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ABSTRACT

CONSTRAINED LOWER SEMICONTINUITY PROBLEMS IN THE

CALCULUS OF VARIATIONS

By

Daniel Vasiliu

We study two problems of constrained lower semicontinuity for a functional on

Sobolev space. The first problem is motivated by certain models of microstructures

and phase transitions which are distinguished by the fact that the associated Young

measure is supported on a certain set K. We study the case when K = I; is a lin—

ear subspace and we prove that the weak lower semicontinuity of a functional on a

Sobolev space restricted to sequences whose gradients approach the linear subspace

L satisfying a constant dimension condition is equivalent to a generalized version of

quasiconvexity. The second problem is motivated by the Ekeland variational princi-

ple. We study a restricted weak lower semicontinuity for a given smooth functional

on Sobolev space along all its weakly convergent Palais—Smale sequences. This type

of constrained weak lower semicontinuity replaces the usual lower semicontinuity

condition required for the direct method in the calculus of variations, and suffices

for the existence of minimizers under the usual coercivity assumption. Although, in

general, this condition is not equivalent to the usual weak lower semicontinuity con-

dition, we show that, in certain cases, these two conditions are equivalent and reduce

to the usual convexity or quasiconvexity conditions in the calculus of variations.
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Introduction

A problem of significant importance in the Calculus of Variations is to find among

all functions a E W14’(Q,Rm), with certain prescribed constraints, those which

minimize a given functional

1(a) = / f<m<xtDu<x>>dz (1)

where f : Q x Rm x Mm“ —> R, Q C R" a bounded domain and Du denotes the

gradient of u in the sense of distributions. A direct method of proving existence of

minimizers is to find minimizing sequences converging in some topology and check

that the functional I is lower semicontinuous in that topology; then in this case the

limit would be a minimizer. Therefore it is a special interest in finding necessary

and sufficient conditions for the function f such that I defined by (1) is weakly lower

semicontinuous on certain Sobolev space. One “right” candidate for such condition

is the concept of quasiconverity first introduced by Morrey in the early ’505 [Mo 1].



According to Morrey a function f : Mm“ —> R is quasiconvea: if

/ f(A + Du<x>>dz 2 IQIfIA)

Q

for all A E Mm” and all u E C30(Q,Rm).

Acerbi and Fusco [AF] proved that under some proper growth condition the

weak lower semicontinuity of the functional I given by (1) is equivalent to the

quasiconvexity condition of f with respect to variable 6.

The quasiconvexity condition is generally difficult to verify. As a major contri-

bution in understanding this condition we distinguish the work of Ball [Ba 1]. He

developed the concepts of rank-one convexity and polyconuexity along with the qua-

siconvexity emphasizing many interesting facts in the attempt to establish a useful

sufficient condition for the weak lower semicontinuity. It turns out that rank-one

convexity (see definition below), although easier to check, is the weakest among

all three conditions. In general rank-one convexity does not imply quasiconvexity

(Sverak [Sv 1]) but vice versa is always true. However there are particular cases

when rank—one convexity is equivalent to quasiconvexity, for example when f is a

quadratic form.

An efficient way to study weakly convergent sequences and the weak lower semi-

continuity property for the functional (1) is to use the concept of Young measures

developed by Tartar [Ta] following the original idea of L.C.Young [Yo]. Kinder-

lehrer and Pedregal [KP] showed that the homogeneous gradient Young measures



(i.e. :1: —> V; is the constant map almost every :13) are exactly those probability

measures that satisfy Jensen’s inequality for all quasiconvex functions f i.e.

/ much/mama / Adz/.0».
men men

Using the techniques of Young measures, Fonseca and Muller [FM] studied the so

called A—quasiconvexity problem and Miiller [Mn 3] also studied a similar problem

without the constant rank condition.

For problems relevant to solid-solid phase transitions in the Material Science

[B], Mu 2] one can model the so called microstructure through Young measures. In

these situations it is very important to study the sequences satisfying

dist(Duk(:r), K) —-> 0 (2)

for almost every :1: E Q where Q C R" and K C Minx", which is a so called a N-

energy well of the form K = U]:1SO(n)H,-. In terms of Young measure this condition

(2) is equivalent to the Young measure being supported on the set K.

It is as well very useful in practice to study the weak lower semicontinuity of

functionals I given by (1) along sequences uk satisfying constraint like (2) for a

given set K. In the first part of this thesis we studied this problem with the set K

being a linear subspace. In this case we also study the constrained rank-one and

quasiconvexity. Let K = L be a linear subspace of Mm”. We say that a function

f : [I —> R is .C-ranlc one convex if for any A 6 [0,1] and A, B E [I such that



rank(A — B) S 1 we have

le +(1— MB) 3 /\f(A)+(1- MB).

Also we say that f is £-quasiconve:r if

1

f(A) 3 I527 q] f(A + Du<x>>dsc

for every cube Q C IR”, any A E 1.: and every n E W1’°°(Q;Rm), Q-periodic with

Du(:1:) E [I for almost every 3:. We remark that if £ =- men we get the usual rank

one convexity and quasiconvexity condition and thus the new conditions generalize

the classical ones.

Let f : Mm” ——> IR and define 1(a) = f“ f(Du)da:. We say I is £-weakly lower

semicontinuous on I/V 1,p if

1(a) 3 lim inf [(uk)
k—~oo

whenever uk —\u and dist(Duk, L) ——> 0 as k —> 00.

The main result of the first part is that if the subspace L satisfies the constant

dimension condition (see definition below) then L-quasiconvexity is equivalent to

the [I—weak lower semicontinuity of the functional I .

In the second part of the thesis we assume the functional I defined above is

C1 on W1*”(Q;Rm). This requires that f be C1 in (3,6) and satisfy certain growth

conditions. As in many problems in application, I is often also bounded below.



When minimizing bounded-below C1 functionals over a Banach space, an important

variational principle discovered by Ekeland [Ek] (see also [AE]) can provide more

special minimizing sequences. For our functional I minimized over a Dirichlet class

Ag in WW6); R"), we can always obtain a minimizing sequence {uk} in A9 which

satisfies I’(uk) ——> 0 in W’I’P'(Q;Rm). Here, we assume 1) > 1 and p’ = 5%, and

W‘liplm; Rm) denotes the dual space of W01 ‘7’ (Q; Rm). Consequently, the weak limit

(if exists) of any such minimizing sequence will be an energy minimizer provided

that I (u) only satisfies the condition:

uk —\ u in Wl’p(Q;Rm) and

I(u) S lim inf I (uk) whenever (3)
k—eoo

I’(uk) _> 0 in W‘LP'(Q;R’").

Certainly the usual weak lower semicontinuity condition implies the condition

(3). We shall say the functional I (u) is restricted weakly lower semicontinuous on

Wl’p(Q; Rm) if it satisfies condition (3). If the condition holds only for all uk, u in

the Dirichlet class Ag, we then say I is restricted weakly lower semicontinuous on

A9. Note that in nonlinear analysis [AE, Ra] the sequences {uk} with bounded 1(uk)

satisfying I’ (uh) —> 0 are usually called the Palais-Smale sequences of the functional

I(u) Therefore, in the following, we shall say a sequence {uk} (PS) weakly converges

to u (with respect to I) and denote by uk P3 u in W149 if it satisfies uk —\u in WW

and I’(uk) —> 0 in W‘I'P'.

As we shall see later, this restricted weak lower semicontinuity imposes some

intrinsic property on the function f. Such a condition has also been mentioned in



[Mn 2] as a point of view to replace Morrey’s quasiconvexity condition. In general,

as shown in the paper (see Proposition 3.7), the restricted weak lower semicontinuity

is not equivalent to the usual weak lower semicontinuity even for one dimensional

scalar problems. However, the main results of the paper deal with certain cases

where the restricted weak lower semicontinuity is actually equivalent to the usual

weak lower semicontinuity of the functional (hence the convexity or quasiconvexity

of f). In general cases, we do not know the necessary and sufficient condition for

the restricted weak lower semicontinuity. We point out that the major difficulty

in handling this type of restricted weak lower semicontinuity lies in that the test

sequences {uk} in the usual techniques [AF, Da, Mo 1] do not satisfy the condition

1'(u,,.) —+ 0 in rv-1»P’(a;1am).

A closely related problem to the restricted weak lower semicontinuity of func-

tional I is to characterize all the gradient Young measures [KP] generated by weakly

convergent (PS) sequences in WWII); Rm). This problem is associated with the the-

ory of compensated compactness [CLMS, Ta]. The difficulty lies in that in this

case the strong convergence I’ (uk) —> O in W‘I’P’(Q; Rm) can not be realized by the

Young measure of {Duk} in the dimension n 2 2. Recently the weak lower semicon-

tinuity of functionals under certain linear differential constraints has been studied

using the Young measure theory [FM, Sa]. These linear constraints A(u) are inde-

pendent of the functional and usually have large kernel. Then the constrained lower

semicontinuity of functionals may be characterized through the Jensen’s inequality

of the integrant with the associated Young measures supported on the kernel of A;



this is the so—called A—quasiconvexity [PM]. In this paper, we do not pursue the

Young measure method for our restricted weak lower semicontinuity studied here

mainly because it does not realize the strong convergence I’ (uk) ——> 0..

To put our restricted weak lower semicontinuity in another perspective similar

to the linear constraint cases, one could study the lower semicontinuity of any given

functional J (u) under the (PS) weak convergence defined above. For example, one

could define J to be restricted weakly lower semicontinuous on WI'P(Q; Rm) (with

respect to I) if

J(u) 5 lim inf J(uk), ‘v’ uk 38* u (with respect to I),

k-aoo

and study the relaxation of .1 under this lower semicontinuity if it is not restricted

weakly lower semicontinuous. The study in such a direction seems interesting, but

difficult in view of the nonlinear constraints. As in the linear constraint case, one

might consider the certain convexity property of J on the kernel of I’ (u) consisting

of all critical points of I, which may not be closed under weak convergence.



Chapter 1

Preliminaries and Notations

Let R" the usual n-dimensional euclidean space with points :1: = ($1,232, ...,:1:,,),

at,- E R (real numbers). Let Q be a bounded domain in R" and Q0 = [0, 1]" the unit

cube in R". Let Mm” be the set of m x n matrices. For vectors a, b E R" and

matrices g, 77 E Mm”, we define the inner products by

m 71

a-b=Zaz-bi, £1 77: (6,77) 2225157725

with the corresponding Euclidean norms denoted both by | - [. For vectors q E Rm,

a E R", we denote by q®a the rank-one m x n matrix (qiaj) and also define 0 2 0mm

where 0mm is the m x n matrix having 0 in all entries.

A cube in R" is a set

Q={$ERnI$=ZCJi,OSCiSI}

i=1



where (11,12, ...l,,} is an orthonormal basis of R".

Denoting n(Q) or [Q] the Lebesgue measure of a measurable set Q we have that

,u(Q) = [Q] = 1. A function u defined on R" is called Q-periodic if

u(a:) = u(:t + Z c,l,~)

for any a: E R" and any 6, E Z.

