

\

.

J
.

‘
k

1
.
.
t

x
.

.
V

‘
.

2
.

.
$

3
i
.

d
.
.
.
t

.
.
1

.
.
7
.
“

x
3

«
2
9
.
3
.
5
!

.
1
?

i
n
.

.y
.4

:
1

\
.
.
.

v"
‘1

4
"

3
3
k
?

.
1
.

.5

.
2

t

‘

..3
.
.
.
?.n
.

E
'
3

.
1
.
.
-

u.
..

x
x

R
a
i
n
-
H
.
m

,
v
x
n

3
m
e

3
1

7
.
1
“

.
.
.
r

W
i
t
l
w
fl
.
’

This is to certify that the

dissertation entitled

DESIGN AUTOMATION OF MECHATRONIC SYSTEMS

USING EVOLUTIONARY COMPUTATION AND BOND

GRAPH

presented by

ZHUN FAN

has been accepted towards fulfillment

of the requirements for the

PhD degree in Department of Electrical and

Computer Engineering

@imw/
Major Professor’s Signature

WM)2) 22054“
0” /

Date

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Michigan State

University

i PLACE IN RETURN BOX to remove this checkout from your record.

' To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c:/CIRC/DateDue.p65.p.15

DESIGN AUTOMATION OF MECHATRONIC

SYSTEMS USING EVOLUTIONARY COMPUTATION

AND BOND GRAPH

By

ZHUN FAN

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

2004

ABSTRACT

DESIGN AUTOMATION OF MECHATRONIC SYSTEMS USING

EVOLUTIONARY COMPUTATION AND BOND GRAPH

By

ZHUN FAN

The research of this dissertation is of significance because it is one of the first

endeavors to address the challenging issue of design automation of mechatronic systems,

at a time when mechatronics is emerging as an integrated and independent discipline of

the 21St century. Just as Electronic Design Automation (EDA) has changed the face of

design of electronic systems, Mechatronic Design Automation (MDA) is gaining more

and more importance in addressing the ever-growing, competing challenges of the current

market. In fact, design automation and optimization have become mainstream disciplines

in the area of engineering design.

The motivation of this research is two-fold. First, we want to find a way to generate a

population of topologically open-ended design alternatives and provide for the designer,

in an automated manner, a variety of satisfactory design candidates to choose among and

trade off. Second, we want our method to be applicable not only in one physical domain,

but in multiple domains or a mixture of them, as is required for design of mechatronic

systems. To meet these ends, the capability of genetic programming, a special type of

evolutionary computation techniques, to search automatically in an open-ended search

space and the strong capability of bond graphs to represent and model mixed-domain

systems are studied and ways to blend their merits in one unified approach are

investigated. In this research, the BG/GP method, combining bond graphs and genetic

programming, has been developed to automate the conceptual design process for general

multidisciplinary mechatronic systems.

Several design problems, in macro- and micro-domains, and in different physical

domains, have been used as design examples to test the feasibility of the BG/GP

approach. The analog electronic filter design problem shows the efficiency and

effectiveness of the proposed approach. A vibration absorber design for a mechanical

printer demonstrates that the approach can also be used for redesign and is very effective

in exploring in an open-ended topology space and capable of providing designers with a

variety of good design candidates for further analysis and tradeoff. Finally, a Micro-

Electro-Mechanical (MEM) filter design problem shows that the BG/GP approach can be

applied in a very general class of conceptual design problems with severe topology

and/or parameter constraints. The results show that the BG/GP method is a powerful

synergistic approach for automated, mixed-domain, and topologically open-ended

conceptual design of mechatronic systems.

A structured and hierarchical design methodology for Micro-Electro-Mechanical-

Systems (MEMS) is also studied. MEMS are actually micro-mechatronic systems. The

research of hierarchical evolutionary synthesis of MEMS in this thesis includes the

system-level behavioral synthesis and second-level layout synthesis of MEMS.

Preliminary results show that automated synthesis of MEMS is a very promising research

area.

For my mother, father, and sister

Their love and supports make my dream come true

iv

ACKNOWLEDGEMENTS

First I would like to thank Professor Erik Goodman, who gave me guidance through

out my research. Without his knowledge, patience and support this proposal would have

not been possible. He is not only my academic advisor, but also a mentor and good

friend. The knowledge and friendship I gained from him will definitely influence the rest

of my life. I would also thank Professor Ronald Rosenberg, his keen insights and

valuable discussions often gave me stimulating ideas in research. Though kept busy by

his duty and work, he is always willing to share his time and knowledge with us. I also

owe many thanks to Dr. Kisung Seo, whose diligence and strictness in work gave me

very deep impression. His great organization of a group research makes our research a

steady progress. I have a lot to learn from him, both as a teacher and as a friend.

I am grateful to Professor Aslam and Professor MacCluer for taking time to serve

on the guidance committee and overseeing this work. Their insightful comments and

suggestions have enhanced the technical soundness of this proposal. I am also grateful to

all my friends and colleagues. The discussions with them substantially contributed to my

work and broadened my knowledge.

Last but not the least, many thanks go to my family: my Mom and Dad, and my

sister. Without their encouragement and continuous support, I would not be who I am

today.

This research is supported by National Science Foundation.

