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ABSTRACT

PARAMETRICALLY-EXCITED MICROELECTROMECHANICAL

OSCILLATORS WITH FILTERING CAPABILITIES

By

Jeffrey Frederick Rhoads

This thesis investigates a class of tunable microelectromechanical (MEM)

oscillators that can be implemented in systems that act as signal filters. Unlike

most mechanical and electrical filters that rely on direct linear resonance for

filtering, the MEM filters presented in this work employ parametric resonance. As

a result, these filters feature, in addition to the general benefits associated with

MEM devices, nearly ideal stopband rejection and extremely sharp response roll-

off. Unfortunately, the introduction of parametric instabilities into the system

does present some complications with regard to filtering. These issues are

addressed by means of novel tuning schemes and logic implementation that

make use of a pair of MEM oscillators and associated circuitry. This thesis

includes a brief introduction to bandpass filters, an analysis of a dynamic model

for electrostatically driven MEM oscillators, descriptions of methods by which the

aforementioned deficiencies can be overcome by parameter selection and

tuning, and a method through which two MEM oscillators can be combined to

yield a highly effective MEM bandpass filter.
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Chapter 1

Introduction and Background

As the demand for commercial and tactical wireless communications

devices continues to increase, so too does the demand for effective and efficient

bandpass signal filters. These devices, used to attenuate signals with frequency

components outside of a specific bandwidth while passing those within, are an

integral part of such technology. This is especially true in the case of cellular

phones, the driving force in the wireless communications industry.

Due to its importance in a number of applications, bandpass filter design

has been considered a viable research topic since the late 19th century.

However, it was not until the early 20th century that the full potential of bandpass

filters was realized. At that time engineers working at Bell Laboratories showed

the potential of electrical, and later mechanical, bandpass filters in practical

engineering applications, such as phonographs [7-10].

Since then, filter research has undergone a steady progression, with

numerous design alternatives being proposed. Amongst the mechanical and



electromechanical filter designs brought forth, one specifically stands out, namely

the design proposed by Adler in the late 19403 [10, 11]. This design, which

utilized weakly-coupled mechanical resonators to produce a narrow banded

frequency response function, exhibited high quality factors (defined in the case of

bandpass filters as the ratio between the filter’s resonant frequency and its

bandwidth) and much improved operational stability compared to its

predecessors. Following Adler, numerous filter designs appeared that utilized

ceramic and quartz crystal resonators [12-14]. While these designs advanced

the capabilities of mechanical filters, they tended to be bulky in comparison with

other designs and thus were utilized in a limited number of applications.

Despite differing in form and appearance, each of the mechanical and

electromechanical filter designs proposed in the early to mid 20th century

exhibited a number of common characteristics. Most significantly, each featured

a relatively high quality (Q) factor and robust operational stability. However, they

proved to be costly and generally incompatible with integrated circuitry and thus

had limited potential following the emergence of such technology in the late 20th

century.

In the electronic rich era of the late 20th century, filter design focused

primarily on electrical and electromechanical bandpass filters (see, for example,

[14-181). The proposed designs consisted of chains of coupled resonators, such

as RLC circuits, and also more modern technologies, such as surface acoustic



waves (SAWs) [16-18] and even discrete-time digital systems [14, 19-22]. In

comparison to their predecessors, these designs offer ease of integration with IC

technology. However, they too exhibit somewhat limited potential in some

filtering applications due to limitations in their size, frequency operating ranges,

and quality factors [18].

The introduction of microelectromechanical (MEM) devices into

mainstream engineering has opened a promising new path of study regarding the

development of filters [1-3, 23-28]. This promise is founded upon the distinct

advantages MEM filters hold over more conventional designs. Namely, MEM

filters are typically smaller, consume less power to operate, and have the

potential to operate with significantly higher Q factors. MEM filters also offer

seamless integration with IC technology and are highly tunable in nature.

To date, a number of MEM filter designs have been proposed, with the

three most prevalent designs being the electrostatically-driven coupled resonator

filter, the electrostatically-driven clamped-clamped beam filter, and the

piezoelectrically-driven clamped-clamped beam filter. The coupled resonator

filter, popularized primarily by Nguyen and Howe [3, 23-25, 29-31], utilizes a

design similar to that proposed by Adler nearly sixty years ago, but developed at

microscale. This design has gained popularity largely due to the exceedingly

high Q factors it produces, which, have been reported to be as high as 80,000 in

vacuum [3]. An alternative design proposed Nguyen [25, 29, 32, 33] utilizes an



electrostatically-driven clamped-clamped beam filter. While the Q factors

reported for this filter are significantly lower (about 8000), the clamped-clamped

beam design is both smaller and easier to fabricate. An analogous design

proposed by Piekarski, et al [26] also utilizes a single clamped-clamped beam

resonator, but excited through piezoelectric means. While the Q factors reported

for this filter are significantly lower than those reported for both the coupled

resonator and electrostatically-driven clamped-clamped beam filter designs

(about 1000), the piezoelectrically-driven clamped-clamped beam design does

not require the specially tailored input (no bias voltage is required) and drive

electrodes of its counterparts and is easy to fabricate.

Whereas the three filter designs discussed above utilize coupled

oscillators and/or linear phenomena for filtering, the present work describes a

filter design based on the nonlinear response of parametrically-excited MEM

oscillators. With further development, this design may have significant potential

in many communications applications. The thesis is outlined as follows. Chapter

2 reviews some basic information with regards to filter design and performance.

Chapter 3 reviews parametric resonance and discusses its relevance to MEMS

and its potential use in filtering applications. In Chapter 4, a single MEM

oscillator is modeled and its dynamic response is analyzed. Chapters 5 and 6

present tuning schemes, linear and nonlinear, respectively, that are capable of

improving oscillator performance, specifically for filtering applications. Chapter 7

describes one possible filter design which utilizes two tuned MEM oscillators.



The robustness of the proposed filter design is examined in Chapter 8, and the

thesis concludes in Chapter 9 with a brief discussion and some concluding

remarks. Note that a considerable portion of this work has been submitted for

publication in three papers that were co-authored by the author [1, 2, 6].



Chapter 2

Bandpass Filter Specifications

The subject of this thesis is bandpass filters, which are systems that pass

the components of signals, ideally unaltered, with frequencies inside a specified

passband, while attenuating those components outside of the passband. Since

Adler’s development in the 19403, most bandpass filter designs have been based

on a one-dimensional chain of identical resonators. In such an approach, the

natural frequency of the system determines the filter’s center frequency (see

Figure 1). Weak coupling (generally of the “nearest neighbor’ type) is then used

to produce a system with multiple natural frequencies in close proximity to the

filter’s center frequency. An input signal is provided at one end of the resonator

chain and the system response, a filtered version of the input, is measured at the

opposite end. The result, when the system is operated in a lightly damped

environment (vacuum or partial vacuum in the case of MEMS), is a highly

desirable filter frequency response function (FRF), which features closely

packed, lightly damped resonances, as shown in Figure 1.
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Figure 1. A sample frequency response function for a bandpass

filter (Adapted from [3]).

Figure 1 highlights some of the key features which should be considered

when designing a bandpass filter or assessing a filter’s performance. The

characteristics of greatest interest are [1, 2, 14]:

The center passband frequency — the nominal operating frequency of

the filter.

The bandwidth — the range of frequencies that will pass through the

filter with minimal loss in signal strength.

The stopband rejection — the amount by which the signal is attenuated

outside of the passband.

The insertion loss — the reduction in signal amplitude as the signal

passes through the filter.

The sharpness of the roll-off — the width of the frequency range

between the edges of the passband and the stopband.