Let W1”’(Q) be the usual Sobolev space of scalar functions on Q, and define

Wl’p(Q; R") to be the space of vector functions u: Q —> Rm with each component

ui E Ill/14’ (Q) and we denote by Du the Jacobi matrix of u defined by

Du(:r) = (aui/ox,){:,l;j;j;;.

Let 1 g p < 00. We make Wl"’(Q; R’") a Banach space with the norm

1

P

IIUIIw1-p<a.am> = (/ (Iulp+ IDundx) .
Q

Let 08°(Q; Rm) be the set of infinitely differentiable vector functions with compact

support in Q, and let Wol’p(Q;Rm) be the closure of C8°(Q;Rm) in Wl’p(Q;lRm).

Then W01 ”’ (Q; Rm) is itself a Banach space and has an equivalent norm defined by

[I [Dull] Liam). We also recall the following version of Sobolev embedding:



Theorem 1.1. If Q is a bounded Lipschitz domain then the embedding

Wl’p(Q;Rm) ——> Lp(Q;lRm)

is compact for any 1 _<_ p 3 00.

By COOK”) we denote the closure of continuous functions on R” with compact

support. The dual of 000R") can be identified with the space MGR") of signed

Radon measures with finite mass via the pairing

W) = 4de

A map 1/ : E —> MGR") is called weak* measurable if the functions :2: —> (V(x), f)

are measurable for all f E COOK"). We shall write 14,, instead of 1/(x).

Let f : Q X Rm ——+ R a measurable function such that v —> f(x, v) is continuous

for all x E Q (a function with this properties is called Carathéodory function). The

following result represents the fundamental theorem of Young measures:

Theorem 1.2 ( [Ba 2]). Let E C R" be a measurable set of finite measure and let

uk : E —> Rm be a sequence of measurable functions. Then there exists a subsequence

ukj and a weak* measurable map I/ : E ——> MGR’”) such that the following hold.

(i) V3 2 0, [[Vrllem) = fnm duct 3 1, for almost every x E E.

(ii) we have IIVIIIM(R'") = 1 if and only if the sequence does not escape to infin-

ity,i.e. if lim sup|{|ukj|}| Z r] = O.
r—ooo j

10



(iii) Let A C E measurable and f E C(R’"). If [[VxllMakm) : 1 for almost every

x E E and if f(ukj) is relatively compact in L1(A) then

flukjl—‘(Vx,f)=/ de/x.

m

(iv) If f is Carathéodory and bounded from below then

11m m, wands: = AW f(x, u,,(x))>dx < oo
n—aoo 9

if and only if {f(-, ukJ(-))} is equi-integrable.

The measures (Vx)x€Q are called the Young measures generated by the sequence

{ukj}. The Young measure is said to be homogeneous if there is a Radon measure

V0 E MUR’") such that 11x 2 V0 for almost every x E Q.

Theorem 1.3 ([Pe]). If {uk} is a sequence of measurable functions with associated

Young measure 1! = {whey}, then

liminfo(x,uk(x))deL IR'" f($,)\)dV$(/\)d1', (1.1)

k—ooo

for every Carathéodory function f, bounded from below, and every measurable subset

ECQ.

A Young measure (V3) is called a gradient Young measure if it is generated by

a sequence of gradients. We say that (V3,) is a W” gradient Young measure if it is

11



generated by {Duk} and uk —\ u in W1'1’(Q, R"). The following result refers to the

localization of the gradient Young measures.

Theorem 1.4 ([KP]). Let (VI) be a gradient Young measure generated by a se-

quence of gradients of functions in W1*p(Q). Then for almost every a E Q there

exists a sequence of gradients of functions in W’1'p(Q) that generates the homoge—

neous Young measure (z/a).

We also provide the definitions of convexity, rank one convexity and quasicon-

vexity.

Definition 1.1. Let h : men -—+ R. We say that h is convex on men if the

inequality

hO‘E + (1 - A)77) S MK) + (1 - /\)h(77) (1.2)

holds for all 0 < A < 1 and 5, 77 E Mm“.

Note also that h is convex if and only if g(t) 2: h(§ + tn) is a convex function of t

on R for all 6, 77 E men . For C1 functions h, the convexity condition is equivalent

to the condition

h(77) 2 12(6) + 05%): (77 - 6), V 77, £6 me“- (13)

Furthermore, a C1 function h on R is convex if and only if h’ is nondecreasing, or

equivalently, the following condition holds:

(h’(a) - h'(b))(a — b) 2 0, V a, b E R. (1.4)

12



Definition 1.2. A function f : men —> R is called rank one convex if

f(AA + (1 - MB) _<_ Af(A) + (1 — A)f(B)

for all A E [0, 1] and any matrices A and B such that rank(A — B) S 1.

Definition 1.3. A function f : R" —-> R is called separately convex if g,-(t) =

f(x1,...x,-_1,t,x,-+1, ...xn) is convex in t for all 1 S i S n.

Definition 1.4. A function f : M‘“"" —+ R is said to be quasiconvex if

Q f(A + Dui($))d:v Z f(A)

for any A E Mm“ and u E WOI‘OO(Q0;R"‘).

If f is quasiconvex then one can show [Sv 1] that

f(A) = inf f(A + Du(x))dx

uevr’léfloosm) Qo

where Wpléfo(Q0; R") is the class of periodic functions in W1’°°(Qo; Rm).

Let A := ZN be the unit lattice, i.e. the additive group of points in R" with

integer coordinates. We say that f : R" —> Rm is A-periodic if

f(x+A) = f(x) for all x E IR", A E A.

13



A A — periodic function f may be identified with a function fT on the n-torus

Tn :2 {(e2nix‘,e2”i$2, ...,e2m‘r") E C" : (x1,x2, ...x") E R")

through the relation

fT(e2”m,e2"ff2, ...,emr") :2 f(x1,x2, ...xn)

The space D”(T,,) is identified with LP(Q0) and C(Tn) is the set of A-periodic

continuous functions on Q0. We recall some results on Fourier transform for periodic

functions. If f E L1(Tn), then its Fourier coefficients are defined as:

f(A) := “marriage, A e A.

7%

Theorem 1.5. We have the following:

(i) The trigonometric polynomials

R(x) 2: Z a,\e’2"ix"\, A' all finite subsets of A, a,\ E (C

AEA’

are dense in C(Tn) and in LP(T,,) for all 1 S p < 00.

(ii) Iff E L2(T,,) then

f(r) = Zf(A)€‘2m'A Z Iff(>\)l2 = ”Na

AEA AEA

14



Let f: Q x R" x men ——> R. We say f is Carathéodory if f(x, 3, 6) is measurable

in x E Q for all (s, g) E R" x Man and continuous in (s, 6) E R" X men for almost

every x E Q. Define the multiple integral functional 1 on W”(Q; Rm) by

I(u) = / f(x,u(x),Du(x))dx, u E Wl’p(Q;lRm).

Q

If f(x, s,§) is measurable in x E Q for all (8,6) E R” x Mm” and is C1 1n (s,£) E

R" x men for almost every x E Q, we shall use the following notation to denote

the derivatives of f on s and g:

0 a '—

Dsf(:z:, 3.5) = (51- - ,a—D Dim. 3. a = (af/ar..>z;:;:::::..

Definition 1.5. A functional I is said to be (sequentially) weakly lower semicon-

tinuous on Wl'p(Q; Rm) provided

I(u) 3 lim inf I(uk) whenever uk —\ u in Wl’p(Q; R"). (1.5)

k-—+oo

The following important result has been proved by Acerbi and Fusco [AF].

Theorem 1.6. Assume f is Carathéodory and satisfies

0 S f(xisié) S €1(|€|” + ISI”) + A(11?),

where c1 > 0 and A E L1(Q). Then functional I defined above is weakly lower

15



semicontinuous on Wl’p(Q;Rm) if and only if f (x, s, ) is quasiconvex for almost

every x E Q and all s E R"; that is, the inequality

f(a: s.)S€ l—Ql/flx st+Dso<y))dy

holds for ac. x E Q, all s E R", E E men and all 90 E C8°(Q;Rm).

Finally we quote the following theorems which are known as the Ekeland varia-

tional principle. See [De, Ek] for proof and more on these principles.

Theorem 1.7. Let (X, (I) be a complete metric space and let (I): X —> R U {+00}

be a lower semicontinuous function which is bounded below. Let 6 > 0 and a E X

be given such that

e_ < . _.

<I>(u) _ 1§f<1> + 2

Then given any A > 0 there exists u,\ E X such that

‘I’l’uxl S (1)01)» (“UAW—t) S A (1-6)

<I>(u,\) < <I>(u)+ X,‘d(u u,\) V u 524 uA. (1.7)

The following version, which follows from the general Ekeland principle above,

is very useful for establishing certain results in chapter 3.

Theorem 1.8. Let X be a Banach space and X* its dual space, and let (I): X -—> R

be a 01 functional which is bounded below. Then for each 6 > 0 there exists uC E X

16



such that

<I>(u€) S Infx (I) + 6

II‘P'WelIIx- S 6-

Therefore, there exists a minimizing sequence {uk} in X such that

lim <I>(u;,.) = igf (I), klim ||<I>’(uk)||X- = 0.

kaoo

17

(1.8)

(1.9)



Chapter 2

Linear Restrictions with Constant

Dimension

An interesting and motivating problem is to study necessary and sufficient conditions

for the weak lower semicontinuity of the operator I restricted only to a class of

functions that satisfy certain linear constraints, i.e. their gradients in the sense

of distributions approach a preset target linear subspace of Mm“ by means of L2

convergence. When the linear subspace satisfies some special condition we prove

that the restricted weak lower semicontinuity is equivalent to a generalized version

of quasiconvexity.

18



2.1 L-rank one convexity and L-quasiconvexity

Let L be a linear subspace of men and P: mena men the linear map such

that PA = 0 if and only if A E L, which is actually the orthogonal projection onto

the orthogonal complement of L.

Definition 2.1. We say that a function f : L —-+ R is L-rank one convex if for any

E [0, 1] and A, B E L such that rank(A — B) 3 1 we have

f(AA + (1 - MB) S AHA) + (1 — A)f(B)-

Definition 2.2. Given a cube Q C R" we say that a function f : L —> R is

Q — L- quasiconvex if

A) g Tél/flA + Du(x))dx

Q

for any A E L and every u E Wli°°(Q; Rm), Q-periodic with Du E L.

Definition 2.3. We say that a function f : L —> R is L-quasiconvex if it is Q-L-

quasiconvex for every cube Q, that is

gélQ/f(A(+Dux))dx

for any cube Q C R", any A E L and every u E er°°(Q;Rm), Q-periodic with

Du E L.

Theorem 2.1. If a function f : L —> R is L-quasiconvex then it is also L-rank one

19



COTL’UBIL‘.

