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ABSTRACT

CONSTRAINED LOWER SEMICONTINUITY PROBLEMS IN THE
CALCULUS OF VARIATIONS

By

Daniel Vasiliu

We study two problems of constrained lower semicontinuity for a functional on
Sobolev space. The first problem is motivated by certain models of microstructures
and phase transitions which are distinguished by the fact that the associated Young
measure is supported on a certain set K. We study the case when K = L is a lin-
ear subspace and we prove that the weak lower semicontinuity of a functional on a
Sobolev space restricted to sequences whose gradients approach the linear subspace
L satisfying a constant dimension condition is equivalent to a generalized version of
quasiconvexity. The second problem is motivated by the Ekeland variational princi-
ple. We study a restricted weak lower semicontinuity for a given smooth functional
on Sobolev space along all its weakly convergent Palais-Smale sequences. This type
of constrained weak lower semicontinuity replaces the usual lower semicontinuity
condition required for the direct method in the calculus of variations, and suffices
for the existence of minimizers under the usual coercivity assumption. Although, in
general, this condition is not equivalent to the usual weak lower semicontinuity con-
dition, we show that, in certain cases, these two conditions are equivalent and reduce

to the usual convexity or quasiconvexity conditions in the calculus of variations.
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Introduction

A problem of significant importance in the Calculus of Variations is to find among
all functions v € W1P(QQ,R™), with certain prescribed constraints, those which

minimize a given functional

1) = [ f(@u(e), Duw)ds 1)

Q

where f: Q@ x R™ x M™® — R Q C R™ a bounded domain and Du denotes the
gradient of u in the sense of distributions. A direct method of proving existence of
minimizers is to find minimizing sequences converging in some topology and check
that the functional I is lower semicontinuous in that topology; then in this case the
limit would be a minimizer. Therefore it is a special interest in finding necessary
and sufficient conditions for the function f such that I defined by (1) is weakly lower
semicontinuous on certain Sobolev space. One “right” candidate for such condition

is the concept of quasiconvezity first introduced by Morrey in the early ’50s [Mo 1].



According to Morrey a function f : M™*® — R is quasiconvez if

/ f(A+ Du(z))dz > |2 f(A)
N

for all A € M™*" and all u € C§°(2, R™).

Acerbi and Fusco [AF] proved that under some proper growth condition the
weak lower semicontinuity of the functional I given by (1) is equivalent to the
quasiconvexity condition of f with respect to variable &.

The quasiconvexity condition is generally difficult to verify. As a major contri-
bution in understanding this condition we distinguish the work of Ball [Ba 1]. He
developed the concepts of rank-one convezxity and polyconvexity along with the qua-
siconvexity emphasizing many interesting facts in the attempt to establish a useful
sufficient condition for the weak lower semicontinuity. It turns out that rank-one
convexity (see definition below), although easier to check, is the weakest among
all three conditions. In general rank-one convexity does not imply quasiconvexity
(Sverak [Sv 1]) but vice versa is always true. However there are particular cases
when rank-one convexity is equivalent to quasiconvexity, for example when f is a
quadratic form.

An efficient way to study weakly convergent sequences and the weak lower semi-
continuity property for the functional (1) is to use the concept of Young measures
developed by Tartar [Ta] following the original idea of L.C.Young [Yo]. Kinder-

lehrer and Pedregal [KP] showed that the homogeneous gradient Young measures



(i.e. = — v, is the constant map almost every z) are exactly those probability

measures that satisfy Jensen’s inequality for all quasiconvex functions f i.e.

[ 100 = 7 [ At

Mmxn NMmXxn

Using the techniques of Young measures, Fonseca and Miiller [FM] studied the so
called A-quasiconvexity problem and Miiller [Mu 3] also studied a similar problem
without the constant rank condition.

For problems relevant to solid-solid phase transitions in the Material Science
[BJ, Mu 2] one can model the so called microstructure through Young measures. In

these situations it is very important to study the sequences satisfying
dist(Dui(z), K) — 0 (2)

for almost every x € Q where 2 C R™ and K C M™*", which is a so called a N-
energy well of the form K = UN., SO(n)H;. In terms of Young measure this condition
(2) is equivalent to the Young measure being supported on the set K.

It is as well very useful in practice to study the weak lower semicontinuity of
functionals I given by (1) along sequences u; satisfying constraint like (2) for a
given set K. In the first part of this thesis we studied this problem with the set K
being a linear subspace. In this case we also study the constrained rank-one and
quasiconvexity. Let K = L be a linear subspace of M™*". We say that a function

f : L — R is L-rank one convez if for any A € [0,1] and A, B € L such that



rank(A — B) < 1 we have
FOAA+(1-X)B) <Af(A) + (1= Nf(B).
Also we say that f is £-quasiconver if

f(A) < 5/ (A + Du(z))dz

Q

for every cube Q C R", any A € £ and every u € W1°(Q;R™), Q-periodic with
Du(zx) € L for almost every z. We remark that if £ = M™*" we get the usual rank
one convexity and quasiconvexity condition and thus the new conditions generalize
the classical ones.

Let f : M™*® — R and define I(u fn f(Du)dz. We say [ is L-weakly lower
semicontinuous on WP if

I(u) < li,fn inf I (uy)

whenever u; — u and dist(Du, £) — 0 as k — o00.

The main result of the first part is that if the subspace L satisfies the constant
dimension condition (see definition below) then L-quasiconvexity is equivalent to
the L-weak lower semicontinuity of the functional I.

In the second part of the thesis we assume the functional I defined above is
C' on W'P(Q2; R™). This requires that f be C' in (s,£) and satisfy certain growth

conditions. As in many problems in application, I is often also bounded below.



When minimizing bounded-below C! functionals over a Banach space, an important
variational principle discovered by Ekeland [Ek] (see also [AE]) can provide more
special minimizing sequences. For our functional I minimized over a Dirichlet class
A, in WHP(Q; R™), we can always obtain a minimizing sequence {u;} in A, which
satisfies I’(ux) — 0 in W17 (Q;R™). Here, we assume p > 1 and p’ = -5, and
W17 (Q; R™) denotes the dual space of W, ?(€; R™). Consequently, the weak limit

(if exists) of any such minimizing sequence will be an energy minimizer provided

that I(u) only satisfies the condition:

up — uin WP(Q; R™) and
I(u) < lik{n inf I (uy) whenever (3)

I'(u) — 0 in W17 (Q; R™).

Certainly the usual weak lower semicontinuity condition implies the condition
(3). We shall say the functional I(u) is restricted weakly lower semicontinuous on
Whr(Q; R™) if it satisfies condition (3). If the condition holds only for all ug,u in
the Dirichlet class Ay, we then say I is restricted weakly lower semicontinuous on
Aj,. Note that in nonlinear analysis [AE, Ra] the sequences {u,} with bounded I(uy)
satisfying I’(u)) — 0 are usually called the Palais-Smale sequences of the functional
I(u). Therefore, in the following, we shall say a sequence {ux} (PS) weakly converges
to u (with respect to I) and denote by ux 2 u in W7 if it satisfies ux — u in WP
and I'(ux) — 0 in W17,

As we shall see later, this restricted weak lower semicontinuity imposes some

intrinsic property on the function f. Such a condition has also been mentioned in



[Mu 2] as a point of view to replace Morrey’s quasiconvexity condition. In general,
as shown in the paper (see Proposition 3.7), the restricted weak lower semicontinuity
is not equivalent to the usual weak lower semicontinuity even for one dimensional
scalar problems. However, the main results of the paper deal with certain cases
where the restricted weak lower semicontinuity is actually equivalent to the usual
weak lower semicontinuity of the functional (hence the convexity or quasiconvexity
of f). In general cases, we do not know the necessary and sufficient condition for
the restricted weak lower semicontinuity. We point out that the major difficulty
in handling this type of restricted weak lower semicontinuity lies in that the test
sequences {u;} in the usual techniques [AF, Da, Mo 1] do not satisfy the condition
I'(ux) — 0 in W=LP (Q; R™).

A closely related problem to the restricted weak lower semicontinuity of func-
tional I is to characterize all the gradient Young measures [KP] generated by weakly
convergent (PS) sequences in W'P(Q2; R™). This problem is associated with the the-
ory of compensated compactness [CLMS, Ta]. The difficulty lies in that in this
case the strong convergence I'(u;) — 0 in W~17(Q;R™) can not be realized by the
Young measure of { Du;} in the dimension n > 2. Recently the weak lower semicon-
tinuity of functionals under certain linear differential constraints has been studied
using the Young measure theory [FM, Sa]. These linear constraints .4(u) are inde-
pendent of the functional and usually have large kernel. Then the constrained lower
semicontinuity of functionals may be characterized through the Jensen’s inequality

of the integrant with the associated Young measures supported on the kernel of A;



this is the so-called A-quasiconvexity [FM]. In this paper, we do not pursue the
Young measure method for our restricted weak lower semicontinuity studied here
mainly because it does not realize the strong convergence I’(u;) — 0..

To put our restricted weak lower semicontinuity in another perspective similar
to the linear constraint cases, one could study the lower semicontinuity of any given
functional J(u) under the (PS) weak convergence defined above. For example, one
could define J to be restricted weakly lower semicontinuous on W'?(Q; R™) (with
respect to I) if

J(u) < liminf J(ug), YV ux X u (with respect to I),

k—o0

and study the relaxation of J under this lower semicontinuity if it is not restricted
weakly lower semicontinuous. The study in such a direction seems interesting, but
difficult in view of the nonlinear constraints. As in the linear constraint case, one
might consider the certain convexity property of J on the kernel of I’(u) consisting

of all critical points of I, which may not be closed under weak convergence.



Chapter 1

Preliminaries and Notations

Let R™ the usual n-dimensional euclidean space with points z = (zy, o, ..., Z,),
z; € R (real numbers). Let Q be a bounded domain in R" and Qo = [0, 1]* the unit
cube in R™. Let M™*™ be the set of m x n matrices. For vectors a,b € R® and

matrices £, € M™*" we define the inner products by

n

a- b_Za, i Sin=({mn) = Zz&‘ﬂhj

j=1 i=1 j=1

with the corresponding Euclidean norms denoted both by | - |. For vectors ¢ € R™,
a € R", we denote by g®a the rank-one m x n matrix (g;a;) and also define 0 = O, xp,
where 0,,x, is the m x n matrix having 0 in all entries.