TABLE OF CONTENTS

CHAPTER I

INTRODUCTION .. l

1.1 Automated Synthesis .. 2

1.2 Representation of Multidisciplinary Mechatronic Systems 5

[.3 Related Work .. 7

1.3.1 Bond Graphs ... 7

1.3.2 GA/GP... 8

1.3.3 Automated Design Theory and Practice ... 9

1.3.4 The BG/GP Approach ... 12

1.4 Contributions of the Dissertation .. 16

1 .5 Organization .. 17

CHAPTER II

BOND GRAPHS .. 18

2.1 Causality of Bond Graphs ... 20

2.2 Bond Graph Evaluation ... 21

2.2.1 Causality Analysis .. 22

2.2.2 Model insight via causal analysis ... 23

2.2.3 State Equation Formulation .. 24

2.3 Simplification of Bond Graphs ... 25

2.4 Strengths of Bond Graphs ... 30

CHAPTER HI

EVOLUTIONARY DESIGN ... 31

3.1 Evolutionary Design with Bond Graphs ... 32

3.1.1 Generation of Design Candidates ... 32

3.1.2 Bond Graph Construction ... 32

3.1.3 Reconfiguration of Designs .. 36

3.1.4 Fitness Evaluation ... 40

3.1.5 Selection .. 40

3.1.6 Premature Convergence .. 41

3.2 Overall Design Procedure ... 42

CHAPTER IV

CASE STUDIES OF BG/GP APPROACH.. 45

4.1 Analog Filter Design Problem .. 45

4.1.1 Bond Graphs Representation of Circuits .. 46

4.1.2 Problem Definition.. 48

4.1.3 Results ... 49

vi

4.2 Design of Vibration Absorber for Mechanical Printer 56

4.2.1 Problem Formulation .. 56

4.2.2 Embryo of Design ... 58

4.2.3 Results ... 61

4.3 Discussions ... 66

CHAPTER V

EVOLUTIONARY SYNTHESIS OF MEMS.. 68

5.1 Introduction to MEMS Design and Synthesis .. 69

5.2 Promises and Challenges of MEMS Design and Synthesis 70

5.3 Hierarchical MEMS Design Methodology ... 73

5.4 System-Level Synthesis of MEMS ... 74

5.4.1 Bond Graphs ... 76

5.4.2 Combining Bond Graphs and Genetic Programming 78

5.4.3 Filter Topology ... 81

5.4.4 Realizable Function Set .. 84

5.4.5 Design Embryo ... 87

5.4.6 Adaptive Fitness Function .. 88

5.4.7 Experimental Setup ... 89

5.4.8 Experimental Results .. 90

5.5 Second-Level Physical Layout Synthesis ... 93

5.5.1 Formulation of Layout Synthesis as an Optimization Problem 94

5.5.2 Solving the Optimization Problem Using GA .. 97

5.6 Conclusions ... 99

CHAPTER VI

CONCLUSIONS... 102

6.1 Contributions... 102

6.2 Future Work .. 103

APPENDIX A .. 106

APPENDIX B .. 109

BIBLIOGRAPHY .. 113

vii

LIST OF TABLES

Table 1.1 Comparisons between GP and 'classical' GA ... 4

Table 1.2 Comparisons of various design approaches .. 15

Table 2.1 Flow and effort variables for each domain ... 19

Table 3.1 Definition of function set .. 33

Table 4.1 Summary results (errors, fitnesses) for filter designs 55

Table 4.2 Summary results of fitness for printer .. 65

Table 5.1 Operators in basic function set ...85

Table 5.2 Operators in modular function set ...85

Table 5 .3 Layout parameters obtained in ten GA runs (different random seeds)98

viii

LIST OF FIGURES

Figure 1.1 Requirements for Automated Design of Mixed-Domain Systems 1

Figure 1.2 Bond Graphs Representation of Mixed-Domain Systems 6

Figure 1.3 The combinatorial nature of bond graphs generation .. 7

Figure 1.4 General flow chart of the BG/GP design ... 14

Figure 2.1 Example of causality assignment .. 20

Figure 2.2 Evaluation flow of bond graphs models .. 21

Figure 2.3 Example of causality assignment .. 23

Figure 2.4 Elimination of redundant junctions in bond graphs .. 25

Figure 2.5 Merging ofjunctions in bond graphs ... 26

Figure 2.6 Merging of elements in bond graphs ... 27

Figure 2.7 An example of bond graphs simplification ... 29

Figure 3.1 Illustration of add_R operator ... 35

Figure 3.2 Illustration of insert_JO operator ... 35

Figure 3.3 An example of a GP tree ... 37

Figure 3.4 The bond graphs model generated by the GP tree of Figure 3.3 38

Figure 3.5 Illustration of crossover operator and mutation operator 38

Figure 3.6 The extensible search capability of GP for an unbounded design space 39

Figure 3.7 The overall design procedure of BG/GP approach .. 44

Figure 4.1 Bond graph representation of an electrical circuits ... 47

Figure 4.2 Embryo of electrical circuit and its bond graphs model 49

Figure 4.3 Frequency response of a high-pass filter design with fitness value of 0.917.. 51

ix

Figure 4.4 Frequency response of 3 high-pass filter design with fitness value of 0.992.. 51

Figure 4.5 Frequency response of a low-pass filter design with fitness value of 0.980 52

Figure 4.6 Frequency response of a band-pass filter design with fitness value of 0.884 . 52

Figure 4.7 Evolved bond graphs model for high-pass filter ... 53

Figure 4.8 Evolved electrical circuit for high-pass filter design 54

Figure 4.9 Fitness history for a typical high-pass filter run .. 55

Figure 4.10 The schematic of the original printer system .. 56

Figure 4.11 Bond graphs model for the original printer system 57

Figure 4.12 Simulation result of the original printer drive subsystem. 57

Figure 4.13 The critical printer drive subsystem .. 58

Figure 4.14 The design embryo of printer subsystem... 59

Figure 4.15 Fitness history for a typical printer drive redesign run 62

Figure 4.16 The evolved bond graph model I ... 62

Figure 4.17 The physical realization of evolved bond graph model I 63

Figure 4.18 Simulation result of evolved bond graph model I ... 63

Figure 4.19 The evolved bond graph model H ... 64

Figure 4.20 The physical realization of evolved bond graph model 11 64

Figure 4.21 Simulation result of evolved bond graph model H .. 65

Figure 5.1 Examples of MEMS .. 70

Figure 5.2 Hierarchical Design of MEMS .. 73

Figure 5 .3 Structured MEMS Design Flow .. 75

Figure 5.4 A Single Bond Graph Represents a Resonator Unit in Three Domains.77

Figure 5.5 Bond graph representing a mechatronic system with mixed energy domains

and a controller subsystem ..77

Figure 5.6 Genotype-Phenotype mapping ...78

Figure 5.7 Example of Genotype-Phenotype Mapping in the Electrical Circuit

Domain ..79

Figure 5.8 Resonator Unit and its Representations as both Bond Graph and

Equivalent Circuit .. 81

Figure 5.9 MEMS Filter Topology I..82

Figure 5.10 MEMS Filter Topology II ... 83

Figure 5.11 Operator to Insert Bridging Unit ... 86

Figure 5.12 Operator to Insert Resonator Unit .. 86

Figure 5.13 Design Embryo of the MEM Filter.. 88

Figure 5.14 Fitness Improvement Curve ...90

Figure 5.15 Frequency responses of a sampling of design candidates, which

evolved topologies (and associated parameter sets) with larger

numbers, K, of resonators as the evolution progressed. All results

are from one genetic programming run of the

BG/GP approach ...91

Figure 5.16 Layout and bond graph representation of a design candidate

from the experiment, with four resonator units coupled by

three coupling units ...92

Figure 5.17 A novel topology of MEM filter and its bond graph representation as

evolved by the BG/GP approach using a semi-realizable

function set ...93

Figure 5.18 A folded—flexure comb-drive microresonator fabricated in a

polysilicon surface microstructural process a) Layout; b)

Cross-section A-A’ (Fedder G. and Mukherjee T. [1996]) 94

Figure 5.19 Major design variables for microresonators95

Figure 5.20 Curve of Normalized SSE vs. Generation ...99

CHAPTER I

INTRODUCTION

Several issues in design currently demand significant attention, including multi- and

mixed-energy-domain systems, automated synthesis, and topologically open-ended design

(Fig. 1.1).

First, there is a great demand for improved capabilities to design high-performance,

multi-domain, dynamic systems, particularly in the area of mechatronics. The inclusion

of components from multiple energy domains (such as electrical, mechanical, hydraulic,

thermal and/or magnetic) and demands for rigorous performance and consideration of

cost constraints make design of these systems very challenging.

Second, the need for automated synthesis is growing ever stronger. Design of such

complex systems is typically an iterative process in a very large solution space, with

multiple objectives. Traditional CAD design processes are tedious, inefficient and quite

time-consuming.

Third, compared to parametric design, topological design is more challenging because

it has a much larger and less well-defined search space. In order to achieve the desired

performance of complex mechatronic systems, open-ended topological search is required

to incorporate enough topological variations.

