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ABSTRACT

THEORETICAL DERIVATION AND NUMERICAL IMPLEMENTATION OF

CONTINUUM DAMAGE BASED CONSTITUTIVE EQUATIONS

BY

Nima Salajegheh

In this work, the isotropic damage is assumed and the theoretical

formulations of damage-coupled material behavior are presented

based on the internal variable approach. Additionally, several methods

for damage measurement and specification of material damage

parameters are introduced and an experiment is performed to

measure damage parameters qualitatively. Finally, the constitutive and

evolution equations are implemented into a commercial finite element

code, Ls-Dyna, and the results are compared with the non-damage

based analysis. Throughout this work, other common approaches to

Continuum Damage Mechanics and their differences from the current

approach are mentioned briefly.
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CHAPTER 1: Continuum Damage Mechanics

1.1 Introduction

A new branch of science usually develops thus. Somebody publishes

the basic ideas. Hesitatingly at first, then little by little, other original

contributions appear, until a certain threshold is reached. Then,

overview articles are printed, conferences are held, and a first mention

is made in textbooks, until specialized monographs are written.

Continuum damage mechanics has reached that status now.

Professor Horst Lippmann

Lehrstuhl A fUr Mechanik

Technische Universitiit Miinchen,

Germany

Ductile fracture has been the subject of active research in the last

decades because of its importance to practical engineering applications

where the forming of a part introduces large deformations beyond the

elastic region. Because of its success in the analysis of brittle fracture,

a major effort has been devoted to the application of fracture

mechanics to characterize ductile fracture. This effort has led to the

introduction of different ductile fracture criteria which notably include



J-integral and COO (Crack opening displacement). These criteria offer

a tool for predicting the crack progression at the macroscale but they

fail to take into account the continuous deterioration of material

properties as the effect of microcrack nucleation and accumulation.

Moreover, fracture mechanics is based on the analysis of existing

cracks which might be too late to prevent a disaster. Therefore, the

nucleation stage, which consists of the evolution of internal damage

before macrocracks become visible, caught attention. As a result it

was highly appreciated by the scientific community when L.M.

Kachanov published in 1958 a simple model of material damage which

subsequently could be extended to brittle elastic, plastic or viscous

materials under all conditions of uniaxial or multiaxial, simple or cyclic

loadings. Recently, the theory of continuum damage mechanics has

been developed to a state ready for engineering applications. The

theory has been applied to solve a number of important engineering

problems including low-cycle fatigue in metals, high cycle fatigue,

creep-fatigue interaction, damage in composites, creep damage, and

ductile rupture. Also, the theory has been extended by the

development of both isotropic and anisotropic models of continuum

damage mechanics.



1.2 Phenomenological Aspects of Damage

The damage of materials is the progressive process which degrades

the material parameters continuously and causes them to fail. At the

microscale level this is the breakage of bonds between atoms due to

concentration of stress in the neighborhood of defects or interfaces. At

the mesoscale level of the representative volume element (RVE), this

is the growth and the coalescence of microcracks or microvoids which

initiate a crack and at the macroscale level this is the growth of that

crack. The two first stages may be studied by means of damage

variables of the mechanics of continuous media defined at the

mesoscale level which is the goal of Continuum Damage Mechanics

approach. The third stage is usually studied using fracture mechanics

with variables defined at the macroscale level. Continuum mechanics

and the thermodynamics of irreversible processes model the material

behavior without detailed reference to the complexity of their physical

microstructures.

1.3 Atoms, Elasticity and Damage

All materials are composed of atoms, which are held together by

bonds resulting from the interaction of electromagnetic fields. Elasticity

is directly related to the relative movement of atoms. When debonding



occurs, this is the beginning of the damage process. For example,

metals are organized in crystals or grains, a regular array of atoms

except on lines of dislocations where atoms are missing; if an

adequate shear stress is applied, the dislocations will move, thus

creating a plastic strain by slip without any debonding as shown in the

Figure 1.
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Figure 1 : Plastic strain due to dislocation movement

If the dislocation is stopped by a defect or a stress concentration site,

it creates a zone in which another dislocation may be stopped. The

accumulation of dislocations creates a debonding damage as shown in

Figure 2 and eventually a microcrack will form.
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Figure 2 : Elementary damage by nucleation of microcrack due to an accumulation of

dislocations (after D. Krajcinovic)

There are some other damage mechanisms in metals such as

intergranular debonding and decohesion between inclusions and the

matrix all of which create plastic strains.

In all cases, elasticity is directly influenced by the damage, since the

number of atomic bonds responsible for elasticity decreases with

damage. This coupling, which occurs at the level of the state of the

material, is called a state coupling.

1.4 Plasticity and Irreversible Strains

Plasticity is directly related to slips due to the movement, climbing,

or twinning of dislocations. Damage influences plastic (irreversible)

strain only because the elementary area of resistance decreases as the

number of bonds decreases. However, damage does not directly

influence the mechanism of slip itself; that is, there is no state



coupling. The indirect coupling owing to an increase in the effective

stress arises only in the rate constitutive equations and it is called

kinetic coupling.

1.5 Scale of the Phenomena of Strain and Damage

- Elasticity takes place at the level of atoms.

- Plasticity is governed by slips at the level of crystals or grains.

- Damage is debonding from the level of atoms to the mesoscale level

for crack initiation and it can be viewed as a bridge between

microscale and macroscale analysis.

Continuum mechanics deals with quantities defined at a geometrical

point. From the physical point of view, these quantities represent

averages on a certain volume, the Representative Volume Element

(RVE). The RVE must be small enough to capture high gradients but

large enough to represent an average of the processes at the

microscale[15]. To summerize:

- The microscale is the scale of the mechanisms of strains and

damage;

- The mesoscale is the scale at which the constitutive equations for

numerical analysis are written;

- The macroscale is the scale of engineering structures;



1.6 Different Manifestations of Damage

Even though the damage at the microscale is governed by one

general mechanism of debonding, at the mesoscale it can be seen in

various ways depending upon the nature of the material, the type of

loading, and the temperature [15]. Some of these manifestations are:

1.6.1 Brittle damage

The damage is called brittle when a crack is initiated at the

mesoscale without a large amount of plastic strain. This means that

the cleavage forces are below the forces that could produce slips but

are higher than the debonding forces. The degree of localization is

high.

1.6.2 Ductile damage

On the other hand, the damage is called ductile when it occurs

simultaneously with plastic deformations, larger than a certain

threshold p0. Damage is due to the nucleation of cavities followed by

their growth and their coalescence. As a consequence, the degree of

localization of ductile damage is comparable to that of plastic strain.



1.6.3 Creep damage

When a metal is loaded at elevated temperatures, for instance a

temperature above 1/3 of the melting temperature, the plastic strain

occurs at a stress lower than the yield stress. When the strain is large

enough, there are intergranular decohesions which produce damage

and an increase of the strain rate through the period of tertiary creep

[1]. Like ductile damage, the gradients of creep damage are similar to

the viscoplastic strain gradients.

1.6.4 Low cycle fatigue damage

When a material is subjected to a cyclic loading at high values for

stress or strain, damage develops together with cyclic plastic strain

after a period of saturation preceding the phases of nucleation and

propagation of microcracks. The degree of damage localization is

higher than those of ductile or creep damage. Because of the high

values for the stress, the low cycle fatigue is characterized by low

values of the number of cycles to rupture, NR < 10000. If the material is

strain loaded, the damage induces a drop of the stress amplitude as

shown in Figure 3 for two stress-strain loops corresponding to the

initial cycles and a cycle close to the rupture.
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Figure 3 : Cyclic tension-compression curves for low cycle fatigue of stainless steel

(after J. Duffaily)

1.6.5 High cycle fatigue

When a material is loaded with lower values for stress or strain, the

plastic strain at the mesolevel remains small and negligible. The

number of cycles to failure may be very large, NR >100000 and the

localization of damage is high and similar to that of brittle fracture.

Also, a drop of stress occurs similar to low cycle fatigue.

 

 

 
I .

  
Figure 4 : Cyclic tension-compression curves for low cycle fatigue of stainless steel

(after J. Duffaily)



Note that for brittle damage and high cycle fatigue damage where

damage localization is high, a stress-strain curve obtained from a

classical tension-compression test at the macroscale does not

represent the true behavior for strain and damage because the

localization induces plastic and damage zones much smaller than those

of the specimen. Nevertheless, it is used because mechanical

experiments at the microscale are difficult to perform; the results are

averages of nonuniform quantities over a mesovolume. The

microhardness test may help to characterize a microvolume as it

involves a size of the order of microns but its state of stress is

complex.

1.7 Mechanical representation of Damage

1.7.1 One-Dimensional Surface Damage Variable (L.M. Kachanov [1])

At the microscale, damage may be interpreted as the creation of

discontinuous surfaces, breaking of atomic bonds, and enlargement of

microcavities. At the mesoscale, the number of broken bonds may be

approximated in any plane by the area of the intersections of all the

flaws with that plane [1]. In order to work with a dimensionless

quantity, this area is scaled by the size of the representative volume

element, which is of great importance in the definition of a continuous

variable in the sense of continuum mechanics. At one point, it must be

10



the representative effect of microdefects over the mesoscale volume

element. It is similar to plasticity where the plastic strain

5,, represents, at one point, the average of many slips. If we consider a

Representative Volume Element (RVE) oriented along the direction ii

and a plane passing through the RVE with the same orientation (Figure

5), we can define:

- as as the area of the intersection of the plane with the RVE;

- 85,, as the area of the intersections of all microcracks or

microcavities which lie in as;

 
Figure 5 : Isotropic definition of damage parameter (Apple representation is after J.