A cube in R” is a set

Q={zeR"|z=) al,0<c<1}

1=1



where {ly,l,, ...l } is an orthonormal basis of R".
Denoting p(2) or || the Lebesgue measure of a measurable set €2 we have that

©(Q) = |Q] = 1. A function u defined on R" is called Q-periodic if

u(z) = u(z + icil,-)

for any x € R™ and any ¢; € Z.
Let W!?(Q) be the usual Sobolev space of scalar functions on €, and define
W1P(Q; R™) to be the space of vector functions u:  — R™ with each component

u' € W1IP(Q) and we denote by Du the Jacobi matrix of u defined by
Du(z) = (9u'/0z;)}2; e

Let 1 < p < oo. We make W1?(Q2; R™) a Banach space with the norm

T ( [+ 10up) d:r)
Q

Let C§°(2;R™) be the set of infinitely differentiable vector functions with compact
support in €, and let W,?(€;R™) be the closure of C°(;R™) in W1P(Q;R™).
Then W,?(Q;R™) is itself a Banach space and has an equivalent norm defined by

|| Dul|| (). We also recall the following version of Sobolev embedding:



Theorem 1.1. If Q s a bounded Lipschitz domain then the embedding
WP(Q;R™) — LP(S; R™)

is compact for any 1 < p < oo.

By Co(R") we denote the closure of continuous functions on R™ with compact
support. The dual of Co(R™) can be identified with the space M(R") of signed

Radon measures with finite mass via the pairing

)= [ sav

A map v: E — M(R") is called weak* measurable if the functions z — (v(z), f)
are measurable for all f € Co(R"). We shall write v, instead of v(z).

Let f: 2 x R™ — R a measurable function such that v — f(z,v) is continuous
for all z € Q (a function with this properties is called Carathéodory function). The

following result represents the fundamental theorem of Young measures:

Theorem 1.2 ([Ba 2]). Let E C R be a measurable set of finite measure and let
ur : E — R™ be a sequence of measurable functions. Then there exists a subsequence
ux, and a weak™ measurable map v : E — M(R™) such that the following hold.

(i) vz 20, Uzl m@rm) = Jgm dvz < 1, for almost every x € E.

(ii) we have |vz||m@m) = 1 if and only if the sequence does not escape to infin-

ity,i.e. if lim sup [{|u,|}| > r| = 0.
T—00

10



(iii) Let A C E measurable and f € C(R™). If ||[vz]|m@m) = 1 for almost every

z € E and if f(uy,) is relatively compact in L'(A) then

flug) =z, f) = | fdve.

R™

(w) If f is Carathéodory and bounded from below then

lim, [ e u,)@)ds = [ (i f(@r 0, (@))de < o0

n—oo Q

if and only if {f(-,ux,(-))} is equi-integrable.

The measures (v, ).¢cq are called the Young measures generated by the sequence
{u,}. The Young measure is said to be homogeneous if there is a Radon measure

vy € M(R™) such that v, = 14 for almost every = € 2.

Theorem 1.3 ([Pe]). If {ui} is a sequence of measurable functions with associated

Young measure v = {v;}eq, then

liminf/Ef(z,uk(:t))dz}_/E o f(z, \)dv(N)dz, (1.1)

k—oo

for every Carathéodory function f, bounded from below, and every measurable subset

EcqQ.

A Young measure (v,) is called a gradient Young measure if it is generated by

a sequence of gradients. We say that (v) is a WP gradient Young measure if it is

11



generated by {Du;} and uy — u in W'P(Q,R™). The following result refers to the

localization of the gradient Young measures.

Theorem 1.4 ([KP]). Let (v,) be a gradient Young measure generated by a se-
quence of gradients of functions in WP(Q). Then for almost every a € Q there
exists a sequence of gradients of functions in WP(Q) that generates the homoge-

neous Young measure (v,).

We also provide the definitions of convexity, rank one convexity and quasicon-

vexity.
Definition 1.1. Let A : M™" — R. We say that h is convexr on M™*" if the
inequality

R(AE + (1 = A)n) < Ah(€) + (1 = A)h(n) (1.2)
holds for all 0 < A < 1 and &, n € M™*™,

Note also that h is convex if and only if g(¢t) = h(§ +tn) is a convex function of ¢
on R for all £, n € M™*" . For C! functions h, the convexity condition is equivalent

to the condition

h(n) 2 h(§) + Deh(€): (n =€), Vn, £ € M™". (1.3)

Furthermore, a C! function h on R is convex if and only if A’ is nondecreasing, or

equivalently, the following condition holds:

(K'(a) = K'(b))(@a—b) >0, Va beR. (1.4)

12



Definition 1.2. A function f : M™*® — R is called rank one convez if

FAA+(1-XB) < Af(A)+(1-N)f(B)

for all A € [0, 1] and any matrices A and B such that rank(A — B) < 1.

Definition 1.3. A function f : R* — R is called separately convez if g;(t) =

f(zy,...xizy, t, Zigq,...2y) is convex in t for all 1 <7 < n.

Definition 1.4. A function f : M™*® — R is said to be quasiconver if

A f(A+ Du(z))dz > f(A)

for any A € M™*" and u € W,®(Qo; R™).

If f is quasiconvex then one can show [Sv 1] that

f(A) = inf f(A+ Du(z))dx
uEWe® (QoR™) J Qo

where WL,2°(Qo; R™) is the class of periodic functions in W (Qo; R™).
Let A := Z" be the unit lattice, i.e. the additive group of points in R® with

integer coordinates. We say that f : R® — R™ is A-periodic if

fz+A) = f(z) for all z € R", X € A.

13



A A — periodic function f may be identified with a function fr on the n-torus
T, := {(e*™=1, &> .., ™) € C" : (z1, 73, ...T,) € R"}
through the relation
fr(e?™= e¥mir2 | e¥™n) = f(xy, Ty, ..Tp)

The space LP(T,,) is identified with LP(Qo) and C(T,) is the set of A-periodic
continuous functions on Q. We recall some results on Fourier transform for periodic

functions. If f € L!(T,), then its Fourier coefficients are defined as:
fO) = [ flx)e ™=z, A€ A.
Th

Theorem 1.5. We have the following:

(i) The trigonometric polynomials

R(z) := Z axe 2= A A all finite subsets of A, ay € C
AEA!

are dense in C(T,) and in LP(T,) for all 1 < p < o00.

(i) If f € L*(T,,) then

fl@) =3 Fe =2 S 1F P = IIfllee
A€EA

A€A

14



Let f: Q@ xR* x M™*" — R. We say f is Carathéodory if f(z, s, ) is measurable
inz € Q for all (s,£) € R* x M™*" and continuous in (s,§) € R® x M™*" for almost

every z € §2. Define the multiple integral functional I on W1?(Q; R™) by
I(u) = / f(z,u(zx), Du(z))dz, ue€ W"P(Q;R™).
Q

If f(z,s,€) is measurable in z € § for all (s,£) € R® x M™*™ and is C! in (s,€) €
R"™ x M™*" for almost every x € (2, we shall use the following notation to denote

the derivatives of f on s and &:

of of

Dsf(-ra S,.f) = (53—1> T aT

), Def(x,s,€) = (0f/06;) 21 .

Definition 1.5. A functional I is said to be (sequentially) weakly lower semicon-

tinuous on W1P(Q; R™) provided
I(u) < li;n inf I(u;) whenever u; — u in WHP(Q; R™). (1.5)

The following important result has been proved by Acerbi and Fusco [AF].

Theorem 1.6. Assume f is Carathéodory and satisfies
0< flz,5,€) < a(lEf +1sP”) + Alz),

where ¢; > 0 and A € L'(Q). Then functional I defined above is weakly lower

15



semicontinuous on W1P(Q; R™) if and only if f(z,s, ) is quasiconver for almost

every x € 2 and all s € R"; that is, the inequality

f@9.6) < g7 [ f@ s €+ Dotu) dy

holds for a.e. z € Q, all s € R*, £ € M™*® and all p € C(; R™).

Finally we quote the following theorems which are known as the Ekeland varia-

tional principle. See [De, Ek] for proof and more on these principles.

Theorem 1.7. Let (X,d) be a complete metric space and let : X — RU {400}
be a lower semicontinuous function which is bounded below. Let € > 0 and 4 € X

be given such that

€
S\ < €
d(a) < 1§f<1> + 5
Then given any A > 0 there exists uy € X such that

@(u,\) < (D(l_l,), d(u,\,ﬁ) <A (16)

Q(uy) < P(u) + $d(u,up) VY u#uy. (1.7)

The following version, which follows from the general Ekeland principle above,

is very useful for establishing certain results in chapter 3.

Theorem 1.8. Let X be a Banach space and X* its dual space, and let : X — R

be a C! functional which is bounded below. Then for each € > 0 there exists u € X

16



such that

D(u) <infx ® + ¢

19 (ue)llx- < €.

Therefore, there erists a minimizing sequence {ui} in X such that

lim ®(uy) = iﬁf o, klim |9 (ur)||x- = 0.

k—oo

17

(1.8)

(1.9)



Chapter 2

Linear Restrictions with Constant

Dimension

An interesting and motivating problem is to study necessary and sufficient conditions
for the weak lower semicontinuity of the operator I restricted only to a class of
functions that satisfy certain linear constraints, i.e. their gradients in the sense
of distributions approach a preset target linear subspace of M™*" by means of L?
convergence. When the linear subspace satisfies some special condition we prove
that the restricted weak lower semicontinuity is equivalent to a generalized version

of quasiconvexity.

18



2.1 L-rank one convexity and L-quasiconvexity

Let £ be a linear subspace of M™*" and P : M™*"® — M™*" the linear map such
that PA = 0 if and only if A € £, which is actually the orthogonal projection onto

the orthogonal complement of L.

Definition 2.1. We say that a function f : £ — R is £-rank one convez if for any

A €[0,1] and A, B € L such that rank(A — B) < 1 we have
fAA+(1=X)B) < Af(A4)+ (1 - N)f(B).

Definition 2.2. Given a cube  C R" we say that a function f : £ — R is

Q — L-quasiconver if

f(A |Q|/fA+Du( z))dz

for any A € £ and every u € Wh*(Q;R™), Q-periodic with Du € L.

Definition 2.3. We say that a function f : £ — R is L-quasiconvez if it is Q-L-

quasiconvex for every cube @, that is

/ (A+ Du(z))d

for any cube Q C R", any A € £ and every u € WH>®(Q;R™), Q-periodic with

Du e L.
Theorem 2.1. If a function f : L — R is L-quasiconvez then it is also L-rank one

19



CONveET.