. The flatness of the passband response - the degree to which ripples

are present in the filter’s passband frequency response.

Note that the aforementioned linear filters can be designed to exhibit near-

optimal characteristics. In fact, a number of well established design techniques

exist whose sole purpose is optimizing the performance of certain filter properties

[14, 15, 34], though often to the detriment of others. Chebyshev design, for

example, results in a filter with an equiripple passband and monotonic stopband,

but only average roll-off characteristics. Similarly, Buttenrvorth filter design

generates both a monotonic stopband and a monotonic passband, but at the cost

of poor roll-off characteristics. Other design approaches include elliptical design,

which yields a highly selective filter with extremely sharp response roll-off, but

also distinct ripples in both the passband and stopband, and Bessel design,

which produces excellent time response characteristics and a linearly-varying

phase, but also poor rejection characteristics. Independent off the design

method is the fact that the shape of the respective FRF is altered by increasing

the filter’s order or, in filters based on Adler’s design, adding additional oscillators

to the chain. Thus, while certain filter characteristics can be optimized, it is

usually done at the expense of the filter’s other response characteristics, its

complexity, and its insertion loss. In comparison, it is believed that the

performance characteristics of the proposed parametrically-excited MEM filter

are largely independent of one another and can be optimized individually with



minimal change in overall performance [1, 2]. However, this can be achieved

only by exploiting special parameter tuning, which is readily achievable in MEMS.



Chapter 3

Employing Parametric Resonance

for Filtering

Parametric excitation is a form of excitation that affects a system’s

response only when the states of the system are non-zero. Mathematically this

means one or more of the coefficients of the dynamic states in a system’s

equation of motion are time varying. Originally discovered by Faraday in the

18303 during experimentation with a vertically excited column of water [35, 36],

parametric excitation is mathematically exemplified today by a special case of the

Hill equation, the Mathieu equation, which can be expressed as

z”+(1+/icosQr)z+,u23 =0. (3.1)

While this equation can be used to describe a variety of electrical and

mechanical systems, the most prevalent physical model is that of a single

pendulum with purely vertical base excitation. In this system, periodic excitation

10



at the pendulum’s base produces an oscillating effective gravity, which, in turn,

leads to the time varying effective stiffness in the system’s equation of motion.
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Figure 2. An approximate Strutt-lnce stability chart for the linear

Mathieu equation (a = 0) near principle parametric resonance. "U”

denotes those regions wherein the equation’s trivial solution is

unstable. Likewise, “S” denotes those regions wherein the trivial

solution is stable. Note that with the addition of small damping the

transition curve emanating from .0 = 2 shifts upward in the

parameter space, most notably near the vertex.

The response characteristics of the Mathieu system are well understood,

in particular, the effects of variations in the system’s damping (not included in the

model presented above), excitation amplitude, forcing frequency, natural

frequency, and nonlinearities (also not shown) are known (see, for example, [35,

37-441). Of direct relevance to this work are the stability and resonance

characteristics of a parametrically-excited system (such as Equation 3.1). To

explore this further, first consider the Strutt-lnce stability chart shown in Figure 2,

11



developed by van der Pol and Strutt in 1928 [38], which delineates the stability of

the trivial response of the Mathieu equation (Equation 3.1) in terms of the

parameters {2 and 11. Of direct relevance here is that within certain parameter

regions, hereafter referred to as “instability zones” or “wedges of instability”, the

trivial response becomes unstable and, in fact, unbounded in the absence of

nonlinearities. While the addition of damping has no impact with regard to

limiting the unstable response, it does produce a fundamental change in the

Strutt-lnce stability chart. Namely, it shifts the transition curves, such as those

emanating from .(2 = 2, upward in the parameter space. Figure 2 shows this for

the .(2 = 2 case. The addition of nonlinearities in the system can limit the

response inside the instability zones. In particular, this addition leads to

nontrivial steady-state responses within the unstable domain. These solutions

may or may not persist outside of the unstable domains, depending on the types

and magnitudes of both the nonlinearity and the damping, but when they do

persist, the solutions coexist with the stable trivial solution, which results in

hysteresis in the system’s frequency response. Examples of this situation are

shown in Figures 3(a) and 3(b) for hardening and softening nonlinearities,

respectively. The amplitude dependent nature of the bandwidth of the instability

zone should also be noted. In particular, it is observed that as the parametric

excitation amplitude, A, is increased the bandwidth of the instability zone

increases.

12
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Figure 3. The dominant instability zone in the {2 - 2 parameter

space with a superimposed nonlinear frequency response for a

given value of It (Adapted from [4]); (a) with hardening nonlinearity

(,u > 0) (b) with softening nonlinearity (,u < 0). Note that solid lines

indictate a stable response and dashed lines indicate an unstable

response. Also shown is the effect of damping on the instability

region.
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The resonant nature of a parametrically-excited system is also noteworthy.

Unlike a directly-excited system, where small excitations produce resonant

responses only when the forcing frequency is near the system’s linear natural

frequency, small excitations in a parametrically-excited system (including a

Mathieu system) can produce resonant responses for other frequency conditions

as well [35]. For example, if the excitation frequency is taken to be 260,

parametric resonances can occur when the excitation frequency, a), approaches

coo / n (n = 1, 2, 3...), where 020 is the linear natural frequency of the system.

While the n = 1 resonance (primary parametric resonance) is by far the most

common one encountered, higher order resonances do occur, although their

appearance is heavily dependent on the amount of damping present in the

system, due to the upward shifts mentioned above. These resonances appear

only in lightly damped environments [45]. It should also be noted that due to the

unique nature of parametric resonance, parametrically-excited systems exhibit

quite abrupt transitions between trivial and nontrivial responses.

Due to the unique actuation methods and lightly damped environments

inherent to MEM devices, parametric excitation and its associated resonances

arise quite naturally in certain MEM oscillators. In particular, such phenomena

have been observed in oscillators electrostatically driven by non-interdigitated

comb drives (see Figure 4) [4549]. Similar to their interdigitated counterparts,

non-interdigitated comb drives utilize a voltage source to induce motion through

electrostatic effects [5, 50, 51]. However, unlike interdigitated drives where the

14



motion induced is parallel to the ‘tines’ or ‘fingers’ of the comb, the motion

induced by non-interdigitated drives is perpendicular to the ‘tines’; see Figure 4.

More relevantly, under an alternating voltage input the non-interdigitated drives,

through fringing electrical fields, produce a fluctuating electrostatic stiffness,

which in turn results in a parametric excitation upon the oscillator [5]. Note that

the excitation is purely parametric only if the tines are symmetrically aligned so

that there is zero net force in the mechanical equilibrium state.

 

(a) (b) (C)

Figure 4. Schematic of both interdigitated and non-interdigitated

electrostatic comb drives (Adapted from [5]). The arrows designate

the dominant direction of motion. (a) An interdigitated comb drive.

(b) A non-interdigitated comb drive in an ‘aligned’ position. (c) A

non-interdigitated comb drive in a perfectly ‘misaligned’ position.

From a filtering point of view, the existence of parametric resonance in

MEM oscillators is highly desirable for a few reasons. Namely, if the oscillator’s

instability zones are exploited as passbands and the input of its AC comb drive is

exploited as a system input, because of the abrupt on/off nature of parametric

resonance, such oscillators, acting as filters, would exhibit nearly ideal stopband

rejection and an extremely sharp response roll-off [1, 2]. However, these

15



benefits come at a cost, as the addition of parametric excitation (and the

associated parametric instabilities) introduces a number of complications.