Lemaitre, 1975)

- The value of the damage D(M,fi)attached to the point M in the

direction iiis defined as:

as

D M,” = D( n) as
 

11



The damage parameter at point M is the maximum value of

D(M,ii) for all possible orientations,ii .

It follows from this definition that the value of the scalar variable D

(which depends upon the point and the direction considered) is

bounded by 0 and 1:

D = 0 —-> Undamaged RVE material;

D =1—->Fully broken RVE material in two parts.

In fact, the failure occurs for D <1 through a process of instability.

1.7.2 Three-Dimensional tensorial representation of the Damage

parameter (Murakami and Ohno, 1978 [8]; Murakami, 1988)

The theory of continuum damage mechanics was first developed for

material deterioration in the process of creep. Kachanov in 1958 first

proposed a phenomenological theory of creep damage by introducing a

scalar damage variable D to characterize the material degradation

which is responsible for tertiary creep and rupture [1]. The underlying

physical suggestion behind the scalar characterization is that creep

damage in a continuum is assumed to be everywhere the same and

independent of the specific orientation chosen. Thereafter, Rabotnov

interpreted that the damage variable represents the fraction of

damaged material, thus reducing the effective resisting area of the

12



local material element from S to So =(l—D)S. In the one-dimensional

case, the effective stress was thus defined as:

F = a

80—0) 0—0)

 

~ F
0':—:

50

Although the idea of scalar isotropic damage parameter is intuitively

appealing and has been universally accepted, it needs careful re-

examination. The main drawback of this isotropic model is that the

model predicts a constant value of the Poisson's ratio not affected by

material damage while the Young's modulus E is reduced to

E(1—D)after damage has occurred. However, experimental

observations have shown a change in Poisson's ratio. ([9], [11], and

[12])

On the other hand, despite the complexity of their mathematical

structure, tensors of second ranks can describe the spatial distribution

of microcavities more accurately, and hence, considerable efforts have

already been made to develop damage models based on second order

tensors [9], [10]. The second order damage field _D_(x) has the following

form in the principal directions:

D(x) =

c
o
p

o
N
D
o

p
o
o

DUDZ, and D3 are simply the ratios of the damaged surface area over

the total surface area for any point in three orthogonal directions. It is

13



assumed that the principal directions of 2(x) coincide with the principal

directions of stress field at the specified material element because the

dislocations tend to line up and form the crack in the plane, which is

perpendicular to the principal stress direction[11].

In addition to scalars and second order tensors, vectors and forth

order tensors have also been used to reperesent the damage

parameter. ([3], [4], [5], and [6])

However since the differentiation with respect to damage parameter

will be necessary in the derivation of constitutive laws and tensors will

result in additional terms and calculations; it is very beneficial to avoid

tensorial representation whenever the material is not highly

anisotropic. Besides the increase in the cost of analysis, anisotropic

approaches introduce additional material properties which should be

determined from classical experiments such as tensile loading-

unloading test and measurements of Young's modulus and Poison’s

ratio along other orientations [11]. Throughout this work, the isotropic

scalar representation of damage is used.

1.8 Effective Stress Concept (Y.N. Rabotnov, 1968)

Under the loading ofF, the usual uniaxial stress is:

14



If all the defects are open and no force is carried by the broken area

~

represented by SD, an effective stress a is introduced which is related

to the surface that effectively resists the load, namely(S-SD):

 

 

 

.. F
0' :

S-SD

. . . . _. BSD

Introducmg the Isotropic damage variable D(M,n) = as ,

.. F F
0' : S S = S

" D S l__?_

( S )

Or 6 = -——a

1—D

This definition is the effective stress on the material in tension. In

compression, some defects close and the surface that effectively

resists the load is larger than(S—SD), In particular, if all the defects

close, the effective stress in compression is equal to the usual stress.

Moreover, the damage evolution is almost zero and the damage

parameter remains constant. This effect is called the crack closure

effect and is taken into account by introducing a factor in the

numerical implementation of damage evolution equation. This factor

equals to zero when the hydrostatic stress is negative corresponding

to the material in compression and equals to one for positive values of

hydrostatic stress. However since the damage evolution in

compression may not be negligible for some materials and

15



temperatures, one can introduce a material parameter ranging from

zero to one which of course should be determined experimentally.

1.9 Equivalence Principles

A way to avoid micromechanical analysis for each type of defect

and each type of mechanism of damage is to postulate a principle at

the mesoscale. Equivalence principles are used to relate the damaged

state to the undamaged state. Several equivalence principles have

been postulated and their validity has been investigated [20]. The

choice of an equivalence principle is the first step in the derivation of

damage-coupled equations and somehow depends on the problem we

are looking at. For instance, if the material is highly anisotropic, the

tensorial representation of damage has to be considered and elastic

strain energy equivalence criterion has shown better agreement with

experimental observations. Whereas, strain equivalence criterion is

theoretically more reasonable in the case of scalar representation of

damage corresponding to isotropic materials [19].

Two widely used equivalence principles are elastic strain energy

equivalence and strain equivalence. The elastic strain energy

equivalence states that (Sidoroff, 1982; Cordebois, 1983; Chow and

Wang, 1987; Ju, 1989):
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There exists a pseudo-undamaged material made of the virgin

material in the sense that its elastic strain energy is equal to that of

the damaged material except that the stress is replaced by the

effective stress in the elastic strain energy formulation.

The complementary elastic energy of an undamaged material (D = 0)is:

1 T -1

we(0',0)=-2-0' :C :0'

Then the complimentary energy of a damaged material (D¢0)is

expressed as:

l

w*e(0',D)=w*e(6,0)= 6'7:C":&=30'T:(MT:C":M):01

2

Where C is the elastic stiffness tensor and 5 can be defined as

effective elastic stiffness tensor such that:

C" =(MT :C'1 :M)

Mis a fourth order tensor called the damage effect tensor and is

defined such that:

5' =M :0

For the general case of anisotropic damage, damage effect tensor is

equal to [10]:
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Throughout this work, the strain equivalence postulate is used which is

explained hereafter. Reader can find the details about elastic strain

energy equivalence criterion and other equivalence criteria in [11] and

[20].

1.10 Strain Equivalence Principle (J. Lemaitre, 1971)

At the microscale, this postulate assumes that the constitutive

equations for the strain of an element are not modified by a

neighboring element containing a microcrack [15]. At the mesoscale,

this means that the strain constitutive equations written for the

surface (S -S,,)are not modified by the damage or that the true stress

loading on the material is the effective stress 6 and no longer 0.

Consequently, any strain constitutive equation for a damaged material

18



may be derived in the same way as for a virgin material except that

the usual stress is replaced by the effective stress [15].

8(0', D) = £(6,0)

a

6':—

l-D

This principle is applied to both elasticity and plasticity.

1.11 Coupling between Strains and Damage

Applying the strain equivalence principle, we can write the uniaxial

laws of elasticity and plasticity of a damaged material as following:

1.1 1.1 Elasticity law

Using the concept of effective stress:

a
s II

(
‘
1
1
l
e

And strain in other directions for isotropic damage:

C

822 =€33e=—v€ue

E and v are the Young's modulus and the Poisson's ratio of the

undamaged material. As a result, the elasticity modulus of the

damaged material can be defined by the ratio% which is E“ = E(l—D)

8

This inspires a method for evaluating the damage parameter based on

the change in Young's modulus:
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1.1 1.2 Plasticity Law

In order to model plasticity two kinds of strain hardening are

usually considered:

-The isotropic hardening which indicates the size of the yield function.

-The kinematic hardening or the back stress which indicates the center

of the yield function.

If try is the yield stress, R the stress due to isotropic hardening and

X the back stress, both functions of the plastic strain, the one-

dimensional plasticity criterion defining the current threshold of yield

limit is:

0‘ = 0y + R+ X

Or:

f =|0—X|—0’y —R=O

f is the yield function from which the kinetic constitutive equation for

plastic strain is derived.

f=0

35?" #01f and

f=0

And:
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f <0

é‘”=0if or

f <0

When damage occurs, according to the principle of equivalence, the

yield function f must be written as:

0'

=———X—a —R=0
f l-D I ’

1.12 Rupture criterion:

The rupture at the mesoscale is a crack formation which occupies

the whole surface of the RVE; that is,D =1. In many cases this is

caused by a process of instability which suddenly causes the

separation of remaining area. This point of instability corresponds to a

critical value of damage D, <1 which depends upon the material and

the conditions of loading.

The final decohesion of atoms is characterized by a critical value of the

effective stress acting on the resisting area. If the ultimate stress a; is

taken as the critical value of the effective stress, we have:

 

.. a

0': :0“

1—1),

Then:

D z1_£_

21



This gives the critical value of the damage at a mesocrack initiation

occurring for the one-dimensional stress, a. The ultimate stress 0'“

being identified as a material characteristic, D, may vary between

D, zo for pure brittle fracture to DC =1 for pure ductile fracture but

usually D, remains in the order of 0.2 to 0.5.

This relation, applied to the pure monotonic tension test, which is

taken as a reference, defines the corresponding critical damage DI,

considered as a material characteristic:

Where a, is the stress at rupture.