Proof. Let A € [0,1] and A, B two elements in the subspace £ such that rank(A —
B) < 1. Let Qo = [0,1]" a unit cube in R". Since rank(A — B) < 1 there exist two

vectors a € R™ and b € R” such that

A—B=aqa-bT

and it exists a rotation, a matrix R € R"*" such that RRT = I, and (RT - b)T =e

where e, € R" with ¢; = (1,0,0,...,0). Thus (A-B)R=a-(RT- b)T =a®e;. Let

Q@ = RQy. Since f is assumed to be L-quasiconvex we have

/ﬂc+mewz2ﬂc> (2.1)
Q

for all C € £ and p € W'>*(Q, R™) such that is Q periodic and Dy(z) € L a.e. z.
Let f(A) = f(ART) and also denote A = AR and $(z) = ¢(Rz). Notice that ¢ is
Qo periodic,

Dy(x) € L={M|M = MR, M € L}

almost every z and p € W1>(Qy, R™). By the change of variable under the integral

we obtain

/ﬂé+DﬂﬂMr2ﬂC) (2.2)

20



for all C € L and all ¢ € W1(Qo, R™), Q periodic and Dcp(}:) € L. Also we have

A-B=a®e.

(1-)) ifteloN
Let n: [0,1] — R such that 7'(t) = and let ¢(z) = n(z;)a

- ift € (A1)

where z = (21,23, ...x,). Thus we obtain that ¢ is @ periodic and we can extend
by this periodicity to R” and D@(z) € L a.e. z. Also notice that ¢ € Wh(R?, R™)

and

1-MN(A=B) ifz, €[0,)
Da(z) = ( ) ) [0, ]

~\A - B) if z, € [\, 1

Thus we have that [ f(AA + (1 — X\)B + Dg(z))dz = Af(A) + (1 — \) f(B) and
Qo

[ fOA+ (1= X)B+ Dé(z))dr > f(AM+(1-))B) and obtain f(AA+(1-X)B) <
Qo
Af(A) + (1 — N f(B) hence f(AA+ (1 —A)B) < Af(A) + (1 - N f(B).

a

Proposition 2.2. If the subspace L does not contain rank one matrices and a
function w € W12(Q;R™), Q-periodic has the property that Du(z) € L almost

every x then u = const.

Proof. Assume first Q=Qp. Since £ does not contain rank one matrices we have
that

in |Pla®\)| >0 2.3
|a|=“ﬁ'|§’1=;' (a® A)| (2.3)

21



and it follows that

|[P(a® \)| > cla]|| (2.4)

for any a € R™\ {0,,} and A € R"\ {0,}. We consider now the Fourier transform
of PDu which is P(4(\) ® A). Since £ does not contain rank one matrices we have
that

P@E(\) ®\) =0 (2.5)

for all A\ € A\ {0,}. Thus, using (2.4) we get that 4(\) = 0 for all A € R™\ {0,}
which proves that u must be a constant.

Now, if @ = RQ, for a rotation R and u € WH%(Q;R™), Q-periodic with
Du(z) € L we have that 4(z) = u(Rz) is in W1?(Qo;R™), Qo-periodic. Also
Dii = Du(Rz)R so Di € L where L = {A € M™"|A = AR, A € L}. Since £
doesn’t contain rank one matrices it follows that £ has the same property. Thus i

must be constant and therefore u is constant as well. O

2.2 Examples

In this section we are going to discuss particular cases of linear subspaces £ and

some aspects related to the restricted rank one convexity and quasiconvexity.

Example 1. Consider £ = {(} 2) |a,b € R} and let f: £ — R a L-rank one convex

function. We show that f must be Qo-L-quasiconvex.
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Given u € W1>°(Q; R™), u(z,y) = (u!(z,y), u*(z,y) with Du € L it implies

Thus u! and u? satisfy the wave equation i.e.

Oy ul — Byyul =0

Op0® = O u* =0

and we get

u'(z,y) = h(z +y) — g(z - y)

v(z,y) = h(z +y) + g(z — y)

where h,g : R — R, absolutely continuous. If u is assumed to be @y periodic it
folows that h and g are periodic of period 1. Indeed, u!(z,y) = u!(z + 1,y) so
h(r+y+1)—h(z+y) =g9(z—y) —glzr—y+1) for any z,y € R. It implies
that g(t) — g(t + 1) = g(0) — g(1) for any t € R since if two absolutely continuous
functions a and g verify a(z + y) = 8(z — y) for any z,y it follows that they must

be constant. Thus we get that

g(1) — g(k + 1) = (9(0) — g(1))k

for any positive integer k. Since g has to be bounded, we get g(0) — g(1) = 0 and
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thus g(t) — g(t + 1) =0 for any t € R.

Let F : R — R defined as F(a,b) = f(*; 277). Since f is L-rank one convex,

we have that F' is separately convex in each variable and

cd a+ba-0 c+d c—d
f(<d C)+(a—b a+b>>=F( 2 +a, 5 +b) (2.6)

Now we prove that f is Q¢-L-quasiconvex. Making the substitution £ = z + y

and n =z — y we get

) =] (et sma st s
0 \—¢

/2( 72F(c;d+h'( ,C;d '(n))dn> d¢

1 2-¢

Now using the fact that F' is separately convex and Jenssen’s inequality we get:

+

N| =

Jeruo L9510 4 - g, 1My >
[ .0 > PEFE S = 1(55)
0

and it follows

J[L 105 ) + ousay > (5 0))

hence f is Qy-L-quasiconvex.

Example 2. We show that Qy-L-quasiconvexity might not imply £-rank one con-
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vexity.
Let £ = {(} 2£)|a,b € R} a linear subspace of R?*2. If u € WH®(Qy; R™)

satisfies Du € L it follows that
20;,u' — 9 ut =0 (2.7)
which implies that there exist h, g : R — R such that
u'(z,y) = h(z + yv2) + g(z — yv?2) (2.8)

Also, u!(z,y) is Qo periodic so we get, by reasoning as before, that h and g are
periodic with periods 1 and v/2. Since v/2 is irrational and the set {kv/2+p| k,p € Z}
is dense in R it follows that h and g must be constant [La]. Therefore, by definition,
every function is Qo-L-quasiconvex, but not necessarily L-rank one convex (see

Example 1).

Example 3. We show that £-rank one convexity does not imply £-quasiconvexity.

The following famous example belongs to Sverak [Sv 1].

Let
a O
L={lo bl,abceR} (2.9)
c ¢
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a linear subspace of M®*2, Also let f : £ — R be defined by

a 0
fllo @ = —abc (2.10)
c c

and the function f is convex on each rank-one line contained in £. Consider the
function u : R?> — R3 given by
sin(27x)
_ 1
u(z,y) = o “ sin(2my)

sin(27(z + y))

We have that u € W>(Qo; R?) where Qo = [0, 1]?, u is Qo-periodic and Du € L

since
cos(27x) 0

Du(z,y) = 0 cos(2my)

cos(2m(z +y)) cos(2m(z + y))
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Thus we get

/ f(Du(z,y))dxdy = —/ (cos(2mz))?(cos(2my) ) dxdy < 0 = f(03x2) (2.11)
Qo Qo

which shows that f is not £-quasiconvex.

Now we generalize the Example 3 to the case where some function f: £ — R
which is L-rank one convex but not Qo-L-quasiconvex can be extended to the entire

space M™*" and preserve this property.

Theorem 2.3. Let f : L — R be a function which is L-rank one but it is not

L-quasiconvez. Also assume that f is C? and for some p > 2:
|F(A)] < c(1+|APP) (2.12)

ID?f(A)] < (1 +|AP~?). (2.13)

forall A € L. Then there exists an function F : M™*" — R which is rank one convez

but not quasiconver on M™*™.

Proof. Since f is not L-quasiconvex it exists a cube Q = RQp and u € W1°(Q; R™),

Q-periodic with Du(z) € £ such that

f(0)>/Qf(Du($))dx (2.14)
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Let F, ;. : M™" — R with
F.o(X)=f(PX)+ €| X|> + €| XPPT + k| X — PX|% (2.15)

Here P is the projection onto L. Let A, Y € M™*" arbitrary such that rankY =1,
Y| =1 and let hex = F.x(A +tY). We are going to prove that for every € > 0 it

exists k such that F, x is L-rank one convex. To show this it is enough to prove that

”

h(’k Z 0-

Thus, now we prove that:

d?

Fs(A+1Y)| 20 (2.16)

t=0

for any matrices A,Y € M™*" with rankY = 1, |Y| = 1. We have:

A+ tYIPH = (JA+tYP)S = (JAP+2t <Y, A > +2)"F (2.17)

c%|A FYPT = (p+ D)(JAR+2t <Y, A> +2)FT (<Y, A > +t) (2.18)
Thus we get

d?
Eﬁ'A +tY[PH =(p+Dp-1DAP3 <Y, A>2+(p+1)|APT  (2.19)
t=0
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and

d? d?
—F. (A+tY = —f(PA+tPY 2 p-1
pTD x(A+ )t . e (PA+ )t=0+ e+e(p+ 1)|A]

+ ep+1)(p-1|AP3 <Y, A>% +k|Y — PY|?

Now, from (2.15), we have

d2
e (PA+tPY)| > —c(1+]|APP7?) (2.20)
t=0

and

d2

EﬁFe,k(A +tY)| > —c(1+|AP7?) +e(p + 1)|A]P~! + 2e + 2k|]Y — PY|? (2.21)

t=0

Assume by contradiction that it exists €y such that for every positive integer k we
get A% Yk satisfying

il F.(A+1tY) (2.22)

0> —
dt? 10

From (2.21) it follows that A* is bounded and by extracting a subsequence we have

A¥ - Aand Y¥ - Y = PY as k — oco. Thus, passing to the limit in (2.21),
d?
—e> —f(A+1tY) (2.23)

a contradiction with the fact that f is £-rank one convex.
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Now we can also choose € small such that

Fx(0) >/QF5,k(Du($))da: (2.24)

where u is given in (2.14). Hence F, is not L£-quasiconvex. a

2.3 Constant dimension condition

Let A € R® and R} = {w € R™|lw® X € L}. We notice that R} is a linear subspace

of R™.

Definition 2.4. We say that the subspace L satisfies the constant dimension con-

dition if the related subspace R} has the same dimension for all A € R" \ {0}.

If £ satisfies the constant dimension condition we shall prove the equivalence

between (Qo-L-quasiconvexity and the weak lower semicontinuity of the functional

Io(u) =/Qf(Du)dz

along sequences satisfying the linear restriction PDui(z) — 0 almost every z.

Remark 1. If m = n = 2 and £ is the linear subspace of 2 x 2 symmetric matrices

then the dimension of R} is constantly 1 for all A € R?\ {0,}.