Among the most obvious complications are [1, 2]:

o The center frequency and bandwidth of the passband, or the center

and width of the instability zone, depend on the amplitude of the

excitation.

o Nontrivial responses can exist outside of the passband due to

hysteresis.

. There is a nonlinear relationship between the system’s input and

output.

. Higher order resonances can occur.

Fortunately, these complications can be largely overcome through careful tuning

and implementation of the oscillators, as presented in the forthcoming chapters.
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Chapter 4

The Dynamics of a Single

Parametrically-Excited MEM

Oscillator

In an attempt to gain a better understanding of the proposed bandpass

filter design, its benefits, and how it is achieved in light of the shortcomings of the

features of parametric resonance, consider a model for a single degree of

freedom parametrically-excited MEM oscillator, such as that shown in Figures 5

and 6. This oscillator, similar to those oscillators examined in [1, 2, 4, 5, 52], but

designed for the specific tuning characteristics required for a filter, consists of a I

shuttle mass, essentially the oscillator’s backbone “B”, anchored to a substrate

by four folded-beam springs “S” and excited by two sets of non—interdigitated

comb drives “N”, which are individually powered by AC and DC voltage sources

(for tuning purposes, as described subsequently).

17



 
(b)

Figure 5. (a) A representative parametrically-excited MEM

oscillator [1]. The oscillator’s backbone “B" is the primary mass, the

springs “S" provide attachment to ground as well as the mechanical

restoring force, and the non-interdigitated comb drives “N” are used

to provide parametric excitation. “AC” and “DC" indicate voltage

sources. (b) A close up view of the non-interdigitated comb drives

[1]. [Pictures courtesy of Barry Demartini and Dr. Kimberly Turner,

University of California, Santa Barbara]



 

 

Figure 6. A CAD drawing of a representative MEM oscillator [1].

The equation of motion for this oscillator has been previously developed,

and can be expressed as [1, 2,4]:

mx+CX+F,(x)+Fes(x,t)=0, (4.1)

where the elastic restoring force from the springs, F,(x), is accurately modeled by

a cubic function of displacement of the form,

F,(x)= k1x+k3x3, (4.2)

which is, in general, mechanically hardening, that is, k3 > O. The electrostatic

driving and restoring forces, Fes(x,t), are generated by two independent non-

interdigitated comb drives, as shown in Figures 5(a) and 5(b). One comb drive

utilizes a DC input voltage of amplitude V0 and the other a square-rooted voltage

signal of the form



V(t) = VA./1+cos(cot), (4.3)

which is used to ensure the isolation of harmonic and parametric effects [45]. As

with the elastic restoring force, cubic functions of displacement provide an

accurate model of the resulting force, which is also proportional to the square of

the respective voltage signals [45]. Thus, the combined force from the two sets

of comb drives can be expressed as

Fes(x,t)=(r1ox + r3(,x:’)/02 +(r1Ax + rmx3 W} (1 + cos(wt)), (4.4)

where r10, r30, rm, and rm are electrostatic coefficients that depend on the

geometry of the comb drives. Substituting these forces into Equation 4.1 results

in a net equation of motion for the shuttle mass, or the oscillator’s backbone, of

the form [1, 2]:

mx + C)? + k1x + k3x3 +(r10x + r30x3)/02 +(r1Ax + ran3 )l,f(1 + cos(a)t)) = 0.

(4.5)

To facilitate analysis this equation is nondimensionalized by rescaling time

according to

1:04, (4.6)
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where coo is the purely elastic natural frequency defined as,

(00 = —, (4.7)

51’22 = i, (4.8)

where x0 is a characteristic length of the system (e.g. the length of the oscillator’s

backbone) and a is a scaling parameter introduced to aid the analysis. This

results in a nondimensional equation of motion of the form

z" + 2542' + z(1+ 13v1 + £21 cos(Qr))+ 523(1 + v3 + 2.3 COS(QZ')) = 0, (4.9)

where the new derivative operator and the nondimensional parameters are

defined as in Table 1 [1, 2]. Note that by introducing the scaling parameter, a,

small damping and small parametric excitation have been assumed, which are

consistent with the operation of MEM oscillators, especially near resonance [1].

It is also important to note that due to the tunable nature of MEM oscillators,

many of the parameters present in Equation 4.9 can be specified through the

design of the oscillator and the associated comb drives, or even tuned “on the fly”

[1]. However, it should be noted that VA and V0 appear in many terms and this
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imposes constraints on how the parameters are selected (In fact, this

complication is the focus of the tuning in Chapters 5 and 6). For the present

study, two sets of parameter values are used, as listed in Table 2 (their p = i 1/2

designations will become evident subsequently). Note that these parameters are

taken from preliminary designs of a device similar to that shown in Figure 5.

 

 

 

 

 

 

 

 

 

 

 

 

Definition Nondimensional Parameter

(,)._ d(-) Scaled Time Derivative

dr

8; _ C Scaled Damping Ratio

2mw0

5v _ rmvo2 + r1AVA? Linear Electrostatic Stiffness Coefficient

1 k1

r1AVA? Linear Electrostatic Excitation Amplitude

£2, = ——

k.

9 _g Nondimensional Excitation Frequency

(00

kaxci Nonlinear Mechanical Stiffness Coefficient
_ k,

= x3 (raovo2 + GAVE) Nonlinear Electrostatic Stiffness Coefficient

k.

13 _ xgraAv} Nonlinear Electrostatic Excitation Amplitude

k.    
 

Table 1. Nondimensional parameter definitions [1, 2].
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p = 1/2 Oscillator p = -1I2 Oscillator
 

 

 

k1= 10 uN/um k1= 10 uN/um

k3 = 0.05 uN/um3 k3 = 0.05 pN/pm3

X0 = 1 11m X0 = 1 pm
 

m = 4.0528E-10 kg m = 4.0528E-10 kg
 

§= 0.01 §= 0.01
 

rm = 25-3 [IN/umv2 rm = 25-3 1111/1th2
 

r10 = -55-4 pN/pmVZ r10 = -55-4 pN/umvz
 

r3), = 15-3 pN/pmavz r3). = 15-3 pN/um3V2
  r30 = -2554 (1N/11m3v2  r30 = -7554 uN/um3V2
  

Table 2. A comprehensive list of the design parameter used

throughout this work [1].

Once nondimensionalized, the equation of motion presented in Equation

4.9 provides a foundation for the analysis of the MEM oscillator’s response,

especially with regard to varying physical parameters and system inputs. It is

important to note that Equation 4.9 is not the typical nonlinear Mathieu equation,

due to the presence of parametric excitation acting on the cubic term. While this

significantly complicates the oscillator’s response, as described in Chapter 6, it

has no effect on the linear stability of the system’s trivial response. As such, the

stability characteristics of the trivial response are compatible with those outlined

in Chapter 3. To confirm this, the averaged equations (derived in Chapter 6) can

be used to analytically approximate the first instability zone for the oscillator’s

trivial response. This is shown in Figures 7(a) and 7(b) in terms of the VA - I2

parameter space, that is, the physical excitation amplitude (the alternating

voltage amplitude) versus nondimensional excitation frequency parameter space,
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for both pure AC voltage excitation (Figure 7(a)) and a reference case which

results in a symmetric wedge of instability (Figure 7(b)) achieved by a means

described in Chapter 5. The amplitude-dependent critical frequency values are

denoted no, and .002, such that the zero response is unstable in the range .002 <

