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ABSTRACT

DAV: A HUMANOID PLATFORM AND DEVELOPMENTAL LEARNING

WITH CASE STUDIES

By

Shuqz'ng Zeng

Motivated by the autonomous development process of humans, we are interested

in building a robot that learns online in real-time by interacting with the environment

through sensors and effectors, and develops a representation of the environment and

tasks autonomously. We call such a robot a developmental robot, which Should sat-

isfy eight challenging requirements: environment openness, high-dimensional sensors,

completeness in using sensory information, online processing and real-time speed,

incremental processing, performing while learning, and handling increasingly more

complex tasks.

To partially satisfy the above-mentioned challenging requirements for a develop—

mental robot, this research contributes:

. Building the body of a humanoid robot, called Dav. Embodiment is the most

overlooked aspect of human intelligence in traditional artificial intelligence. The

morphology of the robot is preferably of a humanoid form. This human-like

shape may allow humans to interact with the robot more naturally and provide



the similar physical constraints as humans during those interactions. Further-

more, directly Situating the robot in the physical world relieves the needs for a

symbolic intermediary representation. The actual physical world serves for this

representation. Therefore, as a part of this research, we built the Dav robot,

which is the only untethered mobile humanoid currently in the universities of

the United States.

Creating a developmental architecture and a modified version of incremental

hierarchical discriminant analysis (IHDR) algorithm. This thesis also presents

a theory of developmental mental architecture. Five architecture types, from

the simplest Type-1 (observation-driven Markov decision process) to Type-5

(DOSASE MDP), are introduced. Further, we present the architecture design

of the Dav robot. The framework of the Dav architecture is hand-designed,

but the actual controller is developed, i.e., generated autonomously by the de-

velopmental program through real-time interactions with the real physical en-

vironment. We present the Dav architecture and the major components that

implement the architecture.

Based on the above developed robotic platform and the proposed architecture,

we have designed and implemented a range-based navigation system.
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Chapter 1

Introduction

1.1 Background

Industrial robots have been widely and successfully used in controlled industrial set-

tings for a variety of tasks. Great challenges exist for robots to work in general human

environments. These are characterized by unknown, unpredictable and changing ob-

jects, and tasks that cannot be well specified algorithmically. We call them muddy

tasks. Vision, audition and language are at the forefront among cognitive capabilities

that are required for muddy tasks. Autonomous mental development seems to give a

possible way for machines to handle these muddy tasks [117].

Not until the late 1980’s did embodiment receive attention in the artificial intelli-

gent (AI) community, when it was popularized by the behavior-based approach [7,18].

Action generations have been fueled by impressive advances in robot construction,

especially in humanoid platforms.

The first humanoid robot was “Elektro the Motorman” at the 1939 New York

World Fair. It was a legged humanoid robot that “talked,” moved its limbs, and played

some arithmetic tricks. With the arrival of computers, more impressive humanoid

robots have been constructed to demonstrate their specially designed skills. Wabot—

2 [83] (1980—1984) was designed and built solely to read musical notes and play piano.
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WABIAN [61] was a humanoid robot capable of walking and dancing. An inspiring

engineering achievement in humanoids is the P2 robot from Honda, which is capable of

walking and climbing stairs [39]. More recent humanoid systems include H6 [69], ETL-

Humanoid [68], and Robonaut [59]. These projects primarily focused on the challenges

of mechatronic design and integration of anthropomorphic bodies and programming

for generating action sequences.

1.1.1 Learning, Perception and World Models

Actions can be programmed in or learned through practice. However, an action is

not very useful if the robot does not have a perception capability, not knowing in

what environmental context to produce an action. Perception is well-known to be

very challenging and typically a world model is predesigned. What are the limita-

tion of such a hand-crafted model? Since these issues are closely related to robot

construction, we discuss these issues in this section.

1.1.2 Actions through Action Practice

Instead of programing action into a robot, another category of efforts aims to train

the robot to produce desired behaviors. With redundant degrees of freedom, it is chal-

lenging to learn behaviors, especially when training time is limited or when training

must be conducted in real time. Such projects include LWPR on a SARCOS robot

by Schaal et al. [97], the simulated humanoid of a 37 degrees of freedom by Mataric

et a1. [11], and the scheduling degrees of freedom by Grupen et al. [26] motivated the

early child motor development.

1.1.3 Perception-guided Actions

In contrast with the above efforts that concentrate on behavior generation with-

out requiring sophisticated perception, a series of efforts deals with perception and

2



perception-guided behaviors. The main challenging perceptual sensing modalities

include vision, audition, and high-dimensional touch with many touch elements (in-

cluding range sensing). No matter how complex a behavior (action sequence) is,

the behavior is useful only when the robot can produce the behavior in the correct

perceptual context and can suppress it in all other contexts.

Studies of perception driven behaviors have had a long history. A well-practiced

approach is that a human programmer defines features (e.g., edges, colors, tones, etc)

or environmental models for the system. For example, the recent works on H2 from

Honda, Cog [19] and Kismet [14] produced impressive perception driven behaviors.

Some speech features and visual features are used to establish audio-visual association

by an active camera on a robot hand [78].

Programming perceptual capability using human defined features is a quick way to

produce results in a controlled setting. A fundamental limitation is that the resulting .

robot cannot work well in unknown, partially unknown, or changing environments.

Weng & Chen [110] explained the inefficiency of human defined features, the insuffi-

ciency of hand crafted models, and the difficulty in programming their applicability

checker for an unknown environment.

1.1.4 World-model Free Approach

The world-model free approach has been studied somewhat independently in two

research communities: robotics and computer vision. In the robotics community, they

are called behavior-based methods [18] [7]. The emphasis is to concentrate on behavior

generation directly from range sensor readings or directly from images [65] [43].F

The model-free approach in the computer vision community is called appearance-

based methods. The appearance-based method started around 1990 [50] [94] and

it appears to be the most popular method in the computer vision community now.

Appearance-based methods use statistical tools directly on high-dimensional image

vectors, normalized using the mean and variance of the pixels. Thus, an image with m
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rows and 71. columns is considered as a d-dimensional vector v 6 Rd, where d = mn.

Since. high-dimensional statistical tools are directly applied to the vectors in space

Rd, these type of method can take into account not only correlations between nearby

pixels, but also far-away pixels. The need to process a high-dimensional sensory vector

brings out a sharp difference between behavioral modeling and perceptual modeling:

the effectors of a robot are all known but the sensory Space Rd is extremely complex

and unknown and, therefore, very challenging.

The power of learning directly from entire images has been demonstrated in vision-

guided autonomous navigation. They include ALVINN [74], which uses multilayer

perceptron (MLP) networks; ROBIN [76], which uses radial basis function networks

(RBFN); SHOSLIF [109] and state-based SHOSLIF [23], which use Fisher’s multidi-

mensional discriminant analysis in building a regression tree. As has been shown in

the comparison study of SHOSLIF [23,109], statistical regression methods perform

significantly better than traditional non-statistics based networks such as multi-layer

perception and radial base function networks.

Perception-learning-based action generation relieves the human programmer from

the intractable task of programming perception. However, the above learning process

is not fully autonomous in the following sense: (1) The human programmer designs

a part of the task-specific representation, e.g., features and states. (2) The human

programmer has direct control over internal modules during learning. This mode of

manual development fundamentally limits the scalability of behavioral and perceptual

capabilities.

1.1.5 Autonomous Mental Development

M. Sur et al. [55] find that if the optic nerve circuits carrying vision signals are re-

wired into the auditory cortex of a young ferret; the auditory cortex, the brain zone

usually assigned for sound processing, can develop the properties that are observed

only in visual cortex. This reveals a point that a developed mammal brain is a prod-
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uct of active, autonomous and extensive interactions with the environment around

it. Motivated by this discovery and others, a new paradigm, autonomous mental

development (AMD) proposed by [118]:

o A human designer designs a robot body according to the general ecological

condition in which the robot will work (e.g., onland or underwater).

o A human programmer designs a task—nonspecific developmental program for the

robot.

0 The robot starts to run the developmental program and develops its mental skills

through real-time, on-line interactions with the environment, which includes

humans.

A robot built in this paradigm is called a developmental robot. Early examples of

such developmental robots include SAIL (short for Self-organizing, Autonomous, In-

cremental Learner) robot [105,130,132] at Michigan State University and the Darwin

V robot [5] at The Neurosciences Institute, San Diego. These robots share the char-

acteristic that system behaviors are generated through online real time interactions

with the environment.

Motivated by the above-mentioned research, this work follows a new engineering

paradigm, autonomous mental development [117], which emphasizes embodiment,

environmental openness, completeness in using sensory information, online processing,

real-time speed, incremental processing, performing while learning, and scale—up to

complex tasks. This dissertation is based on the research work of a mobile robot

project at Michigan State University funded by DARPA (Defense Advanced Research

Project Agency) DRS program. The purpose of the project is two—fold: to provide

a general purpose, flexible, and dextrous robotic platform from engineering aspects

and to understand human autonomous mental development from scientific aspects.

5



1.2 Outline of the Dissertation

The scope of this dissertation is about building the body Of a humanoid robot and

applying it to the applications of autonomous navigation.

Chapter 2 describes the design of the Dav robot. First, the mechanism and kine—

matic model of the robot are introduced. To facilitate the joint-level control, the

robot’s dynamic analysis is derived. Then, we analyze the robot’s mobile base in

detail since it is related to the later navigation task. The control system is also

presented in this chapter.

Chapter 3 presents a theory of developmental mental architecture. Five architec-

ture types from the simplest Type-1 (observation-driven Markov decision process) to

Type-5 (DOSASE MDP) are introduced. The properties and limitation of the simpler

one are discussed before the introduction of the next more complex ones. Further-

more, we present the architectural design of the Dav robot. The framework of the Dav

architecture is hand-designed, but the actual controller is developed, i.e., generated

autonomously by the developmental program through real-time interactions with the

real physical environment. We present the Dav architecture and the major compo-

nents that realize the architecture. The designed architecture for Dav is the next

generation version from its extensively tested predecessor - the SAIL developmental

robot.

Chapter 4 outlines a novel developmental perception-driven control architecture

(DPDCA), which is adapted from the overall architecture presented in Chapter 3.

Dav’s range-based indoor navigation experiment is used to illustrate the power of

DPDCA.

Chapter 5 introduces a learning-based approach to obstacle-avoidance behavior

with a global planner. The robot operated in a partially known bounded 2-D en-

vironment populated by unknown static or moving obstacles (with slow speeds) of

arbitrary shape. The sensory perception was based on a laser range finder. Local

re—planning was implemented to account for unknown and dynamic parts of the en-
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vironment. To greatly reduce the number of training samples needed, attention was

used to learn the obstacle-avoidance behavior. An efficient, real-time implementation

of the approach has been tested, demonstrating smooth obstacle-avoidance behaviors

in a corridor with a crowd of moving students as well as static obstacles.

Chapter 6 summarizes the contributions of the research and concludes the disser-

tation with recommendations for the improvement of the Dav robot and for future

research work might be conducted on the humanoid robot.



Chapter 2

The Body Design of the Dav

Humanoid Robot

In this chapter, we first discuss the body requirements of a developmental robot. Sec-

tion 2.2 presents the mechanism and kinematic analysis of the Dav robot whose overall

appearance is shown in Fig. 2.1 and detailed Specifications are listed in Table 2.1. We

derive the dynamic analysis of Dav’s serially driven manipulator in Section 2.3 and the

mobile base in Section 2.5. The joint-level control for Dav is presented in Section 2.4.

The design of the distributed control system is outlined at the end in Section 2.6.

2.1 The Body Requirement for a Developmental

Robot

The essence of autonomous mental development by machines is the capability of

learning directly, interactively, and incrementally from the environment using on-

board sensors and effectors. A developmental robot should be a real robot that runs

a developmental algorithm and is allowed to learn and practice autonomously in the

real physical world.

The goal of the Dav robot project is to provide a next generation robot platform for
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Table 2.1: The specification and installed sensors on the Dav robot.

 

Specification [ Installed sensors
 

 

 

Mobile humanoid, self-contained

700mm(L) x 700mm(W) x 1800(cm)

body dimensions

242 Kg

43 degrees-of-freedom (DOF). The

mechanisms include an 8-DOF

drive-base, a 2-DOF torso, a 3—DOF

neck, a 5—DOF head, two 7-DOF arms,

and two hands

Main computer includes a quadruple

Pentium Xeon III desktOp with 2 Giga

memory and 100 Giga SCSI hard

drives

11 Motorola MPC555 embedded

processors as low-level Actuator

Control Unit (ACU).

All ACUs are connected to the main

computer via CAN buses Wireless

ethernet, Cisco Airo 340 series PCI

card and access point

2 Hauppauge WinTV PCI cards as

image grabber

A Sound Blaster Live! 5.1 from

Creative Labs

Four 110 AmpH lead acid batteries.

8—hour continuous operation without

recharging

0 Two color micro CCD

cameras, QN42H from

ELMO

0 Two Microphones with

pre-amplifiers

0 Laser range scanner

(covering 180 deg at 0.5

deg resolution), PLS,

SICK company

0 Shaft encoder for each DC

motor

0 Two acceleration Sensors

(Analog ADXL202)

mounted on the head to

mimic vesicular organ

0 Current sensor or strain

gage to sense the torque at

each joint

   



 
Figure 2.1: Dav: a mobile humanoid robot

research on robot mental development. Because Dav is meant for mental development,

its design requirements are not the same as other humanoid robots in the following

perspectives:

o Mobility. There have been a number of studies that show the importance of

autonomous movements in developing the humans’ and animals’ senses of the

world and their normal behaviors. “Kitten carousel” [38] especially shows that

autonomous mobility is necessary for the kitten to develop the cliff avoidance

behavior. Therefore. it appears that autonomous mobility is a necessary condi-

tion for mental development. The implication of mobility and autonomy means

that the robot must be totally self-contained with no tethers. The amount

of power and computational resources for an eight-hour period of actions re—

quire batteries of such capacity that a biped robot is not feasible for current
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technology and a rolling base with high mobility was chosen.

Manipulators. A developmental platform should be equipped with dexterous

arms and hands. In other words, it should have sufficient degrees of freedom

and range of motion. It is desirable for a developmental humanoid to take a

human shape so that they can use a wide variety of tools designed for humans.

However, the design faces conflicting conditions: power and size. We like to

have a powerful limb for a larger payload. The higher the power, the larger the

motors and other supporting devices. But the size is limited by a typical human

arm size. The electronic boards of each limb must be contained in the same

limb. The most challenging activity of all is to satisfy this self-containment

requirement for Dav’s hands. We expect that this problem will be better solved

if the motors are custom designed.

Sensing. Developmental robots grow world representations autonomously from

a sensorimotor stream. Also the controller is perceptual driven architecture.

Therefore in a general setting, major sensor modalities such as visual, auditory,

touch, and somatosensory should be integrated.

Computational resource. The developmental program must be able to update

its memory for all the sensors within a fraction of a second, e. g., 10ms for sound

and lOOms for vision. The control signals of effectors must also be updated at

a rate of at least 10Hz.

Currently, hardware implementation is not practical for an algorithm that is

expected to change very often throughout the research project. Thus, the de-

velopmental program is to be implemented by software.

The memory of a developmental robot is expected to be very large. Thanks

to the logarithmic time complexity of IHDR [44] [114], it is expected that the

refresh rate of the developmental program will not slow down too much when
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the memory size increases. However, this is still an open question, since we

need to test a robot with more extensive learning experiences.

Power supply. Developmental robots need extensive training and practice. We

should have enough battery capacity to allow the robot to operate without

charging the batteries frequently. The battery capacity is still an unsolved

problem, as with electrical cars. Currently, with a consideration of cost and

capacity availability, we still think that a reasonable choice is sealed rechargeable

batteries.

Wiring. Wiring is a challenging issue for humanoids, especially for develop-

mental ones. Due to a very large number of sensors and motors in the limbs,

the number of wires required between each joint reaches a few hundred if data

processing and computation are centralized at a single location.

Such a large number of wires cause at least two major problems. First, the

rigidity of the wire bundle interferes with dexterous manipulators. Second, the

wire bundles cannot sustain repetitive bending during extended usage and will

break.

We have adopted a network scheme, namely, a distributed embedded control sys-

tem is designed and implemented. Further mechanical parts (especially joints)

are designed in such a way that the wires can go through the mechanical joints

with minimal bending to increase the reliability of the system and reduce main-

tenance frequency.

Torque command. In biology the muscles are controlled by the action potential

in motor neurons. The larger the action potential, the more muscle fibers are

recruited to contract. Therefore, the action potential can be regarded as a

torque command. Torque commands can be easily implemented by using the

DC motors except in the mobile base, which is a non-redundant dynamic system
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with non-holonomic constraints. A decoupling controller is proposed to realize

torque commands on the mobile base.

2.2 Mechanism and Kinematic Analysis

The Dav robot is designed as a wheel-based mobile humanoid with 43 degree-of-

freedoms (DOF) to achieve the above-mentioned requirements. Figure 2.1 Shows the

body of the Dav robot. It is contained in a volume of 750(1) x 750 (w) x 1700(h)

mm in default posture. The DOF distribution is shown in Fig. 2.2. The mechanical

body contains over 300 types with a total of over 900 custom-made parts. All of the

mechanical drawings of the custom-made parts were generated by Solidworks.

  

 
Figure 2.2: Location of degrees of freedom for Dav

Dav consists of a mobile base, a torso, two arms, a head, and a neck. Each module

is designed in such a way that it is easy to assemble and maintain. In the following,

we present the mechanism and kinematic analysis of these modules in detail.
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2.2.1 Mobile Base

High mobility is essential for robots to enlarge their scope of sensing, which is essence

for developmental robots having rich sensorimotor experiences. However, the car-like

wheeled robots have nonholonomic constraints that reduce the mobility and make

planning and learning difficult. Omni-directional vehicles are hence developed. Omni-

directional (holonomic) vehicles can move in any direction immediately at robots’ any

configuration and the motion can be decoupled into three independent components

(1:, 3;, ¢). This feature avoids the complicated manueuvering sequences to bring the

vehicle to a side position and, thus, facilitates control and learning.

There are a variety of designs of omni-directional vehicles in the literature. These

vehicles can be categorized into two classes based on their wheel design: a Special

wheel design and a conventional wheel design. Most special wheel design is based

on a concept that the robot actively drives in one direction while allowing passive

motion in the other [8,120]. However, vehicles based on this holonomic wheel design

have the following disadvantages under practical environments:

0 Complicated mechanism

0 Limited load capacity because of a reduced contact area

0 Limited accuracy to estimate the pose of the vehicle by dead-reckoning because

of the difficulty to decide the passive motion of wheels

0 Difficulties in coping with uneven floor and other floor irregularities in cases of

four-wheel driving vehicle without suspension

0 Low clearance from the floor makes this design hard to deal with the floor’s

step features (e.g., an exposed thick wire on the carpet).

To overcome those difficulties, the other category (conventional wheel design) is

proposed. For example, Wada & Mori [101] gives a design to achieve near omni-
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directional mobility by using two active casters. Nomadic XR4000 is another example

with four casters [40].

Because of its high load capacity, simple mechanical design, and tolerance to floor

irregularities, conventional wheels with offset are chosen to realize omni-directional

mobility. Shown in Fig. 2.3, Dav’s mobile base has four wheels, and each one is driven

by two DC motors for driving and steering separately.

Motors   

Figure 2.3: The Solidwork’s rendering of Dav’s mobile base.

Fig. 2.4 shows an offset steered driving wheel (an actuated caster). At this config-

uration, the speed from the driving motor is along the wheel’s orientation while the

speed from the steering motor is perpendicular to the wheel’s orientation. Thus it is

possible to translate the steering pivot point to an arbitrary direction by controlling

the two motors.

Supported by the steering pivot points, the vehicle frame can be considered as

a plate controlled by four supporting sticks. The plate’s translation and rotation

movements are determined by the sticks’ speeds. Since each stick can move in an

arbitrary direction, the vehicle’s movement is omni—directional. It is worthy noting

that this is an over-actuated system because the four sticks’ motion over-determines

the vehicle plate’s movement. A synchronizing control scheme is hence needed. In
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the following, we derive the kinematic relation between the base’s joint speeds and

the vehicle speeds. Section 2.3 gives the dynamic analysis and control scheme for the

base.

 
Figure 2.4: The offset steered driving wheel. The steering pivot’s speed can be arbitrary

direction.

For kinematic analysis, we introduce the following symbols that are illustrated in

Fig- 2.5;

v The speed of the vehicle. The components are [um uy,w]T

‘1 The configuration of the vehicle. The components are [$1, p1, ..., $4, p4]T

¢>i Angle of the ith steering joint, 2' = 1, ..., 4

‘di Speed rates of driving wheel

'r a b The radius and offset of the wheel

Consider the ith wheel, i = 1, ...,4. Let p,- and (p, be the wheel’s driving and

Steering angular speeds respectively. Let u,- = (13,-, 3),) denote the steering pivot’s

Speed. From Fig. 2.4, assuming that the ideal rolling condition is satisfied, we have

Oi l/b 0 11¢ (2 1)

_ I

p} 0 1/r up,

w

here 21¢, and up, are the wheel’s translational speeds in the wheel’s frame. The
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Figure 2.5: The top view of the mobile base. The black small dots are pivot axes along

which the wheels can turn, and the small solid squares denote contact points between the

wheels and the ground.

transformation matrix from the vehicle’s frame is:

2). Sin,- —cos, 3'3,-¢. = (I5 45 . (2.2)

Up: COS ¢i sin ¢i 9i

P11lgging Eq. (2.2) into Eq. (2.1) and we obtain the relationship between the wheel’s

J0int speed and its steering pivot’s speed as:

031' = 5111451/(9 “COS¢i/b it (2.3)

p, cos 451/7" Sin d), /r 3),-

Referring Fig. 2.5, we obtain the following relation between the first wheel’s steer-

111g pivot’s speed and the whole vehicle’s speed:

i: u +aw 1 0 —a

1 = I = v. (2.4)

2]] uy-l-aw 0 1 —a

he Similar procedure is applied to the other three wheels and we erte the result In
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matrix form as:

   

231 1 0 —a

91 l 0 —a

1'72 0 1 —a

' 1 0 a

y’ = v, (2.5)

233 0 1 a

93 1 0 a

(174 0 1 a

.3“. L1 0 —a‘ 
where a denotes the offset between the center of the base and the wheels’ pivot points.

Eq. (2.3) is equivalent to

  

    

(AI 531

b1 _ _ a

432 T1 0 0 0 5:2

q= {)2 = 0 T2 0 0 '1“, (26)
(1’3 0 0 T3 0 1'53

[)3 _0 0 0 T4] :03

054 Si34

364‘ :794‘

Where

_ sinoi/b —cosq§,~/b

i— cos qii/r sin (bi/r ,

for 2‘ =1,...,4.

Applying Eq. (2.5) to Eq. (2.6), we can derive the wheel joints’ speed q from the

vehiCIG cartesian speed, x:

q = Bv, (2.7)
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where
-

psinqbl/b —cos¢1/b —asinq51/b+acos¢1/b

cosqfil/r sin¢1/r —acos¢1/r—asin¢1/r

sinqbg/b —-cos¢2/b —-asin¢2/b—~acos¢2/b

cosrzbg/r sinqig/r —acos¢2/r+asin¢2/r

sinqbg/b —cos¢3/b asin¢3/b—acos¢3/b

cosqbg/r sin¢3/r acosqfig/r+asin¢3/r

sin (154/1) — cos¢4/b asin¢4/b+ acos¢4/b

  cos¢4/r Sinq§4/r acos¢4/r—asin¢4/r

- d

Therefore, Eq. (2.7) gives the kinematic equation we are looking for here. We can

see Dav’s mobile base is a redundant-actuated system with non-holonomic constraints.

The system equation has 3DOF in velocity Space while 8DOF in configuration space.

2 - 2 .2 Torso

TO imitate the human body, as well as to enable picking up Objects from the floor,

a. 2DOF torso is placed on the top of the mobile base. The rolling joint, the one

ha-\v'ing an vertical axis, can be regulated with motion of the mobile base to keep the

orientation of the torso.

Fig. 2.7 shows the D-H coordinate frame assignment on the torso mechanism.

It is worthy noting that there are three end-effector frames: oz2y2z2, 027331323 and

033431424, corresponding to the left arm, right arm, and neck respectively. The four

D-
H geometric parameters associated with each link are listed in Table 2.2.2. Those

four geometric parameters are defined as follows:

9 0, is the joint angle from the 33-1 axis to the :13,- about z,_1 axis (using the right

handle rule).