Proof. We have that £ = {(} i’)l a,b,c € R} and

R)‘ = {w = (wl,wg) € R2| ’wlAz = ‘LU2/\1}.
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Clearly the dimension of R} is 1 for any A € R?\ {0} 0O

Lemma 2.4. If L satisfies the constant dimension condition there exists v > 0 such

that for any a € (R})* and A € R\ {0} we have:

|[P(A®a)| > v]|A®a| (2.25)

Proof. Assume by contradiction that

min |P(A®a)| =0. (2.26)

[Al=1,]a|=1

Then there exists a minimizing sequence \; — X and a; — a. Let k = dim R}. For e
small enough and any X such that |A— A| < € there exists a set w; (), wa(A), ...w())
of linearly independent vectors of R} and llir}\ w;(A) = wi(X), for all 4, 1 < i < k.
Since a; € (R})*, it implies that {a;,w;(\;)) = 0 for all 4, 1 < i < k. We get

(@, w;(\)) = 0soa € (R})*. Also, since P(A®a) = 0 it implies @ € R}. Thus

a = 0, in contradiction with |a| = 1.

First we shall prove the selection theorem:

Theorem 2.5. Let Q a cube in R™ and u € WH?(Q;R™) a Q-periodic function. If
the linear subspace L satisfies the constant dimension condition then for everye > 0

there exists a selection v, ve € C*® a Q-periodic function such that Dv(z) € L a.e.
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T €Q and

|Du = Dvel|2(q) < |[PDullr2q) + € (2.27)

Proof. First we assume that Q = Q. Let A = Z" be the unit lattice, i.e. the
additive group of points in R™ with integer coordinates. Since u is @-periodic we

can expand u as a Fourier series,

u(z) =Y _a(\)e’™.

A€EA

Thus Du(z) = Y- @(X) @ Ae>™*. Let 9()\) = Pgyt(X), projection of both real part
A€A

and imaginary part of #()\) onto R}. By Riesz-Fischer theorem we have that

v(z) =) d(N)er (2.28)

A€A

is a function in W12(Q), @Q-periodic and its gradient belong to £ almost every z.

Applying Lemma (2.4) for a = @()\) — 9(\) we get || Du — Dv||; < ||PDuljs.

2wiAx

Now we can consider v.(z) as the real part of Y 0(A)e where is A’ is a finite

AEA
subset of A such that

|Dve — Du||L2 < € (2.29)

since the imaginary part of 5 §(\) ® A\e?™** converges to Onxn as A’/ A.
AEN
Now if the cube @ is arbitrary then Q = SQq for some a € R" and a rotation

S. Let L={AeM™"|A=AS, Aec L} and P the orthogonal projection onto L.
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Define @ : Qo — R™ by @(z) := u(Sz). Also notice that

A _ pSA
R) = R§

and therefore RE has constant dimension for any A € R™. Thus we can select ¥ such

that o € C*(Qo), Qo-periodic and

ID@ = Dol 1oy < 1PDil| 1200 + € (2.30)

For each x € @ there exists a unique Z € @ such that x = Sz. Let v: Q — R™

with v (z) = 3.(ST(z)). We notice that v, satisfies the requirement of the lemma.

a
2.4 L-weak lower semicontinuity
Let f: M™*™ — R satisfy the growth condition
If(A)] < c(1+]4P) (2.31)
for any matrix A € M™*" and consider the integral operator
Ig(u) = /Qf(Du)d:r (2.32)

where Q is open bounded domain with Lipschitz boundary and u € W12(Q; R™).

33



In contrast to Example 2 in section 2.2 we show that under the constant dimen-

sion condition Qo-L-quasiconvexity implies £-rank one convexity.

Theorem 2.6. Assume that the linear subspace L satisfies the constant dimension
condition. If a continuous function f : M™*" — R satisfies the growth condition

(2.31) and is Qo-L-quasiconvez then it is also L-rank one convex.

Proof. Let A, B € L be such that rank(A — B) < 1 and A € [0,1]. For any integer

k there exists Q, Q5 € Qo, Q¥ N Q% = 0 and ), € W, *(Qo, R™) such that

4 (1-X(A-B) ifzeQt
“MA-B)  ifzeQt

IDpi|loo < const(A, B)

\

since u(Qo) = 1. (See [Dal). We extend the ¢, to be Qq-periodic on R™. From these
properties we also have that PDy, — 0 in L2(Qy). Thus, by Theorem 2.5, for any

€ we can find a selection ux . € W>(Qo, R™), Qo-periodic such that Duy . € £ and

| Duk,e — Doi |l L2(0) — 0

as € — 0 and it follows
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lim inf f(AA+ (1= AB) + Duy)dz = lign inf [ f(AM+ (1 - AB)+ Dyy)dzx

k—00,e—0 Qo = Jao

= M(A) + (1= N(B)

Since f is Qo-L-quasiconvex we have

f(AA + (1= AB) + Duy)dz > f(AA + (1 - AB)) (2.33)
Qo

for any k and e. Taking liminf over k£ and e for the left hand side of the previous

inequality we obtain

Af(A)+ (1= A)f(B) 2 f(AA + (1 - AB))

which proves that f is £-rank one convex. a

Definition 2.5. Let f and Iy be defined as above. We say that the functional
Iq is L-weakly lower semicontinuous on W12(Q2; R™) if for any sequence uy — u in

W12(Q;R™) with ||PDuyl|12q) — 0 as k — oo, we have

Io(u) < lizn inf I (ug) (2.34)

Theorem 2.7. If the functional I is L-weakly lower semicontinuous then the func-

tional f is L-quasiconvez.

35



Proof. Let Q = RQy, A € L arbitrary and u € W'>*(Q;R™), Q-periodic with

Du(z) € L for almost every x. We show that

/ f(A+ Du(z))dz > f(A) (2.35)
Q
assuming that I is £L-weakly lower semicontinuous. For any test function ¢ we have

/ Du(kz)p(z)dz = | Du(kR&)p(7)dz
Q Qo

Thus, by Riemann-Lebesgue theorem, we have that

lim [ Du(kz)p(z)dx = Du(Ri:=/Du(x)dx (2.36)
k= Jq Qo Q

Let uk(x) = fu(kz)+ Az. We notice that Dui(z) = Du(kz)+A and Duy(z) € £

for any k and almost every x. We have that

*

Du;— A (2.37)

and also

/ f(A+ Du(z))dz = k"/ f(A + Du(kz))dz. (2.38)
Q 3Q

For k sufficiently large there exists p; cubes, @i, @2, ...Qp,, Which are translates of
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%Q by multiples of %, muttually disjoint, such that

Pk Pk
UQi C Q and p(Q2\ U Q:) < & (2.39)
i=1 i=1

where €, — 0 as k — oco. Thus we also get that 2 — p(f2) as k — oo.

Since I is L-weakly lower semicontinuous it follows:

liin inf [ f(Dux(z))dz > f(A)p(Q) (2.40)
-0 Jq

Also, from (2.38) we get

/f(Duk(a:))dx = pk/ f(A-i—Du(ka:))dm-}-/ f(A+ Du(kz))dz
0 le MUK, Qs

_
-2 /Q F(A+ Du(z))dz + xC

Letting k — oo we have u(2) fQ f(A+ Du(z))dzx > f(A)u(?) and after dividing by

1(§2) we obtain what we had to prove. O

Next we show under the constant dimension condition the £-quasiconvexity is

always sufficient for the £-weak lower semicontinuity.

Theorem 2.8. If the linear subspace L satisfies the constant dimension condition
and if the function f is bounded from below, satisfies the growth condition 2.31

and is Qo-L-quasiconvex then functional Iq is L-weakly lower semicontinuous on

WL(Q;R™).
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Proof. Let ux € W2(Q,R™) such that ux —u in W2 and PDu; — 0 in L?2. We

assume that Duy generates a parametrized Young measure (V;)zcq. Then

Du(z) = / Ay (N)

men

By Theorem 1.3 we also have that

lm inf / F(Dug(z))dz > / / FOdv(\dz (2.41)
Q

Q Mmxn

For our purpose it would be sufficient to show

/Q/ e f NNz 2 /Q f(Du(z))dz (2.42)

Now we actually prove

/ FNdva() > f( / Mva(N) = f(Du(a)). (2.43)

MmXxn Mmxn

for almost every a € Q.

By Theorem 1.4 we have that v, is also a gradient Young measure for almost
every a € Q. Consider a cube Q C € such that a € Q. There exists wy € W2(Q)
such that Dwy generates v, and w; — w in L?, by the Sobolev embedding. Also we
get that Dwy — Du(a) = Dw and by the fundamental theorem of Young measures
PDuwy — 0 in L(Q).

Let ¢; € C§°(Q) such that ¢; 1 uniformly and vx; = @;(wx — @). Since
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wx — W in L? for each j there exists k; such that

N 1
| Dp; ® (wi, — 0)||L2q) < G

Thus we can select a subsequence of v ; which we can conveniently denote by v

and we have v, € Wy*(Q) and
| Dvk — D(wi — )| 2(@) — 0 (2.44)

By using Theorem 2.5, we can select 9, € C*(Q), Q periodic such that

| Dok — Dugll 2@y — 0 in L?(Q) and Diy(z) € L almost every z. So we have
limkinf/f(Du(a) + D(wi(z) — w(z))dz = limkinf/f(Du(a) + Doy (z))dz
Q Q

Also since f is £-quasiconvex

ﬁ ! f(Du(a) + Di(z))dz > f(Du(a))dz

Thus it follows that

1

5 limjos Q/ f(Du(a) + D(wi(z) — #(z))dz = / W) > f(Du(@)

This completes the proof. g
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2.5 Particular case without the constant dimen-

sion condition

Consider the linear subspace £ = {(§ g)l a,b € R}. We notice that the subspace

R} ={weR}w®\e€ L}

does not have constant dimension for all A € R?\ {0}. Therefore this space L does
not satisfy the constant dimension condition defined above.

Let f: M?*2 — R be a C! function satisfying

0< f(§) <c(1+¢f) (2.45)
IDf(€)] < c(1+[€]) (2.46)

Also, as above, define
Ig(u) = /Qf(Du)dx (2.47)

Theorem 2.9. If f : M?*2 — R satisfies (2.45) and (2.46) and is L-rank one convez

then Iq is L-weakly lower semicontinuous on W12(Q; R?).
The following result by Miiller is going to be essential in the course of the proof.

Theorem 2.10 ([Mu 3]). Let f : R2 — R be a separately convez function that
satisfies

0< f(€) <CA+|EP).
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Let Q C R? be open and suppose that

up—u, ve—vinLi (Q)

Oyug = Oyu, Oyux — O;v, in H,;(Q).