 Multi & Mixed Energy

Domain Dynamic Systems

Topologically

Open-Ended

Design

Automated

Synthesis

Figure 1.1 Requirements for Automated Design of Mixed-Domain Systems

1.1 Automated Synthesis

Computer-aided design (CAD) and computer-aided engineering (CAE) have been

powerful tools that have revolutionized engineering practice and education since the

advent of high-performance computers. The biggest influence of CAD and CAE is to give

engineers the ability to design and test products on a testbed based on computational

simulation before fabricating them. This ability has profound implications, especially

because fabricating a product or system is time-consuming and costly. With the capability

of numerical simulation in computers, engineers can compare more design concepts and

prototypes, make judgments and tradeoffs, and be much more sure that the final product

will satisfy the design specifications before he or she starts to fabricate it in the physical

domain.

The computer tools we discussed above, including analysis tools that can simulate

and measure the performance of designs, are passive design tools. Using such tools, the

designer is at the center of the design scheme, controlling all aspects of the design

process. The design tools just serve to provide information that the designers want or

need, as feedback about performance of designs presented to them. Their roles are passive

relative to the designer’s, in the sense that they only “answer” or provide feedback when

the designer “asks” a question and presents a design.

We describe another type of computer tool as active, rather than passive, in that it

not only “answers” when the designer “asks”, but also “thinks” when the designer is

“thinking.” In other words, such tools not only perform analysis, but suggest designs, with

guidance from the designer only at a more abstract level. As a result, they not only gather

and evaluate, but also to analyze and process information, make decisions, foster design

insights and guide the design process.

While computers are definitely faster and more accurate in calculation than human

beings, it is generally believed that they lack the cognitive capability humans use to make

creative designs and true inventions. This is not challenged in this work. It is also argued

that in order to automate any phase of the design process, one must first understand the

cognitive theory of how humans design; were this true, active computer tools could

hardly be successful, because establishment of such a cognitive theory of human design is

still an extremely distant goal. This argument sounds reasonable to many, but has one

assumption that people should attend to carefully — that is, it is assumed in this argument

that the human designer offers the only example of a successful design system. However,

other successful design systems do exist. Nature is one of them. Even before the history

of human beings, nature invented many wonderful designs of species that far exceed any

human designs in terms of complexity, without any intervention of humans. Although

nature spends a prohibitively long period of time (for a human designer) to “evolve” its

designs, the ever-increasing speed and capacity of current computer technology provides

a possible answer to shorten the time consumption to an acceptable range, for a design

system that draws on principles of design from nature.

Over the past two decades, computational algorithms based on the principles of

evolution first formulated by Charles Darwin have developed from academic curiosities

into practical and effective tools for scientists and engineers. Evolutionary computation

refers to a class of general-purpose search algorithms based on (admittedly very

incomplete) abstraction of principles of biological evolution and natural selection. These

algorithms implement biologically inspired computations that manipulate a population of

candidate solutions (the “parents”) to generate new variations (the “offspring”). At each

step (or “generation”) in the computation, some of the less promising candidates in the

population are discarded and replaced by new candidates (“survival of the fittest”). The

process continues until a satisfactory solution to the problem has been found. In this

research, genetic programming (GP), a special form of evolutionary computation, is taken

as the essential mechanism for design automation. While basing a system on

evolutionary principles is certainly no guarantee that it can create new and innovative

designs, neither can one reject out-of-hand the possibility that such a system could do so

without duplicating, or even emulating, the process performed by humans.

Genetic programming is an extension of the genetic algorithm, and it uses evolution

to optimize actual computer programs or algorithms to solve some task (Holland [1975],

Goldberg [1989]), typically involving a graph-type (or other variable-length)

representation. Differences between GP and GA are summarized in Table 1.1. The most

common form of genetic programming is due to John Koza [1992, 1994, 1999a], and uses

trees to represent the entities to be evolved. Because GP (genetic programming) can

manipulate variable-sized strings, it is especially useful for representing developmental

processes. Most design methods require a preliminary design, which is a solution with

enough components and a valid configuration, even if it is not a complete solution, in

order to define the desired properties of a good solution. A developmental design process

does not require a preliminary design, but only a design embryo, which need not contain

all of the necessary components, or the necessary number of components, or a valid

configuration, but only enough information to allow specifying the behaviors desired of

the system (defining objectives and variables constrained, for example).

Table 1.1 Comparisons between GP and 'classical' GA

PrOperties GA GP

genome representation: String Tree

genome size: Fixed length Variable length

operators: Representation-blind Representation-specific

It is important to point out that when using passive design tools, designers' decision-

making is biased by both the capabilities of simulation tools and the designer’s

experience and intuition. It is hard for the designer to make an “imaginative jump or

creative leap” from one design candidate to another. But active design tools can free

designers from this kind of “design fixation” and the limitations of conventional wisdom,

allowing them to explore a huge number of possible candidates for a design problem, and

increasingly, the probability to discover novel designs uncharted before by human

exploration.

1.2 Representation of Multidisciplinary Mechatronic Systems

It is a remarkable fact that models based on apparently diverse branches of engineering

science can be expressed using the notation of bond graphs, based on energy and

information flow. Using the language of the bond graph, one may construct models of

electrical, mechanical, magnetic, hydraulic, pneumatic, thermal, and other systems using

only a rather small set of ideal elements as building blocks.

The bond graph is a modeling tool that provides a unified approach to the modeling

and analysis for physically-based dynamic systems. Bond graph models can describe the

dynamic behavior of physical systems by the connection of idealized lumped-parameter

elements based on the principle of conservation of power. Bond graphs consist of

elements and bonds. There are several types of elements, each of which performs

analogous roles across energy domains. The first type -- C, I, and R elements -- are , in

their simplest forms, passive one-port elements that contain no sources of power, and

represent capacitors, inductors, and resistors (in the electrical domain). A second type, Se

and Sf, are active one-port elements that are sources of power and/or boundary

conditions, and that represent effort sources and flow sources, respectively (for example,

sources of specified voltage or current, respectively, in the electrical domain). A third

type, TF and GY, are two-port elements in their simplest forms, and represent

transformers and gyrators, respectively. Power is conserved in these elements. A fourth

type, denoted as 0 and 1 on bond graphs, represents junctions, which are three-port (or

more) power conserving elements. They serve to interconnect other elements into

subsystems or system models. Other types of multiport elements may be defined, but will

not be used here.

Some example bond graph models are shown below. Figure 4 consists of a

mechanical system at the left, an electrical system at the right, and a bond graph

representation at the center. The bond graph representation includes a Se , l-junction, C,

I, and R elements, and that same bond graph represents either a mechanical mass, spring

and damper system, or an RLC electric circuit. Sc corresponds with force in the

mechanical system and voltage in electrical system. The l-junction implies a common

velocity for 1) the end of the spring, 2) the end of the damper, and 3) the mass in the

mechanical system, and implies that the current in the RLC loop is common in the

electrical system. The R, I, and C represent the damper, inertia (of mass), and spring in

the mechanical system, or the resistor, inductor, and capacitor in the electrical circuit.

I_,x ([3 R

k

j— m 39) Ei>Se 2'1 MC: .3 L

b 7% In C

Figure 1.2 Bond Graphs Representation of Mixed-Domain Systems

Bond graphs have two major advantages for design application — their efficiency for

evaluation of design alternatives and the natural combinatorial features of bond and node

components for generating design alternatives.

