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ABSTRACT

SIMULATION OF THE IMPACT OF FORECASTING ACCURACY

ON SUPPLY CHAIN PERFORMANCE: THE BIAS EFFECT

By

Alexandre Medeiros Rodrigues

Historically, most firms have operated in an anticipatory manner. Today,

supply chain design focuses on agility and responsiveness. Regardless,

forecasts are often still necessary because of longer and more uncertain lead

times, service requirements, and capital constraints.

This dissertation investigates the impact of Forecasting Accuracy on

Supply Chain Performance. Specifically, this research evaluates the effects of

Forecast Bias, Forecast Skewness, Transit Lead Time Variability, and Demand

Variability on Order Fill Rate, Case Fill Rate, and Average System Inventory.

Results from dynamic simulation experiments indicate that Forecast Bias

is the primary factor, substantially affecting all performance measures. This

impact is amplified at higher levels of demand and transit lead time variability.

Lead Time Variability has a substantial impact on service, while Forecast

Skewness has medium impact on inventory. Additionally, results suggest a trade-

off impact of Forecast Bias on service and inventory.

Managerial guidelines are developed after a cost trade-off analysis is

conducted. The framework identifies acceptable levels of Forecast Bias, and

advises which actions can be taken to control and minimize its effects.
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1 Introduction

Forecasting can be formally defined as the method for predicting the

future by extrapolating information from the past. In business, it is a process that

synthesizes the quantitative and qualitative information from different functional

departments to generate a prediction of periodic sales for the firm as a whole.

Each forecast represents a prediction or estimate of the actual demand volume

for a future period. Supply chain decision makers particularly need forecasts to

plan for future uncertainty. Forecasts are critical to firm functions, including

financial planning, facility openings and closings, new equipment purchases,

production schedules, raw materials procurement, staffing allocation, and

marketing planning.

Historically, most firms have operated their supply chain in an anticipatory

basis. Products are produced to meet sales forecasts and are moved through the

distribution channel in anticipation of end-customer requirements. Such a

speculative strategy is used to achieve effective economies of scale.

Increasingly, however, specific product requirements are difficult to forecast, due

primarily to greater complexity in product offerings and supply chain alternatives.

Today, supply chain design focuses on agility and responsiveness to reduce the

need to forecast consumer demand. Partnerships, information sharing, and

automation can also be used to reduce supply chain uncertainty and allow rapid

flow of information and physical goods.

Even though companies are moving toward responsive supply chains,

forecasts are often still necessary. Decisions about product acquisition,

1



manufacturing, and transportation must be made prior to demand, so that

customers can have instant product availability where and when desired. Longer

and more uncertain lead times result in a greater need for demand forecasts.

Responsive systems also require extensive coordination and information

exchange between supply chain partners. Service requirements and capital

constraints can limit a firm’s ability to move from an anticipatory to a responsive

system, and forecasting thus continues to be relevant for today businesses.

The primary objective of this dissertation is to investigate the impact of

Forecasting Accuracy on supply chain performance. The ultimate test of any

forecast is how it supports supply chain performance. Decision makers have a

wide choice of ways to forecast, ranging from purely intuitive or judgmental

approaches to highly structured and complex quantitative methods. Forecasting

Accuracy is defined here as the difference between a specific forecast and

corresponding customer demand. The goal of any forecasting process is to

minimize this difference.

History shows that decision makers tend to develop predictions that are

systematically lower or higher than actual demand. This is generally called

Forecast Bias. It occurs because even when systematic methods are used,

planners and managers often refine the generated forecasts, based either on

their perceptions regarding the business environment or on a mean that will

enhance their performance metrics.

Although the impact of Forecast Accuracy has been examined in the

manufacturing literature, it has received less attention from logistics and supply



chain researchers. It is important to understand the impact of different patterns of

Forecast Accuracy in a supply chain environment, where complexity and

dynamics are greater than in a single manufacturing system. It is also important

to examine the impact at different levels of supply chain uncertainty.

Specifically, the primary research objective is to investigate how Forecast

Bias affects supply chain service and inventory. This will be studied under

different customer demand patterns and transit lead time scenarios. As a

secondary objective, managerial guidelines are developed to suggest ways to

reduce or manage bias in forecasts. Acceptable levels of Forecast Bias will be

identified, and actions to control and minimize its effects will be described.

This introductory chapter covers a number of topics. First, it characterizes

the role of forecasting in supply chain management and defines the boundaries

of the study. Second, it explains why forecasting issues are important for not only

supply chain researchers but also practitioners. Third, the chapter details the

concept of Forecasting Accuracy and introduces the notion of Forecast Bias.

Fourth, research objectives and specific research questions are reviewed. Fifth,

the research procedure is presented. Finally, the potential contributions of this

dissertation are noted.



1. 1 What Is Forecasting?

Forecasting can be formally defined as the process for predicting the

future by extrapolating information from the past (Morton 1999). It transforms

historical time-series data and/or qualitative assessments into a prediction of

future events. The process combines quantitative, analytical data with qualitative,

subjective inputs. As a result of this process, forecasts are generated. Each

forecast represents a prediction or estimate of an actual value in a future period.

The more effectively quantitative and qualitative information are combined, the

better the quality of the generated forecasts.

Planning is an integral part of decision making, but uncertainties make it

quite difficult to plan effectively. Forecasts can help reduce some of the

uncertainty, which enables managers to develop more meaningful plans than

they might othenlvise. Another reason to use forecasts is that, in general, there is

a delay of time between awareness of an event and its occurrence. This lead

time is the main reason for planning on an anticipatory basis. If the lead time is

zero or very small, there is no need for planning. If the lead time is long or

uncertain, planning can perform an important role. In such situations, forecasting

is needed to determine when an event will occur or a need will arise, so that

appropriate actions can be taken beforehand (Makridakis et al. 1983).

Different classifications are used to categorize forecasting approaches,

based on either the time horizon (the period covered by the forecast) or the

underlying method used. In terms of time horizon, the common categories are

long term, intermediate term and short term (Martinich 1997). Short term
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forecasts usually look no more than three months ahead. They are used for

tactical decision making, such as job sequencing and production scheduling,

machine assignments, personnel scheduling, purchasing and inventory planning,

and maintenance planning. Intermediate term forecasts have a time frame of

three months to two years. They are commonly used for aggregate production

planning, including decisions that alter short-term production capacity, such as

subcontracting and overtime. Long term forecasts usually cover two to five years.

Their most common use is for planning the introduction of new products and

major capital expenditures.

Makridakis & Wheelwright (1989) propose a forecast classification

according to the underlying method used: qualitative (subjective), quantitative

(objective) and technological. Qualitative (subjective) methods are based on

human judgment. Such forecasts are most often made by individuals or by

committee agreements. Quantitative (objective) methods employ formulas based

on historical patterns and relationships to develop forecasts. Technological

methods address long term issues of a technological, societal, economic, or

political nature.

Table 1 lists the forecasting methods most commonly used and major

areas of business where they are applied. Despite differences, the various

methods share certain characteristics (Stevenson 1990). First, all assume that

the same underlying causal system will continue to exist in the future, as

historical data are generally the starting point. Second, all admit that forecasts

are rarely perfect and allowances should be made for inaccuracies. Third, all



agree that forecasts tend to be more accurate for groups of items than for

individual items because forecast errors among groups of items cancel one

another. Finally, all concur that forecast accuracy decreases as the time horizon

increases. Shorter range forecasts are typically more accurate than longer range

forecasts less uncertainty is involved.
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Forecasting methods are applied in a number of business areas, but the

generation of sales estimates is especially important. These forecasts attempt to

predict customer demand either in an aggregate (sales by region, by state, by

family of products) or disaggregate way (sales by specific products for specific

customers). The information is important because it drives different operational

processes across the company. Marketing, for example, predicts sales for new

product lines in order to make strategic plans, and forecasts for existing product

lines in order to provide feedback on whether current sales techniques are

working well. Production and operations managers need forecasts for both

product line and individual stock-keeping units (SKU) to order raw materials, plan

and schedule production, and plan warehousing and deployment of finished

goods.

The primary focus of this dissertation is short term business demand

forecasting, but there is no emphasis on any specific method. As previously

stated, the process commonly involves different departments of the organization

and combines alternative approaches to generate forecasts. Decision makers

then generally modify the estimates to reach a final forecast. Because the

process is complex, this dissertation focuses on the final forecast, the estimate

generated in the last step of the entire process. Specifically, our interest is in the

accuracy of the forecasting process.

Forecasting Accuracy can be defined as the difference between the

forecast value and the actual value. It can be understood as a measure of

forecast error. Forecasting processes differ depending upon how the company



uses the information, departments involved, and the approaches used. Each

process will result in a different accuracy level. Also, accuracy is affected by the

time horizon, the rate of technological change in the industry, entry barriers to the

industry, the rate of information dissemination, demand characteristics, industry

characteristics, the availability of historical data, and even the ability of decision

makers to use forecasting methods correctly. The assumption in this dissertation

is that each process, no matter how simple or complex, will generate a specific

pattern of Forecasting Accuracy. For our purposes, the choice of forecasting

method is not important. In this research, what is important is the effect of

different patterns of errors.

1.2 The Relevancy of Forecasting

In the past, firms relied heavily on forecasts to drive planning. Most

operations were designed on an anticipatory basis, and most activities were

initiated before demand occurred. By planning in advance, firms can allocate

resources and design operations in a cost efficient way, achieving economies of

scale. This strategy operates well when demand is somewhat predictable, but the

anticipatory model is not the best in all situations. Throughout the 19803, IBM

downplayed the personal computer market and maintained its focus on

mainframes, which cost it a large part of market share before it modified that

strategy. Similarly, in the 19603 and 19703, the US. automotive industry

underestimated the competitive threat of imported cars, which were smaller,

more fuel efficient, highly reliable, and inexpensive. Detroit lost market share



dramatically. In both cases, the anticipatory model was not able to adapt to the

dynamic market.

To reduce the need to forecast consumer demand, many firms are

enhancing supply chain agility and responsiveness. By improving relationships

among supply chain partners (customers, suppliers, service providers) and

investing in measurement and information systems, companies are creating

highly responsive logistical operations and are reducing levels of anticipatory

inventory so that they can meet increasing demand for customization.

Bowersox et al. (1999) identify this trend in a comprehensive study that

relates supply chain competencies to firm performance. The competencies reflect

integration and relationship management among supply chain partners,

investment in technology and planning systems, and measurement systems

development. There is evidence that firms with higher levels of delivery speed

and inventory turn demonstrate higher performance levels.

These results might imply that all supply chains should move from an

anticipatory (push) system, which seeks to supply predictable demand efficiently

at the lowest possible cost, to a responsive (pull) system, which focuses on quick

response to unpredictable demand in order to maximize sales. The responsive

system reduces the need for reliance on forecasts, but variations in product

demand patterns and consumer requirements make it impossible to prescribe

one solution for all supply chains.

Fisher (1997) presents a conceptual framework for improved management

by suggesting a match between product demand characteristics and supply



chain capabilities. He proposes that products fall into two main categories:

functional products have long life cycles, low profit margins, and stable demand;

innovative products have short life cycles, high profit margins, and unstable

demand. In his framework, push systems better match functional products, and

pull systems better match innovative products. Hirakawa et al. (1992) support the

relationship between product type and forecasting needs. In their article,

although limited to a manufacturing environment, the authors propose a hybrid

solution between push and pull supply chain systems to attain a higher degree of

effectiveness.

Financial constraints may prevent the move from an anticipatory to a

responsive supply chain design, which involves substantial capital investments.

Responsive systems not only are technically sophisticated in terms of planning

but also are information dependent, both internally as well as externally to the

company. The advantage of the anticipatory model, at least in a stable and

predictable demand environment, is the ease of operational planning and the

minimal information needed to operate it.

Lead time constraints also may limit the ability of a company to operate in

a responsive manner. There are lead times associated with the purchase of raw

material, manufacture of goods, and transportation to end customers. Many

companies have operations around the world, which increases not only lead

times but also supply chain uncertainty. In this case, they cannot simply wait for

demand to emerge and then react to it. Instead, they must anticipate and plan so

that they can fill customer orders immediately. This is true even when efforts to

10



reduce uncertainty and increase agility and responsiveness are implemented.

The longer and more uncertain the lead time, the more important is an accurate

forecast of customer demand.

One implication of the preceding discussion is that firms should have a

combination of supply chain operations (anticipatory and responsive) to

accommodate requirements for different product types, capital investment

constraints, uncertainty and long lead times.

Furthermore, researchers continue to maintain the relevancy of

forecasting in today’s business environment. Makridakis et al. (1983), for

example, believe that organizational complexity (number of markets and

products) and dynamic environments (changes in technology and demand

structures) make it more difficult for decision makers to see ahead, which

highlights the importance of accurate forecasts and planning.

Mentzer (1999) develops a model of the impact of improved forecasting

accuracy on shareholder value. Unless accurate forecasts can be translated into

higher levels of customer service and lower supply chain costs, they have little

influence on corporate profitability. The model translates forecasting accuracy

into improved operational plans and execution and improved service to

customers. The former results in lower costs per dollar and the latter results in

increased sales.

In a more recent work, Lapide (2000) maintains that closer supply chain

relationships and information sharing do not eliminate the need for forecasts. His

primary point is that integration may reduce, but will not totally eliminate

11



uncertainty. This opinion is shared by Parker (2001), who offers a managerial

perspective on forecasting. He supports the view that although companies are

migrating toward responsiveness, forecasting is still needed. The goal, according

to him, is not to optimize the supply chain but to obtain better information from

distribution channels.

There is also empirical evidence of a relationship between forecasting

improvements and improved performance. Lee et al. (1993), for example,

present the effects of forecast errors on the total cost of operations. Results from

a study by Teach (1993) point to a strong connection between the ability to

predict outcomes and the firrn's performance. Shoesmith & Pinder (2001) provide

additional evidence that improvements in forecasting lead to cost reductions.

Richardson & Hicks (2003) provide a number of examples on how improved

forecasting and inventory management can yield substantial supply chain

performance improvements.

In summary, forecasting is still an important part of business decision

making. Specific requirements for different product types imply that firms should

have a combination of anticipatory and responsive supply chain operations. Even

with increasing pressures for supply chain agility, forecasts are still needed. They

are particularly relevant for operations with relatively long lead times and great

uncertainty. In addition, there is both theoretical and empirical evidence for the

association between improved forecasting accuracy and better performance.

12



1.3 Forecasting Accuracy: The Importance of Bias

The most important test for a forecasting model is Forecasting Accuracy

(Armstrong 1985), commonly termed as forecast error, or the difference between

estimates and actual values. Alternative measures of Forecasting Accuracy are

used in the literature, and each captures different information. A single measure

of accuracy may not be adequate, since each one makes an assumption

regarding the loss function, which relates forecast error to its associated cost

effect.

Table 2 offers mathematical definitions for the most common measures of

Forecasting Accuracy. A consistent notation is used, assuming that forecasts are

intended to predict customer demand: D is actual demand, F is the forecast, t is

the time interval, and n is the number of periods in the forecast horizon.

 

Forecasting Accuracy Mathematical Definition

Measure

Mean Error (ME)

 

’1

2(Dr '— F; ) / n
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Table 2 - Common Measures of Forecast Error
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The Mean Error (ME), also referred to as bias, is primarily a test of

systematic error, that is, a tendency to forecast systematically values that are

either greater or less than actual demand. It should not be used alone because it

provides no measure of error variance, the extent of dispersion of errors around

the mean.

The Mean Absolute Deviation (MAD) reflects the typical error. It does not

distinguish between variance and bias, and it is appropriate when the cost

function is linear.

The Root Mean Square Error (RMSE) is very similar to MAD but is

preferred when a quadratic loss function is assumed.

The Mean Percentage Error (MPE) and the Mean Absolute Percentage

Error (MAPE) are, respectively, similar to ME and to MAD, but they are

measured in percentage terms. Both are appropriate when the cost of errors is

more closely related to the percentage error than to the unit error.

Additional accuracy measures exist in the literature and are primarily

modifications of these common formulations. All attempt to summarize the

performance of the forecast method, and none is perfect. Each fails to capture all

dimensions of the difference between forecasts and actual demand.

One way to overcome this limitation is to analyze the histogram of forecast

errors. A histogram is a bar chart representing a frequency distribution. The x-

axis represents values, and the y-axis represents observed frequencies. The

forecast error histogram is built by calculating a measure of error for each time

interval and plotting them in one graph. Figure 1 provides two hypothetical
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histograms of Percentage Errors, defined as the difference between the actual

and the forecast demand divided by actual demand. Each histogram provides

complete information regarding errors patterns, including systematic errors,

variance, and symmetry. An analysis of histograms helps minimize the limitations

of using a single measure.

 

 

                  
    1 .7 ' ... .... . . .7 -l 1

-200% 0% -300% 0% 100%

Case 1: Unbiased Forecasts Case 2: Biased Forecasts

Mean = 0, Mode = 0 Mean = -O.35, Mode = 0

Standard Deviation = 0.65 Standard Deviation = 0.65

Skewness = 0 Skewness = —0.6   
 

Figure 1 — Examples of Histograms of Percentage Errors

In the first case in Figure 1, there is an equal probability that the

percentage errors will be either positive (underestimate demand) or negative

(overestimate demand). The average error of zero means that errors tend to

cancel one another, and there is no tendency to inflate or deflate forecast

numbers, when compared to actual demand. In the second case, the mean of the

distribution is -35%, so there is a systematic tendency for the forecast to be

greater than actual demand.
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In this dissertation, the focus is on the impact of different profiles of

Forecasting Accuracy, represented as different distributions of forecast errors.

Specifically, we are primarily interested in Forecast Bias (the mean of the

distribution), which commonly occurs in business (Goodwin & Wright 1994).

Anderson & Goldsmith (1994), found systematically biased decision making by

business executives in nearly every industry studied.

The most probable sources for bias in forecasts are internal. In general,

judgmental adjustments are made to incorporate environmental or product-

specific knowledge. These subjective revisions potentially improve forecast

accuracy (Carbone & Gorr 1985; Donihue 1993; Lawrence et al. 1985; Mathews

& Diamantopoulos 1992). There is empirical evidence that they also bring

undesirable bias to the forecasting process.

In a survey of 134 executives, Dalrymple (1987) found that the majority of

companies used subjective forecasting methods. Fildes (1991), in controlled

laboratory experiments, observed systematic bias during forecast formulation.

Sanders (1992) and Lawrence et al. (2000) also found that judgment creates

biased forecasts. Sanders & Manrodt (1994) surveyed 500 companies, and 80

percent of respondents relied on such adjustments. Furthermore, 70 percent of

the managers underestimated demand. The direction of bias, however, depends

on the forecasters role in the company (Cyert & March 1961). The use of

judgmental adjustments also varies by industry type or firm specifics (Mentzer &

Cox 1984; Parkash et al. 1995). Consumer product firms tend to use more

quantitative methods than do industrial firms (Kahn & Mentzer 1995).
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It appears that judgmental adjustments can improve forecasts under

certain conditions. Forecasting performance is influenced by such variables as

the desirability, imminence, time period, and perceived controllability of the event

to be forecast (Wright & Ayton 1986). On the other hand, judgment is better than

quantitative techniques at estimating the magnitude, onset, and duration of a

temporary change. Quantitative methods provide superior performance during

periods of no change, or constancy, in the data pattern (Sanders & Ritzman

1991)

In addition to judgmental adjustments, other possible internal causes for

bias are the reward system (bonuses or salary increments) and company politics.