Then we have

hmlnf/f Up, Uy )dz > /f (u,v)dz.

Now we are going to prove the Theorem 2.9.

(2.48)

(2.49)

(2.50)

Proof. Let u; € W2(Q; R?) with ux — u and PDuy — 0 almost everywhere. Thus

we have that d,u}, — 0 and d,ui — 0so 8;(9,u;) — 0 and 9,(9,u2) — 0in H~1(Q).

Let F : £ — R given by F(a,b) = f((%})). Since f is L-rank one convex it

0b

follows that F is separately convex and satisfies the growth condition from Theorem

2.10. From (2.45) and (2.46) we also have that

|£(€) = f(m)| < (L +[€] + [n)(€ —n)

6Iui 0

o 5uui) we get

By using this inequality with £ = Du, and n = (

k—o0

41
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hmlnf/f (Dug) z—hmmf/f((0 ayui))dz.

(2.51)

(2.52)



From the Theorem 2.10 we obtain

/F(@Iul,ayuQ)dz < liminf [ F(0;uy,0,u})dz (2.53)
Q

k—o0 0

and since 0,u! = 0 and 9,u? = 0 we finally get
y

/ f(Du)dz < liminf [ f(Dux)dz
Q k—oo Ja

a

Remark 2. From Theorem 2.9 and Theorem 2.7 for this £, every £L-rank one convex

function is £-quasiconvex but it may very difficult to prove this directly.
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Chapter 3

Nonlinear Restrictions of

Palais-Smale Type

3.1 Introduction

In this chapter we investigate the weak lower semicontinuity for C' functionals

defined as

I(u)=/ﬂf(:r,u(x),Du(a:))dx

from the perspective of a nonlinear constraint of Palais-Smale type. This requires
that f be C! in (s,£) and the derivatives satisfy some growth conditions. When
minimizing a smooth and bounded-below functional I over a Banach space, an im-
portant variational principle was discovered by Ekeland [Ek] in the 1970’s. Applying
this principle to the minimization problem for our functional I over a Dirichlet class

A, in WIP(Q; R™), we can always obtain a minimizing sequence {u;} in A, which
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satisfies I'(ux) — 0 in W1 (Q;R™). Here, we assume p > 1 and p’ = ;‘_1;, and
W17 (Q; R™) denotes the dual space of W, ?(€; R™). Consequently, the weak limit

(if exists) of any such minimizing sequence will be an energy minimizer provided

that I(u) only satisfies the condition:

wp — uin WP(Q; R™) and
I(u) < liin inf I'(ux) whenever (3.1)

I'(ug) — 0 in W-LP'(Q;R™).

In this case, we say that the functional I(u) is restricted weakly lower semicontinuous
on WhP(Q; R™). If the restricted lower semicontinuity condition (3.1) holds only
for all ug,u in the Dirichlet class Ay, we then say I is restricted weakly lower
semicontinuous on A,. Since the sequences {ux} with bounded I(u;) satisfying
I'(ux) — 0 are usually called the Palais-Smale sequences [Ra] for the given functional
I(u), we shall say that a sequence {ux} (PS) weakly converges to u (with respect
to I) and denote by ux 2w in WP if it satisfies ux —u in W2 and I'(ux) — 0 in
WL,

As we shall see later, this restricted weak lower semicontinuity imposes some
intrinsic property on the function f. Although in the certain cases as presented in
this paper the restricted weak lower semicontinuity is equivalent to the usual weak
lower semicontinuity of the functional, in general, when f depends on z and s, we
also give some examples to show that the restricted weak lower semicontinuity of /

is be equivalent to the usual weak lower semicontinuity (see Proposition 3.7).
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3.2 The (PS)-weak lower semicontinuity

In this section, we assume f(z, s, ) is measurable in z € § for all (s, €) € R* xM™*?
and is C! in (s,£) € R" x M™*? for almost every = € 2. We also assume 1 < p < 0o

and f satisfies the growth conditions

|f(z.5,.6)| < er(ls]P + [€]F) + Az), (3.2)

|Dsf(z,5,6) +|Def(z,5,6)| < colsP~! + [§P71) + B(x) (3.3)

for almost every x € 2 and for all s € R", £ € M™*", where c;,c; are positive
constants and A, B are positive functions with A € L'(Q?), B € LF{_I(Q).

From these assumptions, we can obtain the following result:

Proposition 3.1. Under the above conditions, the functional I defined above is a
C! functional on W1P(QQ; R™) and for each u the Fréchet derivative I'(u) is given
by

(I'(u),v) = /Q [Dsf(z,u,Du) - v + D¢ f(z,u, Du): Dv| dz

for allv e WHP(Q; R™).

When minimizing the functional I on a Dirichlet class A,, one can shift the class

to the Banach space X = W, ?(Q;R™) since

inf I(u) = inf ®(w), (3.4)

u€A, weX

where ®(w) = I(w + g). We easily have the following result.
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Proposition 3.2. Let X = W, P(Q;R™). For any g € W'?(Q;R™), the functional
®: X — R defined by ®(w) = I(w+ g) is C* and ®'(w) = I'(w + g) as elements in

X*, the dual space of X.

In the following we write X* = W1 (Q;R™), where p’ = ;1_’—1. As usual, we

define

1 () ly-1r = sup{(I'(w), v) |[v € WoP (G R™), [[ollyr < 1} (3.5)

Note that, given a smooth functional I on X = Wy?(Q; R™), the sequences {u;} in
X satisfying

[H(w)| < M, I'(wx)—0 in W¥(Q;R™)

are usually called the Palais-Smale sequences or (PS) sequences for the functional

I. Therefore, for simplicity, we use the following definition.

Definition 3.1. A sequence {u,} is said to (PS)-weakly converges to u (with respect
to I) in W'?(Q; R™) and denoted by u; 2 u provided that ux — u in WI?(Q;R™)

and I'(ux) — 0 in W17 (Q;R™). Define the set of all (PS)-weak limits to be

S = {ue W(Q;R™) | 3 ux € W'P(Q;R™) such that ux Su}.  (3.6)

Let C = {u € WhP(Q; R™) | |[I'(w)|ly-1» = 0}. Then clearly C C S, and hence
S can be viewed as a relaxation of C under the (PS)-weak convergence. However,

for certain functionals I the set S may be empty.
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Example 4. Let f(z,€) = xe(x)h(£), where xg is the characteristic function of a

measurable set E in (0,1) with 0 < |E| < 1 and h(§) = § + arctan£. Define

I(u) =/0 flz,u'(z))dz, uwe W0,1).

We claim that for the functional I the (PS)-weak limit set S = (). Suppose to the
contrary ux = u in W2(0,1). Let gi(z) = xg(z)R'(ui(z)). Then, by Proposition
3.6 below, there exists a subsequence g, — L strongly in L?*(0,1) for some constant
L. We also assume g (r) — L for almost every z € (0,1). Hence we must have
L =0 and g, (z) = h'(u}, (x)) — 0 for almost every z € E. By Egoroff’s theorem,
it follows that |uj ()| — oo almost uniformly on E, which implies ||u ||r2(g) — oo,

a contradiction.

Definition 3.2. Given any nonempty family A C W1?(Q; R™), we say that I is

(PS)-weakly lower semicontinuous on A provided that
I(u) < li;n inf I(ux) whenever wui, u€ A, ux Ru (3.7)

We shall technically assume this property if ANS = 0.

The following result shows that if f = f(z, ) is convex in £ then the functional

I is in fact (PS)-weakly continuous on all Dirichlet classes.

Proposition 3.3. Assume f = f(z,&) satisfies the corresponding growth conditions

as (3.2) and (3.3) above. Suppose f(z,€) is convex in € for almost every x € Q.
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Then both I and —I are (PS)-weakly lower semicontinuous on all Dirichlet classes
Ay with g € WHP(Q; R™). Therefore the functional I is (PS)-weakly continuous on

A, in the sense that

S

I(u) = lim I(ux) V¥ u, u € Ay, u Bou, (3.8)

Proof. For any ui, u € WP(Q;R™), by the convexity of f, it follows from (1.3)

that

f(z, Duy) > f(z, Du) + D¢ f(x, Du): (Duy — Du), (3.9)

f(z, Du) > f(z, Dux) + D¢ f(z, Dug): (Du — Duy) (3.10)

for almost every x € Q. If ux D u, and u — ux € W, P(Q;R™), then integrating the
above inequalities, we have

ligninf I(ug) > I(u) > limsup I (ug),

k—o00

and hence (3.8) follows. O

We show that in general the (PS)-weak lower semicontinuity on all Dirichlet
classes does not imply the (PS)-weak lower semicontinuity on the whole space

WP(Q;R™) (without the fixed boundary conditions).

Proposition 3.4. Let Q2 be the unit disc in R? and I(u) = — [, |Du|?*dz foru: @ —
R. Then I is (PS)-weakly lower semicontinuous on all Dirichlet classes of W'*(Q)
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but not (PS)-weakly lower semicontinuous on W12(Q).

Proof. By the preceding proposition, I is (PS)-weakly lower semicontinuous on all
Dirichlet classes of W12(2). We now show it is not (PS)-weakly lower semicontin-
uous on W12(Q) (without the fixed boundary conditions). We identify R? = C!.
For z =z) +izy € Qand k = 1,2,---, we define ux(z;,z7) = ﬁRe(zk). Then uy
is harmonic in Q and 0, ,ux — 10, ux = \/gzk“l. Hence |Duy(z)| = \/§|z|k”1 and
thus we have || Du||12(q) = 1. So ux is bounded in W1?(Q). It is easy to see ux — 0
uniformly on © and hence ux — 0 in W2(Q). Since uy is harmonic in Q, it also
follows that Duy — 0 in W~12(Q). Therefore, for functional I(u) = — [, |Du|%dz,
we have u; 20, but 1(0) = 0 and liminf; I'(u;) = —1. Hence I is not (PS)-weakly

lower semicontinuous on W12((Q). O

As we mentioned in the introduction, the (PS)-weak lower semicontinuity has
been motivated by using the Ekeland variational principle in the direct method for

the minimization problem. We have the following existence result.

Theorem 3.5. Assume f satisfies, in addition to (3.2) and (3.3), the following

coercivity condition
col€” — a(z) < f(z,5,€) < er([E” + [|s[P) + A(z), (3.11)

where cy > 0 is a positive constant, a € L}(Q) is a function. Given g € W?(Q; R™),
assume the functional I defined above is (PS)-weakly lower semicontinuous on A,.

