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ABSTRACT

SIMULATION OF THE IMPACT OF FORECASTING ACCURACY
ON SUPPLY CHAIN PERFORMANCE: THE BIAS EFFECT

By
Alexandre Medeiros Rodrigues

Historically, most firms have operated in an anticipatory manner. Today,
supply chain design focuses on agility and responsiveness. Regardless,
forecasts are often still necessary because of longer and more uncertain lead
times, service requirements, and capital constraints.

This dissertation investigates the impact of Forecasting Accuracy on
Supply Chain Performance. Specifically, this research evaluates the effects of
Forecast Bias, Forecast Skewness, Transit Lead Time Variability, and Demand
Variability on Order Fill Rate, Case Fill Rate, and Average System Inventory.

Results from dynamic simulation experiments indicate that Forecast Bias
is the primary factor, substantially affecting all performance measures. This
impact is amplified at higher levels of demand and transit lead time variability.
Lead Time Variability has a substantial impact on service, while Forecast
Skewness has medium impact on inventory. Additionally, results suggest a trade-
off impact of Forecast Bias on service and inventory.

Managerial guidelines are developed after a cost trade-off analysis is
conducted. The framework identifies acceptable levels of Forecast Bias, and

advises which actions can be taken to control and minimize its effects.
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1 Introduction

Forecasting can be formally defined as the method for predicting the
future by extrapolating information from the past. In business, it is a process that
synthesizes the quantitative and qualitative information from different functional
departments to generate a prediction of periodic sales for the firm as a whole.
Each forecast represents a prediction or estimate of the actual demand volume
for a future period. Supply chain decision makers particularly need forecasts to
plan for future uncertainty. Forecasts are critical to firm functions, including
financial planning, facility openings and closings, new equipment purchases,
production schedules, raw materials procurement, staffing allocation, and
marketing planning.

Historically, most firms have operated their supply chain in an anticipatory
basis. Products are produced to meet sales forecasts and are moved through the
distribution channel in anticipation of end-customer requirements. Such a
speculative strategy is used to achieve effective economies of scale.
Increasingly, however, specific product requirements are difficult to forecast, due
primarily to greater complexity in product offerings and supply chain alternatives.
Today, supply chain design focuses on agility and responsiveness to reduce the
need to forecast consumer demand. Partnerships, information sharing, and
automation can also be used to reduce supply chain uncertainty and allow rapid
flow of information and physical goods.

Even though companies are moving toward responsive supply chains,

forecasts are often still necessary. Decisions about product acquisition,
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manufacturing, and transportation must be made prior to demand, so that
customers can have instant product availability where and when desired. Longer
and more uncertain lead times result in a greater need for demand forecasts.
Responsive systems also require extensive coordination and information
exchange between supply chain partners. Service requirements and capital
constraints can limit a firm's ability to move from an anticipatory to a responsive
system, and forecasting thus continues to be relevant for today businesses.

The primary objective of this dissertation is to investigate the impact of
Forecasting Accuracy on supply chain performance. The ultimate test of any
forecast is how it supports supply chain performance. Decision makers have a
wide choice of ways to forecast, ranging from purely intuitive or judgmental
approaches to highly structured and complex quantitative methods. Forecasting
Accuracy is defined here as the difference between a specific forecast and
corresponding customer demand. The goal of any forecasting process is to
minimize this difference.

History shows that decision makers tend to develop predictions that are
systematically lower or higher than actual demand. This is generally called
Forecast Bias. It occurs because even when systematic methods are used,
planners and managers often refine the generated forecasts, based either on
their perceptions regarding the business environment or on a mean that will
enhance their performance metrics.

Although the impact of Forecast Accuracy has been examined in the

manufacturing literature, it has received less attention from logistics and supply



chain researchers. It is important to understand the impact of different patterns of
Forecast Accuracy in a supply chain environment, where complexity and
dynamics are greater than in a single manufacturing system. It is also important
to examine the impact at different levels of supply chain uncertainty.

Specifically, the primary research objective is to investigate how Forecast
Bias affects supply chain service and inventory. This will be studied under
different customer demand pattemns and transit lead time scenarios. As a
secondary objective, managerial guidelines are developed to suggest ways to
reduce or manage bias in forecasts. Acceptable levels of Forecast Bias will be
identified, and actions to control and minimize its effects will be described.

This introductory chapter covers a number of topics. First, it characterizes
the role of forecasting in supply chain management and defines the boundaries
of the study. Second, it explains why forecasting issues are important for not only
supply chain researchers but also practitioners. Third, the chapter details the
concept of Forecasting Accuracy and introduces the notion of Forecast Bias.
Fourth, research objectives and specific research questions are reviewed. Fifth,
the research procedure is presented. Finally, the potential contributions of this

dissertation are noted.



1.1 What Is Forecasting?

Forecasting can be formally defined as the process for predicting the
future by extrapolating information from the past (Morton 1999). It transforms
historical time-series data and/or qualitative assessments into a prediction of
future events. The process combines quantitative, analytical data with qualitative,
subjective inputs. As a result of this process, forecasts are generated. Each
forecast represents a prediction or estimate of an actual value in a future period.
The more effectively quantitative and qualitative information are combined, the
better the quality of the generated forecasts.

Planning is an integral part of decision making, but uncertainties make it
quite difficult to plan effectively. Forecasts can help reduce some of the
uncertainty, which enables managers to develop more meaningful plans than
they might otherwise. Another reason to use forecasts is that, in general, there is
a delay of time between awareness of an event and its occurrence. This lead
time is the main reason for planning on an anticipatory basis. If the lead time is
zero or very small, there is no need for planning. If the lead time is long or
uncertain, planning can perform an important role. In such situations, forecasting
is needed to determine when an event will occur or a need will arise, so that
appropriate actions can be taken beforehand (Makridakis et al. 1983).

Different classifications are used to categorize forecasting approaches,
based on either the time horizon (the period covered by the forecast) or the
underlying method used. In terms of time horizon, the common categories are

long term, intermediate term and short term (Martinich 1997). Short term
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forecasts usually look no more than three months ahead. They are used for
tactical decision making, such as job sequencing and production scheduling,
machine assignments, personnel scheduling, purchasing and inventory planning,
and maintenance planning. Intermediate term forecasts have a time frame of
three months to two years. They are commonly used for aggregate production
planning, including decisions that alter short-term production capacity, such as
subcontracting and overtime. Long term forecasts usually cover two to five years.
Their most common use is for planning the introduction of new products and
maijor capital expenditures.

Makridakis & Wheelwright (1989) propose a forecast classification
according to the underlying method used: qualitative (subjective), quantitative
(objective) and technological. Qualitative (subjective) methods are based on
human judgment. Such forecasts are most often made by individuals or by
committee agreements. Quantitative (objective) methods employ formulas based
on historical patterns and relationships to develop forecasts. Technological
methods address long term issues of a technological, societal, economic, or
political nature.

Table 1 lists the forecasting methods most commonly used and major
areas of business where they are applied. Despite differences, the various
methods share certain characteristics (Stevenson 1990). First, all assume that
the same underlying causal system will continue to exist in the future, as
historical data are generally the starting point. Second, all admit that forecasts

are rarely perfect and allowances should be made for inaccuracies. Third, all



agree that forecasts tend to be more accurate for groups of items than for
individual items because forecast errors among groups of items cancel one
another. Finally, all concur that forecast accuracy decreases as the time horizon
increases. Shorter range forecasts are typically more accurate than longer range

forecasts less uncertainty is involved.
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Forecasting methods are applied in a number of business areas, but the
generation of sales estimates is especially important. These forecasts attempt to
predict customer demand either in an aggregate (sales by region, by state, by
family of products) or disaggregate way (sales by specific products for specific
customers). The information is important because it drives different operational
processes across the company. Marketing, for example, predicts sales for new
product lines in order to make strategic plans, and forecasts for existing product
lines in order to provide feedback on whether current sales techniques are
working well. Production and operations managers need forecasts for both
product line and individual stock-keeping units (SKU) to order raw materials, plan
and schedule production, and plan warehousing and deployment of finished
goods.

The primary focus of this dissertation is short term business demand
forecasting, but there is no emphasis on any specific method. As previously
stated, the process commonly involves different departments of the organization
and combines alternative approaches to generate forecasts. Decision makers
then generally modify the estimates to reach a final forecast. Because the
process is complex, this dissertation focuses on the final forecast, the estimate
generated in the last step of the entire process. Specifically, our interest is in the
accuracy of the forecasting process.

Forecasting Accuracy can be defined as the difference between the
forecast value and the actual value. It can be understood as a measure of

forecast error. Forecasting processes differ depending upon how the company



uses the information, departments involved, and the approaches used. Each
process will result in a different accuracy level. Also, accuracy is affected by the
time horizon, the rate of technological change in the industry, entry barriers to the
industry, the rate of information dissemination, demand characteristics, industry
characteristics, the availability of historical data, and even the ability of decision
makers to use forecasting methods correctly. The assumption in this dissertation
is that each process, no matter how simple or complex, will generate a specific
pattern of Forecasting Accuracy. For our purposes, the choice of forecasting
method is not important. In this research, what is important is the effect of

different patterns of errors.

1.2 The Relevancy of Forecasting

In the past, firms relied heavily on forecasts to drive planning. Most
operations were designed on an anticipatory basis, and most activities were
initiated before demand occurred. By planning in advance, firms can allocate
resources and design operations in a cost efficient way, achieving economies of
scale. This strategy operates well when demand is somewhat predictable, but the
anticipatory model is not the best in all situations. Throughout the 1980s, IBM
downplayed the personal computer market and maintained its focus on
mainframes, which cost it a large part of market share before it modified that
strategy. Similarly, in the 1960s and 1970s, the U.S. automotive industry
underestimated the competitive threat of imported cars, which were smaller,

more fuel efficient, highly reliable, and inexpensive. Detroit lost market share



dramatically. In both cases, the anticipatory model was not able to adapt to the
dynamic market.

To reduce the need to forecast consumer demand, many firms are
enhancing supply chain agility and responsiveness. By improving relationships
among supply chain partners (customers, suppliers, service providers) and
investing in measurement and information systems, companies are creating
highly responsive logistical operations and are reducing levels of anticipatory
inventory so that they can meet increasing demand for customization.

Bowersox et al. (1999) identify this trend in a comprehensive study that
relates supply chain competencies to firm performance. The competencies reflect
integration and relationship management among supply chain partners,
investment in technology and planning systems, and measurement systems
development. There is evidence that firms with higher levels of delivery speed
and inventory turn demonstrate higher performance levels.

These results might imply that all supply chains should move from an
anticipatory (push) system, which seeks to supply predictable demand efficiently
at the lowest possible cost, to a responsive (pull) system, which focuses on quick
response to unpredictable demand in order to maximize sales. The responsive
system reduces the need for reliance on forecasts, but variations in product
demand patterns and consumer requirements make it impossible to prescribe
one solution for all supply chains.

Fisher (1997) presents a conceptual framework for improved management

by suggesting a match between product demand characteristics and supply



chain capabilities. He proposes that products fall into two main categories:
functional products have long life cycles, low profit margins, and stable demand;
innovative products have short life cycles, high profit margins, and unstable
demand. In his framework, push systems better match functional products, and
pull systems better match innovative products. Hirakawa et al. (1992) support the
relationship between product type and forecasting needs. In their article,
although limited to a manufacturing environment, the authors propose a hybrid
solution between push and pull supply chain systems to attain a higher degree of
effectiveness.

Financial constraints may prevent the move from an anticipatory to a
responsive supply chain design, which involves substantial capital investments.
Responsive systems not only are technically sophisticated in terms of planning
but also are information dependent, both internally as well as externally to the
company. The advantage of the anticipatory model, at least in a stable and
predictable demand environment, is the ease of operational planning and the
minimal information needed to operate it.

Lead time constraints also may limit the ability of a company to operate in
a responsive manner. There are lead times associated with the purchase of raw
material, manufacture of goods, and transportation to end customers. Many
companies have operations around the world, which increases not only lead
times but also supply chain uncertainty. In this case, they cannot simply wait for
demand to emerge and then react to it. Instead, they must anticipate and plan so

that they can fill customer orders immediately. This is true even when efforts to
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reduce uncertainty and increase agility and responsiveness are implemented.
The longer and more uncertain the lead time, the more important is an accurate
forecast of customer demand.

One implication of the preceding discussion is that firms should have a
combination of supply chain operations (anticipatory and responsive) to
accommodate requirements for different product types, capital investment
constraints, uncertainty and long lead times.

Furthermore, researchers continue to maintain the relevancy of
forecasting in today’s business environment. Makridakis et al. (1983), for
example, believe that organizational complexity (number of markets and
products) and dynamic environments (changes in technology and demand
structures) make it more difficult for decision makers to see ahead, which
highlights the importance of accurate forecasts and planning.

Mentzer (1999) develops a model of the impact of improved forecasting
accuracy on shareholder value. Unless accurate forecasts can be translated into
higher levels of customer service and lower supply chain costs, they have little
influence on corporate profitability. The model translates forecasting accuracy
into improved operational plans and execution and improved service to
customers. The former results in lower costs per dollar and the latter results in
increased sales.

In a more recent work, Lapide (2000) maintains that closer supply chain
relationships and information sharing do not eliminate the need for forecasts. His

primary point is that integration may reduce, but will not totally eliminate
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uncertainty. This opinion is shared by Parker (2001), who offers a managerial
perspective on forecasting. He supports the view that although companies are
migrating toward responsiveness, forecasting is still needed. The goal, according
to him, is not to optimize the supply chain but to obtain better information from
distribution channels.

There is also empirical evidence of a relationship between forecasting
improvements and improved performance. Lee et al. (1993), for example,
present the effects of forecast errors on the total cost of operations. Results from
a study by Teach (1993) point to a strong connection between the ability to
predict outcomes and the firm's performance. Shoesmith & Pinder (2001) provide
additional evidence that improvements in forecasting lead to cost reductions.
Richardson & Hicks (2003) provide a number of examples on how improved
forecasting and inventory management can yield substantial supply chain
performance improvements.

In summary, forecasting is still an important part of business decision
making. Specific requirements for different product types imply that firms should
have a combination of anticipatory and responsive supply chain operations. Even
with increasing pressures for supply chain agility, forecasts are still needed. They
are particularly relevant for operations with relatively long lead times and great
uncertainty. In addition, there is both theoretical and empirical evidence for the

association between improved forecasting accuracy and better performance.
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1.3 Forecasting Accuracy: The Importance of Bias

The most important test for a forecasting model is Forecasting Accuracy
(Armstrong 1985), commonly termed as forecast error, or the difference between
estimates and actual values. Alternative measures of Forecasting Accuracy are
used in the literature, and each captures different information. A single measure
of accuracy may not be adequate, since each one makes an assumption
regarding the loss function, which relates forecast error to its associated cost
effect.

Table 2 offers mathematical definitions for the most common measures of
Forecasting Accuracy. A consistent notation is used, assuming that forecasts are
intended to predict customer demand: D is actual demand, F is the forecast, t is

the time interval, and n is the number of periods in the forecast horizon.

Forecasting Accuracy Mathematical Definition
Measure
Mean Error (ME)

n
> (D,~F)In
t=1
Mean Absolute Deviation n

(MAD) Y |D,-F|/n

t=1

Root Mean Square Error =
(hisE) DGR A
=1

Mean Percentage Error

(MPE) S [(D, - F,)/ D, X100)/n
t=1

Mean Absolute n
Percentage Error (MAPE) z H(D: -F)/D, |(1 00)]/ n
t=1

Table 2 - Common Measures of Forecast Error
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The Mean Error (ME), also referred to as bias, is primarily a test of
systematic error, that is, a tendency to forecast systematically values that are
either greater or less than actual demand. It should not be used alone because it
provides no measure of error variance, the extent of dispersion of errors around
the mean.

The Mean Absolute Deviation (MAD) reflects the typical error. It does not
distinguish between variance and bias, and it is appropriate when the cost
function is linear.

The Root Mean Square Error (RMSE) is very similar to MAD but is
preferred when a quadratic loss function is assumed.

The Mean Percentage Error (MPE) and the Mean Absolute Percentage
Error (MAPE) are, respectively, similar to ME and to MAD, but they are
measured in percentage terms. Both are appropriate when the cost of errors is
more closely related to the percentage error than to the unit error.

Additional accuracy measures exist in the literature and are primarily
modifications of these common formulations. All attempt to summarize the
performance of the forecast method, and none is perfect. Each fails to capture all
dimensions of the difference between forecasts and actual demand.

One way to overcome this limitation is to analyze the histogram of forecast
errors. A histogram is a bar chart representing a frequency distribution. The x-
axis represents values, and the y-axis represents observed frequencies. The
forecast error histogram is built by calculating a measure of error for each time

interval and plotting them in one graph. Figure 1 provides two hypothetical
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histograms of Percentage Errors, defined as the difference between the actual
and the forecast demand divided by actual demand. Each histogram provides
complete information regarding errors patterns, including systematic errors,
variance, and symmetry. An analysis of histograms helps minimize the limitations

of using a single measure.

—_— B ¥ ¥

b

-200% 0% 200% -300% 0%

Case 1: Unbiased Forecasts Case 2: Biased Forecasts
Mean =0, Mode = 0 Mean = -0.35, Mode = 0
Standard Deviation = 0.65 Standard Deviation = 0.65
Skewness = 0 Skewness = -0.6

Figure 1 - of Histog of Per Errors

In the first case in Figure 1, there is an equal probability that the
percentage errors will be either positive (underestimate demand) or negative
(overestimate demand). The average error of zero means that errors tend to
cancel one another, and there is no tendency to inflate or deflate forecast
numbers, when compared to actual demand. In the second case, the mean of the
distribution is -35%, so there is a systematic tendency for the forecast to be

greater than actual demand.
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In this dissertation, the focus is on the impact of different profiles of
Forecasting Accuracy, represented as different distributions of forecast errors.
Specifically, we are primarily interested in Forecast Bias (the mean of the
distribution), which commonly occurs in business (Goodwin & Wright 1994).
Anderson & Goldsmith (1994), found systematically biased decision making by
business executives in nearly every industry studied.

The most probable sources for bias in forecasts are internal. In general,
judgmental adjustments are made to incorporate environmental or product-
specific knowledge. These subjective revisions potentially improve forecast
accuracy (Carbone & Gorr 1985; Donihue 1993; Lawrence et al. 1985; Mathews
& Diamantopoulos 1992). There is empirical evidence that they also bring
undesirable bias to the forecasting process.

In a survey of 134 executives, Dalrymple (1987) found that the majority of
companies used subjective forecasting methods. Fildes (1991), in controlled
laboratory experiments, observed systematic bias during forecast formulation.
Sanders (1992) and Lawrence et al. (2000) also found that judgment creates
biased forecasts. Sanders & Manrodt (1994) surveyed 500 companies, and 80
percent of respondents relied on such adjustments. Furthermore, 70 percent of
the managers underestimated demand. The direction of bias, however, depends
on the forecaster's role in the company (Cyert & March 1961). The use of
judgmental adjustments also varies by industry type or firm specifics (Mentzer &
Cox 1984; Parkash et al. 1995). Consumer product firms tend to use more

quantitative methods than do industrial firms (Kahn & Mentzer 1995).
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It appears that judgmental adjustments can improve forecasts under
certain conditions. Forecasting performance is influenced by such variables as
the desirability, imminence, time period, and perceived controllability of the event
to be forecast (Wright & Ayton 1986). On the other hand, judgment is better than
quantitative techniques at estimating the magnitude, onset, and duration of a
temporary change. Quantitative methods provide superior performance during
periods of no change, or constancy, in the data pattern (Sanders & Ritzman
1991).