1.13 Damage initial threshold

Before the microcracks are initiated, creating the damage modeled

byD, they must nucleate by the accumulation of dislocations. In the

pure tension case, this corresponds to a certain value 8p» of the plastic

strain below which no damage occurs:

8” < app —> D = 0

Finally, the four main relations which comprise the basis of Continuum

Damage Mechanics are:

-s‘ = a for elasticity

E(l—D)
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‘f =|—1—0—D— XI —c7y -R = 0 as the plastic yield criterion

-6” < app —> D = 0 as the damage threshold

- D = D, —> crack initiation
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CHAPTER 2: Measurement of Damage ([15] & [18])

2.1 Direct Measurements

This method consists in the evaluation of the total crack areas (18,,

lying on a surface as at mesoscale. This can be done by observing

microscopic pictures. The main drawback of this method is that it is a

destructive method and one sample is needed for each data point.

Also, it is tedious to practice since the sample needs to be taken out at

various strain values and observed under a microscope.

2.2 Variation of the Elasticity Modulus

This is a non-direct measurement based on the elasticity law:

0 = a

E(l—D)

 

8

It assumes uniform homogeneous damage in the specimen gauge

section.

If E=E(1—D)is considered as the effective elasticity modulus of the

damaged material, the values of the damage may be derived from

measurements ofE, provided that Young's modulus Eis known:

~

0:1—5
E
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This very useful method requires accurate strain measurements. Strain

gauges are commonly used and E is most accurately measured during

unloading [18]. This technique may be used for any kind of damage as

long as the damage is uniformly distributed in the volume on which

the strain is measured which is the main limitation of the method. If

the damage is greatly localized, as for high cycle fatigue of metals, for

example, another method must be used.

At the beginning and at the end of the unloading paths in the

plane(a,e), there are small nonlinearities, owing to viscous or

hardening effects and also due to the experimental devices as well. It

is best to ignore them and to identify E from the slope of the middle

points. Also, it is most important to always use the same procedure to

evaluate Eand the evolution of E.

For damage in metals, an early decrease of if at low strain levels may

happen which is due to movements of dislocations, and to texture

development, but not to damage [15]. As this phenomenon rapidly

saturates, it is common to consider a damage threshold such that:

8” < epD —> D = 0

Instead of strain gage, one may use grid patterns and observe the

deformation of the grid pattern. After the deformation, a circular

pattern may look like an oval whose major and minor diameters and

their orientations can be used to obtain principal strains and their

25



orientations respective to the loading direction. To avoid taking out the

sample at each unloading increment in order to measure the strains,

one may take pictures from the grid pattern while the sample is still in

the MTS machine and analyze the pictures when the test is complete.

2.3 Ultrasonic wave propagation

This method is based on the effect of change in elasticity modulus

on the speed of ultrasonic waves. For frequencies higher than 200 kHz

the longitudinal wave speed v, and the transversal wave speed v, in a

linear isotropic elastic cylindrical medium are [18]:

2 _£ 1"”

’” p(l+v)(l—22))

 

2 E 1
v 1' =—

p2(1+v)

 

Where E is the Young's modulus, p the density, and v Poisson's ratio.

A measurement of the longitudinal wave speed of a damaged material

gives:

l—v

(1+ v)(l- 21))

~2
E

VL=-:

p

 

Where Eand ,5 are the actual damaged elastic modulus and density.

Poisson's ratio does not vary with damage if elasticity and damage are

isotropic. If anisotropic damage is considered, the Poisson's ratio for

the damaged material is different. The damage is calculated by:

26



If the damage consists mainly of microcracks or if small cavitation is

considered, 2 land:
‘
0

I
‘
m

 

To measure the speed v,, ultrasonic transducers need to be placed on

both sides of the sample and damage parameter is assumed to be

uniform throughout the sample. Thus, the sample's size must be of an

order of magnitude coherent with that of the RVE and for metals, this

size is too small in comparison with ultrasonic transducers size and

accuracy of time measurements. Also, this method is destructive

because we need to cut the material into very tiny parts. Nevertheless,

this method gives good results for materials with larger RVE size such

as concrete [15].

2.4 Variation of the Micro hardness

This method is a non-direct measurement based on the influence of

damage on the plasticity criterion. In the uniaxial state of stress, the

yield function is written as:

 f: —X—0'),—R=O
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As microhardness is a process of very small indentation, this method

may be considered as practically nondestructive. The test consists in

inserting a diamond indenter in the material and the hardness His

defined by the mean stress:

Hzazi

S

The load F on the indenter is adjusted so as to obtain a projected

indented area S of the same order of magnitude as that of the RVE.

Theoretical analyses and many experimental results prove a linear

relationship between H and the plasticity threshold 0,, k’ being the

coefficient of proportionality:

H = k’as

This threshold corresponds to the actual yield stress,

a, =(c7y +R+XX1—D)

Then:

H =k’(a'y +R+X)(1-D)

In fact, the microhardness test itself increases the strain hardening by

an amount which corresponds to a plastic strain a” of the order of 5 to

8% [18]. His then always related to (away), .9” being the current

plastic strain.
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If H‘ =k’(ory +R+ X) is the microhardness of the material which would

exist without any damage for(g”+e,,”), and H =k'(0‘y +R+XX1-D) the

actual micro-hardness for (5" +e,,"), then:

D=l- H,

H

 

2.5 Other Methods

Several other methods have been introduced based on the influence

of damage on some physical or mechanically measurable properties

such as:

2.5.1 Variation of density

In the case of pure ductile damage, the defects are cavities which

can be assumed to be roughly spherical. This means that the volume

increases with damage and the corresponding decrease of density is

measurable with devices based on the Archimedean principle.

If (igihs the relative variation of density between the damaged state

,b' and the initial non-damaged state ,0, it is easy, considering a

spherical cavity of radius rin a spherical RVE of initial radius R and

mass m, to derive the following relationships between the surface

damage D and the variation of density or porosity:
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2.5.2 Variation of electrical resistance (potential drop)

Ohm's law for a non-damaged element of length 1, area S and

resistivity r is written as:

V = r—i

Where i is the intensity of the electrical current. Whereas, for a

damaged element of the same size:

  

Where 2":1—l— is the effective intensity of the electrical current

defined in the same way as the effective stress was defined, using the

surface definition of damage.

7 is the resistivity affected by the damage. Bridgman's law [18] gives

~

r as:
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7=r[1+K—p'p]=r(1+KD%j
p

K is a coefficient which is approximately 2 for metals.

If the same intensity 1‘ is considered for the non damaged and the

damaged elements, the damage D may be derived from the two

expressions:

 

 

. F
For small values ofD, the correction term — due to the volume change

r

~

is close to 1 (for instance, D = 0.1 —> I— = 1.064); then:
r

0.4—!
V

This method is known as the "potential drop method".

2.5.3 Variation of the cyclic plasticity response (stress amplitude drop)

The influence of damage on plasticity may be used to measure the

low cycle fatigue damage in which the material undergoes plastic cyclic

loading.
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The one-dimensional law of cyclic plasticity at stabilization may be

written as a power relationship between the amplitude of stress A0

M

and the amplitude of plastic strain Ag” as A5” =[%] for a non-

P

M

damaged material, and as A8” =[ A0 J for a damaged material

Kp(l—D

according to the principle of strain equivalence, where KP and M are

material parameters.

Considering a test at constant plastic strain amplitude, if A0* is the

stress amplitude before the beginning of the damage process and A0

is the stress amplitude after the beginning of the damage process, we

p _ Aa“ M _ A0 M

A8 [76'] ‘I—K.<1—D>I

From which it follows that:

have:

A0

110*

D=l— 

This method successfully identifies the evolution of damage during low

cycle fatigue of metals. An example is given in Figure 6.
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Figure 6 : Evolution of damage during low cycle fatigue

2.5.4 Tertiary creep response

Creep damage occurs in metals loaded at temperatures above

approximately one third of the melting temperature. If we apply the

principle of strain equivalence to Norton's law of tertiary creep.

 

N

éPflt: 0‘

K.
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K, and N being temperature dependent material parameters.

Assuming that the damage process begins at the end of the secondary

creep, during tertiary creep one may write:

Him—rm)"

w... %v

MM8
Where .6” * is the minimum creep rate.

From which one derives:

 

This method yields good results which are in accordance with those

obtained by measuring the variation of the elasticity modulus. An

example is given in Figure 7.
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Figure 7 : Evolution of creep damage in IN 100 super alloy (after H. Poheella)

As a conclusion, Figure 8 offers some advices for choosing the proper

method of damage measurement, depending on the kind of damage

involved. [18]

35



 

 

 

Low High

cycle cycle

Damage Brittle Ductile Creep fatigue fatigue

, , USO

Micrography I) = ‘iS‘ * M H * *
r .

i) 2/3

Density D : (I — -) *3“ I a

P

EIBSIICII)’ D Z I _ E ** $4,... *4”; #1::

modulus E

. ‘wz
UIIraSUnIC D : l _ 1:17;- *** *1“ *g s: *

waves If

Cyclic slress D = l _ A0 a, a: *1: =l=

amplitude 430"

_ _. l/N

Ten'dry D _____ I __ :13 :i: *3“: as

creep 5p

_ H

Micro-hardness D = l —- TF ** *** H *M *

Electrical D = 1 __ L ,.. a... n * *

resrstance V

Figure 8 : More number of stars specifies a better method for damage measurement

36



CHAPTER 3: Thermodynamics Approach

3.1 How Thermodynamics Approaches Damage

The thermodynamics approach to obtain damage equations in three

dimensions is to postulate the existence of energy potentials from

which one can derive the state laws and the kinetic constitutive

equations. In the thermodynamics of irreversible processes, two

potentials are introduced [7]:

1-The state potential, a function of the state variables, which defines

the state laws and the variables associated with the state variables to

define the power involved in each physical process. For the damage

variable, an energy damage criterion is derived from the damaged

elasticity potential.