.0 < DC, (for 21 > 0). Using perturbation methods (see Chapters 5 and 6) these

can be shown to be

cc, = 2 + {144.121} (4.10)

and

002 =2+8(V1-521], (4.11)

respectively. Also note that the accuracy of the analytical predictions has been

verified with results from simulations of the full equation of motion, from which the

stability boundary is determined by examining the behavior (growth or decay) of

small perturbations from the oscillator’s trivial response. The following section

examines the critical features of the instability region.
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Alternatlng Voltage Amplltude vs. Nondlmenelonal Frequency
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Figure 7. The regions of parametric instability in the VA - .Q

parameter space produced using both the system’s averaged

equations and simulations of the system’s full equation of motion

with the linear parameters defined in Table 2. (a) The case of pure

AC voltage excitation. (b) A nominal case which results in a

symmetric wedge of instability [1].
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Due to the nature of the filtering approach proposed in this work, the

instability zones depicted in Figure 7 are of particular interest. Analogous to the

instability zone emanating from {2 = 2 in Figure 2, these “wedges of instability”

exhibit stability characteristics very similar to those presented in Chapter 3. In

fact, the only noticeable difference is that, unlike the primary instability zone

shown in Figure 2, which features a constant center frequency and nearly linear

transition curves, the center frequency and the transition curves in Figure 7 have

a distinct curvature since the excitation amplitude is VA2 and the oscillator’s

natural frequency depends on the square of the input voltage amplitudes, namely

 

2 2

(02 = k1+r10V0 1‘ rlAVA

" m

(4.12)

As explained in Chapter 3, inside the instability zone the trivial response is

unstable, which results in a non-zero response that is dictated by the

nonlinearities present in the system. Outside of the boundary, the trivial

response is stable. This, however, does not ensure a zero response outside of

the wedge, since the system can have multiple possible steady states, and

nontrivial responses can occur outside of the instability zone, as thoroughly

investigate in Chapter 6. This leads to potential hysteresis in the response,

which is highly undesirable in a filter. Another characteristic to note is that the

base of the instability wedge originates at the nondimensional frequency of 2,

and therefore filtering takes place at twice the oscillator’s natural frequency, that

is, at twice the frequency of filters which utilize direct excitation [1, 2]. The effect
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of damping on this instability zone is also similar to the results presented in

Chapter 3. Namely, the height of the instability zone’s origin is dictated in a

sensitive manner by the amount of aerodynamic and structural damping present

in the system [1, 2]. As such, there is a critical AC voltage input required for the

system to oscillate. This, however, is of minimal concern since the oscillators

typically act in an environment with extremely low damping (near vacuum for

testing) where Q factors can range into the thousands. In addition, the input

(excitation) signal can be amplified, if needed, to attain the critical excitation

amplitude. Finally, the amplitude-dependent nature of the stability boundary

should be noted. A direct result of these facts is that the both bandwidth and

center frequency of the system depend on the excitation amplitude, one of the

primary drawbacks discussed in Chapter 3. The bandwidth deficiency is

considered in the following chapter, while the hysteresis mentioned above is

covered in Chapter 6 and the center frequency shift is discussed in Chapter 7.
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Chapter 5

Linear Tuning: Manipulating the

Instability Zone

As Figure 6 shows, the oscillator’s activation frequencies (where the trivial

solution undergoes a stability change) are strongly dependent on VA, the

amplitude of the AC voltage input. As such, when an untuned oscillator is

employed as a filter, its bandwidth will be dependent on the excitation amplitude.

However, it is possible to partially negate this effect through the implementation

of a specific linear tuning scheme, namely, one in which the natural frequency of

the oscillator, can, is made to be dependent on VA through a tuning of the linear

electrostatic stiffness coefficients [1, 2]. This is accomplished by selecting the

DC voltage in the DC comb drive to be dependent on VA, which is the amplitude

of the AC voltage that acts on the AC comb drive. A description of this tuning, as

well as the net results it produces are presented here. Note that the theoretical

basis for this tuning is largely founded on the averaged equations derived in

Chapter 6.
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To begin, it should be recognized that the signal to be filtered is the AC

signal, and that the DC signal has been introduced in this analysis solely for this

linear tuning. The DC voltage is to be dictated by the amplitude of the AC signal

as follows. A designer-specified constant of proportionality a is introduced that

relates the amplitude of the DC and AC voltage amplitudes according to

V0 = aVA, (5.1)

which results in the redefined parameters given in Table 3. Substituting these

parameters into Equation 4.9 results in a revised equation of motion given by

z" + z = —g(2;z' + 241(p + cos(Qr))+ 23(1 + v3 + 2., cos(Qr))), (5.2)

wherein a new tuning parameter, p, is introduced that relates the linear

electrostatic stiffness coefficient to the linear excitation amplitude, according to

V1 ’10"
p=—==1+—————. (5.3)

21.1

The parameter p represents the net effect that the AC amplitude, expressed in

terms of 2.1, has on the natural frequency of the oscillator. Specifically,

(on =1I1+£p21 =,/1+5v1 . (5.4)
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Definition Nondimensional mrameter

r 2 + r Linear Electrostatic Stiffness Coefficient

_ L11 V2
5V1 ‘ k A

1

3 = [ x§(r30a2 + r3“)]V} Nonlinear Electrostatic Stiffness Coefficient

k.    
Table 3. Redefined nondimensional parameters [1, 2].

The instability zone can thus be distorted through variation of p, since this

produces a change in the linear natural frequency of the oscillator in a manner

that is dependent on the input amplitude, VA, through 111 [1, 2]. This results in a

rotation of the wedge of instability away from the reference configuration, here

taken as the symmetric case corresponding to p = 0, as shown in Figure 7(b). In

particular, for rm > 0, by selecting p > 0 the wedge will rotate clockwise, and by

selecting p < 0 the wedge will rotate counterclockwise. Note that one has the

ability to set p by designing the comb drives with the desired electrostatic

characteristics and then specifying a accordingly. Also note that if one does not

activate the set of DC combs, and simply drives the system in the common

manner, this corresponds to p = 1, since a = 0, as shown in Figure 7(a).

Using perturbation calculations (outlined in Chapter 6), it can be shown

that by selecting p = 1/2 the left stability boundary of the wedge becomes vertical

(to leading order in the perturbation calculations), as shown in Figure 8(a), and,
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similarly, by selecting p = -1/2 the right stability boundary becomes vertical, as

shown in Figure 8(b) [1, 2]. Higher order perturbation methods can be used to

improve this verticality, however, the resulting improvement in performance is

minimal, so nominal values of p = :1/2 are used in this work. Note that the

results described here correspond to rm > 0, the opposite trends in term of

rotation occur for rm < 0.

The aforementioned verticality, achieved by selecting p = _+_1/2, has the

distinct advantage that it renders one of the oscillator's activation frequencies to

be amplitude independent and, as such, makes it act essentially like a high or

low pass switch. In particular, for rm > 0, by selecting p = 1/2, the oscillator will

act as a high pass switch and by selecting p = -1/2 a low pass switch is achieved

[1, 2].

While this tuning provides a solution to one difficulty, others remain. The

possible existence of nontrivial responses occurring outside of the instability zone

is addressed in the next chapter.
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Alternating Voltage Amplitude vs. Nondimensional Frequency
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Figure 8. Parametric instability zones in the VA - .0 parameter

space (for rm > 0) created using both analytical techniques and

simulations. (a) p = 0 and p = 1/2. (b) p = 0 and p = -1/2.
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Chapter 6

Nonlinear Tuning: Conditioning the

Nontrivial Response

One deficiency of the tuned oscillators presented in Chapter 5 is that they

have the propensity to feature non-zero response amplitudes outside of the

wedge of instability, due to the presence of hysteresis in the system. However,

the flexibility of the comb drives in these MEM devices allows one to adjust the

system nonlinearities through electrostatic forces. Specifically, using well

established techniques, the cubic nonlinearity produced by electrostatic effects in

the comb drives can be tuned such that the oscillator’s overall nonlinearity

exhibits hardening, softening, or mixed hardening/softening characteristics [1, 2,

4—6, 52]. This can be verified by considering the effective nonlinearities of the

MEM oscillator, as determined through a perturbation analysis, as follows.

