) =

(
0,
∫ 1
t ûn(s)dψf (F−1(s)),

∫ 1
t ûn(s)d(F−1(s)ψf (F−1(s))

)T
.

Using monotonicity of ψf (F−1(s)) and F−1(s)ψf (F−1(s)) for small enough ε, we obtain,
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for all t > 1− ε,

∣∣∣ ∫ 1

t
ûn(s)dψf (F−1(s))

∣∣∣ < C
∣∣∣ ∫ 1

t
(1− s)βdψf (F−1(s))

∣∣∣ sup
t>1−ε

|ûn(t)|
(1− t)β

; (2.3.18)

∣∣∣ ∫ 1

t
ûn(s)d(F−1(s)ψf (F−1(s)))

∣∣∣ < C
∣∣∣ ∫ 1

t
(1− s)βd(F−1(s)ψf (F−1(s)))

∣∣∣ sup
t>1−ε

|ûn(t)|
(1− t)β

.

Therefore, using (2.3.17), for the double integral

∣∣∣ ∫ 1

1−ε
ϕ(t)γT (t)Γ−1

t

∫ 1

t
ûn(s)dγ(s)dt

∣∣∣ ≤ C

∫ 1

1−ε
(1− t)−1−2δdt sup

t>1−ε

|ûn(t)|
(1− t)β

,

which is small as soon as α < β − δ. The same conclusion is true for ûn replaced by un.

Since (2.3.18) implies the smallness of

∫ 1

1−ε
ûn(s)dψf (F−1(s)) and

∫ 1

1−ε
un(s)dψf (F−1(s));∫ 1

1−ε
ûn(s)d(F−1(s)ψf (F−1(s))) and

∫ 1

1−ε
un(s)d(F−1(s)ψf (F−1(s))),

to prove that the middle summand on the right-hand side is small one needs only finiteness

of ψ1(x), ψ2(x) in each x with 0 < F (x) < 1, which follows from (a). This and uniform in x

smallness of ξn proves smallness of the first summand as well.

The smallness of integrals

∫ ε

0
ϕ(t)γT (t)Γ−1

t γ(t)

∫ 1

t
γ(s)ξ′n(ds)dt,

follows from Γ−1
t ∼ Γ−1

0 for small t, and square integrability of ϕ and Γ.

28



If Γt is degenerate of the form (2.3.9) for any t > t0, we get

γT (t)Γ−1
t

∫ 1

t
γ(s)ξ′n(ds)dt = −

2ξ′n(t)−
∫ 1
t ξ
′
n(t)dt

1− t
.

If Γt is degenerate of the type (2.3.10) for any t > t0, we get

γT (t)Γ−1
t

∫ 1

t
γ(s)ξ′n(ds)dt = −(k + 1)

k

2ξ′n(t) + (k + 2)F−1(t)
∫ 1
t ξ
′
n(t)/F−1(t)2dt

1− t
.

The smallness of all tail integrals easily follows by the tail condition (2.3.15) for our choice

of the indexing functions ϕ.

(ii) Since for δ < α the envelope function Ψ(t) of (2.3.14) satisfies inequality

Ψ(t) ≥ (1− t)δ−α.

It has positive finite or infinite lower limit at t = 1. We can choose an indexing class of

indicator functions ϕ(t) = I[τ ≤ t] and the claim follows.

2.4 Simulations

In this section we report the findings of a simulation study. To examine the performance of

the proposed test, we consider the following autoregressive and conditional variance functions

m(x) =
√

(1/2 + x2/2)− 1/2, σ2(x) = 3/4 + x2/4, x ∈ R.
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In the null hypothesis, F is the d.f. of a standardized normal r.v., as in Section 2.3.3, then

h(x) = (1, x, x2 − 1)T , and Γ−1
F (y)

is as in (2.3.15). The interval In := [− log(n), log(n)]. For

the purpose of computation, we use the following representation of

Ûn(x) = n1/2
n∑
i=1

ω̄i[I(êi ≤ x)− h(êi)
TG(x ∧ êi)], x ∈ R,

êi := ε̂iI(− log n ≤ Xi−1 ≤ log(n)), ε̂i := (Xi − m̂(Xi−1))/σ̂(Xi−1),

where G(x) =
∫
y≤x Γ−1

F (y)
h(y)dF (y). Let ê(j), 1 ≤ j ≤ n denote the ordered residuals

êi, 1 ≤ i ≤ n. Then Un := supx∈R |Ûn(x)| = max{max1≤j≤n |Ûn(ê(j))|, supx<ê(1)
|Ûn(x)|}.

The asymptotic critical values of the Un-test are the critical values of the distribution

of sup0≤t≤1 |b(t)|. From Khmaladze and Koul (2004) these critical values at the levels 5%,

2.5% and 1%, respectively, are 2.24241, 2.49771 and 2.80705. To compare the effect of the

two estimators σ̂2
1(x) and σ̂2

2(x) of σ2(x) given at (2.2.2) and (2.2.4) on the finite sample

behavior of the test, we first compared the type I error for different sample sizes obtained

by computing the number of times Un exceeded the given asymptotic critical value, divided

by the number of repetitions, based on the sample sizes n = 300, 500, each repeated 1000

times. The results are displayed in Table 2.2. One sees that σ̂2
2 is more effective than σ̂2

1 in

preserving the nominal level of this test.

Then we used the adaptive estimator σ̂2
2 to examine the finite sample power of the

proposed Khmaladze martingale transform Un test. The alternatives chosen are the mixture

distributions of standard normal and standardized t-distribution with degree of freedom 4,

i.e (1− p)N(0, 1) + pt4/
√

2, for p ∈ [0, 1].

We compared the Un test with the two classical tests, KS and CvM tests. The critical

values for the latter two tests are simulated by Monte Carlo method. We choose n = 500
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and 1000 repetitions for each test. The critical values thus obtained are given in Table 2.1.

Level KS CvM
0.01 1.03159 0.21080
0.025 0.93812 0.17630
0.05 0.86067 0.15036

Table 2.1: Monte carlo critical values of the KS and CvM tests.

The empirical powers, i.e., the relative rejection frequencies under the chosen alternatives,

for all three tests based on the sample sizes n = 300 and n = 500 with 1000 repetitions and

5%, 2.5% and 1% levels are displayed in Table 2.3. As in KK, the martingale transform test

Un again has larger empirical power than the KS test, uniformly at all chosen levels and for

all values of p. Its empirical powers are also higher than those of the CvM test, at all chosen

levels and for all values of p, except for p = .8 and p = 1.

In this simulation study the time series Xi was generated as follows. For each simulation,

900 + n observation of Xi were generated, and only the last n observations were used in

the test, to ensure stationarity. The local linear estimators for m̂ and σ̂2 were calculated

using the biweight kernel function K(x) ≡ W (x) ≡ 15(1 − x2)2I(|x| ≤ 1)/16. Both the

bandwidths were chosen according to the assumption by a rule of thumb as h1 = h2 =

1.06 ∗ min(sd(ê), IQR(ê)/1.34) ∗ h−2/(6+1.9), where ê is the vector of all residuals with

Xi−1 ∈ In = [− log n, log n], i = 1, · · · , n, and IQR means the interquartile range. Let

s = (log n− |x|)/0.1, x ∈ R. The weight function used was

wn(x) =


0, x /∈ [− log n, log n];

1, x ∈ [− log n+ 0.1, log n− 0.1];

−20s7 + 70s6 − 84s5 + 35s4, otherwise.
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Table 2.2: Empirical levels of Un test

σ̂2
1 σ̂2

2
Level n = 300 n = 500 n = 600 n = 300 n = 500 n = 600
0.05 0.014 0.021 0.031 0.031 0.047 0.051
0.025 0.005 0.010 0.014 0.009 0.017 0.027
0.01 0.005 0.006 0.006 0.004 0.008 0.010

Table 2.3: Empirical powers of tests based on σ̂2
2.

n = 300 n = 500
p Level Un KS CvM Un KS CvM
0 0.05 0.030 0.053 0.049 0.049 0.049 0.052

0.025 0.018 0.022 0.018 0.020 0.021 0.029
0.01 0.007 0.006 0.007 0.007 0.014 0.013

0.2 0.050 0.073 0.038 0.041 0.134 0.046 0.052
0.025 0.057 0.015 0.024 0.118 0.025 0.025
0.010 0.045 0.006 0.012 0.106 0.013 0.014

0.4 0.050 0.148 0.071 0.099 0.303 0.089 0.169
0.025 0.129 0.049 0.066 0.263 0.052 0.117
0.010 0.110 0.024 0.037 0.229 0.030 0.075

0.6 0.050 0.261 0.109 0.182 0.494 0.241 0.411
0.025 0.223 0.066 0.131 0.445 0.172 0.336
0.010 0.188 0.032 0.076 0.398 0.101 0.253

0.8 0.050 0.404 0.216 0.408 0.673 0.422 0.716
0.025 0.342 0.141 0.311 0.612 0.326 0.627
0.010 0.300 0.087 0.217 0.563 0.209 0.516

1 0.050 0.556 0.331 0.575 0.812 0.587 0.873
0.025 0.499 0.235 0.478 0.760 0.447 0.816
0.010 0.437 0.153 0.368 0.710 0.356 0.738

2.5 Proofs

In this section we give the proof of Theorem 2.3.1. To this end, we list some useful lemmas.

For α−mixing processes, we can follow the same proof as in Selk and Neumeyer (2013), and

for the moment contracting stationary processes, the proofs are similar to those of Wu et al.

(2010). Many details that follow lemma will be brief.

32



Let t1, t2, · · · be measurable functions which are bounded by the same constant B. Let

Tn(x) =
1

nh

n∑
j=1

tn(Xj)K
(Xj − x

h1

)
, x ∈ R. (2.5.1)

We have

Lemma 2.5.1 Under the conditions of Theorem 2.3.1,

sup
x∈In

|Tn(x)− E(Tn(x))| = Op

(( log n

ncn

)1/2)
.

Proof. (i) Under condition (Z) for α−mixing processes, the proof is similar to that of

Lemma B.1 in Selk and Neumeyer (2010) with k = 0 in their proof.

(ii) For the moment contracting processes, since the t1, t2, · · · are bounded on In, the

claim follows from Proposition 2 and Lemma 4 of Wu et al. (2010).

Next, consider

Un,l(x) =
1

nh

n∑
j=1

εjσ(Xj−1)K(l)
(Xj−1 − x

h1

)
, x ∈ In, l = 0, 1, 2, (2.5.2)

where K(l) is the l-th derivative of K. We have

Lemma 2.5.2 Under the conditions of Theorem 2.3.1,

sup
x∈In,l=0,1,2

|Un,l(x)| = Op

((
c
−1/2−l
n n−1/2(log n)1/2 + c2n

)
qn

)
.

Proof. i) Under the condition (Z) for α−mixing processes, it follows from Lemma B.1

and Lemma B.2 of Selk and Neumeyer (2010) applied with k = 1.
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(ii) Under the condition (Z′) for the moment contracting processes, because of the sta-

tionarity, it follows from Lemma 4 of Müller et al. (2009).

Proof of Lemma 2.2.1. The general idea of the proof this lemma and Theorem 2.3.1

is similar to that of Theorem 1 in Müller et al. (2009), so we use similar notation as in their

paper and shall be brief whenever possible. Let Ki(u) = uiK(u), i ≥ 0, Let Ki(u) = uiK(u),

i ≥ 0,

p̂i(x) =
1

nh1

n∑
j=1

Ki

(Xj−1 − x
h1

)
, q̂i(x) =

1

nh1

n∑
j=1

XjKi

(Xj−1 − x
h1

)
, x ∈ R.

On the event, p̂2(x)p̂0(x)− p̂2
1(x) > 0,

m̂(x) =
p̂2(x)q̂0(x)− p̂1(x)q̂1(x)

p̂2(x)p̂0(x)− p̂2
1(x)

.

Assumption (F), (H), (K), and Lemmas 2.5.1 imply

sup
x∈In

|p̂i(x)− E[p̂i(x)]| = Op(h1), i = 0, 1, 2, · · · . (2.5.3)

Let p̄i(x) = E[p̂i(x)] and λi =
∫
Ki(u)du =

∫
uiK(u)du. Note that p̄i(x) =

∫
g(x −

h1u)uiK(u)du, and λ0 = 1, λ1 = 0, λ2 > 0. By (2.5.3),

‖p̂i/g − λi‖In + ‖p̄i/g − λi‖In = Op(h1), i = 0, 1, 2, · · · . (2.5.4)

Hence

‖p̂2(x)p̂0(x)− p̂2
1(x)− λ2g

2‖In = Op(h1).
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With (infx∈In g(x))−1 = qn,g in assumption (X), there exists an η > 0 such that

P
(
q2
n,g inf

x∈In
|p̂2(x)p̂0(x)− p̂2

1(x)| > η
)
→ 1. (2.5.5)

Write q̂i = Ai +Bi, for i = 0, 1, where

Ai(x) =
1

nh1

n∑
j=1

σ(Xj−1)εjKi

(Xj−1 − x
h1

)
,

Bi(x) =
1

nh1

n∑
j=1

m(Xj−1)Ki

(Xj−1 − x
h1

)
, x ∈ R.