Proof. Let A E [0,1] and A, B two elements in the subspace L such that rank(A —

B) S 1. Let Q0 = [0, 1]" a unit cube in R". Since rank(A — B) S 1 there exist two

vectors a E R" and b E R" such that

A — B = a - bT

and it exists a. rotation, a matrix R E RM" such that RRT = In and (RT - b)T = 81

where e1 E R" with el = (1,0,0, ..., 0). Thus (A — B)R = a- (RT - b)T = a®e1. Let

Q = RQO. Since f is assumed to be L-quasiconvex we have

/ f(C + Dr(x))d:c 2 f(C) (2.1)

Q

for all C E L and tp E W1*°°(Q, R’") such that is Q periodic and Dtp(x) E L a.e. x.

Let f(A) = f(ART) and also denote A 2 AR and @(x) = 99(Rx). Notice that a is

Q0 periodic,

Dean) 6 Z = {MW = MR, M e L}

almost every x and q? E W1'°"(Q0, Rm). By the change of variable under the integral

we obtain

/ f(c? + Brenda: 2 f(é) (2.2)
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for all C’ E L and all (,5 E W1’°°(Q0, Rm), Q0 periodic and D(p(~x) E L. Also we have

1. ~

A—B=a®€1.

(1 — A) ift E [0,A]

Let 77 : [0,1] —> R such that 77’(t) = and let @(x) = n(x1)a

—A ift e [A, 1]

where x = (x1, x2, ....xn) Thus we obtain that «,5 is Q0 periodic and we can extend

by this periodicity to R" and D95(x) E L a.e. x. Also notice that (p E W1’°°(R", Rm)

and

(1—A)(A—B) ifxlE 0,,\

0W): [ 1

not — B) if x1 6 [A,1]

Thus we have that f f(A/l +(1—— A)B + D95(x))dx = Af(A) + (1 — A)f(B) and

Q0

f f(AA + (1 - MB + Deana: 2 f(A/1+0 —A)B) and obtain f(A/l+(1—A)B) 3

Q0

Af(/l) + (1 — A)f(B) hence f(AA + (1 — A)B) g Af(A) + (1 - A)f(B).

1:]

Proposition 2.2. If the subspace L does not contain rank one matrices and a

function u E W1’2(Q;Rm), Q-periodic has the property that Du(x) E L almost

every x then u = const.

Proof. Assume first Q=Q0. Since L does not contain rank one matrices we have

that

min |P(a (8’) A)[ > 0 (2.3)

Ial=1.I/\I=1
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and it follows that

|P(a® A)| > c|a||A| (2.4)

for any a E R” \ {0m} and A E R” \ {On}. We consider now the Fourier transform

of PDu which is P(u(A) 8) A). Since L does not contain rank one matrices we have

that

Pulp) a A) = 0 (2.5)

for all A E A \ {0"}. Thus, using (2.4) we get that u(A) = 0 for all A E R" \ {On}

which proves that u must be a constant.

Now, if Q = RQO for a rotation R and u E W1'2(Q;R’"), Q-periodic with

Du(x) E L we have that u(x) = u(Rx) is in W1’2(Q0;Rm), QO—periodic. Also

D2] = Du(Rx)R so Du E L where L = {A E Mm“ [A 2 AR, A E L}. Since L

doesn’t contain rank one matrices it follows that L has the same property. Thus a

must be constant and therefore u is constant as well. III

2.2 Examples

In this section we are going to discuss particular cases of linear subspaces L and

some aspects related to the restricted rank one convexity and quasiconvexity.

Example 1. Consider L = {(2 2)] a, b E R} and let f : L ——> R a L-rank one convex

function. We show that f must be Qo-L-quasiconvex.
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Given u E W1*°°(Q;Rm), u(x,y) = (u1(x, y), u2(x,y) with Du E L it implies

Thus u1 and u2 satisfy the wave equation i.e.

I)

Own“ — Own2 2 0

and we get

Wax v) = h(x + y) - g(x - y)

War. .21) = h(x + y) + g(x - v)

where h, g : R —> R, absolutely continuous. If u is assumed to be Q0 periodic it

folows that h and g are periodic of period 1. Indeed, u1(x,y) = u1(x + 1,y) so

h(x + y + 1) — h(x + y) = g(x — y) — g(x — y +1) for any x,y E R. It implies

that g(t) — g(t + 1) = 9(0) — g(1) for any t E R since if two absolutely continuous

functions a and B verify a(x + y) = B(x — y) for any x, y it follows that they must

be constant. Thus we get that

9(1) - 906 +1) = (9(0)- 9(1))k

for any positive integer 1:. Since 9 has to be bounded, we get g(O) — 9(1) 2 0 and
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thus g(t) — g(t + 1) = 0 for any t E R.

Let F : R"2 —> R defined as F(a, b) = f (if: :2). Since f is L-rank one convex,

we have that F is separately convex in each variable and

d b —b d —d
f((fic)+(:ib:+b))=r(c: +a,c2 +b) (2.6)

Now we prove that f is Qo-L-quasiconvex. Making the substitution 5 = x + y

  

and 77 = x — y we get

f/OHCI 6:) + Duldxdy = $0] (1:de +h’(£), 0; d +g'(77))d17) dg +

f2 ( 72F(C :— d + h'(€), c _2_ d + g’(n))dn) dg

1 2_€

Now using the fact that F is separately convex and Jenssen’s inequality we get:

  

 

 

[
O
i
l
-
d

+

  /(((EF((h't -“0‘9(‘€))+(1—oF<h'<ag

  

and it follows

f/QOHC, l) + Dummy 2 f((f, d)>

hence f is QO-L-quasiconvex.

Example 2. We show that Qo-L-quasiconvexity might not imply L-rank one con-
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vexity.

Let L = {(3 :‘gfldb E R} a linear subspace of R2“. If u E W1’°°(Q0;Rm)

satisfies Du E L it follows that

20,,121 — ayyul = 0 (2.7)

which implies that there exist h, g : R —+ R such that

u1(x, y) = h(x + y\/2) + g(x — y\/2) (2.8)

Also, u1(x,y) is Q0 periodic so we get, by reasoning as before, that h and g are

periodic with periods 1 and \/2. Since x/2 is irrational and the set {k\/2+p] k, p E Z}

is dense in R it follows that h and 9 must be constant [La]. Therefore, by definition,

every function is QO-L—quasiconvex, but not necessarily L-rank one convex (see

Example 1).

Example 3. We show that L—rank one convexity does not imply L-quasiconvexity.

The following famous example belongs to Sverak [Sv 1].

Let

L={ 0 b ,a,b,cER} (2.9)
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a linear subspace of M3”. Also let f : L —> R be defined by

  

   

and the function f is convex on each rank-one line contained in L. Consider the

function u : R2 —> R3 given by

 

 

 

, and

= —abc

lo

0

 (1

sin(2rrx) \

1 1

“(1331) = '2; [[ sin(27ry)

We have that u E W1’°°(Q0;R3) where Q0 2 [0,1]2, u is Qo-periodic and Du E L

 

since

( cos(27rx) 0

Du(x, y) = 0 cos(27ry)

(cos(27r(x + y)) cos(27r(fl? + y»)

26

I sin(27r(x + y))) 

0)

0

1}
 

 



Thus we get

/ f(Du(x,y))dxdy = — // (cos(27rx))2(cos(2rry))2dxdy < 0 = f(03x2) (2.11)

Q0 Q0

which shows that f is not L-quasiconvex.

Now we generalize the Example 3 to the case where some function f : L —> R

which is L-rank one convex but not Qo-L-quasiconvex can be extended to the entire

space Mm“ and preserve this property.

Theorem 2.3. Let f : L —+ R be a function which is L-rank one but it is not

L-quasiconvex. Also assume that f is (3'2 and for some p Z 2:

|f(A)| S C(1+ IAI") (212)

ID2f(A)| S C(1+ IAIN). (2-13)

forall A E L. Then there exists an function F : Mm“ ——> R which is rank one convex

but not quasiconvex on Mm“.

Proof. Since f is not L-quasiconvex it exists a cube Q = RQO and u E W1'°°(Q; Rm),

Q-periodic with Du(x) E L such that

f(O) >/Qf(Du(x))dx (2.14)
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Let Fey, : men —> R with

F,,,,(X) = f(PX) + ele2 + e[X[p+1+ le — PX|2. (2.15)

Here P is the projection onto L. Let A, Y E Mm“ arbitrary such that rankY = 1,

[Y] = 1 and let he), = Fc,k(A + tY). We are going to prove that for every 6 > 0 it

exists k such that F6), is L-rank one convex. To show this it is enough to prove that

H

116,, 2 0.

Thus, now we prove that:

d2
Eng/1 + tY) 2 0 (2.16)

for any matrices A, Y E men with rankY = 1, [Y] = 1. We have:

[A +tY|p+1=(|A + tY[2)B;_1 = ((A(2 + 2t < Y,A > +9)? (217)

d
+1

EE'A +tY|p+1=(p +1)(|A|2 + 2t < Y,A > +12)"2—(< Y,A > +0 (218)

Thus we get

d2

gamer“ =<p+1)(p-1>IAr-3<Y.A>2+<p+1>IAIP‘1 (219)
t=0
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and

d2

——-I~; (.(A + tY) = Eli-f(PA + tPY) + 25 + e(p +1)|A[l’"1

dt2 ’ i=0 dt2 ,20

+ 6(1) +1)(p —1)|A|”‘3 < Y,A >2 +k|Y — PY|2

Now, from (2.15), we have

a3 (PA+tPY) 2—c(1+|A|P-2) (2.20)

i=0

and

d2

@FCMA + tY) 2 —c(1 + |A|p”2) + 6(p +1)[A[f’—1 + 26 + 2k[Y — PY]2 (2.21)

t=0

Assume by contradiction that it exists 60 such that for every positive integer k we

get Ak, Yk satisfying

d2 11,.(21 + tY) (2.22)0 > —

dt2 H,

From (2.21) it follows that Ak is bounded and by extracting a subsequence we have

Ak —+ A and Y" —9 Y = PY as k —> 00. Thus, passing to the limit in (2.21),

d2

—e > — (A + tY) (2.23)

a contradiction with the fact that f is L-rank one convex.
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Now we can also choose 6 small such that

F€,),.(O) >LF€,k(Dtt($))d$ (2.24)

where u is given in (2.14). Hence F6), is not L-quasiconvex. CI

2.3 Constant dimension condition

Let A E R” and R2 = {w E Rm|w (X) A E L}. We notice that R2 is a linear subspace

of R".

Definition 2.4. We say that the subspace L satisfies the constant dimension con-

dition if the related subspace R}; has the same dimension for all A E R" \ {0}.

If L satisfies the constant dimension condition we shall prove the equivalence

between Qo-L-quasiconvexity and the weak lower semicontinuity of the functional

19(U) :/Qf(Du)dx

along sequences satisfying the linear restriction PDuk(x) —+ 0 almost every x.

Remark 1. If m = n = 2 and L is the linear subspace of 2 x 2 symmetric matrices

then the dimension of R2 is constantly 1 for all A E R2 \ {02}.