2-The potential of dissipation, which is a function of the associated

variables accounts for the kinetic laws of evolution of the state

variables including damage. A constitutive equation for the damage

gives the damage rate as a function of its associated variable.

3.2 Thermodynamical Variables, State Potential

The state variables can be categorized as follows:

- Observable variables such as:
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8- The strain tensor of components suassociated with the Cauchy

stress tensoro

T- The temperature associated with the entropy density s

a- The back strain tensor, whose associated variable is the back

stress X D and X” represents the kinematic hardening, translation of

the center of the yield surface in the deviatoric space

r- Which is equal to effective plastic strain when damage is absent

and its associated variable is R representing the isotropic hardening.

D- The damage variable. If the damage is considered to be isotropic,

65,,

as

 it has the same value in all directions, and the scalar D=

characterizes completely the three-dimensional state of damage in the

RVE at the point considered. 1715 the associated variable of D which

will be derived from the state potential. As D is dimensionless and

since the product - 17D is the power involved in the process of damage,

it can be seen that 17 is a volume energy density.

The following chart summarizes the variables involved in the

continuous mechanics of elasticity, plasticity and damage:
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State Variables

Variables

Observable Internal

8 0’

T s

r R

a X D

D 17     
 

Table 1 : State variable and their associated variables

It is postulated that the state laws are derived from a state potential;

a continuous scalar function, concave with the temperature, convex

with the other state variables and containing the origin [7]. Taking the

Helmholtz free energy:

‘1’ = ‘Y(£,T,£‘,£",r,a,D)

The strains act only through their difference 5‘ = 23—5”:

‘I’=‘I’(£‘,T,r,a,D)

The associated variables can be derived as:
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B‘I’

a:p3€

_8‘P

5?

_ 8‘1’

7?

X0:

 

R

ii

paa

_ 6‘?
Y: —

pan

The analytical expression for ‘Pis chosen considering the experimental

observations and:

- The linear isotropic elasticity;

- The state coupling of damage with elastic strain and the principle of

strain equivalence together with the concept of effective stress written

for the three dimensional case as:

.. _ 0.,(t)

Mai-0(1)

For anisotropic damage, the damage variable is no longer a scalar and

the effective stress needs the application of damage effect tensor. The

difference of the behavior in tension and compression is not taken into

account here either. For isothermal loadings:

l l , . 1 — r X»?

=;[EC¢M5 1'18 “(l—DH'R... [r+-I;e( b )]+_3_aijau]

The law of elasticity coupled with damage is:

8‘? ,
0' =pa—8e-z CUHE “(l—D)

40



Where C is the fourth order elasticity stiffness tensor or, by inversion

for the isotropic case,

 

E being Young's modulus, v Poisson's ratio and 5,]. the Kronecker

delta. The isotropic strain hardening scalar stress is expressed as:

R = p%\§-= R,[1—e“’”’]

Rwand b are two parameters which characterize the isotr0pic strain

hardening for each material. Xmand y are two parameters of nonlinear

kinematic hardening written with the factor if to ensure a simple

expression in one dimension. The associated variable for D is defined

as:

—_ 3‘P_ , ,

p _-_ t'jldgijekl

— BD 2

In order to work with a positive quantity,Y is introduced as:

Y=—Y

A relationship can be found between Y and the elastic strain energy

density we defined as:

dwe = aqde‘g

Integrating with the law of elasticity, and assuming no variation of

damage, that is, D = const. , yields:
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e C l C C

we = ICWE u(1—D)d8 ,1. =§CW£ Us “(l—D)

This shows that:

Y: we
l-D

 

Yis also equal to one half the variation of the strain energy density

with damage at constant stress, doe. =0, [7]. Starting with the law of

 

elasticity:

do, = CW [(1— mass, — e‘udD] = 0

Or:

dEeu = Eeu d0

1— D

Together with:

. . dD . , dD

dwe(a=ronsr) : Gilda i} = 0178 Id :3 = C‘I’fldE 11(1— D>8 kl i_—

Or:

dwc(a=romt) e e

T: was .78 11

And from the definition of Y =—17

Y = _1_ dwe(a’=ronsl)

2 dD

Because of this equation, Y is called the strain energy density release

rate. This is the energy released by loss of stiffness, damage

softening, in the RVE when damage occurs.
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3.3 Potential of Dissipation, Damage Evolution Equation

Having defined all the state and associated variables, a second

potential is needed to describe the evolution of the phenomena. First

we investigate the second principle of thermodynamics to ensure a

non-negative dissipation. Starting from the Clausius-Duhem inequality

[21].

|
N
J

O'ejéej—p(‘I’+sT)—qe. ‘I 20

"
I

E; is the heat flux vector associated with the temperature gradient.

If we take the derivative of free energy with respect to the state

variables, we have:

a? é‘--+3\£T+-a—q:r'+ 3‘? ct +£D

age. " aT 8r 3a,, ‘1' an

  

Together with 5' = é‘ + 3” it becomes:

611’ 3‘11 - 3‘? 3‘? 3‘1’ - T.

0'.. - é“.- - +— T+ ”6"”;- - — '- ——d.. - —D- .420
 

Or, with the definition of the associated variables,

., . D . —- T,-
O'e-j-E .j-Rr-X gag—YD—qe?20

To always satisfy this inequality of a positive dissipation and

particularly for an isothermal process where the plastic dissipation, the

first term, is negligible, we must have:

—YD20
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As —17 is a positive quadratic function,—172.0, and the damage rate D

is non-negative, the Clausius-Duhem inequality is satisfied. Notice that

the dissipation inequality is the sum of the products of rate or flux

variables (with the negative sign) multiplied by their dual variables as

shown by Table 2:

 

 

 

 

 

 

 

flux variables dual variables

6" a

—Ri' R

_a X0

-1) — 17

- T,

q 7' 
 

Table 2 : Flux and their dual variables

It is postulated that the kinetic laws are derived from a potential of

dissipation, a scalar continuous and convex function F, of the dual

variables and the state variables may act as parameters [15]. For the

isothermal case:

F(0,R,XD,Y:(£‘,r,a,D))

The laws of plasticity coupled with damage are derived from this

potential by means of a scalar multiplier which is always positive. This

ensures the normality condition of yielding for plasticity.

44

 



 

 

. e, z __ II.

" 80

. 3F - . . . . .
r = “SR—xi i plasticzty constitutive equations

a _ _ 8F

ax”

And for damage:

15:15.21
BY

In this work, we use the von-Mises criterion in the yield function which

identifies the equivalent stress as:

3 x
0' =(EO'DUO'DU)

“1

Together with kinematic hardening, the von-Mises criterion is applied

to define the size of the yield surface regardless of the

translation X ”and it acts upon the difference between avg-and X D.

Furthermore, In the presence of damage, the coupling between the

damage and the plastic strain is written in accordance with the

principle of strain equivalence. The yield criterion is written, in the

same way as for a non-damaged material except that the stress is

replaced by the effective stress, which, for isotropic damage is:

0' ~
_=0'

l-D

Then, the yield function f is written as:
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3.4 Plasticity

Plastic strain occurs when the yield criterion, f =0, is satisfied. The

plastic strain continues to grow if the yield criterion is continuously

satisfied, that is, if f = 0. Then plasticity deals with these two

conditions, which define loading, or unloading with f =0:

i=0”

and Waco

f=0.

f<0i

or >é”=0

f<OJ 
xi is deduced from these two conditions:

f=0andf=0.

3.5 Damage Coupled Constitutive Equations

The choice of an analytical expression for the two potentials and

particularly for the potential of dissipation is of great importance.

Thermodynamics provides the general framework and some
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restrictions on the functions that can be used, but only experiments

can give the details and verify the model. As the constitutive equations

must be as general as possible and cover a wide range of materials,

the general trends of basic experiments are considered and only the

value of a few parameters are taken to be as material parameters.

A schematic test in tension with some unloadings and compressive

loadings is shown in Figure 9:
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Figure 9 : Damage evolution and material degredation

Below a certain value of the plastic strain, a threshold app, no damage

occurs. This is implemented in the code by comparing the equivalent

plastic to 5pc at the end of each increment. The kinematic back

stressX, defined as the locus of the center of the elastic domain,
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increases with the plastic strain, is nonlinear with the plastic strain,

and tends to saturate to some value X“. The evolution of X is chosen

as:

X = Xw[1—eI'”PI]

Xe, Ancl y are parameters to be identified for each material and each

temperature. The isotropic hardening streSSR, identified as:

R = a- 0‘, - X

- Increases with the plastic strain;

- is nonlinear with the plastic strain;

- tends to also saturate to some value R...

Like XThe evolution of R is chosen as:

R = Rm|:1-eI’b‘PI]

If we use the exponential representation for hardening components,

the potential of dissipation is proposed to be [15]:

3D D D D
F=|U -X —R—0'y+4—X—X;j Xi} +FD(Y:(r.D))

 ‘4

However, since the last term,FD, is used to derive the damage

evolution law, other hardening equations such as the power law can be

used in the numerical procedure as well. The first three terms
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correspond to the yield function f. The fourth term 4%_X'IDX ”isI}

responsible for the nonlinear kinematic hardening.

The choice of the function FD is of course the key to representing the

damage evolution and is based on physical observations and

experimental data.