Since the second derivative m̈ of m is bounded, a Taylor expansion shows that

‖(Bi −mp̂i − ṁh1p̂i+1 −
1

2
m̈h2

1p̂i+2)/g‖In = Op(h
3
1), (2.5.6)

where ‖ · ‖In denotes the super norm over In.

Note that the proof of the properties of σ̂2
1 is similar to one for m̂, so we give the details

for m̂ and σ̂2
2 only. By gn = up(hn), we mean that there exists constant C > 0, such

that P (‖gn‖In ≤ C‖hn‖In) → 1. Based on the analysis above, we obtain the following

expansions, which are similar to those appearing in Yao and Tong (1994). With r̂j ≡

(Xj − m̂(Xj−1))2,

m̂(x)−m(x) =
1

nh1g(x)

n∑
j=1

σ(Xj−1)εjK
(Xj−1 − x

h1

)
+
h2

1λ2

2
m̈(x) + up(Rn,1(x)),(2.5.7)
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σ̂2
2(x)− σ2

2(x) (2.5.8)

=
1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
{r̂j − σ2(x)− σ̇2(x)(Xj−1 − x)}+ up{Rn,2(x)},

where

Rn,1(x) =
1

ng(x)

[∣∣∣ n∑
j=1

σ(Xj−1)εjK
(Xj−1 − x

h1

)∣∣∣
+
∣∣∣ n∑
j=1

Xj−1 − x
h1

σ(Xj−)εjK
(Xj−1 − x

h1

)∣∣∣]+O(q2
n,gqnh

3
1);

Rn,2(x) =
1

ng(x)

[∣∣∣ n∑
j=1

W
(Xj−1 − x

h2

)
{r̂j − σ2 − σ̇2(x)(Xj−1 − x)}

∣∣∣
+
∣∣∣ n∑
j=1

Xj−1 − x
h2

W
(Xj−1 − x

h2

)
{r̂j − σ2 − σ̇2(x)(Xj−1 − x)}

∣∣∣]
+O(q2

n,gq
2
nh

3
2).

From Lemma 2.5.2, we have

sup
x∈In

∣∣∣ 1

nh1g(x)

n∑
j=1

σ(Xj−1)εjKi

(Xj−1 − x
h1

)∣∣∣ = Op

(
qnqn,g

( log n

nh1

)1/2)
.

From (2.5.7) and the above bounds we readily obtain

sup
x∈In

|m̂(x)−m(x)| = Op

((
c
−1/2
n n−1/2(log n)1/2

)
qnqn,g

)
. (2.5.9)

Combining this fact with condition (M) completes the proof of (2.2.7).
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To deal with σ̂2
2, a similar analysis as in Fan and Yao (2002) can be followed, where

r̂j = {Xj − m̂(Xj−1)}2 = {σ(Xj−1)εj +m(Xj−1)− m̂(Xj−1)}2

= σ2(Xj−1)ε2
j + 2σ(Xj−1)εj{m(Xj−1)− m̂(Xj−1)}

+{m(Xj−1)− m̂(Xj−1)}2.

Then

σ̂2
2(x)− σ2(x)

= J1 + J2 − J3 + J4 +Op(h2)(|J1 + J2 − J3 + J4|+ |J∗1 + J∗2 − J
∗
3 + J∗4 |),

where

J1 =
1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
{σ2(Xj−1)− σ2(x)− σ̇2(x)(Xj−1 − x)},

J2 =
1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
σ2(Xj−1)(ε2

j − 1),

J3 =
2

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
σ(Xj−1)εj{m̂(Xj−1)−m(Xj−1)},

J4 =
1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
{m̂(Xj−1)−m(Xj−1)}2,

and J∗i is defined in the same way as Ji with one more factor h−1
2 (Xj−1 − x) in the jth

summand, for j = 1, · · · , n and i = 1, · · · , 4. Condition (M) implies

‖J1‖In = Op(qnqn,gh
2
2),
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and from Lemma 2.5.2, we obtain

‖J2‖In = Op

(
q2
nqn,g

( log n

nh2

)1/2)
.

Based on (2.5.9),

‖J4‖In = Op

(
q3
n,gq

2
n

log n

nh1h2

)
.

To deal with J3, rewrite J3 = J31 + J32 + J33, where

J31 =
1

n2h1h2g(x)

n∑
i,j=1

K
(Xi−1 −Xj−1

h1

)
σ(Xi−1)σ(Xj−1)εiεj

{
g−1(Xi−1)W

(Xi−1 − x
h2

)
+ g−1(Xj−1)W

(Xj−1 − x
h2

)}
=

1

n2h1h2g(x)

∑
1≤i,j≤n

φij ,

J32 =
h2

1λ2

nh2g(x)

n∑
i=1

W
(Xi−1 − x

h2

)
σ(Xi−1)εim̈(Xi−1),

|J33| ≤
Op(1)

n2h2

n∑
i,j=1

∣∣∣W(Xi−1 − x
h2

)
K
(Xi−1 −Xj−1

h1

)
σ(Xi−1)σ(Xj−1)|εi|εj/g(Xi−1)

∣∣∣,
where

φij = K
(Xi−1 −Xj−1

h1

)
σ(Xi−1)σ(Xj−1)εiεj

{
g−1(Xi−1)W

(Xi−1 − x
h2

)
+g−1(Xj−1)W

(Xj−1 − x
h2

)}
.
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Argue as in Borkowski and Mielniczuk (2012), to obtain

E
{ ∑

1≤i,j≤n
φij

}2
= Op(n

2c2nq
4
nq

2
n,g).

To obtain the uniform bound, we consider the equal-length cover Ink and with center

xnk,

k = 1, · · · , L(n), for In, where

L(n) = O((log n)r1/(c3n(ncn)1/2qnqn,g)).

Then

sup
x∈In

|J31(x)| ≤ max
1≤k≤L(n)

sup
x∈In∩Ink

|J31(x)− J31(xnk)|+ max
1≤k≤L(n)

|J31(xnk)| = R1 +R2.

Note that

R1 ≤
C(log n)r1q3

nq
2
n,g

L(n)h2(nh1)1/2
= Op

(
q2
nqn,gc

2
n

)
.

For any ε > 0, by the relation (2.2.6) in assumption (H), for a constant C <∞,

P
(∣∣∣q−2

n q−1
n,gc
−2
n R2

∣∣∣ > ε
)

≤ L(n)P
(∣∣∣q−2

n q−1
n,gc
−2
n

( 1

n2h1h2g(x)

∑
1≤i≤j≤n

φij

)∣∣∣ > ε
)

≤ C(log n)r1

c3n(ncn)1/2qnqn,g

1

ε2n4c4nh
2
1h

2
2q

4
nq

2
n,g

E
{∑
i<j

φij

}2

=
C(log n)r1

ε2n5/2c
19/2
n qnqn,g

→ 0.
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So ‖J31‖In = Op(q
2
nqn,gc

2
n). Similarly, we obtain ‖J33‖In = Op(q

2
nqn,gc

2
n). Also, it is obvious

that ‖J32‖In = op(q
2
nqn,gh

2
2).

Based on the above analysis, we obtain

σ̂2
2 − σ

2
2 =

1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
σ2(Xj−1)(ε2

j − 1) +Op(q
2
nqn,gc

2
n).

This relation, the fact (σ̂2− σ)/σ = (σ̂2
2 − σ

2)/2σ2− (σ̂2− σ)2/2σ2, Lemma (2.5.2) and the

condition (M) together imply (2.2.8) in routine fashion. This also completes the proof of

Lemma 2.2.1.

Proof of Theorem 2.3.1. We denote Ŝ = (m̂−m)/σ, T̂ = (σ̂ − σ)/σ. Let Fω denote the

weighted empirical distribution function based on the unobserved innovations, which is

Fω(t) =
n∑
j=1

ω̄jI[εj ≤ t], t ∈ R.

Similarly as in Lemma B.5 of Selk and Neumeyer (2013), we obtain

sup
t∈R
|Fω(t)− F(t)| = op(n

−1/2), W =
1

n

n∑
j=1

ωnj = 1 + op(1).

Next, define

B(t, Ŝ, T̂ ) =
1

n

n∑
j=1

ωnj
{
F
(
t+ Ŝ(Xj−1) + T̂ (Xj−1)t

)
− F (t)

}
,
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and

H(t, Ŝ, T̂ ) =
1

n

n∑
j=1

ωnj
{
I
(
ε ≤ t+ Ŝ(Xj−1) + T̂ (Xj−1)t

)
− F

(
t+ Ŝ(Xj−1) + T̂ (Xj−1)t

)}
,

for t in R and S, T in C(R), the set of continuous functions from R to R. Then we can

rewrite

W (F̂(t)− Fω(t)) = H(t, Ŝ, T̂ )−H(t, 0, 0) +B(t, Ŝ, T̂ ).

It follows from Lemma 2.5.3 below that

1

n

n∑
j=1

ωnj
m̂(Xj−1)−m(Xj−1)

σ(Xj−1)
=

1

n

n∑
j=1

εj + op(n
−1/2),

1

n

n∑
j=1

ωnj
σ̂(Xj−1)− σ(Xj−1)

σ(Xj−1)
=

1

2n

n∑
j=1

(ε2
j − 1) + op(n

−1/2).

As ḟ exists, we derive

sup
t∈R

∣∣∣B(t, Ŝ, T̂ )−f(t)
1

n

n∑
j=1

(
εj+

1

2
t(ε2

j−1)
)∣∣∣ ≤ 1

n

n∑
j=1

ωnj ḟ(ξt,Xj−1
)[Ŝ(Xj−1)+ T̂ (Xj−1)t]2,

for some ξt,Xj−1
between Ŝ(Xj−1) + T̂ (Xj−1)t and t. The relation supt∈R |t2ḟ(t)| < ∞

yields

sup
t∈R

∣∣∣B(t, Ŝ, T̂ )− f(t)
1

n

n∑
j=1

(
εj +

1

2
t(ε2

j − 1)
)∣∣∣ = op(n

−1/2).
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Thus to complete the proof of claim (2.3.3), it remains to show that

sup
t∈R

∣∣∣H(t, S, T )−H(t, 0, 0)
∣∣∣ = op(n

−1/2). (2.5.10)

Based on condition (E), we have

max
1≤j≤n

|εj | = op(n
1/2).

Since ‖S‖In = op(1), ‖T‖In = op(n
−1/4), the probability of the event

An := { max
1≤j≤n

|εj | ≤ 2n1/2 − 1} ∩ {‖Ŝ‖In = op(1), ‖T̂‖In = op(n
−1/4)},

tends to one. On the event An

sup

|t|>n1/2
|H(t, Ŝ, T̂ −H(t, 0, 0)| = sup

|t|>n1/2,1≤i≤n
B(t, Ŝ, T̂ )

≤ 2(1− F (
√
n/2)) + 2F (1−

√
n/2).

Since F has a finite second moment, we have F (t) = o(t−2), as t → −∞ and 1 − F (t) =

o(t−2), as t→∞. This implies that

sup

|t|>n1/2
|H(t, Ŝ, T̂ −H(t, 0, 0)| = op(n

−1/2).

So we are left to show

sup

|t|≤n1/2
|H(t, Ŝ, T̂ −H(t, 0, 0)| = op(n

−1/2). (2.5.11)
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Now let δ = 1/(1 +
√

3). For any interval I, let C1+δ
1 (I) be the set of differentiable

functions h on R that satisfy ‖h‖I,δ ≤ 1, where

‖h‖I,δ = ‖h‖I + ‖ḣ‖I + sup
x,y∈I,x 6=y

|ḣ(x)− ḣ(y)|
|x− y|δ

.

Now let Dn = {u+ ν : u ∈ Un, ν ∈ Vn}, where

Un = {h ∈ C(R) : ‖h‖In ≤ n−1/2},

Vn = {h ∈ C1+δ
1 (R) : ‖h‖In ≤ n−1/2c

−1/2
n log nQ2

n},

with Qn = qnqn,gqn,σ. Let û(x) := m̂(x)−m(x)− v̂(x), and ûσ(x) := σ̂2(x)−σ2(x)− v̂σ(x),

where

v̂(x) :=
1

nh1g(x)

n∑
j=1

σ(Xj−1)εjK
(Xj−1 − x

h1

)
+Op(qnc

2
n),

v̂σ(x) :=
1

nh2g(x)

n∑
j=1

W
(Xj−1 − x

h2

)
σ2(Xj−1)(ε2

j − 1).

It follows from Lemma 2.5.2 and similar argument as in Selk and Neumeyer (2013), Ŝ and

T̂ belong to Dn with probability tending to one. So (2.5.11) will be followed if we prove

sup

|t|≤n1/2,S,T∈Dn
|H(t, S, T −H(t, 0, 0)| = op(n

−1/2).