Then the minimization problem inj I(u) has at least one solution u € A,.
ucAyg
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Proof. The proof uses a standard direct method of the calculus of variations. Let

X = WyP(;R™). Define &: X — R by

S(u)=I(u+g) = /Qf(:r,u(a:) + g(z), Du(z) + Dg(zx))dz.

Then ® is C! and bounded below on X, and ®'(u) = I’(u + g) in X*. By Theorem

1.8, there exists a sequence {ux} in X such that

<I>(uk) i li{f q), ||<I>'(uk)| X — 0.
Let wy = ux + g € Ay. Then
I(wy) — wienjg I(w), |I'(wi)lly-1 — 0. (3.12)

Under the condition ¢y > 0 the sequence {wy} determined by (3.12) above is bounded
in WIP(Q; R™) and, since 1 < p < oo, has a weakly convergence subsequence,
relabeled {wy} again. Let u be the weak limit. Then u € Ay and wy B u; hence the

(PS)-weak lower semicontinuity on .4, implies

I(u) < lim I(wg) = inf I(w).

k—o0 weAg

Hence I(u) = infy,ea, I(w). O

Remark 3. Under the growth assumptions (3.2) and (3.3), any minimizer u of I
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over A, is a weak solution to the Dirichlet problem of the Euler-Lagrange equation

of functional I; that is,

—div D¢ f(z,u, Du) + D, f(z,u, Du) =0 in Q
(3.13)

u=g onJf.

3.3 One dimensional scalar cases

In this section we study the (PS)-weak lower semicontinuity in some special one
dimensional scalar cases.

We first consider the Sobolev space H!(0,1) = W'2%(0,1) and functions f(z, )
satisfying

0< f(z,€) < CIEP + A(z), |fe(z,€)| < Clé| + B(z), (3.14)

with A € L'(0,1), B € L*(0,1). Define

I(u) =/0 f(z,u'(z))dz, Y ue HY0,1).

Proposition 3.6. If uy S u in H'(0,1), then there ezists a subsequence {ux,} such

that fe(z,ui (z)) — L strongly in L%*(0,1) as j — oo, where L is a constant.

Proof. Let gi(z) = fe(z,u(z)) and Ly = fol gr(z)dz. Since {gx} is bounded in

L?(0,1), we assume for a subsequence gi, — g in L?(0,1) as j — oo, where g €
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L%(0,1). We define v on [0, 1] by

w@ = [0 - Ly s

Then it is easily seen that v, € H}(0,1) = Wy*(0,1) and v} = gy — Li. Moreover,

{vk} is bounded in H{(0,1) and hence

1 1
(P = [ @i = [ gz =130

as k — oo. Since gy, = ¢ in L%(0,1), we have Ly, » L= fol gdz and

2

1 1 1
/ g*(z)dzr < lim inf/ g dr = liminf L? = (/ g(a:)dx) X
0 g Jo jmoo 0

This implies g(z) = L a.e. on [0, 1] and gy, — L strongly in L*(0,1). a

In contrast to the theorem of Acerbi and Fusco (Theorem 1.6), we show below
by an example that the (PS)-weak lower semicontinuity of I may not imply f being

quasiconvex in € even for smooth functions f(z,€) in the scalar case.

Proposition 3.7. There exists a C! function f(z,£) satisfying condition (3.14)
above for which the corresponding functional I is (PS)-weakly, but not (unrestricted)

weakly, lower semicontinuous on H'(0,1).

Proof. Assume f(z,£&) = a(x)h(€) with a, h > 0, both C! and satisfying the follow-
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ing conditions:

a(z)=0 z€(0,6], a(x)>0 ze€(0,1], (3.15)

h>0, (K)(0)={0}, lgln inf [R'(€)] > 0., (3.16)

where 6 € (0,1) is a constant. Note that the condition (3.16) implies h(0) < h(€)
for all £ € R. Given any ux 2u in H 1(0,1), using subsequence if necessary, we
assume limy_,, I(ux) exists. By Proposition 3.6 above, there exists a subsequence
{u,} such that fe(z,u;) = a(z)h'(u;,) — L strongly in L?(0,1) for some constant
L. Since a = 0 on [0,6), one must have the limit L = 0; this also implies the whole
sequence a(z)h'(u}) — O strongly in L?(0,1). Therefore h'(u}) — 0 strongly in
L%(¢',1) for any & € (,1). Hence, for a subsequence it follows that A’ (u,(2)) — 0
for almost every z € (¢',1). By (3.16), we have that uj (z) — 0 for almost every
z € (#',1). Therefore the weak limit ' = 0 on (¢',1) for all §' € (0, 1). This implies
u' =01in (0,1). Since h(&) > h(0) for all £, we have

lim I(ux) = JLI&A a(z)h(uy(z))dz > /0 a(z)h(0)dz = I(u).

k—o0

Hence I satisfies the (PS)-weak lower semicontinuity on H!(0,1). Note that the
condition (3.16) does not imply that h is convex. (See, e.g., condition (1.4).) Hence

I may not be weakly lower semicontinuous on H*(0,1) by Theorem 1.6 above. O

Remark 4. For the functional I defined by a function f(z,£) = a(x)h(£) as above,
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the minimization problem

inf  I(u)
ue H1(0,1)
u(0)=a.u(1)=b

has as only minimizers any functions v € H*(0,1) with u(0) = @ and v = b on
[6,1] and the minimum equals h(0) f; a(z)dz, for any constants a,b € R. These
minimizers are exactly those functions u in the Dirichlet class for which there exists

a sequence {uy} in the class such that u; 2 u.

Despite of the result above, we shall show that the (PS)-weak lower semicon-
tinuity is equivalent to the usual weak lower semicontinuity if f(z,€) satisfies a
coercivity condition. In this case, both conditions reduce to the convexity of f in £.
For the technical reason of using the following Sard’s theorem [Mi], we assume f is

sufficiently smooth in both = and &.

Lemma 3.8. Leth: R—> R be C' and S={y € R|3z € R, y = h(z), K'(z) = 0}.
Then the Lebesque measure |S| = 0 and, in particular, the set of regular values of

h, R\ S, is dense in R.

In the following, for 8 € R, let Wg”’ (0,1) be the Dirichlet class of functions u in

Wbr(0,1) with u(0) =0, u(1) = 8.

Theorem 3.9. Assume f(z,€) and fe(z,€) are both C' on [0,1] x R and satisfy,

for some p > 1,

1EP < f(z,6) Sa(lEP+1), |fe(z, 8] < calEP'+1)
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for all x and . If the functional I defined by f is (PS)-weakly lower semicontinuous

on Wg‘p(O, 1) for all B € R, then f(z,€) is convez in € for all x € (0,1).

We proceed with several lemmas before proving this theorem. First of all, for

B € R, we define m(8) = inf{I(u)|u € W;"’(O, 1)}. It follows easily that
18P < m(8) < er(|81F + 1) (3.17)

From Theorem 3.5 above, it follows that, if I is (PS)-weakly lower semicontinuous
on Wﬁl”’ (0,1), then there exists at least one minimizer ug € W;”’ (0,1) such that
I(us) = m(B). Hence I'(ug) = 0in W=7 (0, 1). This implies f¢(z, uj(x)) is constant
in (0,1). Let p(8) be this constant. Note that u(3) depends also on the minimizer
ug.

Lemma 3.10. It follows that

-m(B
lim sup lim sup m(8 +¢) — m(6) = +00, (3.18)
B—+o0 €0+ €

m(8 + €) — m(B)
€

lim inf lim inf
B——00 €—0—

= —co. (3.19)

Proof. We only prove (3.18); the other follows similarly. By contradiction, suppose

the limit is finite. Then there exist positive constants 3y, €g and M such that

m(B + €) — m(B)

€

<M, VB2p, €€(0,€)]

For any positive integer k we get m(3 + ke) —m(8) < Mke and from 3.17 we obtain
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(B + ke)P < Mke + m(B3) which is false for k sufficiently large. O

Lemma 3.11. For any B € R, 1t follows that

lim sup m(8 +¢) = m(0) < u(B) < liminf mB+e) - m(,@).
€e—0t € €—0~ €

(3.20)

Proof. For 0 < § < 1 we define w to be the linear function with w(1 —¢) = 0,
w(1) = e. Hence w'(z) = €/4. Let ug be a minimizer for m(3) and let v(z) = ug(z)
on [0,1 — 4] and v(z) = ug(z) + w(z) on [1 — §,1]. Then v € W'P(0,1) satisfies

v(0) =0, v(1) = B + €. Hence
1
m(B +e€) < I(v) = I(ug) + 1 6[f(1:, v') = f(zx,us))dz.
Since f(x,v") — f(z,up) = fe(x,uj)e/d + o(e/d) for €/6 — 0, we have

€

m(B +€) < m(B) + u(B)e + o(5)8 < m(B) + u(B)e + ofe),

0
as € — 0. From this the lemma follows. O
The lemmas above imply
lim sup p(8) = +o00, %m inf p(B) = —o0. (3.21)
B—+o00 ——o°

Lemma 3.12. Let h: R —» R be C! and h > 0. Then the following statements are

equivalent.
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(7) h is convez.

(77) For all0 < A< 1, a, b € R with h'(a) = K (b), it follows that
h(Aa + (1 = A)b) < Ah(a) + (1 = N)h(b). (3.22)

(iit) There exist no numbers a < B satisfying h'(a) = h'(B) # R'(t) for all

te(a,p).

Proof. 1t is easily seen that (i) implies (i¢). To show that (i¢) implies (3iz), we
use a contradiction proof. Suppose (i:7) fails. Then there exist numbers a, 8 € R
satisfying

a<B, HK(a)=H(B), K{)#HK() Yte (ah) (3.23)

Using (3.22) with a = a,b =3 we have, forall0 < A < 1and t) = Aa+ (1 - \)35,

hlta) = h(a) _ h(8)

ha) _ hts) = h(B)
t)‘ — ,8 )

a T th-p

— (3.24)
Letting A — 1~ and 0% in (3.24) respectively, we have h'(a) < %’—) < KW(B).
Hence h'(a) = K'(B) = "(’2:——2—(9—) However, by the mean value property, %’l =
h'(t) for some t € (a, 8), and hence we have arrived at a contradiction with (3.23).