The analysis efficiency of the bond graph model results because the causal

relationships and power flow between elements and subsystems reveal certain system

properties and inherent characteristics very efficiently. A set of state variables is easily

determined and the state equations can be generated systematically. Particular

efficiencies are possible in the classification of models as to whether or not they merit

dynamic simulation.

The other characteristic of bond graphs as shown in Figure 1.3 is their graphical

(topological) structure, which allows structural manipulation separate from the equations.

This means that any system model can be generated by a combination of bond and node

components, because of their free composition and unbounded growth capabilities.

Therefore it is possible to span a large search space, refining simple designs discovered

initially, by adding size and complexity as needed to meet complex requirements.

Element

- Se, Sf m Bond

°C,I,R I :

R

- TF, GY 1

- 0, l

[:> 0 -—‘0 R

Combination Rules 1

0 Insert
Se —-“ 1 ”—‘A C

- Add

0 Replace

. Delete Bond Graph Model

Figure 1.3 The combinatorial nature of bond graphs generation

1.3 Related Work

1.3.1 Bond Graphs

Rosenberg and many others have described bond graph methods in detail in the literature

(see, for example, Kamopp, Margolis and Rosenberg [1999], Rosenberg [1992, 1993a,

1993b, 1996]). Prabhu [1989] presents a set of basic theorems for using a variant of bond

graphs in design. They exploit the graph nature of bond graphs for design. A set of

graph—rewriting rules to generate bond graph models that represent feasible physical

systems is presented in Hoover and Rinderle [1989]. An important feature of this work is

the exploration of all the behaviors a component might have. Stein and Louca [1995]

develop a two-level-based Component Modeling Procedure to exploit the power of

several existing model order deduction algorithms. This procedure is implemented in a

computer program, CAMBAS. CAMBAS uses expandable bond graph models and

automatically builds global bond graphs of systems according to the design engineer’s

selection of templates. Sharpe and Bracewell [1995] present the use of bond graph

reasoning for the design of interdisciplinary schemes. They describe how conceptual

scheme synthesis may be assisted and structured by the use of functions-mean trees

developed by the application of bond-graph-inspired rules. Coelingh et a1. [1998] present

a computer-based design tool for conceptual design of mechatronic motion systems.

Youcef-Toumi [1999] introduces an algorithm which identifies automatically the physical

components and/or subsystems that are responsible for zero dynamics. Redfield [1999]

demonstrates the value of using bond graphs as a conceptual or configurational design

tool for dynamic systems, using as an example a continuously variable transmission.

1.3.2 GA/GP

Numerous design-generating tools using GA and GP by members of the Genetic

Algorithms Research and Applications Group (“GARAGe”) are presented by Goodman

and his co-authors (Raymer et al. [1996], Goodman [1996], Goodman et al. [1997a],

Wang et al. [1997b], and Eby et a]. [1998]). (One of the most powerful and widely used

GP systems, Lil-gp, was developed in the GARAGe.) Carlson—Skalak et a1. [1998] have

developed a catalog design method using an evolutionary algorithm, applied to a

manufacturing floor piping network. This approach allows for simultaneous alterations of

configurations and components. Koza et al. [1997a, 1997b] present a single uniform

approach using genetic programming for the automatic synthesis of both the topology and

sizing of a suite of various prototypical analog circuits, including low-pass filters and

operational amplifiers. Koza et al. [1999b] present a general automated method for

synthesizing the design of both the topology and parameter values for controllers. This

method automatically makes decisions concerning the total number of processing blocks

to be employed in the controller, the type of each block, the topological interconnections

between the blocks, the values of all parameters for the blocks, and the existence, if any,

of internal feedback between the blocks of the overall controller. It has already shown

itself to be extremely promising, having produced a number of patentable designs for

useful artifacts, and is the most closely related approach to that proposed here; however,

it works in a single energy domain. Danielson, Foster and Frincke[1998] use both bond

graphs and a genetic algorithm to design a 2-stroke combustion engine. They start from a

preliminary design, find near-optimal values for 15 physical parameters for a combustion

engine, but without allowing topological variation. Tay, Flowers and Barrus [1998] use a

genetic algorithm to vary bond graph models. This approach adopts a variational design

method, which means they make a complete bond graph model first, then change the

bond graph topologically using a GA, yielding new design alternatives. Their goal is to

provide a wider range of possible designs, and is closely related to that presented here,

but within a topologically more limited search space.

1.3.3 Automated Design Theory and Practice

Reich [1995] presents a critical review of General Design Theory (GDT), a mathematical

framework for design. He reviews the assumptions (axioms) and predictions (theorems)

of GDT with respect to design and illustrates them with simple examples. Gero [1995].

investigates evolutionary systems as computational models of creative design and studies

the relationships among genetic engineering, style emergence, and complex evolution.

Kota and Lee [1993] present a configuration design technique employing a functional

reasoning approach. As in traditional catalog design, a configuration is formed based on

functions, and then components are selected. Chakrabarti and Bligh [1994, 1996a, 1996b]

describe one approach to synthesis of solutions to a class of mechanical design problems;

these involve transmission and transformation of mechanical forces and motion, and can

be described by a set of inputs and outputs. The approach involves (1) identifying a set of

primary functional elements and rules of combining them, and (2) developing appropriate

representations and reasoning procedures for synthesizing solution concepts using these

elements and their combination rules. Schmidt and Cagan [1996] have used a grammar-

based system for design in which the grammar’s vocabulary represents functions or

subfunctions. Rosen and Peters [1996] seek to demonstrate the diversity of applications

of topology within engineering design. A complementary goal is to introduce the

engineering design community to topology as a rich, formal, well-established

mathematical discipline that may be of value for wider study. Whitney [1996] describes

fundamental reasons, based on natural phenomena, that keep mechanical design from

approaching the ideal of contemporary VLSI design methods. Campbell et a1. [1999]

provide an introduction to a new design methodology known as A-Design, which

combines aspects of multi-objective optimization, multi-agent systems, and automated

design synthesis.

Design automation is undoubtedly a very difficult task. However, we have seen some

very successful applications in specific areas. For example, analog/mixed-signal design is

one of the most dynamic and vital research areas in both academy and industry. In

industry, two leading companies in the area, ADA in Canada and Neolinear in the US,

have done much breakthrough research and successfully applied their research results in

the Electronic Design Automation (EDA) industry. Both companies, I believe, have a

focused application of computational intelligence techniques in their products. Take the

instance of ADA: the company has gathered many famous researchers specializing in

computational intelligence as well as analog CAD. Madan M. Gupta, an IEEE fellow and

pioneer in fuzzy and neural systems, is a member of the advisory board. Trent

McConaghy, the Chief Scientist of ADA, is also a renowned specialist on artificial neural

networks, fuzzy logic, evolutionary algorithms, pattern recognition, and classification.

Neolinear, on the other hand, has Rob Rutenbar in its research advisory board. As the

Director of the Center for Electronic Design Automation (CEDA) at CMU, Rutenbar is

leading one of the most influential groups in analog/mixed-signal CAD. In one of his

publications, he explicitly states that he uses Parallel Recombinative Simulated

Annealing (PRSA), an idea originated from Goldberg’s combining of a genetic algorithm

and simulated annealing optimization. Though striking and quite successful in their first

attempts, the biggest limitation of these industry-oriented approaches is that they only

accept fixed topologies. In academic circles, much research has been done on design

automation of single-domain systems capable of topological exploration using an

evolutionary computation approach. They could be classified into two categories: GA-

based and GP-based. Most GA-based approaches realize topology optimization via a GA

and parameter optimization with numerical optimization methods (Grimbleby 1995).