To this end, set ηn = n−1/2. Let t1, · · · , tMn be ηn-net of [−n1/2, n1/2], and set
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ν1, · · · , νNn for Vn. We can choose the former net such that

Mn ≤ 2 + n, (2.5.12)

the second net is

Nn ≤ exp(K∗(2 + bn − an)n1/(2+2δ)), (2.5.13)

where K∗ is some positive constant, see also (Van der Vaart and Wellner (1996)). Note that

ν1, · · · , νNn is an 2ηn-net for Dn. We have

sup

|t|≤n1/t,S,T∈Dn
|H(t, S, T )−H(t, 0, 0)|

≤ max
i,l,m
|Hn(ti, νl, νm)−Hn(ti, 0, 0)|+ max

i,l,m
Di,l,m,

where

Di,l,m = sup
|t−ti|≤ηn,‖S−νl‖I≤2ηn,‖T−νm‖I≤2ηn

(
|H(ti, S, T )−H(t, νl, νm)|

+|H(ti, 0, T )−H(t, 0, νm)|+ |H(ti, S, 0)−H(t, νl, 0)|
)

+ |Hn(ti, 0, 0)−Hn(t, 0, 0)|.

For |t− ti| ≤ ηn, ‖S − νl‖I ≤ 2ηn, ‖T − νm‖I ≤ 2ηn, we have

I
(
y ≤ ti + νl(x) + νm(x)ti − ηn(A+ 3)

)
≤ I

(
y ≤ t+ S(x) + T (x)t

)
≤ I

(
y ≤ ti + νl(x) + νm(x)ti − ηn(A+ 3)

)
,
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and

F
(
ti + νl(x) + νm(x)ti − ηn(A+ 3)

)
≤ F

(
t+ S(x) + T (x)t

)
≤ F

(
ti + νl(x) + νm(x)ti + ηn(A+ 3)

)
,

for all y ∈ R and x ∈ In, where A = |T |+ 2|ti|+ 2ηn. Hence

|H(ti, S, T )−H(t, νl, νm)|

≤ |H
(
ti + ηn(A+ 3), νl(x), νm(x)

)
−H

(
ti − ηn(A+ 3), νl(x), νm(x)

)
|+ 2Ri,l,m,

with

Ri,l,m

=
n∑
j=1

ωnj
n
{F
(
ti + νl(x) + νm(x)ti + ηn(A+ 3)

)
− F

(
ti + νl(x) + νm(x)ti − ηn(A+ 3)

)
}

≤ 2ηn(sup
t
|Af(ξ)|+ 3‖f‖∞), say.

for some ξ is between ti + νl(x) + νm(x)ti− ηn(A+ 3) and ti + νl(x) + νm(x)ti + ηn(A+ 3).

By assumption (F), there exists some L, such that |Af(ξ)| < L < ∞. Similarly, we derive

the bound for the following terms,

|H(ti, 0, T )−H(t, 0, νm)| ≤ |H
(
ti + ηn(A+ 1), 0, νm(x)

)
−H

(
ti − ηn(A+ 1), 0, νm(x)

)
|

≤ 4ηnL+ 4‖f‖∞,

|H(ti, S, 0)−H(t, νl, 0)|) ≤ |H
(
ti + 3ηn, νl(x), 0

)
−H

(
ti − 3ηn, νl(x), 0

)
| ≤ ηn12‖f‖∞,

|Hn(ti, 0, 0)−Hn(t, 0, 0)| ≤ |H(ti + ηn, 0, 0)−H(ti − ηn, 0, 0)| ≤ ηn4‖f‖∞.
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So

sup

|t|≤n1/2,S,T∈Dn
|H(t, Ŝ, T̂ −H(t, 0, 0)| = T1 + T2 + T3 + T4 + T5 + ηn(8L+ 32‖f‖∞),

where

T1 = max
i,l,m
|H(ti, νl, νm)−H(ti, 0, 0)|,

T2 = max
i,l,m
|H
(
ti + ηn(A+ 3), νl(x), νm(x)

)
−H(ti − ηn(A+ 3), νl(x), νm(x))|,

T3 = max
i,l,m
|H
(
ti + ηn(A+ 1), 0, νm(x)

)
−H

(
ti − ηn(A+ 1), 0, νm(x)

)
|,

T4 = max
i,l,m
|H
(
ti + 3ηn, νl(x), 0

)
−H

(
ti − 3ηn, νl(x), 0

)
|,

T5 = max
i,l,m
|H(ti + ηn, 0, 0)−H(ti − ηn, 0, 0)|.

To continue, for any υi and τi, i = 1, 2, let

Yj = ωnj

{
I
(
εj ≤ s+ υ1(Xj−1) + τ1(Xj−1)s

)
− I
(
εj ≤ t+ υ2(Xj−1) + τ2(Xj−1)t

)
− F

(
s+ υ1(Xj−1) + τ1(Xj−1)s

)
+ F

(
t+ υ2(Xj−1) + τ2(Xj−1)t

)}
.

We have |Yj | ≤ 2, E(Yj |X0, · · · , Xj−1) = 0, and

Vn =
n∑
j=1

E
(
Y 2
j |X0, · · · , Xj−1

)
≤

n∑
j=1

∣∣∣F(s+ υ1(Xj−1) + τ1(Xj−1)s
)
− bF

(
t+ υ2(Xj−1) + τ2(Xj−1)t

)∣∣∣
≤ n

∣∣∣f(ξ)
{(
s+ υ1(Xj−1) + τ1(Xj−1)s

)
−
(
t+ υ2(Xj−1) + τ2(Xj−1)t

)}∣∣∣,
where ξ is between s+ υ1(Xj−1) + τ1(Xj−1)s and
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t+ υ2(Xj−1) + τ2(Xj−1)t. Since supt |tf(t)| <∞, there exists some constant L, such that

Vn ≤ n{‖f‖∞(|s− t|(1 + ‖σ‖In) + ‖υ1 − υ2‖In) + L‖τ1 − τ2‖In} = n‖f‖∞B.

Then by martingale inequality in Freedman (1975),

P (|H(s, υ1, τ1)| −H(t, υ2, τ2)| > βn1/2) = P
(∣∣∣ n∑

j=1

Yj

∣∣∣ > βn1/2, Vn ≤ n‖f‖∞B
)
,

≤ 2 exp(− β2n

4βn1/2 + 2n‖f‖∞B
).

Also ‖νl‖In ≤ n−1/2c
−1/2
n log nQ2

n + ηn. Thus we obtain that

P (T1 > βn−1/2)

≤
∑
i,l,m

P (|H(ti, νl, νm)| −H(ti, 0, 0)| > βn1/2)

≤ 2MnN
2
n exp

(
− β2n

4βn1/2 + 4n(n−1/2c
−1/2
n log nQ2

n(L+ 1) + ηn)‖f‖∞

)
.

Similarly, there exists some constant L2 and L3, such that

P (T2 > βn−1/2) ≤ 2MnN
2
n exp

(
− β2n

4βn1/2 + nηn(L2 + 12‖f‖∞)

)
,

P (T3 > βn−1/2) ≤ 2MnN
2
n exp

(
− β2n

4βn1/2 + nηn(L3 + 4‖f‖∞)

)
,

P (T4 > βn−1/2) ≤ 2MnN
2
n exp

(
− β2n

4βn1/2 + 12nηn‖f‖∞

)
,

P (T5 > βn−1/2) ≤ 2MnN
2
n exp

(
− β2n

4βn1/2 + 4nηn‖f‖∞

)
.

As δ = 1/(1 +
√

3) and relation (2.2.5) in condition (H), together with relations (2.5.12)

47



and (2.5.13), we obtain that

P (Ti > βn−1/2)→ 0, i = 1, 2, · · · , 5, β > 0.

This completes the proof of (2.5.10) and hence the proof of Theorem 2.3.1

Lemma 2.5.3 Under the conditions of Theorem 2.3.1,

1

n

n∑
j=1

ωn(Xj−1)
m̂(Xj−1)−m(Xj−1)

σ(Xj−1)
=

1

n

n∑
j=1

εj + op(n
−1/2),

and for i = 1, 2,

1

n

n∑
j=1

ωn(Xj−1)
σ̂i(Xj−1)− σ(Xj−1)

σ(Xj−1)
=

1

2n

n∑
j=1

(ε2
j − 1) + op(n

−1/2).

Proof. To prove the first equation, from the proof of Lemma 2.2.1, we have

m̂(x)−m(x) =
1

nh1g(x)

n∑
j=1

σ(Xj)εjK
(Xj − x

h1

)
+ op(n

−1/2).

Then we only need to prove

1

n

n∑
i=1

ωn(Xi)

nh1g(Xi)σ(Xi)

n∑
j=1

σ(Xj)εjK
(Xj −Xi

h1

)
=

1

n

n∑
j=1

εj + op(n
−1/2).

Denote

d̂(x) =
n∑
i=1

ωn(Xi)σ(x)

nh1g(Xi)σ(Xi)
K
(x−Xi

h1

)
.
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Let d̄(x) = E(d̂(x)), we have

d̄(x) =

∫
ωn(u)σ(x)

h1σ(u)
K
(x− u

h1

)
du.

Then we have E[(d̄(X)− 1)2]→ 0. Therefore

1

n

n∑
j=1

εj(d̄(Xj)− 1) = op(n
−1/2).

Thus we only need to prove that

1

n

n∑
j=1

εj d̃(Xj) = op(n
−1/2), (2.5.14)

where d̃(x) = d̂(x)− d̄(x). But the proof of (2.5.14) is similar to that of Lemma B.3 of Selk

and Neumeyer (2013) under the mixing condition (Z), and as that appearing in section 5 of

Müller et al. (2009) under the moment contracting condition (Z′). The second equation can

be followed by similar proof.
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Chapter 3

Linear Measurement Error Models

3.1 Introduction

The problem of fitting an error distribution in regression models has been well studied when

covariates are fully observed, see, e.g., Loynes (1980), Koul (2002), Khamalze and Koul (2004,

2009) and the references therein. However, in practice there are numerous examples of real

world applications where covariates are not observable. Instead, one observes some surrogates

for covariates. The monographs of Cheng and Van Ness (1999), Fuller (2009) and Carroll,

Rupert, Stefanski, and Crainiceanu (2012) are full of such important applications. These

models are often called errors-in-variables models or measurement errors models. Relatively

little is known about fitting an error distribution to the regression model in these models.

In this chapter we investigate a class of tests for this testing problem based on deconvoluted

density estimators of the error density.

Let p ≥ 1 be a given dimension of the covariate vector X. In a multiple linear regression

model with measurement error in X one observes the response variable Y and a surrogate

p-vector Z obeying the model

Y = α + β′X + ε, Z = X + u, (3.1.1)

for some α ∈ R, β ∈ Rp, where the p-vector u is the measurement error in X. Here b′
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denotes the transpose of any vector b ∈ Rp. The variables ε, u and X are assumed to be

mutually independent, with Eε = 0 and Eu = 0. And for the model identifiability reasons,

we assume the density g of the measurement error u to be known.

Let f denote density of ε, and f0 be a known density with zero mean. Consider the

problem of testing the hypothesis

H0 : f = f0 v.s H1 : f 6= f0, (3.1.2)

based on a random sample (Yi, Zi), 1 ≤ i ≤ n from the joint distribution of (Y, Z) obeying

the model (3.1.1).

Note that if in (3.1.1), β = 0, then Y bears no relation with X and hence whether X is

observable or not is irrelevant for making inference about f . In particular any goodness-of-fit

test based on Yi, 1 ≤ i ≤ n, useful for fitting a density up to an unknown location parameter

may be used to test the above hypotheses. Thus, from now onwards we shall assume ‖β‖ 6= 0

in this chapter.

Since we observe Z instead of X, we shall rewrite the model (3.1.1) as

Y = α + β′Z + e, e = ε− β′u.

Because u and ε are independent, the density of e is h(v) =
∫
f(v + β′u)g(u)du, v ∈ R.

Let h0(v) =
∫
f0(v + β′u)g(u)du, v ∈ R. As argued in Koul and Song (2012), there is a

one-to-one map between the densities of ε and e. Hence, testing for H0 is equivalent to

testing for

H0 : h = h0, vs. H1 : h 6= h0. (3.1.3)
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In the one sample i.i.d. set up, Bickel and Rosenblatt (1973) goodness-of-fit test for fitting

a known density is based on an L2 distance between a kernel density estimator and its null

expected value. This test is adapted to fitting an error density up to an unknown location

parameter, where the density estimator would be based on the estimated residuals. This

statistics has the property that its asymptotic null distribution is not affected by not knowing

the location parameter. In other words, not knowing the nuisance location parameter has no

effect on asymptotic level of the test based on the analog of this statistics. What is remarkable

is that this property continues to hold in several more complicated additive models. Lee and

Na (2002), Bachmann and Dette (2005), and Koul and Mimoto (2012) observed that this

fact continues to hold for the analog of this statistics when fitting an error density based

on residuals in autoregressive and generalized autoregressive conditionally heteroscedastic

time series models. This type of property makes these L2-distance type tests more desirable,

compared to the tests based on residual empirical processes, because the asymptotic null

distribution of the standardized residual empirical process depends on the estimators of the

underlying nuisance parameters in these models in a complicated fashion. In all of these

works all data are completely observable.

