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ABSTRACT

MODELING AND DESIGN OF MATERIALS FOR CONTROLLED WAVE

PROPAGTION IN PLANE GRID STRUCTURES

By

Liangkai Ma

Periodic band-gap structures prevent waves in certain frequency ranges from

propagating. Materials or structures with large band gaps are desirable for many

applications, including frequency filters, vibration protection devices, and wave guides.

In this thesis, a simple finite element (FE) model of a periodic plane grid structure is

presented. Using the Bloch-Floquet theorem and Lagrange’s equations, an FE expression

of an eigenvalue problem for harmonic wave propagation in an infinite periodic plane

grid structure is derived. Two optimization problems are then formulated to maximize the

band gap above a particular band in infinite periodic plane grid structures: one is by

selective addition of non—structural masses, and the other is by a combination of selective

addition of non-structural masses and adjusting of the cross section dimension (radius) of

selective grid elements. Numerical implementation issues for the optimization problems

are discussed and examples using symmetric periodic plane grid structures are presented.

Finally, wave propagation in finite periodic plane grid structures is analyzed by

considering the response of finite periodic plane grid structures subjected to harmonic

loading using two applications: filter and wave guide. Special attention is paid to the

response in frequency ranges of the band gaps for the corresponding infinite periodic

SITUCIUI'CS.



In memory of my father

-iii-



ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Alejandro Diaz. Your patient guidance and

financial support during my time here at Michigan State University have been invaluable

to me. I would also like to thank Dr. Alan Haddow. I appreciate your guidance and

encouragement throughout this work. I am also very grateful to Dr. Steven Shaw for

being on my committee and reviewing this work.

-iv-



TABLE OF CONTENTS

 

 

 

 

 

LIST OF FIGURES viii

LIST OF TABLES ............................................................................................................ xii

Chapter 1 Introduction 1

l . 1 Background ......................................................................................................... 2

1.2 Research objective .............................................................................................. 4

1.3 Approach ............................................................................................................. 5

1.4 Organization ........................................................................................................ 5

Chapter 2 Infinite 2D Periodic Structure 7

2.1 Representative Cell ............................................................................................. 7

2.2 Bloch—Floquet Theorem ...................................................................................... 9

Chapter 3 FE Expression of Eigenvalue Problem for Infinite 2D Grids ............ 11

3.1 Introduction to the FE model ............................................................................ 11

3.2 2D Grid Element Stiffness and Mass Matrices ................................................. 11

3.3 Stiffness and Mass Matrices for a 2D Grid Representative Cell ...................... 13

3.4 Derivation of Equations of Motion ................................................................... 14

3.5 Derivation of Eigenvalue Problem.................................................................... 16

3.6 Irreducible 2D Brillouin Zone for Symmetric Structures ................................. 17

3.7 Dispersion Diagram .......................................................................................... 20

3.7.1 Stationary Points on the Dispersion Diagram ........................................... 21

Chapter 4 Optimization of Infinite 2D Periodic Grids 28

4.1 Optimization Problem Formulations................................................................. 28

4.1.1 Formulation 1: Additional Mass as Design Variables .............................. 28

4.1.2 Formulation 2: Both Additional Mass and Element Radii as Design

Variables .................................................................................................. 29

4.2 Numerical Implementation Issues of the Optimization Problems .................... 30

4.2.1 Numerical Implementation ....................................................................... 30

4.2.2 Derivative of Gap Size with Respect to Nonstructural Mass Variables 31

4.2.3 Derivative of Gap Size with Respect to Element Radius Variables ......... 32

Chapter 5 Examples of Optimization Problems 35

5.1 Examples ........................................................................................................... 35

5.1.1 Examples of Square Structures Using Formulation 1 ............................... 36

5.1.2 Examples of Skew Structures Using Formulation 1 ................................. 45

5.1.3 Examples of Square Structures Using Formulation 2 ............................... 53

5.2 Discussion ......................................................................................................... 61

5.2.1 Stationary Points on the Dispersion Diagram ........................................... 61

5.2.2 Optimal Mass Distribution ........................................................................ 62



Chapter 6 Wave Propagation in Finite 2D Grid Structures

6.1 Model Equations ...............................................................................................

6.2 Examples ...........................................................................................................

6.2.1 Filters ........................................................................................................

6.2.2 Wave Guides .............................................................................................

Chapter 7 Conclusions

7.1 Summary ...........................................................................................................

7.2 Areas of Future Work .......................................................................................

BIBLIOGRAPHY

 

 

 

-vi-

69

71

71

72

75

78

78

79

81



LIST OF FIGURES

Figure 1. Infinite 2D periodic structure .............................................................................. 8

Figure 2. Representative cell (2 with added slave nodes .................................................... 8

Figure 3. 2D Grid element and its nodal degrees of freedom ........................................... 11

Figure 4. Irreducible 2D Brillouin zone for symmetric structures .................................... 20

Figure 5. A typical dispersion diagram showing the lowest four bands ........................... 21

Figure 6. Homogeneous 6x6 representative square cell ................................................... 35

Figure 7. Homogeneous 6x6 representative skew cell ...................................................... 36

Figure 8. Locations of additional (design) masses for square cell in Formulation l ........ 37

Figure 9. Mass distribution and dispersion diagram for design 2 in Table 1 .................... 39

Figure 10. Mass distribution and dispersion diagram for design 3 in Table 1 .................. 40

Figure 11. Mass distribution and dispersion diagram for design 4 in Table 1 .................. 41

Figure 12. Mass distribution and dispersion diagram for design 5 in Table l .................. 42

Figure 13. Mass distribution and dispersion diagram for design 6 in Table l .................. 43

Figure 14. Mass distribution and dispersion diagram for design 8 in Table l .................. 44

Figure 15. Locations of additional (design) masses for skew cell in Formulation 1 ........ 45

Figure 16. Mass distribution and dispersion diagram for design 9 in Table 2.................. 46

Figure 17. Mass distribution and dispersion diagram for design 10 in Table 2................ 47

Figure 18. Mass distribution and dispersion diagram for design 11 in Table 2................ 48

Figure 19. Mass distribution and dispersion diagram for design 12 in Table 2................ 49

Figure 20. Mass distribution and dispersion diagram for design 13 in Table 2 ................ 50

Figure 21. Mass distribution and dispersion diagram for design 14 in Table 2 ................ 51

Figure 22. Mass distribution and dispersion diagram for design 15 in Table 2 ................ 52

-vii-



Figure 23.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

.........

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

.........

Figure 40.

Locations of design masses and design elements in formulation 2 ................. 53

. Mass and radius distribution and dispersion diagram for design 16 in Table 3

.......................................................................................................................... 55

Mass and radius distribution and dispersion diagram for design 17 in Table 3

.......................................................................................................................... 56

Mass and radius distribution and dispersion diagram for design 18 in Table 3

.......................................................................................................................... 57

Mass and radius distribution and dispersion diagram for design 19 in Table 3

.......................................................................................................................... 58

Mass and radius distribution and dispersion diagram for design 20 in Table 3

.......................................................................................................................... 59

Mass and radius distribution and dispersion diagram for design 21 in Table 3

.......................................................................................................................... 6O

Vibration modes at lower bounds of optimal gaps above band 1 .................... 63

Vibration modes at upper bounds of optimal gaps above band 1 .................... 64

Eigenvector component profiles for modes in Figure 30 and Figure 31 ......... 65

Vibration modes at the bounds of optimal gap above band 3 ......................... 66

Eigenvector component profiles for modes in Figure 33 ................................ 67

2x2 representative cells for finite 2D grids ..................................................... 69

Dispersion diagrams for infinite optimal structures made of 2x2 cells ........... 70

Finite filter structure subjected to harmonic loading ....................................... 73

Response of filter structures with NCI x NCZ Cells ....................................... 74

Layout of loading and response evaluation locations for wave guide structures

.......................................................................................................................... 76

Response of wave guide structures .................................................................. 77

- viii -



LIST OF TABLES

Table 1. Local optima in examples of square structure using formulation 1 (u=90°) ...... 38

Table 2. Local optima in examples of skew structure using formulation 1 (0.=45°) ........ 45

Table 3. Local optima in examples of square structure using formulation 2 (0.:90°) ...... 54

-ix-



Chapter 1 Introduction

A periodic structure consists fundamentally of a number of identical structural cells

that are joined together end-to-end and/or side-by-side to form the whole structure.

Examples of periodic structures include atomic lattices and similar engineering structures

or materials. The atomic lattices of pure crystals constitute perfect periodic structures,

which are modeled as lumped parameter systems with discrete masses (the atoms)

interconnected by the inter-atomic elastic forces. In engineering structures, the mass and

elasticity of structural members are continuous and constitute periodic structures when

arranged in regular arrays. Periodic structures can be one dimensional (1D), two

dimensional (2D) or three dimensional (3D).