Some GA approaches evolve both topology and component parameters; however, they

typically allow only a limited amount of components to be evolved (Lohn 1999). Using

netlists as the representation technique for the circuit, and genetic programming as the

evolutionary tool, Koza has developed very successful approaches to deal with circuit

synthesis problems, evolving topologies and parameters simultaneously (Koza, 1999).

Although their work basically achieves good results in analog circuit design, it is not

easily extendable to interdisciplinary systems like mechatronic systems.

Mechatronic system design differs from conventional design of electronic circuits,

mechanical systems, and fluid power systems in part because of the need to integrate

several types of energy behavior as part of the basic design (Coelingh [1998]). Multi—

11

domain design is difficult because such systems tend to be complex and most current

simulation tools operate over only a single domain. In order to automate design of multi-

domain systems, such as mechatronic systems, a new approach is required. The essential

goal of the work reported in this dissertation is to develop an automated procedure

capable of designing mechatronic systems to meet given performance specifications,

subject to various constraints. The most difficult aspect of the research is to develop a

method that can explore the design space in a topologically open-ended manner, yet find

appropriate configurations efficiently enough to be useful.

1.3.4 The BG/GP Approach

The goal of this thesis is to develop an integrated design tool for the purpose of

automatic, topologically open-ended synthesis of multi-energy-domain systems. In order

to achieve this goal, a novel approach is needed, to satisfy the three principal

requirements — multi-energy-domain design, automated synthesis, and topologically

open-ended design. To date, most design approaches have lacked at least one of these

characteristics: domain independence, efficient analysis, or broad search. Some do

strong search but weak analysis, while others do good analysis but weak search. Bond

graphs are domain independent and efficient for classification and analysis of models,

allowing rapid determination of various types of acceptability or feasibility of candidate

designs, thereby sharply reducing the time needed for analysis of designs which are

infeasible or otherwise unattractive. Genetic programming is well recognized as a

powerful tool for open-ended search. The combination of these two powerful methods,

called the BG/GP approach, is therefore an appropriate target for a better system for

synthesis of complex mechatronic systems. Figure 1.4 shows a general flow chart of the

BG/GP design process. Design specifications, including problem descriptions, design

objectives, design constraints, etc., are first defined. After that, bond graphs are used to

model and represent dynamic systems to be designed. In the BG/GP approach, bond

graph representations for dynamic systems are used for each design candidate of the

design population of each generation in a genetic programming run. The genetic

programming technique is the combinatorial basis of the BG/GP approach to realize

design automation. It is genetic programming that possesses the mechanisms to generate a

preliminary population of design candidates, to present each design individual for

evaluation according to a specified fitness function, to reconfigure the topologies and/or

parameters of design candidates (represented by bond graphs) in the population, and to

guide the design process to the next generation by producing a new population of design

candidates, typically with better average performance.

This loop of design generation, evaluation, reconfiguration and guidance is typically

iterated until at some generation, all design specifications are met by one design candidate

or a group of design candidates. If so, the design process can be ended and design

candidate/candidates satisfying design specifications can be saved for further analysis and

post-processing.

13

Design

Specification

0
Bond Graphs

Design

Representation

Generation \

Genetic

Programming

Guidance

For

Design

Evaluation

Automation

Reconfiguration ,’

Successful

Conceptual

Design

Candidates

Physical Realization

Figure 1.4 General flow chart of the BG/GP design

Table 1.2 summarizes the similarities and differences between the proposed BG/GP

approach and several others. In this table, parametric variation means variation of

parameters within a fixed configuration. Limited topological variation means the

configuration can be changed, but only within limited bounds. Open-ended topological

variation means the configuration can be changed not only topologically, but also by

increasing or decreasing the number of components and altering their interconnections,

without fixed bounds.

Table 1.2 Comparisons of various design approaches

. . . Design

Properties Desrgn With Design Design with Bond BG/GP

30"“ “h with GP Gra hs & a roach
Graphs GA p pp

GA

Multi-domain X X X

Open—ended . X X

Topological variation

Developmental

X
Process

Automated synthesis X

1.36518“. x x x
Optimization

Efficient evaluation X X X

Automatic synthesis means that the iterative analysis and design search process can be

performed without a designer’s intervention. Developmental process means that the

designer need only set the embryo design initially (thereby defining the measurable

quantities specifying the problem to be solved), and it evolves, generating a complete

design solution. Efficient evaluation means that infeasible designs can be rapidly

detected without the need for full simulation of design performance.

1.4 Contributions of the Dissertation

With mechatronics emerging as an independent and integrated discipline of the 21St

century, this dissertation is of significance because it is one of the first endeavors to

address the challenging issue of design automation of mechatronic systems. The main

contributions of the dissertation are:

A general framework, the BG/GP approach, for automated conceptual design of

mechatronic systems, is described. The approach combines search capability of

genetic programming to explore open-ended design space automatically and

bond graphs to unify representation of mixed-domain systems across different

physical domains in mechatronic systems.

The BG/GP approach has been verified in the electrical domain in an electrical

analog filter design problem.

The BG/GP approach has been verified in the mechanical domain in a

mechanical printer redesign problem.

Instructive comparisons between Mechatronic Design Automation (MDA) and

Electronic Design Automation (EDA) have been made and the promise of MDA

has been suggested.

A framework of hierarchical evolutionary synthesis of MEMS has been

recommended and further research directions have been indicated.

System level behavioral synthesis of MEMS has been studied and implemented

using extended BG/GP approach.

Second level layout synthesis of MEMS has been studied and implemented

using a constrained genetic algorithm.

1.5 Organization

A novel BG/GP design approach is presented in this dissertation. The early chapters

introduce the background and explain the fundamental elements of the theory and the

later chapters test the theory in various facets and discuss insights gained through

experiments.

Chapter 2 discusses advantages of bond graphs as a tool for design representation;

some implementation issues in this research are also addressed. Chapter 3 introduces

fundamentals of genetic programming and explains its functionality in design generation,

evaluation, reconfiguration and guidance. The preparatory steps needed to apply this

technique in the BG/GP approach are also discussed. Chapter 4 includes case studies of

three real-world engineering design problems. Through experiments of an electrical

analog filter design, and a vibration absorber design for a mechanical printer system

design, various facets of using the BG/GP approach to facilitate and automate the design

process for mixed-domain dynamic systems are studied and several insights regarding

design are gained in the process. While these design cases are basically in the macro-

world, in Chapter 5, we extend the BG/GP approach to a micro-scale domain and discuss

the research of hierarchical evolutionary synthesis of MEMS. First, we stratify the design

process of MEMS into several levels. At the system level, after integrating severe

topological constraints imposed by the specific application, we show that the BG/GP

approach can be used to automate system-level design or conceptual design of a general

class of dynamic systems, exemplified by a MEM filter design problem. At the second

level, we synthesis the layout of the cell component exemplified by a resonator unit using

constrained genetic algorithm. Some further research directions are also indicated.