It departments are rewarded strictly on a revenue basis, forecasts tend to be

systematically higher than actual demand. The rationale is that optimistic

estimates will protect sales from possible stockouts. If the reward system is

based on cost efficiency, forecasts tend to be closer to or less than actual

demand. The rationale is that conservative predictions accommodate sales at the

minimum total cost. Political pressures on the forecasting process can lead to

unrealistic goals (Chase 1992; O'Clock & O'Clock 1989). This is evident when

decision makers develop forecasts based on enterprise or corporate needs

rather than actual market conditions. A good example is the pressure from

stockholders for financial target results.

External factors, such as stockouts and promotions, also may create bias

in forecasts. Wecker (1978), for example, found a direct relationship between
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stockouts and bias. The greater the stockout, the higher is the downward bias in

the sales forecast.

In summary, the literature provides support for a match between product

characteristics and supply chain type (anticipatory and responsive). Even with

increasing pressures for supply chain agility, forecasts are still necessary.

Forecast Bias is an important dimension to consider when investigating Forecast

Accuracy, as it is common in business environments due to internal or external

causes. There is little information, however, concerning the effect of bias on

supply chain performance. In addition, there is a gap in the literature regarding

the influence of different distributions of forecast error. Histograms can be a

better representation of Forecasting Accuracy as compared to single measures

of accuracy.

1.4 Research Objectives

The primary objective is to investigate the impact of Forecast Bias on

Supply Chain performance. Two dimensions of performance are considered:

customer service, measured by fill rates, and average system inventory.

Specifically, this research investigates the influence of accuracy under different

contexts of uncertainty, on daily customer demand and on transit lead times.

This primary objective results in four specific research questions. Each

question is presented and discussed below.

The impact of different profiles of forecast errors has been investigated in

the manufacturing literature. Rresearch suggests that Forecast Bias and

Forecast Variability affect manufacturing performance in different ways. On a
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histogram of forecast percentage errors, the mean value of the distribution

represents the level of Forecast Bias. This is a typical or central value that best

describes the error pattern. Forecast Variability, commonly measured as the

variance or standard deviation of the histogram, refers to the extent of dispersion

of forecast errors around the mean. Studies have found that the impact of bias is

relatively larger than the impact of variability. This suggests that different profiles

of Forecast Accuracy (different histograms of forecast error) may affect supply

chain performance in different ways.

The relationship between bias and variability has been researched. The

focus here is on a different dimension of the histogram distribution of forecast

errors: skewness. Skewness is a measure of symmetry or, more precisely, the

lack of symmetry. A distribution is symmetric if it is equally divided to the left and

right of the center point. In our case, the center point is the average of forecast

errors, or simply the level of Forecast Bias. Therefore, we are interested in the

relative influence of Forecast Bias and Forecast Skewness on performance.
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-050 0-00 +050 040 0.00 +0.50

Case 1: Normal (0, 0.15) Case 2: BETA (3.5, 15, -0.35, 1.4)

Mean = 0, Mode = 0 Mean = 0, Mode = - 0.09

Standard Deviation = 0.15 Standard Deviation = 0.15

Skewness = O Skewness = 0.6838   
Figure 2 - Examples of Different Skewness Patterns

Figure 2 illustrates the previous discussion. Suppose that two different

patterns of forecast percentage errors are plotted in histograms. In the first case

in Figure 2, the profile of errors follows a Normal distribution, with a mean of 0%

and a standard deviation of 15%. Notice that errors are distributed in a symmetric

way around the mean. There is no Forecast Bias in this case, as the average

value is zero, and there is equal probability for a forecast to be either greater

than or lesser than actual demand. In the second, the error distribution follows a

generalized form of the Beta distribution. It also has a mean of 0% and a

standard deviation of 15%. In contrast to the first case, there is a higher

probability that percentage errors will be lower than the average. Although the

two cases have the same measures of central tendency (mean) and variability

(standard deviation), their histograms reveal two distinct patterns. It is expected
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that these two patterns will affect operations and ultimately performance in

different ways.

This dissertation will explore the relative impact of different forecast

Percentage Error distributions on performance. Specifically, the first research

question is: What are the impacts of Forecast Bias on supply chain performance,

compared to the impacts of Forecast Skewness?

In addition, there is a need to evaluate any interaction between Forecast

Bias and Forecast Skewness. In Figure 2, for example, the two distributions have

the same mean and standard deviation. Does the impact of bias on performance

change with the skewness of the distribution? It is possible that at higher degrees

of skewness the impact of bias is amplified. Therefore, the second research

question is: Are there any significant interaction effects between Forecast Bias

and Forecast Skewness?

Earlier, the concept of a fit between product characteristics and supply

chain design was presented. This notion implies that, the relative importance of

forecasts differs with the level of uncertainty in demand and operations. It is

expected that the impact of Forecast Accuracy on performance will be amplified

for products with higher variation in daily requirements. Thus, the third research

question is: In what circumstances and to what extent does the variability in daily

demand offset or compound the impacts of Forecast Bias and Forecast

Skewness?

The last research question considers the impact of Forecast Bias and

Forecast Skewness under different levels of lead time variability. As previously
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discussed, as companies go global, transit lead times tend to be longer and more

uncertain. The relative impact of Forecast Bias and Forecast Skewness on

performance is potentially different at lower and higher levels of transit lead time

uncertainty. The final research question is: In what circumstances and to what

extent does the variability in transit lead times in the supply chain network offset

or compound the effects of Forecast Bias and Forecast Skewness?

The second major objective of this dissertation is to generate guidelines

that can help executives determine the relative influence of Forecast Bias under

different levels of customer demand and transit lead time variability. Such insight

can enhance supply chain performance through better forecasting by prescribing

when efforts to reduce or eliminate Forecast Bias should be pursued.

1.5 Research Procedure

It is difficult to isolate the parameters characterized in the research

questions in actual business systems due to the many interactions and lack of

control. This research requires a controlled environment under which

experiments can be conducted and evaluated. The analysis of actual operations

or a survey study could not provide the experimental environment or the

necessary level of control.

This research uses simulation methodology, as it is capable of

representing controllable environments and of modeling stochastic uncertainty.

General system characteristics are translated to a conceptual model that

captures common operations typical of the consumer electronics industry. Using
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the Arena simulation package, a model is developed and validated with realistic

parameters.

A full factorial design is conducted, with data collected from 30 replications

of 150 treatments, from combinations of 4 factors (Demand Variability, Lead

Time Variability, Forecast Bias and Forecast Skewness). As performance

variables, Order Fill Rate, Case Fill Rate, and Average System Inventory are

recorded.

The statistical technique of multivariate analysis of variance (MANOVA) is

employed to analyze collected data for hypotheses testing.

1.6 Potential Contributions

The primary research contribution is a better understanding of how

Forecasting Accuracy, and specifically Forecast Bias and Forecast Skewness,

impact supply chain performance. This investigation is conducted for different

levels of demand and transit lead time, which have not yet been explored in the

literature.

The secondary research contribution is a set of managerial guidelines to

provide insights regarding the benefits of reduced Forecast Bias. Specifically, a

framework is provided to guide management efforts. This framework can be cost

effective, as capital investments are required to improve forecast accuracy

through management training and data collection equipment.
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1.7 Organization of Chapters

This introductory chapter has stated the primary issues and the relevancy

of the research, as well as specific research questions and potential

contributions.

In chapter two, the literature will be reviewed from three perspectives. The

first section addresses general forecasting research. The second section covers

the role of forecasting in supply chain management. The final section reviews

previous applications of simulation methods. At the end of the chapter, formal

hypotheses are presented.

Chapter three discusses research methods. First, the conceptual model is

presented. Second, the simulation environment is described. Third, details of the

experimental design, including experimental factors, fixed parameters, and

performance variables, are presented. Finally, the data analysis technique is

discussed.

Chapter four examines the major assumptions related to the statistical

technique and presents formal hypothesis tests.

In chapter five, the conclusions of this research are stated, along with

implications (both academic and managerial), research contributions, and

directions for future research.
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2 Literature Review

This chapter reviews past research related to forecast in a supply chain

context. Gaps in the literature will be identified and support for the relevancy of

this dissertation will be provided.

Section one of this chapter covers the general research on forecasting.

The second section describes previous research that addresses forecast issues

in supply chain management. This includes an analysis of past research in both

manufacturing and supply chain management literatures. The third section

includes previous applications of simulation methodology for supply chain

analyses.

Summaries from each section are then provided and conclusions are

presented. In addition, the hypotheses to be tested using the simulation

environment are formally stated.

2. 1 Research on Forecasting

This section reviews the relevant literature of forecasting. The discussion

focuses on forecasting articles that review the body of knowledge and attempt to

identify research needs in the area. As a result, a historical perspective of the

field is presented and gaps in the forecasting literature are identified.

Armstrong et al. (1984) developed one of the first reviews of forecasting

literature. This article reviews twenty-five years of research and concludes that

the field is highly focused in the comparison of alternative methods for short term

forecasting.
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Another comprehensive review is developed by Makridakis (1986). In this

article, the author assesses forecasting performance, evaluates

accomplishments, and proposes directions for future research. This review also

offers an interesting historical perspective regarding forecasting.

According to Makridakis (1986), the foundations of forecasting were laid in

the late 1930’s when the first forecasting models were proposed. Between 1950

and 1970, five parallel and independent subfields were developed in the field of

quantitative forecasting, including: (1) econometric models used by economists

to explain macroeconomic phenomena; (2) filtering methods used by engineers

to eliminate ‘noise’ from patterns; (3) models used by statisticians to generate

time series and forecasts; (4) decomposition techniques used by the government

to uncover seasonality and trend-cycles in macroeconomic time series; and (5)

exponential smoothing methods used by operation researchers to forecast

production scheduling and inventory control.

The personal computer brought computational power to the fingertips of

researchers and practitioners. The 1970’s and 1980’s were dominated by

research focused on the assessment of forecasting performance, and the

comparison of alternative methods.

Makridakis (1986)’s research also proposes directions for future research.

As a conclusion, the author suggests the development of new methods and the

modification of the existing ones as the primary focus for new research efforts.
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Armstrong (1988) conducts another comprehensive review of forecasting

research. The author identifies research needs of practitioners and academics

using a survey instrument. Results of this survey are presented on Table 3.

 

 

 

 

 

Field Practitioners '  . Academics ’ ’

Economics Causal models; survey research Causal models; uncertainty

Finance & Environmental forecasting; Expert systems;

Accounting seasonal variations uncertainty

Marketing Implementation; Incorporate judgment in

computerization; combine models; competitive

methods; competitive actions; actions; combine

evaluation forecasts; compare

alternative methods;

implementation

Planning Impact on decision-making; Compare alternative

expert systems; judgmental methods; monitor forecast

forecasting; computerization;

compare alternative models;

implementation; scenarios;

 

 

 

    

uncertainty

Production New product forecasting; Combine alternative

combine methods; quality of methods; uncertainty;

data vs. method; seasonality combine forecasts;

compare alternative

methods

Research & New product forecasting; Combine alternative

Development outliers; causal models; methods; compare

computerization alternative methods;

impact on decision-

makinm scenarios

Other Areas Expert systems; compare Compare the alternative

alternative methods; impact on methods; quality of data

decision-making; vs. method; impact on

implementation; monitor decision-making;

forecasts scenarios; uncertainty
 

Table 3 - Research Needs in Forecasting (Armstrong 1988)

After identifying the most important areas for research, Armstrong (1988)

compares the identified research needs with the literature published up to that

moment. Table 4 summarizes the conclusions developed from the review.
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Topic Past Research Conclusions Research

Prospects

Decomposition (Predict - Helpful where uncertainty is high Good

parts, then aggregate)

Extrapolation - Seasonal factors useful Modest

- Trends should be dampened

- Minor differences in accuracy

among methods

Intentions - Ways to reduce response and non- Modest

response bias

Expert Opinion - Limited value of expertise in Excellent

forecasting large changes

- Role-playing accurate for conflict

sfiuafions

Expert Systems - Less expensive & a bit more Excellent

(Bootstrapping) accurate

Causal Methods - Simplicity is a virtue Modest

(Econometrics) - Econometric methods better for

large changes

Combined - Combination yield substantial gains Modest

Forecasts

Uncertainty - Judgmental estimates are typically Good

overconfident argue against your

forecast

Implementation - Scenarios can help to gain prior Excellent

commitment

Audit Process - Guidelines needed Excellent  
 

Table 4 - Comparison of Research Needs and Research Supply in Forecasting

Table 4 presents an identification of gaps between the reported research

(Armstrong 1988)

and the identified research needs. Potential topics suggested by this analysis

include: (1) identification of standards for acceptable practice in forecasting; (2)

improvement of forecasting under conflict situations; (3) identification of best

methods for estimating uncertainty associated with forecasts;

identification of effective ways to gain managerial perspective of unfavorable

forecasts.
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Dawes et al. (1994) discuss the past and the future of forecasting

research. In this article, a panel of four research experts presents a brief

response to two issues: (1) identification of the major development in forecasting

over the past decade, and (2) identification of the area with most promise for the

future. According to the authors, the future did not appear to lie in bigger or

smarter models. Rather it may be in the implementation of models, in the

development of a better understanding of the practical forecasting process, and

by the better use of the data resources made available by increasing automation.

Finally, Winklhofer et al. (1996) developed a recent review of empirical

studies on forecasting. One conclusion is that although considerable empirical

research has focused on the forecasting practices of firms, not all issues have

received equal attention. While questions concerning the utilization of forecasting

methods have attracted a lot of study, issues such as the role and level of

forecasting have been relatively neglected. While variables such as company

size and industry type have been linked to some aspects of forecasting practice

(resources available and forecasting accuracy), such linkages have been left

unexplored for other aspects (data sources utilized). According to the authors,

future research should take three broad directions: (1) to relate organizational

and environmental variables known to affect forecasting to a wider range of

issues; (2) to explore the impact of additional firm-specific and environment-

specific variables on forecasting; and (3) to examine neglected linkages between

different aspects of organizational forecasting.
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The preceding discussion provides interesting insight about the research

focus on forecasting. Initially, efforts were focused on analyzing the performance

of alternative forecasting techniques under different contexts. The primary

research motivation in the past was to investigate alternatives to improve existing

forecasting techniques and to identify a match between such techniques and

different environmental characteristics.

Most recent reviews of the forecasting literature provide support for the

need of a better understanding of the managerial side of the forecasting process.

The current research motivation is to gain a better understanding of the practical

issues involving the forecasting process. It also aims to gather a better

knowledge regarding the impact of forecasting on operations and decision-

making processes.
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2.2 Forecast Issues in Supply Chain Management

This section reviews previous research that addresses forecast issues in

supply chain management. The first part of this section presents an analysis of

past research related to forecasting in the manufacturing literature. The second

part presents a review of past research in the supply chain management

Iiteratu re.

2.2.1 Manufacturing Literature

Earty efforts investigating the impact of forecast error on operations are

reported in the manufacturing literature. There is considerable research that

reports the response of production scheduling and resource planning

performance resulting from various levels of forecast error. Previous research in

this area generally considers a single unit of analysis, such as a single company

or a single manufacturing facility.

In an interesting simulation study, Biggs 8 Campion (1982) investigate the

relative impact of forecast error on a production system. This study is different

from previous research that attempts to minimize forecast error by improving

forecasting techniques. The results of the paper indicate that manipulating

forecast error bias may be the better managerial strategy as opposed to going to

great lengths to minimize forecast error. This article is one of the first to

conceptually consider separate dimensions of forecast accuracy.

Lee & Adam (1986) and Lee et al. (1987) support the importance of

forecast bias on manufacturing performance. While forecast bias and standard
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deviation significantly affect the Master Requirements Planning (MRP)

performance, bias has a more significant impact. Both studies are limited to a

single plant operation. These two studies were motivated by the similar findings

of the Lee (1982) doctoral dissertation.

Lin & Krajewski (1992) and Lin et al. (1994) explicitly address forecasting

in manufacturing environments. The authors evaluate the impact of three

scheduling parameters: replanning interval, schedule freezing period, and

forecast window. In their analytical model, forecasts are considered unbiased,

and its variance increases as the time interval between the forecast date and the

production date increases. The authors present the effects of these three

parameters on cost and performance of the manufacturing system.

Ritzman & King (1993) use a simulation approach to investigate the

impact of forecast error on manufacturing performance. Two components of

forecast error are examined in this article: variability and bias. The study, limited

to a single plant environment, considers the analysis of two lot size techniques

under alternative levels of resource use (workers, capacity, inventory), demand

uncertainty and forecast error. Results regarding the manufacturing performance

indicate that reducing forecast bias is preferred to reducing forecast variability.

In another simulation approach, Zhao & Lee (1993) evaluate the impact of

scheduling freezing parameters on the total cost, schedule instability and service

levels in MRP systems under alternative conditions of demand uncertainty. Two

different forecasting models are compared to the case where no forecast errors
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exist in the system. The results indicate that forecast errors significantly increase

total costs and schedule instability, and reduce the service level in MRP systems.

Toktay (1998) considers an analytical model of a capacitated production-

inventory system operating under a stationary demand process and using

forecast updates to determine production order releases. The author assesses

the impact of information quality on total cost. Results show that forecast model

misspecification and forecast bias lead to significant cost increases.

Masuchun (2002) compares the performance of an anticipatory and a

responsive strategy on a manufacturing system. The author investigates the

impact of the two strategies on total inventory, production throughput, and

customer service. The simulation environment tests the manufacturing system

under different levels of forecast error and inventory targets. Results support the

concept of fit between environmental characteristics (demand uncertainty,

forecast error, target inventory levels) and either the push or pull strategies.

In a recent study, Sloyer (2003) researches the effect of forecast error on

a production system. Specifically, the author uses a simulation model to evaluate

different methods for adjusting inventory targets in the presence of forecast bias.

Results of this study help decision makers determine the most appropriate safety

stock method using characteristics that match a particular environment.

From the previous discussion, most research in the manufacturing

literature addresses a single production facility. The relevant part of this literature

is in the study of multiple stage production systems. Those systems could, by

analogy. be viewed as a supply chain network with multiple partners.
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Bookbinder & Heath (1988) identify this limitation and extend the

investigation to a distribution network. The authors use a simulation model to

study the relationships between network structures, demand, forecast errors, and

their impact on costs. The research compares the performance of alternative lot

size methods and parameters.

In a more contemporary work, Krajewski & Wei (2001) explore the value of

integrated production schedules in supply chains involving buyer and supplier

firms. Basically, the article extends the manufacturing environment to outside its

borders. A stochastic cost model is devel0ped to evaluate the total supply chain

cost with integrated purchasing and scheduling policies. Although forecasts are

unbiased in their analytical model, results Support that forecast accuracy plays a

critical role in realizing the benefits of schedule integration between supply chain

partners.

Forecast error thus plays an important role on the performance of

manufacturing systems. These relevant manufacturing studies consider the

specific dimension of forecast bias. Results support that bias significantly and

substantially impacts manufacturing performance. One limitation is that the

majority of these studies addresses a single production environment, and rarely

considers the operational impact of forecast bias outside the plant borders.
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2.2.2 Supply Chain Management Literature

The previous section presented a review of relevant articles on the

manufacturing literature. Although the preceding discussion offers interesting

insights, the most relevant literature for this dissertation is found on inventory

management studies in the supply chain literature.

In general, these studies evaluate the performance of a supply chain

system under different environmental contexts. They generally investigate the

relationship between inventory target levels and customer service.

Gullu (1997) explores the effects of incorporating forecasts in a two-

echelon network. The analytical model considers a central depot and several

retailers. The article investigates the possible benefits on system costs and

inventory level, when information is shared between supply chain partners. When

information is not shared, higher forecast errors result, the system requires

higher inventory and results in higher system costs.

Other authors focus on evaluating the impact of information sharing on

demand variability across supply chain partners. This impact is commonly

referred as the bullwhip effect, a situation where demand order variability is

amplified as one move up a supply chain. In other words, when there are multiple

levels in a supply chain (supplier, manufacturer, distributor, and customer), the

farther from the customers, the less predictable are the order quantities.