In addition to judgmental adjustments, other possible internal causes for
bias are the reward system (bonuses or salary increments) and company politics.
If departments are rewarded strictly on a revenue basis, forecasts tend to be
systematically higher than actual demand. The rationale is that optimistic
estimates will protect sales from possible stockouts. If the reward system is
based on cost efficiency, forecasts tend to be closer to or less than actual
demand. The rationale is that conservative predictions accommodate sales at the
minimum total cost. Political pressures on the forecasting process can lead to
unrealistic goals (Chase 1992; O'Clock & O'Clock 1989). This is evident when
decision makers develop forecasts based on enterprise or corporate needs
rather than actual market conditions. A good example is the pressure from
stockholders for financial target results.

External factors, such as stockouts and promotions, also may create bias

in forecasts. Wecker (1978), for example, found a direct relationship between
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stockouts and bias. The greater the stockout, the higher is the downward bias in
the sales forecast.

In summary, the literature provides support for a match between product
characteristics and supply chain type (anticipatory and responsive). Even with
increasing pressures for supply chain agility, forecasts are still necessary.
Forecast Bias is an important dimension to consider when investigating Forecast
Accuracy, as it is common in business environments due to internal or external
causes. There is little information, however, conceming the effect of bias on
supply chain performance. In addition, there is a gap in the literature regarding
the influence of different distributions of forecast error. Histograms can be a
better representation of Forecasting Accuracy as compared to single measures

of accuracy.

1.4 Research Objectives

The primary objective is to investigate the impact of Forecast Bias on
Supply Chain performance. Two dimensions of performance are considered:
customer service, measured by fill rates, and average system inventory.
Specifically, this research investigates the influence of accuracy under different
contexts of uncertainty, on daily customer demand and on transit lead times.

This primary objective results in four specific research questions. Each
question is presented and discussed below.

The impact of different profiles of forecast errors has been investigated in
the manufacturing literature. Rresearch suggests that Forecast Bias and

Forecast Variability affect manufacturing performance in different ways. On a
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histogram of forecast percentage errors, the mean value of the distribution
represents the level of Forecast Bias. This is a typical or central value that best
describes the error pattern. Forecast Variability, commonly measured as the
variance or standard deviation of the histogram, refers to the extent of dispersion
of forecast errors around the mean. Studies have found that the impact of bias is
relatively larger than the impact of variability. This suggests that different profiles
of Forecast Accuracy (different histograms of forecast error) may affect supply
chain performance in different ways.

The relationship between bias and variability has been researched. The
focus here is on a different dimension of the histogram distribution of forecast
errors: skewness. Skewness is a measure of symmetry or, more precisely, the
lack of symmetry. A distribution is symmetric if it is equally divided to the left and
right of the center point. In our case, the center point is the average of forecast
errors, or simply the level of Forecast Bias. Therefore, we are interested in the

relative influence of Forecast Bias and Forecast Skewness on performance.
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-0.50 0.00 +0.50 -0.40 0.00 +0.50
Case 1: Normal (0, 0.15) Case 2: BETA (3.5, 15,-0.35,1.4)
Mean = 0, Mode = 0 Mean = 0, Mode = - 0.09

Standard Deviation = 0.15 Standard Deviation = 0.15

Skewness = 0 Skewness = 0.6838

Figure 2 - Examples of Different Skewness Patterns

Figure 2 illustrates the previous discussion. Suppose that two different
patterns of forecast percentage errors are plotted in histograms. In the first case
in Figure 2, the profile of errors follows a Normal distribution, with a mean of 0%
and a standard deviation of 15%. Notice that errors are distributed in a symmetric
way around the mean. There is no Forecast Bias in this case, as the average
value is zero, and there is equal probability for a forecast to be either greater
than or lesser than actual demand. In the second, the error distribution follows a
generalized form of the Beta distribution. It also has a mean of 0% and a
standard deviation of 15%. In contrast to the first case, there is a higher
probability that percentage errors will be lower than the average. Although the
two cases have the same measures of central tendency (mean) and variability

(standard deviation), their histograms reveal two distinct patterns. It is expected
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that these two patterns will affect operations and ultimately performance in
different ways.

This dissertation will explore the relative impact of different forecast
Percentage Error distributions on performance. Specifically, the first research
question is: What are the impacts of Forecast Bias on supply chain performance,
compared to the impacts of Forecast Skewness?

In addition, there is a need to evaluate any interaction between Forecast
Bias and Forecast Skewness. In Figure 2, for example, the two distributions have
the same mean and standard deviation. Does the impact of bias on performance
change with the skewness of the distribution? It is possible that at higher degrees
of skewness the impact of bias is amplified. Therefore, the second research
question is: Are there any significant interaction effects between Forecast Bias
and Forecast Skewness?

Earlier, the concept of a fit between product characteristics and supply
chain design was presented. This notion implies that, the relative importance of
forecasts differs with the level of uncertainty in demand and operations. It is
expected that the impact of Forecast Accuracy on performance will be amplified
for products with higher variation in daily requirements. Thus, the third research
question is: In what circumstances and to what extent does the variability in daily
demand offset or compound the impacts of Forecast Bias and Forecast
Skewness?

The last research question considers the impact of Forecast Bias and

Forecast Skewness under different levels of lead time variability. As previously
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discussed, as companies go global, transit lead times tend to be longer and more
uncertain. The relative impact of Forecast Bias and Forecast Skewness on
performance is potentially different at lower and higher levels of transit lead time
uncertainty. The final research question is: In what circumstances and to what
extent does the variability in transit lead times in the supply chain network offset
or compound the effects of Forecast Bias and Forecast Skewness?

The second major objective of this dissertation is to generate guidelines
that can help executives determine the relative influence of Forecast Bias under
different levels of customer demand and transit lead time variability. Such insight
can enhance supply chain performance through better forecasting by prescribing

when efforts to reduce or eliminate Forecast Bias should be pursued.

1.5 Research Procedure

It is difficult to isolate the parameters characterized in the research
questions in actual business systems due to the many interactions and lack of
control. This research requires a controlled environment under which
experiments can be conducted and evaluated. The analysis of actual operations
or a survey study could not provide the experimental environment or the
necessary level of control.

This research uses simulation methodology, as it is capable of
representing controllable environments and of modeling stochastic uncertainty.
General system characteristics are translated to a conceptual model that

captures common operations typical of the consumer electronics industry. Using
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the Arena simulation package, a model is developed and validated with realistic
parameters.

A full factorial design is conducted, with data collected from 30 replications
of 150 treatments, from combinations of 4 factors (Demand Variability, Lead
Time Variability, Forecast Bias and Forecast Skewness). As performance
variables, Order Fill Rate, Case Fill Rate, and Average System Inventory are
recorded.

The statistical technique of multivariate analysis of variance (MANOVA) is

employed to analyze collected data for hypotheses testing.

1.6 Potential Contributions

The primary research contribution is a better understanding of how
Forecasting Accuracy, and specifically Forecast Bias and Forecast Skewness,
impact supply chain performance. This investigation is conducted for different
levels of demand and transit lead time, which have not yet been explored in the
literature.

The secondary research contribution is a set of managerial guidelines to
provide insights regarding the benefits of reduced Forecast Bias. Specifically, a
framework is provided to guide management efforts. This framework can be cost
effective, as capital investments are required to improve forecast accuracy

through management training and data collection equipment.
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1.7 Organization of Chapters

This introductory chapter has stated the primary issues and the relevancy
of the research, as well as specific research questions and potential
contributions.

In chapter two, the literature will be reviewed from three perspectives. The
first section addresses general forecasting research. The second section covers
the role of forecasting in supply chain management. The final section reviews
previous applications of simulation methods. At the end of the chapter, formal
hypotheses are presented.

Chapter three discusses research methods. First, the conceptual model is
presented. Second, the simulation environment is described. Third, details of the
experimental design, including experimental factors, fixed parameters, and
performance variables, are presented. Finally, the data analysis technique is
discussed.

Chapter four examines the major assumptions related to the statistical
technique and presents formal hypothesis tests.

In chapter five, the conclusions of this research are stated, along with
implications (both academic and managerial), research contributions, and

directions for future research.
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2 Literature Review

This chapter reviews past research related to forecast in a supply chain
context. Gaps in the literature will be identified and support for the relevancy of
this dissertation will be provided.

Section one of this chapter covers the general research on forecasting.
The second section describes previous research that addresses forecast issues
in supply chain management. This includes an analysis of past research in both
manufacturing and supply chain management literatures. The third section
includes previous applications of simulation methodology for supply chain
analyses.

Summaries from each section are then provided and conclusions are
presented. In addition, the hypotheses to be tested using the simulation

environment are formally stated.

2.1 Research on Forecasting

This section reviews the relevant literature of forecasting. The discussion
focuses on forecasting articles that review the body of knowledge and attempt to
identify research needs in the area. As a result, a historical perspective of the
field is presented and gaps in the forecasting literature are identified.

Armstrong et al. (1984) developed one of the first reviews of forecasting
literature. This article reviews twenty-five years of research and concludes that
the field is highly focused in the comparison of alternative methods for short term

forecasting.
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Another comprehensive review is developed by Makridakis (1986). In this
article, the author assesses forecasting performance, evaluates
accomplishments, and proposes directions for future research. This review also
offers an interesting historical perspective regarding forecasting.

According to Makridakis (1986), the foundations of forecasting were laid in
the late 1930’s when the first forecasting models were proposed. Between 1950
and 1970, five parallel and independent subfields were developed in the field of
quantitative forecasting, including: (1) econometric models used by economists
to explain macroeconomic phenomena; (2) filtering methods used by engineers
to eliminate ‘noise’ from patterns; (3) models used by statisticians to generate
time series and forecasts; (4) decomposition techniques used by the government
to uncover seasonality and trend-cycles in macroeconomic time series; and (5)
exponential smoothing methods used by operation researchers to forecast
production scheduling and inventory control.

The personal computer brought computational power to the fingertips of
researcheré and practitioners. The 1970’s and 1980’s were dominated by
research focused on the assessment of forecasting performance, and the
comparison of alternative methods.

Makridakis (1986)'s research also proposes directions for future research.
As a conclusion, the author suggests the development of new methods and the

modification of the existing ones as the primary focus for new research efforts.
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Armstrong (1988) conducts another comprehensive review of forecasting
research. The author identifies research needs of practitioners and academics

using a survey instrument. Results of this survey are presented on Table 3.

Field Practitioners ¥ . Academics
Economics Causal models; survey research | Causal models; uncertainty
Finance & Environmental forecasting; Expert systems;
Accounting | seasonal variations uncertainty
Marketing Implementation; Incorporate judgment in

computerization; combine models; competitive
methods; competitive actions; actions; combine
evaluation forecasts; compare
alternative methods;
implementation
Planning Impact on decision-making; Compare alternative
expert systems; judgmental methods; monitor forecast

forecasting; computerization;
compare alternative models;
implementation; scenarios;

uncertainty
Production New product forecasting; Combine alternative
combine methods; quality of methods; uncertainty;
data vs. method; seasonality combine forecasts;
compare alternative
methods
Research & | New product forecasting; Combine alternative
Development | outliers; causal models; methods; compare
computerization alternative methods;
impact on decision-
making; scenarios
Other Areas | Expert systems; compare Compare the alternative
alternative methods; impact on methods; quality of data
decision-making; vs. method; impact on
implementation; monitor decision-making;
forecasts scenarios; uncertainty

Table 3 — Research Needs in Forecasting (Armstrong 1988)

After identifying the most important areas for research, Amstrong (1988)
compares the identified research needs with the literature published up to that

moment. Table 4 summarizes the conclusions developed from the review.
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Future
Topic Past Research Conclusions Research
Prospects
Decomposition (Predict | - Helpful where uncertainty is high Good
parts, then aggregate)
Extrapolation - Seasonal factors useful Modest
- Trends should be dampened
- Minor differences in accuracy
among methods
Intentions - Ways to reduce response and non- | Modest
response bias
Expert Opinion - Limited value of expertise in Excellent
forecasting large changes
- Role-playing accurate for conflict
situations
Expert Systems - Less expensive & a bit more Excellent
(Bootstrapping) accurate
Causal Methods - Simplicity is a virtue Modest
(Econometrics) - Econometric methods better for
large changes
Combined - Combination yield substantial gains | Modest
Forecasts
Uncertainty - Judgmental estimates are typically | Good
overconfident argue against your
forecast
Implementation - Scenarios can help to gain prior Excellent
commitment
Audit Process - Guidelines needed Excellent

Table 4 — Comparison of Research Needs and Research Supply in Forecasting

(Armstrong 1988)

Table 4 presents an identification of gaps between the reported research

and the identified research needs. Potential topids suggested by this analysis

include: (1) identification of standards for acceptable practice in forecasting; (2)

improvement of forecasting under conflict situations; (3) identification of best

methods for estimating uncertainty associated with forecasts;

identification of effective ways to gain managerial perspective of unfavorable

forecasts.
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Dawes et al. (1994) discuss the past and the future of forecasting
research. In this article, a panel of four research experts presents a brief
response to two issues: (1) identification of the major development in forecasting
over the past decade, and (2) identification of the area with most promise for the
future. According to the authors, the future did not appear to lie in bigger or
smarter models. Rather it may be in the implementation of models, in the
development of a better understanding of the practical forecasting process, and
by the better use of the data resources made available by increasing automation.

Finally, Winklhofer et al. (1996) developed a recent review of empirical
studies on forecasting. One conclusion is that although considerable empirical
research has focused on the forecasting practices of firms, not all issues have
received equal attention. While questions concerning the utilization of forecasting
methods have attracted a lot of study, issues such as the role and level of
forecasting have been relatively neglected. While variables such as company
size and industry type have been linked to some aspects of forecasting practice
(resources available and forecasting accuracy), such linkages have been left
unexplored for other aspects (data sources utilized). According to the authors,
future research should take three broad directions: (1) to relate organizational
and environmental variables known to affect forecasting to a wider range of
issues; (2) to explore the impact of additional firm-specific and environment-
specific variables on forecasting; and (3) to examine neglected linkages between

different aspects of organizational forecasting.
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The preceding discussion provides interesting insight about the research
focus on forecasting. Initially, efforts were focused on analyzing the performance
of alternative forecasting techniques under different contexts. The primary
research motivation in the past was to investigate alternatives to improve existing
forecasting techniques and to identify a match between such techniques and
different environmental characteristics.

Most recent reviews of the forecasting literature provide support for the
need of a better understanding of the managerial side of the forecasting process.
The current research motivation is to gain a better understanding of the practical
issues involving the forecasting process. It also aims to gather a better
knowledge regarding the impact of forecasting on operations and decision-

making processes.
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2.2 Forecast Issues in Supply Chain Management

This section reviews previous research that addresses forecast issues in
supply chain management. The first part of this section presents an analysis of
past research related to forecasting in the manufacturing literature. The second
part presents a review of past research in the supply chain management

literature.

2.2.1 Manufacturing Literature

Early efforts investigating the impact of forecast error on operations are
reported in the manufacturing literature. There is considerable research that
reports the response of production scheduling and resource planning
performance resulting from various levels of forecast error. Previous research in
this area generally considers a single unit of analysis, such as a single company
or a single manufacturing facility.

In an interesting simulation study, Biggs & Campion (1982) investigate the
relative impact of forecast error on a production system. This study is different
from previous research that attempts to minimize forecast error by improving
forecasting techniques. The results of the paper indicate that manipulating
forecast error bias may be the better managerial strategy as opposed to going to
great lengths to minimize forecast error. This article is one of the first to
conceptually consider separate dimensions of forecast accuracy.

Lee & Adam (1986) and Lee et al. (1987) support the importance of

forecast bias on manufacturing performance. While forecast bias and standard
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deviation significantly affect the Master Requirements Planning (MRP)
performance, bias has a more significant impact. Both studies are limited to a
single plant operation. These two studies were motivated by the similar findings
of the Lee (1982) doctoral dissertation.

Lin & Krajewski (1992) and Lin et al. (1994) explicitly address forecasting
in manufacturing environments. The authors evaluate the impact of three
scheduling parameters: replanning interval, schedule freezing period, and
forecast window. In their analytical model, forecasts are considered unbiased,
and its variance increases as the time interval between the forecast date and the
production date increases. The authors present the effects of these three
parameters on cost and performance of the manufacturing system.

Ritzman & King (1993) use a simulation approach to investigate the
impact of forecast error on manufacturing performance. Two components of
forecast error are examined in this article: variability and bias. The study, limited
to a single plant environment, considers the analysis of two lot size techniques
under alternative levels of resource use (workers, capacity, inventory), demand
uncertainty and forecast error. Results regarding the manufacturing performance
indicate that reducing forecast bias is preferred to reducing forecast variability.

In another simulation approach, Zhao & Lee (1993) evaluate the impact of
scheduling freezing parameters on the total cost, schedule instability and service
levels in MRP systems under alternative conditions of demand uncertainty. Two

different forecasting models are compared to the case where no forecast errors
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exist in the system. The results indicate that forecast errors significantly increase
total costs and schedule instability, and reduce the service level in MRP systems.

Toktay (1998) considers an analytical model of a capacitated production-
inventory system operating under a stationary demand process and using
forecast updates to determine production order releases. The author assesses
the impact of information quality on total cost. Results show that forecast model
misspecification and forecast bias lead to significant cost increases.

Masuchun (2002) compares the performance of an anticipatory and a
responsive strategy on a manufacturing system. The author investigates the
impact of the two strategies on total inventory, production throughput, and
customer service. The simulation environment tests the manufacturing system
under different levels of forecast error and inventory targets. Results support the
concept of fit between environmental characteristics (demand uncertainty,
forecast error, target inventory levels) and either the push or pull strategies.

In a recent study, Sloyer (2003) researches the effect of forecast error on
a production system. Specifically, the author uses a simulation model to evaluate
different methods for adjusting inventory targets in the presence of forecast bias.
Results of this study help decision makers determine the most appropriate safety
stock method using characteristics that match a particular environment.

From the previous discussion, most research in the manufacturing
literature addresses a single production facility. The relevant part of this literature
is in the study of multiple stage production systems. Those systems could, by

analogy, be viewed as a supply chain network with multiple partners.
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Bookbinder & Heath (1988) identify this limitation and extend the
investigation to a distribution network. The authors use a simulation model to
study the relationships between network structures, demand, forecast errors, and
their impact on costs. The research compares the performance of alternative lot
size methods and parameters.

In a more contemporary work, Krajewski & Wei (2001) explore the value of
integrated production schedules in supply chains involving buyer and supplier
firms. Basically, the article extends the manufacturing environment to outside its
borders. A stochastic cost model is developed to evaluate the total supply chain
cost with integrated purchasing and scheduling policies. Although forecasts are
unbiased in their analytical model, results support that forecast accuracy plays a
critical role in realizing the benefits of schedule integration between supply chain
partners.

Forecast error thus plays an important role on the performance of
manufacturing systems. These relevant manufacturing studies consider the
specific dimension of forecast bias. Results support that bias significantly and
substantially impacts manufacturing performance. One limitation is that the
majority of these studies addresses a single production environment, and rarely

considers the operational impact of forecast bias outside the plant borders.
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2.2.2 Supply Chain Management Literature

The previous section presented a review of relevant articles on the
manufacturing literature. Although the preceding discussion offers interesting
insights, the most relevant literature for this dissertation is found on inventory
management studies in the supply chain literature.

In general, these studies evaluate the performance of a supply chain
system under different environmental contexts. They generally investigate the
relationship between inventory target levels and customer service.

Gullu (1997) explores the effects of incorporating forecasts in a two-
echelon network. The analytical model considers a central depot and several
retailers. The article investigates the possible benefits on system costs and
inventory level, when information is shared between supply chain partners. When
information is not shared, higher forecast errors result, the system requires
higher inventory and results in higher system costs.

Other authors focus on evaluating the impact of information sharing on
demand variability across supply chain partners. This impact is commonly
referred as the bullwhip effect, a situation where demand order variability is
amplified as one move up a supply chain. In other words, when there are multiple
levels in a supply chain (supplier, manufacturer, distributor, and customer), the
farther from the customers, the less predictable are the order quantities.

Lee et al. (1997), for example, demonstrate through analytical models the
existence of the buliwhip effect. The authors conclude that the effect is a

consequence of strategic interactions among supply chain members.