In the above measurement error model, Koul and Song (2012) proposed analogous class

of tests for the testing problem (3.1.3) based on kernel density estimators of h obtained

from the residuals Yi − α̂ − β̂′Zi, 1 ≤ i ≤ n, directly, where α̂, β̂ are some n1/2-consistent

estimators of α, β, under H0.

Alternately, because f is involved in the convolution h, it is natural to construct tests of

H0 based on a deconvolution density estimators. In this chapter we develop an analogs of

the above tests for testing H0 based on deconvolution density estimators.

There is a vast literature on the deconvolution estimators of the density of X in the
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measurement error model (3.1.1), as is evidenced in the papers of Carroll and Hall (1988),

Stefanski and Carroll (1990), Fan (1991), van Es and Uh (2004), and Delaigle and Hall

(2006) among others. The goodness-of-fit testing problem pertaining to the density function

of X has been studied by several authors including Butucea (2004), Holzman and Boysen

(2006), Holzman, Bissantz and Munk (2007), and Loubes and Marteau (2014). All of these

authors use analogs of the above L2-distance type tests based either on the deconvoluted

estimator of density of X or on a density estimator of Z density. None of them address

the above problem of testing (3.1.2) or (3.1.3) pertaining to the error density in the above

measurement error model (3.1.1).

Consider the model (3.1.1) and assume for the time being α, β are known. Since we

observe Y and Z, we can construct a kernel density estimator of density h of e := Y − α −

β′Z = ε − β′u, which is also an estimator of the convolution of the density f of ε with the

known density of β′u. From this we obtain a deconvolution density estimator of f , which

we shall use to construct tests of H0.

Let Φγ denote the characteristic function of a density γ. Proceeding a bit more precisely,

by the independence of ε and u, Φh(t) = Φf (t)Φg(−βt). Assuming Φg(t) 6= 0, for all

t ∈ R, the characteristic function of ε is Φf (t) = Φh(t)/Φg(−βt). Using the data Yi, Zi, 1 ≤

i ≤ n, an estimate of Φh is provided by the empirical characteristic function Ψn(t) :=

n−1∑n
j=1 e

itej of ej := Yj − α− β′Zj , 1 ≤ j ≤ n. A kernel density estimator of h is

hn(x, α, β) =
1

nb

n∑
j=1

K
(x− ej

b

)
,

where K is a kernel function with its characteristic function ΦK compactly support and

b > 0 is a bandwidth sequence. Then the characteristic function of hn is ΦK(bt)Ψn(t). Since
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Φg is known, a kernel estimate of Φf (t) is ΦK(bt)Ψn(t)/Φg(−βt). By the inversion formula,

fn(x, α, β) =
1

2π

∫
R
e−itxΦK(bt)

Ψn(t)

Φg(−βt)
dt,

is a deconvolution estimate of f when α and β are known. But, in practice α, β are seldom

known. Let α̂, β̂ be estimators of α, β, respectively. Then the corresponding deconvolu-

tion estimator of f is f̂n(x) := fn(x, α̂, β̂) obtained from fn after replacing α, β by α̂, β̂,

respectively. The proposed class of tests, one for each K and b, of H0 is to be based on

T̂n =

∫
R

(
f̂n(x)−Kb ∗ f0(x)

)2
dx,

where for any function γ, Kb ∗ γ(x) := b−1
∫
K((x− y)/b)γ(y)dy.

It is well known that the convergence rate of the deconvolution density estimators depends

sensitively on the tail behaviour of the characteristic function of the underlying measurement

error, which in the present set up is Φg. There are two general cases: one is the ordinary

smooth case, where |Φg(t)| is of polynomial order |t|−κ, for some κ > 0, as |t| → ∞; the other

is the super smooth case, where |Φg(t)| is of the order |t|λ0e−|t|
λ/ν , for some λ0 ∈ R, λ > 0

and ν > 0, as |t| → ∞. In this chapter, we obtain asymptotic distributions of T̂n under H0

in both the ordinary smooth and super smooth cases in section 2. The consistency against

a fixed alternative, the asymptotic power against a class of local nonparametric alternatives

and against a fixed alternative for both cases is described in section 3.

The findings of a finite sample simulation that compares the empirical power of a member

of the proposed class of tests with that of the Kolmogorov–Smirnov, Cramér–von Mises tests

based on the empirical d.f. of {êj := Yj − α̂− β̂′Zj , 1 ≤ j ≤ n}, and a Koul and Song (2012)
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test based on hn(·, α̂, β̂) are presented in section 4. The comparison is made for the three

choices of the measurement error variance σ2
u. In the ordinary smooth case, the proposed

test dominates the Koul-Song test at almost all chosen alternatives for all three choices of

σ2
u. It also dominates the other two tests for the larger values of σ2

u at most of the chosen

alternatives and for a larger sample size. The findings in the super smooth case are similar.

In general the proposed test has better empirical power at the chosen alternatives compared

to some of these other tests for larger values of σ2
u, while Cramér–von Mises test dominates

in terms of the empirical power for smaller values of σ2
u. See section 3.4 for more on this

finite sample comparison.

Throughout this chapter, N
(
µ, σ2) denotes the normal distribution with mean µ and

variance σ2, all limits are taken as n → ∞, →d and →p denoted the convergence in distri-

bution and probability, respectively, and the range of integration in all the integrals is R,

unless specified otherwise.

3.2 Asymptotic Null Distribution

This section discusses the asymptotic null distribution T̂n for the ordinary smooth and super

smooth cases.

3.2.1 Ordinary smooth case

Here we shall first derive the limiting null distribution of T̂n for the ordinary smooth case.

To begin with we state the needed assumptions.

(A): The characteristic function Φg of the error vector u satisfies Φg(t) 6= 0, for all t ∈ Rp,

and |Φg(t)| ≈ ‖t‖−κ, for a κ > 0, i.e. there are c, C > 0 such that c‖t‖−κ ≤ |Φg(t)| ≤
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C‖t‖−κ, for all sufficiently large ‖t‖.

(B): The characteristic function Φf of the density f of ε satisfies |Φf (t)| = O(|t|−r), for

some r > 1, as |t| → ∞.

(C): The characteristic function ΦK of the kernel function K is symmetric around 0 and

compactly supported on [−1, 1].

(D): E{‖X‖4 + |ε|4 + ‖u‖4} <∞.

Next, define ψ(β, s, t) := Φg(βt+ βs)Φf (t+ s), and let

Tn(α, β) :=

∫ (
fn(x, α, β)−Kb ∗ f0(x)

)2
dx, CM,b :=

∫
|ΦK(tb)|2

|Φg(βt)|2
dt,

CV,b :=

∫ ∫
|ΦK(tb)|2|ΦK(sb)|2

|Φg(βt)|2|Φg(βs)|2
|ψ(β, s, t)|2 dt.

Using Theorem 1 of Holzman et al. (2007) one can derive the following result. Suppose H0

and the assumptions (A)–(C) hold and b→ 0, nb→∞. Then

CM,b ≈ b−(2κ+1), CV,b ≈ b−(4κ+1), (3.2.1)

nC
−1/2
V,b

(
Tn(α, β)− CM,b/

(
2πn

))
→d N

(
0, 1/2π2). (3.2.2)

Note that T̂n = Tn(α̂, β̂). Thus we need the above results to hold with α, β replaced

by α̂ and β̂, respectively. Accordingly, write ĈM,b, ĈV,b and Ψ̂n(t) for CM,b, CV,b and

Ψn(t), when α, β are replaced by α̂, β̂, respectively. We are now ready to state the following

theorem, which provides yet another example where the asymptotic null distributions of

these L2-distance statistics are not affected by not knowing the nuisance parameters α, β.
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Theorem 3.2.1 Suppose H0 holds, assumptions (A), (B) with r > 3/2, (C) and (D) hold,

and that

n1/2{|α̂− α|+ ‖β̂ − β‖} = Op(1). (3.2.3)

In addition, suppose b → 0, and nbmax{2κ+3,3.5} → ∞, with κ as in (A). Then ĈM,b ≈

b−(2κ+1), ĈV,b ≈ b−(4κ+1), and

nĈ
−1/2
V,b

(
T̂n −

ĈM,b

2πn

)
→d N

(
0,

1

2π2

)
. (3.2.4)

The proof of this theorem is given in the last section. Let za be (1 − a)100th percentile of

the N (0, 1) distribution. An immediate consequence of (3.2.4) is that for any 0 < a < 1, the

test that rejects H0 whenever

Tn :=
√

2πnĈ
−1/2
V,b

∣∣T̂n − ĈM,b

2πn

∣∣ > za/2

has the asymptotic size a.

Examples of g that satisfy assumption (A) include uniform distribution with κ = 1,

gamma distributions with scale γ where κ = γ, exponential where κ = 1, and Laplace

distribution with location 0 and scale 1 where κ = 2. The class of the regression error

densities f that satisfy assumption (B) includes Laplace where r = 2, normal and Cauchy

for any r > 0.
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3.2.2 Super smooth case

Now we consider the problem of obtaining the limiting distribution of T̂n in the super smooth

case. Here we need the following assumptions.

(A′): The characteristic function Φg of the error variable u satisfies Φg(t) 6= 0, for any t ∈ Rp.

For any β ∈ Rp, βk 6= 0, for k = 1, · · · , p, |Φg(βt)| ∼ C(β)|t|λ0e−ν(β)|t|λ , as |t| → ∞,

for a λ > 1, C(β) > 0, ν(β) > 0, and λ0 ∈ R. Also, C(β), ν(β), exist bounded first

derivatives.

(B′): The density f is square-integrable, and Eε2 <∞.

(C′): The characteristic function ΦK of the kernel function K is symmetric around 0 and

compactly supported on [−1, 1]. Moreover ΦK(0) = 1, and there exist A > 0, ω ≥ 0

such that

ΦK(1− t) = Atω + o(tω), as t→ 0.

From Holzmann and Boysen (2006) we can deduce that under the conditions (A′)–(C′),

as n→∞ and b→ 0,

(2λ)1+2ωπC2(β)n

A2ν1+2ω(β)bλ−1+2λω+2λ0 exp
(
2ν(β)/bλ

)
Γ(2ω + 1)

Tn(α, β)→d χ
2
2/2, (3.2.5)

where χ2
2 is a r.v. having chi-square distribution with 2 degree of freedom, and Γ(·) is the

Gamma function.

In order to derive a similar result for T̂n, we need the following additional condition. Let

q̇ be the first derivative of q for any function q.
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(D′): There exists some λ1 > 1, Φf (t)| = O(|t|−λ1) as |t| → ∞.

Theorem 3.2.2 Suppose H0 and the assumptions (A′), (B′), (C ′), (D′), (D) hold, b → 0,

and

nb−η exp
(
− 2ν(β)/bλ

)
→∞, for any η > 0. (3.2.6)

Then

Tn,s :=
(2λ)1+2ωπC(β̂)2n

A2ν(β̂)1+2ωbλ−1+2λω+2λ0 exp
(
2ν(β̂)/bλ

)
Γ(2ω + 1)

T̂n →d χ
2
2/2. (3.2.7)

Note that the factor multiplying T̂n here is all known. Again, the proof of this theorem

appears in the last section. The corresponding test is to rejects H0 with asymptotic size

a, for 0 < a < 1, whenever Tn,s > Xa/2, where Xa is (1 − a)100th percentile of the χ2
2

distribution.

Examples satisfying assumption (A′) include normal densities. If g is a standard normal

density then Cg = 1, λ0 = 0, λ = 2 and ν = 2. For kernel functions satisfying assumption

(C′), Holzmann and Boysen (2006) used the sinc kernel K(x) = sin(x)/(πx), with A = 1

and ω = 0, and Fan (1992) used ΦK(t) = (1 − t2)3 with A = 8 and ω = 3. Other suitable

kernel functions can also be found in Delaigle and Hall (2006).

3.3 Consistency and Asymptotic Power

In this section we shall discuss the consistency and asymptotic power for fixed and local

nonparametric alternatives of the above tests for both ordinary and super smooth cases.
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Consistency. Let f1 be another fixed density of ε such that

‖f1 − f0‖ :=
(∫ [

f1(x)− f0(x)
]2
dx
)1/2

> 0. (3.3.1)

Consider the fixed alternatives, H1 : f(x) = f1(x), for all x ∈ R.

The following two theorems yield the consistency of the above Tn and Tn,s tests against

H1 for the ordinary and super smooth cases, respectively.

Theorem 3.3.1 Suppose assumptions (A) and (C) hold, f0 and f1 satisfy (B) with r > 3/2,

and have finite fourth moment, and (3.2.3) holds under H1. Furthermore, suppose (D) holds,

b→ 0, and nbmax{2κ+3,3.5} →∞. Then

√
2πnĈ

−1/2
V,b

∣∣T̂n − ĈM,b

2πn

∣∣→p ∞. (3.3.2)

Theorem 3.3.2 Assume (3.2.3) holds under H1, and that the assumptions of Theorem 3.2.2

hold. Then

n

bλ−1+2λω+2λ0 exp
(
2ν(β̂)/bλ

) T̂n →p ∞.