Lee et al. (1997), for example, demonstrate through analytical models the

existence of the bullwhip effect. The authors conclude that the effect is a

consequence of strategic interactions among supply chain members.
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Metters (1997) quantifies the impact of the bullwhip effect on profitability.

The analytical model uses multiple companies operating in a serial supply chain

network. Results indicate that the importance of the bullwhip effect to a firm

differs greatly depending on the specific business environment. Tan (1999)

reaches similar conclusions. The research accesses the impact of information

sharing on different supply chain structures, product structures, and demand mix.

The conclusion is that there is no overall information sharing policy that has

superior performance in all scenarios.

Other studies also use analytical approaches to quantify the impact of

improved information sharing on demand, inventory, and costs. Raghunathan

(1999), for example, quantifies the benefits of a collaborative supply chain

network. Baganha & Cohen (1998) propose conditions to promote supply chain

stabilization on demand variability. Lee et al. (2000) find from their analytical

formulation that the value of information sharing is high, especially when

demands are significantly correlated over time. Finally, Cachon & Fisher (2000)

include transit lead time variability and compares its impact to information

sharing. According to the authors, there are situations where it is more valuable

to reduce uncertainty on transit lead times than to improve information sharing.

A common trait of the previously presented studies is to consider demand

variability, but not to explicitly consider forecasts.

Chen et al. (2000) identify this limitation and extend the work developed

by Metters (1997) by incorporating forecast error in its analytical formulation.

Among its findings, the research demonstrates that the bullwhip effect can be
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reduced, but not completely eliminated by centralizing demand information. The

results suggest that management policies can have a destabilizing effect by

increasing the volatility of demand as it passes up through the chain.

Yao (2001) also explicitly considers forecasts in his dissertation research.

The author compares the bullwhip ratio under three different forecasting methods

and demonstrates that the optimal forecast scheme has advantages over other

traditional quantitative techniques.

Ganeshan et al. (2001) study the impact of selected inventory parameters

on supply chain performance. In addition to forecast error, two inventory

parameters are modeled: mode of communication between echelons and

planning frequency. The results are consistent with previous research: increasing

forecast error and replanning frequency decreases service, return on investment,

but increases cycle time. The use of a communication mode facilitating exchange

of information between echelons results in increased service, when compared to

the scenario where there is lack of information sharing between supply chain

partners.

Xu et al. (2001) develop an analytical study with similar objectives to

Raghunathan (1999). In the former case, forecast error is explicitly modeled.

Independent actions by members of a conventional supply chain are shown to

impact overall performance negatively by increasing order release variability and

forecast error variability. The proposed analytical model is useful to assess when

and to what extent such fluctuations can be controlled through supply chain

collaboration.
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In a simulation study, Zhao et al. (2002b) explore the value of practicing

early order commitment in the supply chain. Early order commitment represents

a situation where a retailer commits to purchase a fixed-order quantity and

delivery time from a supplier before the real need takes place. The authors

investigate the complex interactions betvlreen early order commitment and

forecast errors by simulating a supply chain with one supplier and multiple

retailers under demand uncertainty. One of the findings is that different

components of forecast error have different cost implications.

In a follow-up study, Zhao et al. (2002a) examine demand forecasting and

inventory replenishment decisions by the retailers, and production decisions by

the supplier under different demand patterns and capacity tightness. Analysis of

the simulation output indicates that the selection of the forecasting model

significantly influences the periorrnance of the supply chain and the value of

information sharing.

The preceding discussion supports that most of the research on the

supply chain management literature addressed indirectly the impact of forecast

errors on performance. In general, this impact is assessed by investigating

issues related to supply chain information sharing. In these studies, forecast error

is considered, but it is treated much more as a control variable or parameter

rather than a primary factor in the study. There is a gap in the literature to

investigate the direct impact of forecast errors in a supply chain context. More

specifically, there is a lack of studies that consider the direct impact of Forecast

Bias on supply chain performance.
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2.3 Simulation in Supply Chain Management

Previous sections in this chapter reviewed the relevant research on the

manufacturing and supply chain literatures. Now we review previous studies in

supply chain management that used simulation as a methodological tool.

Three model categories are frequently used in logistics and supply chain

planning: (1) analytic, (2) heuristic, and (3) simulation. Analytical models use

mathematical methods to identify an “optimal” solution to the problem under

analysis. In contrast, models that utilize heuristic or simulation approaches utilize

numerical techniques to quantify specific problem solutions. Both analytic and

heuristic solutions are typically deterministic in that the recommended course of

action will be identical, if the procedure is repeated using the same data and

assumptions. The distinguishing feature of simulation is its capability to include

stochastic situations, where uncertainty can be better considered.

One of the first reviews of the use of simulation in supply chain problems

is developed by Bowersox & Closs (1989). In the article, the authors compare

simulation with other methodologies and also present the most commonly used

applications. Common applications are categorized in terms of structural design

and operational questions. Structural analysis typically considers the number of

facilities and channel design relationships facilities and/or channel participants.

The second category of planning and evaluation is tactical in nature. Operational

analysis considers spatial and temporal product positioning. The typical

operational analysis is concerned with the integration of raw material and finished
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goods inventory, service levels and production planning. These two categories

and typical problems are summarized on Table 5.

 

 

 

 

 

 

 

 

  

Category Type of Problem Observation

Structural Facility Analysis Focuses on the geographical location

Analysis and arrangement of production,

warehouse and to a lesser extent retail

stores.

Structural Channel Structure Focuses upon the efficiency and

Analysis effectiveness of alternative channel

members such as raw material

suppliers, manufacturers, distributors,

wholesalers and retailers.

Operational Inventory Analysis of the impact of inventory

Analysis Management policies on cost, service and

pedbnnance.

Operational Forecasting What is the effect of forecast accuracy

Analysis on inventory required to meet service

level objectives.

Operational Distribution What are the cost/service benefits of

Analysis alternative timing and transportation

strategies.

Operational Production How do current policies regarding

Analysis Scheduling mduction scheduling impact inventory.

Operational Functional Impact of increased internal integration

Analysis Integration on cost, service level and performance.

Operational Supply Chain Impact of increased integration across

Analysis Integration partners in the supply chain on cost,

service level and performance.  
 

Table 5 - Categories of Logistics Applications (Bowersox & Closs 1989)

 
To be able to assess how the methodology has been used in academic

research on supply chain management, a focused literature review was

conducted for this dissertation. Eight journals were evaluated: Journal of

Business Logistics, International Journal of Physical Distribution & Logistics

Management, International Journal of Logistics Management, Journal of

Operations Management, International Joumal of Operations & Production

Management, European Journal of Operational Research, Decision Sciences
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and Management Science. The period of this review covers from 1980 to the

current date. The period is not consistent for all selected journals. Table 6

provides the number of articles found per publication. Keywords used in the

literature search were: simulation, supply chain, logistics, transportation, and

 

 

 

 

 

 

 

 

 

    

inventory.

Journal Period Articles

Evaluated Found

European Journal of Operational Research 1981 -2003 20

Journal of Business Logistics 1987-2003 19

Decision Sciences 1982-2003 18

Journal of Operations Management 1980-2003 15

International Journal of Physical Distribution 1992-2003 14

& Logistics Management

International Journal of Operations & 1981-2003 14

Production Management

Management Science 1981-2003 13

International Journal of Logistics 1998-2003 2

Management
 

Table 6 - Simulation Articles in Logistics and Supply Chain Management

A total number of 115 references were collected from these journals. Two

criteria were used for the selection of articles: first, the article should use

primarily simulation as a methodological tool and second, the article should

address one of the types of problems proposed by Bowersox & Closs (1989).

Each article was reviewed related to its content and then allocated to a single

type of problem. Table 7 has a summary of this categorization process.
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Category Type of

Problem

Articles

 

Structural

Analysis

Facility

Analysis

No articles found

 

Structural

Analysis

Channel

Structure

(9 articles)

Berry et al. 1994; Evers 1996; Hammant et

al. 1999; Harrington et al. 1992; Landeghem

8. Vanmaele 2002; Petrovic et al. 1998;

Swaminathan et al. 1998; Taylor & Closs

1993; Vorst et al. 2000
 

Operational

Analysis

Inventory

Management

(39 articles)

Bagchi et al. 1986; Barnes-Schuster &

Bassok 1997; Bashyam & Fu 1998; Benton

& Krajewski 1990; Biddle & Martin 1986;

Bradley & Glynn 2002; Bregman et al. 1989;

Chien 1993; Choi et al. 1984; Chyr 1996;

Clark et al. 1983; Disney et al. 1997;

Ebrahimpour & Fathi 1985; Etienne 1987;

Garg et al. 2002; Glasserman & Liu 1996;

Hong-Minh et al. 2000; Humphrey et al.

1998; Jackson 1988; Jacobs & Whybark

1992; Kabir & AI-Olayan 1996; Kumar &

Chandra 2002; Li & Qi 1995; McClelland &

Wagner 1988; Mohan & Ritzman 1998;

Okogbaa et al. 1994; Petrovic et al. 1982;

Pfohl et al. 1999; Rosenbaum 1981; Rutten

& Bertrand 1998; Takahashi et al. 1997;

Teulings & Vlist 2001; Towill et al. 1992; V.

Daniel R. & Srivastava 1998; Waller et al.

1999; Walter & Bowersox 1988; Wemmerlov

1989; Zinn & Mannorstein 1990; Zinn et al.

1992
  OperationalAnalysis  Forecasting

(8 articles)  Biggs & Campion 1982; Flowers 1980; Hsu

& EI-Najdawi 1991; Karmarkar 1994; Lee &

Adam 1986; Ritzman & King 1993; Zhao et

al. 2002a; Zhao et al. 2002b
 

Table 7 — Articles Categorized by Type of Problem
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Category Type of

Problem

Articles

 

Operational

Analysis

Distribution

(21 articles)

Akaah & Jackson 1988; Andreussi et al.

1981; Bagchi 1988; Bielli 1992; Bookbinder

& Heath 1988; Evers 1999; Fujiwara et al.

1987; Gomes & Mentzer 1988; Guimaraes &

Kingsman 1989; Higginson 1995; Higginson

& Bookbinder 1994; Ho 1992; Jansen et al.

2001; Kamoun & Hall 1996; Legato 8. Mazza

2001; Mentzer 8. Gomes 1991; Pooley &

Stenger1992; Powers & Closs 1987;

Shabayek & Yeung 2002; Strasser 1992;

Waller 1995
 

Operational

Analysis

Production

Scheduling

(33 articles)

Akkan 1997; Ardalan 1997; Benton &

Whybark 1982; Berkley & Kiran 1991; Bott &

Ritzman 1983; Chakravorty & Atwater 1995;

Chan et al. 2001; Chan & Smith 1993;

Christy & Kanet 1988; Cruickshanks et al.

1984; Ding & Yuen 1991; Goyal et al. 1993;

Heuts et al. 1992; Ho 1993; Huang et al.

1983; Huq & Huq 1995; Kanet 1986; Kern &

Wei 1996; Klitz 1983; Krajewski et al. 1987;

Leachman & Gascon 1988; Lee & Seah

1988; Mapes 1993; McClelland 1988, 1992;

Morris & Tersine 1990; Schartner & Pruett

1991; Scudder & Hoffman 1985; Seagle 8.

Fisk 1982; Sridharan & LaForge 1990, 1994;

Suresh & Meredith 1994; Tardif &

Maaseidvaag 2001
 

Operational

Analysis

Functional

Integration

No articles found

  OperationalAnalysis  Supply Chain

Integration

(4 articles)  Closs et al. 1998; Kia et al. 2000;

Raghunathan 2001; Towill & McCullen 1999

 

Table 7 — Articles Categorized by Type of Problem (Continued)
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Some interesting conclusions can be developed from the review of

simulation studies in supply chain management. First, research has focused on

operational issues. A total of 106 .articles were categorized as operational

analysis. Considerable effort in this area has been done in the study of Inventory

Management, Production Scheduling and Distribution problems. Second, there is

limited research investigating Forecasting, Functional Integration and Supply

Chain Integration issues. Only twelve simulation studies were found that

addressed such issues. Finally, the structural level of analysis has also received

limited research. Only nine simulation studies were found on this area, dealing

with problems related to the channel structure.

The preceding discussion supports that while a considerable effort has

been done to study supply chain operational characteristics, few articles used

simulation to address more tactical or strategic type of problems. Furthermore,

there is limited number of simulation studies that addressed forecast as the

primary issue. There is a need to investigate the'impacts of the different

dimensions of forecast error on supply chain performance.
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2.4 Conclusions from Literature Review

The previous sections discussed how issues related to forecast error were

addressed in the forecasting, manufacturing and supply chain literatures. In

addition, the preceding section discussed how simulation was used to investigate

supply chain related problems.

From the insights provided by the forecasting literature review, it is clear

that most of the efforts were focused on the evaluation and improvement of

competing forecasting techniques. The literature review indicates that there is a

need for an evaluation of the role of Forecast Bias and its impact on operations.

Three conclusions result from the review of forecasting literature related to

supply chain management research. First, there is substantial need for the

development of research on this topic, as the prior research regarding the impact

of forecast errors on supply chain performance is relatively new and it is mostly

studied in a manufacturing context. Second, there is a need for better

conceptualization of forecast errors, making clear the distinctive dimensions of

error (bias, variability, etc.). Third, although some issues regarding information

sharing and demand amplification are addressed in the literature, there is a need

for better assessment regarding the impact of forecast errors in complex supply

chain environments. This dissertation fills these three gaps by distinctly modeling

different dimensions of forecast accuracy and by representing supply chain

networks with stochastic lead times.

In conclusion, the review of the use of computer simulation as a

methodological tool shows that most of the previous efforts were focused on the
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study of inventory management systems, the evaluation of alternative mles for

production scheduling, and the study of alternative distribution systems, This

dissertation extends previous research by considering the effect of forecast

errors on supply chain performance.

Table 8 presents a summary of the primary gaps identified as a results of

the literature review.

 

 

Topic Gaps

General - Efforts focused in the improvement and evaluation

Research on of competing forecasting methods.

Forecasting - Potential room for the study of the role of forecast

accuracy and its impact on operations.

- Potential room to relate organizational and

environmental variables that affect forecasting and

to explore the impact of additional firm-specific and

environment-specific variables

Forecast issues: 0 There is a need for better conceptualization of

Manufacturing & forecasting accuracy in supply chain management

Supply Chain research.

Management - Although some issues regarding information sharing

and demand amplification were addressed, there is a

need for better assessment regarding the impact of

forecast accuracy on supply chain performance.

- There is a gap concerning the interaction of

components of the forecasting accuracy

distribution and its combined impact on supply

chain operations

 

 

Previous - Most of the effort was focused on operational

applications of issues.

simulation - Limited research investigating Forecasting, Functional    methodology lnteqation and Supply Chain Integration

Table 8 - Literature Review: Primary Gaps

 

This section reviewed previous literature and summarized the primary

existing gaps. The next section formally states the hypotheses to be tested using

the simulation environment.
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2.5 Hypotheses

Using results from the literature review and the research questions

proposed earlier, eight hypotheses can be formally stated.

The literature review supports the need for research of the impact of

forecast errors on supply chain performance. Specifically, there is a need for a

better conceptualization of the different dimensions of forecast error and analysis

of their different impacts. In this dissertation, two aspects of the forecast error

distribution are investigated: Forecast Bias and Forecast Skewness.

The first research question considers the investigation of the different

impacts of Forecast Bias and Forecast Skewness on performance. Therefore,

the first set of hypotheses considers the individual impacts of Forecast Bias and

Forecast Skewness on performance as well as their combined effect. From

insights of the manufacturing literature, it is assumed that both Forecast Bias

(H13) and Forecast Skewness (H1b) individually affect supply chain

performance. The second research question expects the impact of Forecast Bias

on performance to be altered depending on the level of Forecast Skewness.

Therefore, an interaction effect between these two factors is assumed (H1c).

Finally, results from the manufacturing literature suggest that the individual effect

on performance of Forecast Bias is relatively larger (H1d). Thus, the first set of

hypotheses is:

Hypothesis H1a: Forecast Bias has a significant impact on Supply

Chain Performance.
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Hypothesis H1b: Forecast Skewness has a significant impact on

Supply Chain Performance.

Hypothesis H1c: There is a significant interaction effect between

Forecast Bias and Forecast Skewness.

Hypothesis H1d: Forecast Bias has a relatively greater Impact than

Forecast Skewness on Supply Chain Performance.

The third research question investigates the extent that the variability on

daily demand offsets or compounds the impacts of Forecast Bias and Forecast

Skewness on performance. The fourth research question investigates the extent

that the variability on transit lead times offsets or compounds the impact of

Forecasting Bias and Forecasting Skewness.

It is expected that the higher the level of daily demand variability, the

higher the individual impact of Forecasting Bias (H2a). In an analogous way, it is

also expected that the higher the variability in transit lead times, the higher the

impact of Forecasting Bias on performance (H2b). The second set of hypotheses

is stated as follows:

Hypothesis H2a: There is a significant interaction effect between

Forecast Bias and Demand Variability.

Hypothesis H2b: There is a significant interaction effect between

Forecast Bias and Lead Time Variability.

In an analogous way, when higher levels of demand variability (H3a) and

transit lead time variability (H3b) are present, the higher the individual impact of

Forecasting Skewness on performance. Thus, the last set of hypotheses is:
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Hypothesis H3a: There is a significant interaction effect between

Forecast Skewness and Demand Variability.

Hypothesis H3b: There is a significant Interaction effect between

Forecast Skewness and Lead Time Variability.

The eight hypotheses previously presented will bring additional

understanding about the separate impacts of Forecast Bias and Forecast

Skewness on supply chain performance. In addition, the formal test of these

hypotheses will contribute to the existing literature by considering these impacts

under different environmental contexts of customer demand and transit lead time.

This chapter reviewed the literature from three perspectives and

presented formal statements of the hypotheses to be tested. The following

chapter will discuss details about the research methodology.
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3 Research Methodology

This chapter describes the research methodology used for this study. The

first section presents the chosen methodology: computer simulation. The second

section discusses the conceptual model, providing a summary of the various

events modeled and how model validity was assessed. The next four sections

describe model assumptions, experimental factors, fixed parameters, and

performance measures. Finally, the last section explains the data analysis

technique used for formal hypotheses testing.

3. 1 Computer Simulation

This research requires a controlled environment under which experiments

can be conducted and evaluated. The analysis of actual operations or a survey

study could not provide the experimental environment or the necessary level of

control. This dissertation uses simulation methodology, as it is capable of

representing controllable environments and of modeling stochastic uncertainty.

Law & Kelton (2000) define computer simulation as the process of

designing a model of a real system and conducting experiments. This approach

is used whenever a complete mathematical formulation of the problem does not

exist or an analytical method of solving the mathematical model does not exist.

According to Martin (1968), computer simulation is indicated for 27

different types of applications, including evaluation of operations, evaluation of

business strategy, test of strategy and tactics and analysis of decision-making

processes. Simulation is well suited for supply chain and logistics applications,
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because of the interactions and dynamics existent in such problems (Carson et

al. 1997). In addition, it is a viable technique for modeling systems characterized

by great complexity, probabilistic or stochastic processes, and whose variables

are difficult to analyze in precise mathematical terms. Simulation is also quite

tractable for experimentation in that, after a computer model has been developed

and validated, the model may be sampled under different input conditions.

Computer simulation is, therefore, an appropriate methodology for this

dissertation.

3.2 Conceptual Model

This section describes the conceptual model of the supply chain for the

distribution of consumer goods. The conceptual model is the mathematical,

logical or verbal representation of the phenomena to be investigated. It relates

the entities, activities, and factors used in this research.