35



Metters (1997) quantifies the impact of the bullwhip effect on profitability.
The analytical model uses multiple companies operating in a serial supply chain
network. Results indicate that the importance of the bullwhip effect to a firm
differs greatly depending on the specific business environment. Tan (1999)
reaches similar conclusions. The research accesses the impact of information
sharing on different supply chain structures, product structures, and demand mix.
The conclusion is that there is no overall information sharing policy that has
superior performance in all scenarios.

Other studies also use analytical approaches to quantify the impact of
improved information sharing on demand, inventory, and costs. Raghunathan
(1999), for example, quantifies the benefits of a collaborative supply chain
network. Baganha & Cohen (1998) propose conditions to promote supply chain
stabilization on demand variability. Lee et al. (2000) find from their analytical
formulation that the value of information sharing is high, especially when
demands are significantly correlated over time. Finally, Cachon & Fisher (2000)
include transit lead time variability and compares its impact to information
sharing. According to the authors, there are situations where it is more valuable
to reduce uncertainty on transit lead times than to improve information sharing.

A common trait of the previously presented studies is to consider demand
variability, but not to explicitly consider forecasts.

Chen et al. (2000) identify this limitation and extend the work developed
by Metters (1997) by incorporating forecast error in its analytical formulation.

Among its findings, the research demonstrates that the bullwhip effect can be
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reduced, but not completely eliminated by centralizing demand information. The
results suggest that management policies can have a destabilizing effect by
increasing the volatility of demand as it passes up through the chain.

Yao (2001) also explicitly considers forecasts in his dissertation research.
The author compares the bullwhip ratio under three different forecasting methods
and demonstrates that the optimal forecast scheme has advantages over other
traditional quantitative techniques.

Ganeshan et al. (2001) study the impact of selected inventory parameters
on supply chain performance. In addition to forecast error, two inventory
parameters are modeled: mode of communication between echelons and
planning frequency. The results are consistent with previous research: increasing
forecast error and replanning frequency decreases service, return on investment,
but increases cycle time. The use of a communication mode facilitating exchange
of information between echelons results in increased service, when compared to
the scenario where there is lack of information sharing between supply chain
partners.

Xu et al. (2001) develop an analytical study with similar objectives to
Raghunathan (1999). In the former case, forecast error is explicity modeled.
Independent actions by members of a conventional supply chain are shown to
impact overall performance negatively by increasing order release variability and
forecast error variability. The proposed analytical model is useful to assess when
and to what extent such fluctuations can be controlled through supply chain

collaboration.
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In a simulation study, Zhao et al. (2002b) explore the value of practicing
early order commitment in the supply chain. Early order commitment represents
a situation where a retailer commits to purchase a fixed-order quantity and
delivery time from a supplier before the real need takes place. The authors
investigate the complex interactions between early order commitment and
forecast errors by simulating a supply chain with one supplier and multiple
retailers under demand uncertainty. One of the findings is that different
components of forecast error have different cost implications.

In a follow-up study, Zhao et al. (2002a) examine demand forecasting and
inventory replenishment decisions by the retailers, and production decisions by
the supplier under different demand patterns and capacity tightness. Analysis of
the simulation output indicates that the selection of the forecasting model
significantly influences the performance of the supply chain and the value of
information sharing.

The preceding discussion supports that most of the research on the
supply chain management literature addressed indirectly the impact of forecast
errors on performance. In general, this impact is assessed by investigating
issues related to supply chain information sharing. In these studies, forecast error
is considered, but it is treated much more as a control variable or parameter
rather than a primary factor in the study. There is a gap in the literature to
investigate the direct impact of forecast errors in a supply chain context. More
specifically, there is a lack of studies that consider the direct impact of Forecast

Bias on supply chain performance.
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2.3 Simulation in Supply Chain Management

Previous sections in this chapter reviewed the relevant research on the
manufacturing and supply chain literatures. Now we review previous studies in
supply chain management that used simulation as a methodological tool.

Three model categories are frequently used in logistics and supply chain
planning: (1) analytic, (2) heuristic, and (3) simulation. Analytical models use
mathematical methods to identify an “optimal” solution to the problem under
analysis. In contrast, models that utilize heuristic or simulation approaches utilize
numerical techniques to quantify specific problem solutions. Both analytic and
heuristic solutions are typically deterministic in that the recommended course of
action will be identical, if the procedure is repeated using the same data and
assumptions. The distinguishing feature of simulation is its capability to include
stochastic situations, where uncertainty can be better considered.

One of the first reviews of the use of simulation in supply chain problems
is developed by Bowersox & Closs (1989). In the article, the authors compare
simulation with other methodologies and also present the most commonly used
applications. Common applications are categorized in terms of structural design
and operational questions. Structural analysis typically considers the number of
facilities and channel design relationships facilities and/or channel participants.
The second category of planning and evaluation is tactical in nature. Operational
analysis considers spatial and temporal product positioning. The typical

operational analysis is concerned with the integration of raw material and finished
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goods inventory, service levels and production planning. These two categories

and typical problems are summarized on Table 5.

Category | Type of Problem Observation

Structural Facility Analysis Focuses on the geographical location

Analysis and arrangement of production,
warehouse and to a lesser extent retail
stores.

Structural Channel Structure | Focuses upon the efficiency and

Analysis effectiveness of alternative channel
members such as raw material
suppliers, manufacturers, distributors,
wholesalers and retailers.

Operational | Inventory Analysis of the impact of inventory

Analysis Management policies on cost, service and
performance.

Operational | Forecasting What is the effect of forecast accuracy

Analysis on inventory required to meet service
level objectives.

Operational | Distribution What are the cost/service benefits of

Analysis alternative timing and transportation
strategies.

Operational | Production How do current policies regarding

Analysis Scheduling production scheduling impact inventory.

Operational | Functional Impact of increased internal integration

Analysis Integration on cost, service level and performance.

Operational | Supply Chain Impact of increased integration across

Analysis Integration partners in the supply chain on cost,
service level and performance.

Table 5 — Categories of Logistics Applications (Bowersox & Closs 1989)

To be able to assess how the methodology has been used in academic
research on supply chain management, a focused literature review was
conducted for this dissertation. Eight journals were evaluated: Joumnal of
Business Logistics, International Journal of Physical Distribution & Logistics
Management, International Journal of Logistics Management, Journal of

Operations Management, International Journal of Operations & Production

Management, European Journal of Operational Research, Decision Sciences
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and Management Science. The period of this review covers from 1980 to the
current date. The period is not consistent for all selected journals. Table 6
provides the number of articles found per publication. Keywords used in the

literature search were: simulation, supply chain, logistics, transportation, and

inventory.
Journal Period | Articles
Evaluated | Found
European Journal of Operational Research 1981-2003 20
Journal of Business Logistics 1987-2003 19
Decision Sciences 1982-2003 18
Journal of Operations Management 1980-2003 15
International Journal of Physical Distribution | 1992-2003 14
& Logistics Management
International Journal of Operations & 1981-2003 14
Production Management
Management Science 1981-2003 13
International Journal of Logistics 1998-2003 2
Management

Table 6 - Simulation Articles in Logistics and Supply Chain Management

A total number of 115 references were collected from these journals. Two
criteria were used for the selection of articles: first, the article should use
primarily simulation as a methodological tool and second, the article should
address one of the types of problems proposed by Bowersox & Closs (1989).
Each article was reviewed related to its content and then allocated to a single

type of problem. Table 7 has a summary of this categorization process.
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Category

Type of
Problem

Articles

Structural
Analysis

Facility
Analysis

No articles found

Structural
Analysis

Channel
Structure
(9 articles)

Berry et al. 1994; Evers 1996; Hammant et
al. 1999; Harrington et al. 1992; Landeghem
& Vanmaele 2002; Petrovic et al. 1998;
Swaminathan et al. 1998; Taylor & Closs
1993; Vorst et al. 2000

Operational
Analysis

Inventory
Management
(39 articles)

Bagchi et al. 1986; Barnes-Schuster &
Bassok 1997; Bashyam & Fu 1998; Benton
& Krajewski 1990; Biddle & Martin 1986;
Bradley & Glynn 2002; Bregman et al. 1989;
Chien 1993; Choi et al. 1984; Chyr 1996;
Clark et al. 1983; Disney et al. 1997;
Ebrahimpour & Fathi 1985; Etienne 1987;
Garg et al. 2002; Glasserman & Liu 1996;
Hong-Minh et al. 2000; Humphrey et al.
1998; Jackson 1988; Jacobs & Whybark
1992; Kabir & Al-Olayan 1996; Kumar &
Chandra 2002; Li & Qi 1995; McClelland &
Wagner 1988; Mohan & Ritzman 1998;
Okogbaa et al. 1994; Petrovic et al. 1982;
Pfohl et al. 1999; Rosenbaum 1981; Rutten
& Bertrand 1998; Takahashi et al. 1997;
Teulings & Vlist 2001; Towill et al. 1992; V.
Daniel R. & Srivastava 1998; Waller et al.
1999; Walter & Bowersox 1988; Wemmerlov
1989; Zinn & Marmorstein 1990; Zinn et al.
1992

Operational
Analysis

Forecasting
(8 articles)

Biggs & Campion 1982; Flowers 1980; Hsu
& El-Najdawi 1991; Karmarkar 1994; Lee &
Adam 1986; Ritzman & King 1993; Zhao et
al. 2002a; Zhao et al. 2002b

Table 7 - Articles Categorized by Type of Problem
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Category

Type of
Problem

Articles

Operational
Analysis

Distribution
(21 articles)

Akaah & Jackson 1988; Andreussi et al.
1981; Bagchi 1988; Bielli 1992; Bookbinder
& Heath 1988; Evers 1999; Fujiwara et al.
1987; Gomes & Mentzer 1988; Guimaraes &
Kingsman 1989; Higginson 1995; Higginson
& Bookbinder 1994; Ho 1992; Jansen et al.
2001; Kamoun & Hall 1996; Legato & Mazza
2001; Mentzer & Gomes 1991; Pooley &
Stenger 1992; Powers & Closs 1987;
Shabayek & Yeung 2002; Strasser 1992;
Waller 1995

Operational
Analysis

Production
Scheduling
(33 articles)

Akkan 1997; Ardalan 1997; Benton &
Whybark 1982; Berkley & Kiran 1991; Bott &
Ritzman 1983; Chakravorty & Atwater 1995;
Chan et al. 2001; Chan & Smith 1993;
Christy & Kanet 1988; Cruickshanks et al.
1984; Ding & Yuen 1991; Goyal et al. 1993;
Heuts et al. 1992; Ho 1993; Huang et al.
1983; Huq & Huq 1995; Kanet 1986; Kern &
Wei 1996; Klitz 1983; Krajewski et al. 1987;
Leachman & Gascon 1988; Lee & Seah
1988; Mapes 1993; McClelland 1988, 1992;
Morris & Tersine 1990; Schartner & Pruett
1991; Scudder & Hoffman 1985; Seagle &
Fisk 1982; Sridharan & LaForge 1990, 1994,
Suresh & Meredith 1994; Tardif &
Maaseidvaag 2001

Operational
Analysis

Functional
Integration

No articles found

Operational
Analysis

Supply Chain
Integration
(4 articles)

Closs et al. 1998; Kia et al. 2000;
Raghunathan 2001; Towill & McCullen 1999

Table 7 - Articles Categorized by Type of Problem (Continued)
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Some interesting conclusions can be developed from the review of
simulation studies in supply chain management. First, research has focused on
operational issues. A total of 106 'articles were categorized as operational
analysis. Considerable effort in this area has been done in the study of Inventory
Management, Production Scheduling and Distribution problems. Second, there is
limited research investigating Forecasting, Functional Integration and Supply
Chain Integration issues. Only twelve simulation studies were found that
addressed such issues. Finally, the structural level of analysis has also received
limited research. Only nine simulation studies were found on this area, dealing
with problems related to the channel structure.

The preceding discussion supports that while a considerable effort has
been done to study supply chain operational characteristics, few articles used
simulation to address more tactical or strategic type of problems. Furthermore,
there is limited number of simulation studies that addressed forecast as the
primary issue. There is a need to investigate the impacts of the different

dimensions of forecast error on supply chain performance.
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2.4 Conclusions from Literature Review

The previous sections discussed how issues related to forecast error were
addressed in the forecasting, manufacturing and supply chain literatures. In
addition, the preceding section discussed how simulation was used to investigate
supply chain related problems.

From the insights provided by the forecasting literature review, it is clear
that most of the efforts were focused on the evaluation and improvement of
competing forecasting techniques. The literature review indicates that there is a
need for an evaluation of the role of Forecast Bias and its impact on operations.

Three conclusions result from the review of forecasting literature related to
supply chain management research. First, there is substantial need for the
development of research on this topic, as the prior research regarding the impact
of forecast errors on supply chain performance is relatively new and it is mostly
studied in a manufacturing context. Second, there is a need for better
conceptualization of forecast errors, making clear the distinctive dimensions of
error (bias, variability, etc.). Third, although some issues regarding information
sharing and demand amplification are addressed in the literature, there is a need
for better assessment regarding the impact of forecast errors in complex supply
chain environments. This dissertation fills these three gaps by distinctly modeling
different dimensions of forecast accuracy and by representing supply chain
networks with stochastic lead times.

In conclusion, the review of the use of computer simulation as a

methodological tool shows that most of the previous efforts were focused on the
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study of inventory management systems, the evaluation of alternative rules for
production scheduling, and the study of alternative distribution systems, This
dissertation extends previous research by considering the effect of forecast
errors on supply chain performance.

Table 8 presents a summary of the primary gaps identified as a results of

the literature review.

Topic Gaps
General « Efforts focused in the improvement and evaluation
Research on of competing forecasting methods.
Forecasting * Potential room for the study of the role of forecast

accuracy and its impact on operations.

* Potential room to relate organizational and
environmental variables that affect forecasting and
to explore the impact of additional firm-specific and
environment-specific variables

Forecast issues: | * There is a need for better conceptualization of
Manufacturing & | forecasting accuracy in supply chain management
Supply Chain research.

Management « Although some issues regarding information sharing
and demand amplification were addressed, there is a
need for better assessment regarding the impact of
forecast accuracy on supply chain performance.

* There is a gap concerning the interaction of
components of the forecasting accuracy
distribution and its combined impact on supply
chain operations

Previous » Most of the effort was focused on operational
applications of | issues.

simulation » Limited research investigating Forecasting, Functional
methodology Integration and Supply Chain Integration

Table 8 — Literature Review: Primary Gaps

This section reviewed previous literature and summarized the primary
existing gaps. The next section formally states the hypotheses to be tested using

the simulation environment.
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2.5 Hypotheses

Using results from the literature review and the research questions
proposed earlier, eight hypotheses can be formally stated.

The literature review supports the need for research of the impact of
forecast errors on supply chain performance. Specifically, there is a need for a
better conceptualization of the different dimensions of forecast error and analysis
of their different impacts. In this dissertation, two aspects of the forecast error
distribution are investigated: Forecast Bias and Forecast Skewness.

The first research question considers the investigation of the different
impacts of Forecast Bias and Forecast Skewness on performance. Therefore,
the first set of hypotheses considers the individual impacts of Forecast Bias and
Forecast Skewness on performance as well as their combined effect. From
insights of the manufacturing literature, it is assumed that both Forecast Bias
(H1a) and Forecast Skewness (H1b) individually affect supply chain
performance. The second research question expects the impact of Forecast Bias
on performance to be altered depending on the level of Forecast Skewness.
Therefore, an interaction effect between these two factors is assumed (H1c).
Finally, results from the manufacturing literature suggest that the individual effect
on performance of Forecast Bias is relatively larger (H1d). Thus, the first set of
hypotheses is:

Hypothesis H1a: Forecast Bias has a significant impact on Supply

Chain Performance.
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Hypothesis H1b: Forecast Skewness has a significant impact on
Supply Chain Performance.

Hypothesis H1c: There is a significant interaction effect between
Forecast Bias and Forecast Skewness.

Hypothesis H1d: Forecast Bias has a relatively greater impact than
Forecast Skewness on Supply Chain Performance.

The third research question investigates the extent that the variability on
daily demand offsets or compounds the impacts of Forecast Bias and Forecast
Skewness on performance. The fourth research question investigates the extent
that the variability on transit lead times offsets or compounds the impact of
Forecasting Bias and Forecasting Skewness.

It is expected that the higher the level of daily demand variability, the
higher the individual impact of Forecasting Bias (H2a). In an analogous way, it is
also expected that the higher the variability in transit lead times, the higher the
impact of Forecasting Bias on performance (H2b). The second set of hypotheses
is stated as follows:

Hypothesis H2a: There is a significant interaction effect between
Forecast Bias and Demand Variability.

Hypothesis H2b: There is a significant interaction effect between
Forecast Bias and Lead Time Variability.

In an analogous way, when higher levels of demand variability (H3a) and
transit lead time variability (H3b) are present, the higher the individual impact of

Forecasting Skewness on performance. Thus, the last set of hypotheses is:
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Hypothesis H3a: There is a significant interaction effect between
Forecast Skewness and Demand Variability.

Hypothesis H3b: There is a significant interaction effect between
Forecast Skewness and Lead Time Variability.

The eight hypotheses previously presented will bring additional
understanding about the separate impacts of Forecast Bias and Forecast
Skewness on supply chain performance. In addition, the formal test of these
hypotheses will contribute to the existing literature by considering these impacts
under different environmental contexts of customer demand and transit lead time.

This chapter reviewed the literature from three perspectives and
presented formal statements of the hypotheses to be tested. The following

chapter will discuss details about the research methodology.
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3 Research Methodology

This chapter describes the research methodology used for this study. The
first section presents the chosen methodology: computer simulation. The second
section discusses the conceptual model, providing a summary of the various
events modeled and how model validity was assessed. The next four sections
describe model assumptions, experimental factors, fixed parameters, and
performance measures. Finally, the last section explains the data analysis

technique used for formal hypotheses testing.

3.1 Computer Simulation

This research requires a controlled environment under which experiments
can be conducted and evaluated. The analysis of actual operations or a survey
study could not provide the experimental environment or the necessary level of
control. This dissertation uses simulation methodology, as it is capable of
representing controllable environments and of modeling stochastic uncertainty.

Law & Kelton (2000) define computer simulation as the process of
designing a model of a real system and conducting experiments. This approach
is used whenever a complete mathematical formulation of the problem does not
exist or an analytical method of solving the mathematical model does not exist.

According to Martin (1968), computer simulation is indicated for 27
different types of applications, including evaluation of operations, evaluation of
business strategy, test of strategy and tactics and analysis of decision-making

processes. Simulation is well suited for supply chain and logistics applications,
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because of the interactions and dynamics existent in such problems (Carson et
al. 1997). In addition, it is a viable technique for modeling systems characterized
by great complexity, probabilistic or stochastic processes, and whose variables
are difficult to analyze in precise mathematical terms. Simulation is also quite
tractable for experimentation in that, after a computer model has been developed
and validated, the model may be sampled under different input conditions.
Computer simulation is, therefore, an appropriate methodology for this

dissertation.

3.2 Conceptual Model

This section describes the conceptual model of the supply chain for the
distribution of consumer goods. The conceptual model is the mathematical,
logical or verbal representation of the phenomena to be investigated. It relates
the entities, activities, and factors used in this research.

The conceptual model considered in this research is a dynamic multi-
echelon structure that considers production and distribution functions, product
and information flows, and customer demand and forecasting activities. Figure 3

illustrates the conceptual model.
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Figure 3 — Conceptual Model

The conceptual model assumes independent policy and inventory
operations for each facility. Retail facilities obtain inventory supply from
wholesale facilities, which in turn replenishes inventory from the plant facility.

Daily customer demands can be created using stochastic distributions,
such as Normal and Gamma. Each daily order volume has a defined mean and
variance. This actual demand is then used to create weekly forecasts.