6.1 Averaged Equations of Motion

To begin, Equation 5.2 is converted to the correct form for the application

of the method of averaging by employing the standard coordinate transformation

to amplitude and phase coordinates, specifically,
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2(1): a(r)cos(9§’-+ 1110)). (5.1)

z'(r) = —a(r)%sin[%l+w(r)). (5.2)

In order to capture the response near the primary parametric resonance, an

excitation frequency detuning parameter, a, is also introduced, defined by,

Q = 2 + 50', (6.3)

in which 0' measures the closeness of the excitation frequency to the principle

parametric resonance condition. Equation 5.2 is then transformed to the

amplitude/phase coordinates, a(r) and (0(7), and the resulting equations that

govern the dynamics of these variables are averaged over 411 / .0 in the rdomain

[1, 2, 6]. This results in the averaged equations

a’ = g-aaI— 8; +(2/l1 + a223)3in(21//)]+ C(82) (6.4)

(11' = %a[3a2(1 + v3)+ 411p — 40' + 2(211 + azflg)cos(2w)]+ 0(62 I (65)
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Note that the presence of the nonlinear electrostatic parametric excitation (13)

leads to a complicating term in the averaged equations, as compared to the

usual nonlinear Mathieu equation. Consequently, the nontrivial steady-state

solutions of the system take on a more complicated form, and the system has

much more interesting response characteristics.

6.2 Analysis of the Steady-State Responses

Since the characteristic form of the system nonlinearity (e.g. hardening,

softening, etc.) is the critical feature of the response for current purposes, and

this is unaffected by damping, zero damping (; = 0) is assumed in order to

simplify the analysis. Examining the steady-state responses in this case, reveals

that the response has three sets of nontrivial branches. The first two sets, which

can be derived by setting the left hand sides of Equations 6.4 and 6.5 equal to

zero, solving for the cosine and sine terms, and evoking the first Pythagorean

Identity, appear in pairs with amplitudes given by

 

 

 

 

51 = ifa—ZMZp—fl’ (6.6)

3(Z+V3)—243

.52 : i_\/40'—2/1.,(2p+1) . (6.7)

3(,1/+v3)+2/I3
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(Note that each +/- pair represents the same physical response; they appear this

way due to the phase relation of this subharmonic response to the excitation [35])

For each of these solutions, the sign of the term under the square root

determines the frequency ranges over which these branches are real, and thus

physically meaningful. It should be noted that the stability of the a = 0 solution

cannot be determined directly from the averaged equations in polar form, due to

the fact that the phase is undefined at a = 0. However, one can determine the

stability of the trivial response using Cartesian coordinates, or it can be inferred

from the nontrivial responses in Equations 6.6 and 6.7, since the frequency (0')

values at which these branches become zero correspond to the stability limits of

a = 0. Furthermore, it is found that the trivial response is unstable within the

frequency domain bounded by the critical values given in Equations 4.10 and

4.11. It is also easily seen from Equations 6.6 and 6.7 that by selecting p = :1/2

one can render one of the boundary frequencies (that is, the 0' values) where a

branch appears independent of the input amplitude 21, leading to the desired

rotation of wedges described in the previous chapter.

Of direct interest here is the role played by the nonlinearities, which differ

for each of these frequency-dependent branches. To describe these effects,

effective nonlinear coefficients 71 and 72 are defined that dictate the hardening or

softening behavior of the branches. These coefficients are taken from the

denominator of the expressions above and are given by
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71 = 3(2 + V3 ) - 244 (6-8)

and

72:3(g+v3)+223. (6.9)

Selecting 71 < 0 and 72 < 0 locally results in the usual overall system

softening nonlinearity. Likewise, selecting 71 > 0 and )9 > 0 locally results in an

overall system hardening nonlinearity. However, due to the unusual nature of

this oscillator, two mixed cases also exist, namely, 71 > 0 and y; < 0, and )4 < 0

and y; > 0, which correspond to the two branches bending toward or away from

each other, as determined by the sign of 21 and the magnitude of p [6]. This

result is summarized in the chart presented in Figure 9 which delineates the

various response regions within the 73 - 23 parameter space, where,

n=2+e wnm

is the component of the cubic nonlinearity that does not multiply the time varying

term cos(.0r) while 23 is the component that does multiply it. Note that the

transitions (bifurcations) between response types occur when one or both of the

effective nonlinearities equal zero.
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The solutions in the third set of nontrivial responses are determined by

examining the g = 0 version of Equation 6.4. They have constant amplitude (for

zero damping) and are given by

53:: “:21. (5.11) 

These solutions are, however, of comparatively less importance from a filtering

point of view due to the nature of their stability and range of existence (though

from a nonlinear systems point of view they are quite interesting) [6].

The nonlinear coefficients 1.3 and 73 are related to the input voltage

amplitudes (see Tables 1 and 2), and thus the nonlinear characteristics of the

response can change as the input amplitude varies. This must be accounted for

in the design of the oscillators and comb drives, and may limit the range of

allowable AC input voltages for the resulting filter. The following discussion

addresses the intricacies of the oscillator’s overall frequency response, as well as

the effective nonlinearities’ dependence on the system’s input voltage, and how

these vary with system design parameters.
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Figure 9. The 73 - 23 parameter space [6]. The roman numerals

are used to designate the various response regions.

To facilitate further analysis of the oscillator’s response and stability, the

linear electrostatic stiffness coefficient is assumed to be zero (v1= O, and thus p

= 0), the linear electrostatic excitation amplitude, 21, is taken to be positive, and

damping is neglected. These assumptions introduce additional symmetries into

the problem, which simplify the analysis of the system’s various responses

without compromising the applicability of the results to a more general system,

i.e., the results provide an accurate “road map" for the overall response that is

still qualitatively valid when the assumptions are relaxed. With these

assumptions, frequency response curves (in terms of the detuning) are easily

produced for parameter values within each of the eight response regions

delineated in Figure 9. In order to obtain a complete picture, the stability of the

response branches must be determined; this is considered next.
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Though the local stability of steady-state responses is generally

addressed by considering the local linear behavior of the averaged equations

near the steady-state responses in the (a, W) polar coordinate space, singularities

at the origin require that a coordinate change be introduced. As such, the

following coordinate change is evoked, which converts the polar coordinates (a,

(a) into Cartesian coordinates (x, y),

X(r) = a(r)cos[i//(r)], (6.12)

ym = a(r)8in[w(r)]- (6.13)

This coordinate change results in new averaged equations of the form [6]

x' = %g[(22, + 40‘)y — 3y3x2y + (— 373 + 22,)y3 — 8;x]+ C(52), (6.14)

y' = %£[(2/i1 — 4a)x + 373xy2 + (3), + 22,)x3 — 8gyj+ o(.92). (5.15)

Using these equations, with g = 0, local stability results are inferred by

considering the response of the system when linearized about the steady states.