Proof. We have that L = {(21 2)] a, b, c E R} and

RA = {1.0 =(1U1,’LU2)E R2] ’LUlAz = ngl}.
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Clearly the dimension of R2 is 1 for any A E R2 \ {02} D

Lemma 2.4. If L satisfies the constant dimension condition there exists 7 > 0 such

that for any a E (R2)i and A E R" \ {0} we have:

|P(A®a)[ Z 7|A®a| (2.25)

Proof. Assume by contradiction that

min [P(A <8) a)[ = O. (2.26)

|A|=L|al=1

Then there exists a minimizing sequence A,- ——> A and aj —+ a. Let k = dim R2. For 6

small enough and any A such that [A — A] < 6 there exists a set w1(A), w2(A), ...wk(A)

of linearly independent vectors of R2 and [13% w,(A) = w,(A), for all i, 1 S i S k.

Since aj E (R2)f, it implies that (aj,w,-(Aj)) = 0 for all i, 1 S i S k. We get

(&,w,-(A)) = 0 so a E (R2)i. Also, since P(A ® a) = 0 it implies EL E R2. Thus

a = O, in contradiction with |a| = 1.

First we shall prove the selection theorem:

Theorem 2.5. Let Q a cube in R" and u E W1’2(Q;Rm) a Q-periodic function. If

the linear subspace L satisfies the constant dimension condition then for every 6 > 0

there exists a selection v6, v6 E C°° a Q-periodic function such that Dv._(x) E L a.e.
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xEQand

[[Du — DU5[[L2(Q) S [[PDU[[L2(Q) + 6 (2.27)

Proof. First we assume that Q = Q0. Let A = Z" be the unit lattice, i.e. the

additive group of points in R" with integer coordinates. Since u is Q-periodic we

can expand u as a Fourier series,

Thus Du(x) = Z u(A) <8) Aegflm. Let v(A) = PREMA), projection of both real part

AeA

and imaginary part of ii(A) onto R2. By Riesz-Fischer theorem we have that

11(2) = Z v(A)e2"f’\x (2.28)

AEA

is a function in W1’2(Q), Q-periodic and its gradient belong to L almost every x.

Applying Lemma (2.4) for a = u(A) — 6(A) we get [[Du — Dv||2 S [[PDU[[2.

Now we can consider v€(x) as the real part of E v(A)e2"i2“ Where is A’ is a finite

AEA’

subset of A such that

[[DvE — Dv[[L2 < e (2.29)

since the imaginary part of Z 6(A) ® Aez’rf’“c converges to Omxn as A’ /' A.

AeA’

Now if the cube Q is arbitrary then Q = SQ0 for some a E R" and a rotation

5'. Let L = {A E Mm“ [A 2 AS, A E L} and P the orthogonal projection onto L.
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Define a : Q0 —> R" by u(x) z: u(Sx). Also notice that

R2 = R?
L

and therefore R2 has constant dimension for any A E R". Thus we can select 1”) such

that 17 E C°°(Q0), QO-periodic and

IIDiz - Dfiellmoo) S IIPDflIILqu) + 6 (2-30)

For each x E Q there exists a unique :7: E Q0 such that x 2 Sit. Let v : Q —> R”

with v.(x) = 176(ST(x)). We notice that v6 satisfies the requirement of the lemma.

CI

2.4 L-weak lower semicontinuity

Let f : Mm“l -—> R satisfy the growth condition

|f(A)I S C(1+|AI2) (2-31)

for any matrix A E Mm“ and consider the integral operator

[g(U) = Lf(Du)dx (2.32)

where Q is open bounded domain with Lipschitz boundary and u E W1’2(Q; Rm).
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In contrast to Example 2 in section 2.2 we show that under the constant dimen-

sion condition QO-L—quasiconvexity implies L-rank one convexity.

Theorem 2.6. Assume that the linear subspace L satisfies the constant dimension

condition. If a continuous function f : men ——> R satisfies the growth condition

(2.31) and is QO-L-quasiconvex then it is also L-rank one convex.

Proof. Let A, B E L be such that rank(A -- B) S 1 and A E [0, 1]. For any integer

k there exists Q’f, Q; C Q0, Q’f 0 Q5 2 Q) and (pk E W01 ’°°(Q0, R’") such that

f (1—A)(A—B) ifxEQ]c

—MA—B) umeog

 [IDSOkIIoo S CORSNA, B)
\

since u(Q0) = 1. (See [Da]). We extend the (pk to be QO-periodic on R". From these

properties we also have that PD<,o)c —> 0 in L2(Q0). Thus, by Theorem 2.5, for any

6 we can find a selection uk,6 E W1’°°(Q0, Rm), Qo-periodic such that Duk,6 E L and

”Dues — Dsokllwoo) *" 0

as e —> O and it follows
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lim inf f(AA + (1 — AB) + Duk’c)dx = lim inf f(AA + (1 — AB) + Dcpk)dx

k—»oo,e—10 Q0 k—>oo Q0

= Af(A)+(1- /\)f(B)

Since f is Qo-L-quasiconvex we have

f(AA + (1 — AB) + Duneldx 2 f(AA + (1 — AB)) (2.33)

Q0

for any It and 6. Taking lim inf over I: and e for the left hand side of the previous

inequality we obtain

AAA) + (1 - A)f(B) Z f(AA + (1 - AB»

which proves that f is L-rank one convex. El

Definition 2.5. Let f and IQ be defined as above. We say that the functional

IQ is L—weakly lower semicontinuous on W1’2(Q; R") if for any sequence uk —\u in

W1'2(Q;Rm) with [[PDUkIIL2m) —> 0 as k —> 00, we have

IQ(u) S lign inf 19(uk) (2.34)

Theorem 2.7. If the functional IQ is L-weakly lower semicontinuous then the func-

tional f is L-quasiconvex.
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Proof. Let Q = RQO, A E L arbitrary and u E W1’°°(Q;Rm), Q-periodic with

Du(x) E L for almost every x. We show that

LflA + Du(x))dx Z f(A) (2.35)

assuming that I is L-weakly lower semicontinuous. For any test function (,2 we have

/ Du(kx)<,o(x)dx = Du(ka)p(x)dx

Q Q0

Thus, by Riemann-Lebesgue theorem, we have that

lim Du(kx)<p(x)dx= Du(Riz/Du(x)dx (2.36)

k—’°° Q Qo Q

Let uk(x) = %u(kx)+Ax. We notice that Duk(x) = Du(kx)+A and Duk(x) E L

for any It and almost every x. We have that

*

Duk —> A (2.37)

and also

/ f(A + Du(x))dx = k"/ f(A + Du(kx))dx. (2.38)

Q %Q

For k sufficiently large there exists pk cubes, Q1, Q2, ...ka, which are translates of
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%Q by multiples of 11:, muttually disjoint, such that

U Q. C 9 and um \ U Q.) < e). (2.39)

i=1 i=1

Where 6),. —> O as k —> 00. Thus we also get that [3% —> u(Q) as k —2 00.

Since I is L-weakly lower semicontinuous it follows:

k—aoo

liminf [a f(Du),(x))dCD 2 f(A)11(n) (2.40)

Also, from (2.38) we get

/f(Duk(x))dx = pk/ f(A+Du(kx))dx+/ f(A+Du(kx))dx

. 9 1‘; muffin.-

= g; / f(A+ Du(x))dx+ekC

Q

Letting k —> 00 we have u(Q) fQ f(A + Du(x))dx 2 f(A)u(Q) and after dividing by

u(Q) we obtain what we had to prove. El

Next we show under the constant dimension condition the L-quasiconvexity is

always sufficient for the L-weak lower semicontinuity.

Theorem 2.8. If the linear subspace L satisfies the constant dimension condition

and if the function f is bounded from below, satisfies the growth condition 2.31

and is Qo-L-quasiconvex then functional In is L-weakly lower semicontinuous on

W1’2(Q; Rm).
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Proof. Let u)c E W1'2(Q,R"‘) such that uk—Xu in W1:2 and PDu)c —> 0 in L2. We

assume that Du)c generates a parametrized Young measure (Vxlxen- Then

Du(x): / Adz/AA)

Mnixn

By Theorem 1.3 we also have that

limkian/f(Duk(x))de / / fowl/Andi: (2.41)

9 men

For our purpose it would be sufficient to show

// “WI/AW 2 / fwuwdx
(2.42)

Now we actually prove

/ fun/M2“ / Adva(/\))=f(Du(a))- (2.43)

Man Man

for almost every a E Q.

By Theorem 1.4 we have that Va is also a gradient Young measure for almost

every 0. E Q. Consider a cube Q C Q such that a E Q. There exists wk E W1’2(Q)

such that Dw)c generates Va and wk -—> a in L2, by the Sobolev embedding. Also we

get that Dwk —\ Du(a) = D12) and by the fundamental theorem of Young measures

PDw)c —> 0 in L2(Q).

Let (0} E C8°(Q) such that (,0,- /‘ 1 uniformly and v)”- : (OJ-(wk — a). Since
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wk ——> w in L2 for each 3' there exists 133- such that

_ 1

[ID‘PJ' ‘3 (wk-j — w)[[L2(Q) < :7;

Thus we can select a subsequence of vkd- which we can conveniently denote by vk

and we have v)c E III/01 ’2(Q) and

[[D’Uk — D('I.Uk — 11—1)][L2(Q) —> 0 (2.44)

By using Theorem 2.5, we can select a, E C°°(Q), Q periodic such that

[[ka — ka[[L2(Q) —> O in L2(Q) and ka(x) E L almost every x. So we have

limkinf/f(Du(a) + D(wk(x) — w(x))dx = limkinf / f(Du(a) + ka(x))dx

Q Q

Also since f is L-quasiconvex

fi/flDUW) + ka(x))dx Z f(Du(a))dx

Q

Thus it follows that

1 . .
- — 1/ u aWhmkme f(Du(a) + D(wk(x) — w(x))dx — [.an f(A)d g(A) Z f(D ( i)

This completes the proof. Cl
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2.5 Particular case Without the constant dimen-

sion condition

Consider the linear subspace L = {(3 [3)] a, b E R}. We notice that the subspace

R2={wER2|w®AEL}

does not have constant dimension for all A E R2 \ {0}. Therefore this space L does

not satisfy the constant dimension condition defined above.

Let f : M2X2 —> R be a Cl function satisfying

0 s f(E) s c(1+ Isl?) (2.45)

IDf(€)| _<_ C(1+ I5I) (2.46)

Also, as above, define

19(u) = [Of(Du)dx (2.47)

Theorem 2.9. Iff : M2"2 —+ R satisfies (2.45) and (2.46) and is L-rank one convex

then IQ is L-weakly lower semicontinuous on W1*2(Q; R2).

The following result by Miiller is going to be essential in the course of the proof.

Theorem 2.10 ([Mu 3]). Let f : R2 —> R be a separately convex function that

satisfies

0 s f(t) s C(1 + In?)-
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Let Q C R2 be open and suppose that

uk —\ u, vk —\ v in Ll20C(Q)

8,11,. —> Byu, 5)ka —-> 6,1), in ngflQ).

Then we have

liininf/f(uk,vk))dz>_/f()(,u v)dz.