Instead of using a quantitative technique to generate forecasts, controlled
forecast errors are imposed on the actual generated demand at the retail level to
create forecasts. Thus, different patterns of forecast error can be imposed on the
actual demand when generating forecasts. The forecasted demand is then used
as the primary information for planning of replenishment orders in the system. If

no forecast error is defined, actual demand is used for planning purposes. This
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allows forecast error to be controlled and enables the simulation of a supply
chain environment with different patterns of error.
Customer demand and forecasted demand are then used to trigger daily

events in the simulation model, which is presented in the following section.

3.2.1 List of Events

The conceptual model assumes that the behavior of the system changes
as time advances. In this dissertation, therefore, a dynamic simulation model is
considered. During a particular simulated day, a sequence of activities is
performed, updating the status of the entire system before time is advanced.
Each activity is responsible for coordinating flows of information and products in
different ways. This section describes in detail each major activity. Figure 4

summarizes all events present in the conceptual model.

(1) Receipt of
Replenishment
Shipments

(2) Receipt
of
Backorders

(3) Receipt of
Customer
Orders

(4) Shipment of
Backorders and
Customer Orders

[ (5)Creation | [ ©)Recesiptof | [ (7)Shipmentof
of Replenishment Replenishment
Backorders - Orders ) L Orders
~——

Needs

replenishment ,‘2? ‘fe'::m‘r’; (9) Production (10) Statistics
to meet pOrcI ers Planning Recording
targets?

Figure 4 — Conceptual Model: List of Events
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The first event to occur is the receipt of replenishment shipments. Those
shipments represent in-transit inventory that was scheduled to arrive in the
beginning of the day. Inventory positions are then updated to reflect the
additional inventory received.

The second and third events to occur are the receipt of backorders (from
past unfulfiled demand) and new customer orders at retail locations. Backorders
can be allowed only at the retail level. The simulation user decides if backorders
exist in the system. When backorders are allowed, all customer orders are
eventually fulfilled. If not, then demand that is not filled is lost, and stockouts are
recorded at the retail level. In this dissertation, the choice is to record stockouts
instead of allowing for backorders.

After that, the next event takes place: the shipment of backorders and
customer orders. If the required quantity in an order is fully available, a complete
shipment is sent to customers. If some quantity is missing, a partial order is
shipped. Stochastic lead times are imposed to represent transportation delays. If
an order is left unfulfilled, the remaining quantity is considered a backorder and is
left to be filled on the next day, constituting the fifth event. When replenishment
requests are not fully shipped, stockouts are calculated instead. The same
occurs at the retail level if backorders are not allowed, the case in this
dissertation.

In the following event, replenishment orders are received at the sourcing
locations after stochastic delays of order transmittal are completed. These

replenishment orders represent requests from retail facilities to wholesale



facilities and requests from wholesale facilities to the plant. Such replenishment
orders are processed in the same ways as the customer order fulfillment
process. After inventory evaluation, replenishment shipments are created as the
seventh event. Replenishment quantities not fulfiled are discarded, and
stockouts are recorded. Such requirements are reflected in the next planning
cycle.

After the completion of both customer and replenishment order fulfillment
processes, replenishment requirements are evaluated, constituting the eighth
event. Requirements are evaluated under a daily order-up policy. Maximum
levels of inventory are defined in each location for each specific product.

These target inventory levels are defined in days of demand. This means
that targets are dynamically calculated based on demand forecast information.
During every review period, average daily forecast is recalculated. The average
daily forecast is then multiplied by the defined target level (in days) to obtain a
specific quantity to be maintained at the facility. This procedure allows the
system to dynamically adapt to seasonality periods. Inventory requirements are
then evaluated taking into account not only current inventory position, but also
transit inventory and backorders. If the planned inventory is below the maximum
target, a replenishment order is created. The order quantity is the necessary
amount of products needed to build the maximum target.

The ninth event to occur is production planning. Production lead time is
represented as a stochastic delay. The plant facility also has target inventory

levels to maintain. If quantities are required, a delay is applied to represent the

55



manufacturing time required to build such requirements. After this delay is
completed, these quantities are moved automatically to stock and are ready to be
shipped. This research assumes infinite capacity at the plant. A second
assumption is that the production lead time, although stochastic, does not
depend on the size of the replenishment order. Finally, for modeling purposes,
the production lead time was incorporated as the transit time from plant to
wholesale facilities.

The last event to occur is the collection of statistics. Service statistics are
collected only in the first pass. Fill rates, average inventory and costs are
computed for each facility. Individual statistics are then aggregated to compute
performance for the entire supply chain.

After the last event occurs, time advances and the system returns to the
first event, repeating the same sequence until the simulation period is over.

The conceptual model is thus translated to a simulation model. The next

section details steps taken to assure the simulation model validity.

3.2.2 Model Validation

Before information derived from simulation models can be used, the
primary concern is whether results can be considered valid. This concern is
addressed through model verification and validation. This section describes
major issues regarding validation and details of how the simulation model was
evaluated before experiments could be conducted and results could be analyzed.

In a comprehensive article, Sargent (2000) discusses verification,

validation, and accreditation of simulation models. In this article, model
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verification is defined as “ensuring that the computer program of the
computerized model and its implementation are correct”. Model validation is
defined as “substantiation that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the
intended application of the model” (Schlesinger et al. 1979). Finally, model
accreditation determines if a model satisfies specified criteria. The author
presents different approaches to deciding model validity and defines different
validation techniques.

The determination of whether a model is valid or not is usually part of the
entire model development process. It is often too costly and time consuming to
determine whether a model is absolutely valid over the complete domain of its
intended applicability. Instead, sample tests and evaluations are conducted until
sufficient confidence is obtained that the model can be considered valid.

Sargent (2000) presents a simplified version of the modeling process
(Figure 5). He defines the problem entity as the system, idea, situation, policy, or
phenomena to be modeled. The conceptual model can be viewed as the
mathematical/logical/verbal representation of the problem entity. Finally, the

computerized model is the conceptual model implemented on a computer.
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Figure 5 — Simplified Version of the Modeling Process (Sargent 2000)

During the modeling process, four types of validity should be ensured. The
first one, conceptual model validity, is defined as determining that the theories
and assumptions underlying the conceptual model are correct and that the model
representation of the problem entity is “reasonable” for the intended purpose.
The second dimension of validity, computerized model verification, is defined as
ensuring that the computer programming and implementation of the conceptual
model is correct. The third dimension, operational validity, is defined as
determining that the model's output behavior has sufficient accuracy. Finally,

data validity is defined as ensuring that the data necessary for model building,
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model evaluation and testing, and conducting the model experiments are
adequate and correct.

Sargent (2000) presents sixteen validation techniques that can be used to
ensure the different types of validity. These techniques can be used either
subjectively or objectively (by using some type of statistical test or mathematical
procedure). Generally, a combination of techniques is used.

To assess conceptual model validity, an evaluation of the model is
required to ensure its correctness for the intended purpose. This procedure
includes determining if the appropriate detail and aggregate relationships are
used and if the appropriate structure, logic, and mathematical and causal
relationships are employed. To assess this type of validity, two techniques are
used: face validation and traces.

Face validation requires that experts on the problem entity evaluate the
conceptual model to determine if it is correct and reasonable for its purpose. This
technique can be used in determining if the logic in the conceptual model is
correct and if a model's input-output relationships are reasonable. In this
research, each event proposed on the conceptual model was analyzed and
evaluated by managers of four different companies. The conceptual model was
considered reasonable when an agreement was reached in terms of the logical
relationships described in the conceptual model.

In addition to face validation, traces were used to track orders and
shipments throughout the simulation model. A log file was created with every

single activity that was generated during initial experiments. The file recorded
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customer orders, shipments to customers, replenishment orders, replenishment
shipments, and inventory positions throughout the simulation. Using this
technique, information and product flows were tracked and analyzed. The
objective was to determine if the logic was correct and if the necessary accuracy
was maintained. The model was concluded to operate according to the proposed
logic.

The trace technique was also useful to assure the second dimension of
validity, computerized model verification. The use of a special purpose simulation
language generally results in fewer errors than if a general purpose simulation
language is used. In this case, a special-purpose language is used (Arena
Simulation Package) and verification is primarily focused on testing if the model
has been programmed correctly in the simulation language. By analyzing the log
file, the second type of validity is considered achieved.

The third type of validity, operational validity, is concemed with
determining that the model’s output behavior has the accuracy required for the
model's intended purpose. This is where most of the validation testing and
evaluation took place. A subjective approach was used to ensure operational
validity. Three techniques were used: Parameter Variability—Sensitivity Analysis,
Degenerate Tests, and Internal Validity Check.

The Parameter Variability—Sensitivity Analysis technique consists of
changing the values of the input and internal parameters of a model to determine
the effect upon the model's behavior and its output. Initial simulation runs

generated outputs with reasonably low variance under different uncertainty
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environments. In our case, inventory and lead time parameters where changed
and its effect on performance variables were observed. For example, when
inventory levels were lowered, service levels and average inventory went down.
When lead times were increased, transit inventory and cycle time went up. After
different tests, the model’'s behavior is concluded to be satisfactory.

The second technique used was Degenerate Tests. The degeneracy of
the model's behavior was tested by appropriate selection of values of the input
and internal parameters. As an example, production times and lead times were
increased, with the objective to replicate a constrained environment. As an effect,
backorders were increased and service variables went substantially down.

Finally, the last technique used was Internal Validity. In this case, several
replications (runs) of the model were made to determine the amount of (internal)
stochastic variability. One way to assess the variability was to calculate the
coefficient of variation (CV), defined as the standard deviation of a distribution
divided by its mean. For the performance variables considered in this research,
the average CV across scenarios stayed between 0.01 and 0.02, giving support
for a low amount of variability across different replications. Therefore, the model’'s
internal validity was considered appropriate.

Finally, data validity was ensured by testing the collected data using
internal consistency checks, and screening for extreme values. Reviews were
conducted with company experts. When problems were found, the source of data

was contacted and errors were eliminated from data used.
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3.3 Simulation Model

As presented in the discussion of the conceptual model, this research
incorporates manufacturing lead time, distribution inventory policies, stochastic
demand patterns, stochastic lead times, and measurements of inventory levels

and fill rates into a simulation model. This section describes major model

assumptions.

The general supply chain network structure presented in the conceptual

model was adapted to model a typical network. Figure 6 illustrates the network

environment used for the analysis.

Retail 1

Wholesale

Retail 2

Plant

Retail 3

Retail 4

Retail 5

Retail 6

Wholesale
2

Retail 7

Retail 8

Retail 9

Retail 10

Figure 6 — Typical Supply Chain Network

The network assumes direct shipments from the plant to two different

wholesale locations. Each one of the wholesale facilities is responsible for
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replenishing five different retail locations. Each individual retail location has
equally defined and independent demand patterns. The demand for the
wholesale level is equal to the sum of each of the five individual retail facilities.
The network is considered typical of a consumer electronics firm with
operations in the United States. It assumes two regional distribution centers, for
example one in the east coast and another in the west coast, and five local
distribution centers in each region. For simplification purposes, a single
production source is considered. Although generalization for all types of
businesses is limited, the network was considered typical after reviews were

conducted with company experts.

3.4 Experimental Factors

The purpose of an experimental design is to provide a method for
measurement of changes made in the factors and not other random fluctuations,
which might occur during the experimental runs. Hunter & Naylor (1970) point out
that a variety of experimental designs may be employed in simulation
experiments when the objective is to explore the reaction of a system to changes
in factors affecting the system. Those designs considered to be particularly
relevant include the full factorial, fractional factorial, and response surface
designs. This research employed a full factorial design with a structured
approach for studying the research questions and hypotheses.

A factorial experiment is one in which the effects of all the factors and
factor combinations in the design are investigated simultaneously (Cohran & Cox

1957). Each combination of factor levels is used the same number of times. The
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experiments were designed to reflect the dynamic process of market demand
and supply chain activities. Four groups of experimental factors included are: (1)
Demand Variability, (2) Lead Time Variability, (3) Forecast Bias and (4) Forecast
Skewness. |

The first experimental factor, Demand Variability, represents the level of
variability in customer daily demand. This factor is introduced as a way to
investigate the impact of Forecast Accuracy under different levels of demand
instability. Three different levels of Demand Variability are considered: low,
medium and high.

Customer demand is assumed to follow a Triangular distribution. This type
of statistical distribution is commonly used in situations in which the exact form of
the distribution is not known, but estimates for the parameters are available. This
approach represents transit lead times in a very general form. The Triangular
distribution can be defined as symmetric or asymmetric. In addition, it is bounded
at minimum and maximum defined values, minimizing the problem of occurrence
of extreme values during simulation runs.

At the low Demand Variability level, customer demand in each retail
location is assumed to follow a Triangular distribution with minimum value of 75
units per day, a mode of 100 units per day, and a maximum value of 125 units
per day. As presented before, the coefficient of variation (the standard deviation
of a distribution divided by its mean) is the measure of variability. At this level, CV

is equal to 10%.
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At the medium level of Demand Variability, customer demand in each
retail location follows a Triangular distribution with minimum value of 40 units per
day, a mode of 100 units per day, and a maximum value of 160 units per day,
resulting in a CV of 25%.

Finally, at the high level of Demand Variabiliti(, customer demand follows a
Triangular distribution with minimum value of 0 units per day, a mode of 100 units
per day, and a maximum value of 200 units per day, resulting in a CV of 40%.

It is important to notice that each retail location has independent patterns
of demand defined with equal distributions. No transshipments are allowed in the
simulation environment, implying that if there is no inventory at a particular retail
location to fulfill demand then demand is lost and stockouts are recorded. All
levels of Demand Variability follow the same type of statistical distribution, with
the same mode, but different variability parameters. The mode value of 100 units
per day is typical of a consumer electronics industry. This approach was chosen
because there are neither capacity constraints nor economies of scale imposed
in the simulation model. The focus here is to address different levels of variability
at the same base level of average demand, not the impact of different daily
volumes.

The second experimental factor is called Lead Time Variability. This factor
is introduced to investigate the impact of Forecast Accuracy under different levels
of transit lead time instability. Two different levels were considered: low and high.

The physical network, presented in the previous section, has a single plant that
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supplies products to two different wholesale locations. Each wholesale location is
responsible for supplying products to five retail locations.

Transit lead times also follow Triangular distributions. Parameters of the
specific Triangular distributions were defined with the objective to model a typical
cycle time of a consumer products company. Davis & Drumm (2003) conduct an
annual survey that benchmarks cost and service among logistics companies in
the United States. Total cycle time is the amount of time it takes to complete a
business process between receiving and shipping orders to customers. The
average cycle time for the simulated network is 7 days, consistent with the
benchmark value presented in this survey.

At the low level of Lead Time Variability, deterministic lead times are
considered. In this case, average lead times are used but no variability is
present. Every shipment takes the exact amount of time to occur and no delays
exist. This level is introduced to represent a situation where transit lead times are
very controllable. At this level, the transit lead time from plant to any wholesale
takes exact 4 days to occur, while the transit lead time from any wholesale to any
retail location takes exact 3 days to occur.

At the high Lead Time Variability level, stochastic lead times are
considered by using Triangular distributions. This research assumes asymmetric
Triangular distributions to represent transit lead times, where maximum values
are farther from the mode and minimum values are closer to the mode. This

approach is chosen because on practice, when shipments do not arrive in the
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expected time, they have a higher probability to arrive after the expected time
rather than before the expected time.

At this level of high Lead Time Variability, the transit lead time from plant
to any wholesale location follows a Triangular distribution with a minimum value
of 3 days, a mode of 4 days and a maximum value of 6 days. The transit lead
time from any wholesale to any retail location is defined using a Triangular
distribution with a minimum value of 2 days, a mode of 3 days and a maximum
value of 5 days.

The last two experimental factors represent the primary focus of this
research, Forecast Accuracy. In this dissertation, two parameters of the forecast
error distribution are investigated: Forecast Bias and Forecast Skewness.

As previously addressed, this dissertation’s approach to model
Forecasting Accuracy does not consider any specific forecasting method.
Statistical distributions are used to control the pattern of forecast error. Forecast
errors for each time period are randomly selected from the specified distribution
and are then imposed to actual demand to generate forecasts. This is a common
approach in simulation studies that consider forecast errors.

Researchers generally consider two assumptions: that forecasts are
unbiased and that forecasts follow a Normal distribution. Generally, the
distribution of forecast errors is assumed to follow a Normal distribution with
mean of zero and some level of standard deviation. Researchers that use this
approach are interested on investigating the impact of the variability of errors on

system performance.

67



The choice of the Normal distribution as a representation for the forecast
error distribution has two limitations. First, the Normal distribution is unbounded
in its extremities. This implies that extreme values can occur when errors are
randomly selected from the distribution. These extreme values can compromise
the simulation results, as they do not represent likely values that would occur in
practice. The second limitation is that the Normal distribution is symmetric,
constraining the researcher's ability to investigate the impact of more general
types of forecast patterns. Lefrancois (1989), for example, asserts that forecast
errors are commonly non-stationary (correlated between consecutive time
periods) and asymmetric. Bassin & Bilchak (1995) identify the limitations of the
Normal distribution and propose a modification of its form as a way to improve
the realism of forecast errors.

This dissertation approach avoids such limitations by using a different type
of statistical distribution. Our choice is to use a generalized form of the Beta
distribution as a way to represent patterns of forecast error. The Beta distribution
describes a family of curves that are unique in that they are nonzero only on the
interval between zero and one. The shape of the Beta distribution is quite
variable depending on the values of the two shape parameters: a1 and a2, as

illustrated on Figure 7.
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Figure 7 - Examples of BETA (a1, a2) Distributions

In addition to the shape parameters, the generalized form of the Beta
function assigns parameters to the end-points of the interval. Thus, for the
generalized Beta, four parameters are defined: a1, a2, Min (minimum endpoint of
the interval) and Max (maximum endpoint of the interval).

Different patterns of Forecast Bias and Forecast Skewness can be tested
during simulation experiments by choosing alternative parameters for the
generalized Beta distribution. The mean of the distribution corresponds to the
level of bias. Skewness is a measure of symmetry, or more precisely, the lack of
symmetry. A distribution, or data set, is symmetric if it is equally distributed to the
left and right of the center point. The skewness for a Normal distribution is zero,

and any symmetric data should have skewness near zero. When equal shape
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parameters of the Beta distribution are utilized, the distribution is symmetric
around the mean.

Forecast Bias is manipulated at five levels: -40%, -20%, 0%, +20% and
+40%. These levels are chosen to represent typical examples of average of the
distribution of percentage errors. Benchmark studies of forecasting accuracy
reported that average MAPE ranges from 5% to 40%, varying by industry, level
of aggregation and forecasting horizon (Jain 2003b, 2003a; Kahn 1998; Kahn &
Mentzer 1995; Makridakis et al. 1982; Makridakis & Hibon 1979; Peterson 1993).

Five treatments are used for Forecast Skewness: -1.3693, -0.6838, 0.0,
+0.6838 and +1.3693. Values of two standard errors of skewness (SES) or more
(regardless of sign) are probably skewed to a significant degree. The SES for the
Normal distribution was estimated using the formula provided by Tabachnick &
Fidell (1983). The value 0.6838 was obtained for two SES after applying this
formula. Therefore, these skewness levels are chosen to represent mild to strong
asymmetric patterns in the distribution of percentage errors.