Some periodic structures, such as photonic crystals, porous or fibrous materials, and

structures with periodic inclusions, possess frequency band gaps that prevent waves in

certain frequency ranges from propagating. The wave may be elastic, acoustic, or

electromagnetic. Structures hindering elastic and acoustic waves from propagating are

called phononic (acoustic) band-gap structures, and structures exhibiting stop bands for

electromagnetic waves are called photonic band-gap structures. Photonic band—gap

structures have great potential industrial application in optics, photonics and microwaves.

Phononic band-gap structures or materials can be used to generate frequency filters,

waveguides, and sound or vibration protection devices. Structures with large band gaps

are desirable for such applications.



1.1 Background

Brillouin [1] gave a detailed historical review of work on wave propagation and band

gaps in periodic structures from the late seventeen century to the middle of the last

century. Newton initiated the study of wave propagation in periodic structures in his

attempt to derive a formula for the velocity of sound. In 1881, Lord Kelvin discovered

the phenomenon of cutoff frequency, the critical frequency separating stop bands and

pass bands. In 1898, Vincent built the first mechanical filter model using a periodic

structure made of two different masses connected to a long string through beam and

spring members. In 1912, Born obtained a dispersion curve with band gaps for a 1D

mass-spring model with two different masses alternating at the node points connected by

the same kind of springs. From 1964 to 1995 [2], the receptance method, transfer matrix

method, and finite element (FE) method were used to study wave motion in 1D, 2D and

3D continuous periodic structures such as beams, plates, and shells, etc. The natural

frequencies, modes, and forced responses in periodic structures with disorders were also

investigated during this period of time.

There has been an extensive search for photonic band gap materials both

experimentally and theoretically since late 19803 [3]. The work on photonic band gaps

has led to a revived research interest in phononic band-gap structures. Martinsson and

Movchan [4] investigated the phononic band gap phenomena in infinite 2D periodic

mechanical lattice structures. In their analysis, they considered a bi-atomic triangular

lattice structure modeled as a truss structure and a bi-atomic square lattice structure

modeled as a frame, and they found that phononic band gaps can be obtained in such

structures by adjusting the lumped mass parameters at the nodes of the lattices and



stiffness parameters within the lattice structures. They also illustrated a special case in

which the spectrum of the elastic lattice can be manipulated by introducing certain types

of micro-structures into the elastic lattice structure.

Jensen [5] analyzed band gaps in infinite 1D and 2D mass-spring structure models

and showed that for special cases analytical methods can be used to estimate the band gap

bounds. In this paper, the effects of boundaries, viscous damping, and imperfections on

the structural response for finite 1D and 2D periodic structures subjected to periodic

loading in frequency gap ranges of corresponding infinite periodic structures were also

investigated.

Topology optimization techniques have been used to optimize phononic band gaps in

elastic materials by Sigmund and Jensen [6-8]. Their results showed that periodic

structures made of a mixture of materials of high contrast properties such as density and

Young’s modulus tend to exhibit band gaps. A projected gradient ascent optimization

method and an optimization-based evolution algorithm for producing band gaps in 2D

photonic crystals have been presented by Cox and Dobson [9, 10]. According to their

research, larger photonic gaps can be obtained by increasing material contrast.

Elastic wave propagation in various structures has also been investigated by other

authors, including Parmley et al. [1 1] (mass chains), Kafesaki et al. [12] and Vasseur et

al. [13] (composites), and Sigalas and Economou [14] (plates). In early work, Heckel

[15] presented a theoretical analysis of vibration in periodic plane grids made of crossed-

beams. By assuming that the distance between adjacent intersections is longer than the

wave length, Heckel found that that there are bands of high attenuation and bands of no

attenuation for bending-wave transmission through plane grids.



In this work, the wave propagation in plane grids is investigated using a finite

element model. The analysis of plane wave propagation in periodic structures using FE

methods has been discussed by Orris and Petyt [l6] and Langlet et al. [17]. Orris and

Petyt presented a method for using FE technique to evaluate the phase constant, which is

associated with the normal modes and natural frequencies of a periodic structure. Using

this method they studied wave propagation in a periodically supported infinite beam and

a skin-rib structure. Langlet et al. applied FE approach to the investigation of plane

acoustic wave propagation in periodic materials containing inclusions or cylindrical

pores.

1.2 Research objective

No band gaps exist in infinite homogeneous periodic structures or materials, and thus

the following question rises naturally: Which periodic structures produce the largest band

gaps? The aim of this work is to answer this question by means of optimization problem

formulations for plane grid structures using an FE model. The optimization problem is to

maximize the band gap above a particular frequency band by selective addition of non-

structural masses and by a combination of selective addition of non-structural masses and

adjusting of the cross section dimension (radius) of selective grid elements. The problem

can be divided into the following sub-problems:

1. Build an FE model for plane grid structures.

2. Apply Bloch-Floquet theorem and derive an eigenvalue problem that can be

used to compute all natural frequencies for infinite periodic plane grid

SITUCIUI'CS.



3. Formulate optimization problems to facilitate numerical implementation of

maximizing band gaps in infinite periodic plane grid structures.

4. Obtain the optimal design by numerical implementation of the optimization

problems.

5. Verify the Optimal design.

1.3 Approach

An infinite 2D periodic grid structure may be split into successive irreducible cells.

The infinite periodic structure can be characterized by its representative cell using Bloch-

Floquet theorem [1, 19], and an FE expression of the eigenvalue problem for infinite

periodic plane grid structures can be derived by analyzing this representative cell. The

eigenfrequencies for current design are obtained by solving this eigenvalue problem. The

gap size for current design is evaluated using these computed eigenfrequencies and the

gradients of the band gap size with respect to design variables are computed using the

eigenvectors associated with the critical eigenvalues determining the current band gap

size. The optimization problems are then formulated to solve for the optimal design.

Finally, finite periodic structures are constructed using the obtained optimal design to

verify the presence of band gaps in the structures.

1.4 Organization

The remainder of the thesis is presented as follows:

Chapter 2 describes an infinite 2D periodic structure and introduces the concept of

representative cell and the Bloch-Floquet theorem.



Chapter 3 defines an FE model for 2D grid with out-of—plane vibration (wave

propagation) and presents a complete derivation of FE expression of the eignenvalue

problem for infinite 2D periodic grid structures.

Chapter 4 discusses formulations of the optimization problems for infinite 2D

periodic grid structures and numerical implementation issues.

Chapter 5 presents the examples and discusses the optimal results.

Chapter 6 analyzes the response of finite periodic grid structures using two

applications of band-gap structures: as a filter and as a wave guide.

Chapter 7 summarizes the research and predicts possible opportunities for future

work.



Chapter 2 Infinite 2D Periodic Structure

In this chapter, an infinite 2D periodic structure is described and the concept of

representative cell and the Bloch-Floquet theorem are introduced. An infinite 2D periodic

structure is characterized by its representative cell, and the wave propagation in infinite

periodic structures is governed by the Bloch-Floquet theorem.

2.1 Representative Cell

A 2D periodic structure, 52” , is a plane structure that can be constructed by

periodically repeating a sub-section, 9, of the structure through translations along the two

7 . . . .

vectors, t0) and t(“) , called the tiling vectors or translation vectors, re,

9”: U (Q+Tn)

nEZ

_ (l) (2) _ T - . . .

where T—[t ,t ],n—(n1,n2) . A pictorial example of these terms rs shown in

Figure 1. The integer numbers n1 and n2 represent cell translations along t“) and ta),

respectively. 0 is called the representative cell of the 2D periodic structure. An

irreducible cell is the smallest representative cell capable of filling 92” through a process

of translations along the two tiling vectors. In this work, we only consider cells that can

be fully circumscribed by the parallelepiped spanned by the tiling vectors. Let cell

numbern = (nl,n2 )T denote an arbitrary cell 9“” = Q + Tn. For the representative cell

(2, n = (0,0)T. To facilitate analysis, additional nodes, denoted by the void dots (Figure

2), are added to the representative cell to provide each element in the cell, denoted by

lines between dots, with two nodes. To distinguish the original nodes (denoted by solid

-7-



dots) from the added nodes (denoted by void dots), we call the former master nodes and

the later slave nodes of the representative cell. Let NMN and NSN denote respectively the

total number of master nodes and slave nodes in the representative cell. A master node in

an arbitrary cell 520') can be identified by cell number n and a node index j. A master

node in cell n is a member of the set{(n, j)}y:lm . Let (0, j) be a master node in the

representative cell 9. , where j E { 1,2,...NMN } . Then the master node (n, j) in Q“) is an

image of master node j in Q.