Asymptotic local power. First we consider the ordinary smooth case. We shall describe

the asymptotic distribution of T̂n under a sequence of the local nonparametric alternatives

f1n(x) = f0(x) + δ1n`(x), x ∈ R,

with δ1n = (CV,b/2)1/4/(nπ)1/2, and f1n a nonnegative function, ` ∈ L2(R), and
∫
`(x)dx =

0. We obtain
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Theorem 3.3.3 Suppose the assumptions of Theorem 3.2.1 hold and that under H1n :

f(x) = f1n(x), (3.2.3) holds. Then, under under H1n,

√
2πnĈ

−1/2
V,b (T̂n − ĈM,b/(2πn))→d N (‖`‖2, 1).

Similarly for the super smooth case, consider a sequence of the local nonparametric

alternatives

f2n(x) = f0(x) + δ2n`(x), x ∈ R,

δ2n =
( (2λ)1+2ωπC(β)2n

A2ν(β)1+2ωbλ−1+2λω+2λ0 exp
(
2ν(β)/bλ

)
Γ(2ω + 1)

)−1/2
,

with f2n a nonnegative function, ` ∈ L2(R), and
∫
`(x)dx = 0. We obtain

Theorem 3.3.4 Suppose the assumptions of Theorem 3.2.2 hold and (3.2.3) holds under

H2n : f(x) = f2n(x). Then, under H2n,

(2λ)1+2ωπC(β̂)2n

A2ν(β̂)1+2ωbλ−1+2λω+2λ0 exp
(
2ν(β̂)/bλ

)
Γ(2ω + 1)

T̂n − ‖`‖2 →d χ
2
2/2.

The above two theorems show that the proposed tests can detect alternatives which converge

to f0 at a rate slower than n−1/2.

Asymptotic power against a fixed alternative. Now we describe the asymptotic power

for the ordinary smooth case against a fixed alternative f1 such that ‖f1 − f0‖ > 0. To

proceed further we state the following result, which follows from Theorem 2 of Holzmann et

al. (2007). Assume f1 6= f0 satisfies (3.3.1), assumptions (A) and (C) hold, f1 and f0 satisfy
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assumption (B) for some r > κ+ 1, and have bounded second derivatives b→ 0, and (3.2.6)

holds. Then, under H1,

n1/2(Tn(α, β)− ‖Kb ∗ (f1 − f0)‖2
)
→d N (0, τ2

0 ), (3.3.3)

where

τ2
0 =

1

2π3
Var
(∫

e−itε
Φf1(t)− Φf0(t)

Φg(βt)
dt
)
.

We shall use this result to analyze the asymptotic distribution of T̂n under the fixed

alternative H1. To proceed further, let µZ := EZ, and suppose the first derivatives ḟ1 and

ḟ0 exist. Define

Af = 2

∫
(f1 − f0)ḟ0(x) dx, Bf = 2µZ

∫
(f1 − f0)ḟ1(x) dx.

Theorem 3.3.5 Assume that (A), (C) and (D) hold, f1 and f0 satisfy assumption (B) with

r > κ + 1, r > 3/2, and κ as in (A) and have bounded second derivatives. Also, assume

(3.3.1) and (3.2.3) hold under H1. Furthermore, if b→ 0, nbmax{4κ+2,2κ+3} →∞, then

n1/2
(
T̂n − ‖Kb ∗ (f1 − f0)‖2 − (α̂− α)Af − (β̂ − β)′Bf

)
→d N (0, τ2

0 ). (3.3.4)

Note that the effect of estimating α and β introduces another bias term n1/2((α̂ − α)Af +

(β̂ − β)′Bf ) in the asymptotic distribution of the statistics T̂n. This bias will vanish if to

begin with there is no intercept parameter in the model and µZ = 0. It also vanishes under

the following linearity condition on the estimators.
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Furthermore, suppose under H1, the estimators α̂ and β̂ satisfy the following expansion:

α̂− α =
1

n

n∑
j=1

ηj + op(n
−1/2), (3.3.5)

β̂k − βk =
1

n

n∑
j=1

ζjk + op(n
−1/2), k = 1, · · · , p, (3.3.6)

where ηj are i.i.d. with Eη = 0, Var(η) > 0, E|η|2+ϑ < ∞, for some ϑ > 0. Moreover, the

same conditions are satisfied by ζjk’s, and also for i 6= j 6= k ηi, ζj and ek are mutually

independent.

Examples of the estimators of α̂, β̂ that satisfy these two conditions include the naive

least square estimators, maximum likelihood estimators (see Huǎková and Meintanis (2007)),

and the bias-corrected estimators (see Fuller (1987)). Using the above expansion, we obtain

Theorem 3.3.6 Assume the conditions of Theorem 3.3.5 and (3.3.5)-(3.3.6) for α̂ and β̂

hold. Then, for some τ > 0,

n1/2(T̂n − ‖Kb ∗ (f1 − f0)‖2
)
→d N (0, τ2). (3.3.7)

The form of τ is described in the proof of this theorem in the last section, see (3.5.26).

Although τ is complicated to calculate in practice, the bootstrap simulation methods can be

used to estimate τ .

For the super smooth case, in order to obtain a similar result as above, we need to make

the following stronger assumptions on f1 and f0:

(B∗) The characteristic function Φf of the density f of ε satisfies |Φf (t)| = O(|t|ξ0e−|t|ξ/ζ)

for some ξ0 ∈ R, ζ > 0 and ξ > λ.
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Assumption (B∗) implies (D′), and assures
∫ ∣∣Φf (t)/Φg(βt)

∣∣ dt < ∞. An example of f and

g satisfying the above condition is where f is a normal density with variance smaller than

1, and g is standard normal density.

A result analogous to (3.3.3) can be obtained in the super smooth case also by following

the proof of Theorem 2 in Holzmann et al. (2007) with known α and β. To be clear, assume

f1, f0 satisfying (3.3.1), assumptions (A′) and (C′) hold, and f1 and f0 satisfy assumption

(B∗). Assume b→ 0, and

nb−η exp
(
− 4ν(β)/bλ

)
→∞, for any η > 0. (3.3.8)

Then (3.3.3) holds. In the case of unknown α and β, we obtain the following theorem.

Theorem 3.3.7 Suppose assumptions (A′), (C ′), and (B∗) hold, f1, f0 satisfy (3.3.1), and

have bounded second derivatives. If, in addition, b → 0, and (3.2.6) holds, then we have

(3.3.4).

Furthermore, if α̂ and β̂ satisfy (3.3.5)-(3.3.6), then (3.3.7) holds for some τ > 0.

3.4 Simulations

In this section we report the findings of some extensive simulations, which assess some finite

sample level and power behavior of a member of the above class of tests. The results are

presented in the two subsections for ordinary and super smooth cases.
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3.4.1 Ordinary smooth case

Consider the measurement error model

Y = 1 +X + ε, Z = X + u, (3.4.1)

where X ∼ N (0, 1) and Φg(t) = 16/(4 + σ2
ut

2)2. This Φg satisfies assumption (A) of the

ordinary smooth case with κ = 4. We wish to test the hypothesis that ε ∼ N (0, 0.25), i.e., f0

in H0 is the density of normal distribution with mean zero and variance 0.25. As in Koul and

Song (2012), we use the bias-corrected estimators α̂ = Ȳ − β̂Z̄ and β̂ = SZY /(SZZ − σ2
u),

where Ȳ and Z̄ denote the sample mean of Y and Z, and SZY and SZZ denote the sample

covariance of Z and Y and the sample variance of Z, respectively. In the deconvolution

estimator of f , we used the sinc kernel K(x) = sinx/(πx). The proposed test based on T̂n

rejects H0 for the large values of T̂n := nĈ
−1/2
V,b |T̂n − ĈM,b/(2πn)|.

We shall compare this test with with the Kolmogorov-Smirnov (TKS), the Cramér-von

Mises (TCvM ) tests and the Wn test proposed by Koul and Song (2012), all based directly

on residuals êi := Yi − α̂− β̂Zi, 1 ≤ i ≤ n. The first two statistics are defined as

TKS := sup
x∈R

n1/2|F̂n(x)− F0(x)|, TCvM := n

∫ (
F̂n(x)− F0(x)

)2
dF0(x),

where F̂n(x) := n−1∑n
i=1 I(êi ≤ x). To define Wn, let ϕ be a density kernel on R, ϕ2(u) :=∫

ϕ(v)ϕ(u + v) dv, c ≡ cn be another window width, w be a compactly supported density
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on R, and let

h̃n(x) :=
1

nc

n∑
j=1

ϕ
(x− êj

c

)
, Ĉn :=

1

n2c2

n∑
i=1

∫
ϕ2
(v − êi

c

)
w(v) dv,

Γ̂n := 2

∫
h̃2
n(x)w2(x)dx

∫ [
ϕ2(u)

]2
du.

Then, with h0(x, β̂) :=
∫
f0(x+ β̂u)dx,

Wn := nb1/2Γ̂−1
n

∣∣ ∫ (h̃n(x)− h0(x, β̂)
)2
w(x) dx− Ĉn

∣∣.
In this simulation study, we chose the kernel function ϕ to be the standard normal density

and the bandwidth c = n−0.27, and w(·) was chosen to be the uniform density on the

closed interval [−6, 6]. All these three tests reject H0 for large values of their corresponding

statistics.

To assess the effect of the measurement error on the finite sample level and power of

these tests, we conducted simulations for the three values of σ2
u = 0.25, σ2

u = 0.5, σ2
u = 1

with bandwidth b = 0.5n−1/12,b = 0.65n−1/12, and b = 0.8n−1/12, respectively .

It is well known that the approximation of the distributions of the test statistics based

on density estimators by their asymptotic distributions is generally slow. For that reason in

this simulation study we use the Monte Carlo simulation method to obtain the critical values

for all tests considered. At level 0.05, the critical values of all four tests are simulated by

the Monte Carlo method, based on sample size 300 and 500, repeating 1000 times. The 95%

quantiles are calculated for 1000 repetitions and the mean values of the 1000 quantiles are

chosen as the critical values given in Table 3.1 for different values of σ2
u. The Monte Carlo

level of the three tests T̂n, TKS and TCvM is relatively more robust against the variation in
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the measurement error, compared to that of the Wn test.

n σ2
u T̂n TKS TCvM Wn

300 0.25 1.18118 0.86714 0.16988 1.34799
0.5 1.14531 0.87355 0.17395 1.40213
1 1.15600 0.88576 0.18056 1.49112

500 0.25 1.19852 0.86223 0.16929 1.40258
0.5 1.20847 0.86674 0.17357 1.44800
1 1.20484 0.87829 0.18073 1.52883

Table 3.1: Monte Carlo critical values of all the tests, ordinary smooth case.

The alternatives considered here are t-distributions with k degrees of freedom, denoted

by tk, for k = 4, 6, 8, 10, 15, 20, double exponential (DE) and logistic (L) distributions, all

having zero mean and standard deviation 0.5. The sample sizes chosen are 300 and 500

and the level is .05. From Table 3.2, we see that in terms of the empirical power, the T̂n

dominates the Wn test uniformly across the chosen alternatives, sample sizes and the values

of σ2
u, while for n = 500, it also dominates the TKS test for at almost all chosen alternatives,

when σ2
u = .5, 1, while the TCvM test dominates all other tests for the smallest value of σ2

u.

We also considered the following normal and logistic mixture alternatives.

f1 = 0.5N (−µ, 0.25) + 0.5N (µ, 0.25), µ > 0,

f2 = 0.5`(−λ, 1.5/π) + 0.5`(λ, 1.5/π), λ ≥ 0,

where `(a, b) is the density of the logistic d.f. 1/(1 + e
−x−a

b ). The empirical powers for

normal and logistic mixture alternatives are given in Table 3.3. In both cases the sample

sizes are 300 and 500 and the level is 0.05. From Table 3.3 one observes the following. First,

as σ2
u increases, the empirical powers decrease generally. Secondly, for the alternatives f1 and

σ2
u = 1, the proposed test T̂n based on deconvolution density estimator has larger empirical
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powers than the TKS and Wn tests in most of the cases, while the TCvM test dominates all

other three tests in terms of the empirical power. For σ2
u = 0.25, the Wn test dominates all

three tests T̂n, TKS and TCvM at all normal mixture alternatives. For σ2
u = 0.5, the T̂n test

has larger empirical powers than TKS , but smaller empirical powers than TCvM and Wn.