Manipulations of these two factors result in twenty-five altemnative
distributions of forecast percentage error, as seen on Table 9. Each distribution
has a specified level of Forecast Bias and Forecast Skewness. These

distributions are then used to conduct experiments.
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ID Distribution Mean | Standard | Skewness | Kurtosis
Deviation
1 | BETA (3.5, 3.5,-0.9,+0.1) -40% 0.17678 0.0000 2.4000
2 | BETA (3.5,3.5,-0.7,+0.3) -20% 0.17678 0.0000 2.4000
3 | BETA (3.5,3.5,-0.5,+0.5) 0% 0.17678 0.0000 2.4000
4 | BETA (3.5, 3.5,-0.3,+0.7) +20% 0.17678 0.0000 2.4000
5| BETA (3.5,3.5,-0.1,+0.9) +40% 0.17678 0.0000 2.4000
6 | BETA (3.5,15,-0.79 ,+1.25) -40% 0.18093 +0.6838 3.3896
7 | BETA (3.5,15,-0.59,+1.45) -20% 0.18093 +0.6838 3.3896
8 | BETA (3.5,15,-0.39,+1.65) 0% 0.18093 +0.6838 3.3896
9 | BETA (3.5,15,-0.19 ,+1.85) +20% 0.18093 +0.6838 3.3896
10 | BETA (3.5,15,+0.01,+2.05) +40% 0.18093 +0.6838 3.3896
11 | BETA (15,3.5,-2.05,-0.01) -40% 0.18093 -0.6838 3.3896
12 | BETA (15,3.5,-1.85,+0.19) -20% 0.18093 -0.6838 3.3896
13 | BETA (15,3.5,-1.65,+0.39) 0% 0.18093 -0.6838 3.3896

14 | BETA (15,3.5,-1.45,+0.59) +20% 0.18093 -0.6838 [ 3.3896

15 | BETA (15,3.5, -1.25,+0.79) +40% 0.18093 -0.6838 | 3.3896

16 | BETA (1.5,20.5,-0.63,+2.75) | - 40% 0.17764 +1.3693 | 5.4602

17 | BETA (1.5,20.5,-0.43,+2.95) | - 20% 0.17764 +1.3693 | 5.4602

18 | BETA (1.5,20.5,-0.23,+3.15) 0% 0.17764 +1.3693 | 5.4602

19 | BETA (1.5,20.5,-0.03,+3.35) | +20% 0.17764 +1.3693 | 5.4602

20 | BETA (1.5,20.5,+0.17,+3.55) | +40% 0.17764 +1.3693 | 5.4602

21 | BETA (20.5,1.5,-3.55 ,-0.17) | -40% 0.17764 -1.3693 | 5.4602

22 | BETA (20.5,1.5,-3.35,+0.03 ) | - 20% 0.17764 -1.3693 | 5.4602

23 | BETA (20.5,1.5,-3.15,+0.23) 0% 0.17764 -1.3693 | 5.4602

24 | BETA (20.5,1.5,-2.95,+0.43 ) | +20% 0.17764 -1.3693 | 5.4602

25 | BETA (20.5,1.5,-2.75,+0.63 ) | +40% 0.17764 -1.3693 | 5.4602

Table 9 - Distributions of Forecast Percentage Error

Histograms of the resulting distributions are presented on Figure 8. The
number in the upper right comer of each histogram corresponds to the
distribution number presented on Table 9. Each graph has a fixed scale: the
boundaries of the x-axis are —100% and +100%, while the boundaries of the y-

axis are 0 and 3.5.
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Figure 8 — Histograms of BETA Distributions of Forecast Percentage Error

Distributions 1 to 5 represent situations were errors are symmetric around
the mean, resulting in skewness of zero.

Kurtosis is a measure of whether the data are peaked or flat relative to a
Normal distribution. That is, data sets with high kurtosis tend to have a distinct
peak near the mean, decline rather rapidly, and have heavy tails. Data sets with
low kurtosis tend to have a flat top near the mean rather than a sharp peak. The
kurtosis for a standard Normal distribution is three. For this reason, most

statistical packages report the “excess kurtosis”, defined as the original measure
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of kurtosis minus three. By doing that, the standard Normal distribution then has
a kurtosis of zero.

Distributions 1 to 5 have kurtosis measures close to 3. Therefore, these
first five distributions represent cases that are similar to the common approach of
modeling forecast errors assuming Normal distributions.

Distributions 6 to 10 represent cases where there exists a slight skew to
the left, while distributions 11 to 15 represent cases where the distribution is
slightly skewed to the right.

Finally, distributions 16 to 20 represent cases where the distributions are
strongly skewed to the left, while distributions 21 to 25 represent cases where
they are strongly skewed to the right.

Notice that all twenty-five distributions have similar measure of variability.
The standard deviation is approximately 0.18 for all distributions. The purpose of
this approach is to investigate the effects of Forecast Bias and Forecast
Skewness on performance variables at a fixed and controlled level of Forecast
Variability.

Also notice that all twenty-five distributions are bounded between -100%
and +100%. This is a reasonable assumption if daily volumes of demand are
moderate to high, the case in this dissertation.

Specific details of the experimental factors and corresponding levels are

summarized on Table 10.
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Experimental Details
Factor

(1) Demand (a) Low

Variability - Demand: TRIANGULAR (75,100,125), CV=10%

3 Levels (b) Medium
- Demand: TRIANGULAR (40,100,160), CV=25%
(b) High
- Demand: TRIANGULAR (0,100,200), CV=40%

(2) Lead Time (a) Low

Variability - Transit Time from Plant to Wholesale: 4 days

2 Levels - Transit Time from Wholesale to Retail: 3 days
(b) High
- Transit Time from Plant to Wholesale: TRIANGULAR
(3,4,6) days
- Transit Time from Wholesale to Retail: TRIANGULAR
(2,3,5) days

(4) Forecast Bias
5 Levels

(a) - 40% (Strongly Negative Bias)
(b) - 20% (Negative Bias)

(c) 0% (No Bias)

(d) +20% (Positive Bias)

(e) +40% (Strongly Positive Bias)

(3) Forecast
Skewness
5 Levels

(a) 0 (No Skew)

(b) +0.6838 (Positive Skew)

(c) -0.6838 (Negative Skew)

(d) +1.3693 (Strongly Negative Skew)
(e) -1.3693 (Strongly Positive Skew)

Table 10 — Experimental Factors

3.5 Fixed Parameters

The previous section detailed experimental factors that are manipulated

during simulation experiments. This section presents parameters that are

modeled, but considered constant across treatments.

Fixed parameters are defined as part of the inventory management
technique. As previously stated, a daily order-up policy is used to model
inventory policy in all facilities. Every day, inventory levels are evaluated and the

necessity for replenishment orders is determined. The model uses a fifteen-day
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planning horizon to determine average forecasts. This average value is then
multiplied by the maximum inventory target in each facility, defined as 4 days for
retail locations and 5 days for wholesale locations. These parameters are

summarized on Table 11.

Fixed Parameter Details
Inventory - Policy: Order-up
Management - Revision Period: Daily
Technique - Planning Horizon: 15 days

- Maximum Inventory Target:

o Retail: 4 days of demand

o Wholesale: 5 days of demand
Table 11 - Fixed Factors

3.6 Performance Variables

Three output variables are measured to evaluate the performance of the
supply chain: Order Fill Rate, Case Fill Rate, and Average System Inventory.
Separate measurement of service and inventory performance allow collection of
empirical data through which the basic relationships between inventory and
service can be investigated independent of arbitrary cost parameters.

The first two performance variables are measures of availability used to
establish the extent to which a firm's inventory strategy is accommodating
customer demand.

Order Fill Rate is the most exacting measure of performance in product
availability. It is analogous to orders shipped complete. Failure to provide even
one item on a customer’s order results in that order being recorded as zero, not a

complete shipment.
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Case Fill Rate measures the magnitude or impact of stockouts over time.
It is defined here as the total number of units shipped to a customer divided by
the total number of units requested. For example, if a customer wants 100 units
of an item and only 97 are available, the Fill Rate is 97%. Backorders are not
considered for the calculation of Fill Rate. Both fill rate measures are calculated
only at the retail level.

Average System Inventory is calculated using the weighted average
inventory based on the cumulative daily inventory level. This statistic considers
not only storage inventory, but also transit inventory. This performance measure
is calculated not only for the retail level, but also for the wholesale and plant

levels. Table 12 summarizes the key performance variables.

Performance

Variable Details
Order Fill Analogous to Orders Shipped Complete, it is
Rate defined as the number of orders shipped

complete divided by the total number of
orders originally requested

Case Fill Total number of units shipped to a customer

Rate divided by the total number of units originally
requested

Average Sum of end of day position of inventory

System (storage and transit) divided by number of

Inventory days

Table 12 - Performance Variables
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3.7 Number of Replications

The previous section presented the performance variables that are
analyzed in this study. A specified precision is important for estimating the mean
of performance variables. Law & Kelton (2000) present a procedure to calculate
the required number of replications to achieve a specified level of precision for
these mean estimates.

The procedure calculates the number of replications (n) required to
estimate the population mean (4 ) with a specified error or precision (4 ). From
previous research experience, the estimated range of service measurements
falls between 0.7 and 1.0 (Closs & Law 1983). Therefore, an estimated standard
deviation value equals one-fourth of the observed range, or 0.075. Assuming a

population variance S?(n) of 0.0056, an absolute error B of 0.05, and a

confidence level a of 90%, about 12 replications would be required per

experimental cell. This dissertation assumes 30 replications for each experiment.
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3.8 Data Analysis

Measuring the inexact nature of the relationship between forecast
uncertainty and performance requires the utilization of a statistical technique.
Such a statistical tool can then separate the systematic component from the
random component of the relationship. The six hypotheses presented previously
are tested using multivariate analysis of vériance (MANOVA).

MANOVA is an extension of analysis of variance (ANOVA) to
accommodate more than one dependent variable (Hair et al. (1998). It is a
dependence technique that measures the differences for two or more metric
dependent variables (supply chain performance measures) based on a set of
categorical variables acting as independent variables (experimental factors).

MANOVA is concerned with differences between groups (experimental
treatments). It is classified as a multivariate procedure because it assesses
group differences across dependent variables simultaneously. In the case where
the dependent variables are not independent of one another, MANOVA is the
most appropriate test. A series of univariate ANOVA tests would ignore the
correlations among dependent variables and thus use less than the total
information available for assessing overall group differences.

This chapter reviewed the research methodology. The conceptual model
was presented along with the simulation environment and details of the
experimental design, including experimental factors, fixed parameters,
performance variables, and data analysis. The next chapter presents and

discusses results from simulation experiments.
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4 Results and Analysis

This chapter discusses the results of the simulation experiments and the
statistical analyses. The first section reviews the critical assumptions necessary
for the use of MANOVA. The second section reviews the results from the
perspective of the conformity to these assumptions. The third section of the
chapter presents the hypothesis test results from MANOVA, followed by multiple

comparisons of the results.

4.1 MANOVA Assumptions

MANOVA is a dependence technique that measures the differences for
two or more metric dependent variables based on a set of categorical
independent variables. For the multivariate test procedures of MANOVA to be
valid, four assumptions must be met: (1) units (persons, families, or countries)
are randomly sampled from the population of interest, (2) observations are
statistically independent of one another, (3) dependent variables must follow a
multivariate Normal distribution within each group, and (4) the variance-
covariance matrices must be equal for all treatment groups (Bray & Maxwell
1985).

Although these four assumptions are mathematical requirements for
MANOVA, in practice it is unlikely that all of them will be met precisely (Bray &
Maxwell 1985). Fortunately, under many conditions, violating the assumptions
does not necessarily invalidate the results. The technique is relatively robust to

violations of all except the first two assumptions.
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Simulation studies were conducted to investigate the extent to which test
statistics are strong to violations of the other two assumptions: multivariate
normality and equality of covariance matrices (Ito 1969; Mardia 1971; Olson
1974).

Departures from multivariate normality generally have only very slight
effects on the Type | error rates of the four test statistics. In a hypothesis test, a
Type | error occurs when the null hypothesis is rejected when it is in fact true.
The sole know exception to this rule is that Roy’s greatest characteristic root test
may lead to too many Type | errors when only one of several groups has a
distribution with high positive kurtosis.

The effects of failing to meet the equality of covariance matrices
assumption are more complicated. When sample sizes are unequal, none of the
four test statistics is consistent. When sample sizes are equal, all of the test
statistics tend to be robust unless sample sizes are small, or the number of
variables is large, and the difference in matrices is quite large. Olson (1974) has
found that the Pillai-Barlett trace is stronger across a wide range of population
configurations than any of the other three statistics.

Characteristics of the different MANOVA tests of statistical significance

are summarized on Table 13.
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Test Description Characteristics When to Use
Wilks' Product of the Determines whether | Good balance between
Lambda unexplained the groups are power and

variances on different without assumptions. Use if
each of the worrying about linear | assumptions appear to
discriminant combinations of be met.
variates. dependent variables.
Pillai- Sum of explained | Minor differences Most robust when
Barlett's variances on the | from Wilks’ Lambda | assumptions are not
Trace discriminant met. Particularly useful
variates. is sample sizes are
small, cell sizes are
unequal, or
covariances are not
homogeneous.
Hotelling's | Sum of ratios of | Minor differences Safely ignored in most
Trace explained from Wilks’ Lambda | cases
variances on the
discriminant
variates.
Roy's Based only on Measures the Appropriate and very
Largest the first difference only on the | powerful when the
Root discriminant first canonical root. dependent variables
variate. are strongly

interrelated on a single
dimension. Most likely
to be affected by
violations of
assumptions. Use
cautiously.

Table 13 - MANOVA Tests of Statistical Significance
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4.2 Conformity to Assumptions and Data Transformations

The experimental design for this study used independent replications in
sample collection, thus satisfying the first two assumptions. Then one must check
the validity of the last two assumptions: conformity to multivariate normality and
equality of covariance matrices.

Before the last two assumptions are evaluated, some descriptive statistics
of the dependent variables will be analyzed. Table 14 presents Pearson’s
correlation coefficients for the dependent variables. Pearson’s correlation
coefficient is a measure of linear association. Two variables can be perfectly
related, but if the relationship is not linear, the correlation coefficient is not an

appropriate statistic for measuring their association.

Order Fill | Case Fill | Avg System

Rate Rate Inventory
Order Fill Rate 1.000 0.996 0.798
Case Fill Rate 0.996 1.000 0.775
Avg System Inventory 0.798 0.775 1.000

Table 14 — Correlations among Dependent Variables

All correlation measures are statistically significant at the p<0.01 level (2-
tailed). Both measures of fill rate are, as expected, highly correlated. There is a
significant and strong correlation between Order Fill Rate and System Inventory.
The correlation between Case Fill Rate and System Inventory is analogous.
Thus, the dependent variables are not independent of one another. This finding
is not surprising. As inventories go down, product availability becomes an issue,
affecting the measures of service. MANOVA is then the most appropriate test,

compared to an alternative series of univariate ANOVAs.
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An Exploratory Factor Analysis among the dependent variables was
conducted to assess the number of dimensions. Principal component analysis
was chosen as the extraction method, using Varimax rotation. Only one
component was extracted, responsible for 90.5% of the variance. This result
supported that the dependent variables are strongly interrelated in a single
dimension.

To check for multivariate normality, this research’s strategy is to ensure

univariate normality, a necessary but not sufficient condition.
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Figure 9 — Histograms and Statistics for the Dependent Variables

Figure 9 presents histograms for the three dependent variables. It also

presents statistics of skewness and kurtosis.
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Order Fill Rate has substantial departures from normality, with a skewness
value of -1.144 and a kurtosis value of —0.389. Case Fill Rate also has
departures from normality (skewness of —1.285 and kurtosis of 0.023). Average
System Inventory also departs from normality, with a skewness of 0.024 and a
kurtosis of -1.311.

The multivariate Box's M test is a test for the equality of the group
covariance matrices. For sufficiently large samples, a non-significant p-value
means that there is insufficient evidence that the matrices differ. The test is
sensitive to departures from multivariate normality. The null hypothesis that the
observed covariance matrices of the dependent variables are equal across
groups is rejected at p<0.001. It is important to notice that the test is sensitive to
departures from multivariate normality.

Because of such departures, the original variables were transformed in an
attempt to reach univariate normality and equality of covariance matrices. The
chosen strategy is to work with ratios of the original variables, dividing the service
variables by the system inventory. This procedure resulted in two transformed
variables: Order Fill Rate / Average System Inventory and Case Fill Rate /
Average System Inventory. By adapting this strategy no original variable is
discarded and two different dimensions of efficiency are captured (service, as
measured by fill rates, divided by investment, as measured by inventory). Figure
10 presents histograms containing statistics of skewness and kurtosis for the two

transformed dependent variables.
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Skewness Kurtosis

Statistic | Std Error | Statistic | Std Error
Order Fill / Inventory | -0.658 0.037 0.145 0.073
Case Fill / Inventory -0.688 0.037 0.553 0.073
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Figure 10 - Histograms and Statistics for the Transformed Dependent Variables

By using the ratios of the original variables, the problem of violating
univariate normality is minimized. The two transformed variables are slightly
departed from the Normal distribution, with measures of skewness and kurtosis
closer to zero. In addition, both distributions are more continuous (no gaps
between histogram cells) when compared to the original ones.

Nevertheless, results of the Box's M test for the transformed variables are
analogous to the original variables case. The null hypothesis that the observed
covariance matrices of the transformed dependent variables are equal across
groups is also rejected at p<0.001.

Since MANOVA is relatively strong to slight departures from the last two
assumptions when all treatment groups have equal sample size (the case in this

research), the decision was to proceed with MANOVA for significance testing.
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4.3 Hypothesis Testing

The previous section discussed data conformity to assumptions and
transformations. The objective of this section is to present the hypotheses test
results as well as to develop multiple comparisons of the results. Multivariate
followed by univariate results are presented and discussed. Next, the proposed
hypotheses are formally tested. Finally, relationships are discussed and findings

that were not expected are presented.

4.3.1 Results of Multivariate Tests

A four-way multivariate analysis of variance was performed on the two
transformed dependent variables: Order Fill Rate / Average System Inventory
and Case Fill Rate / Average System Inventory. Demand Variability (three
levels), Lead Time Variability (two levels), Forecast Bias (five levels) and
Forecast Skewness (five levels) resulted in a total of one hundred and fifty
different treatments. For each treatment, data were collected from thirty
replications. Thus, the total sample size consists of 4,500 observations.