Damage is always related to some irreversible strain. This property is

taken into account in the damage law by the multiplier/i, which is

proportional to the accumulated plastic strain.

- 3F - 3F

D=__£,t=—D ' l—D

air 81' p( I

The variable pshows the irreversible nature of the damage, as p is

always positive or zero.

As the accumulated plastic strain increases from zero the damage

remains equal to zero during the nucleation of microcracks and

accumulation of dislocations. A one-dimensional damage threshold

related to the plastic strain seep has already been introduced. As the

equation of damage is governed by the accumulated plastic strain and

as pzs" in one-dimensional loading, it is needed to introduce a

threshold on the variable p such that:

If prD:

- 3F - 3F

D=——_2,t=—D'1—D
31/ 61/ p( I
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If p<pDI

D=o

This allows us to introduce a step function in the potentialFD:

PZPD_)1

H(p-p):
D P<PD—)0

In the next section, an approach is introduced to identify prrom the

uniaxial damage threshold app.

On the basis of a thermodynamical analysis, the dual variable for the

damage is the strain energy density release rateY. Hence, FD must be

a function on:

FD = FD(Y,...)

Another important feature of fracture is the influence of the triaxiality

0H
 ratio , (0,, is the hydrostatic stress, aee and is the Von Mises

at

equivalent stress). The modeling of this effect is contained in the

expression of Y by the triaxialitv factorRe :

2

Re — 2(l+v)+3(l—Zv)[a”]
U3 eq

 

~2

0' .4
Y:

2E R”

_ 0'2“!

25(1—0)2 '
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In order to choose the proper and simplest expression forFD, a general

trend in the damage evolution obtained by micromechanics for

particular mechanisms is considered as a guide [15] which show:

[)sz

Thus:

FD = Y2

Here, as in every constitutive equation, a scale factor must be

introduced. 80—0) is taken as the scale factor where Sis a material

constant. The term (1-D)is considered here to be cancelled, with

(l—D) coming from2= p(1—D) because experiments show a non-

decreasing damage rate when Yand pare constant:

2

FD = Y

S(l-D)

 

Finally, according to the quantitative properties listed above, the

damage potential is written as:

Y2

meo» = mHip-p.)

The factor V2 is used here to avoid 2 in the derivation:

BFD 1 er), . Y
D:- _

aY {W 50-0)

  

13(1 _ D)H(P'PD)

Thus:

D : —pH(P‘PD)
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With the rupture condition for crack initiation,

D = D,

Three material parameters are introduced to characterize the damage

evolution:

-S the damage strength,

- p0 the initial damage threshold,

-D, the critical damage,

The effects of temperature can be taken into account by the variation

of these coefficients and yield function coefficients with temperature.

3.6 Three Dimensional Damage Threshold

The damage threshold pp in three dimensions which is equivalent

to spDin one dimension corresponds to the initial threshold of damage

evolution. There has not been a universally acceptable way for

derivation of po and in many cases 5pc is used with very satisfactory

results. Nonetheless, one of the most dependable criteria is developed

by Lemaitre [17] and is cited in this section which is related to the

amount of energy stored in the material as a result of plastic

deformation.

The total plastic strain energy dissipated may reach tremendous

values before failure but it is postulated that the stored energy
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remains constant at the beginning of damage evolution. This stored

energy is the result of stress concentrations which develop in the

neighborhood of dislocations in metals. For a unit volume, it is equal to

the difference between the total plastic strain energy javépudtand the

0

energy dissipated in heat given by the Clausius-Duhem inequality of

the second principle of thermodynamics. The dissipated power for an

isothermal deformation is:

above”, -Rp-XD.-,-d,j 20

By replacing the rate variables with their definition from the potential

of dissipation:

 

8F.-
-=___g=g

p 312

_ 9}: 31: DnaF .>
¢—[0”80+R8R+X .,——axD)p_O
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2 0' ., -X..D 2 0' ij -X..D 2X,

k l-D " (q k l—D " (q U

00,-,- D 3
 

  

D D .

¢=[1_D U —R+2—X-—XU Xij ]p

«I

3 D o .
¢=[0'y+§—X—XU Xij JP

Then, the stored energy was a function of time is:

' . ' 3 o D .
W"'):£0"8P'jdt—£[a’+§X—XU Xij )pdt

If we neglect the effect of the kinematic hardening,

0..

x”,- =0—>é”.-,- =%IE-,l=3‘I " p

20'“,

 

w :IMpdt_JO-ypdt

0 0

Or with:

It is assumed that this energy is equal to that of a perfectly plastic

material of plastic threshold 0', Zaywhose stored energy is a function

of the difference between a,and the fatigue limita, [17]. Then, as

0'“, = const.
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W5 = (deg _0f )p

If we put this energy equal to that of pure tension reference case

having a damage threshold spDand a plastic threshold on, the ultimate

stress:

(Uta ‘01)170 :(au ‘0'] )EpD

 

0' - 0'

pD : EpD u _ f

0:4 0!

We have to remember that in this formula the material is considered

to be perfectly plastic. Then for a varying loadingama), a more

accurate calculation consists in performing the integration forw,. After

all these assumptions, it is fair to say that the derivation of three

dimensional damage threshold calls for more investigation.

Nevertheless, since acqis close to a, but slightly smaller, taking p0 = app

is a good approximation and will be used in the numerical analysis.

3.7 Three-Dimensional Rupture Criterion

Similar to the three dimensional damage threshold, the expansion

of one dimensional critical value of damage to three dimensions is

subjective and there is no universally acceptable method to obtain it. A

one-dimensional rupture criterion is obtained from the tensile loading-

unloading test. The damage parameter is calculated from the change

in the elasticity modulus and the critical value of damage is the final
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value of damage parameter. For the general case of loading, a critical

three dimensional damage value is needed for numerical prediction of

rupture. In so many numerical analyses, the critical value of damage is

taken to be one in both one dimensional and three dimensional loading

situations. Nevertheless, experimental data show that the material

fails at the critical value much less than one and this value decreases

as the ductility decreases. One of the approaches for obtaining a

reasonable value for three-dimensional critical damage has been

proposed by Lemaitre [15] and is cited hereafter.

This approach assumes that the rupture moment corresponding to the

critical value of damage is governed by the amount of energy

dissipated in damage growth:

DC

I YdD = const.

0

For the case of perfect plasticity in proportional loading considered

here for simplicity:

  

Dc Dc 0-2 Dc 0.2 0.2

ijD=I—-i—2-RvdD=I ‘RvdD= ‘RVDC

0 0 2150-1)) 0 2E 25

This quantity should be equal to that of the uniaxial reference case

which is:

Y _ 02R _ 0214

2150—1)“)2 2E
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And since a, z a“:

 

This formula shows that the critical value of the damage in three

0'”
 dimensions decreases as the triaxiality ratio, contained in the

‘4

RV expression, increases. Since, R, is usually very close to one, taking

0,:ch is a good approximation and will be used throughout the

numerical part of this work.

The set of damage equations used in this work can be summarized as

follows:

D=D
C

D" —> Crack

The material parameters are:

- S, apDand chwhich must be determined from damage

measurements in tensile loading-unloading test;
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- 0'“ and a, which are classical characteristics and easy to find in

handbooks or to identify by tensile and fatigue tests.
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CHAPTER 4: Identification of Material Parameters

The material damage parameterss , epDand D,,which characterize

the damage must be measured for each material and temperature by

the means of tensile loading-unloading test. Let us assume that a good

tensile test has been performed with measurement of the damage

during unloading by elasticity change and the following curves have

been obtained:

   

 
Figure 10 : Measurement of damage by elasticity modulus

For the one-dimensional case:

2

Y=—3‘——2 as R, =1
25(1—0)

(w
Thus:
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= msg— D)2 IEPIHV'TP")

The parameter S is determined from the slope of the curve, D versus

the plastic strain 5p:

= “2 2M
2ES(l—-D)

Or:

dD _ 0'2

dEP 2ES(1- D)2

  

At each point of the curve, D is known, ais known from the stress

strain curve, Edgis estimated and E is known from a previous

6‘

idenfiflcaflon:

0.2

2E(l-D)

S: 

2 d0

d8”

 

The main difficulty is obtaining a good stress strain curve in the

softening range where necking occurs and strains must be measured

locally by a small strain gauge.

4.1 Identification of the Material Parameters by standard

tensile test for A|3003

In the following experiment, an extensometer was used to measure

the strain values. Extensometers assume uniform distribution of strain

60



as well as damage over their gage length and can not capture the

localization and necking of the specimen during which almost the

entire process of damage evolution occurs. To obtain accurate data,

small strain gages should be used to obtain strains at the much

localized points. Nonetheless, the method for derivation of the material

damage parameters is explained hereafter using the data acquired

from the extensometer keeping in mind that the calculated values are

just for the purpose of describing the procedure and are not

quantitatively accurate. For numerical analyses, more accurate

parameters are used which have been obtained by Lemaitre [14].

4.1.1 Tensile-Test Specimen Specifications

The tensile loading-unloading test was carried out for Aluminum

alloy 3003. Table 3 specifies the dimensions of the Dog-:Bone shape

 

 

 

 

 

 

specimen.

G - Gage Length 2.000 :0.005 in

W —- Width 0.500 i0.010 in

T - Thickness Thickness of Material

R - Radius of fillet 1/2 in

L - Overall length 8 in

A - Length of reduced section 2 1/4 in   
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$0.