Now we are going to prove the Theorem 2.9.

(2.48)

(2.49)

(250)

Proof. Let uk E W1:2(Q; R2) with uk —Au and PDu)c —1 0 almost everywhere. Thus

we have that 83/11}, —-> 0 and Bxui —> 0 so 61(8yu2.) —-> 0 and 6,,(8Iui) —> 0 in H‘ 1(9)-

Let F : L —+ R given by F(a, b) = f((a 0)). Since f is L-rank one convex it
0b

follows that F is separately convex and satisfies the growth condition from Theorem

2.10. From (2.45) and (2.46) we also have that

|f(€) - f(n)! S C(1+ IEI + |nI)(€— 77)

3.10
"k )we getBy using this inequality with f = Du)c and r) = (0 a 2
yuk

. . 8,,u}c 0
ligrigif/QflDuk)dz=1imi)roif/f((0 ayui))dz.
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From the Theorem 2.10 we obtain

[F(Bxul,8yu2)dz S lipiinf/ F(dxuifiyuiflz (2.53)
{2 ‘-—+00

Q

and since 8 u1 = 0 and 01112 = 0 we finally get
11

[f()(D)udz S 11n11nf/f(Du),.)dz

I]

Remark 2. From Theorem 2.9 and Theorem 2.7 for this L, every L-rank one convex

function is L-quasiconvex but it may very difficult to prove this directly.
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Chapter 3

Nonlinear Restrictions of

Palais-Smale Type

3.1 Introduction

In this chapter we investigate the weak lower semicontinuity for C1 functionals

defined as

I(u)=/flf(x,u(x),Du(x))dx

from the perspective of a nonlinear constraint of Palais—Smale type. This requires

that f be C1 in (3,6) and the derivatives satisfy some growth conditions. When

minimizing a smooth and bounded-below functional I over a Banach space, an im-

portant variational principle was discovered by Ekeland [Ek] in the 1970’s. Applying

this principle to the minimization problem for our functional I over a Dirichlet class

Ag in WI’P(Q; R"), we can always obtain a minimizing sequence {uk} in A9 which
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satisfies I’(u),.) -—> 0 in W’I’P'(Q;R’"). Here, we assume p > 1 and p’ = 5%, and

W‘1*P'(Q; Rm) denotes the dual space of I/VO1 ”’ (Q; Rm). Consequently, the weak limit

(if exists) of any such minimizing sequence will be an energy minimizer provided

that I(u) only satisfies the condition:

11;, —> u in IV11P(Q; R") and

[(11) S limian(u),.) whenever (3.1)
k—too

I’(u)(.) —+ 0 in w-lm’m; 111m).

In this case, we say that the functional I (u) is restricted weakly lower semicontinuous

on WI’P(Q;R’”). If the restricted lower semicontinuity condition (3.1) holds only

for all uk,u in the Dirichlet class Ag, we then say I is restricted weakly lower

semicontinuous on A9. Since the sequences {uk} with bounded I(uk) satisfying

I’ (uk) ——> 0 are usually called the Palais-Smale sequences [Ra] for the given functional

I (u), we shall say that a sequence {uk} (PS) weakly converges to u (with respect

to I) and denote by u)c flu in W11? if it satisfies u)c —\u in Wl'f’ and I’(uk) —-> 0 in

W‘I’P'.

As we shall see later, this restricted weak lower semicontinuity imposes some

intrinsic property on the function f. Although in the certain cases as presented in

this paper the restricted weak lower semicontinuity is equivalent to the usual weak

lower semicontinuity of the functional, in general, when f depends on x and s, we

also give some examples to show that the restricted weak lower semicontinuity of I

is be equivalent to the usual weak lower semicontinuity (see Proposition 3.7).
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3.2 The (PS)-weak lower semicontinuity

In this section, we assume f (x, s, f ) is measurable in x E Q for all (s, E) E R" x Mm”

and is C1 in (s, 6) E R" X Mm“ for almost every x E Q. We also assume 1 < p < 00

and f satisfies the growth conditions

If($:8:€)l S 01(I8I” + KI") + A(£15), (3-2)

IDsfbc. 3.6)! + IDafur. sail s C2(Islp‘1+lélp‘1)+ 13(5) (33)

for almost every x E Q and for all s E R", 6 E Mm“, where c1,c2 are positive

constants and A, B are positive functions with A E L1(Q), B E LEE—I(Q).

From these assumptions, we can obtain the following result:

Proposition 3.1. Under the above conditions, the functional I defined above is a

C'1 functional on W1’P(Q;Rm) and for each u the Fréchet derivative I'(u) is given

by

(I'(u), v) = /Q [D,f(x,u, Du) -v + D£f(x,u, Du): Dv] dx

for all v E W1*p(Q;Rm).

When minimizing the functional I on a Dirichlet class Ag, one can shift the class

to the Banach space X = W01 ’p (Q; R") since

inf I(u) = inf <I>(w), (3.4)
116.49 wEX

where <I>(w) = I(w + 9). We easily have the following result.
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Proposition 3.2. Let X = Wol’p(Q;Rm). For any g E WI’P(Q;R’"), the functional

<I>: X ——> R defined by <I>(w) = I(w +9) is C1 and <I>’(w) = I’(w +g) as elements in

X", the dual space of X.

In the following we write X* = W“1’P’(Q;Rm), where p’ = 513—1. As usual, we

define

I|1'(U)|Iw—1.p' = SUP{(1'(U)+U) lv 6 WOLPWW"), IIUIIwg-P S 1}. (3-5)

Note that, given a smooth functional I on X = W'Ol’p (Q; R"), the sequences {uk} in

X satisfying

110513111, I’(u)—>0 in W'1~P’(9;8m)

are usually called the Palais-Smale sequences or (PS) sequences for the functional

I. Therefore, for simplicity, we use the following definition.

Definition 3.1. A sequence {uk} is said to (PS)-weakly converges to u (with respect

to I) in Wl'p(Q; Rm) and denoted by uk Eiu provided that u)c —‘- u in Wl'p(Q;Rm)

and I’(uk) —> 0 in W’I’P’(Q;Rm). Define the set of all (PS)-weak limits to be

S = {u E Wl’p(Q;Rm) | El u)c E Wl’p(Q;Rm) such that u)c 1Au}. (3.6)

Let C = {u E WI’P(Q;R’”) [ [[I’(u)[[W_1,pI = 0}. Then clearly C Q S, and hence

S can be viewed as a relaxation of C under the (PS)-weak convergence. However,

for certain functionals I the set 8 may be empty.
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Example 4. Let f(x,€ ) = XE(x)h(§), where XE is the characteristic function of a

measurable set E in (0,1) with 0 < [E] < 1 and h({) = 725 + arctang. Define

I(u) 2/0 f(x,u’(x))dx, u E W'1’2(0,1).

We claim that for the functional I the (PS)-weak' limit set S = 0. Suppose to the

contrary u), —p—S>u in W1’2(0, 1). Let g(x) = XE(x)h’(u[,(x)). Then, by Proposition

3.6 below, there exists a subsequence gt]. —-> L strongly in L2(0, 1) for some constant

L. We also assume 9),].(x) ——+ L for almost every x E (0,1). Hence we must have

L = 0 and gkj (x) = h’ (111.1(x)) ——> 0 for almost every x E E. By Egoroff’s theorem,

it follows that [112.1(x)| —+ 00 almost uniformly on E, which implies [[u[cj [| L205) -—> 00,

a contradiction.

Definition 3.2. Given any nonempty family A (_Z W1"”(Q;R""), we say that I is

(PS)-weakly lower semicontinuous on A provided that

I(u) S limian(uk) whenever u, u E A, 21,, 34w (3.7)
k—voo

We shall technically assume this property if A F) S = Ill.

The following result shows that if f = f (x, g ) is convex in 5 then the functional

I is in fact (PS)-weakly continuous on all Dirichlet classes.

Proposition 3.3. Assume f = f(x,§ ) satisfies the corresponding growth conditions

as (3.2) and (3.3) above. Suppose f(x,€) is convex in g for almost every x E Q.
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Then both I and —I are (PS)-weakly lower semicontinuous on all Dirichlet classes

.49 with g E WI’P(Q;R’"). Therefore the functional I is (PS)—weakly continuous on

A9 in the sense that

I(u) = lim I(uk) V uk, u E Ag, ukfiu. (3.8)
k—soo

Proof. For any uk, u E VVI’P(Q;R’”), by the convexity of f, it follows from (1.3)

that

f(x, Bu) 2 f(x, Du) + D£f(x, Du): (Du;c —- Du), (3.9)

f(x, Du) _>_ f(x, Duk) + D§f(x, Duk): (Du — Duk) (3.10)

for almost every x E Q. If uk 36* u, and u — uk E Wol’pm; Rm), then integrating the

above inequalities, we have

limian(uk) Z I(u) Z limsupI(uk),

k"*°° k—+oo

and hence (3.8) follows. Cl

We show that in general the (PS)—weal< lower semicontinuity on all Dirichlet

classes does not imply the (PS)-weak lower semicontinuity on the whole space

WI’P(Q; Rm) (Without the fixed boundary conditions).

Proposition 3.4. Let Q be the unit disc in R2 and I (u) = — fa |Du|2dx foru: S) -—>

R. Then I is {PS)-weakly lower semicontinuous on all Dirichlet classes of W1'2(Q)
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but not (PS)-weakly lower semicontinuous on W1’2(Q).

Proof. By the preceding proposition, I is (PS)-weakly lower semicontinuous on all

Dirichlet classes of W1’2(Q). We now show it is not (PS)-weak1y lower semicontin-

uous on W1'2(§2) (without the fixed boundary conditions). We identify R2 E C1.

For 2: = x1+ix2 E Q and h = 1,2, - -- , we define uk(x1,x2) = fiReQ"). Then uk

is harmonic in Q and Bxluk — iamu;c = fizk‘l. Hence |Duk(x)| = \félzlk‘1 and

thus we have ||Duk||L2(Q) = 1. So uk is bounded in W1’2(Q). It is easy to see uk —* 0

uniformly on Q and hence uk —\0 in W1’2(Q). Since uk is harmonic in S2, it also

follows that Duk —> 0 in W‘1’2(Q). Therefore, for functional I (u) = — f0 |Du|2dx,

we have uk is*0, but I(O) 2: 0 and liminf)c I(uk) = —1. Hence I is not (PS)-weakly

lower semicontinuous on W1*2(Q). D

As we mentioned in the introduction, the (PS)-weak lower semicontinuity has

been motivated by using the Ekeland variational principle in the direct method for

the minimization problem. We have the following existence result.

Theorem 3.5. Assume f satisfies, in addition to (3.2) and (3.3), the following

coercivity condition

Colél” - a(x) S f(x, 8,6) S 01(IEI” + ISI”) + A(IE), (3-11)

where co > 0 is a positive constant, a E L1(Q) is a function. Given 9 E Wl'pm; Rm),

assume the functional I defined above is (PS)-weakly lower semicontinuous on A9.