 

(b) Irreducible cell

   

ta)

lllfilll
_ I a t“)

(a) The whole structure (c) Tiling vectors

Figure 1. Infinite 2D periodic structure

 

Figure 2. Representative cell (2 with added slave nodes



2.2 Bloch-Floquet Theorem

An important theorem, known as Bloch-Floquet theorem [1, 18], states that the wave

propagation through a periodic lattice has the form

6 1'an

W=A(fi) (1)

where \p is a property associated with a node point of the lattice such as the

displacement of a node, A is a function, generally depending on the wave vector

k = (721,];2) , which is periodic with period associated with the lattice periodicity. More

on the meaning of R will appear later in Section 3.6.

Let “(0.1') denote the generalized displacements of master node (0, j) in $2. Applying

Bloch-Floquet theorem (1), the generalized displacements of master node (n, j) in 52“”

can be expressed as

um,j) = eianu(0, j) (2)

If we set

k1 = (IE-d”) and k2 = (k F”) (3)

then the above equation can be expressed as

ll(n,j) : eik-nu(0,j) ___ ei(lrlk1+r12k2)u(0,j) (4)

where k = (kl,k2) and the real parameters k1,k2 represent the changes in phase of a

wave between a cell and its immediate neighbor cells along tiling vectors to) and

ta) respectively.

Let um E C NDM and us 6 C NDS be the displacement vectors of master nodes and

slave nodes of the representative cell. Here NDM denotes the number of degrees of



freedom associated with master nodes, and NDS denotes the number of degrees of

freedom associated with slave nodes in the cell. Since slave nodes in the representative

cell are master nodes in the neighbor cells of the representative cell, applying (2) to all

slave nodes in the representative cell permits u S to be expressed in terms of um as

us = B(k)um (5)

where BE C(NDS,NDM). B is called here the representative cell’s quasi-periodicity

matrix and it depends on the vector k.

-10-



Chapter 3 FE Expression of Eigenvalue Problem for Infinite 2D Grids

3.1 Introduction to the FE model

Plane grid structures are typically made of a series of intersecting long, rigid linear

elements such as beams or trusses. In this work, only plane grids made of crossed-beams

with circular cross sections are considered. Joints at points of intersection are assumed

rigid so that a state of deflection compatibility exists at each point of intersection. In the

FE model used here, one beam element is used to model each grid element i.e. only one

element is used to model the segment between two adjacent intersections of a grid

SII'UCIUI'C.

3.2 2D Grid Element Stiffness and Mass Matrices

A 2D grid element consists of two nodes and each node has three degrees of freedom:

a vertical deflection along the z axis diz (normal to the plane of grid), a torsional rotation

(Pix about the x axis (the longitudinal axis of element), and a bending rotation (0,), about

the y axis to account for out-of-plane bending (Figure 3), where i is the node index and

 

i=1,2.

d1 d22 Z Z

‘ 1: $1). I : ¢2y Y

Node 1 6,,” $21 Z X

L Node 2

4i  

Figure 3. 2D Grid element and its nodal degrees of freedom
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Assuming cubic displacement shape functions for bending and linear displacement

shape functions for torsion within each element, the grid element stiffness and lumped

mass matrices at the local coordinates are given by

.-

m

a

II
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 —
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—6EI

L2

9 0
L

32

L

0 0

O 0

0 0

0 0

g 0

2 3
O pAL

24

 

(6)

(7)

 
where E is the material Young’s modulus, G is the material shear modulus, p is the

material density, I is the second moment of area of the cross section, A is the area of the

cross section along the x axis, J is the torsional constant about the x axis, L is the length

of the grid element, and the degrees of freedom are, in order, 1) vertical deflection along

the z axis, 2) torsional rotation about the x axis, 3) bending rotation about the y axis.

The transformation matrix relating local to global degrees of freedom for a grid

element is

-12-



’1 o o 0 o 0 l

0 cos 6 sin 6 O 0 O

O — sin 6 cos 6 0 O 0

L = (8)
0 O O 1 O O

0 O O 0 cos 6 sin 6

_O O O O — sin 6 cos 9.  
where 9 is the rotation angle taken counterclockwise from the global positive coordinate

system to the local positive coordinate system in the x-y plane about 2 axis. The global

stiffness and mass matrices for a given grid element arbitrarily oriented in the x-y plane

are

8" = am. (9)

Me = LTMeL (10)

3.3 Stiffness and Mass Matrices for a 2D Grid Representative Cell

Following a standard FE assembly procedure, the stiffness and mass matrices for a

2D grid representative cell 8“” and Mega can be constructed and expressed in

partitioned form as follows:

"I"! ms

Scell =|:S 5m 835]
(11)

S S

mm ms

Msm M53

These matrices are of dimension (NDM+NDS) x (NDM+NDS) and they have the

following properties:

1. See” and Mega are real and symmetric.

-13-



2. S” and M” are block diagonal with symmetric sub-matrices of order NDN x

NDN, where NDN denotes the number of degrees of freedom per node. In 2D grids,

NDN=3. This property follows from the fact that there is no element connection between

any two slave nodes in the representative cell, by the definition of the representative cell.

Using (5), the stiffness and mass matrices Sce” and Meg” can be reduced so that the

resulting equations of motion are linearly independent and expressed only in terms of the

master degrees of freedom. This is described in detail in the following section.

3.4 Derivation of Equations of Motion

Let nee” = [um ,uS ]T be the displacement vector of all nodes in a representative cell.

Then the kinetic energy (T) and potential energy (V) of the representative cell can be

expressed as

T :éalcell )*Mcellficell (13)

V :éolcell )*Scellucell (14)

Here 0* denotes Hermitian transpose. Let f m and f3 be the force vectors applied,

respectively, at the master nodes and slave nodes in the representative cell, and let

f“U =[f m,f SlT. The virtual work (SW of the external force f cell through a virtual

displacement 511“” can be expressed as

W = (alcell )*fce” (15)

where (5166” = [5um , 5.1317 .

-14-



Define a mass matrix M, stiffness matrix K and force vector f, so that

T = %(um)*Mu’" (16)

v =%(u"’)*Kum (17)

and

(SW = (armfr (18)

Using (12), equation (13) can be written in matrix form as

T = l[(firn)*,(us)*]|:M sm M ss :ll:u s]
2 M M u

Upon substitution of (5) and noting that B is not a function of time, the above equation

yields

* * mm ms - m

T=—1-I(u’"> .(Bum)1M M “
2 M57" M35 Bum

=%(um)*(M""" + B*M"" + MmsB + B*M”B)u’"

Comparing the above equation with (16), we conclude that

M = M""" + B"‘M~"’z + Mm‘B + B*M”B (19)

Similarly, from (11), (14) and (17), the stiffness matrix K can be shown to have the form

K=s’"’" +B*SS’" +SmsB+B*S”B (20)

Finally, (15) can be written in matrix form as

:1: fm 2:: :1: fm

awqaumarsr =1(&1"').(Bcin’")1

f5 f5

= (611m)*(f’" +B*f‘).

-15-



Comparing the above equation with (18), we conclude that

 

f=(r"'+B*r3)
(21)

Choose um e C NDM as generalized coordinates so that Lagrange’s equations take the

form

1 BL _ 6L : f (22)

d1 6mm) a(u"‘)

where the Lagrangian

L = T — V (23)

and the reduced generalized force vector f is given by (21) .

Substituting (16) and (17) into (22) and (23), we obtain the equations of motion:

Mii’" + Ku’" = f (24)

where M and K are the reduced mass and stiffness matrices.

3.5 Derivation of Eigenvalue Problem

Assuming a time-harmonic form of wave propagation in the periodic structure, let

um = aeiw' (25)

where a is the wave amplitude vector, (1) is the wave vibration frequency and i: f——l . Let

=0 and introduce (25) into (24). It follows that

(K — 2M)a = 0 (26)

where 2:602 is an eigenvalue, a is the eigenvector corresponding to A, M and K are

given by (19) and (20) and they are functions of k = (k1,k2). Equation (26) should be
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solved forke“)?2 , but all eigenfrequencies can be obtained by solving (26) using

k e [—7z',7r]2 because of structure periodicity. This is shown next.

3.6 Irreducible 2D Brillouin Zone for Symmetric Structures

In (4), k1 and k2 can be replaced by kl' and k5 without changing the relationship

between “(11.1) and “(0.1), letting

k; = ki + 272m,- (27)

where m,- are integers and i=1, 2. It follows from (5), (19) and (20) that M and K remain

unchanged when k,- is replaced by kf. Combining with (26), we conclude that the

eigenfrequencies of a 2D periodic structure are 2n periodic in k1,k2 . Thus all

eigenfrequencies can be obtained by solving (26) using k E [—7r,7r]2 , which is equivalent

to the first 2D Brillouin zone [1] in the reciprocal lattice defined next.