  

 



 

B - Length of grip section 2 in

 

 
C - Width of grip section 3/4 in

 
 

Table 3 : Tensile specimen dimensions in the English units

The unloading of the specimen was done at the strain

5% and the following stress-strain curve was obtained:

increments of

 

Tensile Data
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Figure 11 : Stress-strain curve for the loading-unloading test

The Young's modulus values are calculated using the linear portion of

the loading part after each unloading. The reason for taking the

loading portion is that we want to follow the same procedure as we

used for measuring the initial Young’s modulus.

parameter is calculated based on the strain equivalence principle by

using the following formula:
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Where E is for the damaged material and measured at each unloading

increment. Eis for the very first loading step and its variation from the

data indicated in the handbooks shows an initial damage in the

specimen. The following data is obtained:

 

 

 

 

 

 

 

 

            

 

 

 

 

 

  

 

 

  

Unloading step 1 2 3 4 5 6 Efor the input material

E(Gpmor unloading data 47.771 42.85 39.72 35.29 34.29 33.1078 5143552201

E(Gpajfor loading data 50.225 47 43.79 40.8 37.15

Strain quLemaitrejforloading 0.0235 0.086 0.149 0.207 0.278 0.337 {—ch

Strain °/o 5.07 9.97 14.84 19.6 24.48 29.3

Table 4 : Young’s modulus data

Since 5‘ << 5", a values can be used to plot D versus a”.

,g 0.4 —

g 0.35 44— —+ , r 4 ,_MW 4 4 . «~—

,3; 0.3 41-——————— ‘/

: j‘.1

- 0.25 4 —rrrrr - w

8..§ l ./
E g 0.2 fi 4,3

a h

e '3 0.15 «i— /
O

s 0.1 +___ ,/

"3 /‘1
E 0.05 7/

m o I I 7 r V l

5.07 9.97 14.84 19.6 24.48 29.3

Straln%   
Figure 12 : Plot of Damage versus strain

This plot is used to calculate the material parameters. The variation of

damage shows a linear behavior as obtained by Lemaitre[14]. S is

determined by measuring the slope of the line using the following

formula:
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7

0...

2E(l—D)

S: 

2 dB

de”

We also use the Kuhn-Tucker condition for damage-coupled plasticity

which for perfectly plastic material is written as:

0'

:——0' :0

f l—D ’

Where a, is the yield value for the perfectly plastic material and is

usually taken to be equal to ultimate stress, on.

So:

0' 2

{—1l-D

Thus, the equation for S can be written as:

  

2 2

s = a“ = 100 ..... 7.4891MPa
215111 2x51435x0.01298

d6”

law is obtained by intersecting the line with the horizontal axis:

em = 3.357

And finally, D1, is obtained by finding the value of the fitted line at the

failure strain:

0,, z 0.337

The mechanical properties of the specimen can also be found from the

tensile test. They are measures as:
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0', == 4OMPa

0'“ == lOOMPa

E =- 51436MPa

4.2 A Simpler representation of the Lemaitre’s Damage

Evolution Equation

Let’s take the power law for hardening written as:

0' n

“=_= =K

If we use this relation in the definition of damage evolution equation,

we have:

_ 02R. ._K2(P)2"Rv.

-2ES(l—D)2 1" p

 

2E5

In the case of radial loading where the directions of principal stresses

remain unchanged, Rvis constant throughout the loading and we can

integrate the above equation to obtain a relation between damage

parameter and equivalent plastic strain:

 

_ ” K2(p)2"R. ._ K212. P 2,. ._K2Rv((P)2""-(Po)z"”)

0‘! 2ES p“ 2195 £07) ‘0' 2ES(2n+l)
PD

p = p, corresponds to D = Dcwhich is evaluated as:

_ K215 ((pR)2n+1 _(pD)2n+1)

” — 2ES(2n+1)
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Since nis very small, (2n+1) is of order one and the above equation

can be written as:

 

= K2R.(pk -po)

C 2155

Or:

D, _ KZK
 

(PR—I’D) 2E5

For the one-dimensional tensile case, R, =1:

D,, _ K2

8R -£pD _ 2ES

2

If we replace 21:35 in the damage evolution law by its relation from the 

above equation, we have:

D=[——D“)MP)“ 1b
8R _€pD

This equation will be used in the next chapter for the coupled analysis

of damage evolution. D.” 8,, and 5,0 values for some materials can be

found in [14].
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CHAPTER 5: Numerical implementations

In previous chapters, the isotropic formulations of damage coupled

constitutive equations were developed and the corresponding damage

material parameters were introduced. These results can be

implemented as a material model or in conjunction with the available

material models as a failure criterion. In this chapter, the constitutive

and rate equations are utilized in two different ways, uncoupled and

coupled, to analyze two simple problems under uniaxial and biaxial

loadings.

5.1 Uncoupled Analysis of Crack Initiation

Damage analysis of a model subjected to a given history of loading

consists in the calculation of the evolution of the damage as a function

of the time at the critical point(s) and the critical time at which the

damage reaches its critical value corresponding to a crack initiation.

An assumption which simplifies the analysis consists in neglecting the

coupling between the damage and the strains. In a first step the stress

and strain field histories are- calculated by a commercial finite element

software. Let us suppose that the results for point M are:

£(M,t)

0'(M ,t)
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The second step consists in determining the point(s) where the

damage has its maximum value. There is no exact way to select the

critical point(s) except to calculate the evolution of the damage field in

each point. However, an "intelligent" look at the evolution of o as a

function of space and time will restrict the number of dangerous areas

where the damage must be calculated.

5.1.1 Integration of the Kinetic Damage Law

At the critical point, the structural calculation gives:

£,j(M*,t)

£‘r(M*,t)

£".;(M*,t)

0,}. (M*,t)

It is easy to deduce:

- The accumulated plastic strain rate, (It’s automatically calculated in

some finite element commercial software)

. 2 . . K

P =[§€pij€p0)

- The strain energy density release rare,

2

0' eq

Y =____

"’ 213(1—D)2 R”

From:

3 )2

0' :[EUDUUDU]
“I
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 R, =.:_(1+v)+3(1—2v)["”]

«I

And to write the general kinetic damage law as:

= Y0.D) . H _ 0.402190) .
1') _

S p (lip-€120) 2ES(l—D)2p (92-920)

 

The initial condition for the damage evolution is the end of the period

of accumulation of dislocations and the initiation of the first mesocrack

[15] corresponding to the value p0 of the accumulated plastic strain.

The initial conditions are:

The damage evolution is given by the integral:

D t

_ 2 LL 2 -g (1 D )dD 2ES i 0,,(1) Rv(t)p(t)dt

.1._ _ 3 =;' 2 -
3( (1 D) +1) 255 {0.0) R.(t)p(t)dt

. 1%

D =1—[l——3—ja (t)2Rv(t)p(t)dt

2E5 ‘4 J
L to

The critical time t, at which a crack is initiated is reached when the

damage itself reaches its critical value given by the rupture criterion:

D,=D,,s1

If the material is highly ductile:
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D=l
(‘

And t, can be calculated by the expression:

'R %

3 .
1:1— 1-3-Em a,,(z)2 Rv(t)p(t)dt

Or:

IR 2

j a,,(z)2R,(r)p(r)dt =-—ES

to 3

Where 1, is given by the elastoplastic analysis: to =t(p = pD)

5.1.2 Uncoupled analysis gives more conservative results

Uncoupled analysis is not an accurate analysis for determination of

the failure time. However, it gives more conservative results meaning

that the design is on the safe side but not optimized as opposed to the

strain-damage coupled calculation. In order to demonstrate this

analytically, we assume the material to be elastic-perfectly plastic and

the loading to be proportional:

= 0', = const0'“,

R, =1

The last expression becomes:

’ . _2 ES
“(Mt—3&0,

to S
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The strain history is given and this allows us to take [)(I) as a given

function, which is particularly simple to calculate if the elastic strain is

neglected:

. 2.. }5

Then t, may be determined.

For the case of damage-coupled analysis of the same material loaded

under the same conditions:

- For p< pD no damage occurs; the same calculation gives the same

result fort0 ,

t(p=PD)=to

- The material is perfectly plastic with the same threshold 0, which

allows us to write the coupled plasticity criterion as:

0'“,

——= 0', = const.

(1 - D)

- The loading is proportional:

R, = const

- The same strain history is imposed and the elastic strain is again

neglected, thus the function [7(t) is the same.

The critical time for crack initiation in the coupled case r, is calculated

from the same kinetic damage law:

71



. Y, , 0 (0212.0). 0212.0).
D: ('D’ H = e" H = S H

s p (Sp-920) 2ES(l—D)2 p (92-900) 2ES p (Ep-Epo)

  

Where (1—D)2disappears due to the coupling in the plasticity criterion.

The integration is obvious:

402. ‘R .
l)=-———- tcfl2155 JP”

‘0

Taking again D, =1as the critical condition:

D=D, =l—->t=t'R

"R . 2155
I p(t)dt = RN,

to S

 

Comparison with the uncoupled case shows that:

t' 'R

f p(:)d:=3j‘ pmdi

to to

Which implies that:

tR <t'R

In the particular case of loading where p =c0nst.

 

 

 

 

Uncoupled case Coupled case

r -t +———2ES t' -t + 2E5

R ° 3Rvazsp R ° K030

  
Table 5 : Comparison of the time to failure between uncoupled and coupled analysis

for monotonic loading

To summarize, the uncoupled calculation is always conservative. It is a

lower bound, but usually far from the coupled solution. In other terms,
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component design may benefit from coupled calculations, which can

prove the enhanced safety of components or indicate how light-weight

economical components could be built.