Similar phenomena can be found from Table 3.3 for the alternatives f2.

n σ2u Test t4 t6 t8 t10 t15 t20 DE L

300 0.25 T̂n 0.240 0.093 0.072 0.052 0.047 0.060 0.183 0.059
TKS 0.191 0.084 0.062 0.058 0.041 0.053 0.150 0.064
TCvM 0.268 0.103 0.065 0.053 0.053 0.062 0.226 0.068
Wn 0.035 0.023 0.023 0.027 0.027 0.039 0.033 0.036

0.5 T̂n 0.093 0.072 0.038 0.051 0.052 0.047 0.050 0.050
TKS 0.064 0.057 0.055 0.054 0.060 0.053 0.051 0.049
TCvM 0.100 0.077 0.065 0.052 0.056 0.051 0.071 0.049
Wn 0.018 0.037 0.038 0.043 0.040 0.046 0.032 0.034

1 T̂n 0.046 0.050 0.043 0.040 0.049 0.049 0.046 0.048
TKS 0.052 0.046 0.046 0.050 0.055 0.047 0.047 0.040
TCvM 0.042 0.052 0.047 0.050 0.057 0.060 0.054 0.047
Wn 0.037 0.041 0.050 0.039 0.046 0.038 0.043 0.038

500 0.25 T̂n 0.397 0.158 0.092 0.078 0.068 0.060 0.344 0.097
TKS 0.244 0.122 0.082 0.077 0.050 0.044 0.223 0.076
TCvM 0.398 0.159 0.101 0.083 0.054 0.053 0.315 0.090
Wn 0.051 0.037 0.027 0.032 0.034 0.035 0.059 0.025

0.5 T̂n 0.131 0.052 0.049 0.054 0.043 0.049 0.107 0.044
TKS 0.113 0.070 0.055 0.062 0.052 0.064 0.106 0.053
TCvM 0.162 0.059 0.057 0.062 0.045 0.069 0.129 0.052
Wn 0.059 0.043 0.034 0.041 0.048 0.049 0.043 0.037

1 T̂n 0.069 0.050 0.045 0.052 0.061 0.047 0.060 0.063
TKS 0.059 0.049 0.043 0.044 0.053 0.050 0.049 0.050
TCvM 0.058 0.046 0.042 0.056 0.057 0.049 0.068 0.059
Wn 0.042 0.034 0.054 0.047 0.048 0.041 0.034 0.048

Table 3.2: Empirical powers against chosen alternatives, ordinary smooth case.
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µ λ

n σ2
u Test 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

300 0.25 T̂n 0.084 0.672 0.999 1.000 0.252 0.523 0.767 0.929
TKS 0.078 0.577 0.998 1.000 0.236 0.460 0.703 0.889
TCvM 0.101 0.787 1.000 1.000 0.367 0.651 0.862 0.966
Wn 0.137 0.818 1.000 1.000 0.419 0.687 0.874 0.968

0.5 T̂n 0.071 0.457 0.973 1.000 0.162 0.363 0.551 0.742
TKS 0.078 0.350 0.920 0.998 0.163 0.278 0.431 0.645
TCvM 0.082 0.514 0.985 1.000 0.226 0.430 0.631 0.824
Wn 0.095 0.473 0.974 1.000 0.206 0.403 0.584 0.772

1 T̂n 0.079 0.262 0.729 0.964 0.147 0.209 0.291 0.450
TKS 0.059 0.199 0.593 0.924 0.117 0.164 0.228 0.347
TCvM 0.079 0.265 0.760 0.974 0.153 0.233 0.328 0.496
Wn 0.075 0.212 0.655 0.949 0.132 0.181 0.255 0.404

500 0.25 T̂n 0.113 0.893 1.000 1.000 0.390 0.747 0.947 0.992
TKS 0.095 0.835 1.000 1.000 0.393 0.697 0.913 0.987
TCvM 0.143 0.955 1.000 1.000 0.586 0.879 0.985 1.000
Wn 0.172 0.955 1.000 1.000 0.585 0.872 0.982 1.000

0.5 T̂n 0.063 0.646 0.998 1.000 0.300 0.520 0.776 0.922
TKS 0.091 0.529 0.990 1.000 0.247 0.444 0.668 0.858
TCvM 0.084 0.709 0.999 1.000 0.373 0.619 0.845 0.961
Wn 0.094 0.639 0.999 1.000 0.322 0.531 0.790 0.934

1 T̂n 0.089 0.394 0.898 0.996 0.182 0.304 0.446 0.627
TKS 0.065 0.305 0.801 0.988 0.156 0.218 0.379 0.528
TCvM 0.084 0.415 0.930 1.000 0.197 0.342 0.484 0.681
Wn 0.073 0.320 0.855 0.995 0.153 0.265 0.373 0.550

Table 3.3: Empirical powers against mixture normal (left panel) and logistic alternatives, ordinary
smooth case.
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3.4.2 Super smooth case

Now consider the measurement error model (3.4.1), where again X ∼ N (0, 1), ε ∼ N (0, 0.25)

but u ∼ N (0, σ2
u). The bias-corrected estimators are also used to estimate α and β. The

sinc kernel K(x) = sinx/(πx) is consider for the deconvolution kernel estimator, with the

bandwidth b = 0.55(log n)−0.5, b = (
√

0.5 + 0.05)(log n)−0.5 and b = 1.15(log n)−0.4 when

σ2
u = 0.25, σ2

u = 0.5 and σ2
u = 1, respectively. Thus, Cg = 1, ν = 2/σ2

u, λ0 = 0, λ = 2,

A = 1, and ω = 0 in equation (3.2.4). Then the left side of (3.2.7) can be written as

T̂n,s :=
2πnσ2

uβ̂
2T̂n

b exp(|β̂σu|2/b2)
.

The Monte Carlo distribution of T̂n,s for the sample size 1000 based on 1000 repetitions is

very close to χ2
2/2. Hence the critical values of this test are obtained from χ2

2/2 distribution.

To examine the power, we compared our test with the same three direct tests as in the

previous section. We generated the critical values for TKS , TCvM and Wn defined as above

by Monte Carlo methods, based on 500 and 1000 sample size, repeated 1000 times. The 95%

quantiles are calculated for 1000 repetitions and the mean values of 1000 these quantiles are

chosen as the critical values. These critical values are listed in Table 3.4.

n σ2
u TKS TCvM Wn

500 0.25 0.85655 0.16540 1.39447
0.5 0.85670 0.16500 1.45467
1 0.85545 0.16446 1.53780

1000 0.25 0.85038 0.16482 1.46119
0.5 0.85183 0.16535 1.51706
1 0.85210 0.16492 1.59195

Table 3.4: Monte Carlo critical values of the TKS , TCvM , and Wn, super smooth case.

We consider the same alternative as in the ordinary smooth case of the subsection 3.4.1.
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The empirical powers against t, double exponential and logistics distributions are given in

Table 3.5. From this table one sees that the proposed deconvolution test provides the largest

empirical powers in all the cases compared to the other three testing methods when σ2
u = 1,

while it dominates the Wn test for smaller values of σ2
u. The empirical powers against

normal and logistics mixture alternatives are given in Table 3.6, for sample size 500 and

1000. From this table we see that for both normal and logistic mixture alternatives, the Wn

test dominates the T̂n,s and TKS tests for all chosen sample sizes and for all values of σ2
u,

while the TCvM test dominates all other tests uniformly.
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n σ2u Test t3 t4 t5 t6 t8 t10 DE L

500 0.25 T̂n,s 0.207 0.118 0.111 0.087 0.072 0.061 0.121 0.075
TKS 0.451 0.184 0.119 0.090 0.071 0.062 0.130 0.071
TCvM 0.694 0.300 0.160 0.120 0.082 0.066 0.206 0.082
Wn 0.146 0.037 0.037 0.035 0.029 0.040 0.034 0.035

0.5 T̂n,s 0.143 0.105 0.087 0.080 0.065 0.069 0.105 0.072
TKS 0.152 0.086 0.073 0.066 0.053 0.045 0.073 0.051
TCvM 0.250 0.104 0.082 0.059 0.055 0.058 0.088 0.045
Wn 0.043 0.047 0.051 0.039 0.046 0.051 0.045 0.034

1 T̂n,s 0.155 0.093 0.088 0.071 0.074 0.058 0.070 0.075
TKS 0.084 0.050 0.046 0.044 0.054 0.047 0.054 0.051
TCvM 0.087 0.059 0.052 0.047 0.053 0.049 0.057 0.050
Wn 0.043 0.047 0.044 0.045 0.049 0.050 0.044 0.054

1000 0.25 T̂n,s 0.262 0.117 0.096 0.067 0.066 0.062 0.165 0.062
TKS 0.714 0.364 0.193 0.123 0.090 0.067 0.274 0.080
TCvM 0.960 0.551 0.304 0.171 0.114 0.088 0.403 0.101
Wn 0.499 0.098 0.051 0.036 0.038 0.037 0.095 0.044

0.5 T̂n,s 0.184 0.085 0.079 0.066 0.046 0.060 0.081 0.075
TKS 0.273 0.102 0.090 0.072 0.056 0.048 0.100 0.046
TCvM 0.468 0.164 0.120 0.090 0.060 0.053 0.095 0.048
Wn 0.092 0.041 0.041 0.044 0.041 0.049 0.046 0.050

1 T̂n,s 0.199 0.116 0.088 0.078 0.074 0.063 0.081 0.073
TKS 0.094 0.062 0.051 0.054 0.048 0.044 0.049 0.047
TCvM 0.135 0.072 0.057 0.053 0.063 0.047 0.050 0.039
Wn 0.066 0.035 0.047 0.058 0.043 0.055 0.050 0.042

Table 3.5: Empirical powers against alternative distributions, super smooth case.
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m λ

n σ2u Test 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

500 0.025 T̂n,s 0.048 0.140 0.547 0.890 0.092 0.134 0.189 0.305
TKS 0.079 0.800 1.000 1.000 0.389 0.645 0.853 0.974
TCvM 0.136 0.930 1.000 1.000 0.565 0.844 0.961 0.997
Wn 0.143 0.908 1.000 1.000 0.502 0.810 0.942 0.997

0.5 T̂n,s 0.048 0.065 0.207 0.599 0.079 0.105 0.165 0.240
TKS 0.042 0.171 0.803 0.997 0.199 0.326 0.549 0.765
TCvM 0.049 0.263 0.938 1.000 0.297 0.512 0.732 0.897
Wn 0.045 0.191 0.835 0.999 0.195 0.362 0.558 0.783

1 T̂n,s 0.040 0.042 0.352 0.925 0.042 0.071 0.159 0.291
TKS 0.049 0.099 0.452 0.865 0.115 0.164 0.286 0.342
TCvM 0.059 0.128 0.590 0.950 0.145 0.237 0.412 0.523
Wn 0.054 0.085 0.359 0.828 0.081 0.127 0.227 0.279

1000 0.025 T̂n,s 0.063 0.150 0.684 0.979 0.076 0.110 0.208 0.356
TKS 0.154 0.983 1.000 1.000 0.632 0.929 0.996 0.998
TCvM 0.225 1.000 1.000 1.000 0.824 0.984 0.997 0.998
Wn 0.187 0.994 1.000 1.000 0.755 0.966 0.997 0.998

0.5 T̂n,s 0.070 0.153 0.553 0.892 0.070 0.108 0.169 0.271
TKS 0.096 0.742 1.000 1.000 0.361 0.634 0.879 0.984
TCvM 0.147 0.898 1.000 1.000 0.557 0.803 0.964 0.996
Wn 0.044 0.631 1.000 1.000 0.342 0.610 0.862 0.973

1 T̂n,s 0.034 0.275 0.968 1.000 0.094 0.231 0.365 0.625
TKS 0.067 0.368 0.933 1.000 0.174 0.295 0.484 0.660
TCvM 0.083 0.511 0.977 1.000 0.252 0.420 0.649 0.837
Wn 0.052 0.238 0.879 1.000 0.126 0.199 0.358 0.508

Table 3.6: Empirical powers against mixture normal (left panel) and logistic distributions, super
smooth case.

73



3.5 Proofs

Here we present proof of Theorems 3.2.1–3.3.7. We write Tn := Tn(α, β) and fn(x) :=

fn(x, α, β) with known α, β and f̂n(x) := fn(x, α̂, β̂) for expressions simplicity.

Since CV,b ≈ b−(4κ+1), we first show

nb2κ
∫

(f̂n − fn)2(x) dx = op(1). (3.5.1)

Using Parseval’s equation, we have

∫
(f̂n − fn)2(x) dx (3.5.2)

=
1

4π2

∫ (∫
e−itxΦK(ht)

( Ψ̂n(t)

Φg(−β̂t)
− Ψn(t)

Φg(−βt)
)

dt
)2

dx

=
1

2π

∫
|ΦK(ht)|2

∣∣ Ψ̂n(t)

Φg(−β̂t)
− Ψn(t)

Φg(−βt)
∣∣2 dt

≤ 1

2π

∫
|ΦK(ht)|2 |Ψ̂n(t)−Ψn(t))|2

|Φg(−β̂t)|2
dt

+
1

2π

∫
|ΦK(bt)Ψn(t)|2

|Φg(−β̂t)− Φg(−βt)|2

|Φg(−β̂t)Φg(−βt)|2
dt

=
1

2π
S1 +

1

2π
S2, say.

Since ΦK is supported on [−1, 1], ΦK(bt) = 0, for |t| > 1/b. Thus in the above two

integrals, t ∈ [−1/b, 1/b]. Since µg :=
∫
|x|g(x)dx <∞, Φ̇g exists and is uniformly bounded
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above by µg. This fact together with (3.2.3) and assumption (A) imply,

|Φg(−β̂t)− Φg(−βt)| ≤ µg |t| ‖β̂ − β‖, (3.5.3)

max
|t|≤1/b

∣∣Φg(−β̂t)
Φg(−βt)

− 1
∣∣ = max

|t|≤1/b

∣∣Φg(−β̂t)− Φg(−βt)
Φg(−βt)

∣∣ (3.5.4)

= Op(n
−1/2b−κ−1).