- d1 is the distance from the origin of the (i ~— 1)th coordinate frame to the

intersection of the z,_1 axis with the 1',- axis along the 2.3--1 axis.
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I:Tigllre 2.6: CAD drawing of Torso. Joint3 and Joint4 are the first joint of the left arm and

rlght arm respectively. The unit is in mm.
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o a,- is the offset distance from the intersection of the 2,-_1 axis with x,- axis to the

origin of the ith frame along the 3:, axis (or the shortest distance between the

2.3-1 and z, axes).

0 Or,- is the offset angle from the 2,11 axis to the z,- axis about the :13; axis (using

the right-hand rule).

 

D 2
z3= ‘03 Z4704 024:2

‘p’

JG, 3 7 le4 I

x x2

I» 20, yl

X0, 217’ 00,01

+

20/

  
/// ////

Fi.gllre 2.7: Coordinate frames of torso. Frames 0x4y4z4, ox4y4z4 and ox4y4z4 are end-

effector frames for mounting the left arm, right arm, and neck respectively.

2 — 2.3 Neck and Head

AS a sensor platform, the neck and head (see Fig. 2.8) are designed to support active

Vision system. This 8DOF mechanism includes the 3DOF neck, whose rolling joint

with the vertical axis is actuated by an anti-backlash geared motor. The brows and

lips are computer-controlled for expressing emotion. The two cameras can indepen-

dently pan and coupled tilt.

Fig. 2.9 shows the D-H coordinate frame assignment on the torso mechanism.

There are two end-effector frames: 0r4y4z4 and 02:4’y4’z4’, corresponding to left and

right eyeballs respectively. These joints’ axes cross each other orthogonally: axes of

joint 1 and joint 2; axes of joint 4 and joint 5; axes of joint 4’ and joint 5’. Their

Or‘ - . . . .
lglns COInCIde, shown In Fig. 2.9.
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Table 2.2: D-H geometric parameters. The joint variables are marked with *. The

unit is in millimeter. (a) is the parameters for left arm, (b) is for the right arm, and

(c) is for the neck. 61 and 6;; denote the angles of joint 1 and joint 2 respectively.

nink[ a, [(1,- [ drier]

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

 

 

1 0 90° 0 9;

2 320.0 180° -155.0 0;

(a)

[Link [ a,- [ Oi I (I; I 91‘ J

1 0 90° 0 0;

3 320.0 180° 155.0 3

0))

[Link] a,- [ Oi [di [ 0i J

1 0 90° 0 a;

4 283.0 180° 0 6;
       

(C)

The four D-H geometric parameters associated with each link are listed in Ta-

ble 2.2.3.

2 - 2.4 Arm

Dav has human symmetry with two arms. Each arm is a 7DOF anthropomorphic

manipulator shown in Fig. 2.10. The extra joint is added to each arm for increasing

the end effector’s range of motion. Composed of shoulder, elbow, and wrist, the

arm design has been influenced by the human skeleton structure. Most of joints of

arm except Joint 1 which is driven by a set of bevel gears, are actuated by motors

vVitll gear-box either directly or through a simple pulley timing-belt mechanism. This

design simplified the mechanical transmission system and saves a lot of room for

installing servo units such as servo amplifiers, sensors, and control boards. All servo

units are integrated inside the arm itself except those for the shoulder, which are

l
OCated conveniently in the torso.
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Figure 2.8: CAD drawing of the neck and head module. The unit is in mm.

Joints 1, 2, and 3 together realize a spherical shoulder configuration, shown in

Fig- 2.11, in which the joint axes 20, 21, and 22 intersect at 01. Similarly, the wrist

IIleczhanism, consisting of Joints 5, 6, and 7, adopts the Stanford manipulator (spher-

iCa-l wrist) design. The angle of spherical joints are Euler angles, which simplified the

1{il‘lematic analysis. D-H parameters are shown in Table 2.2.4.

Once the D-H coordinate system has been established for each robot link, the

forVvard kinematics can be easily derived via homogeneous transformation. Let A, be

the matrix transforming the i - 1th coordinate frame to the ith frame as follows:

cos 0.- — cos a,- sin 0,- sin a,- a, sin 9,-

sin 0,- cos a, cos 0,- - sin a,- cos 0,- a,- sin 9,-

, = (2.9)

0 sin 0; cos a,- d,-

0 0 0 1

The matrix T3 which specifies the location of the ith coordinate frame with respect to

he lnertla frame (frame 0) IS the chain product of successwe transformation matrices
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Figure 2.9: Coordinate frames of the neck and head. Frames ox5y525 and ox5’y5’25’ are

end-effector frames for the left and right cameras respectively.

Of Ak, for k = 0, ...,i, and is written as

T3 = H A, (2.10)

k=0

From the Eq. (2.10), the robot kinematic model is thus expressed by the 4 x 4

homogeneous transformation matrix T = Ta‘, where n is the number of robot moving

link under consideration. The T matrix has combined effects of rotation, translation,

and scaling and can be decomposed into:

R d
T = , (2.11)

0 1

' U here R denotes the rotation matrix of the end-effector frame with respect to the

111ertia frame; (:1 denotes the translation with respect to the inertia frame; 0 = [0,0,0].

Due to its redundant nature, Dav’s inverse kinematic analysis is extremely complex

a. . . . . .
Dd does have a unique solution. Usually, more constraints such as minimum power

C . . . . . .

thUHlptIon and smoothing trajectory are needed, but this model-based Inverse kine-
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   Joint]

 

Joint 4

Figure 2.10: Dav’s left arm. The unit is in mm. The actuator for Joint 1 is housed in the

torso module.
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Table 2.3: D-H geometric parameters of neck and head mechanism. The joint vari-

ables are marked with *. The unit is milli-meter. 61, 62, 9;, denote the angles of the

neck’s Roll joint, Pitch joint, and Yaw joint respectively. Frames 4 and 4’ are the

end-effector frames of the left and right eyeballs respectively. Note that we do not

consider two pan joints in head.

Wink] az- Lei M LU

1 0 90° 0 6;

2 32 —90° 0 a;

3 101 90° 77 0;

4 0 0° —53 a;

4’ 0 0° 53 9;».

 

 

 

 

 

 

       

Table 2.4: D-H geometric parameters of the arm mechanism. The joint variables are

marked with *. The unit is milli-meter. 0,- denotes the angles of joint 2', for i = 1, ..., 7.
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matics method is beyond the scope of this thesis. As studies in references [30,32,48],

this work focuses on using learning-based methods to approximate the mapping from

cartersian end-effector work space to joint space.

2.3 Dynamic Model and Control

In this section, we derive equations describing the time evolution of the robot’s con-

figlues based on torques or forces under a known environment (e. g., repeated tasks on

a manufacturing assembly line with fixed payload). It is worthy noting the known-

e”"”'011111th assumption is not valid for some robotic: applications. Those cases in-
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Figure 2.11: Coordinate frames of the left arm. Two Spherical mechanisms (shoulder and

arm) are designed.

clude: the dynamics of the manipulated object changes tremendously during a manip-

ulation task; dynamic equations are not available due to the complexity of the system

and lacking of domain knowledge. However, deriving such equations of motion is still

useful for designing a suitable low-level control law for Dav’s mechanism, and may

serve as a survey of the model-based control method.

The dynamic model of a robot can be obtained from known physical laws such

as the Newtonian mechanics and Lagrangian mechanics. The derivation of robotic

dynamics based on the Lagrange-Euler (L—E) formulation is more systematic; we

hence derive Dav’s dynamic equations based on the L-E formulation. We do not

Present the whole robot, which is cumbersome. In the following, we first outline DE

a"filysfis on a general setting. We then apply it to a general n—link robot manipulator.

MObfle base’s dynamic analysis and control are relegated to Section 2.5 because the

base is a. redundant-actuated system with non-holonomic constraints and, thus, needs

Sp90”3.1 treatment.
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2.3.1 Lagrange-Euler Formulation

In the L—E formulation, the system’s dynamic behavior is described in terms of work

and energy using generalized coordinates. All the constraint forces are eliminated in

this method.

Assuming a robot has n DOFS, the L-E formulation is expressed in the following

form

at 6L 8L
32(671.)_ SE = 1. (2.12)

for i = 1, 2, ...,n, where

e L: Lagrangian function and equals to kinetic energy K - potential energy P

K: Total kinetic energy of the robot

P: Total potential energy of the robot

q,: Generalized coordinates of the robot

(j; Generalized velocity, or first derivative of q,- with respect to time

o 17,-: Generalized actuating force (torque) applied to the robot at joint i

Now we are ready to derive the dynamic equation for a robot with it links. It is

known the overall kinetic energy of a rigid body is given by

1 1

K = Emv'fvc + éwTIw, (2.13)

Where Vc and w denote respectively, the mass center’s translation velocity vector and

angular velocity vector of the rigid body; m and I are the total mass and inertia

matrix respectively.
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2.3.2 Analysis of Manipulator with n-link

In the D-H representation, the joint variables can be served as generalized variables

of L-E equation. According to the velocity kinematic analysis of [89, Chap. 5], the

ith link’s linear velocity of mass center and angular velocity are written as

vCi = Jvci(q)qi wi = R?(Q)chi(q)q (214)

respectively, where Jun. and chi are Jacobian matrix for link i; 1% denotes the rotation

matrix of the ith frame with respect to the inertia frame (frame 0). Let re, be the

mass center of link i in the inertia frame (oroyozo). Since Dav has rotational joints

only, Jvc, and LC, can be calculated by

Jvci

= [J1 .12 .1.- 0 o], (2.15)

chi

Zi_XI‘.—Oi_ Z_XO—0_

whereJi= 1 (6' 1) andJk= k1 (k k1) fork<i;0,-andz,~

z;_1 zk—l

denote the origin and z-axis of the i frame of the D-H representation in the inertia

frame respectively.

Therefore, the total kinetic energy can be expressed by

1 " 1

K = 5 ‘7‘: [m.~J.'£,.J.... + J1,R.I.R.TJ....] q = §qTD(q)q (2.16)

i=1

Where 1,- denotes the inertia matrix with respect to the frame 2'.

The Lagrangian function are then written as

1 . .
L=K-V=§&Dmm+vmj nu)

Applying Eq. 2.17 into Eq. (2.12), we obtain the commonly used motion equation in
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matrix form (see [89, Section 6.3] for the detailed derivation):

D(q)<'i + C(q, (1)61 + g((I) = T (2-18)

where C(q,<'1) denotes centrifugal and coriolis terms; g(q) denotes gravity related

terms; 7 denotes the vector of the output torque of the motors.

2.4 The Low-level Control Scheme

We use the proportional derivative (PD) control at the joint-level, where each joint

of the robot is treated as a servo-mechanism. Notice that using joint PD control is

ineffective because it does not take account of the coupling effects from the other robot

links. However, the dynamic analysis of Section 2.3 provides a way to compensate the

nonlinear factors. Hence, this control scheme can achieve better performance than

that of conventional PD control.

2.4.1 Model of Motor

Each joint of the Dav robot is driven by a DC servo motor. This subsection outlines

the DC motor’s model by deriving the transfer function from which control algorithms

will be obtained.

Illustrating in the schematic diagram of Fig. 2.12, we introduce the following

notations:

o V = armature voltage

0 L = armature inductance

O R = armature resistance

’ V; = back EMF voltage

.-

. 20 Q armature current
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0 6m = motor shaft’s displacement (in radians)

e 6,, = joint shaft’s displacement (in radians)

e rm = motor torque

0 TL = load torque

0 K0 2 torque constant of the motor

0 Kb = back EMF constant

e Jm = robot’s moment of inertia

e Bm = viscous friction coefficient of the rotor

e n = gear train ratio

The following differential equations outline the behavior of a motor:

rm(t) = Kaia(t)

Vb“) = Kb9m(t)

var) = Ria(t) + 12%?) + v,,(t)

7mm — an(t) = Jméma) + Bmém(t)

After applying Laplace transform to those equations, we obtain:

Tmlsl = Ka1a(8)

Vb(8) = Kb9m(3l

V(s) = 1210(3) + SLIa(S) + Vb(s)

rm(s) — an(s) = s2JmOm(s) + sBmOm(s)

(2.19)

(2.20)

Organizing terms in Eq. (2.20), we get the transfer function from the armature voltage

V to the angular displacement of rotor Om (with TL = 0) as

Om(s) _ Ka

V(s) ‘ s[(Ls + R)(Jms + Bm) + 1mm]
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And the transfer function from the load torque TL to Om is given by (with V = 0)

9(3) _ —n(Ls + R)

71(8) — S[(Ls + R)(Jm3 + Bm) + KbKa]
(2.22)

 

 

It is assumed that the “electrical time constant” % is much smaller than the “me—

chanical time constant” 3%, the influence of L/R is negligible. Therefore Eqs. (2.21)

and (2.22) are simplified to be

  

  

9m(8) _ Ka/R

V(s) _ 3(Jms + Bm + KaKb/R)’ (2'23)

and

9(3) n
= __ 2.24

rL(s) 3(Jm3 + Bm + KbKa/R)’ ( )

respectively.

By superposition, Eqs. (2.23) and (2.24) represent a second order system

sszOm(s) + 3(Bm + KbKa/R)Om(s) = (Kc/R)V(s) —- an(s). (2.25)

Usually gear trains are mounted between the motor and joint shafts to increase

the motor load capacity. If the gear ratio n E 3:, where 6;, denotes the angular

displacement of the output shaft, then Eq. (2.25) becomes

 

1 1

52FJmeL(S) + Sgg—(Bm + KbKa/R)GL(8) = - 71(8), (226)

Whose block diagram is shown in Fig. 2.12. It is worthy noting that Jm in Eq. (2.26)

represents the effective motor inertia, the sum of the rotor and gear inertias.

2.4.2 Tracking Algorithm

we first, reformulate the nonlinear dynamic analysis by combining the dynamic effects

0f the rIlotors. We then derive the PD feedback control law with acceleration and
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Figure 2.12: Block diagram for a DC motor.

gravity terms, which has been implemented on Dav’s joint controllers.

Recalling the robot equations of motion Eq. (2.18) and the motor’s equation of

motion Eq. (2.26), we reinstate them as

 

2draws) + Z ct-Aqm + gk(q) = n. (2.27)

i=1 i,j=1

and

1 -- 1 . 1(0ka

DEJmkaLk + g(Bmk + Kkaak/R)6Lk — nkRk 7‘ka (228)

respectively. Comparing with Eq. (2.26), some notations of Eq. (2.28) are added a

scription k for the kth motor and Eq. (2.28) represents ith motor’s dynamics in time

domain by differential equation.

We observe that the kth generalized variable qk is actually represented by the

joint shaft displacement «91,, and torque load rLk = rk. Let 8,, = Bmk + Kbk Kak/Rk.

Plugging Eq. (2.28) into Eq. (2.27) yields

1 n n 1 K

__Jm " d- .. '2'" —B' =—1V, 229

”’2: Art; My +1.20:qu (lying ka‘l'gk MR 1: ( )

f01' 1‘? = 1,...,n.

In a. matrix form, Eq. (2.29) can be written as

(19(01) + J)<'i + C(q, (1)61 + Br’I + g(Q) = 11, (2-30)
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where D(q) is the n x n inertia matrix of the mechanical links, and J is a diagonal

matrix with diagonal elements $511. The C(q, ('1) and g(q) are defined as before and

k

input control vector u is specified by

T

11: age/.1 5221/3 as: , (2.31)
njHl 71'sz 71an

The objective of joint-level tracking is to servo the motor such that the output

shaft’s displacement can track a reference path provided by a path planner. An

independent joint PD control can be written in a vector form as

‘1 = “K1001 ‘— (1d) — Ker“! — 9d), (232)

Where Kp and Kd are diagonal matrices of proportional and derivative feedback gains

reSlf><=:(:t:ively; qd and q“ are the desired displacement and speed of the joints respec-

tively, which are given by a path planner in advance.

In [89, Page 217-218], Spong & Vidyasagar show that, in the absense of gravity,

that, is, if g is zero in Eq. (2.31) for all configurations, the PD control law specified

in Eq- (2.32) achieves asymptotic tracking of the desired position q“ with q“ = 0.

However, the presence of the gravitational term or nonzero q does not guarantee the

a'SbrtrIIDtotic convergence of Eq. (2.31). A “stable” tracking error from the desired

tr ‘ .
- -a3 eC:tory lS needed to balance the grav1tatIonal torque g.

In the practical implementation, Dav moves at a slow speed: qd as 0; the dynamic

terms such as off-diagonal inertial elements djk, j 75 k, the centripetal and COl'iOIiS

term C(q, ('1), and damping from motor B(q) are usually small. Notice that the

comDUted torque rk is proportional to the gear ratio; thus those dynamic terms are

redueed further for a small nk, which adds to the validity of that the terms djk, j 75 k

are

Ilegligible for control. The gravity effect specified by g plays a dominant role in

the
II‘Dbot dynamic model. In order to compensate for gravity, the following control
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law is proposed for Dav’s low level control:

11 = Dead + g(CI) - Kp(q — <1") - Kd(<'1 — CI"). (233)

where Deff is a diagonal matrix whose diagonal elements denote the effective inertia

of each link of the robot.

Eq. (2.33) can be written in the component form as

”I: = defi‘fk + 91:01) — kp(4k — (If) — kd(4k — (fig), (234)

Where de , kp, and kd are effective inertia, proportional gain, and derivative gain of

the Ir: joint respectiVely. Applying Eq. (2.34) into Eq. (2.29), by assuming def; =

dick + Jmk/ni and letting

1c = d" .. .1... _ .

I: Z quJ + 2 Ctqu q] + "[2: Bka

#k 1.1

denote the disturbances, we obtain the following closed-loop system equation for the

jOint k:

deffék + Ck = —kp€k — kdék, (2.35)

Let us remark that the control law specified in Eq. (2.34) is derived under the

cm>tl<iition of low-speed with gear reduction. It should be note that, for high Speed

[notion, or for motion without gear reduction at the joints, the coupling nonlinearities

have a much larger effect on the performance of the system; treating them merely
ext

er11a] disturbances can cause large tracking errors.
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2.5 Dav’s Mobile Base: Control of System with

Nonholonomic Constraints

Like other wheeled mobile robots involving rolling contracts between two or more rigid

bodies, Dav’s mobile base is an example of a mechanical system with nonholonomic

constraits. Moreover, Dav’s mobile base is a redundantly actuated mechanism [40]

whose surplus control inputs offer a solution to the holonomic vehicle that can move

to arbitrary direction at any configuration.

In this section, we apply a theoretic framework Similar to [80] to Dav’s mobile

base and derive a feedback linearization control scheme.

2.5.1 Nonholonomic Constraint

If a constraint equation is in form h,(q) = 0, or can be integrated into this form, it

denotes a holonomic constrait. Otherwise, it denotes a nonholonomic constrait.

Holonomic and nonholonomic constraints affect mobility of a vehicle in a com-

pletely different way. For illustration, consider a single Pfaffian constraitl in an

n‘body system: aT(q)q = 0. If the constraint is holonomic, then it can be integrated

as h’ (q) = c with 3% = aT(q). The motion of the system is hence confined to lie on a

particular level surface of h, depending on the initial condition through c = h(q0). A

Conrlrllon practice for L—E mechanics to cope with a holonomic constraint is to reduce

a. generalized variable since the total degree of freedom is n — 1. On the other hand,

If the constraint is nonholonomic (i.e, such a It does not exist), then the system can

reach any admissible configuration, although at each configuration the instantaneous

moti011 (velocity) of the nonholonomic system is restricted to an (n - 1)-dimensional

Space- More precisely, the velocities of the system are confined to lie on the null space

of

the constraint matrix aT(q).

\

(e_ ' I()st wheeled robots have kinematic constraints of this form, which are linear in the velocities

. ’ Dav’s kinematics in Eq. (2.7))
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A well-known example to illustrate nonholonomy is a conventional wheel, shown in

Fig. 2.13. The generalized coordinates q: (:1:, y, 6))are definedIn Fig. 2.13. The pure

/©/
Figure 2.13: A rolling disk on a plane. The disk cannot move along the direction perpen-

dicular to its face at each instant.

 

 

rolling constraint can be expressed as :1: sin 6—2) cos 6 = 0. The allowable velocities are

confined in the null Space of the constraint matrix aT(q) = (Sin 6, — cos 6,0), which is

I - p1

cos 6 0

null(aT(q)) = span sin6 , 0

0 1     

HOWever, any configuration q, = (:1:f, yf, 6f) can be reached using the following strat-

egy;

1 - Roll the wheel until it aims the point (:1:f, yf)

2 - Reach the point (23f, yf)

3 - Rotate the wheel vertically until its orientation is 6f

Now we consider a mechanical system with n degrees-of-freedom subject to m

c

01131; raints of Pfaffian form:

ad®4=m nan

f0 -

r 2 t: 1,2, ...,m. Eq. (2.36) can be written in the form

Amm=0, (2W)



where A(q) is an m x n full-rank matrix. Let sl(q),...,sn_m(q) be the basis vector

fields of null(A), the null space of A(q); i.e.,

A(q)s,—(q) = 0, for z' = 1, ..., n — m. (2.38)

Let S(q) = [sl(q), ...,sn_m(q)] and Eq. (2.38) can be written as

A(Q)S(<1) = 0- (2.39)

Let A be the space spanned by these vector fields

A = span{81(CI), Sn-m(Q)}-

A may or may not be involutivez. If A is not involutive, we define A" as the smallest

involutive space containing A. Obviously, dim(A) S dim(A*). Campion et al. [20]

Observes three cases:

1 - A is involutive. The m constraints are all holonomic

2 - A is not involutive and dim(A") = n; i.e., A" spans the entire space and all

constraints are hence nonholonomic.

A is not involutive and dim(A*) < 72; both nonholonomic and holonomic con-

straints exist.

2" 5 -2 Dynamic Analysis of Dav’s Mobile Base

Rec

all the mechanism of Dav robot’s mobile base, as shown in Fig. 2.5. For dy-

113.11): . . . . . . .

1C analysrs, we introduce the followmg symbols 1n addition to those defined in

section 2.2:

2\
For

the concept of involutive space, reader may refer [89, Page 265].
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x = (mayor/1): The geometric center and orientation of the robot. Note that

x=v

o m: The mass of the whole platform

0 I : The inertia momentum of the whole platform

0 Iw: The inertia momentum of each wheel

1,: The inertia momentum of the moving part of steering mechanism along the

joint axis in each wheel.

The configuration of the platform can be described by 11 generalized coordinates

(n = 1 1). The first eight variables describe the angular displacements of the wheels

9; the remaining three are the platform configuration, represented by x. Thus, q,, =

(QT, x7] = [¢1,pl.¢2,pz,¢3,p3,(amaze, ye, 111T-

We assume that the driving wheels roll and there is no slip along the direction

perpendicular to the face of the wheel. Those kinematic constraints have been rep-

resented by Eq. (2.7), which gives eight equations (m = 8). Eq. (2.7) can be written

in Pfaffian form as:

A(qmr = 0 (2-40)

A(q) = [18x8 —B] . (2.41)

a.

Dd B is defined in Eq. (2.8).

It is straightforward to verify that S(q), the null space of A(q), can be selected

as

S(q) = [B 13.3] (2.42)
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It is obvious, because

Since the system’s velocities are confined in the space A spanned by S(q)’s column

vectors, it is possible to define three velocities v = [111,112,12ng such that

(1., = S(q)V- (2.43)

Note that v in Eq. (2.43) is actually the base’s speed (113, vy, w). This is because

' B

q”: q =Sv= v.

I I

Thus, ('1 = Bv. Inspecting Eq. (2.7), we can see v = (11x, 113/101)-

NOw we are ready to derive dynamic equations for Dav’s mobile base. Assuming

Dav moves on a level floor, we neglect the effects of gravity. The Langrange function

IS equal to the total kinetic energy only, which is

”
1
0
a
n

4

1 1 .
=Z(1d} +pr) +2(i§+yf)+-§I¢2 (2.44)

Applying Langrange-Euler to the above equation, we obtain

Me], = ET — AT(q)/\, (2.45)

w

here 7' is an eight-dimensional vector representing motor’s output torque and A is

th

6 Vector of constraint forces. E denotes input transformation matrix and M denotes
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an 11 x 11 inertia matrix, which is defined

M: JO 0

0 Mo

J :dia 187IW)18)IW)IS)IIU?IS)IW0 gil _ l) (2.46)

(m 0 0

Mo: 0 m 0

_0 0 1_  

We notice that there is no actuator acting on variables (r136, yo, (0) directly, thus E is

I

designed to be sxs

03x3

Differentiating Eq. (2.43) and plugging Eq. (2.45) at the left side, we obtain

ET — ATA = MSv + 114512, (2.47)

Where we omit the argument q of variables S and A, for simplicity.