SPSS MANOVA was used for conducting the analysis. MANOVA
performs multivariate tests of significance using four testing criteria (Pillai's
Trace, Hotteling’'s Trace, Wilk's Lambda and Roy’s Largest Root Criterion).
Although all testing criteria are reported, special attention is given to Pillai’'s Trace
test. This is the most robust test criterion when assumptions are not met. It is
particularly useful when covariances are not homogeneous. Table 15 reports

multivariate tests results for the two transformed dependent variables.
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. | Partial Eta | Observed

Effect Value F df | Sig. Squared | Power

Pillai's Trace 0.092| 276354895 2| 0.000] __ 0.992] __ 1.000

Intercept Wilks' Lambda 0.008] 276354.895] 2| 0.000] __ 0.992] __ 1.000
Hotelling's Trace 127.089| 276354.895| 2| 0.000 0.992 1.000

Roy’s Largest Root 127.089{ 276354.895| 2| 0.000 0.992 1.000

Pillai's Trace 0.006 6.255| 4/ 0.000 0.003 0.989

. [Wilks Lambda 0.994 6.262] 4] 0.000] __0.003] _ 0.989

Demand Variability i} teliing's Trace 0.006 6.270] 4] 0.000 0.003] __ 0.990
Roy's Largest Root 0.006 12.496| 2| 0.000 0.006 0.996

Pillai's Trace 0.761] _ 6908.458] 2| 0.000] __ 0.761] __ 1.000

, .. [Wilks' Lambda 0.239] _ 6908.458] 2| 0.000] __ 0.761] __ 1.000
Lead Time Variability - IHiotelling's Trace 3.177] __6908.458] 2| 0.000 __ 0.761] __ 1.000
Roy's Largest Root 3.477| _ 6908.458] 2| 0.000] __ 0.761] __ 1.000

Pillai’s Trace 1.655| _ 5211.632] 8] 0.000] __ 0.827] __ 1.000

. Wilks' Lambda 0.011] __9184.265] 8| 0.000] __ 0.894] __ 1.000
Forecast Bias Hotelling's Trace 28.817] _15661.974] 8| 0.000] __ 0.935] __ 1.000
Roy's Largest Root | _26.581 _28906.767| 4] 0.000] __ 0.964] __1.000

Pillai's Trace 0.006 3.176] 8| 0.001] _ 0.003] _ 0.971

Wilks' Lambda 0.994 3.180] 8| 0.001] _ 0.003] __ 0.971

Forecast Skewness 1 teliing's Trace 0.006 3.183] 8] 0.001] __ 0.003[ __ 0.971
Roy's Largest Root 0.006 6.143]_4] 0.000] __ 0.006] __ 0.988

Pillai's Trace 0.002 1.696] 4] 0.148] __ 0.001] _ 0.525

Demand Variability *  [Wilks' Lambda 0.998 1.697| 4] 0.148] ___0.001] __ 0.525
Lead Time Variability [Hotelling's Trace 0.002 1.697] 4| 0.148] ___0.001] _ 0.525
Roy's Largest Root 0.002 3.375] 2| 0.034] __ 0.002] _ 0.638

Pillai’s Trace 0.079 22397/ 16{ 0.000] _ 0.040] __ 1.000

Demand Variability *  [Wilks' Lambda 0.921 22.778 16 0.000] __ 0.040] __ 1.000
Forecast Bias Hotelling's Trace 0.085 23.160| 16| 0.000 0.041 1.000
Roy's Largest Root 0.081 44.121]_8| 0.000] __ 0.075| __ 1.000

Pillai's Trace 1.387] _ 2458.835| 8| 0.000] __ 0.693[ __ 1.000

Lead Time Variability * [Wilks' Lambda 0.067] __3103.645] 8| 0.000] __ 0.741] __1.000
Forecast Bias Hotelling's Trace 7.112 3865.607) 8| 0.000 0.781 1.000
Roy's Largest Root 5.085] _ 6509.202] 4] 0.000] __ 0.857| __ 1.000

Demand Variabilty « _|2llals Trace 0.080 22,668 16| 0.000] ___0.040] __ 1.000
Load Time Variabiity * [7VIks Lambda 0.920 23.094] 16/ 0.000] ___0.041] _ 1.000
Forecast Bias Hotelling's Trace 0.087 23.520] 16/ 0.000 0.041 1.000
Roy's Largest Root 0.084 45.645 8] 0.000] __ 0.077] _ 1.000

Pillai's Trace 0.000 0.052[ 16 1.000] ___0.000] _ 0.070

Demand Variability *  [Wilks' Lambda 1.000 0.052[ 16] 1.000] __0.000] __0.070
Forecast Skewness  [Hotelling's Trace 0.000 0.052] 16| 1.000 0.000 0.070
Roy's Largest Root 0.000 0.089| 8| 1.000 0.000 0.075

Pillai's Trace 0.001 0.437] 8 0.899] __ 0.000] _ 0.209

Lead Time Variability * [Wilks' Lambda 0.999 0.437]_ 8 0.899] __0.000] __ 0.209
Forecast Skewness  [Hotelling's Trace 0.001 0.437| 8| 0.899 0.000 0.209
Roy's Largest Root 0.001 0.853] 4] 0.492[ _ 0.001] _ 0.275

. |Pillai's Trace 0.000 0.026{ 16 1.000] _ 0.000] __ 0.059
E:;‘,“‘T"i‘r’n\g;':::gzny. Wilks' Lambda 1.000 0.026] 16/ 1.000 __0.000] _ 0.059
Forscast Skenross |HOtelling's Trace 0.000 0.026{ 16] 1.000 __0.000] __0.059
Roy's Largest Root 0.000 0.036] 8] 1.000] _ 0.000] __ 0.060

Table 15 — Results of Multivariate Tests: Transformed Dependent Variables
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. | Partial Eta | Observed
Effect Value F df | Sig. Squared Power

Pillai's Trace 0.031 4.216| 32| 0.000 0.015 1.000

Forecast Bias * Wilks' Lambda 0.970 4.220( 32| 0.000 0.015 1.000
Forecast Skewness  [Hotelling's Trace 0.031 4.225| 32| 0.000 0.015 1.000
Roy's Largest Root 0.022 5.988] 16| 0.000 0.022 1.000

Demand Variability * Pil.lai's Trace 0.001 0.080| 64| 1.000 0.001 0.119
Forecast Bias * Wilks' Lambda 0.999 0.080( 64| 1.000 0.001 0.119
Forecast Skewness  |otelling's Trace 0.001 0.080| 64| 1.000 0.001 0.119
Roy's Largest Root 0.001 0.147{ 32 1.000 0.001 0.147

Lead Time Variability * Pil}ai’s Trace 0.031 4.304| 32| 0.000 0.016 1.000
Forecast Bias * Wulks" Lambda 0.969 4.329| 32 0.000 0.016 1.000
Forecast Skewness  |otelling's Trace 0.032 4.354| 32| 0.000 0.016 1.000
Roy’s Largest Root 0.030 8.161| 16| 0.000 0.029 1.000

Demand Variability *  [Pillai's Trace 0.002 0.141| 64| 1.000 0.001 0.196
Lead Time Variability * {Wilks' Lambda 0.998 0.141]| 64| 1.000 0.001 0.196
Forecast Bias * Hotelling's Trace 0.002 0.141] 64 1.000 0.001 0.196
Forecast Skewness  |Roy's Largest Root 0.002 0.258| 32| 1.000 0.002 0.255

Table 15 - Results of Multivariate Tests: Transformed Dependent Variables (Continued)

The first column on Table 15 details the source of the effect, either a main
factor or an interaction. The second column presents values for the four
MANOVA tests of statistical significance. The third column presents the values
for the F statistic, the ratio of two mean squares. The fourth column provides
information regarding the degrees of freedom used to obtain the observed
significance level. The next column details the significance level (p-value), the
conditional probability that a relationship as strong as the one observed in the
data would be present if the null hypotheses were true. The sixth column
presents the proportion of the total variability in the dependent variable that is
accounted for by variation in the independent variable (Partial Eta Squared). The
Partial Eta Squared is a measure of effect size. Finally, the last column reports
the Power of the test, computed assuming an alpha value of 0.05. The Power of
a statistical hypothesis test measures the test's ability to reject the null

hypothesis when it is actually false.
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The three-way interaction of Demand Variability, Lead Time Variability and
Forecast Bias is statistically significant at the p<0.001 level. The three-way
interaction of Lead Time Variability, Forecast Bias and Forecast Skewness is
also statistically significant at the p<0.001 level.

The two-way interactions between Demand Variability and Forecast Bias,
between Lead Time Variability and Forecast Bias, and between Forecast Bias
and Forecast Skewness are all significant at the p<0.001 level.

Finally, the main effects of Demand Variability, Lead Time Variability,
Forecast Bias and Forecast Skewness are all significant at the p<0.001 level.
The presence of significant interactions suggests that testing results on main
effects should be interpreted with caution.

Table 16 reports multivariate tests results for the three original dependent
variables (Order Fill Rate, Case Fill Rate and Average System Inventory). The
results in terms of statistical significance are analogous to the transformed
variables case.

Once a significant overall MANOVA has been found, the next step is to
investigate the specific differences between groups (Bray & Maxwell 1985). As in
ANOVA, this involves determining which groups are responsible for the
significant omnibus test. In addition, the follow-up analyses are used to evaluate
which variables are important for group separation.

Historically, following a significant MANOVA with ANOVAs on each of the
dependent variables was one of the first methods recommended for interpreting

group differences. This method is often referred to as the Least Significant
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Difference (LSD) test or protected F. The term “protected” comes from the idea

that the overall multivariate test provides protection from an inflated alpha level

on the dependent variables’ univariate tests. Each univariate F test that reaches

the specified alpha level is considered to be statistically significant and available

for interpretation.

. | Partial Eta| Observed

Effect Value F df | Sig. Squared Power
Pillai's Trace 1.000] 5811509.564] 3| 0.000] _ 1.000] __ 1.000

Intercept Wilks' Lambda 0.000] 5811509.584] 3| 0.000] __ 1.000] __ 1.000
Hotelling's Trace | 4009.781] 5811509.584] 3| 0.000] __ 1.000] __ 1.000

Roy's Largest Root | 4009.781] 5811509.584] 3| 0.000] __ 1.000] __1.000

Pillai's Trace 0.012 8.518] 6| 0.000] __ 0.006] __ 1.000

.. [Wilks Lambda 0.988 8541 6| 0.000] __ 0.006] __ 1.000

Demand Variability  Ifi5telling's Trace 0.012 8.564] 6] 0.000 _ 0.006] _ 1.000
Roy's Largest Root 0.012 17.084] 3] 0.000] _ 0.012] __1.000

Pillai's Trace 0.765] __ 4705.677] 3| 0.000] __ 0.765] __ 1.000

. . |Wilks Lambda 0.235] __ 4705.677] 3| 0.000] __ 0.765] __ 1.000
Lead Time Variabilty - I otelling's Trace 3.247] 4705677 3] 0.000] __ 0.765 __1.000
Roy’s Largest Root 3247 4705677] 3| 0.000] __ 0.765] __1.000

Pillai’s Trace 2.311] __3646.200] 12] 0.000] __ 0.770 __1.000

: Wilks' Lambda 0.000] _ 28754.645| 12| 0.000] __ 0.952] __ 1.000

Forecast Bias Hotelling's Trace 405.449] _ 146862.539] 12| 0.000] __ 0.993] __ 1.000
Roy's Largest Root | _392.036] _426339.346] 4] 0.000] ___0.997] _ 1.000

Pillai’s Trace 0.254 100.455 12| 0.000] __ 0.085] __ 1.000

Wilks' Lambda 0.747 111.560] 12[ 0.000 _ 0.093] __ 1.000

Forecast Skewness [ telling's Trace 0.337 121.978] 12] 0.000[ __ 0.101] __1.000
Roy's Largest Root 0.333 361.796] 4 0.000] __ 0.250 __ 1.000

Pillai’s Trace 0.002 1.265] 6] 0.270] ___0.001] __ 0.505

Demand Variability*  [Wilks' Lambda 0.998 1.265] 6] 0.270] ___0.001] _ 0.505
Lead Time Variability |Hotelling's Trace 0.002 1.266) 6] 0.270 0.001 0.505
Roy's Largest Root 0.002 2.456] 3| 0.061] ___0.002] _ 0614

Pillai's Trace 0.067 12.427] 24] 0.000] ___0.022] _ 1.000

Demand Variability*  [Wilks' Lambda 0.933 12.663] 24] 0.000] __ 0.023[ __ 1.000
Forecast Bias Hotelling's Trace 0.071 12.894| 24| 0.000 0.023 1.000
Roy's Largest Root 0.066 36.137| 8| 0.000] __0.062] __ 1.000

Pillai's Trace 1.348 886.948] 12| 0.000] _ 0.449 __ 1.000

Lead Time Variability * [Wilks' Lambda 0.075] __ 1589.165] 12| 0.000] __ 0.578] __1.000
Forecast Bias Hotelling's Trace 6.670 2416.071] 12| 0.000 0.690 1.000
Roy's Largest Root 5.686 6182.983| 4| 0.000 0.850 1.000

. |Pillais Trace 0.091 16.960] 24| 0.000] _ 0.030] _1.000
E::“f{‘i‘,’n\;a\;':::gzny. Wilks' Lambda 0.910 17.461] 24] 0.000] __0.031] __1.000
Forecast Bias Hotelling's Trace 0.099 17.953| 24| 0.000 0.032 1.000
Roy's Largest Root 0.096 52.073] 8| 0.000] __ 0.087] __ 1.000

Table 16 — Results of Multivariate Tests: Original Dependent Variables
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. Partial Eta | Observed

Effect Value df | Sig. Squared Power
Pillai's Trace 0.000 0.043| 24| 1.000 0.000 0.070
Demand Variability *  [Wilks' Lambda 1.000 0.043| 24| 1.000 0.000 0.069
Forecast Skewness  |Hotelling's Trace 0.000 0.043| 24| 1.000 0.000 0.070
Roy's Largest Root 0.000 0.091] 8| 0.999 0.000 0.076
Pillai's Trace 0.001 0.463| 12| 0.937 0.000 0.274
Lead Time Variability * |Wilks' Lambda 0.999 0.463| 12| 0.937 0 000 0.241
Forecast Skewness  [Hotelling's Trace 0.001 0.463| 12| 0.937 0.000 0.274
Roy’s Largest Root 0.001 1.238| 4| 0.292 0.001 0.392
... . |Pillai's Trace 0.000 0.024| 24| 1.000 0.000 0.061
E:::’a;‘i‘r’n‘ﬁ;':::g"y, Wilks' Lambda 1.000 0.024] 24] 1.000] __0.000] __0.060
Forecast Skewness Hotelling's Trace 0.000 0.024| 24| 1.000 0.000 0.061
Roy's Largest Root 0.000 0.036/ 8] 1.000 0.000 0.060
Pillai's Trace 0.050 4.600| 48| 0.000 0.017 1.000
Forecast Bias * Wilks' Lambda 0.951 4.617| 48| 0.000 0.017 1.000
Forecast Skewness  |Hotelling's Trace 0.051 4.633) 48] 0.000 0.017 1.000
Roy's Largest Root 0.030 8.241| 16| 0.000 0.029 1.000
... . [|Pillai's Trace 0.001 0.064| 96| 1.000 0.000 0.117
E:r':;sf"’t‘é?::f’""y Wilks' Lambda 0.999 0.064] 96 1.000] ___0.000] __ 0.117
Forecast Skewness  (Hotelling's Trace 0.001 0.064| 96| 1.000 0.000 0.117
Roy's Largest Root 0.001 0.153] 32| 1.000 0.001 0.153
. ... . |Pillai's Trace 0.044 4.008| 48| 0.000 0.015 1.000
',;gf:;::‘g;’:’.‘ab"“y Wilks' Lambda 0.957 4.056] 48] 0.000 __ 0.015 __ 1.000
Forecast Skewness Hotelling's Trace 0.045 4.103] 48{ 0.000 0.015 1.000
Roy’s Largest Root 0.042 11.486| 16| 0.000 0.041 1.000
Demand Variability *  |Pillai's Trace 0.003 0.122] 96| 1.000 0.001 0.209
Lead Time Variability * |Wilks' Lambda 0.997 0.122| 96| 1.000 0.001 0.209
Forecast Bias * Hotelling's Trace 0.003 0.122{ 96| 1.000 0.001 0.209
Forecast Skewness  |Roy’s Largest Root 0.002 0.303| 32| 1.000 0.002 0.305

Table 16 — Results of Multivariate Tests: Original Dependent Variables (Continued)

As the results of multivariate tests for both the original and transformed

dependent variables were analogous, we decided to investigate the specific

differences between groups using the results from the original dependent

variables.

MANOVA tests whether or not a set of means differs due to treatment

effects. Therefore, it is relevant to present means and standard deviations of the

dependent variables for the four different treatments. This information is

presented on Table 17. Means are displayed as bold numbers, while standard

deviations are displayed as italic numbers.
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Order Fill | Case Fill | Avg System

Rate Rate Inventory
Low 77.13%| 79.81% 18178.46
0.13%| 0.15% 7.57
Demand . 76.78%| 79.47% 18173.92
Variability | MU 5 73% [  0.15% 7.57
Hi gﬁ 76.02%| 78.77% 18174.49
0.13%| 0.15% 7.57
Low 83.68%| 85.78% 18137.07
Lead Time 0.11%| 0.12% 6.18
Variability High 69.60%| 72.92% 18214.18
0.11%| 0.12% 6.18
40% 99.77%| 99.87% 26026.07
0.17%| 0.19% 9.77
20% 99.43%| 99.70% 22098.95
0.17%| 0.19% 9.77
Forecast 0% 96.03%| 97.77% 18149.18
Bias 0.17%| 0.19% 9.77
+20% 72.66%| 78.75% 14136.86
0.17%| 0.19% 9.77
+40% 15.33%| 20.67% 10467.07
0.17%| 0.19% 9.77
77.65%| 80.32% 18431.53
-1.3693 0.17% 0.19% 9.77
| 77.07%| 79.73% 18275.55
-0.6838 0.17%| 0.19% 9.77
Forecast [ /o oo 76.83%| 79.48% 18133.45
Skewness | 0.17%| 0.19% 9.77
76.14%| 78.93% 18077.47
+0.6838 — 7% 0.19% 9.77
75.53%| 78.29% 17960.12
*1.3693 0 17% [ 0.19% .77

Table 17 — Estimated Marginal Means and Standard Deviations

Results are conceptually correct. When Demand Variability increases,
both measures of service decrease. The same occurs when Lead Time

Variability is increased. Also, service systematically decreases when Forecast
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Bias moves from negative values to positive values. This occurs because
negative bias represents situations where forecasts are systematically greater
than actual demand. In this case, using an anticipatory replenishment strategy,
inventories are built in excess of actual demand. Higher inventory allows better
service in terms of customer fill rates.

Before the main effects can be analyzed, it is important to understand the
impact of statistically significant interactions. The following sections discuss

univariate results for statistically significant interactions and main effects.

4.3.2 Results of Univariate Tests: Interactions

The interaction term represents the joint effect of two (or more)
treatments. It is the effect that must be examined first. Each treatment represents
a unique combination of experimental factors. If the interaction effect is not
statistically significant, then the main effects of the treatments are independent.
Independence in factorial designs means that the effect of one treatment is the
same for each level of the other treatments and that the main effects can be
interpreted directly.

If the interaction term is significant, then the type of interaction must be
determined. Interactions can be termed ordinal or disordinal. An ordinal
interaction occurs when the effects of a treatment are not equal across all levels
of another treatment, but the magnitude is always in the same direction. In a
disordinal interaction, the effects of one treatment are positive for some levels

and negative for other levels of the other treatment.
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If the significant interactions are ordinal, the researcher must interpret the
interaction term and ensure that its results are acceptable conceptually. If so,
then the main effects of each treatment can be described (Hair et al. 1998). But if
the significant interaction is disordinal, then the main effects of the treatments
cannot be interpreted and the study must be redesigned. This stems from the
fact that with disordinal interactions, the effects vary not only across treatment
levels but also in direction. Thus, the treatments do not represent a consistent
effect.

According to Table 16, two three-way interactions are signiﬁcant at
p<0.001: Demand Variability * Lead Time Variability * Forecast Bias and Lead
Time Variability * Forecast Bias * Forecast Skewness.

Table 18 details the univariate tests for these interactions. In addition to
statistical significance, the following discussion also focuses on effect size. The
Partial Eta Squared measures the proportion of the total variability in the
dependent variable that is accounted for by variation in the independent variable.
Therefore, it is used as a measure of effect size.

According to Cohen (1988), it is possible to characterize the type of effect
size depending on the measure for Partial Eta Squared. If the measure is smaller
than 0.15, the effect is considered small or minimal. If the measure is close to
0.35, the effect can be considered medium or typical. When Partial Eta Squared
is close to 0.5, the effect is considered large or substantial. Finally, for values of

this statistic greater than 0.7, the effect is considered very large.
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Dependent Partial Eta | Observed
Source Variable df F Sig. Squared Power
Order Fill
Demand Variability * Rate 8| 2.775| 0.005 0.005 0.944
Lead Time Variability * .
Forecast Bias Case Fill Rate| 8| 1.622| 0.113 0.003 0.725
Avg System
Inventory 8| 0.129] 0.998 0.000| 0.088
Order Fill
Lead Time Variability * Rate 16| 1.644| 0.050 0.006 0.928
Forecast Bias * Forecast | . il Rate| 16| 0.837] 0.643 0.003 0.597
Skewness
Avg System
Inventory 16| 0.155| 1.000] 0.001 0.118

Table 18 — Univariate Tests (Three-way Interactions)

The univariate tests presented on Table 18 indicate that the three-way
interaction of Demand Variability, Lead Time Variability and Forecast Bias is
statistically significant for Order Fill Rate at p<0.01 level. This three-way
interaction is responsible for a small variation on Order Fill Rate (about 0.5%).
The interaction is not statistically significant for the other two performance
variables.

The three-way interaction of Lead Time Variability, Forecast Bias and
Forecast Skewness is statistically significant at p<0.001 (Table 16). According to
Table 18, this three-way interaction is statistically significant for Order Fill Rate
only at the p<0.1 level. The Partial Eta Squared statistic shows that the effect is
also small, close to 0.6%. This interaction is not significant for the other two
dependent variables.