Letting
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_ X17)
X(r)_[ym] (6.16)

and

X' = [x] (6.17)

y

where the stars designate steady-state values, the local linearized equation of

motion for the system can be written as

Y'(r) = J|x. Y(r), (6.18)

where

Y(r) = X(z')— X“ (6.19)

and J is the Jacobian matrix of the averaged equations presented above,

Equations 6.14 and 6.15, evaluated at one of the system’s steady states, X'. The

stability of the steady-state response is governed by the eigenvalues of the

Jacobian matrix evaluated at the fixed points that correspond to the steady-state

responses.
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To simplify the analysis, we will consider the stability in terms of the trace

and determinant of the Jacobian matrix [53]. This method proves to be sufficient

due to the direct correlation between the eigenvalues of the Jacobian and its

trace and determinant. In particular, the eigenvalues can be expressed in terms

of the trace, T, and the determinant, A, as

11,, = %(T i- T2 — 4A). (6.20)

For the undamped case under consideration here, the trace of the

Jacobian for each of the steady-state responses is zero, thus only two

equilibrium types are possible for nontrivial eigenvalues: saddles (unstable) and

centers (marginally stable). Which of these two equilibrium types exists depends

solely on the sign of the Jacobian’s determinant. In particular, when A > 0, the

equilibrium will appear as a center, and when A < 0, the equilibrium will appear

as a saddle. The remaining case, A = 0, corresponds to the case of two

identically zero eigenvalues, and as such is used here only to calculate where

stability changes occur.

The trivial solution features a determinant of the form
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A “1168203 —402). (6.21)

By finding the roots of A = 0, the critical frequency values (detuning values) at

which stability changes occur can be shown to be

a, = -5 (6.22)

and

02 2 g (6.23)

respectively. The stability in each frequency (detuning) region is then determined

by evaluating the determinant at a single point within the domain or by calculating

the derivative of the determinant at the critical frequency value. As a quick

computation will show, the trivial solution appears as a center for 0' < 01 and a >

02, and as a saddle for 01 < a < 02. Using similar techniques the constant

solutions of Equation 6.11 can be shown to be saddles for all frequency values

where the solutions exists (determined by considering their phases), namely,

min{—2%(— 373 i 2,) } < a < max{?’:—e-(— 373 i 2,) }. (6.24)
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The two pair of nontrivial response branches are slightly more complicated

in that their stability is heavily dependent on which region of the 73 - 2.3 parameter

space (see Figure 9) the system falls within. Regardless, the stability for each of

the branches can be found by evoking the fact that the response presented in

Equation 6.6 has a determinant given by

A z .20, + 2011341. - 42. + 24.0)
 

4132-21.) ' (“25’

which features critical frequency values of

a, = 121 (6.26)

and

a, = —‘—1—(— 373 + 2,) , (6.27)

248

and the response presented in Equation 6.7 has a determinant given by

A z .20, — 20X34y. + M. + 24.0) (6.28)
 

4(373 +248) I
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which features critical frequency values of

a. = {12(— 31. — A.) (6.29)

and

02 = 521 (6.30)

Combining each of these results with the steady-state solutions derived above

yields a complete portrait of the oscillator’s possible frequency responses, as

shown in Figure 10.
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Response Amplitude vs. Detunlng In Region I (y, = 0.025, A, = 0.025)
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Response Amplitude vs. Detunlng in Region III (73 a -0.025, A, = 0.050)
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Response Amplitude vs. Detunlng In Region V (13 = -0.025, A; = -0.025)
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Response Amplitude vs. Detunlng In Region VI (1, = 41.025, x, I -0.050)
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Response Amplitude vs. Detunlng In Region VII (73 =- 0.025, 13 = -0.050)
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Figure 10. Representative frequency response plots showing

response amplitude versus detuning frequency for each of the eight

regions delineated in Figure 9 [6]. The frequency regions

designated by the letters correspond to the phase portraits of

Figure 11 .
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Due to the unique nature of many of the frequency response curves

presented in Figure 10, each are briefly discussed here. To begin, the response

curves depicted in Figures 10(a) and 10(d), corresponding to regions I and IV in

Figure 9, are considered. As quick examination reveals, these regions appear

consistent with normal softening and hardening nonlinear behavior. That is, the

nontrivial solutions branch off in two distinct pitchfork bifurcations, one subcritical

and the other supercritical, and all solutions remain globally bounded. The

frequency responses shown in Figures 10(b) and 10(c), corresponding to

topologically equivalent regions labeled II and III in Figure 9, are slightly more

complicated. Here the nontrivial solutions also branch off, but in each instance a

subcritical pitchfork bifurcation occurs. The net result is that the two response

branches actually bend away from each other and some solutions are globally

unbounded.

In the lower half-plane of the parameter space depicted in Figure 9, the

existence of the additional nontrivial (constant amplitude) solution complicates

matters. First, consider Figures 10(e) and 10(h), corresponding to regions V and

VIII in Figure 9. Here the response locally resembles that of Figures 10(a) and

10(d). However, as the frequency is swept further away from zero detuning (0' =

0), the system undergoes two additional bifurcations, corresponding to the

creation and annihilation of the constant amplitude response, which connects the

other two nontrivial branches. Though this still results in a globally stable system
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with quasi softening or hardening characteristics, it is distinct from the usual

hardening and softening response curves of the upper half-plane, due to the fact

that the stability in the two non-constant branches switches via the constant

amplitude branch that connects them. The responses shown in Figures 10(f) and

10(g), corresponding to the regions labeled VI and VII in Figure 9, are also quite

unique. Again, the responses feature four distinct bifurcations, two of the

pitchfork variety where the nontrivial solution branches off from zero and two

corresponding to the creation and annihilation of the constant amplitude solution,

again connecting the other two nontrivial branches. The net result is a globally

unstable system with nontrivial response branches which initially bend towards

one another, are both initially stable, and lose stability via bifurcations with the

constant amplitude branch.

To provide additional insight into the bifurcations described above,

representative phase planes corresponding to each of the frequency regimes

dictated in Figure 10 are depicted in Figure 11. Note that these phase planes are

only the topological equivalent of those in the specified regimes, as many of the

topologies occur in more than one set of response curves.
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Figure 11. Representative phase plots corresponding to the

frequency response regions defined in Figure 9 [6]. Solid dots

indicate equilibrium points.

6.3 Tuning the MEM Oscillator’s Nonlinearity

From a filtering point of view, the flexibility in selecting the nature of the

nonlinearity is very useful for limiting the existence of non-zero solutions outside

of, or at least on one side of, the instability zone. In particular, by specifying a

hardening nonlinearity (Region I) or a quasi-hardening nonlinearity (Region VIII),

that is 71 > 0 and 72 > 0, for a high pass switch (p = 1/2, for rm > 0), nontrivial

responses below the activation frequency can be avoided [1]. Similarly, by

specifying a softening nonlinearity (Region IV) or a quasi-softening nonlinearity

(Region V), that is 111 < 0 and 72 < 0, for a low pass switch (p = -1/2, for rm > 0),

nontrivial responses above the activation frequency can be avoided [1].
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As alluded to earlier, this nonlinear tuning can be achieved through careful

design of the comb drives [1]. Precise values of the effective nonlinear

coefficients are not required, since one simply needs to ensure that hardening or

softening (or even quasi-hardening or quasi-softening) persists, even in the face

of the mechanical (hardening) nonlinearity and the AC input. Here r30 and r3A,

two parameters determined by the geometry of the fingers of the comb drives,

must be selected such that the desired response characteristics are achieved

over a given range of voltages. If this cannot be achieved in conjunction with the

linear tuning constraints on rm and rm, it would be possible to add an additional

comb drive to the oscillator, whose sole purpose is to tune the nonlinearity. It

should also be noted that since the mechanical nonlinearity is generally

hardening, one will need significant electrostatic softening in the low pass switch

in order to achieve overall softening over a reasonable range of voltages (this

has recently been accomplished experimentally at U083 [54]). Of course,

maintaining the form of the nonlinearity is complicated significantly by the

excitation amplitude (VA) dependent nature of the system’s nonlinearities, as

examined next.