Multiplying Eq. (2.47)’s both side by ST, using the fact that AS = O, we obtain

sTMsv = —STMSv + STET. (2.48)

Q()mbining the kinematic model Eq. (2.43), we obtain the reduced state-space

Irlode1:

q, = Sv

. (2.49)

STMSv = —STMSv + STET
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Applying Eqs (2.42), (2.46) and E’s definition to Eq. (2.49), we obtain the sim-

plified dynamic equation for Dav’s base, in the component form:

q = Bv

x = v (2.50)

(BTJOB + Mow + BTJOBv = BTT

We observed that

3 3

. ab.- . _ ab,-
Bv - g(v, 61; )q _ 201.5an (2.51)

i=1

 

Where b.- denotes the ith column vector of B. The Jacobian matrices %’ z' = 1, 2, 3

can be easily derived from Eq. (2.7), and are written as:

I cos (bl/b 0 O 0 0 0 0 01

— sin 1251/1" 0 O 0 O 0 0 0

0 0 cos (fig/b 0 0 0 O 0

£9513 : 3 g — sinqug/r 3 CO 0 0 0 0 (2.52)

8 (113/1) 0 0 0

0 0 0 O — sin 453/7' 0 0 0

0 0 0 0 0 0 cos (154/b 0

0 0 0 0 O 0 — sin ¢4/r 0  
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sin 451/b 0 0 0 0 0 0 0

cos (251/? O 0 0 0 0 0 0

0 0 sin gig/b 0 0 0 0 O

b 0 0 cos (a r 0 0 0 0 0

%—2 = 2/ (2.53)

‘1 0 0 0 0 sin 43/5 0 0 0

0 0 0 0 cos 1153/1" 0 0 0

0 0 0 0 0 0 sin 424/b 0

O 0 0 0 O 0 cos (154/1: 0

-—-ac4>1/b — (ism/b 0 o o o o o o-

asdn/r — acnl/r o o o o o o o

0 0 —ac¢2/b+ as¢2/b 0 0 0 0 0

61:3 _ o o asabz/r + ac¢2/r 0 o o o 0

6q - 0 O 0 O acos/b + as¢3/b 0 0 0

0 0 0 0 —as¢3/r + ac¢3/r 0 0 0

0 0 0 0 0 0 acdm/b - as¢4/b 0

. 0 0 0 0 0 0 —as¢4/r - ac¢4/r OJ  
(2.54)

In Eq. (2.54), s and c denote sin(.) and cos(.) respectively, for shortness.

2 - S .3 Controller Design

Alt hough mechanical system with nonholonomic constraints cannot be stabilized at

a. point by a smooth time—invariant feedback rule in general settings [17], we show

e3(3F3erimentally that Dav’s mobile base can track different curves with high perfor-

II“ta-Ifme.

We notice that rank(BT) = 3 and dim(T) = 8, thus the system is sufficient

a.

QtIJated, or redundantly actuated, to be more precisely. However, those surplus

i

I11:)11ts offer a solution to implement the holonomity of the base.
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For feedback linearization, we use following input transformation,

T = H((BTJOB + M0)u + BTJOBV), (2.55)

where n denotes the input of the “new” system and H is an 8 x 3 matrix satisfying

BTH = I. A choice for H is the pseudoinverse of BT; i.e., H = (87)“. Another

choice of H is the solution of the following minimum norm problem3:

min TTT s.t. F = BTT where F = (BTJOB + Mo)u + BTJOBV. (2.56)

Thus, by referring [81, Page 395], we can see the solution of Eq. (2.56) is T =

B(BTB)'1F and

H = B(BTB)-1. (2.57)

It is worthy noting that the minimum norm solution of H has a nice property: it

distributes the torques in a way that minimizes the actuators’ output torque.

We notice that the minimum norm solution of H does not guarantee that the

killematic Eq. (2.7) be satisfied. In fact, due to external disturbance or unmodeled

error, the ('1 might not confined the distribution A. We need a mechanism to entrap

the velocities of the system within the distribution A. Motivated by sliding mode

control [87, Chap. 7], we add an extra term to Eq. (2.57) which is servoing on

the residue of Eq. (2.7). More formally, let q = Q,» + q], where qp = Bqu and

q—k = (I — BBl)q (see Fig. 2.14). Thus, Eq. (2.57) becomes

H = B(BTB)‘1 + AT (2.58)

\

D1 F has a physical meaning. F denotes the desired equivalent force exerting on the vehicle

Vii-t form. We treat the vehicle frame as an end—effector and T as the joints’ torque vector. The

F731‘Jal displacement of the joint variable 6q = 36x. The virtual work 611} of the system is 611) =

6x — 7T6q = (FTB — T)6x. 6w = 0 if the platform is in equilibrium (the equivalent forces equal
t.

C) the actual driving force), then T = BTF.
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where AT 2 —quJ_ and Kp is the gain constant. We can easily verify that BTH : I.

Let us remark that, Eq. (2.58) will improve the transient behaviors, especially when

the wheels are not synchronized initially. This is shown in Fig. 2.14. When q does

not lie on A(q), the A?“ will pull the q back to the distribution A.

 

 

 

Figure 2.14: If q is away from the distribution A, the extra term AT in Eq. (2.58) will

pull it back.

Therefore, applying Eq. (2.55) to Eq. (2.50), we obtain the following linearized

Stat.e—space equation

Q=Bv

v=u

'The dynamic system described by Eq. (2.59) is known as the double integrator sys-

tem since it represents 3 uncoupled double integrators with respect to x = (3:1, :132, £133)

or Qoordinates of the base’s center (are, ya, 11)) in Fig. 2.5. This means that each input

21“? > the kth component of u, k = 1, 2, 3, is a function only of wk. That is, ul and 112

COIltrol the motion along :1: and y axes respectively, and 113 controls the rotation of

thQ base.

Since u can be designed to control the three simple linear second-order systems,

t . . . . .

hQ obv10us chorce 1S usmg PD control by setting

u = —K,,(x — xd) — Kd(x — it") + it“, (2.60)
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where xd, 56’ and 2‘1 denote the desired trajectory of the base; KP and Kd are the PD

control’s gain matrices with a common choice as

_ - 2 2 2
Kp —' dlaglwl,w2)w3]

(2.61)

Kd = diag[2w1, 21.02, 21123]

double integrator system
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Figure 2.15: Schematic diagram of control algorithm of Dav’s base.

Fig. 2.15 illustrates the control diagram of Dav’s base, which is an inner-

loop/outer-loop control. The computation of the nonlinear control Eq. (2.55) is

performed in an inner loop, with u, q and v as its inputs and 'r as output. The

outer loop in the system is the PD control calculating 11 based on the Eq. (2.60).

2.5.4 Experimental Evaluation

We developed a simulated base experiment to verify the validity of the dynamic model

and the effectiveness of the control scheme presented in the previous section. The

simulated base model is kinematically dynamically similar to the Dav’s mobile base.

The dimensions and the inertia parameters are specified in the following, according
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to the previously introduced notations:

7‘ = 0.0889m

a = 0.223m

b = 0.0508m

m = 250kg

1 .—_- 174.5kg-m2

I, = 0.0313kg—rn2

Iw = 0.005kg-m2

The goal of the experiment is to control the base such that the base’s geometric

center coincides on a predefined trajectory. As [86], we formulate the control problem

as a path-following problem instead of trajectory tracking.

Consider a circular trajectory. Let ($0,310) and R be the center and radius of

the circular path respectively. 1) denotes the desired forward translation and v =

W. We assume the base moves along the path while keeping the orientation

unchanged, i.e., «p = 0. This path-following problem can be formulated as controlling

the following system such that the output 2 follows a desired trajectory 2":

x = v

v = u

(2.62)

1110‘)

z = ,

h2(V)

vi + v: . .

where h1(x) = (:rC — $0)2 + (ye — :170)2 and h2(v) = . The Jacobian matrix

(.1)
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of the output equation of the system specified in Eq. (2.62) can be written as

211x 211 0

H2 = €72} = y (2.63)

0 0 1 

Therefore, if we regard the output 2 as the state variables, by using .731 = H15: and

2’2

= H211 to the first two equations of Eq. (2.62), then we obtain:

23

3'1 = 2(:1:C — 11:0)u1 + 2(yc — y0)u2 + 2113+ 211:

22 = 211x111 + 2vyu2 (2-64)

23:11:;

where a feedback linear control law might be applied.

The simulated sensors were the encoders placed on each motor. At each sampling

instant (every 10 milli-seconds), the base received the joint angular displacement

vector q and the corresponding derivative q. From Eq. (2.7), the vehicle’s speed

v = Bq. The base’s pose (:cc,yc,1,b) were estimated via deadreckoning.

Let the base’s initial position is (:rc,yc,1/1) = (0.0, 08,90"); initial velocity was

zero; R = 5; v = 1. Therefore, zd can be chosen to be (25,0.25,0)T. Fig. 2.16 shows

the result. Subplot (a) shows the actual and desired path, which are illustrated by,

respectively, solid and dot-dash lines. In order to demonstrate the robustness of

our model respect to the dynamic parameters, we increase the the mass and inertia

momentum (m, I, 1,, Iw) by 100 percent. The result is shown in (b) of Fig. 2.16. We

can see the overshot and small stable deviation from the desired path; but the overall

performance is impressive.

Finally, let us remark that, although the system shows the robustness for the
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Figure 2.16: The result of the simulated base experiment.

changing dynamic parameters, it is sensitive to the accuracy of kinematic model

and deadreckoning. If the kinematic model is wrong, the base cannot decouple the

wheel motion correctly and, in an extreme case, the wheel might fight each other. In

addition, it is known that deadreckoning performance corrupts quickly with increasing

traveling distance. Feedback from the other sensor modalities are needed; for example,

laser ranger and GPS might be used for indoor and outdoor navigation respectively.

2.6 The Distributed Control System Design

As a self-contained mobile humanoid robotic system, Dav carries its own power source,

sensors, control system, learning system, and associated hardware.

2.6.1 Hardware Design

The hardware architecture of Dav has two levels: a main computer system and low-

level servo control modules, as shown in Fig. 2.17.
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and low-level servo control modules.

Figure 2.17: The hardware architecture for Dav has two levels: a main computer system
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Main Computer System

In order to build the main computer system, it is essential to know the requirement of

the task. The developmental program must process high—dimensional sensor data such

as vision and auditory input in real time. The computation power is hence critical

to achieve this real-time processing requirement. Various solutions were considered

for the high-level computer system to achieve the requirements. The single and dual

processor systems are not sufficient to achieve the required throughput. A choice

for a quadruple-processor motherboard is required. Therefore, desktop motherboards

(ATX) with 4 Pentium III Xeon processors and 6 PCI slots were chosen. Fig. 2.18

shows this main computer system with a LCD monitor.

The main computer system situates in the middle of Fig. 2.17, including an 100G

SCSI RAIDO disk array, two frame-grabbers for left and right cameras, a sound card,

a wireless Ethernet card, and an Ethernet card connecting CANPC (see Fig. 2.20) for

interaction with low—level modules. Being the “brain” of Dav, this computer system

handles all “cognitive” computation during learning or testing sessions.

 

Figure 2.18: The “Brain” of Dav, a. quadruple processor desktop PC. The SCSI RAIDO

disk array is not included.
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Sensors

Dav has visual, auditory, tactile, range, encoder, strain gage, and current sensors.

The visual system consists of two micro color CCD camera heads with diameters

of 7mm and focal lengths of 2.2mm. They are installed on the eye platform in

the head. Each camera has a separate control box that is located in the torso,

providing automatic gain control and automatic electronic shutter control. Video

signal sampling is performed by two frame-grabber cards, which communicate with

processors via a PCI interface bus. Two microphones are mounted on each side of

the head. The auditory signals go through pre—amplifiers before they are sampled by

a sound card in the main computer. The touch and torque sensors are important for

hand-in-hand teaching, i.e., supervised learning. A laser range scanner is mounted in

the front of the robot to realize range sensing.

Embedded Controller

In the low-servo control level, a distributing modular scheme was adopted. The

low-level actuator control units (ACU) were placed as close to actuators or sensors

as possible, to reduce the wiring. Eleven ACU modules have been designed and

fabricated to satisfy the requirements of each motor groups, and were networked to

CANPC by four CAN buses. This architecture reduces hundreds of signal wires to

only two wires, through the entire body, plus other three wires for power supply (See

Fig. 2.19). Consequently, the system reliability increases.

Each of microprocessor-based servo modules is composed of two connected boards:

servo interface board and an embedded Motorola PowerPC MPC555 board with 448k

internal flash, 24K internal RAM, TPU, PWM, and ADC, as shown in Fig. 2.19 (b).

The signal connector between the two boards serves two purposes: to attach modules

physically together as well as electrically. Those ACU modules, with capability of

interfacing up to four motor/joints, communicate over a CAN bus with a rate of 1M

bps.
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Figure 2.19: The block diagram of PowerPC based controller.
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Figure 2.20: CANPC: a PC104 embedded system running RealTime Linux operating sys-

tem with four CAN interface (a) PC104 computer board (MZ104+). (b) PCM3680 Dual—

CAN interface board.
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Distributed Architecture

Fig. 2.17 illustrates the overview of the hardware design. There are head, left arm,

neck-torso, right arm, left hand, base, and right hand modules, from the top to bot-

tom and the left to right. Each motor has a driving amplifier and sensors such as a

quadruple encoder and a torque sensor“. The head module has an ACU: HeadCB,

controlling the Tilt, L—Pan (left pan), R-Pan (right pan), MT (mouth), and EB (eye

brow) joints. The left arm module has two ACUs: L—ChestCB and L—ArmCB. L-

ChestCB controls the left arm’s J2 (Joint 2), J3 (Joint 3) and J4 (joint 4) while

L-ArmCB controls the left arm’s J5 (Joint 5), J6 (joint 6) and J7 (joint 7). Similarly,

the right arm module has R-ChestCB and R-ArmCB ACUs, which control the corre—

sponding to the left arm. The torso module has two ACUs: NeckCB and TorsoCB.

NeckCB controls the neck’s three joints: Neck-R (roll), Neck-P (pitch), Neck-Y (yaw)

while TorsoCB controls the torso’s two joints (torso’s Joints 1 and 2) and the first

joint of the two arms (left arm’s Joint 1 and right arm’s Joint 1).

The base module is the hub of the whole system where the main computer system

is housed. The base module has two ACUs: L—BaseCB and R—BaseCB. L—BaseCB

controls W—l-D (Wheel 1’s driving motor), W—l-S (Wheel 2’s steering motor), W-2-D

(Wheel 2’s driving motor), and W—2-s (Wheel 2’s steering motor) joints. R—BaseCB

controls W—3—D (Wheel 3’s driving motor), W-3-S (Wheel 3’s steering motor), W—4—D

(Wheel 4’s driving motor), and W—4—s (Wheel 2’s steering motor) joints. In addition,

the fabricated power board and 4 sealed lead acid batteries (with capacity of 110AH

@12V for each one) are placed in the base module. The range finder (PLS, SICK

00.), connected to main computer by a RS232 interface (port 1), was mounted at the

front side of the base for realizing the range sensing.

We notice that those ACUs are not directly connected to the main computer sys-

tem. They are connected via CANPC instead. CANPC has four CAN buses: CanO,

 

4Armature current sensors were placed on motors of all modules except the two arms.
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Canl, Can2, and Can3. As shown in Fig. 2.17, CanO links TorsoCB, R—ChestCB,

R-ArmCB and R-HandCB; Canl links L—ChestCB, L-ArmCB and L—HandCB; Can2

links Neck-CB and Head-CB; Can3 links L—BaseCB and R-BaseCB.

At the top of Fig 2.17. Two microphones with pre—amplifier are linked to a sound

card plugged into main PC’s PCI slot. Two micro camera heads, fixed in the inside of

the head mechanism, are linked to two digital control boxes housed in the base. The

control boxes’ outputting RGB signals are sent to the frame-grabbers in the main

computer.

2.6.2 Software Development

Dav’s control system involves the development of the large-scale control system that

must operate with a significant and high bandwidth. A network of embedded proces-

sors adds to the complexity of software development. Many issues such as modular-

ity, scalability, reusability, internal communication transparent to location, flexibility,

plug—and-play capabilities and open architecture, are needed to be considered.

There are substantial amounts of work addressing those issues and a lot of solutions

are proposed. For example, Ayllu [53] and COLBERT/Saphira [52] are used to control

the ActivMedia Pioneer robots. However, those proposed solutions are designed for a

particular control philosophy. They do not intend to encapsulate and to hide the low-

level device details, in the meanwhile offer enough flexibility for high-level program

if a different control strategy is needed. Player [96], DCA [60,70] and OROCOS [1]

are hence proposed. The latter provides standard software packages (e.g., abstract

device model) to facilitate high-level robot software development.

As in Player [96], Dav’s software development was guided by our desire to con-

currently support many heterogeneous devices and many heterogeneous clients. Each

device operates at some inherent frequency, with wide variation among devices. For

example, the popular SICK PLS laser ranger returns a full scan at approximately

8H2, while the robotic joints can give encoder feedback at almost 1000Hz. If we were

55



to take the naive approach and poll each device in turn at the rate of the slowest de-

vice, we would be discounting the full capabilities of the available resources. In most

cases, we want to obtain data from and send commands to each device at the highest

rate possible in order to fully exploit the hardware and maximize the responsiveness

of the system. Similarly, each client operates at some inherent frequency; while a

simple client written in C++ may be capable of consuming new data at 100Hz, a

graphically intensive client written in X-Window might operate at less than le. It

should be possible for these two clients to be connected to Dav simultaneously and

to execute as fast as they want without interfering with each other.

Moreover, in order to design a software architecture on a highly distributed sensing

and control hardware system as Dav, we need handle data flows between sensors,

processors and actuators effectively in groups and across different CAN buses. Dav’s

designed software architecture, shown in Fig. 2.21, provides a client/server model for

realizing the robot interface. Acting as a client, the high-level control program is

separate from the server, which executes low-level device operations either on ACU

boards or local main computer system, via a unified UDP socket interface. We have

three major considerations for choosing such a UDP socket based robot interface.

0 Distribution: A client (high-level program) can access to sensors and actuators

from any workstation on the Ethernet network. For example, a clients may con-

nect to multiple ACUs while a ACU accepts connections from multiple clients

if no conflict exists.

0 Convenience: Clients can be written in any language as long as they support

socket programming. For example, the user can choose C/C++ for high speed

application, Java for trans-platform capability, and MATLAB for quick proto—

typing.

0 Light-weight device server: We feel the commonly accepted CORBA interface

is too sophisticated to fit robotic application where real-time constraint is pri-
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mary important, even though a lot of effectors have spent to ensure CORBA’S

performance (e.g., latency, throughput) is reasonable. ACE (Adaptive Commu-

nication Environment) and RPC (Remote Procedure Call) are two communi-

cation packages provides what we required, but they are not suit for embedded

application because of their big footprint. We use a simple and direct approach,

UDP socket interface shown in Fig. 2.21. Acting as the device server for low-

level ACUS, CANPC receives UDP packets and forwards CAN packets to ACUS,

and vice versa. Each UDP packet may contain several CAN packets (up to 64

packets) to improve the throughput.

Dav is implemented in C++ and makes extensive use of the POSIX—compliant

pthread interface 5. Since clients and physical devices may operate at different time-

scales, we assign an asynchronous daemon thread for each physical device. A main

thread listens for new client connections on a well-known UDP port, spawning client-

stub threads on demand to service clients and the devices they request. The overall

system structure of Dav is shown in Fig. 2.21. The center portion of the figure is

Dav’s software architecture; on the left are the physical devices and on the right

are the clients. Each client has a UDP socket connection to Dav. If the client is

executing on the same host as Dav, then this socket is simply a loopback connection;

otherwise, there is a physical network in between the two. At the other end, Dav

connects to each device by whatever method is appropriate for that device (e.g., RS-

232 for the ranger finder and CAN for ACUs). Within Dav’s architecture, the threads

communicate through a shared global address space. As indicated in Fig. 2.21, each

device has associated with it a command buffer and a data buffer. These buffers

provide an asynchronous communication channel between the device threads and the

client threads. For example, when a client reader thread receives a new command

for a device, it writes the command into the command buffer for that device. Later,

 

5Although the current implementation of Dav’s software architecture is on LINUX system, it is

straightforward to port on Window system
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Figure 2.21: The software architecture of Dav’s control system.
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when the device thread is ready for a new command, it will read the command from

its command buffer and send it on to the device. Similarly, when a device thread

receives new data from its device, it writes the data into its data buffer. Later, when

a client thread is ready to send new data from that device, it reads the data from the

data buffer and passes it on to its client. In this way, the client program threads are

decoupled from the device daemon threads (and thus the clients are decoupled from

the devices). Also, by the nature of threads, the devices are decoupled from each

other, and the clients are decoupled from each other.

Since the bandwidth and latency are primarily important for real-time system, we

do not apply synchronization (e.g., semaphores) on the shared memory in the middle

of Fig. 2.21. Thus, old data may be read when the client thread’s reading frequency

is higher than device thread’s refresh rate. On the other hand, a client may miss data

when its reading frequency is lower than device refresh rate. This is reasobable, since

we treat the lately arrived data useless; it is hence unnecessary to keep a long data

buffer for each device.

Dav’s software architecture currently supports a variety of devices, including the

popular peripherals (e.g., ACUS, GPS, camera and frame—grabber combination, mi-

crophone and sound card, range finder). Devices with serial (RS-232), CAN or PCI

interface can be easily added to the system by developing a device driver and modi-

fying a configuration file. In order to provide a uniform abstraction for a variety of

devices, we chose to follow the UNIX model of treating devices as files. Thus the

familiar file semantics hold for Dav’s devices. For example, to begin receiving sensor

readings, the client opens the appropriate device with read access; likewise, before

controlling an actuator, the client must open the appropriate device with write access.

By default, client programs receive data at 10Hz, which is roughly the signal

latency via neural circuit from the brain to peripheral neurons. Namely, a client can

expect to receive a data packet containing the current data from all the subscribed

devices in every 100ms. Certainly, by sending all the data at once, Dav’s device
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server might repeatedly send old data from a device that operates at less than 10Hz.

We designed Dav’s architecture in this way for one reason: simplicity. By always

transmitting the current state for all subscribed devices, regardless of the time-scale

of the device, we facilitate the writing of client programs. As a result, clients are able

to use a simple read loop to receive data from Dav’s device server. It is worthy to

note client programs can issue command to Dav at any time.

2.7 Experiment

All Dav’s joint and the control system have been successfully implemented and tested.

Experiments were conducted to evaluate the performance of the robot.

Fig. 2.22 shows the movements of the neck and head modules. Fig. 2.23 shows

the movements of mobile base. Fig. 2.24 shows the arms’ movement.

2.8 Summary

This chapter presented the mechanical structure of the robot. The kinematic model

that describes the relation between the joint variables and the position of end-effectors

was derived. For the purpose of the lower-level controllers, the dynamic models of

Dav’s mechanism were outlined. The distributed embedded control system and the

main computer system for mental development were sketched.

It is known the kinematic and dynamic models of a humanoid robot are extremely

complex [30]. For example, due to the redundancy DOFs of a humanoid, the inverse

kinematics, the mapping from end—effector coordinates to joint variables can not be

easily written a program to simulate. The learning seems to be a promising alternative

solution. It is known that a robotics model that does not encompass learning will

always require a human programmer for building the movement plans [47], which is

not acceptable for a autonomous robot.
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In the next chapter, we will introduce a new learning framework for robotics: a

theory of developmental mental architecture and Dav’s implementation of this archi-

tecture.
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Figure 2.22: The movement of Dav’s neck and head modules. The first, second and third

rows show the rotations of the neck’s Roll, Pitch, and Yaw joints respectively; the fourth

and fifth rows show the tilt and pan motions of the eyeballs respectively.
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Figure 2.23: The movement of Dav’s mobile base.
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Figure 2.24: The movement of the arm’s Joint 1, Joint 3 and Joint 4, from the top row to

the bottom.
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Chapter 3

Dav Architecture Design: A

Theory of Developmental Mental

Architecture

The software architecture of a developmental robot is a challenging new research

subject. This chapter presents a theory of developmental mental architecture. Five

architecture types, from the simplest Type-1 (observation-driven Markov decision

process) to Type-5 (DOSASE MDP), are introduced. The properties and limitation

of a simpler one are discussed before the introduction of the next more complex one.