The direct lattice described by the tiling vectors t“) and ta) is the set

H = {ye ‘32 :y = nltm + n2t(2),n1,n2 E Z}

For each direct lattice, a reciprocal lattice can be constructed using basis vectors (1 (I)

and (1(2) given by the equations

t“) ,dII) = 2”§,,U, i,j=l, 2 (28)

In the reciprocal lattice, the value of k’ corresponding to the values of kf and kg in

(27) can be found to be

12’=12 +m1d(1)+m2d(2) (29)
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This can be shown using (3) and (28) as follows:

ki =(k'-t(1))

= (k 4(1)) + m1(d(1) -t(l)) + m2 (dm ~t(l))

= k1 + 272ml

Similarly, kg = k2 + 2an

The above discussion shows that the eigenfrequency of a 2D periodic structure is a

periodic function of wave vector k in the reciprocal lattice with basis vectors (1 (1) and

(1(2). Because of this periodicity, all eigenfrequencies can be obtained by solving (26)

using the first 2D Brillouin zone in reciprocal lattice, k6 -:-[—d(i),d(i)],i =1,2. For

symmetric periodic structures, the first 2D Brillouin zone can be reduced further.

Define unit vectors I“) and {(2) of a direct lattice and unit vectors (I (1) and {1(2) of

its corresponding reciprocal lattice so that

 

 

. (i)

i") = t , ,i=l,2

llt‘”|

lldmll’ ’

where H M denotes the length of a vector.

Let the geometric center of the representative cell be the origin. Then any point h in

the representative cell is of the form

1. Wm . ham 2 1.4101119. h,||.<2>”1<2> #9 + 522(2)
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where g, = h,- Ht“) H and h,- e [‘22) , i=1, 2.

Similarly, any point It in the first Brillouin zone can be expressed by a vector

I; = 41d“) + min) = mudmflmn + ”2 “(1(2)le : 1213“) + ,gzarz)

where 1;,- = 77,-"de and 71,- E [—-;—,%], i=1, 2.

Let x represent the material parameters (e.g. density, Young’s modulus, shear

modulus, cross section area, length of element, nonstructural mass at nodes etc.) that

affect matrices See” or Mall in (11) and (12). If x remains unchanged in the direct lattice

under the transformations

(51.52) H (-§1»§2). (51»52) H (51752)» (51,52) 1") (52,51) (30)

for 4:,-e—i—(—"t(i)ll,"t(i)ll), i=l,2, then eigenfrequencies of (26) remain unchanged in

reciprocal lattice under the following transformations

(121,122)H(-121,122),(121,122)H(121,-122),(121,12‘2)H(122,121)

Accordingly, the first 2D Brillouin zone [--7r,7r]2 in k space can be further reduced

to the triangle zone enclosed by ‘I’=[A-B-C-A] in Figure 4 (see [9]). Many authors [4—10]

use only the boundary ‘I’=[A-B-C-A] of the triangle for computation purposes. In this

work, we consider only optimal solutions with symmetry defined by (30), and the

boundary of the triangle is used for numerical implementation.
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3.7 Dispersion Diagram

For a 2D grid, the Hermitian mass matrix M is positive definite and the Hermitian

stiffness matrix K is positive semi-definite. It follows that the solution to (26) with k

 

 

    —fl

Figure 4. Irreducible 2D Brillouin zone for symmetric structures

ranging over ‘I’ is composed of a discrete sequence of real, nonnegative eigenvalues. If

the eigenvalues of (26) are plotted against ke ‘I’ , the resulting diagram is called

dispersion diagram or Bloch spectrum (see Figure 5). Obviously, each eigenvalue 1. and

the Bloch spectrum of (26) depend on the mass and stiffness of the structure. For a fixed

k, we enumerate the eigenvalue bands as 0 SA1(x,k) S 12(x,k) 513(x,k) S (recall that

x denotes the material or structure parameters). For a given material or structure, the

eigenvalue bands are fixed and we express them as

Il={/ij(k):ke ‘I’,j=1,2,3---}

Waves of frequency a) such that (02 E IIdo not propagate in the structure. If there

exists a frequency (00 which satisfies

xij(k) < (0% <Aj+l(k) for any k6 ‘I’
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we say that there is a band gap between eigenvalue bands j and j+l, and the band gap G

is determined by the minimum of bandj+l and the maximum of band j, i.e.

 

—e— bandty

+band2 ll

~B—band3

+band4l

120»
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Figure 5. A typical dispersion diagram showing the lowest four bands

G=|rréi$lj+l(k)—ir(r;a$1j(k) (31)

Clearly, the solutions k* to the minimum and maximum problems in (31) are important

information for determining the band gaps in a periodic structure. Assuming that the

eigenvalues at A, B, and C (the vertices of the triangle in Figure 4) are distinct, one can

show that A, B, and C are stationary points on the dispersion diagram and therefore

. . . * . .

potential candrdate solutions k . A complete proof IS given next.

3.7.1 Stationary Points on the Dispersion Diagram

Proposition 1. For a representative cell of a 2D periodic lattice structure, let

B e C(NDS,NDM ) be its quasi-periodicity matrix. Then for any matrix
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W e 9I(NDS, NDS) that is block diagonal with symmetric sub-matrices of order NDN x

NDN and independent of wave vector k, B*WB is symmetric and independent of k.

Proof:

We divide the NDS rows and NDM columns of B into NSN row groups and NMN

column groups so that B is partitioned to include NSN x NMN sub-matrices and each sub-

matrix is of order NDN x NDN. Let ,6 (,8 E {1,2,...NSN }) denote an arbitrary slave node in

a representative cell, it fidenote the cell number for the cell in which node ,6 is a master

node, j ( j e {1,2,...NMN } ) denote an arbitrary master node in the representative cell, and

Y’ denote the set of slave nodes in the representative cell that have the same master

node index j in the neighbor cells of the representative cell, i.e.

Yj ={,B:(nfl,j)€ QmflUs an image ofnode (O,j)€ Q}

By definition of quasi—periodicity matrix B (5), the sub-matrix B15)- , which is located

at the 6th row group and jth column group, relates the displacements of slave node ,8

(u;9 ) and the displacements of master node j (uj ) through

ufl =u(nfl’j) =B/3juw’j) =Bfiuj (32)

The entries of B 5}- are given by

then '

85 = 8 fl], [36 Y'I (33)

J O ,695 YJ

where I is an identity matrix and 0 is a zero matrix of order NDN x NDN.

Since matrix W e 9i(NDS, NDS) is block diagonal with sub-matrices of order NDN x

NDN, it follows that
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* MWNMI * MW *

(B WB)"1n : Z X (B )nza WaflBflz : Z 2(8 )lna WaflBfln

a=l 6:1 a=1,6=a

m, n=l, 2,...NMN. (34)

Applying (33) and the identity e” = e'i” , we have

* — _ e'mna’l, are Y’"
(B )ma =Bam —{ 0 (IE Ym (35)

and

zkonfl n

Bfln = e I, ,86 Y (36)

O fleY"

By definition, a slave node can be an image of only one master node in the

representative cell, i.e.

YmflY"=¢,m¢n,m,n€{l,2,...NMN} (37)

Combining with (33), (37) simply says that the ,Bth ( [3 E {1,2,...NSN }) row group of

B has only one nonzero entry, while the jth ( j e {1,2,...NMN } ) column group of B has

as many nonzero entries as the number of elements in Y J .

Upon substitution of (35)-(37), (34) yields

2 Z<B*)ma WaflBfln : Zyaa ”I = n

Y’" 62a aEY

“E 0 m i n.

Thus

w =

(B*WB),,,,,= 2m a“ m ", m,n=1,2,...NMN
aeY

0 min
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Since waa e SR(NDN,NDN) is symmetric and independent of k, so is B*WB .

End of proof of Proposition 1.

Proposition 2. For a representative cell of a 2D periodic lattice structure, the stiffness

matrix K and mass matrix M defined by (20) and (19) are Hermitian.

Proof:

Taking Hermitian transpose of both sides of (19), it follows that

M“ =(M""")* + (B*M~‘"')* + (M’"3B)* + (B*M”B)*

= (M’"'")* + (MW )*B + 8*(Mm5 )* + B*(M” )*B

Applying the pr0perties of Med, and See” (see Section 3.3), we have

M" = Mm’" + B*M"" + Mm‘B +B*M”B = M

Similarly

K*=K

End of proof of Proposition 2.

Proposition 3. Let 8( )denote 3%) (i=1, 2), xi,- denote a distinct eigenvalue of (26)

J

and a, denote its corresponding eigenvector normalized with respect to the mass matrix

M. If we assume sufficient differentiability of all parameters, then for a representative

cell of a 2D periodic lattice structure with Hermitian stiffness matrix K (20) and mass

matrix M (19),

8).,- = a‘;(aK —/i,-BM)a,- (38)
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where

M=aB*M"" + MmSBB (39)

ex = 313‘s 5'" + swan (40)

and 6M and 3K are Hernritian.