As shown in Tables 1 and 3, the nonlinear electrostatic terms that

comprise the effective nonlinearities of the system, V3 and 2.3, depend on the

amplitude of the excitation voltage of the system, VA. Accordingly, the system

can actually transition from one response regime to another (in Figure 9) as the
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amplitude of the alternating voltage changes. This can be confirmed by

examining the form of the nonlinearity in the 73 - ’13 parameter space. Taking the

definitions of ’13 and )9,

2 2

1:, ___ XOr3AVA
(6.31)

k.

and

X3 2 2

73 =Z+V3 =Z+T(r3A+a r30)VA (6-32)

1

it is seen that at zero voltage the system starts at (73. 13) = (Z. 0) (on the

boundary between Regions | and VIII) and moves along a straight line in the 73 -

’13 parameter space given by

13 = [-—r3‘——](73 - 1) (633)

as VA is increased. To validate this consider the oscillator design designated ,0 =

-1/2 in Table 2. As Figure 12(a) shows, this oscillator’s nonlinearity will move

through regions I, II, III, and IV as the input voltage is varied from 0 to

approximately 5 V. Similarly, the oscillator designated ,0 = 1/2 in Table 2 will

move through regions I and II as the input voltage is varied from O to
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approximately 18 V, as shown in Figure 12(b). To avoid such transitions within a

given oscillator’s operating voltage range, consideration must be given to these

effects during oscillator design. The following relationships are useful in

determining the transition voltages, the critical voltage values corresponding to

qualitative changes in the systems nonlinearity, for a given oscillator:

 

‘ k3 (6.34) 

VA,Ct : 2 5

 

_k3

 (6.35)
vA,C2 =

2 1

Note that to achieve an overall hardening behavior it is beneficial to have a

hardening mechanical nonlinearity, as it ensures that a minimum voltage

threshold will not be required to realize the desired nonlinearity. Likewise, it

would be beneficial to have a softening mechanical nonlinearity in systems where

an overall softening is desired. Unfortunately, this is not realizable in current

designs, though it is currently being considered by the author. However, these

systems will, due to the nature of the parametric resonance, have a threshold

operating voltage in any case, and it has been experimentally observed that the

transition from hardening to softening takes place at relatively low voltages [54].

58

 



0.04 ,

0.03.

0.02 I

 

IV

 

0.02]

0.03 _ —

 

vA=4.2v

0.0:?
 

' 7101" '“ Wo’ "

 

6.0T _

73

(3)

IV

___ _— _fi.__

vA $17.3v

II

0.02

 
' 0.03

 

”#0072 7
 

i007 ‘ 'A o. ‘

vA=ov

3.0T ‘—

Ya

(b)

tioT

 

_003

Figure 12. Sample parameter spaces showing how the oscillator’s

nonlinearity transitions between response regimes under a varying

input excitation amplitude; (a) for the p = -1/2 design presented in

Table 2, (b) for the p = 1/2 design presented in Table 2 [6].
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6.4 Summary

The above analysis gives a quite complete picture of the response

characteristics of the MEM oscillator of interest. For general parameter values

(including the inclusion of damping) approximate response curves can be

numerically produced from the averaged equations. Figure 13 highlights sets of

curves for both a p = 1/2 oscillator with a hardening nonlinearity and a p = -1/2

oscillator with a softening nonlinearity. As predicted, each response curve

originates at the chosen activation frequency (0 = 2) regardless of the AC

excitation amplitude, VA. This confirms that the instability wedges have been

rotated as desired (see Figure 8). In addition, the response quickly increases

from zero to a finite amplitude after activation. To confirm the validity of the

perturbation calculations, results from numerical simulation of the full nonlinear

equation of motion have also been included in Figures 8 and 13 [1]. Note that

the averaged solutions provide excellent accuracy at low AC voltage amplitudes,

and are reasonable at larger excitation voltages.
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Response Amplitude vs. Nondimensional Frequency
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Chapter 7

Creating a Bandpass Filter

While the tuning schemes presented in Chapters 5 and 6 effectively

condition the response of an individual oscillator, they result in efficient

frequency-activated switches, but not a bandpass filter [1, 2]. Furthermore,

these switches are good at only one frequency, as the other instability boundary

is still amplitude-dependent, and the responses will likely exhibit hysteresis

beyond the switch point. However, two such oscillators, tuned to act as

amplitude-independent switches at nearby frequency thresholds, have great

potential for such use [1, 2]. In particular, it may be possible to create a

bandpass filter through the implementation scheme shown in Figure 14.

The idea is to generate a bandpass filter which features a center

passband frequency of {20 and a bandwidth of Ana, where A is defined to be a

small parameter which describes the bandwidth as a percentage of the center

frequency (see Figure 1). This parameter may also be used to define an

“effective quality (Q) factor”, where Qefl’ is independent of system damping, as

follows,
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(7.1)

D
I
—
s

To achieve this design, two oscillators are required. One is a high pass

switch (with p = 1/2 for rm > O) that has been nonlinearly tuned such that it

exhibits a hardening nonlinearity, which will henceforth be designated as ‘H’.

The other is a low pass switch (with p = -1/2 for rm > 0) that has been nonlinearly

tuned such that it exhibits a softening nonlinearity, which will henceforth be

designated as ‘L’. In addition, both the L and H oscillators must have their linear

mechanical frequencies tuned such that the base points of their respective

wedges of instability are slightly shifted from .00, so that the passband is created.

This can be achieved by designing the oscillators so that their zero-voltage (i.e.,

purely mechanical) linear instability threshold frequencies are as follows: for the L

oscillator the threshold is selected to be ADO/2 above .00, and for the H oscillator

the threshold is selected to be Ana/2 below {20. With this, the oscillators’ tuning

is complete. A summary of the required tuning conditions for the two oscillators

is given in Table 4.
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Oscillator Tuning Condition

H Oscillator Zero-Voltage Linear Frequency km 9o A

”I" ‘ m? '7i "5)
Amplitude Dependent Linear Tuning [r1003] 1

(p = 1/2) rm H 2

Hardening Nonlinearity Nonlinearity Region I or VIII

L Oscillator Zero-Voltage Linear Frequency
kit 90 A

= -—'-=— 1 _

w“ \lm, 2 [ +2)
 

(p= -1/2)

Amplitude Dependent Linear Tuning

l—‘w’l --’r1A L 2

   Softening Nonlinearity  Nonlinearity Region IV or V
 

 

Table 4. Summary of tuning requirements for bandpass filtering

[1]. The “Nonlinearity Region” refers to Figure 9.

 

 

 

 

 
SC

   

   
 

 

  

——>

 

 

 

 
 

 

 

 

 0+

—>

   
  

AND

 

 

 

 L,

 

 
  

   

  

 
1 enable

\

 

R=VAcos(0)t)

64

 /P output

Figure 14. One proposed logic implementation scheme, which is

capable of producing a bandpass filter [1, 2].

 



Once the two oscillators have been tuned in accordance with the

conditions set forth in Table 4, they are ready for implementation in the filter

system presented in Figure 14. This system is designed to function as follows.

A harmonic input signal, R, of the form R = V, cos(a)t) is supplied to the system.

This signal travels to a signal conditioner (SC) that produces an excitation signal

appropriate for the oscillators’ comb drives, namely the square-rooted input

described in Chapter 4. This signal is then used to drive both the H and L

oscillators, via the AC comb drives, and is also provided to the block designated

F1. This block represents an AC to DC converter that produces the amplitude of

R, namely V, (which is monotonically related to VA), or some proportion thereof.