Further, we present the architecture design of the Dav robot. The framework of

the Dav architecture is hand-designed, but the actual controller is developed, i.e.,

generated autonomously by the developmental program through real-time, online

interactions with the real physical environment. We present the Dav architecture

and the major components that realize the architecture. The designed architecture

for Dav is the next generation version from its extensively tested predecessor - the

SAIL developmental robot.
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3. 1 Introduction

Many different architectures have been proposed in the intelligent robot commu-

nity. Robot perception and perception-based behavior generation have been proved

very difficult, especially in unknown or partially unknown environments. Some work

on robot learning was motivated by human learning and development: from sim-

ple to complex. BAIRN (a Scottish word for “child”) is a symbolic self-modifying

information processing system used as an implementation for a theory of cognitive

development [102]. Drescher [29] utilized the schema, a symbolic tripartite structure

in the form of a “context-action—result,” to model the ideas of child sensory-motor

learning in Piaget’s constructivist theory of cognitive development. Soar [56] and

ACT-R [6] are two well-known symbolic systems with an aim to model cognitive pro-

cesses, although cognitive development was not the goal of these efforts. The model

of Albus [4] takes sensors as input and produces control signals to effectors as output,

thus, allowing a finer numeric representation of sensory features when a specific task is

given. The Finite State Machine (FSM) or its probability based variant, the Markov

Decision Process (MDP), are two general frameworks that have been used for con-

ducting autonomous learning with a given goal in a symbolic world (e.g., Shen [82])

or reinforcement learning (e.g., Kaelbling et al. [49]). The explanation-based neural

network, called “lifelong learning,” was used by Thrun [92].

Designing a program and its representation in a task-specific way using a tradi-

tional approach is typically very complex, ad hoc, and labor intensive. The resulting

system tends to be brittle especially in unknown and uncontrolled environments.

Recently an important direction of research aims at reducing or avoiding the human

imposed limitations (e.g., features, models) of the world for better environment adap—

tation in learning. Cresceptron [108] is a system that allows a human teacher to inter-

actively segment natural objects from complex images through which it incrementally

grows a network that performs both recognition and segmentation. SHOSLIF [43],

SARCOS [97], Cog [19], and Kismet [14] are motivated by simulating infant skills via
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learning through interactions with the environment.

The efforts discussed above were motivated by human learning and cognitive devel-

opment to various degrees. However, these proposed architectures are fundamentally

different from human learning and have not reached autonomous mental development

(AMD) [118]. The SAIL robot [106] and the Darwin V robot [5] are two prototypes

of developmental robot. Darwin V was designed to provide a concrete example of

how the computational weights of neural circuits are determined in a controlled envi-

ronment by the behavioral and environmental interactions of an autonomous device.

The SAIL developmental robot was designed for developing perceptual and behav-

ioral skills through interactions in uncontrolled, complex human environments (see

the eight challenges for AMD in Section 2). There has been a lack of systematic

theory for developmental mental architecture.

This chapter introduces a theory of mental architecture suited for autonomous

development. As an architecture design example, it presents a new architecture for

the Dav robot [37], as shown in Fig. 2.1 the next generation developmental robot

after SAIL. The major differences between SAIL and Dav fall into two categories, the

body and the “mind.” Dav’s body is substantially more sophisticated than SAIL’s

body which only has a single arm. The software architecture of Dav takes advantage

of the rich sensors, especially interaction sensors, available on the Dav body. The Dav

architecture, presented here, is significantly more complete and integrated than SAIL

(e.g., the SASE concept) and has not been published before. However, it takes into

account the extensive experience that has been gained from its predecessor SAIL.

Although the overall design of the Dav software architecture has not been tested

yet, most of its key components have been successfully tested on SAIL. Architecture

design for an intelligent robot is one of the most difficult research topics in intelligent

robot research, especially for humanoids. As far as we know, no such highly extensive

and complete developmental architecture has been published.

Section 3.2 outlines the AMD paradigm. A theory of mental architecture is pre-
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sented in Section 3.3. Sections 3.4 and 3.5 presents the software architecture and its

major components of the Dav robot. Section 3.6 provides concluding remarks.

3.2 AMD Paradigm

Shown in Fig. 3.1, the AMD paradigm has two phases. In the first phase, construc-

tion and programming, tasks that the robot will end up learning are unknown to

the programmer. A task-nonspecific program, called the developmental program, is

written during this stage. The most fundamental difference between a developmental

program and a traditional program is that the tasks that the machine will execute

are unknown to the programmer during the time of programming.

In the second phase, autonomous development, the robot is turned on at time

t = 0, the robot starts to interact with the physical environment in real-time through

continuously sensing and acting. Humans teach the robot to learn tasks from simple

to complex via teacher “arranged experience” called scaffoldingl.

Unlike a traditional non-developmental robot, the following eight challenging re-

quirements are necessary for practical AMD:

1. Environmental openness: Due to task non-specificity, the developmental robot

must deal with unknown, uncontrolled complex environments.

2. High-dimensional sensors: The developmental robot must directly handle con-

tinuous raw signals from high-dimensional sensors, e.g., vision, audition and

tactile sensors.

 

1Scafi‘oldz'ng is the process of using developed simple capabilities to further develop more complex

capabilities, through further experience (with or without a teacher), without the need of manual

modification of the developmental program. Lev Vygotsky [100] proposed the concept of “zone of

proximal development” (PZD) which is a latent learning gap between what a child can do on his

or her own and what can be done with the help of a teacher. Wood, Burner & Ross [121] used

the term “scaffolding” to describe such an instructional support through which the child can extend

or construct current skills to higher levels of competence. Through this process, the scaffolding

(arranged experience) is slowly removed.
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Figure 3.1: The autonomous development paradigm

. Completeness in using sensory information: Due to environment openness and

task non-specificity, it is not desirable for a developmental program to discard,

at the design phase, sensory information that may be useful for future, unknown

tasks. Certainly it selects related information useful for a particular task, after

its task-specific representation is autonomously derived after birth.

. Online processing: At each time instant, what the machine will sense next is

affected by what the machine does now.

. Real-time speed: The sensory/memory refresh rate must be fast enough so that

a physical event (e.g., motion, voice, and vision) can be sampled properly and

processed in real-time (e.g., at about 10Hz). It must handle one-instance learn-

ing: learning from one instance of experience. Time consuming iterations should

be avoided.

. Incremental processing: Acquired skills must be used to assist in the acquisition

of new skills as a form of “scaffolding”. Each new observation data must be

used to update the current representation and discarded after updating.

. Performing while learning: Conventional robots perform after they are built,

however, a developmental robot must perform while it “builds” itself (mentally).
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8. Scale-up to complex tasks: A developmental robot must be able to perform

increasingly more complex tasks while gaining more experience.

After solving a series of technical problems, SAIL realized all of the above neces-

sary capabilities. However, a realization of the above capabilities has a level. The Dav

developmental architecture aims to significantly advance such a level plus following

new concepts and components:

1. The realization of the SASE agent model, which enables the robot to perceive

and autonomously control the voluntary parts of internal “brain” activities.

2. Integration of multiple sensorimotor subsystems for multimodal learning.

3. Integration of the architecture with a value system.

This chapter concentrates on these new concepts and new components in the Dav

software architecture design.

3.3 Observation-driven Markov Processes

The architecture of intelligent agents is a complex issue. In this section, we introduce

a series of architectures, from simple to complex, and the associated properties.

We first define the concept of internal and external environments of an agent.

Definition 3.3.1 (Environment) The internal environment of an agent is the

brain (or “the central nervous system”) of the agent. The external environment con-

sists of all the remaining parts of the world, including the agent’s own body (excluding

the brain).

Having defined the external and internal environments, we define the sensors and

effectors associated with these concepts.

Definition 3.3.2 (Internal sensors and effectors) An external sensor 5,. is a

sensor that senses the external environment. An internal sensor S,- is a sensor that
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Figure 3.2: The Type-1 architecture of a multi-sensor multi-effector agent: Observation-

driven Markov decision process. Each square in the temporal streams denotes a smallest

admissible mask. The Type-1 architecture takes the entire image frame without applying

any mask. The block marked with L is a set of context states (prototypes), which are

clusters of all observed context vectors l (t).

    

senses the internal environment. An external effector E,3 is an effector that acts on the

external environment. An internal efiector E, is an effector that acts on the internal

environment.

3.3.1 Type-1: Observation-driven MDP

An agent has a number of sensors and effectors. Fig. 3.2 illustrates a multi-sensor

multi-effector model of an agent. The agent A(t) operates at equally spaced discrete

time instances t = O, 1, We assume that an image is produced at each time

instance by the sensor, independent of the sensing modality, visual, auditory, touch,

etc. Without loss of generality, we assume that the agent has two external sensors

and two external effectors. Each external sensor Sci, i = 1, 2, senses a random multi-

dimensional sensory frame xe(t) = (xel(t),xe2(t)) at each time instance t and the

sensed signal is fed into the agent. Each external effector Eei, i = 1, 2, receives from

the agent an effector frame ae(t) = (ae-1(t), ae2(t)) at each time instance t.
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Let x, E X and pt 6 ’P be the observations and outcome covariates (i.e., ran-

dom vectors) at time t, respectively. Note that we change a variable of a vector

to its subscript (e.g., change x(t) to 513,) when it is more convenient to consider the

variable as a discrete index number. Let H, be the random vector of the history:

H, = {xt,xt_1,...,xo,pt_1,...,p0}. At time t, the agent A(t) needs to estimate the

distribution of P(p, | H, = h).

If t is large, H, is too large to be practical and it contains much information that

is not very related to the outcome Ht.

Definition 3.3.3 (Type-1) The Type-1 mental architecture is a k-th order

Observation-driven Markov Decision Process (MDP) [27, 122] that reduces the H,

to contain only the last k observations:

It = {xii xt—li "') xt-kipt—li "'vpt—k}

as shown in Fig. 3.2. The random observations in 1; across time t = 0, 1, ...,t are the

source from which the agent automatically generates states in the form of clusters l E

C, where 5 consists of all possible observations of the last contexts L = {Ht | 0 S t}.

The predicted consequence p, consists of predicted action at and the predicted value

Uti Pt = (at/Ur)-

A major difference between a regular MDP [49, 91] (or HMM [75]) and an

observation-driven MDP are that the states 3, with a regular MDP are hand-designed

by a human programmer but the states with an observation-driven MDP can be auto-

matically generated (developed). With a regular MDP, the programmer must provide

initial estimates for the prior probability distribution P(so), the state transitional

probability P(st | x¢,st_1) and the state observation probability P(xt I 3,). It in

turn, requires that the human programmer establishes a correspondence between the

meanings of the physical events being modeled and the states. Due to the fact that

physical events are not known at the time of programing for the developmental robots,
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the regular MDP is not suited for the developmental program. In contrast, the obser-

vation driven MDP requires no prior probability and all the probability distribution

P(p, I l, = I) can be estimated incrementally on-the—fiy.

Another important difference between the states in the traditional MDP and the

observation driven MDP is the very different nature of the representation. The states

in the former correspond to some objects or events in the world by human hand-

design. The entire set of states is a monolithic representation of the modeled part of

the world. That results in the high brittleness of the agent in dealing with unexpected

events. In contrast, the states in the latter are clusters of observational vectors. They

are not monolithic in the sense that an object in the world can correspond to many

state clusters. Further, each cluster may correspond to an observation of several

objects in the world. Therefore, there is no strict one-to-one correspondence between

a state in the observation-driven MDP and an object of the world. It is the behavior

of the agent (e.g., the same picking apple behavior from different views of the apples)

that shows the discrimination and generalization power of the agent.

In practice, we implement the regressor R using the Incremental Hierarchical

Discriminant Regression (IHDR) [112,114]. Given any observed (last) context I (t),

the regressor R produces multiple consequences (primed context) p1(t), ..., pk (t) with

a. high probability:

{1016), ---,Pk(t)} = B(Wll- (3-1)

Thus, the regressor R is a mapping from the space of the last context [I to the power

set of 'P:

R : c H 27’. (3.2)

R is developed incrementally through the real-time experience. For any t > 0 (after

the birth), it is a total function since it is defined for all elements in [3, but it does not

do well for most elements in L that it has not experienced. It is not an onto function

since its range covers only a very small part of 2P.
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Therefore, we need a value system that selects desirable contexts from multiple

primed ones. The value system V( t) takes a set of (e. g., k) contexts from the regressor

R and selects a single context:

V(R(l(t))) = V({p1(t),p2(t)i ---,Pk(t)}) = alt) (33)

where 1 g i g k and It varies according to experience. The value function selects

the best consequence 1),-(t) that has the best value v,(t) in p,(t) = (a,(t),v,-(t)). For

example, V({p1(t),p2(t), ...,pk(t)}) = 1),-(t) if i = arg max{v1(t), v2(t), ..., vk(t)}.

The real-time Q-learning algorithm [104] can be used to estimate the value of

each consequence p,(t), i = 1, 2, ..., k, and the agent selects the one (action) with the

highest value.

Therefore, the value system V is a mapping from the power set of P to the space

of P:

v : 2” H P. (3.4)

3.3.2 Type-2: Observation-driven Selective MDP

The Type-1 mental architecture is sensor nonselective in the sense that it is not able

to actively select a subpart of relevant information from the sensory frame (intra-

modal attention) or to attend a particular modality but not the others (inter-modal

attention).

Given a d-dimensional input vector x, the attention can be modeled by an atten-

tion mask m, where m is a d—dimensional vector whose elements are either 0 or 1.

Suppose that the input vector is x = (x1,x2) and the mask is m = (m1,m2). Then

the corresponding attended input vector is x’ = x (8) m = (x1m1,x2m2), where <8)

denotes vector pointwise product. Not all the masks are admissible. For example,

the set of admissible masks consists of circles with different radii p at different center

positions (r0, c0) of the image frame. Then, the attention selection effector has three
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control parameters: (r0, co, p).

Without loss of generality in our theoretical discussion, we assume, as shown in

Fig. 3.2, that there are only four addmissible masks for each image frame at time t,

denoted by the upper attention square, the lower attention square, and two trivial

masks: no square is selected and both squares are selected, respectively. Suppose

x = (x1, x2) is an input image frame, where x1 and x2 denote the subimage under the

upper and lower attention square, respectively. With these four admissible masks,

the attended image x’ = x®m has only four cases, (x1, x2), (x1, 0), (0, x2), and (0,0).

For the clarity of the discussion, we will use the notation in the theory of formal

languages and automata. Assume that the subimage in each attention square can

represent a string x E 2*, where 2 is the alphabet and 2* represents the set of all

strings of a finite length formed from the letters of the alphabet. Each attention square

can contain a long string as long as the image that it models has a sufficient number

of pixels. Therefore, we can write x1(t) = Karl’s body, x2(t) = trees, etc. A similar

notation is applicable to effectors. For example, we can write a1(t) = move-forward,

a2(t) = move-backward, where a1 and a2 are two independently controllable motors

of the effector Eei, i = 1, 2.

Definition 3.3.4 (Type-2) The Type-2 mental architecture is a Type-1 mental ar-

chitecture, with an addition of an attention selector

TZyXAil—tc,

as shown in Fig. 3. 3, where 37 is the space of all possible pre-attention contexts y =

{l(t) I 0 S t}, A,- is the space of all possible attention selections for T and L is the

space of attention-masked last contexts.

In order to show the properties of different architectures, we define a concept

called higher.
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Figure 3.3: Progressive addition of architecture components for Type-2 to Type-5. Type-2:

adding T and En. Type-3: Adding M and E12. Type-4: Adding S,- and primed sensation.

The block marked with D is a delay module, which introduces a unit—time delay. Type-5:

Developmental T, R, M and V.

Definition 3.3.5 (Higher) Given a set D of tasks, we say that a developmental

architecture A2 is higher than another developmental architecture A1, if given the

same teaching environment E, the architecture A2 requires fewer statistically expected

teaching examples than A1, over the environment E and over the tasks in D.

Here the term “higher” is motivated by the concept “higher” animals.

As a convention, we regard environment as a part of a task. A task is more

challenging if the environment is uncontrolled. In the above definition, since the

architectures are developmental, the developmental program that guides the develop-

ment of the architecture must be task—nonspecific. Otherwise, one can always define

an architecture specialized for a particular type of task and this architecture requires

fewer teaching examples than a more general developmental architecture. However,

the former is not able to deal with other tasks that require more general cognitive

capabilities.
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Theorem 3.3.1 (Existence of higher architecture) There is at least one class

D of tasks in which only a proper subcomponent of sensory input is related to the

tasks and the associated teaching environment E in which the Type—2 architecture is

higher than the Type-1 architecture.

Proof: Assume a set D of tasks whose goal is to classify sensory information in set

C (e.g., human body). Without loss of generality, assume that at any time, only

one of the attention squares of sensor 881 contains an element (e.g., human body)

in C and the other window does not (e.g., natural background that is free of human

bodies). For Type-2 architecture, the teacher creates such a teaching environment.

First, he teaches the attention selection control of T (e.g., through reinforcement

learning), so that T will open two attention squares one after another through a loop

(to simulate saccades). If the attention-masked input belongs to C, the regressor

R produces the class label as the action output to an external effector (e.g., using

supervised learning). Otherwise, R does not produce any output to the external

effector. Suppose that the attention window does not contain any element in C but

instead contains uncontrolled changing natural settings that never repeat. The Type-

2 architecture performs reasonably well, since at least one of the two fixations enables

it to detect an element in C while disregarding the other square which always presents

a new natural background. In contrast, the Type-1 architecture can only learn from

the monolithic input x(t) = (x1(t), x2(t)). Every vector x(t) is very different from all

others because the natural settings are always new in the environment E, the Type-

1 architecture never observes a learned input x(t) and, thus, almost never performs

correctly. Therefore, for this class of tasks D and this type of environments E, Type-2

is higher than Type—1. C]

It is not true that a higher architecture can learn faster than a lower architecture

in any setting for any tasks. If the environment is such that the entire input vector

x(t) contains only elements in C and nothing of the natural background (which is

very rare in reality), then the attention selection mechanism enabled by the Type-2
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architecture does not help to reduce the number of training examples.

3.3.3 Type-3: Observation-driven Selective Rehearsed MDP

The Type-2 architecture does not have a motor mapping M. Therefore, it cannot

rehearse an action sequence to evaluate its consequences without actually carrying

out the action sequence.

Definition 3.3.6 (Type-3) The Type—3 mental architecture is a Type-2 mental ar-

chitecture, with an addition of an action releaser M:

MIPXAHP,

as shown in Fig. 3. 3, where P is the space of all possible predicted consequences, A,-

is the space of all possible attention selection for M.

The action releaser M is a special case of a more general motor mapping which also

generates representation for frequently practiced action sequences (e.g., using the

principal component analysis PCA) so that smooth action sequences can be generated.

The Type-3 architecture enables the agent to hold an action before it is released

to be executed by the environment. It makes it possible for the agent to generate

several actions consecutively but to hold each action without actual execution.

With a traditional MDP with hand-designed states, it is possible to compute

all the possible next states and perform planning. The Q-learning method uses the

estimated action value Q(s,a) of action a at state 3 to select the best action a“ =

maxaeA Q(s,a), from the set A of all the possible actions. This best next action

a‘ maximizes the expected rewards in the future. This kind of approach has two

fundamental problems. First, the agent has a rigid value system. No matter what

value model is used, finite horizon, time discount model with a small or a large time

discount factor 7, the agent cannot change the way the value is determined [49,91].
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For example, if a time discount model is used, the agent is short-sighted. It always

prefers multiple small rewards in the near furture to a far away but important reward.

Second, the agent is not able to learn to “think” (predict) using the events that it

learned from experience. For example, fed well and sleep well can be a reasonable

goal for a human infant, but the same value system is not suited for a human adult.

The observation-drive MDP does not suffer from these limitations. However, as

long as the predicted action is released, the effect that it causes to the external world

will result. Such an effect cannot be undone. For example, suppose that the robot

predicts (primes) an action to drop a cup from a hand. As long as it executes this

action, the cup will drop to the concrete floor and will be broken. Can we design

an architecture that enables the robot to “think” and “plan” a significant amount of

time ahead before it releases the action?

3.3.4 Type-4: Observation-driven SASE MDP

Defined in Weng [107] a Self-Aware and Self-Effecting agent not only has external

sensors Se and external effectors E8 that sense and act upon the external environment

(including the robot body), but also has internal sensors S,- and internal effectors E,-

that sense and act upon the internal representation of the brain (not including its

body)

In neuroscience, there is no concept of internal sensors and effectors. The brain

does not need a receptor to sense the signals in the brain, since the brain signals

are already in the desirable form. The concept of internal sensors and effectors is

introduced to facilitate computational understanding of the SASE agent.

Definition 3.3.7 (Awareness) If an agent A senses the states (presence, absence,

difl'erent forms) of object b through its sensors, we say that the agent A senses the

object b. If the agent is able to recall the association between the sensed various states

of b and their resulting efiects in a task domain D sensed by the agent, we say that

the agent is aware of object b in the task domain D.
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Some explanation is in order here. By definition, an agent must use its sensors,

the entry point of its sensory architecture (the input of T), to sense an object. For

example, if the state of an object is fed into the architecture, e.g., through the middle

of the regressor R, the motor mapping M or the value system V, the agent does

not sense the object by the definition because the agent cannot use such information

properly as it does with its sensors. In the above definition for awareness, we consider

a task domain D because any awareness has a scope. A person who is aware of the

boiling temperature of water in a domain (e.g., in a normal environment) may not

necessarily be aware of the boiling temperature of water in another domain (e.g.,

lower in a low pressure environment).

In the definition, we require that awareness must associate various states of b

and the corresponding resulting effects. For example, if a human is not aware of the

correspondence between various states of gravity (presence, absence, strong gravity)

and the resulting effects (e.g., to a falling object), he is not aware of the object.

With the above definition, we are able to deal with the issue of self-awareness and

self-effecting.

Theorem 3.3.2 (Necessary conditions of awareness) Suppose an agent is

aware of its mental activities in a domain. Then the following points must be

true: (1) It senses such activities using its sensors. (2) It feeds the sensed signal

into its perceptual entry point just like that for external sensors. (3) It recalls the

association between the difierent status of the activities and the resulting efi’ects to

the environment.

Proof: Point (1) is true because, according to Definition 7 for the awareness of an

object, the agent must sense the object using its sensors. Point (2) is true because the

status of the object must be sensed and fed into the entry point for sensors for proper

perception and effect recall. Point (3) is true because the definition of awareness

requires the recall of such an association. C1
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Based on the previous theorem, let us examine the issue of self-awareness. If an

agent runs a Q—learning algorithm (or any algorithm for that matter) but it does not

sense the algorithm using its sensors which are linked to its entry point for sensors,

the agent is not aware of its own algorithm. For the same reason, humans do not

sense the way their primary cortex works and, therefore, normally they are not aware

of their own earlier visual processing. This early processing is subconscious, in the

sense that it does not require a conscious decision. However, the voluntary part of

the mental decision process does require a conscious, willful decision. Therefore, in

the architecture design, the parts that require voluntary decisions must be sensed by

the agent, and the sensed signals must enter through the entry point of the sensors.

Definition 3.3.8 (Type-4) The Type-4 mental architecture is a Type-3 mental ar-

chitecture, but additionally, the internal voluntary decision is sensed by the internal

sensors S,- and the sensed signals are fed into the entry point of sensors, i.e., the

entry point of the attention selector T. In order to recall the effects of the voluntary

actions, not only is the expected reward value estimated by the value system, but also

the primed context, which includes not only the primed action, but also the primed

sensation.

The architecture illustrated in Fig. 3.3 is a Type-4 architecture. Two voluntary

internal actions are modeled by En for attention selection, and by Ea for action

release. Both internal actions are sensed by the internal (virtual) sensors Sn and

8,2, respectively. The rehersed external action (not released) is sensed by the virtual

internal sensor 5.3. Note that when the action is released, it is sensed as external

action from E81 and Egg. The primed sensation (which predicts the sensation of SCI

and 3.22) is used by the value system in selecting the best action according to, e.g.,

the novelty (suprise) or the nature of the reward (e.g., sweet or bitter).

The regressor R maps each attended context I 6 .C to a set of multiple primed

contexts, from which the value system selects a single primed context p E P. In other
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words, the composite function of R followed by V gives a mapping: V o R : .C H P.

With a SASE agent, both external context (sensed by Se) and internal context (sensed

by S.) are available in l.

With a consecutive time series t = 1, 2, ..., k, the composite function VOR performs

a series of regressions, represented by a regression sequence:

3 = ((l1,p1), (12,122), (11.1%))

where each regression pair (l,, p,) is an input-output pair of the composite function

V o R, p,- = V o R(l,-), i = 1,2, ..., k. The link between two consecutive regression

pairs can be realized by two paths, the external path and the internal path, denoted

by e and i respectively. If a part of the primed context p,- is executed by an external

effector and the effect of the action on the external world is sensed by an external

sensor Se, the path corresponds to an external path. For example, if a mobile robot

moves ahead, the objects look closer after the motion. If a part of p,- is sensed

by one or multiple internal sensors, the path corresponds to an internal path. For

example, if the primed action is to jump, the following input to the regressor R will

contain a representation of this action through a (virtual) Si, no matter if the action

is executed or not. Symbolically, the reasoning process can be represented by the

following composite reasoning sequence:

61 62 ek-l 3k

S = “11191): . 1(l21p2)i ' 1'": . 1(lk7pklr . (3'5)

21 z2 Zk—i 2k

where

represents the external and internal paths. Whether the result of external and internal

paths are taken into account by the regressor in the reasoning process depends on the
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attention selection in T.