5.2 Coupled analysis:

In this section, two algorithms are developed for the strain coupled

damage analysis and implemented in parallel with the finite element

software. In each algorithm, a simplifying assumption or condition is

taken into account to avoid excessive complexity in the formulation of

the algorithm. In this work, first the strain components were obtained

from Ls-Dyna and the first algorithm is utilized in Matlab and then the

second algorithm was written in Fortran and coupled as a material

model with Ls-Dyna.

5.2.1 Strain coupled algorithm with the assumption of perfect plasticity

By assuming the material to be perfectly plastic and by neglecting

the microcrack closure effect. The following equations should be

solved :
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5'”,- =0 Otherwise.

2

pr>pD,then D=ZESR”p and if p<pD,then D=0. 

Crack initiation if D, = D, is reached.

These equations may be used for piecewise perfect plasticity by

considering several values of the plastic threshold 0, as the loading or

the time like parameter vary. Then, the material parameters must be

considered as follows:

-Eand v for elasticity;

- f, a, and a, for plasticity

-a,=a,for perfect plasticity. Since, in reality, no material has the

perfect plasticity behavior, the choice of a, is somehow subjective.

However, choosing or, is a conservative choice which is taken in this

work.

- S,£,,D,D,C for damage

The input of the calculation is the time history of the strain

components 8,.(t) which may come from the result of a finite element

structural calculation. The outputs are:
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- The time like parameter t,

- The damage evolution D(r), the last point corresponding to D=D,,

that is, crack initiation,

- The accumulated plastic strain evolution p(t) ;

- The evolution of the von-Mises equivalent stress 0,,(1‘),

The numerical procedure is a strain-driven incremental time like

algorithm using an elastic predictor and a plastic corrector. The

hypothesis of perfect plasticity allows us to explicitly formulate this

plastic correction and helps us see the softening effect of damage. The

constitutive equations are written in an incremental form

corresponding to a fully implicit integration scheme having

unconditional stability; but the damage parameter is updated

explicitly.

After an elastic prediction obtained from the law of elasticity, the

plasticity criterion fso is checked. Iff>0, the plasticity corrections

are obtained by Newton's iterative procedure applied to a system of

two equations deduced from the constitutive equations.

At each time increment, the values of the stress and the other state

variables at the beginning of the increment (t,)are known and they

have to be updated at the end of the incrementum). In the following

formulation, tensorial notation is used for convenience.

We first assume that the increment is entirely elastic. So, we have:
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62,“, = (l — Dom )0,” + Atr(A8)I + 2,u(A8)

Where xland ,uare the Lame coefficients and I is the second order

identity tensor.

 

 

)1: DE

(l+v)(l—20)

E

”—0— 2(l+v)

All the other plastic variables are equal to their values at(t,.). if this

elastic predictor satisfies the yield condition fso, then the elastic

assumption is correct and the computation for this time increment

ends. Iff>0, this elastic state is corrected as explained in the

following in order to find the plastic solution.

The solution at (rm) has to satisfy the following equations:

(0...). __

 

= 0' =0

f l_ Dn+l 5

am: 0"“ +Azr(Ae)1+2p(Ae)-2p(AeP)
(1—D,,,,)

A8” = NAp

Y

AD=-—-5 AP

3 0'” ,1 .
Where A(x)=x,,+, —x,andN =——-—"—. If we replace A8” by its

2 (UM-l )eq

expression in the second equation, we see that the problem is reduced

to the first two equations for the two unknowns, 6",, andAp.
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We need to find 6,,,and prhich satisfy:

f :(6-n+l)eq -Us :0

h = a — 0" -4tr(A8)I — 20015) + 2,uNAp = 0

(1-0.)

This nonlinear system is solved iteratively by Newton's method. For

 

each iteration (s), we have:

f(5'n+ls TCa) = (6M1: +C6‘)eq ‘Us : 0

mam-i +C,-,,Ap+Cp) =0

So:

f +%3Ca =0

ah ah

h+—:C +—-C =0
35' 3 3p p

Where f, hand their partial derivatives are taken at (t,,,)and at the

iteration (s). (The starting point is the elastic predictor)

In other words, the integration is done explicitly over the time and

implicitly at each time over fiandp. The corrections Caand C,are

defined by:

C6 = 6-3-14 -6-3

Cp = ps+l __ ps

The starting iteration (s=0)corresponds to the elastic predictor. The

set of equations for fand h may be rewritten as:
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Because:

And:

ah em
__= H 2 __

aa [ + ”A‘aa]

 Where II is the fourth order identity tensor and: N =%

 

~ (3 ~D ~D ]% E(l—D)(3 e D e D]%
0- 2 ..

= —81'j £1]

1+0 2

 

M 3 1
—= — H——I®I —N®N
aa "' [2( 3 ) ]0'“,

N :N=% and N :a—N=0 because (II—-:-I®I)is a deviatoric projector

35

because if you take its inner product with a 2nd-rank deviatoric tensor

N , the results is still N :

(fl—%I®I):N=N

So:
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N: a——]§:=N:0'3[21(n—11®1)_ N®N]=:l—[§N—(N®N):N]

0‘ 3 a 2

 

a 0,,

#lN(N NW]3[5-9.le
0,, 2 2

If we multiply the second equation of the

system,h+[n+2pApg—I;]:Ca+2#NCP=0, by N, the system gives

explicitly the correction for p :

f—N:h

3!!

C:
P

 

~

Now, the correction for a should also be found explicitly. First we

prove that C, is a deviatoric tensor. From the second equation of the

system and using the expression ofg—IY, one obtains:

0'

all=~;[-:—(H—%I®I)—N®N]
80 0,,

(H—%I®1)is a deviatoric projector because if you take its inner

product with a 2nd-rank tensor (a) you find the deviator of (a):

(H—%I®I):a=ab

(N ®N):a = (N:a)N this is collinear with N and since N is deviatoric, the

result is also deviatoric:

8N

— :=a deviatoric

85'

Therefore taking the trace on the second equation of the system gives:

79



3N

h+|:H+2;1Ap5-g]:C5 +ZpNCp =0

8N

tr(h) +tr(C&) +”OWE; : C5) +tr(2,uNCp) = O

tr(2,uApiIZ:C5)=O because g—N;:C& is deviatoric.

0' 0'

tr(2,uNC,)=0 because N is deviatoric. So:

tr(h) + tr(C6) = 0

Using the definition of 6",, , and noting that:

6",, = 6', +ltr(A£)I + 20(A£)— 2,u(A£" )

tr(£pn) = O

tr(A£p) =0

tr(I)=3

We have:

”(6,,1) = (321 + 2,u)tr(£,,,,)

Therefore using the definition ofh:

h = 5i... - 6,, —/ltr(A8)I — 2,u(A£)+ szAp

And noting that tr(N) =0, we find that:

tr(C,) = —tr(h) = 0

These relations being true for any iteration (s), then tr(C,,)=Oand the

proof is achieved. Using this last result together with the expressions

0f %and C, yields for the second equation:
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f+NzC3=0

h+[n+2mp%1§]zc,+2mc,=0
0'

 

~

31;: 1 [3(n—11®1)—N®N]

30' a 2 3
ea

=f—N:h

Where:

A=[H+2,w_\p%]

1

0'“,

 +1.2... [;(N-.;.I®N-N®N]]

In calculatingAzCa, the term ’ [%I®I]:Ca =(%I:Ca)1=[%tr(Ca)]I =0

because C5. is deviatoric.

Therefore :

l

4:0, =[(1+;—”Ap)r1— 2” ApNeNJ:C, 

~

“I “1

Although:

A¢[(l+;—#Ap)II—%£ApN®N]

eq eq
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So if we cal|B=[(1+gfi-Ap)H--E—”—ApN®N], the tensor Bis invertible if

0'
eq eq

and only if 5,, =0, and in this case:

B" = ——31-—[n +g—‘E-ApN ®N:l

l+—~E—Ap ‘4

‘4

Using this expression gives explicitly the correction fora:

Ca =—-3-(f—N2h)N———3}-—[h+ 3'”

1.2—$513,) «1

eq

 Ap(N : MN]

Once pand (fare found, spand D are calculated from their discretized

constitutive equations and the stress components are given by:

0.1] = (1— D)5:ij

The following flow chart summarizes the above-mentioned procedure.
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( fl

[ Lu = Variable at t,

[ Lew = Variable at tn+1

A8 = 5",, — 80,,

All the variables are known at t- J

T

s =O & Ap = 0 (Elastic Predictor)

6;” = (1 — D,” )0,“ + Xtr(A£)I + 2,u(A£)

  
 

 

 

  

 

 

  

0’

h = 6:0, —¢—lumen - 2p(A£) + ZpNAp

(l—Dold)

_ ~3 D

CH N'h&1v=3 0m
34 2&3...)

k “1

C,=—3(f-N:h)N— 31 h+~32—'uAp(N:h)N

3 1+ I“ Ap (anewlq

(2:4)
«I

6:1:=a;,,+c,&Ap=Ap+C,&s=s+1   

 

 

No
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This algorithm was then written in Matlab and Fortran and paralleled

with Ls-Dyna as a user defined material to give stress distribution.