This DC signal is sent to the oscillators, where it is used to drive the two

resonators, via the DC comb drives, and to tune each oscillator through their

linear tuning parameters, p = i1/2 (recall that the p tuning is set by a, which sets

V0 in relation to VA.) Each oscillator, acting as described in previous sections,

filters the provided input signal and acts as a switch, producing a zero (in

practice, the noise floor) or finite amplitude oscillatory response, depending on

the frequency of the excitation signal. The respective signal from each oscillator

is then sent to another block designated F2 which converts the signal into a

constant voltage, or into a digital signal. For example, F2 may produce a 0 when

the oscillator’s output is zero (noise floor) and 1 when the output is oscillating or,

this is simply and AC to DC converter. The signal from each F2 block then

proceeds to an AND junction, which provides a non-zero signal to an enabling

input of block P only when the frequency of the input signal falls within the
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desired bandwidth. If the enabling input of device P receives a non-zero signal, it

allows the original filter input to pass unimpeded; otherwise, it blocks the signal.

The result is a bandpass filter with ideal stopband rejection and optimal roll-off in

its frequency response.

To verify the operation of the filtering scheme presented in Figure 14,

numerical simulations of the system were carried out using SimulinkTM [55]. As

Figure 15 shows, the results for a bandpass filter designed with an effective

quality factor of 500 are essentially as expected. The filter’s bandwidth and

center frequency are nearly amplitude independent (note the horizontal scale),

and could be made even more so by refining the tuning parameters, the p’s. In

addition, the attenuation outside of the passband is absolute, which verifies that

the filter’s stopband rejection is ideal. Finally, the filtering takes place at twice the

natural frequency of the system, or twice the frequency of those filters which

utilize linear resonance.
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Chapter 8

Design Robustness Issues

So far, the discussion of filters within this work has been largely based on

the assumption that the filters’ input is both known and deterministic and that

target values for design parameters are readily achievable. However, in practice

uncertainties arising in both the system’s input and design parameters must be

characterized and addressed. in particular, the effect these uncertainties have

on filter performance must be noted. A complete robustness analysis is beyond

the scope of this thesis, but we provide here an overview and some preliminary

results of such an analysis. Of particular importance are uncertainties arising in

the following:

. mechanical properties, including the mass and stiffness,

o damping,

o electrostatic properties, including the forces generated by the comb

dnves,

. the input voltage signal, including any noise that may be present, and

. background system noise.
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The importance of these uncertainties is largely due to the direct effect they have

on filter characteristics, including,

. the linear natural frequency of the filter,

0 the stability thresholds and the ability to manipulate them through

linear tuning, and

o the system nonlinearities and the ability to manipulate them through

nonlinear tuning.

8.1 Parameter Sensitivity

The robustness issues arising from design parameter uncertainty are

perhaps best addressed through sensitivity analysis, as it offers a means through

which the effects of parameter uncertainty can be estimated. For current

purposes, the standard definition of sensitivity is used, namely,

S(A,B)= —— (8.1)

which represents in the percent change in A due to a percent change in 8.

Due to the nature of the filtering method described within this work, the

sensitivity of only two filter parameters are of utmost importance, namely, the

sensitivity of p, which dictates the orientation of the instability region, and the

sensitivity of (00, which dictates the location of the apex of the instability region.
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All other parameters, once designed within acceptable ranges, can deviate from

their specified values with minimal loss of performance.

A brief analysis shows that calculating the sensitivity of 000 is trivial. In

particular, one finds that

(8.2)

8(a20,m) = g. (8.3)

As such, for every 1% change in m or k1, mo will exhibit 0.5% change. As both

the linear stiffness and the mass are highly predictable, this indicates that

uncertainties associated with the purely elastic linear natural frequency will likely

have minimal effect on the system.

The sensitivities associated the linear tuning parameter, p, however, are

slightly more interesting. Recall from Equation 5.3 that

p=—=‘I+——, 18-4)
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where no and rm are electrostatic coefficients dependent on the geometry of the

fingers of the comb drives and a is a tuning parameter which specifies the

relationship between AC and DC input voltages. Evaluating the sensitivities

reveals that

2ra

S , =——‘-°——, 8.5(pa) 0.”.an ( )

r a

s . =——‘°—, d 8.6(Prro) r1A+r10a2 an ( )

r a

8(p.r )=—-—‘°——. (8.7)
“ annoaz

which, when plotted for the p = 1/2 oscillator design presented in Table 2 results

in the sensitivity curves of Figure 16. From these plots it is clear that the linear

electrostatic coefficients and the voltage tuning parameter must be selected with

high precision to ensure the verticality of the stability boundary, and thus its

amplitude independence. This is not difficult for the user-specified voltage ratio

a. However, for no and rm this is easier said than done, as the electrostatic

coefficients are determined largely through approximate methods, including

electrostatic finite element techniques (typically a two-dimensional analysis) and

curve fitting.
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Figure 16. Sensitivity plots, which show the sensitivity of p with

respect to each of its components. The black squares designate

the nominal design parameters used for the p = 1/2 oscillator under

consideration here.

8.2 Effects of Noise

While the sensitivity methods presented above are extremely useful for

determining the required accuracy of system design parameters and the net

effect parameter uncertainty will have on the system, another fundamental issue

remains. In particular, the filter’s capability to handle uncertain inputs must be

considered. Whereas the analysis considered to this point has assumed

perfectly harmonic input signals, in reality filters will also see both pure noise

inputs and harmonic inputs with superimposed noise. While the effects such

inputs have on this filter are beyond the scope of this work, it is worth noting that
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a bevy of literature exists which examines the response of both single-degree-of-

freedom (SDOF) and multi-degree-of-freedom (MDOF), parametrically-excited

systems with stochastic inputs [56-65]. The complication here is that a full

analysis of the system’s response to stochastic inputs would require one to

assume both random amplitude and phase, which would affect both the linear

and nonlinear behavior of the oscillator, thus significantly complicating matters.
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Chapter 9

Conclusions and Directions for

Future Work

Filtering based on parametric excitation has some very attractive features,

as summarized in Figure 15. For the implementation considered here, the most

obvious drawbacks are:

. a damping-dependent critical AC excitation amplitude is required for

operation (which can be addressed by restricting the input voltage to a

specified range);

. design robustness issues may arise, for example, the required

accuracies of the linear tuning strategy that rotates the wedge,

temperature sensitivity, effects of noise, etc;

. the insertion loss of the physical system cannot yet be quantified, since

this will depend on the hardware implemented for the filter;

0 higher order resonances may appear in the system, which will lead to

non-trivial responses well away from the passband; and

. one must be able to measure, or at least estimate, the amplitude of the

harmonic input of interest.
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These issues will be addressed in forthcoming studies, including planned

experimentation.

In addition to the methods described within this work, a number of

alternative filtering methods based on parametric excitation are currently under

consideration. Amongst the most promising alternatives are:

. coupled oscillator filtering systems, designed such that logic circuitry, like

that shown in Chapter 7, is unnecessary;

. parametrically-excited filters with specially tailored inputs, such as

constant amplitude square waves, which may be used to avoid the

amplitude dependent nature of a single oscillator’s passband and center

frequency; and

. parametrically-excited filters tailored to handle noise.

While this work focused on bandpass filters, it is worth noting that an

equally ideal band gap filter can theoretically be produced by simply changing

block P such that it enables with a zero amplitude signal instead of a non-zero

amplitude signal. It is also expected that these parametric-based frequency

switches can be used to develop high and low pass filters.

The ultimate goal of this line of work is to achieve fully functional filters

wherein the parametrically excited MEM oscillators and the associated circuitry

are integrated into a single chip.
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