Let An := {|Φg(−β̂t)| ≥ |Φg(−βt)|/2, t ∈ [−1/b, 1/b]}. Since nb2κ+3 → ∞, (3.5.4) implies

P (An)→ 1. Thus we need only to restrict our attention to An.

Consider S2. Conditions (A) and (B) imply that there exists a M , cβ , Cβ and Cf , such

that for all |t| > M , cβ |t|−κ ≤ |Φg(βt)| ≤ Cβ |t|−κ and Φf (t) ≤ Cf |t|−r. Take n large

enough so that M < 1/b. Split the integral in S2 into two ranges, one with |t| ≤ M and

the other with |t| > M . Then by (3.2.3) and (3.5.3) we obtain that on the event An, S2 is

bounded from the above by

4µ2
g‖β̂ − β‖2

∫
1/b≥|t|>M

|tΦK(bt)Ψn(t)|2

|Φg(−βt)|4
dt+Op(n

−1)

≤ 8µ2
g‖β̂ − β‖2

{∫
1/b≥|t|>M

[ |tΦK(bt)|2|Ψn(t)− Φh(t)|2

|Φg(−βt)|4

+
|tΦK(bt)Φh(t)|2

|Φg(−βt)|4
]
dt

}
+Op(n

−1).

By the Parseval’s identity

Tn(α, β) =
1

2π

∫
|ΦK(bt)|2|Ψn(t)− Φh(t)|2

|Φg(−βt)|2
dt = Op(n

−1b−2κ−1), (3.5.5)

because of (3.2.1) and (3.2.2). Because |Φg(βt)|−2 ≤ c2β |t|
2κ, the first term within the curly

brackets in the above bound is bounded above by b−2κ−2Tn(α, β) = Op(n
−1b−4κ−3).
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Similarly, assumptions (A) and (B) imply

∫
|t|>M

|tΦK(bt)Φh(t)|2

|Φg(−βt)|4
dt =

∫
|t|>M

|tΦK(bt)Φf (t)|2

|Φg(−βt)|2
dt = O(bmin(2r−2κ−3,0)).

Hence, in view of (3.2.3),

S2 = Op(n
−2b−4κ−3) +Op(n

−1bmin(2r−2κ−3,0)) = op(n
−1b−2κ). (3.5.6)

Next, to analyze S1. Let

S11 :=
1

n2

∫ |ΦK(bt)|2|
∑n
j=1 t(β̂ − β)′Zje

it(Yj−α−β′Zj)|2

|Φg(−βt)|2
dt,

S12 :=
1

n2

∫ |ΦK(bt)|2|
∑n
j=1 te

it(Yj−α−β′Zj)|2

|Φg(−βt)|2
dt,

S13 :=
1

n2

∫ |ΦK(bt)|2|
∑n
j=1 t((β̂ − β)′Zj)2e

it(Yj−α−β′Zj)|2

|Φg(−βt)|2
dt.
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Using the fact Yj − α− β′Zj = εj − β′uj , we obtain on the event An,

S1 (3.5.7)

≤ 4

∫
|ΦK(bt)|2 |Ψ̂n(t)−Ψn(t)|2

|Φg(−βt)|2
dt

≤ 16

n2

∫ |ΦK(bt)|2|
∑n
j=1 t(β̂ − β)′Zje

it(εj−β′uj)|2

|Φg(−βt)|2
dt

+
16(α̂− α)2

n2

∫ |ΦK(bt)|2|
∑n
j=1 te

it(εj−β′uj)|2

|Φg(−βt)|2
dt

+
16

n2b2

∫ |ΦK(bt)|2|
∑n
j=1 t((β̂ − β)′Zj)2e

it(εj−β′uj)|2

|Φg(−βt)|2
dt

+
16(α̂− α)4

n2b2

∫ |ΦK(bt)|2|
∑n
j=1 te

it(εj−β′uj)|2

|Φg(−βt)|2
dt+Op

(
n−3b−2κ−7)

= 16[S11 + (α̂− α)2S12 + b−2S13 + (α̂− α)4b−2S12] +Op
(
n−3b−2κ−7),

by (3.2.3), assumption (A), and the fact that
∑n
j=1 |Zj |3 = Op(n).

Now, consider S11.

S11 ≤ p

p∑
k=1

(β̂k − βk)2

n2

∫ |ΦK(bt)|2|
∑n
j=1 tZkje

it(εj−β′uj)|2

|Φg(−βt)|2
dt

Since X, u and ε are mutually independent, for any k = 1, · · · , p,

EZke
it(εj−β′uj)

= EXkΦh(t) + Φf (t)Euke
−itβ′u.
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We use this to obtain

1

n2

∫ |ΦK(bt)|2|
∑n
j=1 tZkje

it(εj−β′uj)|2

|Φg(−βt)|2
dt (3.5.8)

≤ 3

n2

∫ |ΦK(bt)|2
∣∣∑n

j=1[Zkje
it(εj−β′uj) − EZkje

it(εj−β′uj)
]
∣∣2

b2|Φg(−βt)|2
dt

+
3

n2

∫ |ΦK(bt)|2
∣∣∑n

j=1 EXktΦh(t)]
∣∣2

|Φg(−βt)|2
dt

+
3

n2

∫ |ΦK(bt)|2
∣∣∑n

j=1 tΦf (t)Euke
−itβ′u|

|Φg(−βt)|2
dt.

An argument similar to the one used in the proof of Theorem 1 in Holzmann et al. (2007)

implies that the first summand in the upper bound of (3.5.8) is Op(n
−1b−2κ−3). The second

summand is Op(1), by assumption (B), and Φh(t)/Φg(−βt) = Φf (t). To analyze the third

summand in the upper bound of (3.5.8), decompose the integral into two ranges, |t| > M

and |t| ≤ M , and use the conditions (A)-(B) to show that the term with integration over

|t| ≤ M is Op(1), while the term with |t| > M is of the order Op(b
min(2r−2κ−3,0)), thereby

showing that the third summand in (3.5.8) is of the order Op(1) +Op(b
2r−2κ−3). Thus

S11 = Op(n
−1b−2κ−3) +Op(1) +Op(b

2r−2κ−3). (3.5.9)

Similarly one obtains that S12 and S13 are of the same order as S11. Then (3.5.7), (3.5.9),

nb2κ+3 →∞, nb7/2 →∞ imply

nb2κS1 = Op(n
−1b−3) +Op(b

2κ) +Op(b
2r−3) +Op(n

−2b−7) = op(1).

This together with (3.5.6) completes the proof of (3.5.1).
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From (3.5.1) and (3.5.5) we obtain

T̂n − Tn =

∫
(fn − f̂n)2(x) dx+ 2

∫
(fn − f̂n)(fn −Kb ∗ f0)(x) dx

= op(n
−1b−2κ−1/2),

by (3.2.1) and (3.2.2). Hence, in view of (3.2.2),

n/C
1/2
V,b

(
T̂n − CM,b/

(
(2π)n

))
→d N

(
0, 1/2π2). (3.5.10)

To complete the proof of (3.2.4), it suffices to show that

(a)
∣∣∣1− Ĉ

1/2
V,b

C
1/2
V,b

∣∣∣ = op(b
1/2), (b)

∣∣∣ĈM,b

Ĉ
1/2
V,b

−
CM,b

C
1/2
V,b

∣∣∣ = op(1). (3.5.11)

To show (3.5.11)(a), recall ψ(β, s, t) := Φg(βt+ βs)Φf (t+ s). Then

|CV,b − ĈV,b|

=
∣∣∣ ∫ ∫ |ΦK(tb)|2|ΦK(sb)|2

|Φg(βt)|2|Φg(βs)|2
|ψ(β, s, t)|2 ds dt

−
∫ ∫

|ΦK(tb)|2|ΦK(sb)|2

|Φg(β̂t)|2|Φg(β̂s)|2
|ψ(β̂, s, t)|2 ds dt

∣∣∣
≤

∫ ∫ |ΦK(tb)|2|ΦK(sb)|2||Φg(βt)|2 − |Φg(β̂t)|2|
|Φg(βt)|2|Φg(βs)|2|Φg(β̂t)|2

|ψ(β, s, t)|2 ds dt

+

∫ ∫ |ΦK(tb)|2|ΦK(sb)|2||Φg(βs)|2 − |Φg(β̂s)|2|
|Φg(β̂t)|2|Φg(βs)|2|Φg(β̂s)|2

|ψ(β, s, t)|2 ds dt

+

∫ ∫
|ΦK(tb)|2|ΦK(sb)|2

|Φg(β̂t)|2|Φg(β̂s)|2
∣∣|ψ(β, s, t)|2 − |ψ(β̂, s, t)|2

∣∣ ds dt
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In view of (3.5.4), the first term in the above bound is bounded from the above by

max
|t|≤1/b

∣∣∣1− |Φg(βt)|2
|Φg(β̂t)|2

∣∣∣ ∫ ∫ |ΦK(tb)|2|ΦK(sb)|2

|Φg(βt)|2|Φg(βs)|2
|ψ(β, s, t)|2 ds dt

= Op(n
−1/2b−1−κCV,b).

The other two terms in the above bounds are bounded similarly. Together with (3.2.1) and

nb2κ+1 →∞, we obtain

|1− ĈV,b/CV,b| = Op(n
−1/2b−1−κ) = op(b

−1/2),

which implies (3.5.11)(a).

Next, consider (3.5.11)(b). Applying (3.2.1), (3.5.11)(a) and nb2κ+1 →∞,

|ĈM,b/Ĉ
1/2
V,b − CM,b/C

1/2
V,b |

≤ |ĈM,b − CM,b||Ĉ
−1/2
V,b |+ CM,bC

−1/2
V,b

∣∣∣1− Ĉ1/2
V,b /C

1/2
V,b

∣∣∣
≤ max
|t|≤1/b

∣∣∣1− |Φg(βt)|2
|Φg(β̂t)|2

∣∣∣CM,bĈ
1/2
V,b + op(1)

= Op(n
−1/2b−3/2−κ) = op(1).

This completes the proof of (3.5.11), which combined with (3.5.10) also prove (3.2.4), thereby

completing the proof of Theorem 3.2.1.

Proof of Theorem 3.2.2. Let ζβ(b) := exp(2ν(β)/bλ), β ∈ R. We shall first show that

n

bλ−1+2λω+2λ0ζβ(b)

∫
(f̂n − fn)2(x)dx = op(1). (3.5.12)
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The proof is similar as in the ordinary smooth case. We only list some main differences.

First, arguing as for (3.5.4), for the super smooth case, (A′) implies

max
|t|≤1/b

∣∣Φg(−β̂t)
Φg(−βt)

− 1
∣∣ = max

|t|≤1/b

∣∣Φg(−β̂t)− Φg(−βt)
Φg(−βt)

∣∣ (3.5.13)

= Op(n
−1/2b−1+2λ0ζ

1/2
β (b)).

By (3.2.6), hence P (An)→ 1, with An := {|Φg(−β̂t)| ≥ |Φg(−βt)|/2, t ∈ [−1/b, 1/b]}.

Assumptions (B′) and (D′) imply that there exist constants M, cβ , Cβ < ∞, such that

for |t| > M , cβ |t|λ0e−ν(β)|t|λ ≤ |Φg(t)| ≤ Cβ |t|λ0e−ν(β)|t|λ and |Φf (t)| ≤ Cg1|t|−λ1 . Also,

on the event An, there exists some β̃ between β̂ and β, such that S2 is bounded from the

above by

2µg‖β̂ − β‖2

b2

∫
|t|≥M

|ΦK(bt)|2
(
|Ψn(t)− Φh(t)|2 + |Φh(t)|2

)
|Φg(−βt)|4

dt

+Op(n
−1).

Based on (3.2.5),

∫
|t|≥M

|ΦK(bt)|2|Ψn(t)− Φg(t)|2

|Φg(−βt)|4
dt = Op(n

−1bλ−1+2λω+4λ0ζ2
β(b)).

From Lemma 5 in van Es and Uh (2005), it follows that

∫
|t|≥M

|ΦK(bt)Φh(−βt)|2

|Φg(−βt)|4
dt = Op(b

2λ0+2λ1+λ(1+2ω)ζβ(b)).
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So when λ1 > 1 and n, b satisfy (3.2.6), we have

S2 = op(n
−1bλ−1+2λω+2λ0ζβ(b)).