The conceptual model considered in this research is a dynamic multi-

echelon structure that considers production and distribution functions, product

and information flows, and customer demand and forecasting activities. Figure 3

illustrates the conceptual model.
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Figure 3 — Conceptual Model

The conceptual model assumes independent policy and inventory

operations for each facility. Retail facilities obtain inventory supply from

wholesale facilities, which in turn replenishes inventory from the plant facility.

Daily customer demands can be created using stochastic distributions,

such as Normal and Gamma. Each daily order volume has a defined mean and

variance. This actual demand is then used to create weekly forecasts.

Instead of using a quantitative technique to generate forecasts, controlled

forecast errors are imposed on the actual generated demand at the retail level to

create forecasts. Thus, different patterns of forecast error can be imposed on the

actual demand when generating forecasts. The forecasted demand is then used

as the primary information for planning of replenishment orders in the system. If

no forecast error is defined, actual demand is used for planning purposes. This
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allows forecast error to be controlled and enables the simulation of a supply

chain environment with different patterns of error.

Customer demand and forecasted demand are then used to trigger daily

events in the simulation model, which is presented in the following section.

3.2.1 List of Events

The conceptual model assumes that the behavior of the system changes

as time advances. In this dissertation, therefore, a dynamic simulation model is

considered. During a particular simulated day, a sequence of activities is

performed, updating the status of the entire system before time is advanced.

Each activity is responsible for coordinating flows of information and products in

different ways. This section describes in detail each major activity. Figure 4

summarizes all events present in the conceptual model.
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Figure 4 - Conceptual Model: List of Events
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The first event to occur is the receipt of replenishment shipments. Those

shipments represent in-transit inventory that was scheduled to arrive in the

beginning of the day. Inventory positions are then updated to reflect the

additional inventory received.

The second and third events to occur are the receipt of backorders (from

past unfulfilled demand) and new customer orders at retail locations. Backorders

can be allowed only at the retail level. The simulation user decides if backorders

exist in the system. When backorders are allowed, all customer orders are

eventually fulfilled. If not, then demand that is not filled is lost, and stockouts are

recorded at the retail level. In this dissertation, the choice is to record stockouts

instead of allowing for backorders.

After that, the next event takes place: the shipment of backorders and

customer orders. If the required quantity in an order is fully available, a complete

shipment is sent to customers. If some quantity is missing, a partial order is

shipped. Stochastic lead times are imposed to represent transportation delays. If

an order is left unfulfilled, the remaining quantity is considered a backorder and is

left to be filled on the next day, constituting the fifth event. When replenishment

requests are not fully shipped, stockouts are calculated instead. The same

occurs at the retail level if backorders are not allowed, the case in this

dissertation.

In the following event, replenishment orders are received at the sourcing

locations after stochastic delays of order transmittal are completed. These

replenishment orders represent requests from retail facilities to wholesale
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facilities and requests from wholesale facilities to the plant. Such replenishment

orders are processed in the same ways as the customer order fulfillment

process. After inventory evaluation, replenishment shipments are created as the

seventh event. Replenishment quantities not fulfilled are discarded, and

stockouts are recorded. Such requirements are reflected in the next planning

cycle.

After the completion of both customer and replenishment order fulfillment

processes, replenishment requirements are evaluated, constituting the eighth

event. Requirements are evaluated under a daily order-up policy. Maximum

levels of inventory are defined in each location for each specific product.

These target inventory levels are defined in days of demand. This means

that targets are dynamically calculated based on demand forecast information.

During every review period, average daily forecast is recalculated. The average

daily forecast is then multiplied by the defined target level (in days) to obtain a

specific quantity to be maintained at the facility. This procedure allows the

system to dynamically adapt to seasonality periods. Inventory requirements are

then evaluated taking into account not only current inventory position, but also

transit inventory and backorders. If the planned inventory is below the maximum

target, a replenishment order is created. The order quantity is the necessary

amount of products needed to build the maximum target.

The ninth event to occur is production planning. Production lead time is

represented as a stochastic delay. The plant facility also has target inventory

levels to maintain. If quantities are required, a delay is applied to represent the
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manufacturing time required to build such requirements. After this delay is

completed, these quantities are moved automatically to stock and are ready to be

shipped. This research assumes infinite capacity at the plant. A second

assumption is that the production lead time, although stochastic, does not

depend on the size of the replenishment order. Finally, for modeling purposes,

the production lead time was incorporated as the transit time from plant to

wholesale facilities.

The last event to occur is the collection of statistics. Service statistics are

collected only in the first pass. Fill rates, average inventory and costs are

computed for each facility. Individual statistics are then aggregated to compute

performance for the entire supply chain.

After the last event occurs, time advances and the system returns to the

first event, repeating the same sequence until the simulation period is over.

The conceptual model is thus translated to a simulation model. The next

section details steps taken to assure the simulation model validity.

3.2.2 Model Validation

Before information derived from simulation models can be used, the

primary concern is whether results can be considered valid. This concern is

addressed through model verification and validation. This section describes

major issues regarding validation and details of how the simulation model was

evaluated before experiments could be conducted and results could be analyzed.

In a comprehensive article, Sargent (2000) discusses verification,

validation, and accreditation of simulation models. In this article, model

56



verification is defined as “ensuring that the computer program of the

computerized model and its implementation are correct”. Model validation is

defined as “substantiation that a computerized model within its domain of

applicability possesses a satisfactory range of accuracy consistent with the

intended application of the model” (Schlesinger et al. 1979). Finally, model

accreditation determines if a model satisfies specified criteria. The author

presents different approaches to deciding model validity and defines different

validation techniques.

The determination of whether a model is valid or not is usually part of the

entire model development process. It is often too costly and time consuming to

determine whether a model is absolutely valid over the complete domain of its

intended applicability. Instead, sample tests and evaluations are conducted until

sufficient confidence is obtained that the model can be considered valid.

Sargent (2000) presents a simplified version of the modeling process

(Figure 5). He defines the problem entity as the system, idea, situation, policy, or

phenomena to be modeled. The conceptual model can be viewed as the

mathematical/logicaI/verbal representation of the problem entity. Finally, the

computerized model is the conceptual model implemented on a computer.
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Figure 5 - Simplified Version of the Modeling Process (Sargent 2000)

During the modeling process, four types of validity should be ensured. The

first one, conceptual model validity, is defined as determining that the theories

and assumptions underlying the conceptual model are correct and that the model

representation of the problem entity is “reasonable” for the intended purpose.

The second dimension of validity, computerized model verification, is defined as

ensuring that the computer programming and implementation of the conceptual

model is correct. The third dimension, operational validity, is defined as

determining that the model’s output behavior has sufficient accuracy. Finally,

data validity is defined as ensuring that the data necessary for model building,
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model evaluation and testing, and conducting the model experiments are

adequate and correct.

Sargent (2000) presents sixteen validation techniques that can be used to

ensure the different types of validity. These techniques can be used either

subjectively or objectively (by using some type of statistical test or mathematical

procedure). Generally, a combination of techniques is used.

To assess conceptual model validity, an evaluation of the model is

required to ensure its correctness for the intended purpose. This procedure

includes determining if the appropriate detail and aggregate relationships are

used and if the appropriate structure, logic, and mathematical and causal

relationships are employed. To assess this type of validity, two techniques are

used: face validation and traces.

’ Face validation requires that experts on the problem entity evaluate the

conceptual model to determine if it is correct and reasonable for its purpose. This

technique can be used in determining if the logic in the conceptual model is

correct and if a model’s input-output relationships are reasonable. In this

research, each event proposed on the conceptual model was analyzed and

evaluated by managers of four different companies. The conceptual model was

considered reasonable when an agreement was reached in terms of the logical

relationships described in the conceptual model.

In addition to face validation, traces were used to track orders and

shipments throughout the simulation model. A log file was created with every

single activity that was generated during initial experiments. The file recorded
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customer orders, shipments to customers, replenishment orders, replenishment

shipments, and inventory positions throughout the simulation. Using this

technique, information and product flows were tracked and analyzed. The

objective was to determine if the logic was correct and if the necessary accuracy

was maintained. The model was concluded to operate according to the proposed

logic.

The trace technique was also useful to assure the second dimension of

validity, computerized model verification. The use of a special purpose simulation

language generally results in fewer errors than if a general purpose simulation

language is used. In this case, a special-purpose language is used (Arena

Simulation Package) and verification is primarily focused on testing if the model

has been programmed correctly in the simulation language. By analyzing the log

file, the second type of validity is considered achieved.

The third type of validity, operational validity, is concerned with

determining that the model’s output behavior has the accuracy required for the

model’s intended purpose. This is where most of the validation testing and

evaluation took place. A subjective approach was used to ensure operational

validity. Three techniques were used: Parameter Variability-Sensitivity Analysis,

Degenerate Tests, and Internal Validity Check.

The Parameter Variability-Sensitivity Analysis technique consists of

changing the values of the input and internal parameters of a model to determine

the effect upon the model’s behavior and its output. Initial simulation runs

generated outputs with reasonably low variance under different uncertainty
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environments. In our case, inventory and lead time parameters where changed

and its effect on performance variables were observed. For example, when

inventory levels were lowered, service levels and average inventory went down.

When lead times were increased, transit inventory and cycle time went up. After

different tests, the model’s behavior is concluded to be satisfactory.

The second technique used was Degenerate Tests. The degeneracy of

the model’s behavior was tested by appropriate selection of values of the input

and internal parameters. As an example, production times and lead times were

increased, with the objective to replicate a constrained environment. As an effect,

backorders were increased and service variables went substantially down.

Finally, the last technique used was Internal Validity. In this case, several

replications (runs) of the model were made to determine the amount of (internal)

stochastic variability. One way to assess the variability was to calculate the

coefficient of variation (CV), defined as the standard deviation of a distribution

divided by its mean. For the performance variables considered in this research,

the average CV across scenarios stayed between 0.01 and 0.02, giving support

for a low amount of variability across different replications. Therefore, the model’s

internal validity was considered appropriate.

Finally, data validity was ensured by testing the collected data using

internal consistency checks, and screening for extreme values. Reviews were

conducted with company experts. When problems were found, the source of data

was contacted and errors were eliminated from data used.
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3.3 Simulation Model

As presented in the discussion of the conceptual model, this research

incorporates manufacturing lead time, distribution inventory policies, stochastic

demand patterns, stochastic lead times, and measurements of inventory levels

and fill rates into a simulation model. This section describes major model

assumptions.

The general supply chain network structure presented in the conceptual

model was adapted to model a typical network. Figure 6 illustrates the network

environment used for the analysis.
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Figure 6 — Typical Supply Chain Network

The network assumes direct shipments from the plant to two different

wholesale locations. Each one of the wholesale facilities is responsible for
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replenishing five different retail locations. Each individual retail location has

equally defined and independent demand patterns. The demand for the

wholesale level is equal to the sum of each of the five individual retail facilities.

The network is considered typical of a consumer electronics firm with

operations in the United States. It assumes two regional distribution centers, for

example one in the east coast and another in the west coast, and five local

distribution centers in each region. For simplification purposes, a single

production source is considered. Although generalization for all types of

businesses is limited, the network was considered typical after reviews were

conducted with company experts.

3.4 Experimental Factors

The purpose of an experimental design is to provide a method for

measurement of changes made in the factors and not other random fluctuations,

which might occur during the experimental runs. Hunter 8 Naylor (1970) point out

that a variety of experimental designs may be employed in simulation

experiments when the objective is to explore the reaction of a system to changes

in factors affecting the system. Those designs considered to be particularly

relevant include the full factorial, fractional factorial, and response surface

designs. This research employed a full factorial design with a structured

approach for studying the research questions and hypotheses.

A factorial experiment is one in which the effects of all the factors and

factor combinations in the design are investigated simultaneously (Cohran & Cox

1957). Each combination of factor levels is used the same number of times. The
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experiments were designed to reflect the dynamic process of market demand

and supply chain activities. Four groups of experimental factors included are: (1)

Demand Variability, (2) Lead Time Variability, (3) Forecast Bias and (4) Forecast

Skewness. I

The first experimental factor, Demand Variability, represents the level of

variability in customer daily demand. This factor is introduced as a way to

investigate the impact of Forecast Accuracy under different levels of demand

instability. Three different levels of Demand Variability are considered: low,

medium and high.

Customer demand is assumed to follow a Triangular distribution. This type

of statistical distribution is commonly used in situations in which the exact form of

the distribution is not known, but estimates for the parameters are available. This

approach represents transit lead times in a very general form. The Triangular

distribution can be defined as symmetric or asymmetric. In addition, it is bounded

at minimum and maximum defined values, minimizing the problem of occurrence

of extreme values during simulation runs.

At the low Demand Variability level, customer demand in each retail

location is assumed to follow a Triangular distribution with minimum value of 75

units per day, a mode of 100 units per day, and a maximum value of 125 units

per day. As presented before, the coefficient of variation (the standard deviation

of a distribution divided by its mean) is the measure of variability. At this level, CV

is equal to 10%.
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At the medium level of Demand Variability, customer demand in each

retail location follows a Triangular distribution with minimum value of 40 units per

day, a mode of 100 units per day, and a maximum value of 160 units per day,

resulting in a CV of 25%.

Finally, at the high level of Demand Variability, customer demand follows a

Triangular distribution with minimum value of 0 units per day, a mode of 100 units

per day, and a maximum value of 200 units per day, resulting in a CV of 40%.

It is important to notice that each retail location has independent patterns

of demand defined with equal distributions. No transshipments are allowed in the

simulation environment, implying that if there is no inventory at a particular retail

location to fulfill demand then demand is lost and stockouts are recorded. All

levels of Demand Variability follow the same type of statistical distribution, with

the same mode, but different variability parameters. The mode value of 100 units

per day is typical of a consumer electronics industry. This approach was chosen

because there are neither capacity constraints nor economies of scale imposed

in the simulation model. The focus here is to address different levels of variability

at the same base level of average demand, not the impact of different daily

volumes.

The second experimental factor is called Lead Time Variability. This factor

is introduced to investigate the impact of Forecast Accuracy under different levels

of transit lead time instability. Two different levels were considered: low and high.

The physical network, presented in the previous section, has a single plant that
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supplies products to two different wholesale locations. Each wholesale location is

responsible for supplying products to five retail locations.

Transit lead times also follow Triangular distributions. Parameters of the

specific Triangular distributions were defined with the objective to model a typical

cycle time of a consumer products company. Davis & Drumm (2003) conduct an

annual survey that benchmarks cost and service among logistics companies in

the United States. Total cycle time is the amount of time it takes to complete a

business process between receiving and shipping orders to customers. The

average cycle time for the simulated network is 7 days, consistent with the

benchmark value presented in this survey.

At the low level of Lead Time Variability, deterministic lead times are

considered. In this case, average lead times are used but no variability is

present. Every shipment takes the exact amount of time to occur and no delays

exist. This level is introduced to represent a situation where transit lead times are

very controllable. At this level, the transit lead time from plant to any wholesale

takes exact 4 days to occur, while the transit lead time from any wholesale to any

retail location takes exact 3 days to occur.

At the high Lead Time Variability level, stochastic lead times are

considered by using Triangular distributions. This research assumes asymmetric

Triangular distributions to represent transit lead times, where maximum values

are farther from the mode and minimum values are closer to the mode. This

approach is chosen because on practice, when shipments do not arrive in the
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expected time, they have a higher probability to arrive after the expected time

rather than before the expected time.

At this level of high Lead Time Variability, the transit lead time from plant

to any wholesale location follows a Triangular distribution with a minimum value

of 3 days, a mode of 4 days and a maximum value of 6 days. The transit lead

time from any wholesale to any retail location is defined using a Triangular

distribution with a minimum value of 2 days, a mode of 3 days and a maximum

value of 5 days.

The last two experimental factors represent the primary focus of this

research, Forecast Accuracy. In this dissertation, two parameters of the forecast

error distribution are investigated: Forecast Bias and Forecast Skewness.

As previously addressed, this dissertation’s approach to model

Forecasting Accuracy does not consider any specific forecasting method.

Statistical distributions are used to control the pattern of forecast error. Forecast

errors for each time period are randomly selected from the specified distribution

and are then imposed to actual demand to generate forecasts. This is a common

approach in simulation studies that consider forecast errors.

Researchers generally consider two assumptions: that forecasts are

unbiased and that forecasts follow a Normal distribution. Generally, the

distribution of forecast errors is assumed to follow a Normal distribution with

mean of zero and some level of standard deviation. Researchers that use this

approach are interested on investigating the impact of the variability of errors on

system performance.
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The choice of the Normal distribution as a representation for the forecast

error distribution has two limitations. First, the Normal distribution is unbounded

in its extremities. This implies that extreme values can occur when errors are

randomly selected from the distribution. These extreme values can compromise

the simulation results, as they do not represent likely values that would occur in

practice. The second limitation is that the Normal distribution is symmetric,

constraining the researcher’s ability to investigate the impact of more general

types of forecast patterns. Lefrancois (1989), for example, asserts that forecast

errors are commonly non-stationary (correlated between consecutive time

periods) and asymmetric. Bassin & Bilchak (1995) identify the limitations of the

Normal distribution and propose a modification of its form as a way to improve

the realism of forecast errors.

This dissertation approach avoids such limitations by using a different type

of statistical distribution. Our choice is to use a generalized form of the Beta

distribution as a way to represent patterns of forecast error. The Beta distribution

describes a family of curves that are unique in that they are nonzero only on the

interval between zero and one. The shape of the Beta distribution is quite

variable depending on the values of the two shape parameters: 01 and 02, as

illustrated on Figure 7.
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Figure 7 - Examples of BETA (a1, a2) Distributions

In addition to the shape parameters, the generalized form of the Beta

function assigns parameters to the end-points of the interval. Thus, for the

generalized Beta, four parameters are defined: 01, (12, Min (minimum endpoint of

the interval) and Max (maximum endpoint of the interval).

Different patterns of Forecast Bias and Forecast Skewness can be tested

during simulation experiments by choosing alternative parameters for the

generalized Beta distribution. The mean of the distribution corresponds to the

level of bias. Skewness is a measure of symmetry, or more precisely, the lack of

symmetry. A distribution, or data set, is symmetric if it is equally distributed to the

left and right of the center point. The skewness for a Normal distribution is zero,

and any symmetric data should have skewness near zero. When equal shape
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parameters of the Beta distribution are utilized, the distribution is symmetric

around the mean.

Forecast Bias is manipulated at five levels: -40%, -20%, 0%, +20% and

+40%. These levels are chosen to represent typical examples of average of the

distribution of percentage errors. Benchmark studies of forecasting accuracy

reported that average MAPE ranges from 5% to 40%, varying by industry, level

of aggregation and forecasting horizon (Jain 2003b, 2003a; Kahn 1998; Kahn &

Mentzer 1995; Makridakis et al. 1982; Makridakis & Hibon 1979; Peterson 1993).

Five treatments are used for Forecast Skewness: -1.3693, -0.6838, 0.0,

+0.6838 and +1.36%. Values of two standard errors of skewness (SES) or more

(regardless of sign) are probably skewed to a significant degree. The SES for the

Normal distribution was estimated using the formula provided by Tabachnick &

Fidell (1983). The value 0.6838 was obtained for two SES after applying this

formula. Therefore, these skewness levels are chosen to represent mild to strong

asymmetric patterns in the distribution of percentage errors.