5.2.2 Strain coupled algorithm with the assumption of using the

damage value at the beginning of the increment

This time, we write the yield function in terms of the Cauchy stress

instead of the effective stress and we take into account the damage

effects into the yield stress. Thus, the von-Mises yield function is

written as:

f(aD)=%aD :a" -(1—D)20'y2 so

Radius of this yield surface is:

2

R = \[g(l—D)ay

And the normal unit vector of the yield surface is:

N=i=_2”_=9_"_J24;
[0”] an :02 R 2 (l—D)a'y

The other equations used in this section are:

Total strain rate in its additive form:

é=é‘+£‘p

Flow rule:

Equivalent plastic strain rate:
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2 2

'= —é‘”:é"= —°

p \(3 (3”

d- : (1—D)(/itrace(é‘)l+2#ée)

Stress rate:

Equivalent von-Mises stress:

0,, - 30'” 20'”

2

Isotropic hardening law:

0'y = K (80 + p)"

Lemaitre’s damage law:

D:[g 131; ][%(1+v)+3(1-2v)[g-”—]2](€o+P)2”P

The Computational procedure is as follows:

 

First, we assume that the increment is totally elastic and we calculate

the elastic predictor as the trial stress for the new increment:

0133’ = 00,, +(l— Dd,)(/1trace(A8)I + 2,uA£)

Then, if the elastic predictor, 0“” , is within the current yield surface,
MW

the elastic predictor is the actual value of stress for the current

increment:

_ rial

03W — 0”
new
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If not, we need to subtract a plastic correction written as following:

anew : 0:21:21 "ZMEP (1_Dold) : 0:12:1_21‘1A7N(1—Dold)

Since the increment is no longer totally elastic, we need to update the

value of total equivalent plastic strain, p :

2

pnew : paid +J;A}’

And the new yield stress considering the plastic hardening is calculated

as:

n- 2

Gym = 0,0,, +hAp = 0,0,, +nK(.€0 +p) ngAy

prZé‘pD, the damage parameter has to be updated using the

Lemaitre's equation:

2

D 2 0 2n 2

D =D+—4——1+ +3l—2 ” 6+ —A
new old [£R_EPD][3( V) ( V)[0' J]( 0 p) J; 7

eq

 

Then, A7 is determined considering constant D during one step which

is justified in the explicit calculation because of very small increments.

At the end of new step:

2

UDnew : anN = £(1- Dold )aynewN

m‘a 2

0.0M): —2/‘IA},(l—Dold)N=J—3-(l—Dold)[ayold +J:hA}/]N

00:11 = {E[0ydd +£hAy]+2pAy}(l—D,M)N = {€0,014 +(%h+2,u)Ay}(l—D,,d)N
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D
J
N



 

JOBS: 30'0er : (l-DOM){‘/%0'yold +[%h+2fl)A}’}

W: 1.1 {1002140121 E(l—D.,.)a...}
2fl[1+§;](l_Dold)

 

 

The following flow chart summarizes the above-mentioned

computational procedure.
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2
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3

Bold=+R'%c[£
DE]((1—+v)+3(1 2v)[

abm’al

N: new

Dm'al

I: ...

 
 

2

0'” 2n 2

-A
0:]:|(80+P) J; 7

—2:uA}/N(1_Dold)
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new
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5.3 Numerical Results

In what follows, the results of numerical analysis are presented and

compared for three analysis cases of without damage, uncoupled

damage, and coupled damage material model. The case problems are

uniaxial and biaxial tensions and the material properties are those of

copper 99.9% obtained from [14]:

 

 

 

 

 

 

 

 

 

 

  

Material Copper 99.9%

Young’s modulus 98990 MPa

Poison’s ratio 0.34

Yield stress 90 MPa

Ultimate stress 500 MPa

K (Hardening coefficient) 491.3 MPa

n (Hardening exponent) 0.2459

Initial damage threshold 0.35

Final damage threshold 1.07

Critical damage 0.85

Damage strength 1.0696 
 

Table 6 : Material properties for numerical calculations

The geometry of the models is shown in the following. The thicknesses

are 1mm for the uniaxial case and 10mm for the biaxial case. In each

case, some kind of defect or stress concentrator is needed to induce
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localization. This is done in the uniaxial case by decreasing the width

at the center by 2mm and in the biaxial case by considering a hole in

the center. Due to symmetry, just a quarter of the model is considered

for the biaxial case and the symmetry boundary conditions are applied

to the edges adjacent to the hole.

‘ 1
50.0 mm

L

, :
200.0 mm 50,0 mm

“—20.0 mm

 

  

 

 
12.5

 
   

Figure 13 : The front view of the uniaxial test model
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: 100 mm _ 

 

80 mm

   
  

Figure 14 : The front view of the biaxial test model

V A

Figure 15 : The isoperimetric view of the biaxial test model

Since the code is developed for the general case, three dimensional

brick elements are used to mesh the model avoiding any plain strain or
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plain stress assumption. The preprocessing is carried out in

Hypermesh and the model is then solved by Ls-Dyna.
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Figure 16 : Mesh configuration and location of the critical element for single element

analysis in the uniaxial test model
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Figure 17 : Mesh configuration and location of the critical element for single element

analysis in the biaxial test model

First, the algorithm mentioned in section 5.2.1 was written in Matlab

and the strain components for the element number 700 of the plate

specimen which is shown in Figure 17 were obtained from Ls-Dyna

with the assumption of perfect plasticity. The following plots show the

comparison of von—Mises stress, effective plastic strain, and damage

for three analysis cases of without damage, uncoupled damage, and

coupled damage.
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Damage softening effects

1 I I I l
 

.
0

O
) 1 l

Th§CConventional FE without the damage effects_

.
°
0
1 1

.
°
.
5 I 1

 

E
q
u
i
v
a
l
e
n
t
v
a
n
-
M
i
s
e
s
s
t
r
e
s
s
(
G
P
a
)

  
 

0'3 P The damage softening effects A

0.2 _ ~

0.1 f —

0 l l l l l

0 1 2 3 4 5 6

Time (ms)

Figure 18 : Comparison of von-Mises stress for without damage and coupled damage

analyses for element number 700

Damage softening effects are noticeable and indicate a lower load

bearing capability than what is calculated with a non-damage analysis.
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Comparison between the evolution ofDamage and Equivalent plastic strain
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Figure 19 : Damage evolution and comparison of effective (total) plastic strain for

analysis cases of without damage and coupled damage

Effective or total plastic strain is one of the most common failure

criteria and is commonly used in element deletion or node release

processes in the finite element codes. The above mentioned plot shows

that the damage parameter not only takes into account the continuous

degradation of the material properties but also the failure prediction

based on the critical value of damage is in good agreement with the

critical effective plastic strain criterion. That is, the damage parameter

reaches its critical value, 0.85, when the effective plastic strain is

approximately equal to its critical value, 1.07.
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The following plot shows conservative prediction of failure from

uncoupled analysis, which was analytically derived in section 5.1.2.

The rate of damage evolution increases rapidly as damage increases

since there is a (1—D)2term in the denominator of damage rate

equafion.

The evolution of Damage and Equivalent plastic strain for Uncoupled analysis
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Figure 20 : Conservative prediction of failure from uncoupled analysis

Figure 18, Figure 19, and Figure 20 are results for the biaxial model

and for a single element (The element is shown in Figure 17). In what

follows, the algorithm mentioned in section 5.2.2 is written in Fortran

and implemented as a user defined material model with Ls-Dyna. The
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showing the continuous degradation of the material. Another point of

interest is the comparison between the prediction of failure by the

critical value of damage and by the critical value of effective plastic

strain. As shown in Figure 21 and Figure 22, damage occurs when the

effective plastic strain reaches the initial damage threshold:
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Figure 21 : Initiation of Damage for the uniaxial model. (The bottom figure shows

the effective plastic strain)
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Figure 22 : The Initiation of Damage for the biaxial model. (The bottom figure shows

the effective plastic strain)
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In the uniaxial model, both damage and effective plastic strain start to

grow from the edges where the three dimensionality thus the

triaxiality ratio are maximum. This is shown in Figure 23.
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Figure 23 : Damage and effective plastic strain start to grow from the edges (The top

picture shows the effective plastic strain)
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Then, damage reaches its critical value when the effective plastic

strain is approximately equal to its critical value both at the same

location. This indicates that the critical value of damage can ,

satisfactorily predict failure. In Figure 24 and Figure 25, a comparison

is made between contours of damage and effective plastic strain when

damage reaches its critical value.
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Figure 24 : Localization of damage and its comparison with effective plastic strain for

the uniaxial model (The top picture shows the effective plastic strain)
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Figure 25 : Localization of damage and its comparison with effective plastic strain for

the biaxial model (The top picture shows the effective plastic strain)

105



 

 

 

 
  2.6 2.8

Time (1115)

Figure 26 : Evolution of damage (black) and effective plastic strain (blue) of the

element shown in Figure 16 for the uniaxial model
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Figure 27 : Evolution of damage (black) and effective plastic strain (blue) of the

element shown in Figure 17 for the biaxial model
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And finally, the softening effects of damage can be seen in the

following figures and plots. The von-Mises equivalent stress is

compared between the damage model results and results from a

model with no damage consideration.
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Figure 28 : Distribution of the von-Mises stress for the uniaxial model. (The bottom

figure shows the damage model result and the top figure shows the non-damage

model result)
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Figure 30 : Damage model result for von-Mises stress in element shown in Figure 16

for the uniaxial model
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Figure 31 : Non-Damage model result for von-Mises stress in element shown in

Figure 16 for the uniaxial model
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Figure 32 : Damage model result for von-Mises stress in element shown in Figure 17

for the biaxial model
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Figure 33 : Non-Damage model result for von-Mises stress in element shown in

Figure 17 for the biaxial model
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