Definition 3.3.9 (External and external reasoning process) There are three

types of reasoning processes, external, internal, and mixed, corresponding to the atten-

tion in which the attention module T attends to external, internal or both, respectively.

We can readily arrive at the following conclusions:

0 Type—1 through Type—3 architectures allow the agent to perform external rea-

soning processes (i.e., practice grounded in the physical world).

0 Type—1 through Type-3 architectures do not allow the agent to perform internal

reasoning as defined. For example, Type-3 is not aware of the primed context

because it does not have internal sensors.

0 A Type-4 architecture is able to execute external, internal, and mixed reasoning

processes.

One might conclude at this point that the internal process looks like “thinking.”

However, if the internal representation is hand-designed for a given specific task, the

internal process is still far from what is called thinking by higher animals and humans.

3.3.5 Type-5: Developmental observation-driven SASE

MDP

In the architecture discussed above, no requirements have been placed in terms of

how the architecture is created. Specifically, how should the mappings T, R (and L),

M, and V be created?

Definition 3.3.10 (DOSASE MDP) The developmental observation-drive SASE

MDP (DOSASE MDP) has an architecture Type-4 or higher, that satisfies the fol-

lowing requirements:
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1. During the programming time, the tasks that the agent will learn are unknown

to the programmer.

2. The agent A(t) starts to run at t = 0 under the guidance of its developmental

program Pd. After the birth, the brain of the agent is not accessible to humans.

3. Human teachers can only affect the agent A(t) as a part of its environment

through its sensors and effectors recursively: At any time t = 0,t = 1, ..., its

observation vector at time t is the last context l(t). The output from A(t) at

time t is its selected primed context p(t) E P. A(t — 1) is updated to A(t),

including T, R (and L), M, and V.

In contrast with the traditional MDP, the DOSASE MDP (A(t), Pd) is develop-

mental in the sense that the developing program Pd does not require a given estimate

of the a priori probability distribution P(l) for all I E (I, nor even a given set of

states. Consequently, Pd does not require a given estimate for the state observation

probability P(lt | l¢_.1) nor that for the state observation probability P(xt | It).

When the number of states is very large, it is sufficient practically to keep track

of the states that have a high probability, instead of estimating probability of all the

states, which is too computationally expensive to reach real-time speed.

3.3.6 Type-6: Multi-level DOSASE MDP

The Type-5 architecture has only one sensorimotor level, although each mapping T, R,

and M have multiple levels in their own internal structure. We call it a sensorimotor

level because the pathway from T through R up to M corresponds to a pathway from

sensory input to motor output. The primed context of such a level can be fed into

another sensorimotor level for the following reasons:

1. Abstraction. While a low level is tightly linked to fine time steps, the higher

levels become more “abstract,” in the sense that the higher level clusters of
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context states are coarser in temporal granularity and grouped more according

to actively attended events. That is self-directed abstraction according to active

attention. For example, when the agent visually tracks a walking person, the

attended part of the person’s images are grouped.

. Self-generated context: Allow voluntarily generated motor actions to serve as

context input to the higher level. Thus the agent is able to “talk to itself.”

This capability also helps abstraction because the variation of self-generated

motor actions has a smaller within-class variation and a lower dimension that

the typical sensory inputs from the external environments.

. Enabling a higher degree of sensory integration: It is not practical to integrate

all the receptors in a human body by a single attention selection module T, oth-

erwise, the attention is too complex. Sensors that are related more closely (e.g.,

touch sensors of the same finger) are integrated first by a low level sensorimotor

system and the output of these sensorimotor systems are fed into the next level

which integrates a larger scale of sensors (e.g., touch sensors of different fingers).

With the above considerations, we introduce the Type-6 architecture.

Definition 3.3.11 The Type-6 mental architecture is a Type-5 mental architecture

with several levels of sensorimotor systems. Each Type-5 architecture is considered a

sensorimotor system. The primed contexts from the lower-level sensorimotor systems

are fed into the sensory input of the higher-level sensorimotor systems.

Fig. 3.4 illustrates the Type—6 architecture. The input to the attention selector

T9) at level 2 includes the primed context p(t) = (xp(t), ap(t)) from level 1, where

xp(t) and ap(t) are primed sensation and primed action, respectively. One or multiple

sensorimotor systems can feed their primed contexts into a single sensorimotor system

at the next higher level for sensory integration.

It is possible to prove that there is at least one task set and the associate teaching

environment where the Type—6 architecture is higher than the Type—5 architecture.
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Figure 3.4: The Type-6 architecture.

We have systematically introduced six types of architectures. Although the order

in which new capabilities are added is more a design choice than a necessity, the

order used here is motivated by a relatively large payoff in capability with a minimal

addition of the architecture complexity.

3.4 Dav Architecture

The Dav architecture design was guided by the theory of architecture discussed in

the previous section. It’s architecture belongs to Type-6. The basic modules T, R,

and M in the last section have more functions with the Dav architecture. In the

Dav architecture, the attention selection module T discussed above corresponds to

the sensory mapping, the regressor R corresponds to the cognitive mapping and the

action releaser M corresponds to the motor mapping. In the sensorimotor system

of the Dav architecture, two cognitive mappings are used, implemented by the same

engine IHDR. The reality mapping R predicts contexts of near (immediate) future,

while the priming mapping F predicts contexts of far future.
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As shown in Fig. 3.5, the Dav architecture consists of parallel layers of the senso-

rimotor levels. The lower the level, the less spatial and temporal extent it deals with.

The fewer receptors and effectors a level integrates, the less spatial extent it deals

with. Also the lower the level, typically the shorter the temporal context it copes

with. Thus, the lower the level, the simpler its perceptual and behavioral capabilities

are.

3.4.1 Open view

Fig. 3.6 gives an open view of a sensorimotor system. A sensorimotor system can be

regarded as an observation-driven MDP. However, as we discussed in the last section,

it is not the same as the traditional MDP with hand-designed states.

Each circle in Fig. 3.6 indicates a local context state, corresponding to a single

time frame. At each time frame, the system grabs the current sensory input x, which

is used for updating the last context L. Two mapping engines: R and F are used to

map from the last context L to a set of primed contexts P. In Fig. 3.6, a priming

transition from one context to the next is indicated by a dashed line.

Fig. 3.7 illustrates how the temporal trajectory is generated from the visited con-

text states. What happens in the physical world (including the action of the agent)

and the internal world (including the internal action of the agent) jointly determine

the last context, which in turn determines which context state is visited. The next

context visited provides information for updating the primed contexts from the cur-

rent context state. In Fig. 3.7, such updating is simply denoted as an addition to the

set of primed contexts P.

3.4.2 Recursive view

The above open model of a sensorimotor system is straight forward to visualize the

concept of context state, but it is not suited for showing how the architecture realizes

the system. The recursive model of a sensorimotor system, shown in Fig. 3.8, can
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better illustrate the computational architecture of a sensorimotor system. As shown

in the figure, both the reality mapping R and priming mapping F are accomplished

by a mapping engine. Each context state is represented by a vector in the input space

of the mapping engine.

With the recursive model, we can see that the effect of a value system V can be

modeled as a mapping that takes multiple primed contexts from the reality mapping

R or the priming mapping F, and selects a preferred context. Its action part is sent

to all the corresponding effectors. In the past, supervised learning is separated from

reinforcement learning. Reinforcement learning only works on an externally given

scalar reward value. We treat a value system in a more general way. Its innate part

is driven by physical pleasure (e.g., a sweet taste) or pain (e.g., an electric shock). Its '

learned part is responsible for learning values of events from the external world (e.g.,

working hard is good). Thus, the value system uses not only a reward value, but the

primed context as well (including sensations and actions).

3.4.3 Architecture view

A more detailed block diagram of the architecture of a sensorimotor system is shown

in Fig. 3.9. Each internal and external action output feeds back, through a delay

unit, into the next sensory input. This is required by the SASE agent model: the

agent must sense and perceive what it does, internally and externally. The input to

a sensorimotor system, indicated by the two left-most arrows in Fig. 3.9, is its target

for perception and cognition.

A sensory mapping [127] is needed wherever an attention selection effector (local

analysis) or dimension reduction is needed. As shown in Fig. 3.9, a sensory mapping is

used to enable attention selection from the current sensory input vector and another

sensory mapping enables the attention selection of the current input, the previous

context, or both. As mentioned earlier, each sensorimotor system has two cognitive

mappings, the reality mapping R and the priming mapping F. A near future context
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from R is useful for carrying out skilled procedures. A far future context from F is

needed to predict the future consequence (e.g., 10 frames or more into the future).

The source of input to the priming mapping has two alternatives: the same input

as the reality mapping (as shown in the figure) or the primed context output from the

reality mapping. The former allows more accurate control of the timing in the primed

context while the latter may enable more efficient “abstraction” of the context in the

priming mapping, since the primed context from the reality mapping has already

taken the output action into account (e.g., the discriminant analysis by the IHDR

tree in section 4.4).

The priming mapping, implemented by a cognitive mapping engine, IDHR needs

a prototype updating queue whose function is to predict far future context using the

Q-learning algorithm [41] in a recursive way. The reality mapping does not need such

a queue because it only predicts the next near future.

The motor mapping of a sensorimotor system generates concise representation for

stereotyped actions, in addition to the function of action release.

3.5 Major components

The architecture in Fig. 3.9 divides the information processing into three major map—

pings: the sensory, cognitive and motor mappings. The sensory mapping takes sen-

sory inputs. It may be followed by another sensory mapping to increase the extent

of coverage of space and time. The sensory mappings are followed by a cognitive

mapping.

The basic difference between the sensory mapping and the cognitive mappings is

that the sensory mapping does not use the information of motor output for its feature

space development, but the cognitive mapping does.

The motor mapping has two functions: (1) generating a higher motor representa-

tion in space and time for motor output space and ( 2) receiving signals from cognitive
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mappings in terms of a higher motor representation and recovering the detailed con-

trol signal for every motor that it handles.

In this section, we first discuss these three major mappings, next introduce an

innate value system, and finally an algorithm is given to summarize the sensorimotor

architecture.

3.5.1 Sensory mapping

The sensory mapping provides representation for all possible receptive fields in space

and time and allows attention selection. In the past the role of representation has

been well recognized but the purpose of attention selection has not been adequately

studied.

Fig. 3.10 shows the hierarchical spatiotemporal organization of sensory mapping.

The major functions of the sensory mapping include:

1. Grouping different sources of sensory input (e.g., different pixels in an image or

visual and auditory inputs) in space and time. The term “sensory” should be

understood as including both raw sensory inputs and processed internal signals.

2. For the grouped set of input, maintaining a complete representation for a hier-

archy of all possible (sampled) receptive fields, for the purpose of attention. By

sampled receptive fields, we mean a large but finite number of receptive fields

at different positions and sizes in space and time.

3. Automatically deriving features in the combined space as new representation.

It cannot assume a predetermined representation and therefore, it does not use

a symbolic representation.

4. Reducing the dimensionality of the new representation, while minimizing the

loss of necessary information.
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5. Execution of attention selection as an attention effector, controlled by a signal

from other parts of the brain (top down control).

In [127], a simplified sensory mapping, Staggered Hierarchical Mapping (SHM), is

implemented. SHM uses the Incremental Principal Component Analysis (CCIPCA)

method to automatically develop orientation sensitive and other needed filters. In

addition, the internal representation generated by SHM for receptive fields at different

locations and sizes is nearly complete in the sense that it does not lose important

information.

3.5.2 Complementary Candid Incremental Principal Compo-

nent Analysis

Complementary Candid Incremental Principal Component Analysis (CCIPCA) is a

stochastic approximation algorithm to estimate eigenvalue and eigenvector iteratively.

It is the major tool to implement the sensory mapping.

PCA is a well-known technique in data compression and feature extraction. It

gives a linear transform that converts a set of d—dimensional data into a lower-

dimensional space by minimizing the error in the least mean square (LMS) sense.

Therefore, PCA is used to generate new representations from sensory inputs.

A well-known approach to PCA is to solve an eigensystem problem. Given A as the

sample covariance matrix of the data set, one can find its eigenvectors and eigenvalues,

sort the eigenvalues in descending order, and construct a k x d matrix T with the

rows being the eigenvectors corresponding to the largest k eigenvalues. The matrix T

is the sought transform [35]. This is the basic idea behind most techniques for PCA,

such as the QR method [36]. However, since this approach requires an estimate of

the covariance matrix, the data set usually needs to be completely available at the

computation time. This is not appropriate for a developmental robot because of two

reasons. First, a developmental robot is an online agent, which senses and responds
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to the environment continuously. It should not wait until all data is accumulated

before doing the processing. Second, when the dimension of the data is high, both the

computation and storage complexity grow dramatically. For example, in the eigenface

method [50] [94], one of the promising face recognition methods that involves PCA,

a moderate grey level image is of 88 rows and 64 columns, which results in a 5632-

dimensional vector. Since the sample covariance matrix of a data set of d-dimensional

random vectors contains d(d + 1)/2 independent numbers, this amounts to 15,862,528

numbers!

[119] proposes an algorithm, called complementary candid incremental PCA

(CCIPCA), to incrementally compute the principal components of sequentially ar-

rived samples without estimating the covariance matrix. Suppose that sample vectors

are acquired sequentially, u(0),u(1), . . .. Each u(n), n = 0,1,..., is a d—dimensional

vector and d can be as large as 5000 or even beyond. The d x d covariance matrix

is neither known nor affordable to be estimated and stored as an intermediate result.

Without loss of generality, [129] assumes that u(n) has a zero mean. The algorithm

of CCIPCA is as follows,

 

 

.nzn‘lv.n_ lunurnfliliv.( > n .< 1>+n .< > .< ’uvxn—nn’ (3.6)

u...(n> = um) —u.T(n> ”‘(nl M") (3.7)
llvi(n)|| llvi(n)||’

where, u1(n) = u(n), and v,-(n) is the i-th dominant eigenvectors of the samples’

covariance matrix estimated after collecting the n-th sample.

The idea underlying CCIPCA comes from the concept of statistical efficiency [46].

Basically, this definition says that the most efficient estimate is one that has the

least variance from the real parameter and the variance is bounded by the Cramér-

Rao inequality. For example, the sample mean, i: = i2]; x,, is the most efficient

estimate for the mean of a Gaussian distribution with known standard deviation

0 [33].
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For CCIPCA, by substituting itself recursively, Eq (3.6) can be written as,

-n =_1_ n u- l'uT' THU—1)

v’t( ) n; z(]) 1(])llvi(j_1)ll.

Thus, v,-(n) can be viewed as the mean of “samples” w,(j),

2).-(n) = 5:mm, (3.8)

where w,(j) = u,-(])u,T(j)fl Although w,(j) is not necessarily drawn from a

Gaussian distribution independently, the estimate v,-(n) seems to have a close relation

with the estimate of a sample mean which is the most efficient estimate. [129] have

proved that v,(n) —-> :tAie, with probability one when n —> 00, where A,- is the i-

th largest eigenvalue of the covariance matrix of {u(n)} and e,- is the corresponding

eigenvector.

The above analysis prompts a further improvement to CCIPCA. As shown in

Eq. (3.8), all the “samples” ({w, (j)}) are weighted uniformly when v,(n) is estimated.

Since v,- (j) is far away from its real value at early estimation stage, the so—generated

w,(j) can be regarded as a “sample” with large “noise” when j is small. To help the

convergence of the estimation, it is preferable to give smaller weight on these early

“samples”. A way to implement this idea is to use an amnesic average by changing

Eq. (3.6) into,

v.” :ILZE_110,,_ Lflunur ”tin-1)
1( ) 71. t( 1)+ TL 1( ) i (n)llvi(n—1)H,

 (3.9)

where l is called amnesic parameter, typically, ranging from 2 to 4. With l, Eq. (3.9)

automatically adjusts the weights of old estimates and new samples.

In summary, the CCIPCA algorithm is as shown in Fig. 3.11. CCIPCA has been

shown empirically to be a very efficient estimation algorithm compared with SGA

and GHA for high-dimensional data [128].
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3.5.3 The cognitive mapping: IHDR tree

The R and F mappings in Fig. 3.9 are implemented by two Incremental Hierarchical

Discriminant Regression (IHDR) trees [44]. IHDR is not new for this thesis research.

We first survey other related regression methods, then outline the improvements over

the old versions [111,113]. An experimental evaluation is provided at the end.

Learning a function f : X H y in real time for high-dimensional data remains a

nontrivial problem, particularly when the complexity of the function to be estimated

are unknown. By surveying the literature of regression in statistical learning, one can

identify two classes of methods: global model fitting and local model fitting methods.

Global model fitting methods, including Multiple Layer Perceptron (MLP) [l2],

Radial Basis Function (RBF) [22], Lasso regression shrinkage [93] and Support Vector

Machine based Kernel Regression methods (SVMKR) [88], are characterized by ad-

justing a predefined model using a pre—collected training data set via optimizing global

criteria. They are not suited for the real-time learning in high-dimensional spaces de-

spite their theoretic background. First, they require a priori task-specified knowledge

to select right topological structure and parameters. Their convergent properties are

sensitive to the initialization biases. Second, those methods are designed primarily for

batch learning and are not easy to adapt for incrementally arrived data. Third, their

fixed topological structures eliminate the possibility to learn increasingly complicated

scenes.

Local model fitting methods (e.g., IHDR) use temporal-spatially localized (thus

computationally efficient) models, in the meanwhile, grow the complexity automati-

cally (i.e., the number and organization of local models) to account for the nonlinearity

and the complexity of the problem. They are more suited for incremental real-time

learning, especially for the situation where there is limited knowledge about the scene

and the robot, itself, needs to develop the representation of the scene in a generative

and data driven fashion.

IHDR generates local models to sample the high-dimensional space X x y sparsely
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based on the presence of data points in a vector quantization (VQ) [51] manner. IHDR

enjoys two nice properties: First, IHDR derives automatically discriminating feature

subspaces in a coarse-to—fine manner from input space X. Discriminating features

are automatically derived discriminating features at the internal nodes of the tree.

The features are most discriminative in the sense that they maximize the trace (or

the determinant) of between-class scatter. In this way input components that are

irrelevant to the mapping’s output are disregarded to achieve better discrimination

and generalization. Second, IHDR organizes its local models in a hierarchical way,

as shown in Fig. 3.14. IHDR’s tree structure recursively excludes many far-away

local models from consideration (e.g., an input face does not search among nonfaces),

thus, the time to retrieve and update the tree for each newly arrived data point x

is 0(log(n)), where n is the size of the tree or the number of local models. This

extremely low time complexity is essential for real-time learning with a very large

memory.

Two kinds of nodes exist in IHDR: internal nodes (e.g., the root node) and leaf

nodes. Each internal node has q children, and each child is associated with a discrim-

inating function:

W) = $0: — c.)TW.-1(x — c.)+—;-1n<IW.-I>. (3.10)

where W.- and c,- denote the distance metric matrix and the x-center of the child

node i, respectively, for i = 1,2, ...,q. Meanwhile, a leaf node, say c, only keeps a

set of prototypes ’Pc = {(x1,y1), (x2,y2), ..., (xnc,ync)}. The decision boundaries for

internal nodes are fixed and have quadratic form. A leaf node may develop into an

internal node by spawning (see Step 8 of Procedure 1, Appendix B) once enough

prototypes are received.

The needs of learning the matrices W,, i = 1, 2, ..., q in (3.10) and inverting them

make it impossible to define W,- (for i = 1, 2, ..., q) directly on the high dimensional
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space X 2. Given the empirical observation that the true intrinsic dimensionality of

high dimensional data is often very low [77]. As shown in Figs. 3.12 and 3.13, it

is possible to develop most discriminating feature (MDF) subspace D to avoid the

degeneracy and redundancy caused by irrelevant dimensions of the input data (“curse

of dimensionality” [10]).

As shown in Fig. 3.14, IHDR partitions the input space X into regions: R1, ...,

RN and each of them corresponding to a leaf node. In each of those region, a linear

regression model is used to represent the data samples received. Let the x be the

input querying point. Approximating function f is then accomplished by computing

the local linear regression models and by forming a final prediction from the weighted

average of the individual predictions

N

y = 2: IR): (x)yka

k=l

where y, denotes the predicted output for the linear regression model covering the

region R), (see Eqs (A5) and (A6) in Appendix B). The weight IRk(x) represents

an indicator function, which denotes the likelihood of the input x belonging to the

region 72;, and is defined as

1 if X E Ric

1R1; (X) =

0 otherwise.

Due to IHDR’s hierarchical organization of those regions, the computational com-

plexity IRk(x) is 0(log N) where N is the number of leaf nodes. Therefore the speed

of computing the weight is fast even the tree has grown to be a huge one.

In summary, the following improvements were suggested by this thesis:

1. Amnesic average is proposed to relieve the problem of initializing bias. At the

 

2The complexity of inverting an d x (1 matrix is 0(d3). When (1 is big (e.g., 5000), it is infeasible

to compute online in real-time.
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beginning of the incremental procedure, because the number of samples is small,

the clusters are usually ill-generated. So are the boundaries of the cluster, which

will influence later partitions of the tree. We use the amnesic average technique

to gradually get rid of the effects of earlier data.

Suppose {x,-,i = 1, 2, . . . , n — 1} are the data entering the system sequentially.

Written in an incremental style, their sample mean x("l and scatter matrix Pg"),

after receiving the nth sample, are given by,

- I — 153m) ___ n #(nlim—i) + + #(n)

n n

 xn, (3.11)

 pg!) = n ‘ I; ”(”l 1‘53”) + 117-@071 — x)(x,, — 5:)T. (3.12)

u(n) is the amnesic parameter which controls the update rate, depending on n

in the following way:

0 ifn_<_n1

u(n) = b(n — n1)/(n2 — m) if n1 < n S n2, (3-13)

b+(TI—Tt2)/d If'ng <71

where b, n1, n2 and d are parameters. Let us remark that u(n) is a piece-wisely

linear non-decreasing function. u(n) —> 1/d when n becomes big. This means

that new samples still have effects and old samples are “forgotten” gradually

when n ——> oo.

. We use the augmented space Z = X x y for clustering, while [111,113] use 32 for

labeling. This is desirable since it encourages more elaborated representation

using the information of input space. For example, in supervised learning, there

are samples whose x might be dramatically different but their labels y are the

same. In this case, using 32 information for clustering will cause those samples

indistinguishable and, thus, the derived discriminating subspace ’D is singular
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and the yielding tree is unbalanced. Furthermore, adding X information may

increase the locality of the sgenerated clusters, which facilitates linear regression

model on a local region.

We use the following distance metric for clustering:

dizwzllx—clll +wylly—yill, (314)

0;; 0y

where w: and wy are two positive weights that sum to 1: w; + my = 1; a:

and 0,, denote incrementally the estimated average lengths of x and y vectors,

respectively; and c,- and y, denote, respectively, the x-center and y—center of

the ith cluster of the node c. It is worth noting that the parameters on.n and

0,, should take account of the dimensionalities of X and y. In most of IHDR’s

application, dim(X) >> dim(y) and, hence, the x—part dominates the distance

in Eq. (3.14) if we do not weight them properly.

3. In [111,113], the nearest-neighbor model3 is used in the leaf node. Although the

nearest-neighbor’s error rate is bounded above by twice the Bayes rate (which

is the Optimal error rate for a classification problem) [31], Atkeson et al. [9]

point out the nearest-neighbor models might overfit linear areas, as shown in

Fig. 3.15 (a).

We propose to use the linear regression in the leaf node instead of the nearest-

neighbor model. Let x denote the query point. Assume IHDR finds the leaf

node 0 whose prototype set ’PC is:

736 : {(X1,y1), (”(293”)? "‘r (ch, ync)}

where the output labels are scalar“.

 

3The nearest-neighbor regression simply chooses the closest point and uses its output value.

4For notation simplicity, we only consider the scalar output.
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As in locally weighted learning (LWR) [9], d(., .) denotes the Euclidean distance

and K(d) denotes a distance kernel function (e.g., K(d) = exp(—%)). We

compute the following diagnal weight matrix:

W = diag[K(d(x1, X), K(d(x2) X), “'3 K(d(x’ncr X)]

T

with each one corresponding to a prototype in PC. Let Y = [y1 ync] and

T

X = [x] x56] . We formulate the problem as finding the parameter ,8

such that the regression output is

.7? = MK

and the following cost function is minimized

C = (Y — xs)TW(Y — Xfl).