Proof:

Equation (38) is a well-known formula. The derivation of (39) and (40) is shown in

the following.

Since S” and M” are block diagonal with symmetric sub-matrices of order NDN x

NDN (see Section 3.3), it follows from Proposition 1 that

a(B*s”B) = 0 (41)

a(B*M”B) = 0 (42)

Taking derivative of both sides of (19) and (20) with respect to k, applying (4]) and

(42) and noting that only B is a function of k, it follows that

M = £913"‘M‘"I + Mm‘aB

and

8K = 313*85’" + smSaB

Taking Hermitian transpose of both sides of (39), it follows that

(aM)* = (BB’MW )"‘ + (MdeB)*

= aB*M"" + Mm‘aB = 8M

Similarly

(8K)“ = 8K
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End of proof of Proposition 3.

Proposition 4. Let 6 ( fie {1,2,...NSN } ) denote an arbitrary slave node in a

representative cell, n fidenote the cell number for the cell in which ,8 is a master node,

and E denote the cell number set of the cells in which the slave nodes of a representative

cell are master nodes, i.e. E = {nfi :,8 =1,2,...NSN}. If sin(k-n3) =0 for V nfl e E,

where ke 9i2 , then 8/1,- =0 and the eigenvector 31' associated with the distinct

eigenvalue xi,- is real.

Proof:

If sin(k onfl) = O for \7’ nfl e E , then eikmfl is real, since

eikmfl = cos(k onfl) + isin(k onfl) = cos(k onfi)

It follows from (33) that B @- is real. Moreover 8(B '31-) is pure imaginary since

aeikonfl

ak,

 =infle '“3,1=1,2

It follows that the quasi-periodicity matrix B is real and 8B is pure imaginary.

Since B is real, it follows from (19) and (20) that K and M are real. Further, applying

Proposition 2, K and M are real and symmetric. Therefore the eigenvalues xi,- and

eigenvectors aiare real.

Since 8B is pure imaginary, it follows from Proposition 3 that GM and 8K are

skew-symmetric. Therefore, 8K — zlng is skew-symmetric because of the fact that xi,- is

real. It follows from (38) that

8/1, = a? (8K — /l,-8M)a,- = 0
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End of proof of Proposition 4.

For the examples studied in this work, '5 = {(1,0)T ,(O,1)T } . The critical points A, B

and C are associated with k: (1t, 1t), (0, O) and (1t, 0). It follows from Proposition 4 that

these critical points are stationary points on the dispersion diagram and the eigenvectors

associated with the distinct eigenvalues at these critical points are real. Real eigenvectors

represent standing waves and they are associated with energy bounds that can be

transmitted through periodic structures. This discussion helps explain why the bounds of

the optimal gaps in the examples given in the later chapters are obtained at the critical

points when the eigenvalues at the bounds of the optimal gaps are distinct.
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Chapter 4 Optimization of Infinite 2D Periodic Grids

4.1 Optimization Problem Formulations

In this section, two optimization problem formulations are presented to design 2D

periodic grid structures with maximum band gaps. In the first formulation, the band gap

is maximized by adding additional (lumped) masses to certain nodes (“Design nodes”). In

the second formulation, by assuming a circular cross section for the grid elements, we

also change the cross section radii of certain grid elements (“Design elements”). In this

formulation, the mass and stiffness of the structure are changed simultaneously.

4.1.1 Formulation 1: Additional Mass as Design Variables

In this formulation, the band gap in 2D periodic grid structures is maximized by

adding additional (lumped) masses to certain nodes of the representative cell, called here

the “design nodes”. The optimization problem is

max G(x) = min A .+l(k,x) —max/l .(k,x) (43)

xeXl ke‘l’ 1 ke‘l’ 1

Here x = {xi}, i=1,. . ., n, denotes the vector of design variables and xi is the nonstructural

mass to be added to the ith design node. X1 is the feasible set, in this case,

X1 ={xecfin :OSxi Sxmax =flmceu,2xi SAxmax} (44)

where n is the number of design variables, and ,8, mm”, A and 1cmax are prescribed

positive real numbers that control the total amount of nonstructural material to be added

to the cell. The objective function C(x) is the band gap size between bands j and j+l.
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xij (k,x) and xi]. +1(k,x) are the jth and (i+1)th eigenvalue bands of the generalized

eigenvalue problem

(K(k) — /lM(k,x))a = O , k E ‘I’ and x 6 X1 (45)

Note that since adding masses to the nodes of a structure does not change the structure’s

stiffness, the stiffness matrix K is independent of x for formulation 1.

4.1.2 Formulation 2: Both Additional Mass and Element Radii as Design Variables

As the second formulation, we consider both additional nonstructural masses at the

design nodes and the cross section radii of the design elements as design variables. The

optimization problem is

max G(x) = min/i .+l(k,x)—maxl -(k,x)

xeXz k 1 k 1

where x = {xl,x2 } , x1 = {xil} and it} is the additional nonstructural mass to be added to

2:”?
} and x2- is the cross-section radius of the jth designthe ith design node, x 1

element. In this case, the feasible set is

l n 2 , I _ l 2
X2 ={x e‘fi andx E‘J‘ip .OSxi Sxmax —,Bmceu,in SAmcequin ij Srmax}

Here n is number of design nodes, p is number of design elements, rmin and rmx are

lower and upper bounds of the cross section radii of design elements. xij (k,x) and

xij+1(k,x) are the jth and (i+l)th eigenvalue bands of the generalized eigenvalue

problem

(K(k,x2)— xIM(k,x))a = O,k e ‘I’ and xe X2
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To make this problem computationally easier to solve, we consider a modified

formulation that studies the effect of changing the bar radii on the stiffness only (the

structural mass is kept constant at the reference value). In this case the above problem is

replaced by

(K(k,x2)—/iM(k,xl))a =O,ke ‘I’andxe x2 (46)

4.2 Numerical Implementation Issues of the Optimization Problems

4.2.1 Numerical Implementation

To solve the above optimization problems numerically, the subset of the irreducible

Brillouin zone, ‘I’=[A-B-C-A] (Figure 4), is discretized at m sample points and the

discrete set is denoted by

‘I’={k1,k2,-~,km},k,~e‘1’,i=l,...,m. (47)

For fixed x, this introduces discrete values of gap sizes between eigenvalues

evaluated at two pairs of wave vectors (k p and k (1) in ‘I’. Gap sizes between bands j and

j+1 on the discrete domain can be described by the quantities

qu(x)=/lj+1(kp,x)—/lj(kq,x),kp,kq e i! ,p,q=l m (48)

Then the optimization problems are reduced to

max min qu(x),i=l,2 (49)

xexilSp,qu

Problem (49) can be written as follows:

Find xe 9i" and 26 Eli that

maximize 2

subject to GM (x) 2 z, xe Xi, i=1, 2 (50)
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Problem (50) is solved numerically using the method of moving asymptotes [19]. To

facilitate computations, an active set of strategy is introduced so that a sequence of

problems is solved by considering only a subset of the most critical constraints in (49),

once a time. To avoid introducing redundant constraints, at most n of the most critical

constraints are kept each time (n represents the total number of design variables). As the

algorithm converges, feasibility of the solution is verified against the complete set of

constraints.

The gradient of Gpq (x) with respect to the design variable x is computed using well-

3()
known formulas. Letting ( )V denote 73:,

where

A? =arKvai —/i,-a:MVa,- (52)

and ai is normalized with respect to the mass matrix M. (52) holds only for distinct

eigenvalues.

In (52) xi,- and al- can be obtained from the current design. The procedures of

computing Gqu for the above two optimization formulations are described in the

following sections.

4.2.2 Derivative of Gap Size with Respect to Nonstructural Mass Variables

Since adding non-structural masses does not change the stiffness of the structure,

KV = 0 (53)
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Furthermore, since the design variable xh only appears along the diagonal of M, at the

position corresponding to the translation degree of freedom of design node h, 8_1\'_I_ has

xh

only one nonzero entry. So (52) yields

ar. . 2

'ax—l: = ”11(3)“ “it = ‘IIiljazh H (54)

where 3? represents the component corresponding to the translation degree of freedom

of design node h in the mass-normalized eigenvector a i-

Once Si is computed using (54), the gradient Gpqvcan be obtained from (51)

xh

4.2.3 Derivative of Gap Size with Respect to Element Radius Variables

Recalling the FE stiffness matrix and mass matrix formulation procedure in Chapter

3, for a grid element with circular cross section of radius r, the geometry properties in (6)

and (7) are given in terms of r by

A = 1tr2 (55)

4
nr

11: __
564 ( )

1tr
J =—

572 ( )

Substituting (55) through (57) into (6) and (7) and taking derivative with respect to r, it

 

follows that

" e

as use (.8)
8r r
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" e

an; )=-f-PM" (59) 

where P is a constant matrix and given by

- H

(60)

O
O
O
O
O
I
—

O
O
O
O
N
O

O
O
O
I
-
‘
O
O

O
O
r
—
O
O
O

O
N
O
O
O
O

H
O
O
O
O
O

  

Since the local to global transformation matrix L (see (8)) is independent of radius r, it

follows from (9) and (10) that

 

 

e " e

Br Br

e " e

——aM = LT a(M )L (62)

Br Br

Upon inserting (58) and (59) into (61) and (62) and applying L“1 = LT , the derivatives of

element stiffness and mass matrices with respect to radius r are found to be

 

 

e

as = 356 (63)

Gr r

6

3M = EQMe (64>
8r r

where

Q = LTp1, (65)

Substituting (8) and (60) into (65), it follows that
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pl 0 O 0 O O

O l+cos2 6 cos6sin6 O 0 O

O cos6sin6 l+sin2 6 O 0 0

Q = (66)
0 O O 1 0 O

0 O O 0 1+cos2 6 cos6sin6

L0 0 0 O cos6sin6 1+sin2 6_  
where 6 is defined in (8).