Manipulations of these two factors result in twenty-five alternative

distributions of forecast percentage error, as seen on Table 9. Each distribution

has a specified level of Forecast Bias and Forecast Skewness. These

distributions are then used to conduct experiments.
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ID Distribution Mean Standard Skewness Kurtosis

Deviation

1 BETA (3.5. 3.5,-0.9,+0.1) - 40% 0.17678 0.0000 2.4000

2 BETA (3.5,3.5,-0.7,+0.3) - 20% 0.17678 0.0000 2.4000

3 BETA (3.5,3.5.-0.5.+0.5) 0% 0.17678 0.0000 2.4000

4 BETA (3.5, 3.5.-0.3.+0.7) +20% 0.17678 0.0000 2.4000

5 BETA (3.5.3.5.-0.1,+0.9) +40% 0.17678 0.0000 2.4000

6 BETA (3.5.15.-0.79 ,+1.25) - 40% 0.18093 +0.6838 3.3896

7 BETA (3.5,15,-0.59,+1.45) - 20% 0.18093 +0.6838 3.3896

8 BETA (3.5,15,-0.39,+1.65) 0% 0.18093 +0.6838 3.3896

9 BETA (3.5.15.-0.19 .+1.85) +20% 0.18093 +0.6838 3.3896

10 BETA (3.5,15.+0.01,+2.05) +40% 0.18093 +0.6838 3.3896

11 BETA (15,3.5.-2.05,-0.01) - 40% 0.18093 -0.6838 3.3896

12 BETA (15.3.5.—1.85,+0.19) - 20% 0.18093 -0.6838 3.3896

13 BETA (15,3.5.-1.65,+0.39) 0% 0.18093 -0.6838 3.3896

14 BETA (15.3.5.-1.45,+0.59) +20% 0.18093 -0.6838 3.3896

15 BETA (15.3.5, -1.25,+0.79) +40% 0.18093 -0.6838 3.3896

16 BETA (1 .5,20.5,-0.63.+2.75) - 40% 0.17764 +1.3693 5.4602

17 BETA (1.5,20.5,-0.43,+2.95) - 20% 0.17764 +1 .3693 5.4602

18 BETA(1 .5,20.5,-0.23,+3.15) 0% 0.17764 +1 .3693 5.4602

19 BETA (1 .5,20.5,-0.03,+3.35) +20% 0.17764 +1 .3693 5.4602

20 BETA (1 .5,20.5.+0.17,+3.55) +40% 0.17764 +1 .3693 5.4602

21 BETA (20.5.1.5,-3.55 ,-0.17 ) - 40% 0.17764 -1.3693 5.4602

22 BETA (20.5.1.5.-3.35,+0.03 - 20% 0.17764 -1.3693 5.4602

23 BETA (20.5,1.5,-3.15,+0.23) 0% 0.17764 -1.3693 5.4602

24 BETA (20.5,1.5.-2.95.+0.43 ) +20% 0.17764 -1.3693 5.4602

25 BETA (20.5.1 .5,-2.75,+0.63 ) +40% 0.17764 -1.3693 5.4602
 

Table 9 - Distributions of Forecast Percentage Error

 
Histograms of the resulting distributions are presented on Figure 8. The

number in the upper right comer of each histogram corresponds to the

distribution number presented on Table 9. Each graph has a fixed scale: the

boundaries of the x-axis are —100% and +100%. while the boundaries of the y-

axis are 0 and 3.5.
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Figure 8 - Histograms of BETA Distributions of Forecast Percentage Error

Distributions 1 to 5 represent situations were errors are symmetric around

the mean, resulting in skewness of zero.

Kurtosis is a measure of whether the data are peaked or flat relative to a

Normal distribution. That is, data sets with high kurtosis tend to have a distinct

peak near the mean, decline rather rapidly. and have heavy tails. Data sets with

low kurtosis tend to have a flat top near the mean rather than a sharp peak. The

kurtosis for a standard Normal distribution is three. For this reason, most

statistical packages report the “excess kurtosis”, defined as the original measure
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of kurtosis minus three. By doing that, the standard Normal distribution then has

a kurtosis of zero.

Distributions 1 to 5 have kurtosis measures close to 3. Therefore, these

first five distributions represent cases that are similar to the common approach of

modeling forecast errors assuming Normal distributions.

Distributions 6 to 10 represent cases where there exists a slight skew to

the left, while distributions 11 to 15 represent cases where the distribution is

slightly skewed to the right.

Finally, distributions 16 to 20 represent cases where the distributions are

strongly skewed to the left, while distributions 21 to 25 represent cases where

they are strongly skewed to the right.

Notice that all twenty-five distributions have similar measure of variability.

The standard deviation is approximately 0.18 for all distributions. The purpose of

this approach is to investigate the effects of Forecast Bias and Forecast

Skewness on performance variables at a fixed and controlled level of Forecast

Variability.

Also notice that all twenty-five distributions are bounded between -100%

and +100%. This is a reasonable assumption if daily volumes of demand are

moderate to high, the case in this dissertation.

Specific details of the experimental factors and corresponding levels are

summarized on Table 10.
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Experimental Details

Factor

(1) Demand (3) Low

Variability - Demand: TRIANGULAR (75,100,125), CV=10%

3 Levels (b) Medium

- Demand: TRIANGULAR (40,100,160). CV=25%

(b) High

- Demand: TRIANGULAR(0,100.200). CV=40%

(2) Lead Time (a) Low

Variability - Transit Time from Plant to Wholesale: 4 days

2 Levels - Transit Time from Wholesale to Retail: 3 days

(b) High

- Transit Time from Plant to Wholesale: TRIANGULAR

(3,4,6) days

- Transit Time from Wholesale to Retail: TRIANGULAR

(2.3.5) days ‘
 

(4) Forecast Bias

5 Levels

(a) - 40% (Strongly Negative Bias)

(b) - 20% (Negative Bias)

(c) 0% (No Bias)

(d) +20% (Positive Bias)

(e) +40% (Strongly Positive Biag
 

(3) Forecast

Skewness

5 Levels  
(a) 0 (No Skew)

(b) +0.6838 (Positive Skew)

(0) -0.6838 (Negative Skew)

(d) +1 .3693 (Strongly Negative Skew)

(e) -1.3693 (Strongly Positive Skew)
 

Table 10 - Experimental Factors

3.5 Fixed Parameters

The previous section detailed experimental factors that are manipulated

during simulation experiments. This section presents parameters that are

modeled, but considered constant across treatments.

Fixed parameters are defined as part of the inventory management

technique. As previously stated, a daily order-up policy is used to model

inventory policy in all facilities. Every day. inventory levels are evaluated and the

necessity for replenishment orders is determined. The model uses a fifteen-day
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planning horizon to determine average forecasts. This average value is then

multiplied by the maximum inventory target in each facility, defined as 4 days for

retail locations and 5 days for wholesale locations. These parameters are

summarized on Table 11.

 

 

Fixed Parameter Details

Inventory - Policy: Order-up

Management - Revision Period: Daily

Technique - Planning Horizon: 15 days

- Maximum Inventory Target:

0 Retail: 4 days of demand

0 Wholesale: 5 days of demand

Table 11 - Fixed Factors

   
 

3.6 Performance Variables

Three output variables are measured to evaluate the performance of the

supply chain: Order Fill Rate. Case Fill Rate. and Average System Inventory.

Separate measurement of service and inventory performance allow collection of

empirical data through which the basic relationships between inventory and

service can be investigated independent of arbitrary cost parameters.

The first two performance variables are measures of availability used to

establish the extent to which a firm’s inventory strategy is accommodating

customer demand.

Order Fill Rate is the most exacting measure of performance in product

availability. It is analogous to orders shipped complete. Failure to provide even

one item on a customer’s order results in that order being recorded as zero, not a

complete shipment.
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Case Fill Rate measures the magnitude or impact of stockouts over time.

It is defined here as the total number of units shipped to a customer divided by

the total number of units requested. For example, if a customer wants 100 units

of an item and only 97 are available, the Fill Rate is 97%. Backorders are not

considered for the calculation of Fill Rate. Both fill rate measures are calculated

only at the retail level.

Average System Inventory is calculated using the weighted average

inventory based on the cumulative daily inventory level. This statistic considers

not only storage inventory, but also transit inventory. This performance measure

is calculated not only for the retail level, but also for the wholesale and plant

levels. Table 12 summarizes the key performance variables.

 

 

 

 

   

Performance .

Variable news

Order Fill Analogous to Orders Shipped Complete. it is

Rate defined as the number of orders shipped

complete divided by the total number of

orders originally requested

Case Fill Total number of units shipped to a customer

Rate divided by the total number of units originally

requested

Average Sum of end of day position of inventory

System (storage and transit) divided by number of

Inventory days
 

Table 12 - Performance Variables
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3. 7 Number of Replications

The previous section presented the performance variables that are

analyzed in this study. A specified precision is important for estimating the mean

of performance variables. Law & Kelton (2000) present a procedure to calculate

the required number of replications to achieve a specified level of precision for

these mean estimates.

The procedure calculates the number of replications (n) required to

estimate the population mean (p) with a specified error or precision ( ,6 ). From

previous research experience, the estimated range of service measurements

falls between 0.7 and 1.0 (Closs & Law 1983). Therefore, an estimated standard

deviation value equals one-fourth of the observed range, or 0.075. Assuming a

population variance 82(n) of 0.0056, an absolute error ,6 of 0.05. and a

confidence level a of 90%. about 12 replications would be required per

experimental cell. This dissertation assumes 30 replications for each experiment.
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3.8 Data Analysis

Measuring the inexact nature of the relationship between forecast

uncertainty and performance requires the utilization of a statistical technique.

Such a statistical tool can then separate the systematic component from the

random component of the relationship. The six hypotheses presented previously

are tested using multivariate analysis of variance (MANOVA).

MANOVA is an extension of analysis of variance (ANOVA) to

accommodate more than one dependent variable (Hair et al. (1998). It is a

dependence technique that measures the differences for two or more metric

dependent variables (supply chain performance measures) based on a set of

categorical variables acting as independent variables (experimental factors).

MANOVA is concerned with differences between groups (experimental

treatments). It is classified as a multivariate procedure because it assesses

group differences across dependent variables simultaneously. In the case where

the dependent variables are not independent of one another. MANOVA is the

most appropriate test. A series of univariate ANOVA tests would ignore the

correlations among dependent variables and thus use less than the total

information available for assessing overall group differences.

This chapter reviewed the research methodology. The conceptual model

was presented along with the simulation environment and details of the

experimental design. including experimental factors. fixed parameters.

performance variables. and data analysis. The next chapter presents and

discusses results from simulation experiments.
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4 Results and Analysis

This chapter discusses the results of the simulation experiments and the

statistical analyses. The first section reviews the critical assumptions necessary

for the use of MANOVA. The second section reviews the results from the

perspective of the conformity to these assumptions. The third section of the

chapter presents the hypothesis test results from MANOVA, followed by multiple

comparisons of the results.

4. 1 MANOVA Assumptions

MANOVA is a dependence technique that measures the differences for

two or more metric dependent variables based on a set of categorical

independent variables. For the multivariate test procedures of MANOVA to be

valid, four assumptions must be met: (1) units (persons, families. or countries)

are randomly sampled from the population of interest, (2) observations are

statistically independent of one another. (3) dependent variables must follow a

multivariate Normal distribution within each group. and (4) the variance-

covariance matrices must be equal for all treatment groups (Bray & Maxwell

1985)

Although these four assumptions are mathematical requirements for

MANOVA, in practice it is unlikely that all of them will be met precisely (Bray &

Maxwell 1985). Fortunately. under many conditions, violating the assumptions

does not necessarily invalidate the results. The technique is relatively robust to

violations of all except the first two assumptions.
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Simulation studies were conducted to investigate the extent to which test

statistics are strong to violations of the other two assumptions: multivariate

normality and equality of covariance matrices (Ito 1969; Mardia 1971; Olson

1974)

Departures from multivariate normality generally have only very slight

effects on the Type I error rates of the four test statistics. In a hypothesis test, a

Type I error occurs when the null hypothesis is rejected when it is in fact true.

The sole know exception to this rule is that Roy’s greatest characteristic root test

may lead to too many Type I errors when only one of several groups has a

distribution with high positive kurtosis.

The effects of failing to meet the equality of covariance matrices

assumption are more complicated. When sample sizes are unequal. none of the

four test statistics is consistent. When sample sizes are equal. all of the test

statistics tend to be robust unless sample sizes are small, or the number of

variables is large. and the difference in matrices is quite large. Olson (1974) has

found that the Pillai-Barlett trace is stronger across a wide range of population

configurations than any of the other three statistics.

Characteristics of the different MANOVA tests of statistical significance

are summarized on Table 13.
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Test Description Characteristics When to Use

Statistic 3

Wilks' Product of the Determines whether Good balance between

Lambda unexplained the groups are power and

variances on different without assumptions. Use if

each of the worrying about linear assumptions appear to

discriminant combinations of be met.

variates. dependent variables.

Pillai- Sum of explained Minor differences Most robust when

Barlett's variances on the from Wilks’ Lambda assumptions are not

Trace discriminant met. Particularly useful

variates. is sample sizes are

small, cell sizes are

unequal. or

covariances are not

homogeneous.

Hotelling's Sum of ratios of Minor differences Safely ignored in most

Trace explained from Wilks’ Lambda cases

variances on the

discriminant

variates.

Roy's Based only on Measures the Appropriate and very

Largest the first difference only on the powerful when the

Root discriminant first canonical root. dependent variables

variate. are strongly

   
interrelated on a single

dimension. Most likely

to be affected by

violations of

assumptions. Use

cautiously.
 

Table 13 — MANC
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4.2 Conformity to Assumptions and Data Transformations

The experimental design for this study used independent replications in

sample collection. thus satisfying the first two assumptions. Then one must check

the validity of the last two assumptions: conformity to multivariate normality and

equality of covariance matrices.

Before the last two assumptions are evaluated. some descriptive statistics

of the dependent variables will be analyzed. Table 14 presents Pearson’s

correlation coefficients for the dependent variables. Pearson’s correlation

coefficient is a measure of linear association. Two variables can be perfectly

related, but if the relationship is not linear, the correlation coefficient is not an

appropriate statistic for measuring their association.

 

 

 

 

    

Order Fill Case Fill Avg System '

Rate Rate Inventory.

Order Fill Rate 1.000 0.996 0.798

Case Fill Rate 0.996 1.000 0.775

flg System Inventory 0.798 0.775 1.000  

Table 14 — Correlations among Dependent Variables

All correlation measures are statistically significant at the p<0.01 level (2-

tailed). Both measures of fill rate are, as expected, highly correlated. There is a

significant and strong correlation between Order Fill Rate and System Inventory.

The correlation between Case Fill Rate and System Inventory is analogous.

Thus. the dependent variables are not independent of one another. This finding

is not surprising. As inventories go down. product availability becomes an issue.

affecting the measures of service. MANOVA is then the most appropriate test.

compared to an alternative series of univariate ANOVAs.
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An Exploratory Factor Analysis among the dependent variables was

conducted to assess the number of dimensions. Principal component analysis

was chosen as the extraction method. using Varimax rotation. Only one

component was extracted, responsible for 90.5% of the variance. This result

supported that the dependent variables are strongly interrelated in a single

dimension.

To check for multivariate normality, this research’s strategy is to ensure

univariate normality, a necessary but not sufficient condition.
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Figure 9 presents histograms for the three dependent variables. It also

Figure 9 - Histograms and Statistics for the Dependent Variables

presents statistics of skewness and kurtosis.
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Order Fill Rate has substantial departures from normality. with a skewness

value of -1.144 and a kurtosis value of —0.389. Case Fill Rate also has

departures from normality (skewness of —1.285 and kurtosis of 0.023). Average

System Inventory also departs from normality, with a skewness of 0.024 and a

kurtosis of -1.31 1.

The multivariate Box’s M test is a test for the equality of the group

covariance matrices. For sufficiently large samples, a non-significant p-value

means that there is insufficient evidence that the matrices differ. The test is

sensitive to departures from multivariate normality. The null hypothesis that the

observed covariance matrices of the dependent variables are equal across

groups is rejected at p<0.001. It is important to notice that the test is sensitive to

departures from multivariate normality.

Because of such departures. the original variables were transformed in an

attempt to reach univariate normality and equality of covariance matrices. The

chosen strategy is to work with ratios of the original variables, dividing the service

variables by the system inventory. This procedure resulted in two transformed

variables: Order Fill Rate / Average System Inventory and Case Fill Rate /

Average System Inventory. By adapting this strategy no original variable is

discarded and two different dimensions of efficiency are captured (service, as

measured by fill rates, divided by investment, as measured by inventory). Figure

10 presents histograms containing statistics of skewness and kurtosis for the two

transformed dependent variables.
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Skewness Kurtosis

Statistic Std Error Statistic Std Error

Order Fill / Inventory -0.658 0.037 0.145 0.073

Case Fill / Inventory -0.688 0.037 0.553 0.073
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Figure 10 - Histograms and Statistics for the Transformed Dependent Variables

By using the ratios of the original variables. the problem of violating

univariate normality is minimized. The two transformed variables are slightly

departed from the Normal distribution, with measures of skewness and kurtosis

closer to zero. In addition, both distributions are more continuous (no gaps

between histogram cells) when compared to the original ones.

Nevertheless. results of the Box’s M test for the transformed variables are

analogous to the original variables case. The null hypothesis that the observed

covariance matrices of the transformed dependent variables are equal across

groups is also rejected at p<0.001.

Since MANOVA is relatively strong to slight departures from the last two

assumptions when all treatment groups have equal sample size (the case in this

research). the decision was to proceed with MANOVA for significance testing.
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4.3 Hypothesis Testing

The previous section discussed data conformity to assumptions and

transformations. The objective of this section is to present the hypotheses test

results as well as to develop multiple comparisons of the results. Multivariate

followed by univariate results are presented and discussed. Next, the proposed

hypotheses are formally tested. Finally, relationships are discussed and findings

that were not expected are presented.

4.3.1 Results of Multivariate Tests

A four-way multivariate analysis of variance was performed on the two .

transformed dependent variables: Order Fill Rate / Average System Inventory

and Case Fill Rate / Average System Inventory. Demand Variability (three

levels), Lead Time Variability (two levels), Forecast Bias (five levels) and

Forecast Skewness (five levels) resulted in a total of one hundred and fifty

different treatments. For each treatment. data were collected from thirty

replications. Thus, the total sample size consists of 4,500 observations.

SPSS MANOVA was used for conducting the analysis. MANOVA

performs multivariate tests of significance using four testing criteria (Pillai’s

Trace, Hotteling’s Trace. Wilk’s Lambda and Roy’s Largest Root Criterion).