Then the minimization problem in; I (u) has at least one solution u E Ag.

uE g
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Proof. The proof uses a standard direct method of the calculus of variations. Let

X = WOLF“); Rm). Define <1» X —+ n by

<I>(u) = I(u + g) = [fif(x,u(x) + g(x), Du(x) + Dg(x))dx.

Then (I) is C1 and bounded below on X, and (1”(u) = I’(u + g) in X“. By Theorem

1.8, there exists a sequence {u} in X such that

@(uk) —> inf (I), ||<l>'(uk)||Xo —> 0.

Let wk 2 uk + g E Ag. Then

I(wk)-+ inf I(w), |l1'(wk)|lw-1.p' —>0- (3-12)
wEAg

Under the condition co > 0 the sequence {wk} determined by (3.12) above is bounded

in WHO“); R'") and, since 1 < p < 00, has a weakly convergence subsequence,

relabeled {wk} again. Let u be the weak limit. Then u E .49 and wk 5 u; hence the

(PS)-weak lower semicontinuity on A9 implies

I(u) 3 lim I(wk) = inf I(w).

k—voo wEAg

Hence I(u) = infweAg I(w). Cl

Remark 3. Under the growth assumptions (3.2) and (3.3), any minimizer u of I
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over A9 is a weak solution to the Dirichlet problem of the Euler—Lagrange equation

of functional I; that is,

—div D€f(x,u,Du) + Dsf(x,u, Du) = 0 in Q

(3.13)

uzg onaQ.

3.3 One dimensional scalar cases

In this section we study the (PS)-weak lower semicontinuity in some special one

dimensional scalar cases.

We first consider the Sobolev space H1(0, 1) = W1’2(0, 1) and functions f (x, E)

satisfying

0 5 font) 3 Cl€|2 + A(x), |f£($,§)l s Clél + B(:v), (3.14)

with A E L1(0,1), B E L2(0,1). Define

I(u) 2/0 f(x,u'(x))dx, V u E H1(0,1).

Proposition 3.6. If uk 33 u in H1(0, 1), then there exists a subsequence {ukj} such

that f€(x, ujcj(x)) —> L strongly in L2(0, 1) asj ——) 00, where L is a constant.

Proof. Let g(x) = f5(x,u;€(x)) and L, = folgk(x)dx. Since {gk} is bounded in

L2(0,1), we assume for a subsequence gkj ——=g in L2(0,1) as j -—-> 00, where g E
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L2(0,1). We define 1);, on [0,1] by

”(J/C(33) = Ax(gk(t) — Lk)dt, .’L‘ 6 [0,1].

Then it is easily seen that vk E H6(0, 1) = W01 ’2(0, 1) and v}, 2 gr. — Lk. Moreover,

{vk} is bounded in HMO, 1) and hence

I l

<I'<uk>,vk>= / fe(:v,ui.(x))vt(r)da:= / gfi(x)(1x—Lf,—>O
0 0

as k —> 00. Since gkj —\g in L2(0,1), we have ij —> L = fol gdx and

21 1 1

/ g2(x)dx g liminf/ gzdx = lim inf L2, = (/ g(x)dx) .

0 ]—'*OO O 3 ]—*00 J 0

This implies g(x) = L a.e. on [0,1] and gkj ——) L strongly in L2(0, 1). [:1

In contrast to the theorem of Acerbi and Fusco (Theorem 1.6), we show below

by an example that the (PS)-weak lower semicontinuity of I may not imply f being

quasiconvex in g even for smooth functions f (x, 6 ) in the scalar case.

Proposition 3.7. There exists a C1 function f(x,{) satisfying condition (3.14)

above for which the corresponding functional I is (PS)-weakly, but not (unrestricted)

weakly, lower semicontinuous on H1(O, 1).

Proof. Assume f(x, 5) = a(x)h(§) with a, h 2 0, both C1 and satisfying the follow-

52



ing conditions:

a(x) = 0 x E [0,0], a(x) > 0 x E (9,1], (3.15)

h 2 0, (h')'1(0) = {0}, 1]€Tn_}11flll’(€)l > 0., (3.16)

where 6 E (0,1) is a constant. Note that the condition (3.16) implies h(0) < h({)

for all 5 E R. Given any at Esau in H1(0,1), using subsequence if necessary, we

assume lim,H00 I (uk) exists. By Proposition 3.6 above, there exists a subsequence

{ukj} such that f5(x, vi.) = a(x)h’(u]cj) ——> L strongly in L2(0, 1) for some constant

L. Since a = 0 on [0, 6), one must have the limit L = 0; this also implies the whole

sequence a(x)h’(u]c) —> 0 strongly in L2(0,1). Therefore h’ (11.1.) ——> 0 strongly in

L2(6’, 1) for any 0’ E ((9, 1). Hence, for a subsequence it follows that h’(u]cj(x)) —-> 0

for almost every x E (6’, 1). By (3.16), we have that “l, (x) -—> 0 for almost every

x E (6”, 1). Therefore the weak limit u’ = 0 on (9’, 1) for all 9’ E (6,1). This implies

u’ = 0 in (6,1). Since h(é) Z h(0) for all g, we have

1

lim I(uk) = lim a(x)h(u]c(x)) dx 2 f0 a(x)h(0)dx = I(u).

Hence I satisfies the (PS)-weak lower semicontinuity on H1(0,1). Note that the

condition (3.16) does not imply that h is convex. (See, e.g., condition (1.4).) Hence

I may not be weakly lower semicontinuous on H1(0, 1) by Theorem 1.6 above. C]

Remark 4. For the functional I defined by a function f(x, 5 ) = a(x)h(§) as above,
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the minimization problem

inf I(u)

ueH1(o,1)

u(0)=a.u(1)=b

has as only minimizers any functions u E H1(0, 1) with u(0) = a and u E b on

[6,1] and, the minimum equals h(0) f01a(x)dx, for any constants a,b E R. These

minimizers are exactly those functions u in the Dirichlet class for which there exists

. ps

a sequence {uk} 1n the class such that uk —\ u.

Despite of the result above, we shall show that the (PS)-weak lower semicon-

tinuity is equivalent to the usual weak lower semicontinuity if f(x,£) satisfies a

coercivity condition. In this case, both conditions reduce to the convexity of f in g.

For the technical reason of using the following Sard’s theorem [Mi], we assume f is

sufficiently smooth in both x and 6.

Lemma 3.8. Let h: R —> R be C1 andS = {y E R | 3x E R, y = h(x), h’(x) = 0}.

Then the Lebesgue measure IS] = 0 and, in particular, the set of regular values of

h, R \ S, is dense in R.

In the following, for 6 E R, let WS’p(0, 1) be the Dirichlet class of functions u in

Wl’p(0, 1) with u(0) = 0, u(1) = [3.

Theorem 3.9. Assume f(x,€) and f€(x,§) are both C1 on [0,1] x R and satisfy,

for some p > 1,

|€|p S f(x,€) S 61(|€|p+ 1), |f:($,€)| S 0203""1 + 1)
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for all x and E. If the functional I defined by f is (PS)-weakly lower semicontinuous

on Wgt’m, 1) for all ,8 E R, then f(x,§) is convex in g for all x E (0,1).

We proceed with several lemmas before proving this theorem. First of all, for

6 E IR, we define 771(6) = inf{I(u) | u E Wfil’p(0, 1)}. It follows easily that

WVSWW0S6M66+U- (3”)

From Theorem 3.5 above, it follows that, if I is (PS)-weakly lower semicontinuous

on Wgrm, 1), then there exists at least one minimizer ”(1.5 E WANG, 1) such that

[(113) = m(fi). Hence I’(Ug) = 0 in W’l’p'(0, 1). This implies f£(x, u:3(x)) is constant

in (0, 1). Let u(B) be this constant. Note that u(fi) depends also on the minimizer

”(l3 .

Lemma 3.10. It follows that

 

 

— 8

limsuplim511pmw+€> m() = +00, (3.18)

B—H-oo E—»O+ E

15minf11m3nfmw firm“) = —00. (3.19)
a—w 6—. _

Proof. We only prove (3.18); the other follows similarly. By contradiction, suppose

the limit is finite. Then there exist positive constants Bo, 60 and M such that

7M5+0-mm)

6

 
S M, V5 2 60, 6 E (0.60].

For any positive integer k we get m(fi + k6) — m(,8) S MICC and from 3.17 we obtain
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(5 + he)? s Mk6 + mm) which is false for k sufficiently large. [:1

Lemma 3.11. For any 6 E R, it follows that

lim sup m(,B + 6: _ mm) s u(fi) S limgnf 771(6 + 6: _ 771(8).

e—+O+ 5* "

(3.20)  

Proof. For 0 < (5 < 1 we define w to be the linear function with w(l — (5) = 0,

w(1) = 6. Hence w’(x) = 6/6. Let up be a minimizer for m0?) and let v(x) = u5(x)

on [0,1 -— 6] and v(x) = ug(x) + w(x) on [1 — 6,1]. Then v E Wl’p(0, 1) satisfies

v(0) = 0, v(1) = [3 + 5. Hence

mm + e) s M) = I(u.» + .:.[f(‘”’ v') — f(x,uvldx.

Since f(x, v’) — f(x, u'fi) = f5(x, u]3)e/6 + 0(5/5) for 5/5 —> 0, we have

me + e) 5 mm) + mac + o<§>6 3 mm) + was + a(e),

as e —> 0. Fiom this the lemma follows. E]

The lemmas above imply

limsupuw) = +00, liminfuw) = —00. (3.21)

Lemma 3.12. Let h: IR —> R be Cl and h 2 0. Then the following statements are

equivalent.
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(i) h is convex.

(ii) For all 0 < A < 1, a, b E IR with h'(a) = h'(b), it follows that

h(Aa + (1 - A)b) S Ah(a) + (1— A)h(b). (3.22)

(iii) There exist no numbers a < 6 satisfying h’(a) = h’(fi) # h’(t) for all

t E (a, 6).

Proof. It is easily seen that (i) implies (ii). To show that (ii) implies (iii), we

use a contradiction proof. Suppose (iii) fails. Then there exist numbers a, B E R

satisfying

0 <6, h'(a) = h'(fi), h'(t) 79 h'(a) V t E (0,6). (3.23)

Using (3.22) with a = a, b = B we have, for all 0 < A < 1 and t,\ = A0 + (1 — AW,

   
' S h(t.) — hm),

tr _ a [8 _ a t,\ _ [3 (3.24)

Letting /\ —> 1' and 0‘L in (3.24) respectively, we have h’(a) SW S h’(fi).

Hence h’ (a) = h’ (6) 2 W1. However, by the mean value property,W =

h’(t) for some t E (a, 6), and hence we have arrived at a contradiction with (3.23).