Finally, Chapter 6 provides conclusions and suggestions for further research.

CHAPTER II

BOND GRAPHS

The bond graph is a modeling tool that provides a unified approach to the modeling and

analysis of dynamic systems. Bond graph models can describe the dynamic behavior of

physical systems by the connection of idealized lumped elements based on the principle

of conservation of power. These models provide very useful insights into the structures

of dynamic systems (Karnopp, Margolis and Rosenberg [2000], Rosenberg [1992, 1993a,

1993b, 1996]). Much recent research has explored bond graphs as tools for design

(Sharpe and Bracewell [1995], Tay, et al. [1998], Youcef-Toumi [1999], Redfield

[1999]).

The constitutive equations of the bond graph elements are readily introduced via

examples from the electrical and mechanical domains. The nature of the constitutive

equations imposes demands on the causality of the connected bonds. Bond graph

elements are drawn as letter combinations (mnemonic codes) indicating the type of

element. The bond graph elements are the following (Broenink [1999]):

Cl C, storage element for a q-type variable, e. g. capacitor (stores charge), spring

(stores displacement).

D 1, storage element for a p-type variable, e.g. inductor (stores flux linkage),

mass (stores momentum).

D R, resistor dissipating free energy, 6. g. electric resistor, mechanical friction.

D Se, Sf, sources, e.g. battery (voltage source), gravity (force source), pump

(flow source).

Cl TF, transformer, e.g. an electric transformer, toothed wheels, lever.

18

D GY gyrator, e.g. electromotor, centrifugal pump.

CI 0, 1, 0— and l—junctions, for ideal connection of two or more sub-models.

The performance of a dynamic system that is composed of multi-domain elements is

governed by energy conservation laws, which require that power-in equals power-out,

also known as the power-balance equation. Power is the product of effort and flow

variables. Table 2.1 summarizes effort and flow variables in translational, rotational,

electrical and hydraulic domains, respectively, with their corresponding bond graph

representations.

Table 2.1 Flow and effort variables for each domain

Domain-specific Bond graph . Block diagram
Equations .

symbols element expansron

. _ _4H _

{Jiititiglifsi‘
1 “‘1

fl _ . e = —q _1_ i E,

W.—v C , ;f

Pituitary it: 7' w] I 4 7

~54») a q = led: + q(0) 1 as "

31;- l, ti ‘ ~‘ j w

W

:r'ij. IQ: I—_'~7

V” - f = — p [bl I I‘— —
WEI» T :7 I l . ,W__

37 i7- 3 - E f ‘ Llwha-j

”-99—. p = edr+ p(0) L““D

l9

——— O —— ec» - ——~
‘wfi‘tjl’limp ii i ”D 3;. .,. j c -

l ‘: I i’ L .

_ -. T r t i e : eb , ‘ 2 {a

_ _ - L- _ r - ..

I I‘Ii r—

L“ 7 .‘1

F. :' f f F— - _ ‘

. f — f. , _. a —.
fiel 1:". ,‘ l' l g

"’ L
Hi: ‘l.I-.",l‘ e " I

§'{ {‘7‘ — 5’7

_. f2 -nf, .— r“
TI U" I; ("7 I'li: ’ L. ‘ ; ._ 7:: p,

9 ‘ . el = n62 | i
J ' r —-->: r r—"*>

#1317 l‘ 6 u.’ *7 ' v.” _' + " ‘i 15'; t

‘1'“, ‘, . r : fl _ f2 /n f . I fr.“

82 — e] /n g” __2:: t"

-2, “ I 1

e1 "‘i-‘iit’ilt‘fil e i

2.1 Causality of Bond Graphs

One of the important concepts in bond graph theory is causality. If two components are

bonded together in a bond graph, we can think of one effort as causing one component to

respond with a flow while the flow causes the first component to respond with an effort.

Thus the cause-effect relations for efforts and flows are represented in opposite

directions. A single mark on a bond, which is called the causal stroke, indicates how

effort and flow simultaneously are determined causally on a bond.

Figure 2.1 The meaning of causal stroke

20

Causal analysis can give insight into the correctness and competency of the model.

This concept plays a great role in determining the feasibility of a design very simply at an

early stage.

Dependent on the kind of equations of the elements, the element ports can impose

constraints on the connected bonds. There are four different constraints, which should be

treated before a systematic procedure for causal analysis of bond graphs is discussed (the

reader unfamiliar with these constraints is directed to Appendix A for that treatment)

(Broenink [1999]).

2.2 Bond Graph Evaluation

To take advantage of the causal analysis that is possible for bond graphs, a two-stage

evaluation procedure is executed to evaluate bond graph models. The first, causal

analysis (Kamopp et a1. [2000]), allows rapid determination of feasibility of candidate

designs, thereby sharply reducing the time needed for analysis of designs that are

infeasible. Then, for those designs “passing” the causal analysis, the state model is

automatically formulated. The process is illustrated in Figure 2.2.

Bond graph model

Causality State equation

satisfied? formulation

NO LTI Non-linear

system system

, l l

V

Fitness calculation

Figure 2.2 Evaluation flow of bond graphs models

21

2.2.1 Causality Analysis

The causality assignment procedure is described as follows (quoting from Broenink

[1999]) (refer to Figure 2.3):

“la. Choose a fixed causality of a source element, assign its causality,

and propagate this assignment through the graph using the causal

constraints. Go on until all sources have their causalities assigned.

1b. Choose a not-yet-causally-assigned port with fixed causality (non-

invertable equations), assign its causality, and propagate this assignment

through the graph using the causal constraints. Go on until all ports with

fixed causality have their causalities assigned.

2. Choose a not-yet-causally-assigned port with preferred causality

(storage elements), assign its causality, and propagate this assignment

through the graph using the causal constraints. Goon until all ports with

preferred causality have their causalities assigned.

3. Choose a not—yet-causally-assigned port with indifferent causality,

assign its causality, and propagate this assignment through the graph using

the causal constraints. Go on until all ports with indifferent causality have

their causalities assigned.

Often, the bond graph is completely causally determined after step 2,

without any causal conflict (all causal conditions are satisfied). If this is

not the case, then the moment in the procedure where a conflict occurs or

where the graph becomes completely causally determined, can give insight

into the correctness and instantiability of the model.”

22

c R c R

2 4 2 4

SF—l—rO—a'rl—ir SFj—l—vo—arl—S—rl

a) b)

c R c R

2 4f 2 4

SFj—l—ro—arjl—S—rl SFl—l-rO-g-vll-é-rll

c) dl

Figure 2.3 Example of causality assignment

2.2.2 Model insight via causal analysis

As Broenink [1999] continues:

“When the bond graph is completely causally determined after step 2,

without any causal conflict, each storage element represents a state

variable, and the set of equations is an explicit set of ordinary differential

equations (not necessarily linear or time invariant).

When the bond graph is completely causally determined after step 1a,

the model does not have any dynamics. The behavior of all variables now

is determined by the fixed causalities of the sources. If a causal conflict

arises at step 1a or at step lb, then the problem is ill posed. The model

must be changed, by adding some elements. An example of a causal

conflict at step 1a is two effort sources connected to one O-junction. Both

sources ‘want’ to determine the one effort variable.

In case of a conflict at step lb, a possible adjustment is changing the

model of some fixed—causality element such that its describing equations

become invertible, and thus the fixedness of the constraint disappears.