The solution of this weighted least square problem [81, Page 386] is

s = (XTWX)-1XTWY. (3.15)

It is important to note that XTWX is a d X d matrix, where d denotes the

dimension of the vector x. If X is a high dimensional space, then inverting such

a matrix is impossible for a real-time application. However, we can conduct

such regression on the discriminating subspace D (see Appendix A and [123]).

In the following, we experimentally show the augmented IHDR’s feature extraction

and real-time learning capabilities on an artificial data set. As a first test (2d-cross),

we ran IHDR on the noisy training data drawn from a two dimensional function

y = max{exp(—10xf),exp(—50x§), 1.25 exp(—5(xf + 223)} + N(0, 0.12),
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as shown in Fig. 3.16 (a). This function is a combination of nonlinear and linear

areas and an interesting test of learning and generalization capabilities of a learn-

ing algorithm [99]: learning system with simple model find it hard to capture the

nonlinearity well, while more complex models easily overfit the linear areas. A sec-

ond test (100d-cross) added 98 irrelevant noise features to the input, each having

a density N(0, 0.0252). We thus obtain a 100—dimension input space. A third test

(200d-cross) added another 100 irrelevant noise features with the density N(0, 0.05)

to the input space of the second test. The learning curves with those data set are

illustrated in Fig. 3.17 (a). In all three cases, the normalized mean square errors

(nMSE) are reported on an independent test set (1681 points on a 41 x 41 grid in

the unit-square in the input space). As the number of training number increasing, all

nMSEs converged to the nice function approximation results, namely, nMSE < 0.03

after 100,000 training data points. Fig. 3.16 (c) shows the learned surface of the third

test after 100,000 training samples presented. For comparison, at the same condition

of (c), Fig. 3.16 (b) shows the learned surface using the nearest-neighbor model in leaf

node. Fig. 3.17 (b) illustrates the execution time of both training and test processes

with respect the number of training samples. It is interesting to note that the execu-

tion time increases linearly w.r.t. the number of training samples. The reason is that

IHDR’S updating and retrieval procedures have the logarithmic complexity and, thus,

the average time of adding a training sample and retrieving a testing sample does not

change much even though the size of tree has grow tremendously. As considering

the third case (200d-cross), execution time on a 200-dimension data set takes only

about 500 seconds for 100,000 sample, in other words, the average time for a sample

is about 5 milliseconds. Therefore, IHDR is fast, which is extremely important for

later real-time robot collision avoidance experiment.

To sum up, the power of feature extraction is due to IHDR’s deriving discrimi-

nating features automatically. The real-time learning performance is achieved by the

logarithmic complexity of IHDR.
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3.5.4 Motor mapping

A major goal of motor mapping is to generate a concise representation for stereo-

typical motor trajectories so that skilled actions that involve many motors can be

represented by high-level motor primitives in a lower-dimensional space. As shown in

Fig. 3.18, the architecture of the motor mapping is very similar to the spatiotemporal

sensory mapping but it works backwards. Motor mapping receives lower-dimensional

“feature” space signals (motor primitives) to synthesize higher-dimensional raw motor

signals. Motor mapping has many issues similar to those of sensory mapping.

Instead of having attention selection in sensory mapping, motor mapping has a

gating system. The gating system plays two roles. The first is the role of gating

by which the motor mapping evaluates whether the intended action has sufficient

action thrust to pass the gate threshold. The second is the role of subsumption [18]

in subsuming the lower—level action by the integrated action, as shown in Fig. 3.19.

The primed action from the cognitive mapping includes the desired control signal

for each effector as well as action thrust. The action thrust indicates how consistently

the action is issued. The higher the action thrust, the more consistent the action

generator is. Therefore, enough thrust must be generated to pass the gate before an

action can be issued to the effector.

Subsumption is needed where inconsistent actions for a single effector are issued

from multiple sources, and each source has a different priority. One typical use is that

the action derived from a higher level (more sensory integration) has a higher priority

over the action derived from a lower level (less sensory integration). The subsumption

belongs to innate internal behaviors. When the robot becomes more mature, the

selection of behaviors from low levels can be overidden by learned (voluntary) internal

behaviors.

If a single motor is considered, motor mapping includes only a gating system for

each of the single motor as well as the subsumption mechanism for integration from

other sensorimotor systems as shown in Fig. 3.19. Through developmental experience,
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the motors that are highly correlated enable the growth of a. new part of motor

mapping, denoted as an attached (top right) block to the basic motor mapping in

Fig. 3.9. The new part of the motor mapping plays the corresponding role of the gating

system, but it is for correlated multi-motor actions. Further, it not only performs the

gating function, but also the reconstruction of higher-dimensional raw motor signals

from a lower-dimensional “feature” representation (higher motor primitives).

In [131], an action gating system is implemented on the SAIL robot to decide

whether an action is actually triggered.

3.5.5 Innate value system

Given the last context I (t), the IHDR tree finds the best matched context P’ which

is associated with a set of primed contexts {p1, ..., pk}. How does the controller select

the best primed context? A Q value with each primed context is needed. This is

represented by a list Q = {q1, q2, ..., qk}, in parallel with the primed contexts. Thus,

each primed context consists of three components, (xp, (t), ap,(t), q,), i = 1...k.

Definition 3.5.1 The innate value system chooses the action that has the best value

q.

The value system receives a list of primed contexts at each time instant t and

occasional environment reward signal r(t), which is from the biased sensors of the

robot (e.g., the aversive sensors such as a “bad button” or appetitive sensors such as

a “good button”). Each element in the Q vector starts from an initial value, e.g., a zero

value. The updating rule that we summarize here is adapted from Q-learning [103],

tested in [41]:

q(l', n) = n _1;“(n)q(l’.n - 1) +
 

and

V(p') = max q,-,

195k
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where g(l’, n) denotes the matched element in Q and has been updated n times, and l’

is the best matched prototype for the current last context l(t). 7 is a positive number

between 0 and 1, and is used for discounting in time. p’ is the primed context found

in the next time frame. To keep the temporal order of the latest retrieved primed

contexts for real—time local propagation, a primed context update queue (see Fig. 3.9)

is needed. The future primed context prototype (including reward) propagates back to

the previous prototypes recursively for each time frame in the context update queue.

Other prototypes (not in the queue) are not affected and thus are not updated.

3.5.6 Sensorimotor algorithm

The following is a summary of a sensorimotor system with an innate value system:

1. Initialize the mental cycle count to 0.

2. Grab the current input from the sensory mapping to form the last context

l(t) = (x(t),a(t))-

3. Go through the sensory mapping to reduce the dimensionality of l (t) while

applying the internal actions to the attention selection effector of the sensory

mapping.

4. Retrieve the reality (cognitive) mapping R using l(t) to find the best matched

prototype l’ in the matched leaf node of the cognitive mapping. Its output part

is a list of primed near contexts (A,(t), X,(t)).

5. The innate value system selects the near primed context p,(t) from the lists

(Ar(t).Xr(t))-

6. Retrieve the priming (cognitive) mapping F from I (t) to produce the primed

far contexts (Af(t), Xf(t)).

7. The innate value system selects the far primed context pf(t) from the lists

(Arft),X1(t))-
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10.

11.

12.

13.

14.

15.

. Feed the actions in p,(t) and p;(t) through the motor mapping. The current

internal action determines whether primed near context or primed far context

receives attention in the motor mapping. The attended primed context is p(t).

Update both the reality and priming mappings using the primed context p(t). If

there is an imposed action from the environment (supervised learning), replace

the corresponding part of ap(t) in p(t) = (ap(t), xp(t)).

Spatially update the primed context lists (A,(t), Xr(t)) and (A{(t), Xf(t)) using

the Incremental Vector Quantization technique.

Temporally update primed contexts in the prototype update queue for the prim-

ing mapping F.

Push the current primed context p(t) into the prototype update queue from the

tail and pop out the oldest primed context.

The motor mapping produces internal and external actions.

If the mental cycle time has not been used up, sleep for the remaining time so

that the exact time actually spent by this cycle is equal to the fixed pre-specified

mental cycle.

Increase mental cycle count by 1 and go to Step 2.

The SAIL robot has successfully tested those major components of the proposed

architecture. For example, a Type-6 architecture (shown in Fig. 3.20) was used in

action-chain learning [131]. The result of the experiment is promising and we plan

to implement the whole architecture on the Dav robot. Other experiments on SAIL

include: (1) vision-guided navigation [115], (2) grounded speech learning [116], (3)

communicative learning [131], (4) novelty and reinforcement learning in the value

system [41], and (5) sensory mapping development [127].
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3.6 Summary

This chapter has outlined the major differences between a non-AMD robot and an

AMD robot: An AMD robot’s developmental program is task-nonspecific. Further,

this chapter introduces eight challenging operational requirements of an AMD robot,

which pose a series of challenges for the design of the architecture. The series of

architecture types introduced here demonstrates several architecture limitations of the

current hand-designed MDP and a possible route toward higher mental architectures.

The proposed architectures leave much freedom for different implementations of its

major components, e.g., sensory, cognitive, and motor mappings. Although the Dav

developmental program that is currently being implemented could be explained in

further detail, such details are beyond the scope of this chapter. Dav’s developmental

architecture has yet to be implemented and tested, but its predecessor, SAIL, has

successfully tested the major components of the designed architecture. The presented

architecture will be tested in future studies and the performance will be reported.
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Figure 3.5: An outline view of the Dav architecture. The closed-loop control is realized by
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and external environments. w denotes the working memory and l is the long-term memory.
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Figure 3.6: An open view of a sensorimotor system. A circle designates a local context

state determined by the last context L. An inward solid arrow indicates a sensory input at

that time frame (including internal and external sensors) at each time frame. An outward

solid arrow indicates an output at that state. A dashed arrow indicates an experienced

transition between states. The lower part corresponds to the reality mapping R and the

upper part corresponds to the priming mapping F. The two generally do not have the same

number of states. The priming mapping is used to predict farther future contexts.
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Figure 3.10: The spatiotemporal organization of areas in the sensory mapping. The ellipses

represent receptive fields covering both space and time. Areas are organized in a hierarchical

way, and the output of an earlier (low order) neural area is used as input to the later (higher

order) neural area. Along the pathway of information processing, a neuron in a later area.

has a larger receptive field than one in an early area. In order to make the correct signal

available at the right time for the right input line, we use a time shifting technique. Acting

as a time delay unit, the shifter moves each signal to the next line at each time instant.
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Figure 3.12: Y-clusters in space y and the corresponding X-clusters in space X. Each

sample is indicated by a number which denotes the order of arrival. The first and the

second order statistic are updated for each cluster. The first statistic gives the position of

the cluster, while the second statistics gives the size, shape and orientation of each cluster.
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Figure 3.13: The autonomously developed IHDR tree [114,123]. Each node corresponds to

a local model and covers a certain region of the input space. The higher level node covers a

larger region, and may partition into several smaller regions. Each node has its own Most

Discriminating Feature (MDF) subspace D which decides its child models’ activation level.
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while j is the index of child region. The leaves of the tree represent the finest partition of

the space. The decision boundary of the region is of quadratic form.
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Figure 3.15: (a) Fits using the nearest-neighbor rule. (b) Fits using locally weighted

regression. (c) Fits using kernel regression. (a) and (b) are adapted from Atkeson et al. [9].
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Figure 3.16: The result of IHDR on an artificial data set.
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Figure 3.18: The motor mapping as a reverse application of the sensory mapping, but with

signal reconstruction.

Action

--——->

Gating

I From high level

 
 

 

 

  

To effector

——>

   

I Gating control Subsumption
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gating mechanism and the right is a subsumption mechanism.
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Chapter 4

Perception-driven Control

Architecture

4. 1 Introduction

From Chapter 2, we can see that conventional robotics relies on human supplied

equations of dynamics and kinematics to plan trajectories. This approach has been

proven to be very useful when those equations and environment representation are

available. However, it is shown that this approach has difficulties when the system is

extremely complicated and insufficient analytical knowledge is available. For example,

humanoid robots have so many degrees of freedom that even for simple actions there

are nearly infinite set of joint position sequences that accomplish a single action [98].

Some researchers hence propose to learn actions through practice. Related work in

the area includes LWPR on a SARCOS robot by Schaal et al. [97], the simulated

model of a 37 degrees of freedom by Mataric et al. [11], and the scheduling degrees

of freedom by Grupen et al. [26] motivated the early child motor development.

On the other hand, the traditional approaches usually require a human supplied

representation of the environment. Robots designed with those approaches have dif-

ficulty in adapting to unknown and changing environments, for example, in sensing

117



and controlling a robot’s arm to pick apples in an orchard. Further, the goal can

change at any time (e.g., a larger apple becomes the target before the current one is

picked). Some efforts have been made to program behavior-based humanoid robots

(e.g., Kismet [14], Cog [3,65]). Recently, progress has been made in realizing robots

that can develop their mental skills autonomously through what is called Autonomous

Mental Development (AMD), which we have discussed in Chapter 3.

In this chapter, we present a novel developmental perception-driven control ar-

chitecture (DPDCA), which is adapted from the overall architecture presented in

Chapter 3. The novelty of DPDCA includes: (1) No task (goal) is given at pro-

gramming time. (2) The task-specific representation is generated autonomously from

sensor-motor space, not in a 3-D world space. (3) The robot learns while performing.

(4) The robot is “alive” while humans interact with it.

In the following, we first outline the proposed framework. we then illustrate the

power of DPDCA via Dav’s range-based indoor navigation experiments.

4.2 Control Architecture

Machine perception has been proven difficult. Programming perceptual capability

using human defined features (e.g., edges, colors, tones) provides a way to produce

results in a controlled setting. A resulting fundamental limitation is that the robot

does not work well in unknown, partially unknown, or changing complex environ-

ments. In this section, a Developmental Perception Driven Control Architecture

(DPDCA) will be presented to take up these issues.

Definition 4.2.1 A Sensory vector is a vector that contains raw data from all sen-

sors. A sensory vector is a stochastic process indexed by discrete time t, denoted by

x(t).

The sensing modalities of a developmental robot typically include vision, audition, 3-

D range sensors, joint encoders, tactile sensors and strain gages, plus “brain” internal
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sensors such as sensors that sense attention.

Definition 4.2.2 An action vector at time t is a vector denoted by a(t), which con-

sists of the control signals sent to all effectors at time t.

Definition 4.2.3 A context at time t is the sensory information that is needed by

the controller to generate a proper action at that time. With the current sensation

denoted by a sensory vector (including sensing of action) g(t) = (x(t),a(t)), the last

context is defined as l(t) = (g(t),g(t—1),...,g(t— m +1)) at time t. Here m denotes

the number of time frames in the context.

The context so—defined includes only the latest m sensory vectors. It is desirable to

use a small subset in order to reduce the complexity of learning.

Definition 4.2.4 The control law of the DPDCA is a decision process Rt: g’(t) =

R,(l(t)), illustrated in Figs. 4.1 and 4.2. The primed (recalled) context vector g’(t)

consist of two parts: the primed sensory vector xp(t) and the primed action vector

ap(t). The action vector ap(t) is the output signal vector sent to the controllers.

Rather than programmed manually, the decision process (a function) R, is developed

through time. The function Rt depends on the robot’s sensorimotor experience, and

can be regarded as an internal representation of the environment and its own body.

Definition 4.2.5 An internal representation Rt is the agent’s representation of its

own body as well as that of the external environment. It is grown from the agent ’3

continuous interaction with the external environment.

The representation Rt is an accumulation of the experience up to time t. The Rt is

generated based on what we called developmental algorithm, from its own experience

indicated by {g(r)| r = O, ..., t}. R, does not necessarily describe the world accurately,

however, it may be improved by new experiences.
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Figure 4.1: The decision process of an agent. The agent tries to use the last context

I (t) = (x1(t), al(t)) to predict the future contexts: primed sensation xp(t) and primed action

(W)-

R, is not a monolithic representation typical in human designed representation.

Instead, it is high dimensional, numeric, and hierarchical. Each experience g(t) must

be used to update the representation R; which is then used for computing the primed

action ap(t) and the primed sensation xp(t). Afterward, g(t) is discarded. Therefore,

the entire experience series from time 0 to t — 1 is not available at time t. The robot

simply does not have space to store all of them. The representation R, is crucial

in order to keep all the necessary information about what the agent has learned so

far. The following mappings are needed to learn incrementally: (1) Representation

updating from current context I (t) input and the current representation Rt_1(t):

Rt : R(Rt-1) l(t)), (4'1)

(2) Control law:

P = 3:00)), (4-2)

where the set P is a list of primed contexts {g£(t) | i = 1, ..., k} as an approximation

of distribution of primed context. Each element of P consists of three elements,

(xp,(t),ap,(t),q,-). The action api(t) of the primed context with highest q, value is
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Figure 4.3: Flow chart of learning procedure: the system learning while performing.

chosen as the next output control signal a(t), that is

a(t) = apc(t), c = arg “_nliinkqp (4.3)
.....

The “innate” value system V updates q values using an augmented Q-learning algo-

rithm [42], based on handle external rewards r(t).

A detailed illustration of DPDCA architecture is in Figure 4.2. Rt is implemented

by an IHDR tree and R is its updating function. IHDR learns incrementally by

building a hierarchy of automatically derived discriminating feature subspaces. Given

each input, it retrieves output in logarithmic time.
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As shown in Figure 3.1 the robot trainers are an active part of the environment,

they do “robot sitting”, training the robot step—by-step, and imposing reward or

punishment according the robot’s current behavior.

In each learning episode, if the trainer imposes a desired action on an effector,

the robot will comply using its force sensor depending on whether the imposed action

is consistent with what the robot intend to do (see Fig. 4.3). If everything is fine,

proceed with the action and the robot may receive a reward for it. On the other

hand, if the robot is not doing what the trainer wants, it will modify its learned

internal representation Rt so it follows the trainer’s instruction (the imposed action).

This is a unified learning procedure, that combines both supervised and reinforcement

learnings.

Major differences exist between the DPDCA and a traditional controller. The

DPDCA has following characteristics: It develops a controller (software) by learning

tasks on the fly, from simple tasks (e.g., moving around according to what it “sees”) to

more and more complex tasks (e.g., learning sensing based object manipulation). The

same developmental program runs continuously for learning all the tasks. Different

environments and commands invoke different task execution. Other differences are

summarized in Table 4.1.

To conclude, let us remark that, comparing with control diagram in Fig. 2.15 as

well as Eq. (2.33), the proposed architecture does not need a desired trajectory to be

specified. In fact, the physical environment itself shapes the robot’s behavior based

on the current task context (if multiple tasks are considered).

4.3 Dav’s Range-based Navigation Experiment

4.3.1 Wall Following Behaviors

Our mobile humanoid robot, Dav, as shown in Fig. 2.1, was used to test our proposed

the DPDCA framework. In this experiment, we trained the robot to navigate along
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Table 4.1: Differences between the DPDCA controller and the traditional controller.

 

 

 

[ DPDCA controller ] Traditional controller ]

e No task (goal) given at e Tasks (goals) are given (e.g.,

programming time. trajectories).

e No need of 3-D Euclidean space 0 Inverse kinematic transform is

(end—effector frame) needed since planned trajectories

representation. are represented in the

. . end-effector frame.

0 When human interacts With a

robot, the robot is “alive” in a 0 Dynamic model of the robotic

sense of learning to associate the body is needed for tracking the

current sensory context and the trajectories.

im osed action. , .

p 0 When human overrides machine

0 Robots learn their dynamic is dead (in a manual operation

behavior online. mode).

0 “Sensing and learning”. 0 Human programmer supplies the

Generate task-specific representation.

representation autonomously

“on the fly”.     
the loop shown in Fig. 4.4, which is the second floor of Engineering Building at

Michigan State University. The floor plane covers an area of approximately 136 X 116

square meters.

We have three types corners in this test site: ‘L’, ‘T’, ’+’, and ‘2’. Some training

range images around those corners and intersections are shown in Fig. 4.5. Those

corner types are typical for indoor navigation. The training session was conducted

under human control via the graphical user interface (GUI), shown in Fig. 4.6. The

imposed action can be calculated from the mouse pointer’s position (refer Eq. (5.14)

and Fig. 5.7). At each sampling instant, an input range image, previous robot’s

velocities and an imposed action vector (the desired forward translational speed and

angular speed) were fed into the IHDR tree for training if an action was imposed by

the trainer. On the other hand, the laser input and the robot’s velocities were used

to retrieve the action sent to low-level controller if no action was imposed. During
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Figure 4.4: A map of the training site at the second floor of the Engineering Building at

Michigan State University. The test loop (desired trajectory) is indicated by the thick solid

lines 5 different corners are denoted by bold-faced arabic numbers.

impose action cycle, it is worth noting that if the retrieved range image was similar

to the current range image (small Euclidean distance), the old stored action value

was replaced with the new imposed one.

First we took Dav for a training run. During the training session, we usually let

the robot run on its own (the current version of controller or the IHDR tree). If the

robot’s action was wrong, we overrode it either with a correct one or gave it a negative

feedback (reward); in the mean while, Dav associated the current laser map with the

imposed action or attributed the negative reward to the current action. This training

procedure resembles how babies learn to walk. When we satisfy with the performance

(e.g., small cross-validation error), Dav can be set free.

Dav learned very quickly during the straight section of the corridor, several inci-

dences of imposing action were sufficient for a reasonable performance. More training

samples were needed for Dav to turn correctly at the corners. After we trained the

robot with 2,215 samples online, Dav successfully finished the desired trajectory (the
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test loop in Fig. 4.4). The distribution of the 2215 samples is the following: 215

samples is from the straight sections; the other 2000 samples are from corners, with

each 400 samples from a different corners.

Secondly, to illustrate the performance of the navigator, we partitioned the 2215

samples into six bins, with first five bins corresponding to the five corners in Fig.4.4

respectively and the sixth bin corresponding to the samples from straight sections.

We performed five tests. In each of these tests, a bin from a corner was left out for

testing. In Fig. 4.7, we show the average error histogram of the five tests. The x-axis

denotes the Euclidean distance between the true and the predicted outputs, while the

y-axis denotes the number of samples. The range of output (v,w) is v 6 [0,1] and

w 6 [—7r/2, 7r/2]. The average normalized mean square error is 11.7%.

In the third experiment, we used the data set from the second floor as the training

samples. In the test, the data set with 4747 samples (manually labeled) from the third

floor was used. Fig. 4.8 shows the error histogram, in which the x-axis denotes the

Euclidean distance between the true and the predicted outputs. The normalized mean

square error is 8.6%. By inspecting the testing sample with large prediction error, we

found that in most cases, the labels of the testing samples were not consistent with

the training samples.

In order to provide a sense about how stable the navigating behavior is at a

different environment, we designed the fourth experiment. We trained the robot at

the second floor while testing it at the third floor. Fig. 4.9 shows how the robot

navigates at the third floor. The thick line in Fig. 4.9 denotes the trajectory of the

robot. One pass of autonomous navigation in the tested site took about 37 minutes.

The robot was observed to continuously run for 3.5 hours before the onboard batteries

were low. In several such tests conducted so far, the robot all performed well without

hitting the wall and objects on the floor. During these navigation tests, passers—by

were allowed to pass naturally. The mobile robot was not confused by these passers-

by largerly because the IDHR tree uses automatically derived discriminating features,
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Figure 4.5: A subset of training samples. The red arrows denote the labeled heading for

the robot.

which covers the entire scene. In addition, we measured the minimal clearance from

the obstacles in those test sessions. In the worse case the clearance is of about 50cm,

which happens when the robot was in a narrow corridor.

4.4 Summary and Future Work

The framework presented here does not restrict the scene type and, thus, is potentially

applicable to other similar indoor environments. Instead of relying on particular scene

features, the proposed controller uses the raw range image and automatically derived

features (due to IHDR’s feature extracting capability). Since no manually extracted

features (e.g., lines and corners) are used in the system, the controller is less restrictive

and more robust to the noise of sensors and effectors than the manually designed ones.

Finally, let us remark that, although the range—based indoor navigation system is less

challenging than the vision-based one, the result of Dav’s indoor navigation is still
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Figure 4.6: The graphical user interface to train the robot online. The left window shows

the current laser map in the robot’s local frame. The trainer may impose an action via

clicking the mouse button in the window. The red arcs illustrate the possible circular path

that the robot may have. The right window shows the primed range image (retrieved from

the IHDR tree).

very impressive. It shows the power of DPDCA framework.