Finally, we prove that (iii) implies (i). Again, by contradiction, suppose h is not

convex. Then there exist a < b such that h’(a) > h’ (b). We consider only the case

when h’(a) > 0; otherwise, consider h(t) = h(—t), a = —b and b = —a. We claim

there exist c < d g a such that h’ (c) < h’ (d) If not, h’ would be nonincreasing
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on (—00, a] and hence h would be concave on (—00,a]. Therefore we would have

h(t) S h(a) + h’(a)(t — a) for all t < a. Since h’(a) > 0, letting t ——> -—00, we would

have h(t) —+ —00, a contradiction with h 2 0. Let c < d S a be any points as

above. Let m = maxw] h’. Define S = {t E [c, b] I h’(t) = m}, s“ = min S, and

sJr = maxS. Then s‘,s+ E S and c < s‘ S 3*” < b. Hence h’(c) < m, h’(b) < m.

We define a’ < 6’ as follows: If h’(c) = h’(b), define o/ = c, 6’ = b. If h’(c) > h’(b),

then h’ (c) E (li’(s+),h’(b)) and hence by the intermediate value property of h’,

define 6’ E (8+,b) so that h’(fl’) = h’(c), and define a’ = c. If h’(c) < h’(b), then

h’ (b) E (h’ (c), h’ (3‘)) and hence again by the intermediate value property of h’, we

define a’ E (c,s‘) so that h’ (a’ ) : h’ (b), and define 6’ = b. The points o/ < 6’

defined this way will satisfy a’ < s‘ S s+ < 5’ and h’(a’) = h’(fi) < h’(s‘). Let

G = {t E (a’,fl’) ] h’(t) > h’(a’)}. Then G is an open set and s’ E G. Let (01,6)

be the component of G containing 3". Then, for this pair of a, I}, we have (3.23), a

contradiction with (iii); hence h is convex.

This completes the proof of lemma. C]

Lemma 3.13. For any constant 6 E R, there exists a function qo E LP(0,1) such

that f€(x, q9(x)) = 6 for almost every x E (0,1).

Proof. In view of (3.21) above, there exist 51 < 62 such that u(fil) < 6 < fl(,62).

Hence for almost every x E (0,1) we have f€(x, u’fi1(x)) < 6 < f€(x, u],2(x)). Let

((2?) = Hfinluz, (17), 143203)}, (1+0?) = maX{U’;a.($),U'gg(x)}-
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Then qi E LP(0,1). By the intermediate value property of f5(x, -), there exists

q E (q—(x), q+(x)) such that f5(x, q) = 6. Let q9(x) be the infimum of all such q’s.

Then f£(x, q9(x)) = 6, q9(x) is lower semicontinuous and q‘(x) S q0(x) S q+(x) at

almost every x E (0,1) and hence (19 E Lp(0, 1). [:1

Proof of Theorem 3. 9. Given any x0 E (0, 1), we prove f (x0, ) is convex. By Lemma

3.12, it suffices to show that there exist no numbers 51 < {2 such that

f£(-’130,€1) = fact/biz), f£(1150,?5)7é fe($0,€1) V156 (€1,§2)- (3-25)

We prove this by contradiction. Suppose £1 < 52 satisfy (3.25). We will derive a

contradiction by showing such {i’s must satisfy

f(fBO, A51 + (1 - ”‘52) S /\f($0,€1)+(1_ A)f($07€2) (3-26)

for all A E (0, 1), which gives a desired contradiction as in the step 2 of the proof of

Lemma 3.12.

To this end, assume f5(x0, {1) = f€(x0, £2) = 60. Without loss of generality,

assume f€(x0,t) > f€(x0,€1) for all t E (€1,752). Let

[1511?] falxo, ) = f£($Oa€—) = 5 > 90-

To proceed, we need the following lemma, which is the only place we use the smooth

assumption of f€(x,€) on (x,£).
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Lemma 3.14. There exist a sequence 6,, E (60,6) with 6,, —) 60 as n —> 00, a

closed interval J,, = [ambn] C (0,1) containing x0, and two continuous functions

qfif: J,, —+ (ghgg) such that q;(x) < q,T(x) and f5(x,q,f(x)) = 6,, for all x E J”.

Moreover, q;’+(x0) —> €13 as n ——* 00.

Proof. The proof is based on a use of Sard’s theorem. By Lemma 3.8 above with

h({) = f€(x0,§), the set of regular values of f§(x0, ) is dense. Hence there exists

a sequence of regular values 6,, of f5(x0, ) in (60, 6) such that 6,, ——+ 60 as n —-> 00.

Since f§(x0,§1,2) = 60 < 6,, < 6 = f€(xo,§), by intermediate value property, there

exist 5; E (51,5) and g: E (5,62) such that f§(x0,{f) = 6,,. The assumption (3.25)

implies 6; —) {1 and 5,“: —> {2 as n —> 00. Since 6,, is a regular value of f5(xo, -),

it follows that f55(x0,€,:f) 75 0. By the implicit function theorem, we have interval

Jn 2 [am b,,] C (0, 1) containing x0 and two differentiable functions qu: J,, —-> (61,5)

such that

qfif(x0) = i f£(x,q,f(x)) = 6,, V x E J,,. (3.27)
n,

Then the functions qflx) satisfy the requirements of the lemma. C]

We continue the proof of the theorem. Let 6,, E (60,6), J,, = [ambn] and

qff: J,, —> (€1,52) be given as in the lemma above. Let J = [a, b] C J,, be any

interval containing x0. Let q,, E LP(0, 1) be the function (19 determined by Lemma

3.13 with 6 = 6,,. In what follows, we fix n. For each h = 1, 2, - - - , we define function
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uk(x) by uk(x) = fox wk(t)dt, where wk(t) is defined as follows:

q,,(t) t E [0, 1] \ [a,b],

“(km 2 q;(t) t E U§T=1(a + @(b— a,) a + (’—1—+A)(b — a)), (328)

(g(t) t e 0;:,a( + ‘1'1+”(b a),a + {,(b — a)).

It is easily seen that uk E l/Vl‘p(0, 1) and {uk} is bounded in l’V1*p(0,1).

Lemma 3.15. For all continuous functions <I>(x, é), it follows that

b b

lim <I>(x, u]c(x))dx = / [A<P(x, q;(x)) + (1 — A)<I>(x, q:(x))]dx.

lt—>oo a

Proof. It is easy to see

 

 

b k a+l_-I_"_1't§l(b_a)

/ <I>(x u’ (x))dx = Z/ k <I>(x q‘(x))dx (3 29)

a k i=1 Mela-a) ’ "

2k: +l(b—a)

+ f . <I>(x,q:,'(x))dx (3.30)

j=1 a+££]c—+—&(b—a)

k

_ (b-a)
= :;<1>(cj,q.(cj)) , (3.31)

’° ”(b—a)
+ —A)Zq’(djvqn(d k ) (3.32)

1:1

where a+ (lg—”(b—a) S c, S a+ gig—”(b—a) S d, S a+ %(b—a) are some points.

Hence the sums in (3.31) and (3.32) are Riemann sums; therefore, as k -—> 00, the

lemma follows. E]
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Let a E Wl’p(0, 1) be defined by u(x) = for w(t)dt, where

q,,(t) t E [0, 1] \ [a, b],

w(t) =

Aqg<t> + (1 — A>q:<t) te [a, b].

From the lemma above, it easily follows that u], —\o in Wl‘p(0, 1). In particular,

6,,. = {(1) — uk(1) —> 0 as k ——> 00. By the definition of u], it follows easily that

f5(x,u]c(x)) = 6,, for almost every x E (0,1); hence I’(uk) = 0 in W‘I’P'(0, 1). We

now modify u}, to a function a, E W'gpm, 1) with 6 2 21(1). For 0 < 6 < 1— b to be

selected later, we define {a(x) = uk(x) for x E [0, 1—6], and 11;,(x) = uk(x)+vk(x) for

x E [1 —6, 1], where vk is a linear function on [1 —6, 1] with vk(1—6) = 0, vk(1) = 6,,..

Hence in, E Wl’p(0,1) with 21,,(0) = 0, 12,.(1) = u(1) = [3. Note that v((x) = 531.

Hence we select 6 = (5;, = [6,,]1/2 for all sufficiently large k. For this choice of 6, it is

easily shown that the function ilk E WE‘WO, 1) satisfies uk—uk —> 0 in W1’P(0, 1), and

hence it follows that F(a,.) —> 0 in W’l’p’(0, 1) and I(uk) — 1(1),.) —> 0 as k —-> 00. In

particular, ilk E; a in Wfil’p(0, 1). Therefore, by the (PS)-weak lower semicontinuity

of I on W’é’p(0, 1), we have [(11) S liminf;c I(uk) = liminf;c I(uk). Using Lemma

3.15, after easy computations, this implies

This holds for all intervals [a, b] C J,, containing x0 and hence, letting [a, b] shrink
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to {x0}, we have

f(ro, Mime) + (1 - Ammo» S Af($o,q;(ivo)) + (1 - A)f(fco, (171000))-

Finally letting n —+ 00, by Lemma 3.14, we have

“170,361 +(1— A)€2) S Af($0,€1)+ (1 — A)f($o,€2),

as desired by (3.26).

The proof of the theorem is now completed. CI

3.4 Special cases with f = f(6)

In this section, we study some special cases with function f = f(5), where

f : men ——+ R is a C1 function satisfying the following growth conditions:

Colél" S f(é) S 6106]" +1), (333)

|D£f(€)| S 02(|€|”'1 + 1), (3.34)

where 1 < p < 00 and co _>_ 0, c1 > 0,62 > 0 are constants. In this case, we shall

also use the simplified notation D5f (g) = Df(5) = f’(g) As before, let I be the

functional associated with f:

I(u) = [fif(Du(x))dx u E Wl'p(Q;Rm).
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We first have the following result when m = 1 (the scalar case) with Co = 0 in

(3.33), which is in contrast to Proposition 3.7 above

Theorem 3.16. Let m = 1 and let f: R" ——> R satisfy the conditions (3.33) and

(3.34) above with CO = 0. Then the functional I is (PS)-weakly lower semicontinuous

on the Dirichlet classes IVA”) for all A E R" if and only iff is convex on R".

Proof. By Theorem 1.6, we only need to show the necessary part of the theorem.

Thus assume I is (PS)—weakly lower semicontinuous on the Dirichlet classes Wfi’p

for all A E R". We prove that f is convex on R". To this end, let 6,17 E R" and

|17| = 1 be given and let h(t) = f(g + tn). We show that h is a convex function of

t E R; this implies f is convex on R". By virtue of Lemma 3.12 above, to show h

is convex, it suffices to establish the inequality (iii) in that lemma for all a, b E R

with a < b and h’(a) = h’(b). Note that h'(t) = f’(£ + try) - 77. Given such a, b, let

a = g + an, 5 = 5 + b7). Then h(a) = f(a), h(b) = f(fi) and hence

h'(a) - h'(b) = (f'(a) - f’(fi)) '77 = 0- (3.35)

Given any A E (0,1), let 6(t) be the periodic function on R of period 1 satisfying

6 = 0 on [0,A) and 6 = 1 on [A,1). Let p(t) be the Lipschitz function on R with

p(0) = 0 and p’(t) = 6(t) for almost every t E R. For k = 1,2,--- , we define

functions

uk(x) = ax + b—i—apch - 77) x E R". (3.36)
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Then Duk(x) = oz + (b - a)6(kx - 77)77 and hence

- "+A
a 1fx-77ELJQO ((5%)

J=-oo

Duk(x) = (3.37)

6 ifx-nEU90 (113,%1).
J=-oo

Let {771,772, - -- ,77,,} be an orthonormal basis of R" with 171 = n. For each x E R",

we write x = 2;, t,77,- and define

jj'l‘)‘ j_ n
t1€(k, k )},Bk—{TER

Let Q’; = Q n (UJ-Ai), Q’“ = Q 0 (UjBi). Then one can easily show that

A;={xenn
  

klim (95;; = A|§2|, klim log] = (1 — mm. (3.38)

For any 1 S p < 00, the sequence {uk} defined by (3.36) above satisfies uk 411 in

Wl'p(Q) as k ——) 00, where u(x) = [A0 + (1 — /\)6]x. In fact, one can show that

uk ——> a uniformly on Q. We leave the proof of these facts to the interested reader.