688 8M8

and

dr 8r

  
After computing , the derivatives of the global stiffness and mass

cell aMcell

matrices with respect to design element radius variable r, —— and—— , are

Br Br

obtained following a standard FEM assembly procedure. Then d_K_ and 9—1!!- are

Br Br

computed using the derivative forms of (19) and (20). Finally, A? and quv can be

obtained from (52) and (51). In a modified version of formulation 2, we keep the

8M

structural mass constant and set — = 0.
r
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Chapter 5 Examples of Optimization Problems

5.1 Examples

Using formulation 1 and formulation 2, band gaps are introduced and maximized in

infinite 2D grid structures with a 6x6 representative square cell (Figure 6) and a 6x6

representative skew cell (Figure 7). The tiling vectors of the representative cells are

t“) = (6L,0)T and ta) = 6L(cos a,sin a')T

where 6L=60mm and L is the length of each bar (grid element), and the angle between

the two tiling vectors a=90° for square cell and a=45° for skew cell respectively. Material

properties are: E=5.28 GPa, G=1.98 GPa and p=1200 kg/m3. The radius of the

cylindrical bar of the homogeneous structures is r0 = 0.5mm.

? ta)

 

 

 

 

 

_. t(1)

        
 

 

(a) Square cell (b) Tiling vectors

Figure 6. Homogeneous 6x6 representative square cell
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////// “2’

/////7

//////
//////
////// , ,)

//// / 45 ,

(a) Skew Cell (b) Tiling vectors

 

Figure 7. Homogeneous 6x6 representative skew cell

5.1.1 Examples of Square Structures Using Formulation 1

In this section, band gaps above band 1 and band 3 are introduced and maximized in

infinite 2D periodic grid structures with a 6X6 representative square cell using different

values of A and 1cmax (recall that A limits total mass added to the structure through the

constraint in SAxmax ). The potential locations where non-structural masses can be

placed are shown in Figure 8 (nodes denoted by the squares). By assuming the

symmetries defined in (30) of the optimal solutions so that ‘I‘ (Figure 4) can be used to

obtain all eigenfrequencies of the periodic structure, only three design masses (labeled 1,

2, and 3 in Figure 8) to be added to their respective nodes are needed.
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Figure 8. Locations of additional (design) masses for square cell in Formulation l

The design constraints, optimal mass distributions, and their corresponding gap sizes

are given in Table 1. For the local optima with optimal band gaps, the optimal mass

distribution graphs and dispersion diagrams are shown in Figure 9 through Figure 14.

For all the optimal designs with optimal band gaps above band 1, the mass (x1) added

to location 1 (center of the cell, Figure 8) reaches the upper bound (xmax ) while no mass

is placed at locations 2. If the total allowable mass constraint is set to allow only one

mass to reach the upper bound, the total mass is always placed at location 1 for the

optimal structures and increasing the upper bound constraint will create a bigger gap.

Setting A=9 to remove the total allowable mass constraint, the optimal mass added to

location 3 (x3 ) decreases with the increase of the upper bound constraint (xmax ). As

evidenced from designs 3 and 5, adding mass only to location 1 reduces the lower bound

of the optimal gap while keeps the upper bound of the gap fixed. However, adding mass

to location 3 reduces the upper bound of the optimal gap as well as the lower bound of

the optimal gap.
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When one’s goal is to maximize the gap above band 3, adding mass to location 3

becomes more advantageous. This is illustrated by the optimal result of design 8.

On the dispersion diagrams (Figure 9 through Figure 13) of all the optimal designs

with optimal band gap above band 1, the lower bound of the band gap occurs at point A

at which k=(1t, 1t) and the upper bound of the band gap is achieved at point C associated

with k=(rt, 0).

Table 1. Local optima in examples of square structure using formulation 1 (a=90°)

 

 

 

 

 

 

 

 

 

           
 

_ Constraints Optimal Design Optimal Gap

é xm A Allow Solution Total Gap Abv Abv

E0 (cheu) Total x = {x1,x2 , x3} Mass Size Band Freq.

é} A1:1ass (chell ) (XUsed (kHz) (kHz)

max mcell )

l 0.50 1 0.50 0.50 0.00 0.00 0.50 * 1

2 0.50 9 4.50 0.50 0.00 0.50 2.50 1.0 1 3.1

3 0.80 1 0.80 0.80 0.00 0.00 0.80 0.6 1 4.5

4 0.80 9 7.20 0.80 0.00 0.31 2.04 1.1 l 3.3

5 1.00 1 1.00 1.00 0.00 0.00 1.00 1.0 1 4.1

6 1.00 9 9.00 1.00 0.00 0.16 1.64 1.2 l 3.5

7 0.50 9 4.50 0.02 0.50 0.50 4.02 * 3

8 1.00 9 9.00 0.30 0.00 1.00 4.30 1.4 3 8.0

*No gap
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(a) Optimal mass distribution graph
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(b) Dispersion diagram

Figure 9. Mass distribution and dispersion diagram for design 2 in Table 1
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(b) Dispersion diagram

Figure 10. Mass distribution and dispersion diagram for design 3 in Table l
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(a) Optimal mass distribution graph
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(b) Dispersion diagram

Figure 11. Mass distribution and dispersion diagram for design 4 in Table l
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(b) Dispersion diagram

Figure 12. Mass distribution and dispersion diagram for design 5 in Table l
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(b) Dispersion diagram

Figure 13. Mass distribution and dispersion diagram for design 6 in Table 1
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(a) Optimal mass distribution graph
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(b) Dispersion diagram

Figure 14. Mass distribution and dispersion diagram for design 8 in Table l

-44-



5.l.2 Examples of Skew Structures Using Formulation 1

In this section, band gaps above band 1 and band 3 are introduced and maximized in

infinite 2D periodic grid structures with a 6x6 representative skew cell (a=45°) using the

same formulation and the same constraints as in Section 5.1.1. The potential locations

where non-structural masses can be placed are shown in Figure 15. The results are shown

in Table 2 and Figure 16 through Figure 22.

//////

 

 

 

  
 

 

Figure 15. Locations of additional (design) masses for skew cell in Formulation 1

Table 2. Local optima in examples of skew structure using formulation 1 (a=45°)

 

 

 

 

 

 

 

 

          

. Constraints Optimal Design Optimal Gap

2 xmax A Allow Solution Total Gap Abv Abv

g0 (cheu) Total x = {x1, x2 , x3} Mass Size Band Freq.

3 Mass 0071“” ) Used (kHz) (kHz)

Q Axmax (xmcell )

9 0.50 1 0.50 0.50 0.00 0.00 0.50 1.5 1 5.1

10 0.50 9 4.50 0.50 0.00 0.19 1.26 2.1 1 4.0

11 0.80 1 0.80 0.80 0.00 0.00 0.80 2.2 1 4.4

12 0.80 9 7.20 0.80 0.00 0.02 0.88 2.3 1 4.3

13 1.00 9 9.00 1.00 0.00 0.00 1.00 2.5 1 4.1

14 0.50 9 4.50 0.00 0.50 0.50 4.00 0.2 3 9.7

15 1.00 9 9.00 0.00 0.00 1.00 4.00 2.2 3 10.3
 

Given the same constraints as those for the examples in Table 1, similar optimal mass

distributions are obtained but the band gaps are much larger in skew structures (Table 2)

-45-

 



 

  
 

 
 

  
 

 

  
 

15

/ l

l l

10 — l I ~

g: l l

i l /\
8
r 5 j l le—_9:Pl

l

l l

o. L l.