Although all testing criteria are reported. special attention is given to Pillai’s Trace

test. This is the most robust test criterion when assumptions are not met. It is

particularly useful when covariances are not homogeneous. Table 15 reports

multivariate tests results for the two transformed dependent variables.
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. Partial Eta Observed
Effect Value F df Sig. Squared Power

Pillai's Trace 0.992 276354.895 2 0.000 0.992 1.000

Intercept Wilks' Lambda 0.008 276354.895 2 0.000 0.992 1.000

Hotelligg's Trace 127.089 276354.895 2 0.000 0.992 1.000

Roy’s Largest Root 127.089 276354.895 2 0.000 0.992 1.000

Pillai's Trace 0.006 6.255 4 0.000 0.003 0.989

. .. Wilks' Lambda 0.994 6.262 4 0.000 0.003 0.989

Demand va"ab"'ty Hotelling's Trace 0.006 6.270 4 0.000 0.003 0.990

Roy's Largest Root 0.006 12.496 2 0.000 0.006 0.996

Pillai's Trace 0.761 6908.458 2 0.000 0.761 1.000

. . .. Wilks' Lambda 0.239 6908.458 2 0.000 0.761 1.000

Lead T'm" vanab"'ty Hotemg's Trace 3.177 6908.458 2 0.000 0.761 1.000

Roy's Largest Root 3.177 6908.458 2 0.000 0.761 1.000

Pillai's Trace 1.655 5211.632 8 0.000 0.827 1.000

. Wilks' Lambda 0.011 9184.265 8 0.000 0.894 1.000

F°'°°asm'as Hotelling’s Trace 28.817 15661.974 8 0.000 0.935 1.000

Roy’s Largest Root 26.581 28906.767 4 0.000 0.964 1.000

Pillai's Trace 0.006 3.176 8 0.001 0.003 0.971

Wilks' Lambda 0.994 3.180 8 0.001 0.003 0.971

F°'°°a‘°’ts"°w"°ss Hotelling’sTrace 0.006 3.183 8 0.001 0.003 0.971

Roy's Largest Root 0.006 6.143 4 0.000 0.006 0.988

Pillai's Trace 0.002 1.696 4 0.148 0.001 0.525

Demand Variability" Wilks' Lambda 0.998 1.697 4 0.148 0.001 0.525

Lead Time Variability Hotellig's Trace 0.002 1.697 4 0.148 0.001 0.525

Roy's Largest Root 0.002 3.375 2 0.034 0.002 0.638

Pillai's Trace 0.079 22.397 16 0.000 0.040 1.000

Demand Variability' Wilks' Lambda 0.921 22.778 16 0.000 0.040 1.000

Forecast Bias Hotelling’s Trace 0.085 23.160 16 0.000 0.041 1.000

Roy's Largest Root 0.081 44.121 8 0.000 0.075 1.000

Pillai's Trace 1.387 2458.835 8 0.000 0.693 1.000

Lead Time Variability" Wilks' Lambda 0.067 3103.645 8 0.000 0.741 1.000

Forecast Bias Hotelling's Trace 7.112 3865.607 8 0.000 0.781 1.000

Roy/s Largest Root 5.985 6509.202 4 0.000 0.857 1.000

Demand Variability' Pillai's Trace 0.080 22.668 16 0.000 0.040 1.000

Lead Time Variability" Wilks’Lambda 0.920 23.094 16 0.000 0.041 1.000

Forecast Bias Hotelling's Trace 0.087 23.520 16 0.000 0.041 1.000

Roy's Largest Root 0.084 45.645 8 0.000 0.077 1.000

Pillai's Trace 0.000 0.052 16 1.000 0.000 0.070

Demand Variability‘ Wilks' Lambda 1.000 0.052 16 1.000 0.000 0.070

Forecast Skewness Hotelling's Trace 0.000 0.052 16 1.000 0.000 0.070

Roy/s Lagest Root 0.000 0.089 8 1.000 0.000 0.075

Pillai's Trace 0.001 0.437 8 0.899 0.000 0.209

Lead Time Variability“ Wilks' Lambda 0.999 0.437 8 0.899 0.000 0.209

Forecast Skewness Hotelligg's Trace 0.001 0.437 8 0.899 0.000 0.209

Roisggest Root 0.001 0.853 4 0.492 0.001 0.275

Demand Variability‘ Pilolai's Trace 0.000 0.026 16 1.000 0.000 0.059

Lead Time Variability' Wilks’Lambda 1.000 0.026 16 1.000 0.000 0.059

Forecast Skewne33 Hotelling;s Trace 0.000 0.026 16 1.000 0.000 0.059

Roy’s Largest Root 0.000 0.036 8 1.000 0.000 0.060
 

Table 15 - Results of Multivariate Tests: Transformed Dependent Variables
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' . Partial Eta Observed
Effect Value df Sig. Squared Power

Pillai's Trace 0.031 4.216 32 0.000 0.015 1.000

Forecast Bias ‘ Wilks' Lambda 0.970 4.220 32 0.000 0.015 1.000

Forecast Skewness HotellirLg's Trace 0.031 4.225 32 0.000 0.015 1.000

Roy's Larggst Root 0.022 5.988 16 0.000 0.022 1.000

Demand Variability‘ Pillai's Trace 0.001 0.080 64 1.000 0.001 0.119

Forecast Bias , Wilks" Lambda 0.999 0.080 64 1.000 0.001 0.119

Forecast Skewness Hotelling's Trace 0.001 0.080 64 1.000 0.001 0.119

Roy’s Largest Root 0.001 0.147 32 1.000 0.001 0.147

Lead Time Variability” Pillai's Trace 0.031 4.304 32 0.000 0.016 1.000

Forecast Bias . erks’ Lambda 0.969 4.329 32 0.000 0.016 1.000

F0recast Skewness Hotelling's Trace 0.032 4.354 32 0.000 0.016 1.000

Roy/s Largest Root 0.030 8.161 16 0.000 0.029 1.000

Demand Variability * Pillai's Trace 0.002 0.141 64 1.000 0.001 0.196

Lead Time Variability‘ Wilks' Lambda 0.998 0.141 64 1.000 0.001 0.196

Forecast Bias " Hotelling'sTrace 0.002 0.141 64 1.000 0.001 0.196

Forecast Skewness Roy's Largest Root 0.002 0.258 32 1.000 0.002 0.255
 

Table 15 - Results of Multivariate Tests: Transformed Dependent Variables (Continued)

 
The first column on Table 15 details the source of the effect. either a main

factor or an interaction. The second column presents values for the four

MANOVA tests of statistical significance. The third column presents the values

for the F statistic. the ratio of two mean squares. The fourth column provides

information regarding the degrees of freedom used to obtain the observed

significance level. The next column details the significance level (p—value), the

conditional probability that a relationship as strong as the one observed in the

data would be present if the null hypotheses were true. The sixth column

presents the proportion of the total variability in the dependent variable that is

accounted for by variation in the independent variable (Partial Eta Squared). The

Partial Eta Squared is a measure of effect size. Finally, the last column reports

the Power of the test, computed assuming an alpha value of 0.05. The Power of

a statistical hypothesis test measures the test's ability to reject the null

hypothesis when it is actually false.
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The three-way interaction of Demand ‘Variability. Lead Time Variability and

Forecast Bias is statistically significant at the p<0.001 level. The three-way

interaction of Lead Time Variability. Forecast Bias and Forecast Skewness is

also statistically significant at the p<0.001 level.

The two-way interactions between Demand Variability and Forecast Bias,

between Lead Time Variability and Forecast Bias, and between Forecast Bias

and Forecast Skewness are all significant at the p<0.001 level.

Finally, the main effects of Demand Variability, Lead Time Variability,

Forecast Bias and Forecast Skewness are all significant at the p<0.001 level.

The presence of significant interactions suggests that testing results on main

effects should be interpreted with caution.

Table 16 reports multivariate tests results for the three original dependent

variables (Order Fill Rate, Case Fill Rate and Average System Inventory). The

results in terms of statistical significance are analogous to the transformed

variables case.

Once a significant overall MANOVA has been found. the next step is to

investigate the specific differences between groups (Bray & Maxwell 1985). As in

ANOVA, this involves determining which groups are responsible for the

significant omnibus test. In addition, the follow-up analyses are used to evaluate

which variables are important for group separation.

Historically, following a significant MANOVA with ANOVAs on each of the

dependent variables was one of the first methods recommended for interpreting

group differences. This method is often referred to as the Least Significant
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Difference (LSD) test or protected F. The term “protected" comes from the idea

that the overall multivariate test provides protection from an inflated alpha level

on the dependent variables’ univariate tests. Each univariate F test that reaches

the specified alpha level is considered to be statistically significant and available

for interpretation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

’ . Partial Eta Observed
Effect Value F df Sig. Squared Power ‘

Pillai's Trace 1.000 5811509584 3 0.000 1.000 1.000

Intercept Wilks' Lambda 0.000 5811509584 3 0.000 1.000 1.000

Hotelling's Trace 4009.781 5811509584 3 0.000 1.000 1.000

RoYs Largest Root 4009.781 5811509584 3 0.000 1.000 1.000

Pillai's Trace 0.012 8.518 6 0.000 0.006 1.000

. . . Wilks’ Lambda 0.988 8.541 6 0.000 0.006 1.000

Demand va"ab"'ty Hotelling’s Trace 0.012 8.564 8 0.000 0.006 1.000

Roy/s Largest Root 0.012 17.084 3 0.000 0.012 1.000

Pillai's Trace 0.765 4705.677 3 0.000 0.765 1.000

. . .. Wilks' Lambda 0.235 4705.677 3 0.000 0.765 1.000

Lead T'me va"ab"'ty Hotelling's Trace 3.247 4705.877 3 0.000 0.785 1.000

Roy's Largest Root 3.247 4705.677 3 0.000 0.765 1.000

Pillai's Trace 2.311 3646.200 12 0.000 0.770 1.000

Forecast Bias Wilks' Lambda 0.000 28754.645 12 0.000 0.952 1.000

HotellirLg's Trace 405.449 146862.539 12 0.000 0.993 1.000

Roy's Largest Root 392.036 426339.346 4 0.000 0.997 1.000

Pillai's Trace 0.254 100.455 12 0.000 0.085 1.000

Wilks' Lambda 0.747 111.560 12 0.000 0.093 1.000

“mas" Skewmss Hotelling’s Trace 0.337 121.978 12 0.000 0.101 1.000

Roy's Largest Root 0.333 361.796 4 0.000 0.250 1.000

Pillai's Trace 0.002 1.265 6 0.270 0.001 0.505

Demand Variability " Wilks' Lambda 0.998 1.265 6 0.270 0.001 0.505

Lead Time Variability Hotelling's Trace 0.002 1.266 6 0.270 0.001 0.505

Roy/s Largest Root 0.002 2.456 3 0.061 0.002 0.614

Pillai's Trace 0.067 12.427 24 0.000 0.022 1.000

Demand Variability * Wilks' Lambda 0.933 12.663 24 0.000 0.023 1.000

Forecast Bias Hotelling’s Trace 0.071 12.894 24 0.000 0.023 1.000

Roy's Largest Root 0.066 36.137 8 0.000 0.062 1.000

Pillai's Trace 1.348 886.948 12 0.000 0.449 1.000

Lead Time Variability’ Wilks' Lambda 0.075 1589.165 12 0.000 0.578 1.000

Forecast Bias Hotelling's Trace 6.670 2416.071 12 0.000 0.690 1.000

Roy's Largest Root 5.686 6182.983 4 0.000 0.850 1.000

Demand Variability , Pillai's Trace 0.091 16.960 24 0.000 0.030 1.000

Lead Time Variability ,, WIIkS'. Lambda 0.910 17.461 24 0.000 0.031 1.000

Forecast Bias Hotelllng's Trace 0.099 17.953 24 0.000 0.032 1.000

Roy's Largest Root 0.096 52.073 8 0.000 0.087 1.000  
 

Table 16 — Results of Multivariate Tests: Original Dependent Variables
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. Partial Eta Observed

Effect Value at 819. Squared Power

Pillai's Trace 0.000 0.043 24 1.000 0.000 0.070

Demand Variability' Wilks’ Lambda 1.000 0.043 24 1.000 0.000 0.069

Forecast Skewness Hotelling's Trace 0.000 0.043 24 1.000 0.000 0.070

Roy/s Largest Root 0.000 0.091 8 0.999 0.000 0.076

Pillai’s Trace 0.001 0.463 12 0.937 0.000 0.274

Lead Time Variability' Wilks' Lambda 0.999 0.463 12 0.937 0000 0.241

Forecast Skewness Hotelling's Trace 0.001 0.463 12 0.937 0.000 0.274

Roy/s Largest Root 0.001 1.238 4 0.292 0.001 0.392

. .. ,, Pillai's Trace 0.000 0.024 24 1.000 0.000 0.061

EjgaI‘ignZfi'figmw, Wilks'. Lambda 1.000 0.024 24 1.000 0.000 0.060

Forecast Skewness Hotelllng's Trace 0.000 0.024 24 1.000 0.000 0.061

Roy/s Largest Root 0.000 0.036 8 1.000 0.000 0.060

Pillai's Trace 0.050 4.600 48 0.000 0.017 1.000

Forecast Bias“ Wilks' Lambda 0.951 4.617 48 0.000 0.017 1.000

Forecast Skewness Hotelling’s Trace 0.051 4.633 48 0.000 0.017 1.000

Roy's Largest Root 0.030 8.241 16 0.000 0.029 1.000

. .. ,, Pillai's Trace 0.001 0.064 96 1.000 0.000 0.117

Eggggiaangrmy Wilks’ Lambda 0.999 0.084 98 1.000 0.000 0.117

ForecastSkewness Hotellrng'sTrace 0.001 0.064 96 1.000 0.000 0.117

Roy/s Largest Root 0.001 0.153 32 1.000 0.001 0.153

. . .. ,, Pillai's Trace 0.044 4.008 48 0.000 0.015 1.000

tgfgcz'sq‘gizsai'ab"“y Wilks’ Lambda 0.957 4.056 48 0.000 0.015 1.000

Forecast Skewness Hotelllng's Trace 0.045 4.103 48 0.000 0.015 1.000

RoYs Largest Root 0.042 11.486 16 0.000 0.041 1.000

Demand Variability' Pillai's Trace 0.003 0.122 96 1.000 0.001 0.209

Lead Time Variability’ Wilks’ Lambda 0.997 0.122 96 1.000 0.001 0.209

Forecast Bias' Hotelliflis Trace 0.003 0.122 96 1.000 0.001 0.209

Forecast Skewness Roy/s Largest Root 0.002 0.303 32 1.000 0.002 0.305
 

Table 16 - Results of Multivariate Tests: Original Dependent Variables (Continued)

As the results of multivariate tests for both the original and transformed

dependent variables were analogous, we decided to investigate the specific

differences between groups using the results from the original dependent

variables.

MANOVA tests whether or not a set of means differs due to treatment

effects. Therefore, it is relevant to present means and standard deviations of the

dependent variables for the four different treatments. This information is

presented on Table 17. Means are displayed as bold numbers, while standard

deviations are displayed as italic numbers.
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Order Fill Case Fill Avg System

Rate Rate Inventory

Low 77.1 3% 79.81% 1 81 78.46

0.13% 0.15% 7. 57

Demand Medium 76.78% 79.47% 181 73.92

Variability 0. 13% 0. 15% 7. 57

High 76.02% 78.77% 1 81 74.49

0.13% 0.15% 7.57

Low 83.68% 85.78% 1 81 37.07

Lead Time 0.11% 0.12% 6.18

Variability High 69.60% 72.92% 1 821 4.1 8

0.11% 0.12% 6.18

40% 99.77% 99.87% 26026.07

0.17% 0. 19% 9. 77

_20% 99.43% 99.70% 22098.95

0.17% 0.19% 9. 77

Forecast 0% 96.03% 97.77% 18149.18

Bias 0. 17% 0. 19% 9. 77

+20% 72.66% 78.75% 141 36.86

0. 1 7% 0. 19% 9. 77

+40% 1 5.33% 20.67% 10467.07

0. 1 7% 0. 19% 9. 77

77.65% 80.32% 18431.53

'1‘3693 0.17% 0.19% 9.77

* 77.07% 79.73% 18275.55

'0'6838 0.17% 0.19% 9. 77

Forecast 0 0000 76.83% 79.48% 18133.45

Skewness ' 0. 1 7% 0. 19% 9. 77

76.14% 78.93% 18077.47

+0'6838 0.17% 0.19% 9. 77

75.53% 78.29% 17960.12

”3693 0.17% 0.19% 9. 77 
 

Table 17 — Estimated Marginal Means and Standard Deviations

 

 
Results are conceptually correct. When Demand Variability increases.

both measures of service decrease. The same occurs when Lead Time

Variability is increased. Also, service systematically decreases when Forecast
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Bias moves from negative values to positive values. This occurs because

negative bias represents situations where forecasts are systematically greater

than actual demand. In this case, using an anticipatory replenishment strategy,

inventories are built in excess of actual demand. Higher inventory allows better

service in terms of customer fill rates.

Before the main effects can be analyzed. it is important to understand the

impact of statistically significant interactions. The following sections discuss

univariate results for statistically significant interactions and main effects.

4.3.2 Results of Univariate Tests: Interactions

The interaction term represents the joint effect of two (or more)

treatments. It is the effect that must be examined first. Each treatment represents

a unique combination of experimental factors. If the interaction effect is not

statistically significant, then the main effects of the treatments are independent.

Independence in factorial designs means that the effect of one treatment is the

same for each level of the other treatments and that the main effects can be

interpreted directly.

If the interaction term is significant, then the type of interaction must be

determined. Interactions can be termed ordinal or disordinal. An ordinal

interaction occurs when the effects of a treatment are not equal across all levels

of another treatment, but the magnitude is always in the same direction. In a

disordinal interaction, the effects of one treatment are positive for some levels

and negative for other levels of the other treatment.
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If the significant interactions are ordinal, the researcher must interpret the

interaction term and ensure that its results are acceptable conceptually. If so,

then the main effects of each treatment can be described (Hair et al. 1998). But if

the significant interaction is disordinal, then the main effects of the treatments

cannot be interpreted and the study must be redesigned. This stems from the

fact that with disordinal interactions, the effects vary not only across treatment

levels but also in direction. Thus. the treatments do not represent a consistent

effect.

According to Table 16, two three-way interactions are significant at

p<0.001: Demand Variability * Lead Time Variability * Forecast Bias and Lead

Time Variability * Forecast Bias * Forecast Skewness.

Table 18 details the univariate tests for these interactions. In addition to

statistical significance, the following discussion also focuses on effect size. The

Partial Eta Squared measures the proportion of the total variability in the

dependent variable that is accounted for by variation in the independent variable.

Therefore. it is used as a measure of effect size.

According to Cohen (1988), it is possible to characterize the type of effect

size depending on the measure for Partial Eta Squared. If the measure is smaller

than 0.15. the effect is considered small or minimal. If the measure is close to

0.35. the effect can be considered medium or typical. When Partial Eta Squared

is close to 0.5, the effect is considered large or substantial. Finally, for values of

this statistic greater than 0.7, the effect is considered very large.
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Dependent Partial Eta Observed

Source Variable df F Sig. Squared Power

Order Fill

Demand Variability ,, Rate 8 2.775 0.005 0.005 0.944

Lead Time Variability * .

Forecast Bias Case Fill Rate 8 1.622 0.113 0.003 0.725

Avg System

Inventory 8 0.129 0.998 0.000 0.088

Order Fill

Lead Time Variability , Rate 18 1.844 0.050 0.006 0.928

mace“ 3'35 F°re°35t Case Fill Rate 18 0.837 0.643 0.003 0.597
Skewness

Avg System

Inventory 16 0.155 1.000 0.001 0.118
 

Table 18 - Univariate Tests (Three-way Interactions)

The univariate tests presented on Table 18 indicate that the three-way

interaction of Demand Variability. Lead Time Variability and Forecast Bias is

statistically significant for Order Fill Rate at p<0.01 level. This three-way

interaction is responsible for a small variation on Order Fill Rate (about 0.5%).

The interaction is not statistically significant for the other two performance

variables.

The three-way interaction of Lead Time Variability, Forecast Bias and

Forecast Skewness is statistically significant at p<0.001 (Table 16). According to

Table 18. this three-way interaction is statistically significant for Order Fill Rate

only at the p<0.1 level. The Partial Eta Squared statistic shows that the effect is

also small, close to 0.6%. This interaction is not significant for the other two

dependent variables.

Univariate results support that the impact of the three-way interactions is

small on all dependent variables.
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Three two-way interactions are statistically significant (Table 16): Demand

Variability * Forecast Bias, Lead Time Variability * Forecast Bias, and Forecast

Bias * Forecast Skewness.

Table 19 describes the univariate tests for these interactions. Results

indicate that the three two-way interactions are statistically significant for all

dependent variables at p<0.01. The only exception is the interaction between

Demand Variability and Forecast Bias, which is not statistically significant for

Average System Inventory.