The future work includes applying this framework to the robot’s eye-hand coordi-

nation task, which is more challenging because more degrees-of-freedom are used and

the high-dimensional vision is involved.
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Figure 4.7: The error histogram of the leave-one-out test.
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Figure 4.8: The error histogram of the testing data set collected from the third floor.
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Figure 4.9: A map of the test site at the third floor of the Engineering Building at Michigan

State University. The thick solid lines denotes the trajectory along which the robot traveled.
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Chapter 5

Global Obstacle Avoidance

through Real-time Learning

5. 1 Introduction

Reactive obstacle—avoidance behaviors and limited look-ahead searching offer a solu-

tion for a mobile robot to navigate in unknown and dynamic environments. Although

substantial amount of work on robot’s obstacle-avoidance behavior exists, many ap-

proaches are still restrictive. A common restriction is that the mapping between the

sensory context and desired behaviors is too complex to write a program to simulate

accurately.

It seems that real-time learning provides a promising alternative. Rather than

using hand-designed behaviors in an off-line fashion, the learning allows robots to ex-

plore the environments themselves while improving their performance through prac-

tice. During the learning, the robot associates the desired behavior with the current

sensory context and plans ahead within a limited step in real time. This architec-

ture design endows robots with great flexibility to cope with unknown or changing

environments, which are not easily handled by programmed-in behaviors.
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5.2 Related work

The problem of range—based obstacle avoidance has been studied by many researchers.

Various reported methods fall into two categories: path planning approaches and local

reactive approaches. Path planning approaches are conducted off—line in a known

environment. It is shown that path planning for a robot with bounded velocity and

arbitrary many obstacles, is intractable (NP-hard) [21]. In Hwang & Ahuja [25,45], an

artificial potential field is used to find a nearly optimal collision-free path in a space.

Such methods can handle long—term path planning but are computationally expensive

for real-time obstacle avoidance in dynamic environment (moving obstacles).

The local reactive approaches are efficient in unknown or partially unknown dy-

namic environments since they reduce the problem’s complexity by computing short-

term actions based on current local sensing. In the vector field histogram method

(VFH) [13], a 1-D polar histogram representation is constructed to model the en-

vironment. The curvature-velocity [84] and dynamic window methods (DW) [34]

formulate obstacle avoidance as a constrained optimization problem in a 2-D velocity

space. Obstacles and the robot’s dynamics are considered by restricting the search

space to a set of admissible velocities. Other local approaches include: Nearness dia-

gram (ND) [66] uses high-level description of the environment to generate the motion

signals via five laws. Ego-Kinematic space method [67] suggests a nonlinear trans-

form to relieve the problem of the non-holonomic constraint of two-wheel vehicles. In

order to deal with local minima, limited look-ahead search strategies are integrated.

For example, the enhanced VFH algorithm (VFH* [95]) uses A* [79] and the global

DW approach [16] uses NF1 [57].

A major challenge of scene-based behavior generation is the complexity of the

scene. Human expert’s knowledge has been used to design rules that produce behav-

iors using pre—specified features. In Lee & Wu [58], a fuzzy logic control approaches

is used to incorporate human expert knowledge for realizing obstacle avoidance be-

haviors. One difficulty of a pure fuzzy approach is to obtain the fuzzy rules and
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membership functions. The neuro—fuzzy approach [2,62,126] is introduced with the

purpose of generating the fuzzy rules and the membership functions automatically.

Their training processes are usually conducted using a human supplied training data

set (e.g., trajectories) in an off-line fashion. The dimensionality of the input variables

(features) is usually less than 10 to be manageable.

In contrast with the above efforts that concentrate on behavior generation without

requiring sophisticated perception, a series of research deals with perception-guided

behaviors. Studies for perception-guided behaviors have had a long history. Usu-

ally human programmers define features (e.g., edges, colors, tones, etc.) or environ-

mental models [15,43]. An important direction of research, the appearance-based

method [23,74], aims at reducing or avoiding those human-defined features for better

adaptation of unknown scenes. The need to process high dimensional sensory vector

inputs in appearance-based methods brings out a sharp difference between the be-

havioral modeling and perceptual modeling: the effectors of a robot are known with

the former, but the sensory space is extremely complex and unknown with the latter

and, therefore, very challenging.

In this chapter, we present an approach of developing an obstacle avoidance be-

havior by a mobile humanoid through online real-time incremental learning. This

learned behavior also integrated the result of look-ahead search seamlessly to solve

the “nearsightness” of purely reactive approaches. By limiting look-ahead search to

performed within real time, the path planner of this work is of the same spirit of

the learnng real-time A* (LRTA*) [54]. The major distinctions of the work include:

First, we used the appearance-based approach for range—map learning, rather than

an environment-dependent algorithm (e.g., obstacle segmentation and classification)

for obstacle avoidance. Second, a novel data fusion technique was used to integrate

difference modalities, e.g., laser map, robot’s speeds, and planned heading. Third,

we extended the search scope of LRTA* to the range of the robot’s sensing and Di—

jkstra algorithm was used. The new appearance-based learning method was able to
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distinguish small range map differences that are critical in altering the navigation be-

havior (e.g., passable and not passable sections). In principle, the appearance-based

method is complete in the sense that it is able to learn any complex function that

maps from the range-map space to the behavior space. This also implies that the

number of training samples that are required to approximate the complex function

is very large. To reduce the number of training samples required, we introduced

the attentional selective mechanism [124] which dynamically selected regions in near

approximity for analysis and treated other regions as negligible for the purpose of

local object-avoidance. Further, online training was used so that the trainer could

dynamically choose the training scenarios according to the system’s current strengths

and weakness, further reducing the time and samples of training.

The remainder of this chapter is organized as follows. Section 5.3 presents the

proposed approach. The robotic platform and the real-time online learning procedure

are described in Section 5.4. The results of simulation and real robot experiments are

reported in Section 5.5. Discussions and concluding remarks are given in Section 5.6.

5.3 Approach

The sensitivity to local minima of the reactive approach leads us to divide the problem

into two components: obstacle avoidance and path planner. This combined framework

can generate motions for mobile robots that accomplish their tasks, while securely

navigating in an unknown and dynamic environment (with low speeds).

5.3. 1 Obstacle avoidance

We consider the obstacle avoidance behavior as a decision process, which converts the

current sensing to action, including the range image and robot’s velocities, and the

desired heading. At this level, the robot does not sense and store scene configuration

(e.g., global map of the environment) nor the global robot position. That is, we
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assume that the current sensing and heading contain all of the information that is

sufficient for robots to derive the next motor control signal. In fact, it uses the real

world as its major representation. The goal of this component is to move safely

according to the scene, meanwhile moving toward the goal.

The range scanner observes r(t) E ’R C R" at time t, where 7?, denotes the space

of all possible range images in a specific environment. r(t) is a vector of distance,

whose ith component r,- denotes the distance to the nearest obstacle at a specific

angle. The vector v(t) gives the current velocities of the vehicle at time t, which are

measured by the vehicle’s encoders. Let 6(t) denote the desired heading given by

the path planner. The variables r(t), v(t), and 0(t) are given by difference sensors

or action whose dimension and scale are different. We thus need a normalization

procedure when fusing them together as an integrated context vector.

Definition 5.3.1 The vector x(t) denotes the system’s context of the environment at

time t, defined as:

r(t) — r v(t) — 5 6(t) — 6

w, w,, we

 x(t) =( )6 X, (5.1)

where w,, wv, and we are positive numbers denoting the scatter measurements1 of the

variates r, v, and 6, respectively, while r, a, and 0 are their corresponding means.

The action vector y(t) E 32 consists of control signals sent to all of the effectors

at time t, where )7 denotes the sample space of action vectors.

The obstacle avoidance behavior can be formulated as a mapping f : X H y, i.e.,

the primed (predicted) action y(t + 1) (the signal sent to the motors) is a function of

x(t):

W + 1) = f(KM) (52)

 

1For simplicity, we assume the covariance matrix (Eu) of a variate u is equal to 021, where I

denotes an identical matrix. Thus, its corresponding scatter is wu = \/ trZu = J50, where n denotes

the dimension of the variate u (see Marida [64] page 13).

134



     

 

9(1)

Path Planner

 

Mobile

Robot

0

   

  1r(t) 

Figure 5.1: The overall architecture of the range-based navigation. “Attention” denotes

an attentional module.

Fig. 5.1 shows the coarse architecture of the navigator. An IHDR tree, which we

discussed in Section 3.5.3, is generated to estimate the control signal y from x. The

current range image r(t), the vehicle’s velocities v(t) and the heading 6(t) from the

path planner are used for deriving the next control signal y(t + 1). An attentional

module is added to extract partial views from a whole view of a scan.

5.3.2 Attentional mechanism

Direct use of an image as a long vector for statistical feature derivation and learning

is called the appearance-based approach in the computer vision community. Usually

the appearance—based approach uses monolithic views where the entire range data (or

visual image) frame is treated as a single entity. However, the importance of signal

components is not uniform. There are cases where appearances of two scenes are

quite similar globally, but different actions are required. Further, similar actions are

needed where the appearance of two scenes look quite different globally. Both cases

indicate that there are critical areas where differences critically determine the action

needed. This necessitates an attentional mechanism to select such critical areas.

For example, in Fig. 5.2, (a1), (b1), and (c1) show three scenarios along the robot’s

path. Range images (a2) and (b2) are quite similar globally judged from the entire

image (except the critical area on the left side). In the context of an appearance-based
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Figure 5.2: Why attention is needed? The solid small circles denote the robot with a

short line segment at the front indicating orientation. Thick lines mark the walls along the

corridor. T and r denote the threshold and the mean, respectively. (a2), (b2) and (c2) are

range images taken by the robot at the three scenarios, respectively. (33), (b3) and (03) are

the corresponding images after passing the attentional module. The diagrams in lower two

rows use logarithmic scales for the Y-axis. We can see that the distance between (a3) and

(b3) becomes larger while the distance between (b3) and (03) becomes smaller.

method, this means that the distance (e.g., Euclidean one) between the two is small.

They require different actions: turning right for (al) and going straight or turning left

for (b1). In another case, range images (b2) and (c2) are very different globally, but

their desired actions are similar: going straight or turning left. Thus, it is difficult to

discriminate the three cases correctly by using a distance metric defined on the entire

image. But, if we look at the left regions in (a2), (b2), and (c2) of Fig. 5.2, we can

see that the similarities and differences are clear. Without a capability to attend to

this critical region, the learning system requires significantly more training samples
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when complex scenarios are considered.

In the above three cases, the critical area is the input component where range

readings are very small. This is true, in general, because near obstacles determine

heading more than, and often take precedence over, far-away objects. As we shall see

later, this can be accomplished by an attentional module.

We first define the scalar attentional effector.

Definition 5.3.2 The operation of the attentional eflector a(t) for input r(t) and

output x(t) is defined by:

l(t) = 90(0) a(t)) = (53)

where r denotes the sample mean of the raw signal r(t).

For intended application, we would like to have a(t) to behave in the following

way. First, when all input components have large values, the attentional selection

is in its default mode, turning on all components. Second, when there are nearby

objects, the attentional selection activates only nearby objects which are critical for

object avoidance while far-away objects are replaced by their mean readings. This

attentional action can be realized by two programmed functions 9 and f :

a(t) = aha-(t). a(t)) (5-4)

and

1 if r,- <Tor \7’j rj(t) 2T,

a.(t) = f(r(t)) = (5-5)

0 otherwise,

where T is a threshold, i = 1,2, ...,n, and r(t) = (r1(t),r2(t),...,rn(t)) denotes the

input vector. We write x(t) = (21(t), 22(t), ..., zn(t)) as the output of the attentional

action and a(t) = (a1(t), a2(t), ..., an(t)) as the attention vector. The above function

f will suppress some far-away components (a,(t) = 0) if there are objects closer than
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Figure 5.3: The attentional signal generator f and attentional executor g. r(t) and z(t)

denote the input and output, respectively.

T. If all readings are far—away, we do not want to turn the attention off completely

and, therefore, we leave all attentional effectors on (Vj, a]- (t) = 1). This operation is

illustrated in Fig. 5.3.

In practice, this raw attentional vector a(t) is smoothed by convoluting with a flat

window, as

1+5

1
I — — .a,(t) _ 11 Z a,(t)],

3:1-5

where [] denotes rounding to the nearest integer. This smoothing serves to eliminate

point-wise noise and to provide a neighborhood influence to the output attentional

vector.

In Fig. 5.2, the readings of the left part of diagrams (b2) and (c2) are smaller than

T. Thus, only the left part passes through the attentional module without change

whereas other parts are suppressed by being set to the mean, as shown in (b3) and

(c3) of Fig. 5.2. This is needed for the robot to pass through tight areas, where a small

change in the width of a gap determines whether the robot can pass. The attentional

mechanism enables the robot to focus on critical areas (i.e., parts with close range)

and, thus, the learned behaviors sensitively depend on the attended parts of the range

map. All range readings are attended when there is no nearby object as shown by

(a2) and (a3) of Fig. 5.2.

In Fig. 5.1, the learner IHDR is a hierarchically organized high—dimensional re-

gression algorithm. In order to develop stable collision-avoidance behaviors, the robot

needs sufficient training samples. Here, we show that the attentional mechanism
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greatly reduces the number of necessary training samples when there are objects

close to the robot. To quantitatively analyze the attentional mechanism proposed,

we make the following definition.

Definition 5.3.3 Consider a scanner operating in an environment, which can be

approximated by piecewise 3—D planes for simplicity. Each range map 1‘ can be ap-

proximated by a polygon with h segments (as in Fig. 5.4 (a)). P = {p1,p2,...,ph}

is the map, where the ith end point p,- is denoted by its polar coordinate (r,-,a,-).

Without lost of generality, the angle coordinate are sorted: (11 < 02 < < ah.

P’ = {p3,p’2,...,p;,} is the post-attentional map, where p: = (z,,a,~) whose range 2,-

has been defined earlier.

Remark. The larger h is, the closer the approximation of r in general. In a particular

case, the polygon representation becomes a regular grid when h = n.

We write the post-attentional approximation P’ as the function of P, i.e.,

P’ = g‘(P). (5.6)

The attentional mechanism, defined in Eq. (5.6), is not a one-to-one mapping, as

shown in Fig. 5.4. The post-attentional map P’ is the representative for a set of

pre-attentional maps besides P if condition C: 3p,- p,- E P A lj < T is satisfied. We

denote this set by ’R(P’), i.e. R(P’) E {Plg‘(P) = P’}. The following theorem gives

a lower bound of the average size of R(P’) when there are objects within the distance

T from the robot.

Theorem 1 Let A and rm denote, respectively, the range resolution and maximum

distance of each radial line. If the ith end point p,- ’s radial length r,- is a random

variable with a uniform distribution in the sample space {0,A, 2A, ...,rmA}. Then

the average size of the set R(P’) conditioned on C is:

(1 - WW”

1— p" ’
EP’{R(P’)lC} >
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where q = (rm - T)/A, p :2 (rm —- T)/rm, and EpI{-|C} denotes the expectation on

condition C.

Proof Consider the cases where there are k (1 g k S h) end points located within

the half-circle T (see Fig. 5.4). The number of possible configurations for the h — k

end points outside the circle, denoted by 5),, is:

3,, = q”"’“. (5.8)

Because the radial distance of the h — k end points have the freedom to choose values

from the interval [T, rm], which has q discrete values. By definition:

h

EPI{R(P’)IC} = Z sIPIkIC).
k==l

where P(k|C) denotes the conditional probability when I: end points are located

within the half-circle T. We can see

P(le) = 05(1- p)’°/(1 - 19”)-

Therefore,

h k _ k

amen = Err—C“:pf)
k=l

 

2 22:0 Cid—"(1 - 1))" - q"

1 — p"

(q+(1-p))”-q” > (1 -29)hq”"1

1-19" 1-19" '

In the last step, the inequality, (x + (5)" — x” > nxn‘ld if 0 < 5 << x, is used. [:1

  

Table 5.3.2 shows the lower bound of the size due to attention at two typical

parametric settings. We see that the reduction is large. Of course the size of remaining

space to learn is also large. The ratio of space reduced over original space is roughly

p.
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Table 5.1: The lower bound of the reduction ratio at several parametric setting

 

Parameters Reduced size

rm = 50m, A = 0.2m, T = 2m, and h = 10 9.51 x 1020

rm = 10m, A = 0.2m, T = 2m, and h = 15 7.52 x 10‘22
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Figure 5.4: (a) shows that the pre—attentional map r is approximated by a polygon P. P is

specified by h end points: p1, p2, ..., ph. The kth end point is denoted by (lk, ak). (b) shows

the post-attentional approximation P’ , after the attentional function 9". Those end-points

whose distances are larger than T are set to 1". The half-circle with symbol T shows the area

the robot pays attention to. We can see numerous pre-attentional approximations map to a

single post-attentional approximation P’. It is clear that the points outside the half-circle

of (a) have the freedom to change positions without affecting the shape of (b).

5.3.3 Path planner

The path planner gives the desired heading 6 required by obstacle-avoidance, based

on the robot’s estimated pose and the occupancy model of the environment. We

divide the path planning into two steps: First, a global search algorithm is applied

on the occupancy grid model of the terrain. Second, to account for unknown and

dynamic parts of the environment, a partial search algorithm is used within the scope

of the robot’s current sensing.

How to estimate the robot’s pose is not the scope of this chapter, we assume the

robot is given a method for calculating its coordinates in the occupancy grid via its

sensing. For example, GPS receiver gives the robot’s location within a digital map as

the robot navigating outdoor; for indoor environment, Kalman filter (KF) estimates
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the robot pose based on the positions of the observed beacons and odometry.

More formally, let G = (V, C) be a weighted grid graph. V is a set of cells while

C is a cost function defined on the cells. In the grid graph, each cell 3, except at

the boundary, has eight direct neighbors, denoted by Neighbor(s). The cost of an

cell x E V is given by C(x), representing the likelihood of the cell being occupied by

obstacles. For simplicity’s sake we assume 0 S C(x) S 1 (e.g., zero means the cell is

not occupied while one means the cell is occupied). We define a collection of paths

through G, from the source 3 to the destination d, as

7r(C;s,d) = {(30,31, ...,sN) | sn+1 E Neighbor(sn),so = s,sN = d,n = 0, ...,N — 1}.

The cost of a path is then defined by

N

c(so,sl,...,sN) = 20991:) (5.9)

n=0

and we seek the minimal cost path through the grid graph. It is well known the

path with minimal cost can be found via dynamic programming (DP) by recursively

calculating k(x) and b(x), where k(x) denotes the minimum-cost path from the x to

d cell and b(x) the next cell from r to the goal cell along the minimal cost path. k(x)

and b(x) are defined respectively as:

0 x=d

k(x)=

minyeNeighbo,($){k(y) + c(x)} otherwise,

and

b(x) = a‘rgrninyeNeighbor(x){1"(y) + C(33)}

The path with minimal cost is then ($3,513 ...,s}',,), where s; = s and s; = b(s;_1),
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Figure 5.5: The occupancy grid of an environment. Black cells denote to occupied cells,

while others are free ones. Each cell has eight directly connected neighbors: N, NE, E, SE,

S, SW, W and NW, each of which corresponds to an angle: heading 9. The optimal path

from S to G can be encoded by the heading sequence: (E, E, E, NE, NE, NE, NE, N, N,

N).

for n = l, 2, ..., N. The minimal cost from the source to destination is

c(s,d) = c(sa,sI, ...,sjv) = k(s).

Since the cost function C(x) is positive, Dijkstra algorithm [28] can be used to search

the optimal path. If the priority queue is used, the complexity of the algorithm is

0(|V|10glV|) [24]-

Now we can define the planned heading 0 based on the function b(x), as illustrated

in Fig. 5.5. The heading 0(x) of the cell x has eight possible directions: N (90°), NE

(45°), E (0°), SE (—45°), S (——90°), SW (—135°), W (180°), and NW (135°). We

define the head 6(x) as the direction toward the next cell along the optimal path,

e.g., the heading of the cell x in Fig. 5.5 is NE.

The above-mentioned DP procedure computes the heading 0 for the entire occu—

pancy grid. This is motivated by the fact that the same heading can be reused for

every location of the robot if the environment does not change. To account for the

discrepancy of the occupancy grid from the actual environment, re—planning is needed.

For example, when the robot senses an obstacle blocking the planned path, the path
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is replanned from the robot’s current pose. It is not necessary and not desirable to

recompute the heading for the entire grid again. Instead, the heading is computed

within the scope of robot’s current sensing. In other words, this local-search strategy

limits the look-ahead search within the vicinity of the area enveloping the robot’s

current laser map.

More specifically, let L(x) denote the cells within the range of the robot’s sensing

from the pose x, which is a subset of the whole occupancy grid S. B(x) denotes the

boundary of L(x) but not belonging to L(x), i.e.,

B(x) = {z I z E S — L(x),3y (z E Neighbor(y))}.

Now we are ready to specify the local search scheme in Algorithm 1. Providing the

cost of a cell is positive, Eqs. (5.10) and (5.11) can be calculated by Dijkstra algorithm

and the complexity is O(|L| log(|L]). By carefully choosing the size of L, Algorithm

1 can be realized on a real-time mobile robot.

 

Algorithm 1 Local search algorithm within L
 

1: if the planned path is obstructed by an obstacle then

2: Let item be the robot’s current pose.

3: For each cell x E L(xcur), set k(x) to its initial value k0(x) (e.g., non-informative

zero).

. for all each cell x E L(xcur) do

5: Look ahead and value update: Update the heuristic estimate k(x) by:

[C(13) =max{k($). min [C(x.y)+k(y)l}, (5-10)
yeB(zcur)

where c(x, y) denotes the minimal cost of path enveloped within L from the

cell x to y.

6: end for

7: Choose a path to a boundary cell y E B(17cm) such that

y = argminy68(xcur)[c(xcuri y) + [C(31)] (5'11)

8: Return the head 6 along the found path from xcu, to y.

9: end if
 

Not being an exhaustive search strategy as NF1 [57], oscillation re-plannings occur

144

 

 



rarely in badly conditioned obstacle configuration but never endanger the accomplish-

ment of the task. More specifically, like LRTA* [54], the proposed re—planning scheme

never fails to reach a goal under assumption the the k-values of all cells outside space

L do not overestimate the true values. Our scheme is better than the LRTA* in the

oscillation issue by employing look-ahead within the envelope of current laser map,

while LRTA* has an one-step look-ahead strategy. We obtained reasonable subopti-

mal solutions for almost all cases faced by mobile robots, for example, this strategy

can deal with all kinds of U-shaped obstacles as long as they are detectable within

the robot’s local sensing scope.

5.3.4 Cost function

The cost function of the paths r(G; s, d) in Eq. (5.9) can easily modified to incorporate

the length and curvature of path. It is desirable to obtain a short and less wiggly

path. The modified cost function is then defined as:

N—l N—l N—l

d(.,, ....s~) = a Eats.) +flZdisttsn,sn+1)+vZ I 6..-.+0..+1— 20.. I. (5.12)
n=0 n=0 n=l

where dist(x, y) denotes the Euclidean distance from the cell x to y; (1, fl, and 'y are

weighting parameters controlling the influence of each factors. The cost defined in

Eq. 5.12 increases with the length and wiggly nature of a path. This makes the path

search algorithm preferring short and straight (less wiggly) paths.

In addition, as in NF1, the cost function Eq. 5.12 produces trajectories grazing

obstacles (e.g., see (b) and (c) of Fig. 5.6). The reason is that there is no mechanism

enforcing the result path maintaining a minimum clearance from the obstacle. We

hence add another term 211:: V(sn) into Eq. 5.12, where

dist(y,x)gT
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The term V(x) is designed in the same fashion as repulsive field. It sums up all

x’s occupied neighbor cells within the distance T. The more occupied cell nearby,

the larger V(x) is. For example, if x has a clearance distance larger than T for all

occupied cells, then V(x) = 0.

Thus, the new cost function is:

N—l

c"(so, ..., sN) = c’(s0, ..., SN) + 6Z V(sn) (5.13)

n=0

Fig. 5.6 shows the result of an evaluation for our proposed planning scheme in a

simulated environment. The size of the grid is 30m by 25m; the resolution is 10cm

and the robot’s sensing scope is not more than 15m. In Fig. 5.6, (a), (b), (c), and (d)

illustrate the planned paths under different cost functions. (a) uses the cost defined in

Eq. ( 5.9) without regularization terms. Because the cost of the free cells is zero, the

total cost of path is zero despite the wiggly nature of the path. (b) shows the planned

path after adding the Euclidean term (the second term in Eq. (5.12)). The result

demonstrates the straightness of path is improved comparing that of (a), but there

is a noticeable portion of path grazing the wall and some undesirable turns near the

goal. Adding the curvature term (the third term in Eq. (5.12)), both the clearance

and straightness of the path are improved, as shown in (c). However, the clearance

of (c) is not satisfiable since some portions of path still touch the occupied cells. ((1)

shows the yielding path by introducing the repulsive term defined in Eq. (5.13). The

repulsive force pushes the result path away from the occupied cells, hence the path

in (d) is significantly better than those of the other three.