Now we consider S1. Follow the same arguments as (3.5.7), using assumptions (A′) and

(B′) to obtain

S1 ≤ 8(β̂ − β)2/b2S11 + 8(α̂− α)2/b2S12 +Op
(b2λ0−1ζβ(b)

n2b4
)
. (3.5.14)

Consider S11 first. Similar as (3.5.8), together with assumptions (A′)-(D′), we obtain

S11 = Op(n
−1b−1+2λ0ζβ(b)) +Op(1) +Op(b

2λ0−1+2λ1+λ(1+2ω)ζβ(b)). (3.5.15)

S12 can be considered the same way. Thus the above arguments(3.2.6), (3.5.14) and (3.5.15)

imply

nS1

bλ−1+2λω+2λ0ζβ(b)
= Op(n

−1b−λ−2λω) +Op(n
−1b−λ−2λω−1−2λ0)

+O(b2λ1−2) +Op(n
−1b−λ−4−2λω) = op(1).

This completes the proof of (3.5.12). Combining this with (3.2.5), we obtain

T̂n − Tn (3.5.16)

=

∫
(fn − f̂n)2(x) dx+ 2

∫
(fn − f̂n)(fn −Kb ∗ f0)(x) dx

= op(n
−1bλ−1+2λω+2λ0ζβ(b)).
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Also, since ‖β̂ − β‖ = Op(n
−1/2), the first derivatives of ν(β) and C(β) exist,

|1− exp
(
− 2(ν(β̂)− ν(β))/bλ

)
| = op(1). (3.5.17)

Then (3.5.16) and (3.5.17) yield to (3.2.7), thus we complete the proof of Theorem 3.2.2.

Proof of Theorem 3.3.1. Define

T̃n =

∫ (
f̂n(x)−Kb ∗ f1(x)

)2
dx,

Argue as in the proof of Theorem 3.2.1 to obtain

nC̃
−1/2
V,b

(
T̃n − ĈM,b/

(
2πn

))
→d N

(
0, 1/2π2), (3.5.18)

where C̃V,b is same as ĈV,b with f replaced by f1. Hence, C̃V,b ≈ b−(4κ+1).

Next, consider

nb2κ+1/2(T̂n − T̃n)

= nb2κ+1/2
∫ (

Kb ∗ f0(x)−Kb ∗ f1(x)
)2

dx

+2nb2κ+1/2
∫ (

f̂n(x)−Kb ∗ f1(x)
)(
Kb ∗ f1(x)−Kb ∗ f0(x)

)
dx.

Because
∫ (

Kb ∗ f0(x)−Kb ∗ f1(x)
)2

dx→ ‖f1 − f0‖2 > 0 and nb2κ+3 →∞, the first term

in the right hand side above is of the order O(nb2κ+1/2) → ∞, while by (3.5.18) and the

Cauchy-Schwarz inequality, the second term is of the order op(nb
2κ+1/2). This completes

the proof of Theorem 3.3.1.

The proofs of Theorems 3.3.2, 3.3.3 and 3.3.4 are similar to those of Theorems 3.3.1 and
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3.2.1, and hence no details are given.

Proof of Theorem 3.3.5. For the sake of completeness of this chapter, we first provide a

brief proof of (3.3.3). For j = 1, · · · , n, let

Dj =
1

π

∫
|ΦK(tb)|2

(eit(εj−β′uj)

Φg(−βt)
− Φf1(t)

)(
Φf1(t)− Φf0(t)

)
dt.

Note that since K is symmetric, Dj is real. Rewrite

Tn − ‖Kb ∗ (f1 − f0)‖2

=

∫
(fn −Kb ∗ f1)2 dx+ 2

∫
(fn −Kb ∗ f1)(Kb ∗ (f1 − f0)) dx.

Recall (3.2.2) and that nb4κ+2 → ∞. Hence, the first term on the right hand side above

is Op(n
−1b2κ+1) = op(n

−1/2). Using Parseval’s equation, the second term can be written

as n−2∑n
j=1Dj . Note that Dj ’s are independent arrays identically distributed r.v.’s, with

ED1 = 0, and Var(D1) converging to

τ2
0 : =

1

π2

∫ ∫
Φh(t− s)

(Φf1(s)− Φf0(s))(Φf1(t)− Φf0(t))

Φg(βs)Φg(−βt)
ds dt

− 1

π2

(∫
Φf1(−t)(Φf1(t)− Φf0(t)) dt

)2

=
1

2π3
Var
(∫

e−itε
Φf1(t)− Φf0(t)

Φg(βt)
dt
)
.

Moreover,

E|D1|4 ≤
1

π4

(∫ ( 1

|Φg(−βt)|
+ |Φf1(t)|

)(
|Φf1(t)|+ |Φf0(t)|

)
dt
)4

= O(1),
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by the assumption (B) with r > κ + 1. Hence one obtains (3.3.3), by the Lindeberg-Feller

CLT.

To complete the proof of Theorem 3.3.5, first, consider the case where α is known, so

that f̂n is based on the residuals Yi − α − β̂′Zi’s only. Without loss of generality, assume

α = 0. Under the alternative H1,

n1/2(T̂n − Tn)

= n1/2
∫

(f̂n − fn)2(x) dx+ 2n1/2
∫

(f̂n − fn)(fn −Kb ∗ f1)(x) dx

+2n1/2
∫

(f̂n − fn)(Kb ∗ f1 −Kb ∗ f0)(x) dx.

The same proof as that of (3.5.1) and nb4κ+2 →∞ imply

n1/2
∫

(f̂n − fn)2(x) dx = op(n
−1/2b−2κ) = op(1). (3.5.19)

This fact together with (3.2.4) and the Cauchy-Schwarz inequality implies

2n1/2
∫

(f̂n − fn)(fn −Kb ∗ f1)(x) dx = op(n
−1b−3κ−1) = op(1). (3.5.20)

To deal with the the remaining part, let ∆f (x) := (Kb ∗ f1 −Kb ∗ f0)(x). Rewrite f̂n − fn

as the sum of the following two terms:

D1 :=

∫ ∫
e−itxΦK(bt)

∑n
j=1(e

it(εj−β̂′uj) − eit(εj−β̂
′uj)

)

2πnΦg(−β̂t)
∆f (x) dt dx,

D2 :=

∫ ∫
e−itxΦK(bt)

∑n
j=1 e

it(εj−β̂′uj)

2πn

( 1

Φg(−β̂t)
− 1

Φg(−βt)

)
∆f (x)dtdx.
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Consider D1 first. Since nb4κ+2 →∞, and κ > 1, then uniformly in |t| ≤ 1/b,

1

n

n∑
j=1

(
e
it(εj−β̂′uj) − eit(εj−β

′uj)
)

=

∑n
j=1 it(β − β̂)′Zje

it(εj−β̂′uj)

n
+ op(n

−1/2).

Let

C0 :=

∫ ∫
te−itxΦK(bt)

∑n
j=1[Zjke

it(εj−β′uj) − EZjke
it(εj−β′uj)

]

2πnΦg(−βt)
dt∆f (x) dx.

Then EC0 = 0 and

EC2
0 (3.5.21)

≤ E
( n∑
j=1

∫ ∫
te−itxΦK(bt)

Zjke
it(εj−β′uj) − EZjke

it(εj−β′uj)

2πnΦg(−βt)
dt∆f (x) dx

)
≤ E|Zk|2

n

(∫ ∫
te−itx

ΦK(bt)

2πΦg(−βt)
dt∆f (x) dx

)2

≤ E|Zk|2

n

(∫ ∫
te−itxΦK(bt)

ΦK(bt)

2πΦg(−βt)
dt∆f (x) dx

)2

≤ E|Zk|2

2πn

(∫ |ΦK(bt)|
|Φg(−βt)|

dt

∫
|∆

ḟ
(x)| dx

)2
= O(n−1b−2κ−2) = o(1).

Hence, C0 = op(1). Since

EZke
it(ε−β′u) = µZΦh(t) + Φf1(t)Euke

−iβ′ut,

assumption (B) with r > κ+ 1 and the relation Φh(t) = Φg(t)Φf1(t) imply

∫ ∫
te−itxΦK(bt)

EZke
it(ε−β′u)

Φg(−βt)
dt∆f (x)dx = O(1).
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Together with (3.5.4), and nb4κ+2 →∞, the above analysis yields

D1 +
i(β̂ − β)′

2πn

∫ ∫
te−itxΦK(bt)

EZeit(ε−β
′u)

Φg(−βt)
dt∆f (x)dx (3.5.22)

= Op(n
−1b−κ−1) = op(n

−1/2).

Next consider D2. Uniformly in |t| ≤ 1/b,

Φg(−β̂t)− Φg(−βt)
Φ2
g(−βt)

=

p∑
k=1

{it(βk − β̂k)Euke
−iβ′ut

Φ2
g(−βt)

− (βk − β̂k)2t2Eu2e−iβ
′ut

Φ2
g(−βt)

}
+Op(n

−3/2b−3−2κ).

Let

C1 :=

∫ ∫
te−itxΦK(bt)

∑n
j=1(eit(ε−β

′u) − Φh(t))Euke
−iβ′ut

Φ2
g(−βt)

∆f (x)dtdx,

C2 :=

∫ ∫
t2e−itxΦK(bt)

∑n
j=1(eit(ε−β

′u) − Φh(t))Eu2
ke
−iβ′ut

Φ2
g(−βt)

∆f (x)dtdx.

Note that ECi = 0, i = 1, 2, and same arguments as (3.5.21) yield

EC2
1 = O(n−1b−4κ−2) = o(1), EC2

2 = O(n−1b−4κ−4) = o(b−2).

Hence, C1 = op(1) and C2 = op(b
−1). Since Φh(t) = Φf1(t)Φg(−βt), nb4κ+2 →∞, by (3.5.4)

and assumption (B) with r > κ+ 1, we obtain

D2 −
i(β̂ − β)′

2πn

∫ ∫
te−itxΦK(bt)

Φf1(t)Eue−iβ
′ut

Φg(−βt)
dt∆f (x) dx (3.5.23)

= op(n
−1/2).
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Also,

− 1

2π

∫
ite−itxΦK(bt)Φf1(t)dt = Kb ∗ ḟ1(x).

Combine this with (3.5.22) and (3.5.23) to obtain

2n1/2
∫

(f̂n − fn)(fn −Kb ∗ f0)(x) dx = (β̂ − β)′Bf + op(n
−1/2).

Recall (3.5.19) and (3.5.20), immediately

n1/2(T̂n − Tn − (β̂ − β)′Bf ) = op(1). (3.5.24)

Next, consider the case when the intercept parameter α is unknown. Let a = α − α̂.

Then

T̂n =

∫ (
fn(x, α, β̂)−Kb ∗ f0(x+ a)

)2
dx

=

∫ (
fn(x, α, β̂)−Kb ∗ f0(x)

)2
dx

+

∫ (
Kb ∗ f0(x+ a)−Kb ∗ f0(x)

)2
dx

−2

∫ (
fn(x, α, β̂)−Kb ∗ f0(x)

)(
Kb ∗ f0(x+ a)−Kb ∗ f0(x)

)
dx.

The first term on the right side above is Tn(α, β̂), and from (3.5.24) we have

n1/2(Tn(α, β̂)− Tn − (β̂ − β)′Bf ) = op(1).

Because ḟ0 exists, and is finite, and a = Op(n
−1/2), the second term is Op(n

−1). Then to
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deal with the third term, rewrite the factor multiplying -2 as the sum of the following three

terms:

∫ (
fn(x, α, β̂)− fn(x)

)(
Kb ∗ f0(x+ a)−Kb ∗ f0(x)

)
dx,∫ (

fn(x)−Kb ∗ f1(x)
)(
Kb ∗ f0(x+ a)−Kb ∗ f0(x)

)
dx,∫ (

Kb ∗ f1(x)−Kb ∗ f0(x)
)(
Kb ∗ f0(x+ a)−Kb ∗ f0(x)

)
dx.

By using the Cauchy-Schwarz inequality, together with a = Op(n
−1/2), (3.5.18) and

(3.5.24), verify that each of the first two terms above are op(n
−1/2). The finiteness of f̈0

implies that the third term is equal to

a

∫ (
Kb ∗ f1(x)−Kb ∗ f0(x)

)(
Kb ∗ ḟ0(x)

)
dx+ op(n

−1/2).

The above analysis and (3.5.24) imply

n1/2(T̂n − Tn − (β̂ − β)′Bf − (α̂− α)Af
)

= op(1). (3.5.25)

This fact together with (3.3.3) completes the proof of Theorem 3.3.5.

Proof of Theorem 3.3.6. For T̂n, recall (3.3.5), (3.3.6) and (3.5.25). Using the details in

the proof of Theorem 3.3.5, we obtain,

T̂n − ‖Kb ∗ (f1 − f0)‖2 =
1

n

n∑
j=1

(Dj + ηjAf + ζ ′jBf ) + op(n
1/2).
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We write

τ2 := Var(D1 + η1Af + ζ ′1Bf ). (3.5.26)

Since Dj + ηjAf + ζ ′jBf , for j = 1, · · · , n are arrays of i.i.d. zero mean r.v.’s and E|D1|4 =

O(1), E|η|2+ϑ < ∞ and E‖ζ‖2+ϑ < ∞ for some ϑ > 0. Thus the claim (3.3.7) follows by

the Lindeberg-Feller CLT, thereby completing the proof.

The proof of Theorem 3.3.7 is similar as the arguments in the proof of Theorem 3.3.5

and 3.3.6. Thus we omit the details of the proof.
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