(b) Dispersion diagram

Figure 16. Mass distribution and dispersion diagram for design 9 in Table 2.

than those in square structures (Table 1). Especially, changing a from 90° to 45° can

increase the upper bounds of the optimal gaps above band 1 significantly. Design 11 has

the same mass distribution as design 3 but the upper bound of the optimal gap of one is

30% higher than that of the other (The same is true for design 13 and 5). All other
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observations discussed in Section 5.1.1 about the optimal solution for square structures

apply to the optimal solutions of skew structures in this section.
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(b) Dispersion diagram

Figure 17. Mass distribution and dispersion diagram for design 10 in Table 2
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(b) Dispersion diagram

Figure 18. Mass distribution and dispersion diagram for design 11 in Table 2
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(b) Dispersion diagram

Figure 19. Mass distribution and dispersion diagram for design 12 in Table 2
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(b) Dispersion diagram

Figure 20. Mass distribution and dispersion diagram for design 13 in Table 2
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(b) Dispersion diagram

Figure 21. Mass distribution and dispersion diagram for design 14 in Table 2
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(a) Optimal mass distribution graph
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(b) Dispersion diagram

Figure 22. Mass distribution and dispersion diagram for design 15 in Table 2
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5.1.3 Examples of Square Structures Using Formulation 2

 

 

     
Figure 23. Locations of design masses and design elements in formulation 2

In this section, the square grid structure as in Section 5.1.1 is optimized using some of

the bars as design variables (labeled a, b, c, and d in Figure 23), as well as the potential

addition of non-structural masses (labeled 1, 2, and 3 in Figure 23). The constraints are

chosen as follows:

xmax = 0.5mce”

A=9 (no total allowable mass constraint)

rmin =0.5r0 and rmax =2r0

where r0 is the element radius of the homogeneous structure. The modified formulation

(46), which studies the effect of changing the bar radii on the stiffness only, is used here

to maximize band gaps above band 1 and band 3. The results are given in Table 3 and

Figure 24 through Figure 29.

Table 3 shows that the gap above band 3 can be increased significantly by allowing

more elements to be “designable”. By having 2, 3, and 4 design elements, designs 17, 19,

and 21 have band gaps above band 3 of 2.5 kHz, 4.0 kHz and 5.3 kHz respectively. Using
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3 and 4 design elements in square cell, designs 19 and 21 are found to have the same

mass distribution as the result for design 14 of skew cell examples in Table 2, but design

14 has a gap of only 0.2 kHz.

However, increasing the number of design elements does not always help create

bigger gaps above band 1. For example, design 18 uses one more design element than

design 16, but both of the optimal designs have the same gap size of 1.2 kHz. In addition,

Design 18, which uses 3 design elements for square cell, places the same masses on the

cell as for design 10 of skew cell examples (Table 2), where no design elements are

allowed, but design 18 has a smaller gap of 1.2 kHz compared to a gap of 2.1 kHz for

design 10.

The rules of the mass distribution for formulation I discussed in Section 5.1.1 still hold

for formulation 2. In addition, the upper bounds and the lower bounds of the optimal gaps

above band 1 occur at the same positions (k vectors) as in the results for examples using

formulation 1.

Table 3. Local optima in examples of square structure using formulation 2 (a=90°)

 

 

 

 

 

 

 

 

          

. Optimal Design Optimal Gap

% “1 (cheu ) x2 (”0)

.3)“ { x1, x2 , x3} Total a, b c d Gap Abv Abv

5 Mass Size Band Freq.

Used (kHz) (kHz)

16 0.50 0.00 0.50 2.50 1.30 2.00 ** ** 1.2 l 3.4

17 0.02 0.20 0.50 2.82 0.50 0.50 ** ** 2.5 3 5.3

18 0.50 0.00 0.19 1.26 1.36 2.00 0.50 ** 1.2 l 3.8

19 0.00 0.50 0.50 4.00 0.50 0.50 2.00 ** 4.0 3 4.4

20 0.50 0.00 0.21 1.34 1.28 2.00 0.80 0.50 1.4 l 3.3

21 0.00 0.50 0.50 4.00 0.92 0.50 2.00 2.00 5.3 3 7.9

 

** Not used as a design element
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(b) Optimal element radius graph
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(c) Dispersion diagram

Figure 24. Mass and radius distribution and dispersion diagram for design 16 in Table 3
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(b) Optimal element radius graph
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(c) Dispersion diagram

Figure 25. Mass and radius distribution and dispersion diagram for design 17 in Table 3
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(b) Optimal element radius graph
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(c) Dispersion diagram

Figure 26. Mass and radius distribution and dispersion diagram for design 18 in Table 3
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(b) Optimal element radius graph
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(c) Dispersion diagram

Figure 27. Mass and radius distribution and dispersion diagram for design 19 in Table 3
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(b) Optimal element radius graph
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(c) Dispersion diagram

Figure 28. Mass and radius distribution and dispersion diagram for design 20 in Table 3
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(c) Dispersion diagram

Figure 29. Mass and radius distribution and dispersion diagram for design 21 in Table 3
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5.2 Discussion

The optimal solutions of all the examples in the last section demonstrate some

common phenomena in terms of optimal mass distributions, and points k where the upper

bounds and lower bounds of the optimal gaps are achieved. These phenomena are

investigated further in the following sections.

5.2.1 Stationary Points on the Dispersion Diagram

On the dispersion diagrams of all the optimal designs with gaps above band 1, the

lower bounds of the gaps occur at point A at which k=(rt, it) while the upper bounds are

achieved at point C associated with k=(rt, 0). In addition, the eigenvalues at the gap

bounds are distinct for all these examples. On the dispersion diagrams of the Optimal

designs with gaps above band 3, the upper bounds of the band gap are obtained at point A

associated with k=(rt, 1:), but there are two cases for the lower bounds:

1. The lower bounds occur at point B associated with k=(0,0) and at this point

the eigenvalue is unique.

2. The lower bounds occur anywhere else and the eigenvalue of band 3 at point

B associated with k=(0,0) is repeated.

The above observations suggest that the critical points A, B, and C are stationary

points on the dispersion diagram provided that the eigenvalues at these points are distinct.

This is supported by the Propositions discussed in Section 3.7.1.These Propositions also

show that the eigenvectors associated with the eigenvalues at these critical points are real.

In the next section, we demonstrate that the optimal mass distribution is governed by

these real eigenvectors.
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5.2.2 Optimal Mass Distribution

The real eigenvectors associated with the distinct eigenvalues at the critical points A

B and C represent standing waves or mode shapes that govern the optimal mass

distribution. For example, both optimal results of design 5 in Table 1 and design 13 in

Table 2 place the same amount of mass at location 1. The mode shapes in a representative

cell depicted by the eigenvectors associated with the lower bounds and upper bounds of

the optimal band gaps for these two designs are given in Figure 30 and Figure 31. The

eigenvector components corresponding to out-of-plane translations are normalized so that

the maximum component amplitude equals one. Interestingly, although one design is for

square structure and the other one is for skew structure, the amplitude average of the

eigenvector components corresponding to the out-of-plane translations of each potential

additional mass location has the same profiles for both designs, as illustrated in Figure

32. Since location 1 has the maximum value of translation amplitude among the three

potential mass locations (Figure 32 (a)) in the modes associated with the lower bounds of

optimal gaps above band 1, adding mass to this spot reduces the lower bounds most

efficiently. On the other hand, in the mode shapes associated with the upper bounds of

optimal gaps above band 1, location 1 rests at the nodal point, which has zero translation

(Figure 32 (b)). Adding mass to this point does not change the upper bounds.

-62-



  N
o
r
m
a
l
i
z
e
d
T
r
a
n
s
l
a
t
i
o
n

 

 

-‘TT' I-’T’ 4

,—"' ' .J l

f ’ I ”l” I I’, '4 /

0.5 ’ : ,U-r I/l / /
I ',—' T I /

0"”l’- . .

I l

\ ,-

T

\‘I‘ q r L 4

0\ j
/

a

- I

lr-T,-

-05 ""-. -
’ l

 I./
J
1

I

I

 

N
o
r
m
a
l
i
z
e
d
T
r
a
n
s
l
a
t
i
o
n

   
          
 

 

 

 

   
       

  

(b) Vibration mode of skew cell (design 13 in Table 2)

Figure 30. Vibration modes at lower bounds of optimal gaps above band 1
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Figure 31. Vibration modes at upper bounds of optimal gaps above band 1

(b) Vibration mode of skew cell (design 13 in Table 2.)
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(a) Vibration mode of square cell(design 5 in Table 1)
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(a) For lower bound modes (Figure 30)
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(b) For upper bound modes (Figure 31)

Figure 32. Eigenvector component profiles for modes in Figure 30 and Figure 31
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(b) Vibration mode at upper bound

Figure 33. Vibration modes at the bounds of optimal gap above band 3
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Figure 34. Eigenvector component profiles for modes in Figure 33

The above discussion explains why the mass placed at location 1 always reaches the

upper bound (xmax ) in the examples maximizing gap above band 1. By the same

principle, the optimal mass distribution for design 15 in Table 2, where a gap is sought

above band 3, can be explained easily. The vibration modes associated with the lower and

upper bounds of the gaps for this design are given in Figure 33 and the profiles of the
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amplitude average of the eigenvector components corresponding to the out—of-plane

translations of each potential additional mass location are given in Figure 34.
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Chapter 6 Wave Propagation in Finite 2D Grid Structures

Wave propagation in infinite periodic plane grid structures was studied in Chapters 4-

5. In this chapter the behavior of finite periodic plane grid structures subjected to

harmonic loading perpendicular to the grid plane is investigated considering two

applications: filters and wave guides.