 

 
 

 

 

  
 

 

 

 
 

       

Dependent Partial Eta Observed

Source Variable df F Sig. Squared Power

Order Fill |

Rate 8 6.067 0.000 0.011 1.000

Demand

1:511:21tha5 Case Fill Rate 8 2.774 0.005 0.005 0.944

Avg System

Inventory 8 0.213 0.989 0.000 0.117

Rate 4 2632.046 0.000 0.708 1.000|

Lead Time I

Variability * Case Fill Rate 4 1717.827 0.000 0.612 1.000

Forecast Bias Avg System I

Inventory 4 61.330 0.000 0.053 1.000

Rate 18 4.481 0.000 0.018 1.000]

Forecast Bias * I

Forecast Case Fill Rate 16 3.359 0.000 0.012 1.000

Skewness Avg System 1

Inventory 16 2.845 0.000 0.010 0.998
 

Table 19 - Univariate Tests (Two-way Interactions)

Figure 11 presents a graphical display of the impact of the interaction

between Demand Variability and Forecast Bias on Order Fill Rate. This

interaction partially accounts for 1.1% of the variation for Order Fill Rate, a small

effect. As Forecast Bias moves from -40% to +40%. the system shifts from a
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situation where forecasts are systematically higher than demand to a situation

where forecasts are systematically lower than demand. When this happens,

service decreases. This impact is slightly accentuated under higher levels of

Demand Variability. Notice that, on Figure 11, the lines for different levels of

Demand Variability are superimposed.
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Figure 11 - Effect of Demand Variability * Forecast Bias on Order Fill Rate

Figure 12 presents a graphical display of the interaction between Demand

Variability and Forecast Bias on Case Fill Rate. This interaction partially accounts

for 0.5% of the variation for Case Fill Rate. This impact, thus, is small and the

discussion is analogous to the impact on Order Fill Rate.
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Figure 12 - Effect of Demand Variability * Forecast Bias on Case Fill Rate

The effect of this interaction on Average System Inventory is presented on

Figure 13. The effect is not statistically significant, resulting in superimposed

lines in the graph. This implies that the impact of Forecast Bias on Average

System Inventory is not amplified at higher levels of Demand Variability.
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Figure 13 - Effect of Demand Variability * Forecast Bias on Avg System Inventory
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The second statistically significant interaction is the combined impact of

Lead Time Variability and Forecast Bias. The impact of this interaction on Order

Fill Rate is presented on Figure 14. This impact is very large, as the interaction

partially accounts for 70.8% of variation on Order Fill Rate. As Forecast Bias

moves from —40% to +40%, service decreases. This loss in service is strongly

accentuated at higher levels of Lead Time Variability.
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Figure 14 - Effect of Lead Time Variability * Forecast Bias on Order Fill Rate

The impact of the interaction between Lead Time Variability and Forecast

Bias on Case Fill Rate is presented on Figure 15. This impact is large, partially

accounting for 61.2% of variation on Case Fill Rate. The discussion is analogous

to the Order Fill Rate case.
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Figure 15 - Effect of Lead Time Variability * Forecast Bias on Case Fill Rate

The impact of the interaction between Lead Time Variability and Forecast

Bias on Average System Inventory is presented on Figure 16. The impact is

statistically significant, but the effect size is small. This interaction partially

accounts for 5.3% of variation on Average System Inventory. Because of this

small effect, lines on Figure 16 are superimposed.
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Figure 16 -Effect of Lead Time Variability * Forecast Bias on Avg System Inventory

The last statistically significant two-way interaction is the combined effect

between Forecast Bias and Forecast Skewness. Figure 17 displays the effect of

this interaction on Order Fill Rate. As Forecast Bias moves from -40% to +40%,

service decreases in a non-linear way. This impact is slightly accentuated as

Forecast Skewness moves from -1.3693 to +1.3693. The curve slightly shifts

towards the origin. This shift is relatively small. It results in superimposed lines on

Figure 17. The interaction partially accounts for 1.6% of the variation on Order

Fill Rate.

101



 

 

 

1 Order Fill Rate

I 100% )KX
. __

  

  

 

 

 

  

    
 

 
 

 

I .

_ 80% —-— __ -4 Forecast

, g ' Skewness

2)

g 2 60% “ +-1.3893

B 3 48—06838

22 40% , A 0.0000 I

:33 ~x»+0.8838

20% ~—~a . --Xs-»+1.3693

0% . . , ,

-40% -20% 0% 20% 40%

Forecast Bias  
 

Figure 17- Effect of Forecast Bias * Forecast Skewness on Order Fill Rate

Figure 18 displays the effect of the interaction between Forecast Bias and

Forecast Skewness on Case Fill Rate. The effect is similar to the one for Order

Fill Rate. The impact is relatively small, as this interaction partially accounts for

1.2% of variation on Case Fill Rate.
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Figure 18 - Effect of Forecast Bias * Forecast Skewness on Case Fill Rate
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Figure 19 displays the effect of this interaction on Average System

Inventory. The discussion is similar to the ones for the service performance

variables. As Forecast Bias moves from -40% to +40%, Average System

Inventory decreases in a linear way. This impact is slightly accentuated as

Forecast Skewness moves from —1.3693 to +1.3693. The line slightly shifts

towards the origin. But the impact of this interaction is relatively small, partially

accounting for 1% of the variation on Average System Inventory. The result is

superimposed lines on Figure 19.
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Figure 19 -Effect of Forecast Bias * Forecast Skewness on Avg System Inventory

Two conclusions can be developed from the analysis of the significant

two-way interactions. First, the impact of Forecast Bias on service variables and

inventory is strongly accentuated as variability in lead time increases. Second,

the impact of Forecast Bias on performance variables is slightly accentuated

under higher levels of Demand Variability and Forecast Skewness.
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These conclusions support that Forecast Bias is the primary factor

affecting service and inventory. Other experimental factors should not be

discarded because they affect the impact of Forecast Bias on performance.

All significant interactions are ordinal and conceptually acceptable.

Therefore, the main effects of each treatment can be further analyzed in the next

section.

4.3.3 Results of Univariate Tests: Main Effects

Table 20 presents the univariate test results for the main effects. The first

factor, Demand Variability, is statistically significant at p<0.001 for both Order Fill

and Case Fill rates, but not for Average System Inventory. Demand Variability

partially accounts for 0.8% of variation in Order Fill Rate and 0.6% of variation in

Case Fill Rate. The effect size of this main factor is thus relatively small.

 

 

 

 

 

 

 

  
 

 

 

 
 

       

Dependent Partial Eta Observed

Source Variable df F Sig. Squared Power

Order Fill Rate 2 17.649 0.000 0.008 1.000

Demand Case Fill Rate 2 12.555 0.000 0.006 0.997

Variability Avg System

‘lnventory 2 0.107 0.899 0.000 0.066

Order Fill Rate 1 8243.868 0.000 0.655 1.000

Lead Time Case Fill Rate 1 5477.031 0.000 0.557 1.000

Variability Avg System

Inventory 1 77.790 0.000 0.018 1.000

Order Fill Rate 4 43293.715 0.000 0.975 1.000]

Forecast Case Fill Rate 4 30602.036 0.000 0.966 1.000l

Bias Avg System

Inventory 4 399695.326 0.000 0.997 1.000

Order Fill Rate 4 22.707 0.000 0.020 1.000

Forecast Case Fill Rate 4 15.851 0.000 0.014 1.000

Skewness Avg System

Inventory 4 348.862 0.000 0.243 1.000  
 

Table 20 - Univariate Tests (Main Effects)
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Further evidence of this relatively small impact can be observed on the

graphical display of this main effect. Figure 20, Figure 21 and Figure 22,

respectively, present the effect of Demand Variability on Order Fill Rate, Case Fill

Rate and Average System Inventory. As Variability on daily demand increases,

Order Fill Rate decreases from 77.1% to 76.0%, Case Fill Rate decreases from

79.8% to 78.8% and Average System Inventory decreases from 18,178 to

18,174.

Estimated marginal means of service variables for low and medium

variability levels are not statistically different at the p=0.05 level. Statistical

difference is reached only at the high variability level. There is no statistical

difference at any variability level for Average System Inventory.
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Figure 20 — Effect of Demand Variability on Order Fill Rate
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Figure 21 -- Effect of Demand Variability on Case Fill Rate
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Figure 22 - Effect of Demand Variability on Avg System Inventory
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The second factor, Lead Time Variability, is statistically significant at

p<0.001 for all performance variables. Different from Demand Variability, Lead

Time Variability has a substantial impact on service variables. According to Table

20, this factor partially accounts for 65.5% of variation in Order Fill Rate and

55.7% of variation in Case Fill Rate. The impact of Lead Time Variability on

Average System Inventory is relatively small, as this factor accounts for only

1.8% of variation.

In an analogous way, further evidence can be observed by analyzing the

graphical displays of these relationships. Figure 23, Figure 24 and Figure 25,

respectively, present the effect of Lead Time Variability on Order Fill Rate, Case

Fill Rate and Average System Inventory.
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Figure 23 - Effect of Lead Time Variability on Order Fill Rate
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Figure 24 - Effect of Lead Time Variability on Case Fill Rate
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Figure 25 - Effect of Lead Time Variability on Avg System Inventory

As variability on transit lead time increases, Order Fill Rate decreases

from 83.7% to 69.6%, Case Fill Rate decreases from 85.7% to 72.9% and

Average System Inventory increases from 18,137 to 18,214. Lead Time
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Variability, thus, substantially affects service variables and slightly affects

inventory. Estimated marginal means are all statistically significant at the p=0.05

level.

The third factor is key to this dissertation: Forecast Bias. According to

Table 20, Forecast Bias is statistically significant at p<0.001 for all dependent

variables. In addition to statistical significance, this factor has a very large impact

on all dependent variables. Forecast Bias partially accounts for 97.5% of

variation on Order Fill Rate, 96.6% of variation on Case Fill Rate, and 99.7% of

variation on Average System Inventory. Therefore, Forecast Bias is the primary

factor affecting both service and inventory in this dissertation.

Interesting relationships can be observed on the graphical displays of

estimated marginal means. Figure 26 presents the effect of Forecast Bias on

Order Fill Rate. When Forecast Bias is equal to -40%, forecasts are

systematically higher then actual demand. In this case, biased forecasts result in

higher levels of inventory and ultimately service. As Forecast Bias moves to

+40%, when forecasts are systematically lower than actual demand, service

decreases as a result of decreased inventory levels.
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Figure 26 - Effect of Forecast Bias on Order Fill Rate

As Forecast Bias moves from -40% to +40%, Order Fill Rate dramatically

decreases from 99.8% to 15.3%. The interesting information on Figure 26 is that

this relationship is non-linear. Estimated marginal means are all statistically

different at the p=0.05 level, except for the difference between the -40% and the

—20% Forecast Bias levels.

Figure 27 presents the effect of Forecast Bias on Case Fill Rate. Results

are similar to the Order Fill Rate case. Forecast Bias affects Case Fill Rate in a

non-linear way. As Forecast Bias moves from -40% to +40%, Case Fill Rate

dramatically decreases from 99.9% to 20.7%. Means for Case Fill Rate are all

statistically different at the p=0.05 level, except for the difference between the

-40% and the -20% Forecast Bias levels.

110



 

100% r
 

   
  

 

 
 
    

I .3 80% -

2’

(B

2 2 60%

'0 m

m 0’ o

*5 E 40/o —<

.E

!g 20%

00/0 i T I i

l 40% -20% 0% 20% 40% .

Forecast Bias J

Figure 27 - Effect of Forecast Bias on Case Fill Rate

The effect of Forecast Bias on Average System Inventory is presented in

Figure 28. Forecast Bias affects inventory in a linear way. As Forecast Bias

moves from -40% to +40%, Average System Inventory decreases from 26,026 to

10,467. This occurs because, in this study, replenishments occur in an

anticipatory way. Forecasts are used to build target levels of inventory to be

maintained. When forecasts are systematically higher than actual demand,

excess inventory is built in the system. The opposite occurs when forecasts are

systematically lower than actual demand. Estimated marginal means of Average

System Inventory are all statistically different at the p=0.005 level.
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Figure 28 - Effect of Forecast Bias on Avg System Inventory

The relationships presented in Figure 26 and Figure 28 suggest that there

are trade-offs involving the level of Forecast Bias. When Forecast Bias assumes

extreme negative values, higher service is obtained with higher inventory

commitments. When Forecast Bias assumes extreme positive values, lower

service results from lower inventory commitments.

This trade-off between service and inventory can be further explored by

analyzing the graphical display of the transformed variable, obtained by the

division of Order Fill Rate by Average System Inventory. This variable gives us

information regarding the unit of service that is obtained from every unit of

inventory. Estimated marginal means for the different levels of Forecast Bias are

presented on Figure 29. All means are statistically different at the p=0.05 level.
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Figure 29 - Effect of Forecast Bias on Order Fill Rate I Avg System Inventory

The relationship presented in Figure 29 supports the concept that bias in

forecasts should be avoided. When Forecast Bias is equal to 0%, the highest

service is achieved with lowest inventory commitment. In practice, though, the

optimal point for this relationship depends on the cost structure of the company.

Specifically, it directly depends on the relationship between inventory holding

costs and stockout costs. Further discussion about this issue is presented when

managerial guidelines are developed.

The fourth and last experimental factor is Forecast Skewness, also a key

factor in this dissertation. According to Table 20, Forecast Skewness is

statistically significant at p<0.001 for all dependent variables. This factor has a

relatively small impact on service variables. It partially accounts for 2.0% of

variation on Order Fill Rate and 1.4% of variation on Case Fill Rate.
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Figure 30 displays the impact of Forecast Skewness on Order Fill Rate.

As Forecast Skewness moves from -1.3693 to +1.3693. Order Fill Rate

decreases from 77.7% to 75.5%. Statistical differences in estimated marginal

means only occur between the —1.3693 and the 0 levels, and between the 0 and

the +0.6838 levels.
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Figure 30 - Effect of Forecast Skewness on Order Fill Rate

Figure 31 shows the impact of Forecast Skewness on Case Fill Rate. As it

moves from -1.3693 to +1 .3693, Case Fill Rate decreases from 80.3% to 78.3%.

For this dependent variable, there is no statistical significance in mean

differences between any adjacent levels of skewness.
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Figure 31 - Effect of Forecast Skewness on Case Fill Rate

Finally, the impact of Forecast Skewness on Average System Inventory is

exhibited on Figure 32. The impact is medium. This main effect partially accounts

for 24.3% of the variance on Average System Inventory (Table 20). As Forecast

Skewness moves from --1.3693 to +1 .3693, Average System Inventory

decreases from 18,431 to 17,960. Estimated marginal means are all statistically

different at the p=0.05 level.
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Figure 32 - Effect of Forecast Skewness on Average System Inventory

A summary of the relative impact of main effects on dependent variables

is presented on Table 21. The shaded cells represent primary findings. Lead

Time Variability has a substantial impact on service variables. Forecast Bias is

the primary factor, responsible for a very large impact in all performance

variables. Forecast Skewness has medium impact on Average System Inventory.

There is a large impact of the interaction between Forecast Bias and Lead Time

Variability on both Order Fill Rate and Case Fill Rate.
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Source Order Fill Rate Case Fill Rate Comment

Inventory

Statistically significant for

. .. p-vaIue < 0'001 ' p-va'lue < 0’001 - p-value = 0.899 service variables. but

Demand Vanablllty - Partlal Eta - Partial Eta _ Power _ 0 066 main effect has small

Squared = 0.008 Squared = 0.006 - ' .

impact.

- p-value < 0.001 - p-value < 0.001 - p-value < 0.001 Substantial impact on

Lead Time Variability - Partial Eta - Partial Eta - Partial Eta service variables. Small

Squared = 0.655 Squared = 0.557 Squared = 0.018 impact on inventory.

- p-value < 0.001 - p-value < 0.001 - p-value < 0.001 .

Forecast Bias - Partial Eta - Partial Eta - Partial Eta vegoanfnece'rcgzgg all

Squared = 0.975 Squared = 0.966 Squared = 0.997 pe '

- p-value < 0.001 - p-value < 0.001 - p.value < 0.001 Medium impact on

Forecast Skewness - Partial Eta - Partial Eta - Partial Eta inventory. Small impact

Squared = 0.020 Squared = 0.014 Squared = 0.243 on service variables.

. .. - p-value < 0.001 - p-value = 0.005 _ = Statistically significant,

23%;\éiaari:blllty x - Partial Eta - Partial Eta 3:321: 001239 but interaction has small

Squared = 0.011 Squared = 0.005 ' impact.

. . . . - p-value < 0.001 - p-value < 0.001 - p-value < 0.001 Large impact on Service

:1213‘: gizgab'my - Partial Eta - Partial Eta - Partial Eta Variables. Small impact

Squared = 0.708 Squared = 0.612 Squared = 0.053 on Inventory.

Forecast Bias x - p-vaIue < 0.001 - p-vaIue < 0.001 - p-value < 0.001 Staustlcally'Slgnlficant,

- Partial Eta - Partlal Eta - Partial Eta but lnteractlon has small

Forecast Skewness

Squared = 0.016 Squared = 0.012 Squared = 0.010 impact.
 

Lead Time Variability

 

 

 

 

  

. - p-value = 0.050 - p-value = 0.643 - p-value = 1.000 . .

x “ma“ 3'35 x - Power = 0.928 - Power = 0.597 - Power = 0.118 N°"'s'9"'fi°a"t'
Forecast Skewness

Demand Variability x - p-value = 0.005 _ _ _ _ Statistically significant for

Lead Time Variability - Partial Eta _ $33330 321513 _ ”P3335063? Order Fill. but interaction

x Forecast Bias Squared = 0.005 ' ’ has small impact

Demand Variability x - p-value = 0.683 - p-value = 0.413 - p-value = 0.837 . .

Lead Time Variability - Power = 0.112 - Power = 0.204 - Power = 0.078 N°"‘s'9"'fi°a"t'

Demand Variability x - p-value = 1.000 - p—value = 1.000 - p-value = 1.000 . .

Forecast Skewness - Power = 0.054 - Power = 0.053 - Power = 0.058 Non-Slgnlficant.

Lead Time Variability - p-value = 0.903 - p—value = 0.786 - p-value = 0.998 _ . .

x Forecast Skewness - Power = 0.108 - Power = 0.153 - Power = 0.056 Non srgnrficant.

Demand Variability x

. - p-value = 1.000 - p-value = 1.000 - p-value = 1.000 . .

“was“ 3'33 x - Power = 0.063 - Power = 0.056 - Power = 0.064 N°"°s'9"'fi“"t'
Forecast Skewness     
 

Table 21 - Summary of Impact of Main Effects and Interactions on Dependent Variables
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The main effects and interactions obtained from the experimental design

have been described and discussed. In the following sections, hypotheses are

restated and statistical support is discussed.

4.3.4 Hypothesis H1a

Hypothesis H1a states that Forecast Bias has a significant impact on

Supply Chain Performance.

Multivariate results in Table 16 show that the effect of Forecast Bias is

statistically significant at p<0.001. In addition, univariate results in Table 20 show

that Forecast Bias is statistically significant at p<0.001 for Order Fill Rate, Case

Fill Rate and Average System Inventory. In addition to statistical significance, the

impact of Forecast Bias on performance variables is very large.

Therefore, Hypothesis H1a is strongly supported.

4.3.5 Hypothesis H1b

Hypothesis H1b states that Forecast Skewness has a significant impact

on Supply Chain Performance.

Multivariate results in Table 16 show that the effect of Forecast Skewness

is statistically significant at p<0.001. Univariate results in Table 20 show that

Forecast Skewness is statistically significant at p<0.001 for Order Fill Rate, Case

Fill Rate and Average System Inventory. The impact of this factor is small for

Order Fill Rate and Case Fill Rate, but medium for Average System Inventory.

Therefore, results support Hypothesis H1 b.
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4.3.6 Hypothesis H1c

Hypothesis H1c affirrns that there is a significant interaction effect

between Forecast Bias and Forecast Skewness.