Univariate results support that the impact of the three-way interactions is

small on all dependent variables.
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Three two-way interactions are statistically significant (Table 16): Demand
Variability * Forecast Bias, Lead Time Variability * Forecast Bias, and Forecast
Bias * Forecast Skewness.

Table 19 describes the univariate tests for these interactions. Results
indicate that the three two-way interactions are statistically significant for all
dependent variables at p<0.01. The only exception is the interaction between
Demand Variability and Forecast Bias, which is not statistically significant for

Average System Inventory.

Dependent Partial Eta | Observed
Source Variable df F Sig. Squared Power
Order Fill
Rate 8 6.067| 0.000 0.011 1.000]
Demand
Fzz;:\t:t"gias CaseFill Rate] 8  2.774] 0.005 0.005 0.944
Avg System
Inventory 8 0.213| 0.989 0.000 0.117
Rate 4| 2632.046/ 0.000 0.708 1.000]
Lead Time
Variability* |Case Fill Rate|] 4| 1717.827| 0.000 0.612 1.000]
Forecast Bias |Avg System
Inventory 4 61.330| 0.000 0.053 1.000
Rate 16 4.461| 0.000 0.016 1.000
Forecast Bias *
Forecast Case Fill Rate| 16 3.359| 0.000 0.012 1.000]
Skewness |Avg System
Inventory 16 2.845| 0.000 0.010 0.998

Table 19 - Univariate Tests (Two-way Interactions)

Figure 11 presents a graphical display of the impact of the interaction
between Demand Variabilty and Forecast Bias on Order Fill Rate. This
interaction partially accounts for 1.1% of the variation for Order Fill Rate, a small

effect. As Forecast Bias moves from -40% to +40%, the system shifts from a
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situation where forecasts are systematically higher than demand to a situation
where forecasts are systematically lower than demand. When this happens,
service decreases. This impact is slightly accentuated under higher levels of
Demand Variability. Notice that, on Figure 11, the lines for different levels of

Demand Variability are superimposed.

Order Fill Rate
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Figure 11 - Effect of Demand Variability * Forecast Bias on Order Fill Rate

Figure 12 presents a graphical display of the interaction between Demand
Variability and Forecast Bias on Case Fill Rate. This interaction partially accounts
for 0.5% of the variation for Case Fill Rate. This impact, thus, is small and the

discussion is analogous to the impact on Order Fill Rate.
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Case Fill Rate
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Figure 12 - Effect of Demand Variability * Forecast Bias on Case Fill Rate

The effect of this interaction on Average System Inventory is presented on
Figure 13. The effect is not statistically significant, resulting in superimposed
lines in the graph. This implies that the impact of Forecast Bias on Average

System Inventory is not amplified at higher levels of Demand Variability.
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Figure 13 — Effect of Demand Variability * Forecast Bias on Avg System Inventory

98



The second statistically significant interaction is the combined impact of
Lead Time Variability and Forecast Bias. The impact of this interaction on Order
Fill Rate is presented on Figure 14. This impact is very large, as the interaction
partially accounts for 70.8% of variation on Order Fill Rate. As Forecast Bias
moves from -40% to +40%, service decreases. This loss in service is strongly

accentuated at higher levels of Lead Time Variability.

Order Fill Rate 1
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Figure 14 - Effect of Lead Time Variability * Forecast Bias on Order Fill Rate

The impact of the interaction between Lead Time Variability and Forecast
Bias on Case Fill Rate is presented on Figure 15. This impact is large, partially
accounting for 61.2% of variation on Case Fill Rate. The discussion is analogous

to the Order Fill Rate case.
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Figure 15 - Effect of Lead Time Variability * Forecast Bias on Case Fill Rate

The impact of the interaction between Lead Time Variability and Forecast
Bias on Average System Inventory is presented on Figure 16. The impact is
statistically significant, but the effect size is small. This interaction partially
accounts for 5.3% of variation on Average System Inventory. Because of this

small effect, lines on Figure 16 are superimposed.
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Figure 16 —Effect of Lead Time Variability * Forecast Bias on Avg System Inventory

The last statistically significant two-way interaction is the combined effect
between Forecast Bias and Forecast Skewness. Figure 17 displays the effect of
this interaction on Order Fill Rate. As Forecast Bias moves from -40% to +40%,
service decreases in a non-linear way. This impact is slightly accentuated as
Forecast Skewness moves from -1.3693 to +1.3693. The curve slightly shifts
towards the origin. This shift is relatively small. It results in superimposed lines on
Figure 17. The interaction partially accounts for 1.6% of the variation on Order

Fill Rate.
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Figure 17- Effect of Forecast Bias * Forecast Skewness on Order Fill Rate

Figure 18 displays the effect of the interaction between Forecast Bias and
Forecast Skewness on Case Fill Rate. The effect is similar to the one for Order

Fill Rate. The impact is relatively small, as this interaction partially accounts for

1.2% of variation on Case Fill Rate.
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Figure 18 - Effect of Forecast Bias * Forecast Skewness on Case Fill Rate
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Figure 19 displays the effect of this interaction on Average System
Inventory. The discussion is similar to the ones for the service performance
variables. As Forecast Bias moves from -40% to +40%, Average System
Inventory decreases in a linear way. This impact is slightly accentuated as
Forecast Skewness moves from —1.3693 to +1.3693. The line slightly shifts
towards the origin. But the impact of this interaction is relatively small, partially
accounting for 1% of the variation on Average System Inventory. The result is

superimposed lines on Figure 19.
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Figure 19 —Effect of Forecast Bias * Forecast Skewness on Avg System Inventory

Two conclusions can be developed from the analysis of the significant
two-way interactions. First, the impact of Forecast Bias on service variables and
inventory is strongly accentuated as variability in lead time increases. Second,
the impact of Forecast Bias on performance variables is slightly accentuated

under higher levels of Demand Variability and Forecast Skewness.
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These conclusions support that Forecast Bias is the primary factor
affecting service and inventory. Other experimental factors should not be
discarded because they affect the impact of Forecast Bias on performance.

All significant interactions are ordinal and conceptually acceptable.
Therefore, the main effects of each treatment can be further analyzed in the next

section.

4.3.3 Results of Univariate Tests: Main Effects

Table 20 presents the univariate test results for the main effects. The first
factor, Demand Variability, is statistically significant at p<0.001 for both Order Fill
and Case Fill rates, but not for Average System Inventory. Demand Variability
partially accounts for 0.8% of variation in Order Fill Rate and 0.6% of variation in

Case Fill Rate. The effect size of this main factor is thus relatively small.

Dependent Partial Eta | Observed
Source Variable df F Sig. Squared Power

Order Fill Rate 2 17.649| 0.000 0.008 1.000

Demand [Case Fill Rate 2 12.555| 0.000 0.006 0.997
Variability [Avg System

*linventory 2 0.107] 0.899 0.000 0.066

Order Fill Rate 1 8243.868| 0.000 0.655 1.000]

Lead Time |[Case Fill Rate 1 5477.031] 0.000 0.557 1.000|
Variability |Avg System

Inventory 1 77.790] 0.000 0.018 1.000

Order Fill Rate 4] 43293.715( 0.000]| 0.975 1.000]

Forecast [Case Fill Rate 4]  30602.036] 0.000| 0.966 1.000]
Bias Avg System

Inventory 4| 399695.326| 0.000 0.997 1.000

Order Fill Rate 4 22.707| 0.000| 0.020 1.000

Forecast |Case Fill Rate 4 15.851| 0.000 0.014 1.000
Skewness |Avg System

Inventory 4 348.862( 0.000 0.243 1.000

Table 20 - Univariate Tests (Main Effects)
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Further evidence of this relatively small impact can be observed on the
graphical display of this main effect. Figure 20, Figure 21 and Figure 22,
respectively, present the effect of Demand Variability on Order Fill Rate, Case Fill
Rate and Average System Inventory. As variability on daily demand increases,
Order Fill Rate decreases from 77.1% to 76.0%, Case Fill Rate decreases from
79.8% to 78.8% and Average System Inventory decreases from 18,178 to
18,174.

Estimated marginal means of service variables for low and medium
variability levels are not statistically different at the p=0.05 level. Statistical
difference is reached only at the high variability level. There is no statistical

difference at any variability level for Average System Inventory.
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Figure 20 — Effect of Demand Variability on Order Fill Rate
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Figure 22 — Effect of Demand Variability on Avg System Inventory
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The second factor, Lead Time Variability, is statistically significant at
p<0.001 for all performance variables. Different from Demand Variability, Lead
Time Variability has a substantial impact on service variables. According to Table
20, this factor partially accounts for 65.5% of variation in Order Fill Rate and
55.7% of variation in Case Fill Rate. The impact of Lead Time Variability on
Average System Inventory is relatively small, as this factor accounts for only
1.8% of variation.

In an analogous way, further evidence can be observed by analyzing the
graphical displays of these relationships. Figure 23, Figure 24 and Figure 25,
respectively, present the effect of Lead Time Variability on Order Fill Rate, Case

Fill Rate and Average System Inventory.
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Figure 23 - Effect of Lead Time Variability on Order Fill Rate
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Figure 24 - Effect of Lead Time Variability on Case Fill Rate
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Figure 25 - Effect of Lead Time Variability on Avg System Inventory

As variability on transit lead time increases, Order Fill Rate decreases

from 83.7% to 69.6%, Case Fill Rate decreases from 85.7% to 72.9% and

Average System Inventory increases from 18,137 to 18,214. Lead Time
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Variability, thus, substantially affects service variables and slightly affects
inventory. Estimated marginal means are all statistically significant at the p=0.05
level.

The third factor is key to this dissertation: Forecast Bias. According to
Table 20, Forecast Bias is statistically significant at p<0.001 for all dependent
variables. In addition to statistical significance, this factor has a very large impact
on all dependent variables. Forecast Bias partially accounts for 97.5% of
variation on Order Fill Rate, 96.6% of variation on Case Fill Rate, and 99.7% of
variation on Average System Inventory. Therefore, Forecast Bias is the primary
factor affecting both service and inventory in this dissertation.

Interesting relationships can be observed on the graphical displays of
estimated marginal means. Figure 26 presents the effect of Forecast Bias on
Order Fill Rate. When Forecast Bias is equal to -40%, forecasts are
systematically higher then actual demand. In this case, biased forecasts result in
higher levels of inventory and ultimately service. As Forecast Bias moves to
+40%, when forecasts are systematically lower than actual demand, service

decreases as a result of decreased inventory levels.
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Figure 26 - Effect of Forecast Bias on Order Fill Rate

As Forecast Bias moves from -40% to +40%, Order Fill Rate dramatically
decreases from 99.8% to 15.3%. The interesting information on Figure 26 is that
this relationship is non-linear. Estimated marginal means are all statistically
different at the p=0.05 level, except for the difference between the -40% and the
—20% Forecast Bias levels.

Figure 27 presents the effect of Forecast Bias on Case Fill Rate. Results
are similar to the Order Fill Rate case. Forecast Bias affects Case Fill Rate in a
non-linear way. As Forecast Bias moves from -40% to +40%, Case Fill Rate
dramatically decreases from 99.9% to 20.7%. Means for Case Fill Rate are all
statistically different at the p=0.05 level, except for the difference between the

-40% and the -20% Forecast Bias levels.
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Figure 27 - Effect of Forecast Bias on Case Fill Rate

The effect of Forecast Bias on Average System Inventory is presented in
Figure 28. Forecast Bias affects inventory in a linear way. As Forecast Bias
moves from -40% to +40%, Average System Inventory decreases from 26,026 to
10,467. This occurs because, in this study, replenishments occur in an
anticipatory way. Forecasts are used to build target levels of inventory to be
maintained. When forecasts are systematically higher than actual demand,
excess inventory is built in the system. The opposite occurs when forecasts are
systematically lower than actual demand. Estimated marginal means of Average

System Inventory are all statistically different at the p=0.005 level.
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Figure 28 - Effect of Forecast Bias on Avg System Inventory

The relationships presented in Figure 26 and Figure 28 suggest that there
are trade-offs involving the level of Forecast Bias. When Forecast Bias assumes
extreme negative values, higher service is obtained with higher inventory
commitments. When Forecast Bias assumes extreme positive values, lower
service results from lower inventory commitments.

This trade-off between service and inventory can be further explored by
analyzing the graphical display of the transformed variable, obtained by the
division of Order Fill Rate by Average System Inventory. This variable gives us
information regarding the unit of service that is obtained from every unit of
inventory. Estimated marginal means for the different levels of Forecast Bias are

presented on Figure 29. All means are statistically different at the p=0.05 level.
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Figure 29 - Effect of Forecast Bias on Order Fill Rate / Avg System Inventory

The relationship presented in Figure 29 supports the concept that bias in
forecasts should be avoided. When Forecast Bias is equal to 0%, the highest
service is achieved with lowest inventory commitment. In practice, though, the
optimal point for this relationship depends on the cost structure of the company.
Specifically, it directly depends on the relationship between inventory holding
costs and stockout costs. Further discussion about this issue is presented when
managerial guidelines are developed.

The fourth and last experimental factor is Forecast Skewness, also a key
factor in this dissertation. According to Table 20, Forecast Skewness is
statistically significant at p<0.001 for all dependent variables. This factor has a
relatively small impact on service variables. It partially accounts for 2.0% of

variation on Order Fill Rate and 1.4% of variation on Case Fill Rate.
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Figure 30 displays the impact of Forecast Skewness on Order Fill Rate.
As Forecast Skewness moves from -1.3693 to +1.3693, Order Fill Rate
decreases from 77.7% to 75.5%. Statistical differences in estimated marginal
means only occur between the —1.3693 and the O levels, and between the 0 and

the +0.6838 levels.
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Figure 30 - Effect of Forecast Skewness on Order Fill Rate

Figure 31 shows the impact of Forecast Skewness on Case Fill Rate. As it
moves from —1.3693 to +1.3693, Case Fill Rate decreases from 80.3% to 78.3%.
For this dependent variable, there is no statistical significance in mean

differences between any adjacent levels of skewness.
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Figure 31 - Effect of Forecast Skewness on Case Fill Rate

Finally, the impact of Forecast Skewness on Average System Inventory is
exhibited on Figure 32. The impact is medium. This main effect partially accounts
for 24.3% of the variance on Average System Inventory (Table 20). As Forecast
Skewness moves from -1.3693 to +1.3693, Average System Inventory
decreases from 18,431 to 17,960. Estimated marginal means are all statistically

different at the p=0.05 level.
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Figure 32 - Effect of Forecast Skewness on Average System Inventory

A summary of the relative impact of main effects on dependent variables
is presented on Table 21. The shaded cells represent primary findings. Lead
Time Variability has a substantial impact on service variables. Forecast Bias is
the primary factor, responsible for a very large impact in all performance
variables. Forecast Skewness has medium impact on Average System Inventory.
There is a large impact of the interaction between Forecast Bias and Lead Time

Variability on both Order Fill Rate and Case Fill Rate.
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Average System

Source Order Fill Rate Case Fill Rate Inventory Comment
Statistically significant for
- p-value <0.001 |- p-value <0.001 | - . \
Demand Variability |- Partial Eta - Partial Eta [ pvalue = 0.899 |service variables, but
Squared = 0.008 |Squared = 0.006 o )
impact.
- p-value < 0.001 |- p-value <0.001 |- p-value <0.001 [Substantial impact on
Lead Time Variability |- Partial Eta - Partial Eta - Partial Eta service variables. Small
Squared = 0.655 |Squared =0.557 |[Squared =0.018 |impact on inventory.
- p-value < 0.001 |- p-value < 0.001 |- p-value < 0.001 .
Forecast Bias - Partial Eta - Partial Eta - Partial Eta Ve%ﬁ?ﬂg”\:::;;g al
Squared = 0.975 [Squared = 0.966 |Squared = 0.997 pe ’
- p-value < 0.001 |- p-value < 0.001 |- p-value <0.001 |Medium impact on
Forecast Skewness |- Partial Eta - Partial Eta - Partial Eta inventory. Small impact
Squared = 0.020 [Squared = 0.014 |Squared = 0.243 |on service variables.
I - p-value <0.001 |- p-value =0.005 | - Statistically significant,
E::::::t \éia::blllty X1 Partial Eta - Partial Eta ) g-::leure: 001'51’?’9 but interaction has small
Squared = 0.011 |Squared = 0.005 ’ impact.
. ., ... |- p-value < 0.001 |- p-value <0.001 |- p-value <0.001 [Large impact on Service
Lead Time vanabilty | partal Eta - Partial Eta - Partial Eta Variables. Small impact
Squared =0.708 |[Squared = 0.612 |Squared =0.053 |on Inventory.
. - p-value < 0.001 |- p-value < 0.001 |- p-value < 0.001 |Statistically significant,
rorecastBasx |- Partial Eta - Partial Eta - Partial Eta but interaction has small
Squared = 0.016 [Squared = 0.012 |Squared = 0.010 |impact.
Lead Time Variability
. - p-value = 0.050 |- p-value = 0.643 |- p-value = 1.000 -
x Forecast Bias x _ _ ] _ Non-significant.
Forecast Skewness | Power=0.928 |- Power = 0.597 Power = 0.118
Demand Variability x |- p-value = 0.005 _ ) - Statistically significant for
Lead Time Variability |- Partial Eta [pvalue= 0113 |/ Bvalue = 9998 |order Fill, but interaction
x Forecast Bias Squared = 0.005 ) ’ has small impact
Demand Variability x |- p-value = 0.683 |- p-value = 0.413 |- p-value = 0.837 I
Lead Time Variability |- Power = 0.112 |- Power=0.204 |- Power = 0.078 |\or-significant.
Demand Variability x |- p-value = 1.000 (- p-value = 1.000 |- p-value = 1.000 -
Forecast Skewness (- Power=0.054 |- Power =0.053 |- Power = 0.058 Non-significant.
Lead Time Variability |- p-value = 0.903 |- p-value = 0.786 |- p-value = 0.998 it
x Forecast Skewness |- Power = 0.108 |- Power =0.163 (- Power = 0.056 Non-significant.
Demand Variability x
. - p-value = 1.000 (- p-value= 1.000 |- p-value = 1.000 (anifica
ForecastBiasx | b, or=0063 |-Power=0.056 | Power=0064 |\om-significant.

Forecast Skewness

Table 21 - Summary of Impact of Main Effects and Interactions on Dependent Variables
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The main effects and interactions obtained from the experimental design
have been described and discussed. In the following sections, hypotheses are

restated and statistical support is discussed.

4.3.4 Hypothesis H1a

Hypothesis H1a states that Forecast Bias has a significant impact on
Supply Chain Performance.

Multivariate results in Table 16 show that the effect of Forecast Bias is
statistically significant at p<0.001. In addition, univariate results in Table 20 show
that Forecast Bias is statistically significant at p<0.001 for Order Fill Rate, Case
Fill Rate and Average System Inventory. In addition to statistical significance, the
impact of Forecast Bias on performance variables is very large.

Therefore, Hypothesis H1a is strongly supported.

4.3.5 Hypothesis H1b

Hypothesis H1b states that Forecast Skewness has a significant impact
on Supply Chain Performance.

Multivariate results in Table 16 show that the effect of Forecast Skewness
is statistically significant at p<0.001. Univariate results in Table 20 show that
Forecast Skewness is statistically significant at p<0.001 for Order Fill Rate, Case
Fill Rate and Average System Inventory. The impact of this factor is small for
Order Fill Rate and Case Fill Rate, but medium for Average System Inventory.

Therefore, results support Hypothesis H1b.
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4.3.6 Hypothesis H1c

Hypothesis H1c affirms that there is a significant interaction effect
between Forecast Bias and Forecast Skewness.

Multivariate results on Table 16 show that this interaction effect is
statistically significant at p<0.001. Univariate results on Table 19 show that the
interaction is statistically significant at p<0.001 for Order Fill Rate, Case Fill Rate,
and Average System Inventory. The impact of this interaction is small for all
dependent variables.