Finally, we prove that (¢i¢) implies (¢). Again, by contradiction, suppose h is not
convex. Then there exist a < b such that h’'(a) > h'(b). We consider only the case

when h'(a) > 0; otherwise, consider h(t) = h(—t), @ = —b and b = —a. We claim

there exist ¢ < d < a such that A'(c) < h'(d). If not, A’ would be nonincreasing
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on (—oo,a] and hence h would be concave on (—o0, a]. Therefore we would have
h(t) < h(a) + h'(a)(t — a) for all t < a. Since h'(a) > 0, letting t — —oco, we would
have h(t) — —oo, a contradiction with h > 0. Let ¢ < d < a be any points as
above. Let m = maxpy k. Define S = {t € [¢,b]|h'(t) = m}, s = min S, and
s¥ = maxS. Then s7,s* € S and ¢ < s7 < st < b. Hence h'(c) < m, h'(b) < m.
We define o < ' as follows: If h'(c) = h'(b), define o' = ¢, 3’ = b. If h'(c) > h'(b),
then h'(c) € (R'(s*),R'(b)) and hence by the intermediate value property of h’,
define 8’ € (s*,b) so that A'(3") = h'(c), and define o' = ¢. If h'(c) < h'(b), then
h'(b) € (R'(c), '(s™)) and hence again by the intermediate value property of h', we
define o’ € (c,s7) so that A'(o/) = K'(b), and define ' = b. The points o’ <
defined this way will satisfy o’ < s~ < st < ' and h'(a’) = K'(B8) < K'(s7). Let
G={te («p) I I (t) > K'(a’)}. Then G is an open set and s~ € G. Let (o, )
be the component of G containing s~. Then, for this pair of a, 3, we have (3.23), a
contradiction with (7i7); hence h is convex.

This completes the proof of lemma. O

Lemma 3.13. For any constant 6 € R, there ezists a function gg € LP(0,1) such

that fe(x,go(z)) = 6 for almost every z € (0, 1).

Proof. In view of (3.21) above, there exist 3; < (B, such that u(8;) < 6 < p(Bs).

Hence for almost every z € (0,1) we have f¢(z,up (7)) < 6 < fe(z, up,()). Let

g (z) = min{up, (z), up,(2)},  ¢"(z) = max{up, (z), uj, (x)}-
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Then ¢g* € LP(0,1). By the intermediate value property of fe¢(z,-), there exists
q € (g~ (z),q*(x)) such that f¢(z,q) = 6. Let go(z) be the infimum of all such ¢’s.
Then fe(z,go(z)) = 6, go(z) is lower semicontinuous and ¢~ (z) < gp(z) < g*(z) at

almost every z € (0,1) and hence g5 € L?(0,1). a

Proof of Theorem 3.9. Given any z, € (0, 1), we prove f(xy, -) is convex. By Lemma

3.12, it suffices to show that there exist no numbers £; < & such that

fe(xo,&1) = fe(x0,62),  fe(x0,t) # fe(x0,€1) Vi€ (€41,&). (3.25)

We prove this by contradiction. Suppose & < & satisfy (3.25). We will derive a

contradiction by showing such &;’s must satisfy

(o, M1+ (1 = A)&2) < Af(x0,61) + (1 = A) f(zo,&2) (3.26)

for all A € (0, 1), which gives a desired contradiction as in the step 2 of the proof of
Lemma 3.12.

To this end, assume f¢(zo,&1) = fe(zo,€2) = 6. Without loss of generality,
assume f¢(2o,t) > fe(xo, &) for all t € (&1, &2). Let

[I?%X] fe(zo,*) = ff(IO»E) =0> 6.

To proceed, we need the following lemma, which is the only place we use the smooth

assumption of f¢(z,§) on (z,§).
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Lemma 3.14. There exist a sequence 6, € (90,5) with 6, — 6, as n — 00, a
closed interval J, = [an,b,] C (0,1) containing xo, and two continuous functions
qE: J, — (£1,&) such that g, (z) < ¢f(z) and fe(z,qE(z)) = 0, for all z € J,.

Moreover, ;' (zg) — &12 as n — o0.

Proof. The proof is based on a use of Sard’s theorem. By Lemma 3.8 above with
h(€) = fe(zo,&), the set of regular values of f¢(z,-) is dense. Hence there exists
a sequence of regular values 6, of f¢(zo,-) in (6o, 5) such that 8, — 6y as n — oo.
Since fe(To,&12) = 6o < 6, < 0 = fe(zo, &), by intermediate value property, there
exist £7 € (€1,€) and & € (€, &) such that fe(zo, £E) = 6,,. The assumption (3.25)
implies §; — & and §F — & as n — oo. Since 6, is a regular value of f¢(zo, "),
it follows that fee(zo,£&%) # 0. By the implicit function theorem, we have interval
Jn = [@n, ba] C (0,1) containing zo and two differentiable functions ¢¥: J, — (£1,&2)

such that

¢t (xzo) = €3, fe(z, ¢E(z)) =0, Yzed,. (3.27)

Then the functions g (z) satisfy the requirements of the lemma. O

We continue the proof of the theorem. Let 8, € (6p,60), J, = [an,b,] and
qE: J, — (£&,&) be given as in the lemma above. Let J = [a,b] C J, be any
interval containing zo. Let ¢, € L?(0,1) be the function gy determined by Lemma

3.13 with 8 = 6,,. In what follows, we fix n. Foreach k = 1,2, -- - , we define function
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uk(z) by uk(z) = [ wi(t)dt, where wi(t) is defined as follows:

4

9. (t) t€[0,1]\[a, 8],

wl =V az(t) teUinat G20 -a)a+ 50 -a)),

gf(t) teUr_j(a+ Y (b—a),a+ (b~ a)).

It is easily seen that u; € W'P(0,1) and {ux} is bounded in W1?(0,1).

Lemma 3.15. For all continuous functions ®(z,§), it follows that

b

k—oo J,

Proof. 1t is easy to see

b k a+ =1 g
/<I>(:r u(z))dr = Z/ ‘ ®(z,q; (z))dz
a k j=1 a+9:—12(b—a) "
i +1(b-a) .\
+ / ' ®(z,q,; (z))dx
o1 e+ it (b-a)
k
_ b—a
= )‘Zq)(cjaqn(cj))( k )
j=1
k
(b—a)
+ N ®(d;, g (d P

b
lim [ &(z,ui(z))dz = / A®(z, g, (2)) + (1 — N)®(z,q} (z))]dz.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

where a + U—:Z(b—a) <c¢j<a+ ﬁj;}:ﬁ(b—a) < d; < a+ i(b— a) are some points.

Hence the sums in (3.31) and (3.32) are Riemann sums; therefore, as k — oo, the

lemma. follows.
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Let 4 € W1P(0,1) be defined by @(z) = [

o W(t)dt, where

gn(t) t€(0,1)\ [a,b],
o(t) =

Ag; (1) + (1= Mgt (t) telab).

From the lemma above, it easily follows that uy — @ in W'?(0,1). In particular,
ex = (1) — ux(l) —» 0 as k — o0o. By the definition of u; it follows easily that
fe(z, uj(z)) = 6, for almost every z € (0,1); hence I'(ux) = 0 in W~17'(0,1). We
now modify uy to a function @, € Wé‘”(O, 1) with B =a(1). For0 <éd <1-btobe
sclected later, we define @ (z) = w(z) for z € [0,1-6], and tx(z) = ur(z)+vi(z) for
z € [1-4,1], where v, is a linear function on [1 -4, 1] with vx(1 =) = 0, vx(1) = €.
Hence @, € W'?(0,1) with @(0) = 0, @(1) = @(1) = 8. Note that v (z) = <.

Hence we select § = &; = |ex|'/?

for all sufficiently large k. For this choice of 4, it is
easily shown that the function u, € Ws’p (0, 1) satisfies uy — @ — 0 in W1?(0, 1), and
hence it follows that I’(iix) — 0 in W=#'(0,1) and I(u) — I(iix) — 0 as k — oo. In
particular, ix 2 @ in W;”’ (0,1). Therefore, by the (PS)-weak lower semicontinuity

of I on W;“’(O,l), we have I(2) < liminfy I(@) = liminfy I(ux). Using Lemma

3.15, after easy computations, this implies

b
/ F(z. g5 () + (1= N (2))dz
b
< / D (2.43(2)) + (1= N f(z, g (2))ldz.

This holds for all intervals [a, b] C J, containing o and hence, letting [a, b] shrink
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to {zo}, we have

f(zo, Ag;, (z0) + (1 = A)gy (o)) < Af(o, 45, (20)) + (1 — ) f (2o, g7 (20))-

Finally letting n — oo, by Lemma 3.14, we have

(o, M1 + (1 = A)&2) < Af(20,&1) + (1 = A) f(z0, &2),

as desired by (3.26).

The proof of the theorem is now completed. a

3.4 Special cases with f = f(£)

In this section, we study some special cases with function f = f(£), where

f: M™*® — R is a C?! function satisfying the following growth conditions:

col€? < £(€) < er(l€P + 1), (3.33)

|Def(€)] < ca(l€P1 + 1), (3.34)

where 1 < p < oo and ¢g > 0, ¢; > 0,c; > 0 are constants. In this case, we shall
also use the simplified notation D¢f(§) = Df(€) = f'(€). As before, let I be the

functional associated with f:

I(u) = /Q f(Du(z))dz e WP(Q;R™).
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We first have the following result when m = 1 (the scalar case) with ¢ = 0 in

(3.33), which is in contrast to Proposition 3.7 above

Theorem 3.16. Let m = 1 and let f: R® — R satisfy the conditions (3.33) and
(3.34) above with ¢y = 0. Then the functional I is (PS)-weakly lower semicontinuous

on the Dirichlet classes WA”’ for all A € R™ if and only if f is conver on R™.

Proof. By Theorem 1.6, we only need to show the necessary part of the theorem.
Thus assume I is (PS)-weakly lower semicontinuous on the Dirichlet classes W/i"’
for all A € R*. We prove that f is convex on R". To this end, let £,7 € R and
|n| = 1 be given and let h(t) = f(€ + tn). We show that h is a convex function of
t € R; this implies f is convex on R”. By virtue of Lemma 3.12 above, to show h
is convex, it suffices to establish the inequality (iii) in that lemma for all a,b € R
with a < b and h'(a) = h'(b). Note that h'(t) = f'(£ + tn) - n. Given such a, b, let

a=£€+an, f=E+bn Then h(a) = f(a), h(b) = f(B) and hence
h'(a) = K'(b) = (f'(e) = f'(B)) -m =0. (3.35)

Given any A € (0,1), let §(¢) be the periodic function on R of period 1 satisfying
6 =0on [0,\) and 8 = 1 on [A,1). Let p(t) be the Lipschitz function on R with
p(0) = 0 and p'(t) = 6(t) for almost every t € R. For k = 1,2,---, we define

functions

b—a
k

w(z) = az + plkz-n) z€R" (3.36)
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Then Dui(z) = a+ (b— a)f(kz - n)n and hence

) i A
a ifz-neux__(4 ]{—)

J=—00o\k?
Dug(z) = (3.37)
; 0o i+A j+1
:8 lfl"ne Uj:—oo(l%’ %)

Let {m, 2, -+ ,n.} be an orthonormal basis of R" with 7, = 7. For each z € R",

we write £ = Y., t;7; and define

JitA J n JtA g+l
tle(kﬂ, 2 )},Bk—{.’IJGR t1€< & y k .