When a conflict arises at step 2, a storage element receives a non-

preferred causality. This means that this storage element does not

represent a state variable. The initial value of this storage element cannot

be chosen freely. Such a storage element often is called a dependent

storage element. This indicates that a storage element was not taken into

account during modeling, but it should be there from physical systems

vieWpoint. It can be deliberately omitted, or it might have been neglected

in the modeling. In a hoisting device example, the load of the hoist (1-

element) is such a dependent storage element. Elasticity in the cable was

not modeled. If it had been modeled, a C-storage element connected to a

O-junction between the cable drum and load would have appeared.

When step 3 of the causality algorithm is necessary, a so-called

algebraic loop is present in the graph. This loop causes the resulting set

differential equations to be implicit. Often this is an indication that a

storage element that should be there from a physical systems vieWpoint

was not modeled.”

2.2.3 State Equation Formulation

For those designs “passing” the causal analysis, the state model may be automatically

formulated. However, as bond graphs are pictorial descriptions of dynamic systems, to

obtain the numerical performance of the dynamic systems, it is necessary to derive a

mathematical model from the pictorial description. There is a systematic procedure to

transform a bond graph representation of a dynamic system to a state equation

(Rosenberg, [1971]) or transfer function. In our research, we focus on the problem of

24

state equation formulation. The details of this formulation procedure are provided in

Appendix B.

2.3 Simplification of Bond Graphs

Bond graph models can be simplified in some cases. This fact is important in our research

because some seemingly different topologies of bond graph models are actually the same

after simplification. As comparison of topologies of designs for dynamic systems

(represented by bond graphs) is useful in many applications, it is desirable to develop an

algorithm to automatically simplify bond graph topology, rather than to do it manually.

Currently we have implemented three simplification rules as follows:

1). Rule 1, elimination of redundant junctions. Junctions can be removed from a

graph if the energy flow is not branched at the junction, nor a signal bond connected to

the junction. Please refer to Figure 2.4

I 0 I = I

—>1—>=—>

Figure 2.4 Elimination of redundant junctions in bond graphs

2). Rule 2, merging of junctions. Two junctions of the same type can be joined if

there is exactly one power bond between the junctions. The simplification is carried out

by removing the bond between the junctions and transplanting all connections of one

junction to the other junction. The first junction can then be removed. Please refer to

Figure 2.5

25

—>

—>

e
—
>

_’ 0

l

—>

>=,0_.>

l

1

Figure 2.5 Merging ofjunctions in bond graphs

3). Rule 3, merging of elements. Elements of the same type connected to the same

junction can be joined. The simplification is carried out by calculating the expression for

the new parameter value of the element, replacing one of the parameters by the new

expression and removing the other element and its power bond. Please see details in

Figure 2.6.

DR 0

1

<1

<I

R1

7
0

2

R1

R2

l/Req =1/Rl +1/R2

Req = R1 +R2

Ceq = Cl +C2

l/Ceq= I/Cl +l/C2

—>

A
:

_/
l

r
—
i

N

l/qu=1/Il +1/12

qu = 11 +12

Figure 2.6 Merging of elements in bond graphs

We implemented this algorithm in the Simplification() member function of the

BondGraph class in our code. Applying simplification for a bond graph is very direct, as

shown in the simple illustrative example:

BondGraph A;

A.Simplification(),'

The pseudo code for the simplification algorithm for bond graphs is listedbelow:

Procedure

begin

1' = 0

i++

i=0

i++

i=0

j++

end

Input : Bond graph output generated by GPBG

Output: Simplified bond graph model

for all junction(i)

apply Rule 1

for all junction(1')

apply Rule 2

for all element(j)

apply Rule 3

27

An example showing a bond graph model before and after simplification is shown in

Figure 2.7. This is a result taken from a BG/GP run for the filter design problem. The top

figure is the bond graph model is taken from generation 96 of a typical BG/GP run for the

filter design problem. It is not simplified at the moment, with several elements that can be

merged highlighted by dashed circles. After the simplification algorithm, the resulting

simplified bond graph model is shown in the bottom figure. The two bond graphs models

have identical dynamic behaviors, but the simplified one has fewer elements and can be

physically realized with fewer physical components. Another purpose of using

simplification methodology is that when comparing two structures, these two seemingly

different topologies are actually the same in terms of dynamic behavior. Thus we can

more easily draw conclusions about the differences between two bond graphs if we

compare simplified structures.

28

C1 R1 08 Q9 I1 C1 Sf1

,I \ 1” “\FI3

c if c :c’) 1', ([3 Tf/p,

\ . . . 13
Se n1: ,1- IOH ’1' 70—7"

88 I I J-',"‘\ c R

cr—‘tr—e,9,) 01—70 C, 124

02 i 03 1 C1

I2
era ’.) 1TI

04 “0'7 1

R 1‘ c)1 up) 0 C1

H2 235 C6 c1

8 I1 C10 Sf1

C ‘ '? ' ’ C C11
02 l 012

c\——i -——7I' ’2

04 j j

R C

R2 C14

Figure 2.7 An example of bond graph simplification

29

2.4 Strengths of Bond Graphs

In summary, bond graphs have three embedded strengths for design applications.

First, multi-domain systems (electrical, mechanical, hydraulic, pneumatic, thermal) can

be modeled using a common notation, which is especially important for design of

mechatronic systems. Second, the graphical (topological) structure characteristic of bond

graphs allows their generation by combination of bond and node components, rather than

by specification of equations. This means that any system model can be generated by a

combination of bond and node components, because of their free composition and

unbounded growth capabilities. Therefore it is possible to span a large search space,

refining simple designs discovered initially, by adding size and complexity as needed to

meet complex requirements. Third, in causality analysis, the causal relationships and

power flow among elements and subsystems can reveal various system properties and

inherent characteristics that can make the model unacceptable, and therefore make

dynamic simulation unnecessary. While the strong typing used in the GP system will not

allow the GP system to formulate “ill-formed” bond graphs, even “well-formed” bond

graphs can have causal properties that make it undesirable or unnecessary to derive their

state models or to simulate the dynamics of the systems they represent. Causality

analysis is fast, and can rapidly eliminate further cost for many models that are generated

by the genetic programming system, by performing assignment of effort and flow

variables and making checks for violations of the appropriate constraints. This simple

filtering cuts the evaluation workload dramatically. For systems passing causal analysis,

state equations are easily and systematically derived from bond graph models. Then

various analyses or simulation based on the state model allow computation of the desired

performance measures.

30

CHAPTER III

EVOLUTIONARY DESIGN

As its name implies, evolutionary design uses concepts borrowed from Darwin’s concept

of evolution to ‘breed’ good solutions to design problems. The potential success of this

idea is based on the observation that nature is a great non-human designer -- without any

intervention by humans, nature has created many varied species that far exceed any man-

made designs in terms of complexity, during the last billion years. However, in design of

man—made artifacts, the engineer cannot afford to wait for the millions of years that the

evolution of organizations in nature has taken. The much-simplified computational model

used in evolutionary design and the ever-increasing speed and capacity of current

computer technology can help to shorten the time consumption for design of engineered

artifacts to an acceptable range.