In order to reduce computer memory requirements for computing the response of

finite periodic plane grids, finite plane grids made of 2x2 square cells (Figure 35 (a)) and

2x2 skew cells (Figure 35 (b)) are considered here. The geometry of the grid element and

material properties of the homogeneous structures used here are the same as in Section

5.1. Using optimization problem formulation 1 with one nonstructural mass adding

location (labeled 1 in Figure 35), and setting xmax =lmceu and A=l, the optimal

solutions for maximizing gap above band 1 in infinite grids are found having one mass of

xmx placed at the center of the cells and the dispersion diagrams are given in Figure 36.
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(a) 2x2 square cell (b) 2x2 skew cell

Figure 35. 2x2 representative cells for finite 2D grids
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(b) Structure made of 2x2 skew cell; Gap is 17.5 kHz above 34.5 kHz

Figure 36. Dispersion diagrams for infinite optimal structures made of 2x2 cells
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6.1 Model Equations

In Chapter 3, the FE expression of equations of motion for infinite 2D periodic grid is

derived using Bloch-Floquet theorem and the representative cell. To derive the equations

of motion for finite 2D grid, the whole structure must be treated using the FE method. Let

u e CTOT ,M e 91(TOT,TOT) and K e 9i(TOT,TOT) denote the displacement vector,

and assembled mass and stiffness matrices, where TOT is the total number of degrees of

freedom in the whole finite structure. Let fem” represent the periodic loading vector,

where f e (RTOT is a vector of force amplitudes and (0 is the driving frequency. The

equations of motion for finite 2D grid then take the form of (24) as

Mu + Kn = tel” (67)

Upon substitution of u = aeiw' (recall from (25) that a is the wave amplitude vector),

the above equation yields

(K — sz)a = f (68)

For a given finite periodic structure and harmonic loading, a can be obtained using

(68). The behavior of the finite periodic plane grid structure is then studied using the

relative components of a.

6.2 Examples

Periodic plane grids can be used to generate vibration filters and wave guides. The

2x2 representative cells in Figure 35 are used here to demonstrate the applications of

finite 2D grids. The finite periodic grid structures acting as filters and wave guides are

constructed by continuously putting NC] and NCZ representative cells along tiling
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vectors tm and ta) respectively, where NCI and NCZ represent the total cell numbers

to) ,0)
along tiling vectors and in the finite structures.

6.2.1 Filters

In the examples for filter application, a harmonic force perpendicular to the plane of

grid structures is applied at each node of the periodic structure, and the force amplitude is

kept constant while the driving frequency varies from zero to a value above the upper

bound frequency of the optimal gaps in infinite structures. All the nodes on the four edges

of the structures are pinned. The translation amplitudes of the nodes in the 4 cell x4 cell

area located at the center of the structures are computed for each driving frequency. The

harmonic loading and the response evaluation area in the finite periodic square structures

used as filters are illustrated in Figure 37.

Let 1 denote the set of the nodes where the responses are evaluated and an ((0)

represent the translation amplitude of node n E 2’ at driving frequency (0. The frequency

response function (FRF) is then calculated using the following formula:

FRF = 201og(max(—M
n61 an (a) = 0)

)) (69)

Figure 38 displays the FRF curves for the square and skew periodic structures with

NCI=NC2=6, 10 and 16. For comparison, the bounds of band gaps for infinite structures

are shown using vertical dashed lines. The band gaps are observed for all the cases in

both square and skew structures and with more cells used in the finite structures, the gaps

get closer to the gaps in the infinite structures. However, resonance peaks are noted just

above the lower bound of the gap for square structures, and at 37.1 kHz, which is 2.6 kHz
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above the lower bound of the gap for skew structures. With the increase of the number of

the cells included in the finite structures, the peaks get lower.

fcosat
 

               V 1
 

   

(a) Harmonic loading perpendicular to the grid plane

 

 

Response

Evaluation Area

   

I Rep. I NC‘l

E Cell ;   
(b) Layout of structure construction and response evaluation

area

Figure 37. Finite filter structure subjected to harmonic loading
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Figure 38. Response of filter structures with NCI x NCZ Cells

(b) Response of skew filter structure
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6.2.2 Wave Guides

In this section, a defect is introduced into finite periodic structures by removing the

nonstructural masses from the cells in a path from a point excitation to a response

evaluation point. Figure 39 illustrates the loading point F and response evaluation points

A and B for finite structures made of square 2x2 cells (Figure 35 (a)) with NC1=NC2=16.

The boundary conditions are the same as in last section. A point harmonic driving force

fcoswt is applied at the node (point F). The nonstructural masses are removed from the

cells in a bent path from point F to point B along the tiling vectors t“) and ta) of

square structures. In this case, the FRF is calculated using the following formula:

CIA/3(0))

aA/B(a)=0)

 FRF = 2016g( ) (70)

where aA / 3 ((0) represents the translation amplitude of node A or B depending on which

point where the response is evaluated. Figure 40 (a) shows the FRF curves for points A

and B. It can be seen that the response at point A, between which and the excitation point

F perfect periodic cells with nonstructural masses are used, drops significantly in the

band gap range, whereas the response at point B remains high indicating the harmonic

excitation transmitted through the bent path made of homogeneous cells.

With the 2x2 square cells in Figure 39 replaced by 2x2 skew cells (Figure 35 (b)), the

responses at point A and B for the skew structure are shown in Figure 40 (b).
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Figure 39. Layout of loading and response evaluation locations for wave guide structures
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Figure 40. Response of wave guide structures
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(b) Response of skew wave guide structure
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(a) Response of square wave guide structure
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Chapter 7 Conclusions

7.1 Summary

A method using an FE model, Bloch-Floquet theory and optimization technique has

been presented for designing infinite periodic plane grid structures with frequency band

gaps. This method is implemented numerically using two different periodic structures, a

square structure and a skewed one, and two different optimization formulations. In one

formulation the selective addition Of lumped masses is used tO optimize the structures and

in the other formulation the stiffness of the grid structure is also allowed to change in

addition to the selective addition Of lumped masses. The numerical results for infinite

periodic structures can be summarized as follows:

1. The optimal mass distribution is related to the eigenvectors associated with

the bounds of the Optimal gaps.

2. The bounds of optimal gaps on the dispersion diagrams tend to occur at the

critical points associated with k=(rt, 1r), (0, 0) and (1t, 0). Analysis shows that

when differentiability can be ascertained, these critical points are stationary

points on the dispersion diagram and therefore potential candidate solutions to

the minimum and maximum problems in (31).

3. Given the same design constraints, skew structures are more advantageous

than square structures to create bigger gaps above lower bands such as hand 1

and band 3.

4. By allowing more grid elements to be “designable” in a square structure, the

gap above mode 3 can be increased significantly.
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Wave propagation in finite periodic plane grid structures is investigated by

considering the response Of finite periodic plane grid structures subjected to harmonic

loading using two applications: filter and wave guide. The numerical results for finite

periodic structures show the following:

1. The response Of perfect finite periodic structures is attenuated significantly

within the frequency ranges of the band gaps for the corresponding infinite

periodic structures. With more cells included in the finite periodic structures,

the band gap range exhibited in the finite periodic structures gets closer to that

in the corresponding infinite ones.

A wave can propagate through a wave guide path in finite periodic structures

without attenuation when a defect is introduced to the structures by removing

the nonstructural mass in the cells along the wave guide path.

7.2 Areas of Future Work

Based on the conclusions, the following areas should be explored:

1. The Optimization problem is inherently non-smooth and the loss of

differentiability is always a strong possibility. The problem may have many

local solutions and is difficult to solve using standard mathematical

programming tools. Further work could focus on developing enhanced

algorithms specially tailored for this application.

The geometry Of the structure has a large effect on the Optimal gaps in the

structure. In a different formulation, the angle a between the two tiling vectors

may be considered as a design variable.
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3. The gap information Obtained by studying infinite periodic structures can

provide a good prediction of the gap in finite periodic structures. However, to

make a vibration filter or a wave guide for engineering applications, the effect

Of boundary conditions, damping, and imperfections on the band gaps in finite

structures should be studied.
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