Let Q% = QN (U;4]), Q% = QN (U;B]). Then one can easily show that

A{;:{mER"

lim 0] =M@l lim [26] = (1= V)|, (3.38)

For any 1 < p < 00, the sequence {u;} defined by (3.36) above satisfies uy — @ in
WLP(Q) as k — oo, where @(z) = [Aa + (1 — A)f]z. In fact, one can show that

ux — @ uniformly on Q. We leave the proof of these facts to the interested reader.
Lemma 3.17. I'(u;) = 0 in W17 (Q).

Proof. Given any v € W,?(Q), we extend v to be zero outside Q. Let Qu be the

cube

Qn = {z e R"| :1:=Ztm,~, [tii <N, Vi=12--- ,n}.

i=1
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Assume N is large enough so that Q C Qu. Then

kN-1

/Q f'(Dug) - Dv = f(Duk Dy= " f'(Du) - Dv,

j=—kN Qk

where @, = {z € Qn|z-n € (I, 1)} We write @ = A7 U B/ UTY, where
A =QinA, B =Q,NnBland IV = {z € Q}|z-n = I2}. We also define
Fi = {z € Qn|z-n = 1}. Note that Duy = @ on A’ and Du; = 3 on B’ and
hence, by the divergence theorem and (3.35) above as well, we have

/Qf f'(Du)-Dv = f'(Dux)-Dv+ [ f'(Duy)-Dv

AJ Bi

= fl(o)- | Dv+f(B)- | Dv
AJ Bi

ri@)- ([ vas) -+ 5@ ([ vas)n
+70)- ([ vas) e @) ([ vis)n
— @)1 ( /F Lvas— [ vdS) .

Hence, since F**V lies in R" \ 2, where v = 0, it follows that

| £Ou@) - Dofe)dz = ) o ( L= vds) —o.

This proves I'(u;) = 0 in W17 (Q). O

To continue the proof of the theorem, we now modify the sequence {ux} above

into a sequence in W,?(Q), where A = Aa + (1 — A)3. For all sufficiently large j,
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say j > jo, consider nonempty open sets
Q; = {z € Q] dist(z,00) > 1/j}.

Note that the measure |2\ ;| — 0 as j — oo. Let ¢; € C§°(2) be the cut-off
functions such that ¢; =1 on ; and 0 < ¢; < 1in Q. Since ux — @ uniformly on

(1, we have that, for each j > jo, there exists k; > j satisfying
_ 1
| (uk, — @)D} | Loy < ;' (3.39)

Let ﬁj = QOJ"U,kJ + (1 - (pJ)'l_L Then 17,] € Wé’p(Q) = W}‘p(Q) and D&J = (,OjDUkj +
(1= ;)Dt + (ux, — 4)Dyp;. Hence, by (3.39) and also since Duy,, Du are bounded,
it follows that

]lil{.lo ||Di2j||Lp(Q\QJ.) =0. (340)

Therefore @; — @ in W'P(Q) as j — co. Since #; = uy, on €2, by (3.40) and the

growth conditions (3.33)-(3.34), it easily follows that

lim ”II(f‘j) - I'(ukj)“w—l.p'(n) =0, ]11{{.10 |1(a;) — I(ukj)l =0.

J—oo

Hence u;,2 € W,P(Q), and 4; R4 since I'(ux;) = 0. By the (PS)-weak lower

semicontinuity of I on W,P(Q), we have I(@) < liminf;I(i;) = liminf, I(uy,).
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Using (3.38), we easily see that this implies

h(Aa+ (1 — A)b) < Ah(a) + (1 — A)A(b).

Hence by Lemma 3.12 above, h(t) = f(£ + tn) is convex for all £, n with |n| = 1.

This proves f is convex on R". a

We now study the general case with m > 2. Under the coercivity condition that

co > 0 in (3.33), we have the following result:

Theorem 3.18. Let n,m > 1 and let f: M™*® — R satisfy the conditions (3.33)
and (3.34) above with cg > 0. Then the following statements are equivalent:

(i) I is weakly lower semicontinuous on WhP(Q; R™).

(ii) I is (PS)-weakly lower semicontinuous on WhP(Q; R™).

(i) I is (PS)-weakly lower semicontinuous on all WyP(Q; R™).

(i) f is quasiconvex.

Proof. By the theorem of Acerbi-Fusco (Theorem 1.6), (i) < (iv) even when ¢y =
0. Moreover, by the definition of quasiconvexity and using approximation, if f is
quasiconvex and only satisfies (3.33) with ¢g € R, then it readily follows that I(g4) <
I(u) for all u € W,P(Q; R™). It is also clear that (i) = (ii) = (44) in general cases.

Therefore, to prove the theorem, it suffices to show that (iii) = (iv). We prove

this as separate result in the lemma below. O

Lemma 3.19. Under the assumptions (3.33) with ¢y > 0 and (3.34), (ii7) = ().
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Proof. Given A € M™*", by Theorem 3.5 (note that co > 0 is needed here), there
exists @ € W,P(;R™) which is a minimizer of I(u) on W,P(Q;R™). We now
apply the standard technique of Vitali covering [DM] to construct a sequence {u}

in W,yP(Q; R™) satisfying

I(uy) =I(a) = inf I(u); (3.41)
uGW'}“”

up — g4 in WHP(Q;R™) as k — oo; (3.42)

I'(w) =0 in WP (Q;R™). (3.43)

Note that (3.43) will follow from (3.41) since u; € W,P(; R™) is also a minimizer
of I(u) on W/I,”’ (2;R™). Once we have constructed such a sequence {ux}, which
certainly satisfies ux 2 g4, the (PS)-weak lower semicontinuity condition (iii) will
imply

I(ga) < lizninfl(uk) =I(u) = inf I(u),

u€ WA"’

for all A € M™*"  which is exactly the quasiconvexity condition of f, and hence the
result follows. Assume, without loss of generality, 0 € 2 and then we use the Vitali

covering theorem to decompose 2 as follows:

Q=U2, QG UN; unQ=0 (i#37),

where Q; = a;+¢;Q CC Qwitha; € Q,0<¢; <1/k,and |[N| =0. Let & = g4+ 7,
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where 7 € W, P(; R™). We define

Az +e0(2) ifz ey,
we(z) = (3.44)

Az otherwise.

Then one can easily check that u; belongs to W},"’ (€;R™) and satisfies

/ ¥(Du(z)) dz = / ¥(Dilz)) dz
Q Q

for all continuous functions ¢: M™*® — R satisfying |¢(£)] < C(|¢|P +1). Certainly

this implies (3.41). Furthermore, it is easy to see

| .
luk — gallr@) < 2 112 — gallLr(9)-

Hence u;, — g4 as k — oo. As mentioned above, condition (3.43) follows from (3.41).

This completes the construction of {ux} and thus the proof of the lemma. a

Remark 5. For any u € W, P(Q;R™), we write u = g4 + v with v € W, ?(Q;R™)
and define sequence u;, € W,P(Q; R™) as in (3.44) above with & = v. Then, if u is
not a minimizer of I over Wj"’ (Q2;R™), one only has I'(u;) — 0, but not strongly,
in W-17(Q;R™), as k — oo, even when I’(u) = 0; hence the (PS)-weak lower

semicontinuity can not be applied to this sequence.

Finally we show that without the coercivity ¢, > 0 in (3.33) the results of

Theorem 3.18 may fail, at least in the case n = 1,m = 2.
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Theorem 3.20. Let f: R?> — R be a C! function satisfying the conditions (3.33)
and (3.34) with ¢y = 0. Assume the derivative map Df = f': R?2 — R? is one-to-one.

Then the functional I defined on X = W1P((0,1); R?) by

1 1
I(u) =/0 f(W'(z))dz = /0 fui(z),us(z))dz, = (uj,up) € X,

is (PS)-weakly lower semicontinuous on X.

Proof. Let u € X = W?((0,1); R?). Then
1
(Fw,0) = [ Ve @)l + fule@)ilde, ¥ o= (0m) € X
0
and hence it can be shown that

I (@ llw -0 = N fer (W) = Cr(@)l 0,1y + I fea (@) = Cow)l 1 0,1y,

where Cj(u), Cy(u) are two constants depending boundedly on u € X.
Assume ur 2 u in X. We also assume lim [ (ux) exists as k — oo. Then there

exists a subsequence {uy,} such that

Il fe, (U;c,) - Cl”LP'(O,l) + | fe, (u;c_,) - C2”LP'(O,1) -0

as j — oo, where C}, C, are some constants. We also assume there exists a measur-
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able set £ C (0,1) such that
|E|=1, lim fe,(u,(2))=C, VzeE (v=1,2). (3.45)
j—oo

Note that for all M > 0 the measure |{z € E||uj(z)| > M}| < & for all £,
where C is a constant; hence there exists a sufficiently large M > 0 such that
l{z € E||uj(z)] < M}| > 1 forall k =1,2,--- . Therefore there exists zo € E such
that |uj (zo)| < M. By taking another subsequence, assume uj (zo) — o € R? as
Js — oo. Therefore by (3.45), f'(a) = (Cy, Cy). Since f’ is one-to-one, from (3.45),
it must follow that uj (z) — a asj — oo for all z € E. Hence v/(z) = o is constant,
and therefore we have

I(u) = lim I(w,) = klim I(uy),

J—o0

which proves the (PS)-weak lower semicontinuity of I (in fact I is (PS)-weakly

continuous) on X.

Remark 6. Note that the function f(&;,&) = ¢(& — £2) on R?, where ¢ > 0 is
any C! function with a strictly increasing derivative ¢’ > 0 on R, has an one-to-one

derivative f’: R? — R2, but f is not convex on R?; this also shows that Lemma 3.12
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above fails for functions h: R? — R. An example of such a ¢ is given by

et t<0;

t?2+t+1 t>0.

Note that the function f(£) = f(&1,&2) = (€ — €2) then satisfies the conditions

(3.33) and (3.34) with ¢p = 0 and p = 4.
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