This dissertation’s results, thus, support Hypothesis H1c.

4.3.7 Hypothesis H1d

Hypothesis H1d asserts that Forecast Bias has a relatively greater impact
than Forecast Skewness on Supply Chain Performance.

The individual effects of Forecast Bias and Forecast Skewness on
performance variables are statistically significant.

Univariate results on Table 20 show that Forecast Bias partially accounts
for 97.5% of variation on Order Fill Rate, 96.6% of variation on Case Fill Rate
and 99.7% of variation on Average System Inventory. The impact of Forecast
Bias is very large on performance variables.

Forecast Skewness, on the other hand, partially accounts for only 2% of
the variation on Order Fill Rate, 1.4% of variation on Case Fill Rate and for

24.3% of variation on Average System Inventory.
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Therefore, there is support that Forecast Bias has a relatively greater
impact than Forecast Skewness on all performance variables. Hypothesis H1d is

then supported.

4.3.8 Hypothesis H2a

Hypothesis H2a affims that there is a significant interaction effect
between Forecast Bias and Demand Variability.

According to Table 16, this interaction effect is statistically significant at
p<0.001. Univariate results on Table 19 show that the interaction is statistically
significant at p<0.001 only for Order Fill Rate and Case Fill Rate. The impact of
this interaction for Average System Inventory is not statistically significant. The
low power of the test suggests that the manipulation of Demand Variability levels
may not be enough to capture sufficient power.

Hypothesis H2a is partially supported. The interaction impact is significant

only for service variables.

4.3.9 Hypothesis H2b

Hypothesis H2b states that there is a significant interaction effect between
Forecast Bias and Lead Time Variability.

This interaction effect is statistically significant at p<0.001 (Table 16).
Univariate results (Table 19) shows that the interaction is statistically significant
at p<0.001 for all dependent variables. The impact is large for service variables,
where the interaction partially accounts for 70.8% of variation on Order Fill Rate

and 61.2% of variation on Case Fill Rate. The impact is small for Average
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System Inventory, where the interaction partially accounts for only 5.3% of the

variation. There is strong support for Hypothesis H2b.

4.3.10 Hypothesis H3a

Hypothesis H3a asserts that there is a significant interaction effect
between Forecast Skewness and Demand Variability.

Multivariate results support that this interaction effect is not statistically
significant (Table 16). Hypothesis H3a is, therefore, not supported. One
explanation is that Forecast Skewness per se is not a primary factor. Although it
affects Average System Inventory, and interacts with Forecast Bias, its relative
impact is relatively small when compared to other factors. Other explanation is
suggested by the low power of the test. The discussion is analogous to

Hypothesis H2a.

4.3.11 Hypothesis H3b

Hypothesis H3b states that there is a significant interaction effect between
Forecast Skewness and Lead Time Variability. Multivariate results on Table 16
provide no support for statistical significance of this interaction effect. Hypothesis
H3b is thus not supported. The explanation for this lack of support is analogous
to Hypothesis H3a.

Table 22 summarizes results obtained from hypotheses testing.
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Hypothesis Test Result

Hypothesis 1a: Forecast Bias has a significant | Supported.
impact on Supply Chain Performance.

Hypothesis 1b: Forecast Skewness has a Supported.
significant impact on Supply Chain Performance.

Hypothesis 1c: There is a significant interaction | Supported.
effect between Forecast Bias and Forecast
Skewness.

Hypothesis 1d: Forecast Bias has a relatively Supported.
greater impact than Forecast Skewness on

Supply Chain Performance.

Hypothesis 2a: There is a significant interaction | Partially Supported. The impact is
effect between Forecast Bias and Demand significant only for service variables.
Variability.

Hypothesis 2b: There is a significant interaction | Supported.
effect between Forecast Bias and Lead Time
Variability.

Hypothesis 3a: There is a significant interaction | Not supported.

effect between Forecast Skewness and Demand
Variability.

Hypothesis 3b: There is a significant interaction | Not supported.
effect between Forecast Skewness and Lead
Time Variability.

Table 22 - Summary of Hypotheses Testing

The next chapter develops conclusions from research findings. A
summary of key findings is presented, followed by implications to academic
researchers. Managerial implications are discussed, including a cost trade-off
analysis. As a result, managerial guidelines are presented to help decision
makers manage Forecast Bias. Finally, research limitations are discussed and

potential paths for future research are presented.
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5 Conclusions

This chapter relates the research findings to the general body of
knowledge in forecast research. The first section addresses results of
hypotheses tests in relation to the research questions. The second section
proposes managerial guidelines after a cost trade-off analysis is conducted.
Next, research limitations are noted. Finally, suggestions for future research are

presented.

5.1 Implication of Research Findings

The first research finding is that Forecast Bias is the primary factor
affecting the performance of an anticipatory supply chain system. Results from
this dissertation indicate a very large impact on both service and inventory
variables. No other factor in this study had the same type of effect. The
implication is that any study of an anticipatory inventory system should consider
bias in forecasts.

The second finding is that Forecast Skewness has relatively less impact
on performance than does Forecast Bias. The implication is that researchers and
managers should focus their attention on Forecast Bias, although Forecast
Skewness should not be totally ignored. It has a moderate influence on inventory
in this study. This impact may be larger at higher levels of skewness not tested in
this dissertation. Further research is needed to explore this relationship.

A third finding is that the impact of Forecast Bias on performance is

amplified at higher levels of demand and transit lead time variability. According to
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the results of this dissertation, the combined effect of Forecast Bias and Lead
Time Variability is large for service variables. This implies that the higher the
supply chain instability, the greater is the impact of Forecast Bias on
performance. One implication is that researchers and practitioners should be
especially concerned with Forecast Bias when supply chain instability is
considerable.

A fourth finding is that Lead Time Variability has a relatively larger impact
on performance than does Demand Variability. This finding is also supported by
Wagenheim (1974)'s dissertation results. In anticipatory supply chains, forecasts
are used to build inventory in advance of demand. If there is high variability in
transit lead times, then it is difficult for the system to build inventory in a timely
manner. The results support that transit lead time variability significantly
influences performance. In addition, the results indicate that lead time variability
is more critical when compared to demand variability. One implication for
practitioners is that if resources are limited, the focus should be on investments
to reduce variability in transit lead times rather than daily demand requirements.

The fifth finding is the interesting relationship of Forecast Bias to Order Fill
Rate and to Average System Inventory. The results support the view that
Forecast Bias affects Order Fill Rate in a non-linear way (Figure 26), while it
affects Average System Inventory in a linear way (Figure 28). These
relationships suggest a trade-off effect of Forecast Bias on service and inventory.
One implication is that, conceptually, managers should aim to eliminate any

source of bias in their forecasts. In this dissertation, when Forecast Bias is equal
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to 0% the system achieves the highest level of service at the lower level of
inventory commitment (Figure 29). The word “conceptually” should be
emphasized; in practice the optimal balance point of this trade-off depends on
the relationship between inventory holding costs and stockout costs. In other
words, the ultimate financial impact of Forecast Bias depends on the loss
function associated with forecast errors. This issue is investigated in the next
section.

The research conclusion is that Forecast Bias is indeed the primary factor
affecting supply chain performance. The effect is amplified as demand and transit
lead time variability increase. Forecast Bias directly increases (or decreases)
inventory in a linear way, but directly increases (or decreases) service in a non-
linear way. This combined effect implies a trade-off relationship between

inventory and service.
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5.2 Managerial Guidelines

This section develops managerial guidelines. The objective is to identify
acceptable levels of Forecast Bias and the actions to minimize its effects. As
previously noted, managers should attempt to eliminate bias in their forecasts,
but accuracy improvements have associated costs. For example, processes
must be redesigned and workers need to be trained in forecasting methods and
software use. Increased information needs require investments in data collection,
automation, and information systems.

Even if such investments are made, it is possible to reach a point at which
no additional improvements in forecast accuracy can be obtained. If the source of
error is Demand Variability, for example, and if there are no feasible actions to
influence demand patterns, then a certain amount of error must be tolerated. This
is commonly referred to as acceptable forecast error (Jain 1990).

In theory managers should aim to eliminate bias in their forecasts, but in
practice improvements should be sought only when the impact of Forecast Bias
is detrimental to the company. Actions should be chosen carefully because
resources and capital are limited. The acceptable level of Forecast Bias depends
on how forecast errors ultimately translate into cost.

Kahn (2003) presents a framework to help understand the financial impact
of forecast errors. If forecasts are systematically higher than demand, Forecast
Bias is negative. In this case, the company incurs excess inventory costs,
increased inventory holding costs, possibly transshipment costs, obsolescence

costs, and reduced profit margin if products must be sold at a discount in order to
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reduce inventory. If forecasts are systematically lower than demand, Forecast
Bias is positive. In this situation, there may be order expediting costs and higher
production costs, if the company needs to shorten lead times to satisfy demand.
If demand cannot be satisfied, there is potential loss in profit due to lost sales.
Also, customer satisfaction may be reduced.

A basic implication of over forecasting (negative Forecast Bias) is that
financial resources are tied up in excess inventory (inventory cost), and a basic
implication of under forecasting (positive Forecast Bias) is the potential loss of
profit margin (stockout cost). Managers should not blindly aim at eliminating bias
in forecasts. Rather, they should seek to determine the acceptable region.
Depending on the relationship between these two types of cost, there is a
particular region of bias in which the company can operate without substantially
increasing costs.

Toward that end, a‘n analysis was conducted to evaluate how operational
results from the simulation experiments translate to total cost. Two variables
obtained from the simulation results are used in this analysis: Case Fill Rate and
Average System Inventory.

The Case Fill Rate refers to the percentage of units in customer orders
that are fulfilled. The remaining percentage represents units that were demanded
but were not shipped to customers. For example, if the rate is 98%, then 2% of
demand is stocked out. Because average demand is known in the simulation

environment, it is possible to record how many units of product were not sold to
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customers (stockouts). Average System Inventory provides information on how
many product units were held in stock during the simulation period.

If unit costs are defined, it is possible to calculate the total cost of a
particular simulation experiment. The two basic components of cost considered
in this analysis are inventory cost and stockout cost. Both are defined as a
percentage of product value, to minimize the arbitrary choice of values.

Figure 33 is an example of how simulation results can be translated to
total cost. For simplification, variability in customer demand and transit lead time
are combined. In the low variability case, variation in both transit lead time and
daily demand is low. In the high variability situation, variation in both lead time
and demand is high. In Figure 33 it is assumed that the cost to hold inventory is
lower than the cost of lost sales. Inventory cost represents 5% of product value,

and stockout cost represents 100% of product value.
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In the low variability situation presented in Figure 33, the total cost impact
is relatively low when Forecast Bias ranges from -40% to -20%. For practical
purposes, cases will be considered acceptable in a range of plus or minus 20%
of difference from the minimum total cost. When variability is high, the acceptable
range of Forecast Bias is between -40% and -20%. The acceptable range
depends on the level of variability and on the profile of costs. Forecasts that are
higher than demand are acceptable in this case because the cost of excess
inventory is low compared to the cost of lost sales.

Figure 34 displays another example: inventory cost is higher than stockout
cost. In this case, at the low variability level, a Forecast Bias of 20% results in
minimum cost. This occurs because the cost to hold stock is higher than the cost
of lost sales. At the high variability level, the acceptable range stays between

-20% and 0%.

Total Cost = Inventory Carrying Cost + StockoutCost
inventory Cost = 60%, Stockout Cost = 50%
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Generalization of these two examples is obtained if different combinations
of cost profiles are used to evaluate the total cost performance of the simulated
system. Inventory cost was manipulated at six levels: 5%, 10%, 20%, 40%, 60%,
and 80%. Stockout cost also was manipulated at six levels: 5%, 10%, 30%, 50%,
80%, and 100%. All possible combinations were then analyzed, and acceptable
ranges were obtained. The results are presented in Table 23. The hashed bar
represents low variation in transit lead times and daily demand requirements.
The solid bar represents high variability situations. These results were obtained
by combining different levels of inventory and stockout cost and by observing
total cost at each level of Forecast Bias. The acceptable range allows values of

total cost that are within 20% of the minimum cost.
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Cost Profile Forecast BIAS
Inventory Cost | Stockout Cost | -40% | -20% | 0% | +20% | +40%
5% 5%
5% 10%
5% 30%
5% 50%
5% 80%
5% 100%
10% 5%
10% 10%
10% 30%
10% 50%
10% 80%
10% 100%
20% 5%
20% 10%
20% 30%
20% 50%
20% 80%
20% 100%
40% 5% !
40% 10%
40% 30%
40% 50%
40% 80%
40% 100%
60% 5%
60% 10%
60% 30%
60% 50%
60% 80%
60% 100%
80% 5%
80% 10%
80% 30%
80% 50%
80% 80%
80% 100%

Table 23 — Acceptable Ranges of Forecast Bias
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Three conclusions can be drawn from Table 23. First, when variability is
high, the acceptable range of Forecast Bias tends to be greater. This occurs
because of more uncertainty in the system. Second, when stockout cost exceeds
inventory cost, the bias range moves to negative values. Third, when the

opposite occurs, the acceptable range moves to the positive side.

Acceptable Range of Forecast Bias
(measured as Percentage Error)
» Low Variability: |+ Low Variability:
5| +20% to +40% 0% to +20%
é 'E [« High Variability: |+ High Variability:
> |0%to +20% -20% to 0%
£ |+ Low Variability: | Low Variability:
> 3| 0%to+20% -20% to 0%
~ 3|+ High Variability: |+ High Variability:
-20% to 0% -40% to -20%
Low High
Stockout Cost

Figure 35 — Acceptable Range of Forecast Bias

Information from Table 23 is condensed and summarized in Figure 35, a
matrix built from the cost analysis. It can help managers identify thé acceptable
range of Forecast Bias for their business. For example, in the lower left corner
both stockout cost and inventory cost are low, measured as a percentage of
product value. In this case, when there is low variability in lead times and
demand, a Forecast Bias between 0% and +20% is acceptable. If variability is
high, the minimum cost is obtained in a region of Forecast Bias between -20%

and 0%. The rationale is analogous for the other three quadrants of the matrix.
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The matrix has two interesting characteristics. The first is that the
acceptable range of Forecast Bias is the same when stockout cost and inventory
cost are either both low or both high. The second is that the acceptable range for
low inventory cost and high stockout cost is a mirror image of the acceptable
range for high inventory cost and low stockout cost. This symmetry reflects the
fact that the acceptable bias range moves from the positive side to the negative
side as the relative comparison between inventory and stockout cost changes.

Six guidelines to help decision makers manage Forecast Bias are
presented below.

First, Forecast Bias is an important factor that substantially affects supply
chain service and inventory therefore, managers should not rely on a single
measure of forecast accuracy. For example, the Mean Average Percentage Error
(MAPE), the most used measure, evaluates forecasting performance in absolute
terms. If forecasts have a bias, MAPE will not capture it. The first guideline is that
multiple measures of forecast accuracy are advised.

Second, managers should track the current level of Forecast Bias by
keeping historical data on estimated and actual sales. Alternative measures of
forecast accuracy should be computed, and histograms should be plotted.

Third, there are trade-offs in terms of service and inventory that are
influenced by Forecast Bias. There is no single optimum level of bias. It varies
with each business. The optimum level depends on the extent of variability in
transit lead times and in daily demand requirements and the relative profile of

inventory cost and stockout cost.
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Fourth, managers should use the matrix provided in Figure 35 to help
identify the acceptable level of Forecast Bias for their company.

Fifth, once the acceptable Forecast Bias level is identified, managers
should compare it with the level of bias for their current forecasting process. They
can then decide whether resources should be invested in improvements to reach
the desirable Forecast Bias region.

Sixth, managers need to understand that initiatives to improve forecast
accuracy can be both internal and external, that is, within the company and
across supply chain partners. Examples of internal initiatives are the collection of
more reliable and relevant data, the use of more complex and adaptive
forecasting techniques, and an increase in cross-functional integration across
departments involved in the forecasting process. External efforts may include a
reduction in transit lead time variability through partnerships with service
providers and a reduction of demand variability through incentives to customers,

such as promotions or discounts.
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5.3 Research Contributions

One contribution of this dissertation is that it investigates the impact of
Forecast Bias in a supply chain context. Previous studies focused on a single
facility, which restricts generalization to the broader supply chain. This difficulty
arises because complex dynamics occur when facilities in a network exchange
information and product flows. Therefore, this dissertation broadens current
research.

A second important contribution is the comprehensive approach to model
forecast errors used here. In this study, the histogram of forecast errors follows
statistical distributions. One limitation of previous work is the use of a single
aggregate measure of forecast accuracy. A measure such as MAPE or MAD
cannot capture as much information as a histogram.

A third contribution of this study is a new approach to model forecast
errors. Previous research considered stochastic errors and assumed that
patterns followed a Normal distribution. As previously discussed, that imposes
two limitations. First, undesirable extreme values of error can occur, because the
Normal distribution is unbounded in its limits. Second, the Normal distribution
assumes that errors are symmetrically distributed around the mean. This
dissertation assumes that the histogram of forecast errors follows a generalized
form of the Beta distribution. This new approach overcomes the two limitations of
the Normal distribution. The Beta distribution is bounded on its limits, so the
researcher can better control forecast error. In addition, asymmetric errors can

be considered, which allows for more general patterns to be investigated.
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The fourth contribution is a more in-depth understanding regarding of how
Forecast Bias affects Supply Chain Performance. This impact is researched
under different environmental contexts in terms of transit lead time and daily
demand variability. The topic has not been explored in the literature.

The fifth contribution of this research is guidelines to help managers

understand and control the impact of Forecast Bias on performance.

5.4 Research Limitations

Simulation studies are constrained to the extent that the simulation model
accurately replicates the real world system. The present research is not free of
that constraint. However, the model has been subjected to extensive validation
tests and has been judged to be valid.

In addition, limitations of the conceptual model restrict the application of
the research findings to similar distribution channel systems. Also, the findings
are restricted to the experimental factors levels manipulated in this study. Results
that were not statistically significant could be found otherwise if different
experimental levels were tested.

Nevertheless, insights from this research provide useful general
information in terms of the parameter relationships that could be further

investigated.
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5.5 Future Research

This research supports the conclusion that Forecast Bias has a substantial
impact on supply chain performance. The study is essentially exploratory, but
there is promising potential for future work in this area.

First, there is potential to better investigate the impacts of Forecast Bias
on performance at different product type scenarios. This research considered a
single product characteristic: the variability in daily demand. Future studies can
examine such dimensions as product value, demand volume (different means of
daily demand), and life cycles (perishable items). Forecast Bias should be
evaluated for different combinations of product characteristics beyond demand
variability.

Second, this research used a single inventory strategy technique (order-
up policy). Future work can investigate the impact of Forecast Bias under
different anticipatory replenishment strategies. In addition, the target levels of
inventory were defined as fixed factors in the current research. This impact can
be analyzed for different inventory parameters.

A third potential line of inquiry is Forecast Bias within different types of
physical supply chain networks. This research used a single network with three
tiers. It is important to investigate different network structures (convergent versus
divergent) to determine whether inventory centralization (or decentralization)
amplifies the effects of Forecast Bias.

Yet another path for future study is to include different levels of information

sharing across the supply chain. It is important to evaluate the effects of Forecast
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Bias in cooperative and non-cooperative chains. The negative influence should
be greater when there is a low level of information sharing.

Finally, research that considers alternative patterns of forecast errors must
be done. In this dissertation, forecast errors are assumed to be asymmetric and
stationary. It is relevant to consider correlation of forecast errors across time
periods. This assumes that decision makers improve the forecasting process as
errors are monitored. In addition, the forecast planning horizon was set constant
in this research. Future studies can consider it as an experimental factor.

Although the current study examined the role of Forecast Bias in supply
chain performance, the relationships among Forecast Bias, Forecast Skewness,
Demand Variability, and Transit Lead Time Variability cannot be fully explained
through the data collected. Further investigation of these interactions, including
additional factors, will be needed to obtain a full understanding of how Forecast

Bias affects the supply chain.
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