Multivariate results on Table 16 show that this interaction effect is

statistically significant at p<0.001. Univariate results on Table 19 show that the

interaction is statistically significant at p<0.001 for Order Fill Rate, Case Fill Rate,

and Average System Inventory. The impact of this interaction is small for all

dependent variables.

This dissertation’s results, thus, support Hypothesis H1c.

4.3.7 Hypothesis H1d

Hypothesis H1d asserts that Forecast Bias has a relatively greater impact

than Forecast Skewness on Supply Chain Performance.

The individual effects of Forecast Bias and Forecast Skewness on

performance variables are statistically significant.

Univariate results on Table 20 show that Forecast Bias partially accounts

for 97.5% of variation on Order Fill Rate, 96.6% of variation on Case Fill Rate

and 99.7% of variation on Average System Inventory. The impact of Forecast

Bias is very large on performance variables.

Forecast Skewness, on the other hand, partially accounts for only 2% of

the variation on Order Fill Rate, 1.4% of variation on Case Fill Rate and for

24.3% of variation on Average System Inventory.
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Therefore, there is support that Forecast Bias has a relatively greater

impact than Forecast Skewness on all performance variables. Hypothesis H1d is

then supported.

4.3.8 Hypothesis H2a

Hypothesis H2a affirms that there is a significant interaction effect

between Forecast Bias and Demand Variability.

According to Table 16, this interaction effect is statistically significant at

p<0.001. Univariate results on Table 19 show that the interaction is statistically

significant at p<0.001 only for Order Fill Rate and Case Fill Rate. The impact of

this interaction for Average System Inventory is not statistically significant. The

low power of the test suggests that the manipulation of Demand Variability levels

may not be enough to capture sufficient power.

Hypothesis H2a is partially supported. The interaction impact is significant

only for service variables.

4.3.9 Hypothesis H2b

Hypothesis H2b states that there is a significant interaction effect between

Forecast Bias and Lead Time Variability.

This interaction effect is statistically significant at p<0.001 (Table 16).

Univariate results (Table 19) shows that the interaction is statistically significant

at p<0.001 for all dependent variables. The impact is large for service variables,

where the interaction partially accounts for 70.8% of variation on Order Fill Rate

and 61.2% of variation on Case Fill Rate. The impact is small for Average
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System Inventory, where the interaction partially accounts for only 5.3% of the

variation. There is strong support for Hypothesis H2b.

4.3.10 Hypothesis H3a

Hypothesis H3a asserts that there is a significant interaction effect

between Forecast Skewness and Demand Variability.

Multivariate results support that this interaction effect is not statistically

significant (Table 16). Hypothesis H3a is, therefore, not supported. One

explanation is that Forecast Skewness per se is not a primary factor. Although it

affects Average System Inventory, and interacts with Forecast Bias, its relative

impact is relatively small when compared to other factors. Other explanation is

suggested by the low power of the test. The discussion is analogous to

Hypothesis H2a.

4.3.11 Hypothesis H3b

Hypothesis H3b states that there is a significant interaction effect between

Forecast Skewness and Lead Time Variability. Multivariate results on Table 16

provide no support for statistical significance of this interaction effect. Hypothesis

H3b is thus not supported. The explanation for this lack of support is analogous

to Hypothesis H3a.

Table 22 summarizes results obtained from hypotheses testing.
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Hypothesis Test Result

 

Hypothesis 1a: Forecast Bias has a significant Supported.

impact on Supply Chain Performance.

 

Hypothesis 1b: Forecast Skewness has a Supported.

significant impact on Supply Chain Performance.

 

Hypothesis 1c: There is a significant interaction Supported.

effect between Forecast Bias and Forecast

Skewness.

 

Hypothesis 1d: Forecast Bias has a relatively Supported.

greater impact than Forecast Skewness on

 

Supply Chain Performance.

Hypothesis 2a: There is a significant interaction Partially Supported. The impact is

effect between Forecast Bias and Demand significant only for service variables.

Variability.

 

Hypothesis 2b: There is a significant interaction Supported.

effect between Forecast Bias and Lead Time

Variability.

Hypothesis 3a: There is a significant interaction Not supported.

 

effect between Forecast Skewness and Demand

Variability.

 

Hypothesis 3b: There is a significant interaction Not supported.

effect between Forecast Skewness and Lead

Time Variability.    
 

Table 22 - Summary of Hypotheses Testing

The next chapter develops conclusions from research findings. A

summary of key findings is presented, followed by implications to academic

researchers. Managerial implications are discussed, including a cost trade-off

analysis. As a result, managerial guidelines are presented to help decision

makers manage Forecast Bias. Finally, research limitations are discussed and

potential paths for future research are presented.
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5 Conclusions

This chapter relates the research findings to the general body of

knowledge in forecast research. The first section addresses results of

hypotheses tests in relation to the research questions. The second section

proposes managerial guidelines after a cost trade-off analysis is conducted.

Next, research limitations are noted. Finally, suggestions for future research are

presented.

5. 1 Implication of Research Findings

The first research finding is that Forecast Bias is the primary factor

affecting the performance of an anticipatory supply chain system. Results from

this dissertation indicate a very large impact on both service and inventory

variables. No other factor in this study had the same type of effect. The

implication is that any study of an anticipatory inventory system should consider

bias in forecasts.

The second finding is that Forecast Skewness has relatively less impact

on performance than does Forecast Bias. The implication is that researchers and

managers should focus their attention on Forecast Bias, although Forecast

Skewness should not be totally ignored. It has a moderate influence on inventory

in this study. This impact may be larger at higher levels of skewness not tested in

this dissertation. Further research is needed to explore this relationship.

A third finding is that the impact of Forecast Bias on performance is

amplified at higher levels of demand and transit lead time variability. According to
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the results of this dissertation, the combined effect of Forecast Bias and Lead

Time Variability is large for service variables. This implies that the higher the

supply chain instability, the greater is the impact of Forecast Bias on

performance. One implication is that researchers and practitioners should be

especially concerned with Forecast Bias when supply chain instability is

considerable.

A fourth finding is that Lead Time Variability has a relatively larger impact

on performance than does Demand Variability. This finding is also supported by

Wagenheim (1974)’s dissertation results. In anticipatory supply chains, forecasts

are used to build inventory in advance of demand. If there is high variability in

transit lead times, then it is difficult for the system to build inventory in a timely

manner. The results support that transit lead time variability significantly

influences performance. In addition, the results indicate that lead time variability

is more critical when compared to demand variability. One implication for

practitioners is that if resources are limited, the focus should be on investments

to reduce variability in transit lead times rather than daily demand requirements.

The fifth finding is the interesting relationship of Forecast Bias to Order Fill

Rate and to Average System Inventory. The results support the View that

Forecast Bias affects Order Fill Rate in a non-linear way (Figure 26), while it

affects Average System Inventory in a linear way (Figure 28). These

relationships suggest a trade-off effect of Forecast Bias on service and inventory.

One implication is that, conceptually, managers should aim to eliminate any

source of bias in their forecasts. In this dissertation, when Forecast Bias is equal

124



to 0% the system achieves the highest level of service at the lower level of

inventory commitment (Figure 29). The word “conceptually” should be

emphasized; in practice the optimal balance point of this trade-off depends on

the relationship between inventory holding costs and stockout costs. In other

words, the ultimate financial impact of Forecast Bias depends ‘on the loss

function associated with forecast errors. This issue is investigated in the next

section.

The research conclusion is that Forecast Bias is indeed the primary factor

affecting supply chain performance. The effect is amplified as demand and transit

lead time variability increase. Forecast Bias directly increases (or decreases)

inventory in a linear way, but directly increases (or decreases) service in a non-

linear way. This combined effect implies a trade-off relationship between

inventory and service.
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5.2 Managerial Guidelines

This section develops managerial guidelines. The objective is to identify

acceptable levels of Forecast Bias and the actions to minimize its effects. As

previously noted, managers should attempt to eliminate bias in their forecasts,

but accuracy improvements have associated costs. For example, processes

must be redesigned and workers need to be trained in forecasting methods and

software use. Increased information needs require investments in data collection,

automation, and information systems.

Even if such investments are made, it is possible to reach a point at which

no additional improvements in forecast accuracy can be obtained. If the source of

error is Demand Variability, for example, and if there are no feasible actions to

influence demand patterns, then a certain amount of error must be tolerated. This

is commonly referred to as acceptable forecast error (Jain 1990).

In theory managers should aim to eliminate bias in their forecasts, but in

practice improvements should be sought only when the impact of Forecast Bias

is detrimental to the company. Actions should be chosen carefully because

resources and capital are limited. The acceptable level of Forecast Bias depends

on how forecast errors ultimately translate into cost.

Kahn (2003) presents a framework to help understand the financial impact

of forecast errors. If forecasts are systematically higher than demand, Forecast

Bias is negative. In this case, the company incurs excess inventory costs,

increased inventory holding costs, possibly transshipment costs, obsolescence

costs, and reduced profit margin if products must be sold at a discount in order to
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reduce inventory. If forecasts are systematically lower than demand, Forecast

Bias is positive. In this situation, there may be order expediting costs and higher

production costs, if the company needs to shorten lead times to satisfy demand.

If demand cannot be satisfied, there is potential loss in profit due to lost sales.

Also, customer satisfaction may be reduced.

A basic implication of over forecasting (negative Forecast Bias) is that

financial resources are tied up in excess inventory (inventory cost), and a basic

implication of under forecasting (positive Forecast Bias) is the potential loss of

profit margin (stockout cost). Managers should not blindly aim at eliminating bias

in forecasts. Rather, they should seek to determine the acceptable region.

Depending on the relationship between these two types of cost, there is a

particular region of bias in which the company can operate without substantially

increasing costs.

Toward that end, an analysis was conducted to evaluate how operational

results from the simulation experiments translate to total cost. Two variables

obtained from the simulation results are used in this analysis: Case Fill Rate and

Average System Inventory.

The Case Fill Rate refers to the percentage of units in customer orders

that are fulfilled. The remaining percentage represents units that were demanded

but were not shipped to customers. For example, if the rate is 98%, then 2% of

demand is stocked out. Because average demand is known in the simulation

environment, it is possible to record how many units of product were not sold to
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customers (stockouts). Average System Inventory provides information on how

many product units were held in stock during the simulation period.

If unit costs are defined, it is possible to calculate the total cost of a

particular simulation experiment. The two basic components of cost considered

in this analysis are inventory cost and stockout cost. Both are defined as a

percentage of product value, to minimize the arbitrary choice of values.

Figure 33 is an example of how simulation results can be translated to

total cost. For simplification, variability in customer demand and transit lead time

are combined. In the low variability case, variation in both transit lead time and

daily demand is low. In the high variability situation, variation in both lead time

and demand is high. In Figure 33 it is assumed that the cost to hold inventory is

lower than the cost of lost sales. Inventory cost represents 5% of product value,

and stockout cost represents 100% of product value.

 

Total Cost = Inventory Carrying Cost + StockoutCost

hventory Cost = 5%, Stockout Cost = 100% I
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Figure 33 — Example of Cost Analysis: Inventory Cost = 5%, Stockout Cost = 100%
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In the low variability situation presented in Figure 33, the total cost impact

is relatively low when Forecast Bias ranges from -40% to -20%. For practical

purposes, cases will be considered acceptable in a range of plus or minus 20%

of difference from the minimum total cost. When variability is high, the acceptable

range of Forecast Bias is between -40% and -20%. The acceptable range

depends on the level of variability and on the profile of costs. Forecasts that are

higher than demand are acceptable in this case because the cost of excess

inventory is low compared to the cost of lost sales.

Figure 34 displays another example: inventory cost is higher than stockout

cost. In this case, at the low variability level, a Forecast Bias of 20% results in

minimum cost. This occurs because the cost to hold stock is higher than the cost

of lost sales. At the high variability level, the acceptable range stays between

-20% and 0%.
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Figure 34 - Example of Cost Analysis: Inventory Cost = 60%, Stockout Cost = 50%
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Generalization of these two examples is obtained if different combinations

of cost profiles are used to evaluate the total cost performance of the simulated

system. Inventory cost was manipulated at six levels: 5%, 10%, 20%, 40%, 60%,

and 80%. Stockout cost also was manipulated at six levels: 5%, 10%, 30%, 50%,

80%, and 100%. All possible combinations were then analyzed, and acceptable

ranges were obtained. The results are presented in Table 23. The hashed bar

represents Iow variation in transit lead times and daily demand requirements.

The solid bar represents high variability situations. These results were obtained

by combining different levels of inventory and stockout cost and by observing

total cost at each level of Forecast Bias. The acceptable range allows values of

total cost that are within 20% of the minimum cost.
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Table 23 — Acceptable Ranges of Forecast Bias

131  



Three conclusions can be drawn from Table 23. First, when variability is

high, the acceptable range of Forecast Bias tends to be greater. This occurs

because of more uncertainty in the system. Second, when stockout cost exceeds

inventory cost, the bias range moves to negative values. Third, when the

opposite occurs, the acceptable range moves to the positive side.

 

 

 

    

Acceptable Range of Forecast Bias

(measured as Percentage Error)

- Low Variability: - Low Variability:

-& +20% to +40% 0% to +20%

{8) "m" - High Variability: - High Variability:

b 0% to +20% -20% to 0%

*2 - Low Variability: - Low Variability:

“g g 0% to +20% -20% to 0%

"‘ 3 - High Variability: - High Variability:

-20% to 0% -40% to -20%

Low High

Stockout Cost   
 

Figure 35 - Acceptable Range of Forecast Bias

Information from Table 23 is condensed and summarized in Figure 35, a

matrix built from the cost analysis. It can help managers identify the acceptable

range of Forecast Bias for their business. For example, in the lower left corner

both stockout cost and inventory cost are low, measured as a percentage of

product value. In this case, when there is low variability in lead times and

demand, a Forecast Bias between 0% and +20% is acceptable. If variability is

high, the minimum cost is obtained in a region of Forecast Bias between -20%

and 0%. The rationale is analogous for the other three quadrants of the matrix.
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The matrix has two interesting characteristics. The first is that the

acceptable range of Forecast Bias is the same when stockout cost and inventory

cost are either both low or both high. The second is that the acceptable range for

low inventory cost and high stockout cost is a mirror image of the acceptable

range for high inventory cost and low stockout cost. This symmetry reflects the

fact that the acceptable bias range moves from the positive side to the negative

side as the relative comparison between inventory and stockout cost changes.

Six guidelines to help decision makers manage Forecast Bias are

presented below.

First, Forecast Bias is an important factor that substantially affects supply

chain service and inventory therefore, managers should not rely on a single

measure of forecast accuracy. For example, the Mean Average Percentage Error

(MAPE), the most used measure, evaluates forecasting performance in absolute

terms. If forecasts have a bias, MAPE will not capture it. The first guideline is that

multiple measures of forecast accuracy are advised.

Second, managers should track the current level of Forecast Bias by

keeping historical data on estimated and actual sales. Alternative measures of

forecast accuracy should be computed, and histograms should be plotted.

Third, there are trade-offs in terms of service and inventory that are

influenced by Forecast Bias. There is no single optimum level of bias. It varies

with each business. The optimum level depends on the extent of variability in

transit lead times and in daily demand requirements and the relative profile of

inventory cost and stockout cost.
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Fourth, managers should use the matrix provided in Figure 35 to help

identify the acceptable level of Forecast Bias for their company.

Fifth, once the acceptable Forecast Bias level is identified, managers

should compare it with the level of bias for their current forecasting process. They

can then decide whether resources should be invested in improvements to reach

the desirable Forecast Bias region.

Sixth, managers need to understand that initiatives to improve forecast

accuracy can be both internal and external, that is, within the company and

across supply chain partners. Examples of internal initiatives are the collection of

more reliable and relevant data, the use of more complex and adaptive

forecasting techniques, and an increase in cross-functional integration across

departments involved in the forecasting process. External efforts may include a

reduction in transit lead time variability through partnerships with service

providers and a reduction of demand variability through incentives to customers,

such as promotions or discounts.
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5.3 Research Contributions

One contribution of this dissertation is that it investigates the impact of

Forecast Bias in a supply chain context. Previous studies focused on a single

facility, which restricts generalization to the broader supply chain. This difficulty

arises because complex dynamics occur when facilities in a network exchange

information and product flows. Therefore, this dissertation broadens current

research.

A second important contribution is the comprehensive approach to model

forecast errors used here. In this study, the histogram of forecast errors follows

statistical distributions. One limitation of previous work is the use of a single

aggregate measure of forecast accuracy. A measure such as MAPE or MAD

cannot capture as much information as a histogram.

A third contribution of this study is a new approach to model forecast

errors. Previous research considered stochastic errors and assumed that

patterns followed a Normal distribution. As previously discussed, that imposes

two limitations. First, undesirable extreme values of error can occur, because the

Normal distribution is unbounded in its limits. Second, the Normal distribution

assumes that errors are symmetrically distributed around the mean. This

dissertation assumes that the histogram of forecast errors follows a generalized

form of the Beta distribution. This new approach overcomes the two limitations of

the Normal distribution. The Beta distribution is bounded on its limits, so the

researcher can better control forecast error. In addition, asymmetric errors can

be considered, which allows for more general patterns to be investigated.
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The fourth contribution is a more in-depth understanding regarding of how

Forecast Bias affects Supply Chain Performance. This impact is researched

under different environmental contexts in terms of transit lead time and daily

demand variability. The topic has not been explored in the literature.

The fifth contribution of this research is guidelines to help managers

understand and control the impact of Forecast Bias on performance.

5.4 Research Limitations

Simulation studies are constrained to the extent that the simulation model

accurately replicates the real world system. The present research is not free of

that constraint. However, the model has been subjected to extensive validation

tests and has been judged to be valid.

In addition, limitations of the conceptual model restrict the application of

the research findings to similar distribution channel systems. Also, the findings

are restricted to the experimental factors levels manipulated in this study. Results

that were not statistically significant could be found otherwise if different

experimental levels were tested.

Nevertheless, insights from this research provide useful general

information in terms of the parameter relationships that could be further

investigated.
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5.5 Future Research

This research supports the conclusion that Forecast Bias has a substantial

impact on supply chain performance. The study is essentially exploratory, but

there is promising potential for future work in this area.

First, there is potential to better investigate the impacts of Forecast Bias

on performance at different product type scenarios. This research considered a

single product characteristic: the variability in daily demand. Future studies can

examine such dimensions as product value, demand volume (different means of

daily demand), and life cycles (perishable items). Forecast Bias should be

evaluated for different combinations of product characteristics beyond demand

variability.

Second, this research used a single inventory strategy technique (order-

up policy). Future work can investigate the impact of Forecast Bias under

different anticipatory replenishment strategies. In addition, the target levels of

inventory were defined as fixed factors in the current research. This impact can

be analyzed for different inventory parameters.

A third potential line of inquiry is Forecast Bias within different types of

physical supply chain networks. This research used a single network with three

tiers. It is important to investigate different network structures (convergent versus

divergent) to determine whether inventory centralization (or decentralization)

amplifies the effects of Forecast Bias.

Yet another path for future study is to include different levels of information

sharing across the supply chain. It is important to evaluate the effects of Forecast
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Bias in cooperative and non-cooperative chains. The negative influence should

be greater when there is a low level of information sharing.

Finally, research that considers alternative patterns of forecast errors must

be done. In this dissertation, forecast errors are assumed to be asymmetric and

stationary. It is relevant to consider correlation of forecast errors across time

periods. This assumes that decision makers improve the forecasting process as

errors are monitored. In addition, the forecast planning horizon was set constant

in this research. Future studies can consider it as an experimental factor.

Although the current study examined the role of Forecast Bias in supply

chain performance, the relationships among Forecast Bias, Forecast Skewness,

Demand Variability, and Transit Lead Time Variability cannot be fully explained

through the data collected. Further investigation of these interactions, including

additional factors, will be needed to obtain a full understanding of how Forecast

Bias affects the supply chain.
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