Lemma 3.17. I’(uk) = 0 in W‘I’P’(Q).

Proof. Given any v E Wol’p (Q), we extend v to be zero outside Q. Let QN be the

cube

QN={$ERn]$=Ztinia Itil<N1 szl,2,---.,n}

1'21
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Assume N is large enough so that Q C QN. Then

kN—l

fnf’(Duk) - Dv = Q f’(Du;,.) - Dv = Z _f’(Duk) - Dv,

j=—kN Q1

where Q,’C = {x E Qle - 77 E (flit—1)}. We write Q}, = Al U B1 UPI, where

AI = QiflAi, Bi 2 QiflBi and Pi = {x E Qflxn 2 LE}. We also define

Fj={xEQN|x-n=%}.Notethat DukzaonAj and Duk=6on Bj and

hence, by the divergence theorem and (3.35) above as well, we have

/,f’(Duk) ' DU 2 f’(D’U.k) ' D’U + f’(Duk) - DU

Q1 AJ‘ 3:"

= f'(a>- ,Dv+f’(fi)- .Dv
A1 B]

f’(a)- (fpj vdS) (—n) + f’(a)- (fr, vds) n

+f’(l3)- ((3 vdS) (—n) + rm (f, M) n

= f'(a) ~77 ([Mu vdS — F1 vdS) .

Hence, since F“N lies in R" \ Q, where v = 0, it follows that

/Qf'(Duk(x)) -Dv(x) dx = f’(a) -17 (fpmvdS — F-kN vdS) = 0.

This proves I’(uk) = 0 in W‘IAP’(Q). E]

To continue the proof of the theorem, we now modify the sequence {uk} above

into a sequence in Wk”(Q), where A 2 Ad + (1 —- /\)6. For all sufficiently large j,
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say j Z jg, consider nonempty open sets

Q, = {x E QIdist(x,8Q)>1/j}.

Note that the measure IQ \ Q] —+ 0 as j —> 00. Let (o,- E C8°(Q) be the cut-off

functions such that (,0,- : 1 on Q, and 0 S (,0,- S 1 in Q. Since u), —> a uniformly on

Q, we have that, for each j Z jg, there exists k,- > j satisfying

_ 1

“(we — U)D%||LP(Q) < 3- (3-39)

Let a, = gojukj + (1 — (OJ-)1]. Then a, E Wé’p(Q) = Wi‘p(Q) and Du]- = (ojDukj +

(1 — 90,-)Da + (ukj — u)Dcp,-. Hence, by (3.39) and also since Dukj, Du are bounded,

it follows that

1.1220 “Diljllmamp = 0- (3-40)

Therefore a, _1 a in Wl’P(Q) asj —> 00. Since a, = uh]. on Q], by (3.40) and the

growth conditions (3.33)-(3.34), it easily follows that

“111 ”1’le — I’(ukjlllw-lm’m) = 0, 3.11m [I(flj) — I(u/9)] = 0-
j—Aoo 00

Hence i234] E Wfi’p(Q), and 11,321 since I’(ukj) = 0. By the (PS)-weak lower

semicontinuity of I on W‘i’p(Q), we have I(u) S liminf,- I(ilJ-) = liminf,- I(ukj).

67



Using (3.38), we easily see that this implies

h(Aa + (1 — A)b) S Ah(a) + (1 — A)h(b).

Hence by Lemma 3.12 above, h(t) = f(5 + try) is convex for all 5, 77 with [77] = 1.

This proves f is convex on R". C]

We now study the general case with m 2 2. Under the coercivity condition that

Co > 0 in (3.33), we have the following result:

Theorem 3.18. Let n,m 2 1 and let f: men —> R satisfy the conditions (3.33)

and (3.34) above with co > 0. Then the following statements are equivalent:

(i) I is weakly lower semicontinuous on Wl'p(Q; Rm).

(ii) I is (PS)-weakly lower semicontinuous on W1’p(Q; Rm).

(iii) I is (PS)-weakly lower semicontinuous on all Wfi’p(Q; Rm).

(iv) f is quasiconvex.

Proof. By the theorem of Acerbi-Fusco (Theorem 1.6), (i) 4:) (iv) even when c0 =

0. Moreover, by the definition of quasiconvexity and using approximation, if f is

quasiconvex and only satisfies (3.33) with co E R, then it readily follows that I (gA) S

I (u) for all u E Wfi’p(Q; R"). It is also clear that (i) :> (ii) => (iii) in general cases.

Therefore, to prove the theorem, it suffices to show that (iii) => (iv). We prove

this as separate result in the lemma below. El

Lemma 3.19. Under the assumptions (3.33) with co > 0 and (3.34), (iii) => (iv).
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Proof. Given A E Mm”, by Theorem 3.5 (note that Co > 0 is needed here), there

exists a E WA’”(Q;R"’) which is a minimizer of I (u) on Wfi’p(Q;Rm). We now

apply the standard technique of Vitali covering [DM] to construct a sequence {uk}

in Wk”(Q; R") satisfying

I(u).) = I(u) = inf I(u); (3.41)

uEW’i‘P

u), —> gA in Wl’p(Q;Rm) as k —> 00; (3.42)

I’(uk) = 0 in W'1~P’(Q;Rm). (3.43)

Note that (3.43) will follow from (3.41) since u), E W11,” (Q; Rm) is also a minimizer

of I (u) on Wj’p(Q;Rm). Once we have constructed such a sequence {uk}, which

certainly satisfies u), 35* 9A, the (PS)—weak lower semicontinuity condition (iii) will

imply

[(9/1) S limian(u),) = I(u) = inf I(u),

kfioo uEW/l‘p

for all A E Mm“, which is exactly the quasiconvexity condition of f, and hence the

result follows. Assume, without loss of generality, 0 E Q and then we use the Vitali

covering theorem to decompose Q as follows:

Q=U931QjUN; Q,n§2,~=(0 (iyéj),

where Q,- =aj+ejQ CC Qwith a,- E Q, 0 < e, < 1/k, and [NI =0. Letu =gA+v,
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where 27 E W01 "’ (Q; R”). We define

Ax + 92%?) if x E Q),

u((x) = J (3.44)

Ax otherwise.

Then one can easily check that u), belongs to Wfi’p(Q; Rm) and satisfies

fnwwukundm [flammam

for all continuous functions 61: men -—> R satisfying [62(5)] S C([5 [P +1). Certainly

this implies (3.41). Furthermore, it is easy to see

1 _

lluk - 9AllLP(Q) S E HU — gAl]LP(Q)-

Hence u)C —\ 9,4 as k —> 00. As mentioned above, condition (3.43) follows from (3.41).

This completes the construction of {uk} and thus the proof of the lemma. El

Remark 5. For any u E Wi'p(Q;Rm), we write u = 9A + v with v E Wol’p(Q;Rm)

and define sequence u), E Wj’p(Q; R") as in (3.44) above with 27 = v. Then, if u is

not a minimizer of I over W3,” (Q; R”), one only has I’ (uk) —*0, but not strongly,

in W‘IAP'(Q;R’"), as k —> 00, even when I’(u) = 0; hence the (PS)—weak lower

semicontinuity can not be applied to this sequence.

Finally we show that without the coercivity co > 0 in (3.33) the results of

Theorem 3.18 may fail, at least in the case n = 1, m = 2.
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Theorem 3.20. Let f : R2 —-> R be a (3'1 function satisfying the conditions (3.33)

and (3.34) with co = 0. Assume the derivative map Df = f’: R2 ——> R2 is one—to-one.

Then the functional I defined on X = W1*p((0,1);R2) by

I(u): / f(u'<x)>dz= / f<u3(x>.u;<sc>>dx, u=<u1.u2>ex,

is {PS)-weakly lower semicontinuous on X.

Proof. Let u E X = Wl‘p((0,1);R2). Then

1

(I’(u), ’U) 2/ lf€1(ul($))vl + f€2(u’($))v2l (11‘, V ’U : (111,1)2) 6 X1

0

and hence it can be shown that

“I’(ulllw—lm’ '5 llféllu’) — Cl(u)llLP’(0,1) + llfaW’) — 02(ulllLP’(0,l)’

where Cl (u), C2(u) are two constants depending boundedly on u E X.

Assume u), flu in X. We also assume lim I (uk) exists as k ——> 00. Then there

exists a subsequence {ukj} such that

llf£1(u;€j) " ClllLP’(0,1)+ “fézlulcjl — Czlle'(o,1) ——> 0

as j ——> 00, where 01,02 are some constants. We also assume there exists a measur-
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able set E C (0,1) such that

[E] = 1, lim f€u(u]c,(x)) = C, V x E E (z/ = 1,2). (3.45)

J—’00 3

Note that for all M > 0 the measure |{x E E] [u]c(x)| > M}| S 170,, for all k,

where C is a constant; hence there exists a sufficiently large M > 0 such that

|{x E E] |u].(x)| S M}| > % for all k = 1, 2, - -- . Therefore there exists x0 E E such

that |u]cj(xo)| S M. By taking another subsequence, assume u11(x0) —> oz E R2 as

j, —+ 00. Therefore by (3.45), f’(oz) = (C1,C2). Since f’ is one-to—one, from (3.45),

it must follow that uficj (x) —> a as j —-> 00 for all x E E. Hence u’ (x) = a is constant,

and therefore we have

I(u) = lim I(ukj) = klim I(uk),

J—*°°

which proves the (PS)-weak lower semicontinuity of I (in fact I is (PS)-weakly

continuous) on X.

Remark 6. Note that the function f(51,52) = <p(51 — 5%) on R2, where (,0 Z 0 is

any 01 function with a strictly increasing derivative (0’ > 0 on R, has an one-to-one

derivative f’ : R2 —-+ R2, but f is not convex on R2; this also shows that Lemma 3.12
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above fails for functions h: R2 —-+ R. An example of such a (o is given by

e’ tSO;

t2+t+1t>0.

Note that the function f (5) = f(51,52) = 99(51 — 5%) then satisfies the conditions

(3.33) and (3.34) with Co = 0 and p = 4.
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