The third row of Fig. 5.6 shows a situation where sensory information indicates

that the original planned path is obstructed by an unmodeled U-shaped obstacle.

The heading is needed to recomputed within the shaded area, indicated in Fig. 5.6

(e). This shaded area is the envelope of the laser range map in the occupancy grid.

After the new path is planned, the robot moves along the new path while checking
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whether new obstacles block the planned path. (f) illustrates the final actual path of

the robot and the updated occupancy grid.

5.4 The robotic system and online training proce-

dure

The tests were performed in a humanoid robot, called Dav [37,125], as shown in

Fig. 2.1. This humanoid is built in the Embodied Intelligence Laboratory at Michigan

State University.

Mounted on the front of Dav, the laser scanner (SICK PLS) has 180° of view

and 05° of resolution. The local vehicle coordinate system and control variables are

depicted in Fig. 5.7. During training, the control variables (r, d) are given interactively

by the position of the mouse pointer P through a graphical user interface. Once the

trainer clicks the mouse button, the following equations are used to compute the

imposed (taught) action y = (vww):

1” = M (5.14)

w = v/r

where K is a positive constant and r denotes the radius of the are through the center

of robot and the mouse pointer. The mouse pointer hence controls the translation

and angular speeds simultaneously, which facilitates the online training procedure.

Dav’s drive-base has four wheels, each driven by two DC motors. Let q denote the

velocity readings of the encoders of four wheels. Suppose v1. and vy denote the base’s

translation velocities, and w denotes the angular velocity of the base. By assuming

that the wheels do not slip, the kinematics of the base is: [125]:

q = B(v,,vy,w)T, (5.15)
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where B is an 8 x 3 matrix, decided by the wheels’ configuration (known). The base

velocities (vx, vy,w)T is not directly available to learning. It can be estimated from

the wheels’ speed vector q in a least-square—error sense:

v = (v1, vy,w)T = (BTB)_IBTq. (5.16)

We use two velocities, (vww), as the control vector y. Thus, the IHDR tree learns

the following mapping incrementally:

y(t + 1) = f(Z(t),V(t))-

During the interactive learning, y is given. Whenever y is not given, IHDR approxi-

mates y while it performs (testing). At the low level, the controller servoes q based

on y.

5.4.1 Online incremental training

The learning algorithm is a simplified version of sensorimotor algorithm presented in

Section 3.5.6 and is outlined as follows:

1. At time frame t, grab a new laser map r(t), the wheels’ velocity q(t) and heading

B(t). Use Eq. (5.16) to calculate the base’s velocity v(t).

2. Computer a(t) based on r(t) using Eq. (5.5). Apply attention a(t) to given

z(t) using Eq. (5.4). Merge z(t), v(t), and 0(t) into a single vector x(t) using

Eq. (5.1).

3. If the mouse button is clicked (training), Eq. (5.14) is used to calculate the

imposed action y(t), then go to step 4. Otherwise go to step 6.

4. Use input-output pair (x(t), y(t)) to train the IHDR tree by calling Procedure

AddPattern in Appendix B as one incremental step.
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5. Send the action y(t) to the controller which gives q(t + 1). Increment t by 1

and go to step 1.

6. Query the IHDR tree by calling the Procedure Retrieval in Appendix B and get

the primed action y(t + 1). Send y(t + 1) to the controller which gives q(t + 1).

Increment t by 1 and go to step 1.

The online incremental training process does not explicitly have separate training and

testing phases. Whenever y is not given, the robot performs.

5.5 Experiments and results

Two kinds of experiments were designed and conducted. The first kind was purely

object-avoidance behavior without modeling the environment. The second one incor-

porated the proposed path planner for the goal-directed navigation. It is interesting

to note the complete knowledge of the environment is not necessary even for the sec-

ond kind. The robot automatically built and updated the occupancy grid based on

sensing.

5.5.1 Attention mechanism

Example 1. In this simulation experiment, it will show the importance of the atten-

tional mechanism for generalization. Two IHDR trees were trained simultaneously:

one used attention and the other used the raw range image directly without attention.

2 as shown in Fig. 5.8.We interactively trained the simulated robot in 16 scenarios

During this training process, 1971 samples were acquired and each of the sample is

associated with a label given by the trainer online.

 

2There are several training episodes for each scenario. For simplicity, we only show the robot’s

trace of a single episode in Fig 5.8. We do not show the goal pose, which is at right of each scene,

except (2) whose goal pose is at the top.
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Table 5.2: The results of tests with random starting positions.

 

 

 

Range Mean error Mean error

(with attention) (without attention)

9 [0, 7r] 0.05 0.09

v [0, 1.0] 0.005 0.007
 

Table 5.3: The results of tests with random starting positions.

 

With attention Without attention

Rate of success 0.91 0.63

 

 

In order to test the generalization capability of the learning system, we performed

a leave-one—out test for both IHDR trees. The 1971 training samples were divided into

10 bins. We chose 9 bins for training and left one bin for testing. The mean square

error (MSE) of the cross-validation test of two IHDR trees are shown in Table 5.5.1.

Comparing the results, we can see that the mean error was decreased about 40 percent

by introducing attention, which indicates that generalization capability was improved

by adding attention.

The tests were performed in an environment different from the training scenarios.

In Fig. 5.9 (a), with attention, the simulated robot performed successfully a con-

tinuous 10—minute run. The robot’s trajectory is shown by small trailing dot-lines.

Remember that no environmental map was stored across the laser maps and the robot

had no global position sensors. Fig. 5.9 (b) shows that, without attention, the robot

failed twice in a 3—minute test run.

Secondly, we ran a test in which the two learned IHDR trees were performed on

the environment shown in Fig. 5.9 for 100 times. Each time we randomly chose a

start position in the free space. In Table 5.5.1, we report the rate of success for the

two trained IHDR trees. We treated a run to be successful when the robot can run

continually for three minutes without hitting an obstacle. From the Table 3, we can

see that the rate of success increased greatly by introducing attention.
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5.5.2 Obstacle-avoidance on the Dav robot

Example 2. In this experiment, the robot’s only goal is to move safely according to

the scene. Such a navigation system is useful for applications where a human guides

global motion but local motion is autonomous.

The Dav robot has been trained at different object configurations. IHDR was

used to learn the mapping from sensory context (laser map and the robot’s current

speed) to desired command (i.e., translation vy and angular speeds w) for robot. The

desired command was supplied by online interactively via a graphical user interface

(see Fig. 5.7). Totally 4,655 samples were used for the reliable collision avoidance

behavior.

The Dav robot has been repeatedly tested for the learned range-based collision

avoidance and performance has been very satisfactory. For example, during a visit

by high school students, as shown in Fig. 5.10, Dav successfully navigated in this

dynamic changing environment without collisions with moving students. It is worth

noting the testing scenarios were not the same as the training scenarios.

5.5.3 Integrate with the path planning layer

Example 3. In this simulated example, we show the results of integrating the path

planning component with the learned obstacle-avoidance behavior on a bounded en-

vironment (43 meters by 30 meters). The resolution of the grid is of 10 cm and the

robot’s sensing scope is of 15 meters (for re—planning). Illustrated in Fig. 5.11, all the

obstacles (shaded polygons) were completed unknown in advance to the simulated

robot. Like the attention experiment (Example 1), we trained the robot on the 16

scenarios, shown in Fig. 5.8, but with specified goal headings 6. About 2000 samples

were labeled online and trained for the low-level obstacle-avoidance behavior.

The performance of the proposed navigator with the path planner was verified from

the same inital configuration to different goals in this environment. Fig. 5.11 depicts
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some difficult cases where the goals are hidden by a U-shaped object or the goal are

located very near the obstacles. The navigator was able to navigate successfully to

the goals in all cases.

Example 4. The integrated navigating system has been implemented and tested on

the Dav robot (see Fig. 2.1). The size of occupancy grid is 37.3 meters by 24.0 meters

with the resolution 0.05 meter. The look-ahead sensing scope is not more than 10

meters. The heading has coarse resolution (i.e., eight angles); we hence convoluted it

with a flat window for smoothing, that is:

10

0’(t) = Z 6(t — i).

i=1

Since the way of localizing the robot is not the topic of here, we only mention

methods employed in this experiment here. Before navigation, the robot knew the

occupancy grid of the environment and the sensor-detectable landmarks (beacons),

such as the corner points and lines. Assuming the robot knows its initial pose in the

map, the Kalman filter was used to estimate the robot’s pose by fusing the odometry

and matched landmark information.

Fig. 5.12 shows an execution of the proposed navigator on a corridor corner on

the second floor of the Engineering Building at Michigan State University. Obstacles

are shown in black in the occupancy grid. Except the walls, all other obstacles were

unknown before navigation. As the robot starts moving, observed new obstacles

were added to the grid. The local search algorithm was employed to recompute the

new heading within the robot’s sensing scope if the obstacle obstructed the planned

path. Fig. 5.12 (a) corresponds to the moment after the robot starts for about a

minute; obstacles were only those directly observed from its current pose. The red

curve (labeled with “A”) depicts the current planned path. The blue curve (labeled

with “B”) shows the robot’s trajectory. Fig. 5.12 (b) illustrates the final result of

Dav’s navigation task, including the planned path and the robot’s trajectory. Dav
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successfully navigated on a number of obstacle configurations, and there was no case

in which the robot ran into obstacles or the goal was not achieved.

5.6 Discussion and Conclusion

The system failed when moving obstacles were outside the field-of-view of the laser

scanner. Since the laser scanner has to be installed at the front of the robot, nearby

objects on the side are not “visible.” This means that the trainer needs to “look

ahead” when providing desired control signals so that the objects are not too close

to the “blind spots.” In addition, the trainer may label the samples such that the

translation speed is proportional to the side clearance. The robot learns traveling at

high speed through a wide corridor with sparse objects while slowing down through a

narrow corridor or areas with dense objects. This shows the online real-time learning

offers more flexibility than that of manually designed behaviors.

Our local search scheme may not be globally optimal if the k-values of the cells

outside the sensing scope (L) are not equal to their true values. However, as argued

by Simon [85], it is relatively rare that real-time applications need strict optimal

solutions and near—optimal ones are often acceptable. The planner’s 0([L] log(|L]))

complexity allows us to search on a fairly large space for such a near-optimal solution.

Further, the planner’s termination at the goal is ensured if the k-values of cells outside

L are not overestimated the true values.

This chapter described a range-based obstacle-avoidance learning system with a

path planner implemented on a mobile robot. The attention selection mechanism

reduces the importance of far-away objects when nearby objects are present. The

power of the learning-based method is to enable the robot to learn very complex

functions between the sensing context and the desired behavior, such a function is

typically so complex that it is not possible to write a program to simulate it accurately.

Indeed, the complex range-perception based human action learned by y = f(z,v, 9)
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is too complex to write a program without learning. The success of the learning for

high dimensional input (z, v, 6) is mainly due to the discriminating power of IHDR,

and the real-time speed is due to the logarithmic time complexity of IHDR. The

optimal subspace-based Bayesian generalization enables quasi-optimal interpolation

of behaviors from matched learned samples. The online incremental learning is useful

for the trainer to dynamically select scenarios according to the robot’s weakness (i.e.,

problem areas) in performance. It is true that training needs extra efforts, but it

enables the behaviors to change according to a wide variety of changes in the scenes.
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Figure 5.6: The result of tests on a simulated environment
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Robot

Figure 5.7: The local coordinate system and control variables. Once the mouse button is

clicked, the position of the mouse pointer P provides an imposed action. Let r denote the

radius of the arc. The arc’s length (1 controls the translation speed while the radius controls

the angular speed.
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Figure 5.8: The 16 scenarios are used to train the simulated robot. The small solid circles

denote the robot, and solid dark line represents the walls. The dot line recorded the online

training trajectories.
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 (b)

Figure 5.9: The solid dark lines denote walls and the dot lines show the trajectory. Ob-

stacles of irregular shape are scattered about the corridor. (a) A 10—minute run by the

simulated robot with the attentional module. (b) The result of the test without attentional

selection. Two collisions indicated by arrows are occurred during the first two minutes

simulation.
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Figure 5.11: Navigating in an simulated environment with unknown obstacles. The initial

configuration is chosen to be about (4.8111, 3.0111). The goal configurations G1, G2, G3 and

G4 are chosen to be (37.1m, 25.0m), (29.6m, 24.3m), (18.6111, 27.6111) and (16.2m, 25.6m),

respectively. For clearness, we do not draw the portion of trajectory very close to the goals.

  
 

159



 

 

 
(b)

Figure 5.12: Dav run in the northwest corner of the corridor on the second floor of Engi-

neering Building at Michigan State University. The red curve (or labeled with “A”

depicts the actual planned path from the path planning layer, while the blue one (or

label with “B”) shows the actual trajectory in the occupancy grid.
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Chapter 6

Conclusions

6.1 Concluding Remarks

This dissertation described the development of the Dav robot. This general-purpose

anthropomorphic robot has two goals: to provide a general purpose, flexible, and

dextrous robotic platform from the engineering aspect and to understand human au-

tonomous mental development from the scientific aspect. Dav consists of a total 43 of

degrees-of-freedom (DOF), including wheel-driven base, torso, arms, hands, neck and

head. The body may support a variety of locomotive and manipulative behaviors. For

perception, Dav is equipped with sensors such as vision (two cameras), auditory (two

microphones), a laser range finder, tactile sensors, and somatic sensors (e.g., encoder

and strain gauges). Dav is untethered and self-contained with all the computational

resources and power sources onboard. The base’s redundantly actuated mechanism

provides holonomic locomotive capability.

The mechanical structure and kinematics of the robot were analyzed. The D-H

coordination representation of the joints was derived. To facilitate the low-level joint

control, Dav’s dynamic model was derived based upon the Lagrange-Euler formula-

tion. The dynamic model describes the interference between the robotic links and

relation between the input joint torques and the output motion. Based upon the dy-
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namic analysis, we find that the gravitational force dominates when the robot moves

at low speeds. Therefore, the implemented proportional derivative feedback law with

gravitational compensation is asymptotic stable. The mobile base’s dynamic analysis

and control were described. The overall embedded control system and the underlying

software architecture were introduced.

A general-purposed and task—unspecific architecture was proposed for the Dav

robot. The proposed architecture leaves much freedom for different implementations

of its major components, e.g., sensory, cognitive, and motor mappings. Although the

Dav developmental program that is currently being implemented could be explained

in further detail, such details are beyond the scope of this dissertation.

We also presented a range-based obstacle-avoidance system with a path planner.

The attention selection mechanism reduces the importance of far-away objects when

nearby objects are present. The power of the learning-based method is to enable the

robot to learn a very complex function between the sensing context and the desired

behavior, such a function is typically so complex that it is not possible to write a

program to simulate it accurately. The integration with the path planner makes sure

the navigation system is free of local minima.

Finally, we need to remark that the work reported in this dissertation has not

reached the level of a full-fledged developmental robot but can serve as a starting

point of the on-going research on the Dav robot.

6.2 Future Work

In this section, we first recommend some improvements for the current implementa—

tion of the Dav robot; then, we list a few possible future perspectives along the line

of research of the developmental robot.

As a prototype robot, the Dav robot has some mechanical limitations and hence

needs improvement.
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0 Drive base. Although the redundantly actuated four-wheel mechnanism pro-

vides increased contact area, robustness in coping with irregularities of floor,

and high clearance to tolerate the step features of the floor; it requires a very

complex control scheme to synchronize the wheels. Turning wheels vertically

also consumes lots of power to overcome the friction on a rough surface. In

addition, the current base module occupies too much space since eight motors

are needed. To simplify the base module, the author suggests use of a specially

designed wheel mechanism, which has been available in the market (e.g., the

omni-wheel from Komylak Corporation). We can see the wheel actuated on

a direction while rolling passively along the perpendicular direction; hence, no

nonholonomic constraint exists. Three of those wheels are sufficient to realize

the holonomic motion; hence the size of base module is reduced.

0 Arm. The current version of arm mechanism is a serially actuated arm with

rigid links. Also, in order to simplify the driving mechanism, DC motors are

directly mounted at a place close to the joints. As a consequence, the motors of

the low arm are a heavy load on the motors of the upper arm. In order to solve

the problem, the author suggests using a more sophisticate 4DOF spherical

shoulder mechanism [90]. This design moves all the shoulder motors into the

torso.

0 Hand. Dav’s hand design has a similar shortcoming as the arm. Placing the

motor close to the finger joints causes the hand to become intolerably heavy. A

more complex mechanism is needed to move the finger motors to the wrist mech-

anism. The author suggests using a mechanism similar to NASA’s Robonaut

hand [63].

0 Embedded system. Dav’s distributed embedded system currently uses the pro-

totype board (P8555) from Amman Corporation. The size of the board is a

little big. A customized PowerPC board (MPC555, Motorola Corporation)
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with more flash memory and static RAM memory is needed. For example,

phyCORE—MPC555 from Phytec America, LLC may be a better choice than

the old one.

Research in humanoid robotics has uncovered a variety of new problems and a few

solutions to classical problems in robotics and control theory. There is now a wide

consensus in the community that a humanoid that can duplicate humans’ abilities

will be a “grand challenge” for this millennium.

Autonomous mental development by a robot is an interdisciplinary area. It has

drawn upon work in artificial intelligence, developmental psychology, ethology, sys-

tems theory, philosophy, and linguistics. This dissertation represents one of the early

stage work in this line of research. This work has raised a few future perspectives:

o Dav’s developmental architecture has yet to be implemented and tested, but

its predecessor, SAIL, has successfully tested some major components of the

designed architecture. The presented architecture will be tested in future studies

and the performance will be reported.

0 Attention mechanism. The flood of information (e.g., video stream) that enters

a system can easily overwhelm the system’s limited resources. To solve the

problem, attention, a selective processing must be included to the system to

let a part of the sensory input (e.g, goal related information) passing through.

In our collision avoidance system, a simple programming-in attention effector

is implemented. However, there is not much work done to develop (or learn-

ing autonomously) an attention system. This attention mechanism is primarily

important in a robot’s outdoor navigation experiment, where the lighting con-

dition changes dramatically. The robot should pay attention to a small part of

the scene (e.g., the road boundaries) in which the contrast is relatively stable

comparing the change of pixel values of the overall image. It is known that
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attention can help a system to work in untrained scenes, however, it is not

clear how to develop an attention mechanism in an unstructured and highly

inconsistent environment.

Value system. The attention mechanism is an internal effector which is not

observable by outsiders. Hence, supervised learning is not suitable for learning

such an attention system. We believe a sophisticated value system is indispens-

able for development of a useful attention system. The problem becomes how to

design the architecture and to find the computational model for the value sys—

tem. In Chapter 3, we presented an architecture for the value system (Type-5 '

DOSASE MDP). However, more detailed work is needed to implement it.

How to integrate high-level symbols? We observed that very young children

(birth to 2 years) [71—73] cannot manipulate symbols. When the children get

older, they develop symbolic representation based on their early sensorimotor

experiences. It is unknown how those sensorimotor grounded symbols are ex-

pressed in the brains. However, from engineering perspectives, we can shortcut

the development process, by plugging some human chosen symbols into the

“brain” of a developmental robot at early stage. This can be justified since

the human brain is not totally blank at birth. The biological brain is biased

with some innate behaviors (e.g., rooting and sucking). In addition, as Chen

and Weng [23] have shown, the performance of the indoor navigation system is

improved by introducing environment states, which can be regarded as symbols.

In Chapter 5, an occupancy grid was used to resolve the local minimum issue

of reactive behaviors. How to design a representation of the environment but

leaving sufficient freedom for later learning is still a challenging problem.
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Appendix A

IHDR algorithm

Procedure 1 AddPattem. Given a labeled sample (x, y), update the IHDR tree

T.

1: Find the best matched leaf node c by calling Procedure 3.

2: Add the training sample (x, y) to c’s prototype set E.

3: Find the closest cluster to the x and y vectors by computing:

m = arg min (wal—x—LEi—li. + wyw), (A.1)

151361 0,, 0,,

where mm and 21),, are two positive weights that sum to 1: w, + wy = 1; oz and 0,,

denote incrementally estimated average lengths of x and y vectors, respectively;

and c,- and y, denote, respectively, x-center and y—center of the ith cluster of the

node c.

4: Let u(n) denote the amnesic function that controls the updating rate, depending

on n, in such a way as:

0 ifngnl,

u(n) : b(n — "ll/(n2 — m) if n1 < n S n2 , (A2)

b+(n—-n2)/d ifn2<n,
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where n denotes the number of visits to the cluster the closest m (see Eq. A.1) in

the node c, and b, nl, n2 and d are parameters. We update the x—center cm and

y-center ym of the cluster m in the node c, but leave other clusters unchanged:

cm(n) = Llflflcmm — 1) + 1—+—:(—")x, (A 3)

MW = who— 1) + —Uy '

where cm(n — 1) and ym(n — 1) are the old estimations (before update) of x-center

and y-center of the mth cluster in the node c, respectively, while cm(n) and ym(n)

are the new estimations (after update). Readers should note that the weights w;

and my control the influence of x and y vectors on the clustering algorithm. For

example, when w; = 0, Eq. (A.3) is equivalent to the y label clustering algorithm

used in Hwang & Weng [44].

: Compute the sample mean, say c, of all the q clusters in the node 0. Let the

current x-centers of the q clusters by {c,|c,- E X,i = 1, 2, ...,q} and the number

of samples in the cluster i be 71,-. Then,

q q

C: E nici/ E n,.

i=1 i=1

: Call the Gram-Schmidt Orthogonalization (GSO) procedure (see Hwang & Weng

[44, Appendix A]) using {Ci — cli = 1,2,...,q} as input. Then calculate the

projection matrix M of subspace ’D as:

M = [b1,b2,...,bq_1[, (A.4)

where b1,b2, ...,bq_1 denote the orthnormal basis vectors derived by the G80

procedure.
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7: Update Wm, the distance matrix of the mth cluster in the node c, as:

be = min{n — 1,ns}

bm = min{max{2(n — q)/q, 0}, n,}

by = 2(n - (1)/r12

we=be/b, wmzbm/b, wg= g/b

b = be + bm + bg

A = M’TM

B = MT(x — cm)(x — cm)TM

Fm(n) = WATrmm — 1)A + 1:93

S = 23:1 ngl‘:(n)/ 23:1 72:

Wm = wepzl + me + wng(n)

 

where u(n) is the amnesic function defined in Eq. (A.2), p and n, are empirical

defined parameters, M’ is the old estimation of the projection matrix (before

update using Eq. (A.4)), and I‘m(n — 1) and I‘m(n) denote, respectively, the old

and new estimations of the covariance matrix of the cluster m.

8: if the size ’Pc is larger than nf, a predefined parameter, then

9: Mark c as an internal node. Create q nodes as c’s children, and reassign each

prototype x,- in ’PC to the child It, based on discriminating functions defined in

Eq. (3.10). This is to compute:

k = arg minls,gq(l,(x,-)).

10: end if

Procedure 2 Retrieval. Given an IHDR tree T and an input vector x, return the

corresponding estimated output 9.

1: By calling Procedure 3, we obtain the the best matched leaf node c.

2: p = parent(c), i.e., p denotes the parent node of c.  
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3: Let the M be the projection matrix of subspace D in the node p. Compute the

projection of the prototype set ”PC on subspace D:

’P; = {(ulaY1)7 (112,y2),---, (uncaync)}

where u,- = MT(x, — c) for 1 S i _<_ 72C and c denotes the x-center of the node p.

4: The projection of query input vector x:

u: MT(x—c)

5: if [P’I-— Nq, i. e., the number of prototype equals to predefine constant M, then

6: Compute y by using the nearest-neighbor decision rule in the set:

p0 = {(xliyl)v (x2,y2), “'v (xnciync)}

, such that

y ym’ (A.5)

where

m = arglgisgc H x.- - x H-

7: else

Compute y by using locally weighted regression (LWR) [9] on dataset ’Pé. Let

   

w = diag(((,/Kd((u1,u)),)u)\/K(d(u2, ..,(d(\/K(un.,u

Y = (Y1’Y2v' :ynclT

X=(u.Tm? mqu

Z=WX

V=WY

r3=(Zsz4va
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where d(.r, y) denotes the Euclidean distance between vectors :1: and y; K(.) is

a kernel function:

and ’27 is a predefined parameter. Thus, the predicted output for the querying

point x is:

W = uTfi (Mi)

8: end if

9: Return 9.

Procedure 3 SelectLeaf. Given an IHDR tree T and a sample (x, y), where y is

either given or not given. Output: the best matched leaf node c.

1: c +— the root node of T.

2: for c is an internal node do

3: c +— the mth child of the node c, where m = arg minls,sq(l.-(x)) and b(x),

i = 1,2, ...,q are defined in Eq. (3.10).

4: end for

5: Return node c.
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