In this research, we focus on a special type of evolutionary computation technique,

namely genetic programming. Genetic programming is an extension of the genetic

algorithm, using evolution to optimize actual computer programs or algorithms to solve

some task (Holland [1975], Goldberg [1989]), typically involving a graph-type (or other

variable-length) representation. The most common form of genetic programming is due

to John Koza [1992,1994,1999], and uses trees to represent the entities to be evolved.

Genetic programming can manipulate variable-size strings and can be used to “grow”

trees that specify increasingly complex bond graph models, as described below. If the

scope and analysis efficiency of the bond graph model can be successfully integrated

with the impressive search capability of genetic programming when utilized to its full

potential, an extremely capable automated synthesis procedure, without need for user

intervention, should result.

31

3.1 Evolutionary Design with Bond Graphs

3.1.1 Generation of Design Candidates

Unlike most other approaches, genetic programming will generate a population of design

candidates at one time, rather than just one single design. If we look at designing as a

search process for optimized designs, genetic programming, as a design automation and

optimization approach, starts the search not at one single point, but from a ‘population’ of

points scattered in the search space. Genetic programming takes advantage of the

collective information acquired from the whole population of design candidates, feeds it

back to influence the collective behaviors of the population through fitness evaluation of

each individual, and guides them to search for better positions/points by imposing a

search pressure. In the process, each individual may reconfigure itself through crossover

and mutation operations. This is an important feature to have the ability to explore a

topologically open-ended search space. In the next section, we will first discuss how to

generate an individual design for a dynamic system represented as a bond graph.

3.1.2 Bond Graph Construction

A typical GP system evolves GP trees, rather than more general graphs. However, bond

graphs can contain loops, so we do not represent the bond graphs directly as our GP

“chromosomes.” Instead, a GP tree specifies a construction procedure for a bond graph.

Bond graphs are “grown” by executing the sequence of GP functions specified by the

tree, using the bond graph embryo as the starting point.

Defining a proper function set to generate candidates is one of the most significant

steps in preparing a genetic programming run. It may affect both the search efficiency of

genetic programming and validity of evolved results, and is closely related to the

selection of building blocks for the designed system. We define the GP functions and

32

terminals for bond graph construction in Table 3.1. There are four types of functions:

first, add functions that can be applied only to a junction and which add a C, I, or R

element;

Table 3.1 Definition of function set

Name #Args Description

add_C 4 Add a C element to a junction

add_I 4 Add an I element to a junction

add_R 4 Add an R element to a junction

insert_JO 3 Insert a O-junction in a bond

insert_J 1 3 Insert a l-junction in a bond

replace_C 2 Replace the current element with a C element

replace_l 2 Replace the current element with an I element

replace_ R 2 Replace the current element with an R element

+ 2 Add two ERCs

- 2 Subtract two ERCs

enda 0 End terminal for add element

endi 0 End terminal for insert junction

endr 0 End terminal for replace element

erc 0 Ephemeral random constant (ERC)
second, insert functions that can be applied only to a bond and which insert a 0-junction

or l-junction into the bond; third, replace functions that can be applied only to a node

and which change the type of element and corresponding parameter values for C, I, or R

elements; and fourth, arithmetic functions that specify arithmetic operations and are used

to‘determine the numerical values associated with components.

Some typical operations -- add_R (a l-port resistor) and insert_JO (a O-junction) -- are

explained in detail as follows. In Figure 3.1, the R element is added to an existing

junction by the add_R function. This function adds a node with a connecting bond. An R

element also requires an additional parameter value (ERC -- ephemeral random constant).

Please note that in the GP tree fragment, a single line is used to denote a node site, which

is either a component or a junction in the bond graph fragment, while a double line is

used to denote a bond site. The insert_JO function can be applied only at a bond, and

performs insertion of a O-junction at the given modifiable site (refer to Figure 3.2).

33

Inserting a O-junction between node R and a 1-junction yields a new bond graph (the

right side of Figure 3.2). As a result, three new modifiable sites are created in the new

bond graph. At each modifiable site, various bond growth functions can be applied, in

accordance with its type. In GP terminology, this is a strongly typed GP.

34

- - .. Modifable Site (3)
Modifiable Site(l) :t' I: ‘/ I

r-{ E- ? ‘/ Modifiable Site (2)

__\ i J:__\ I::> r",

-_ 1.--} 4‘ Modifiable Site (1)

(a) bond graph fragment

(b) GP tree fragment

Figure 3.1 Illustration of add_R operator

R Modifiable Site (3)

Modifiable Site (1) . i A/

L .' Modifiable Site (2)

R / {"0} A/

I I .

r -1 ""- Modifiable Site (1)

1.1.: :> ,r , A/
.__3 1 __\ '- --'

__3 1 __\

(a) bond graph fragment

if I)

insert_JO

9/ IO)N)

(b) GP tree fragment

Figure 3.2 Illustration of insert_,J0 operator

35

Figure 3.3 shows an example of a GP tree, generated at random from the embryo root

node. There are three modifiable embryo sites, denoted "1" (bond graph node), "a"

(bond), and "2" (bond graph node). Each is denoted by an edge of the GP tree. Following

edge 1 first, shows that an I element (13 in Figure 3.4) is added by the add_I to the 1-

junction (11) of the bond graph, together with the I element’s parameter value and a new

bond. The result is to preserve modifiable site "(1)" and to add modifiable sites "(b)" and

"(3)". The next set of operations under add_l in the GP tree shows that all three sites

happen to have been made unmodifiable in the example tree by appending of end

functions.

Turning next to the edge labeled "a", we see that the first function applied to it is

“end.” That bond site is thereby made unmodifiable. On the other hand, site "(2)" is the

locus of additional bond graph growth. A C element, C4 in Figure 3.4, is added by add_C

to the 0-junction (02). In the next operation, insert_Jl, a l-junction (15) is inserted

between the 0-junction (02) and C4. After the remaining operations, the bond graph of

Figure 3.4 is generated from the GP tree of Figure 3.3.

3.1.3 Reconfiguration of Designs

Reconfiguration of design candidates is performed mainly through crossover and

mutation operations embedded in the genetic programming technique (refer to Figure

3.5).

36

ll EMBRYO ll

add_I

end end +/- @

CI'C CI'C

m

0 Node site: ——>

0 Bond site: =5

0 Node operator: 0

0 Bond operator: I:

Figure 3. 3 An example of a GP tree

37

Key

0 Italicized nodes:

part of the embryo

0 Other nodes:

generated by the GP Tree

0 Embryo boundary indicated by:

17L I6

1e

.3 c
Rs 15 4

Figure 3.4 The bond graph model generated by the GP tree of Figure 3.3

b

/\\ *

x xyfl IX

.1 A
M /k

X
—
m

Crossover ‘

a/\AiA.

,Y

iii/e l

Mutation point

Y X YFX T

Figure 3.5 Illustration of crossover Operator and mutation operator

O A

.50., See

\. 1/0320 i

Crossover (X) Mutation

Unbounded

\ f Design

@

J\

Figure 3.6 The extensible search capability of GP for an unbounded design space

Although crossover and mutation operators are both implemented in the genotype,

namely the genetic programming tree, the result of executing the genotype generates the

phenotype, a bond graph representation of a design. As the tree depths of genetic

programming trees are not fixed and theoretically not limited, the possibilities of the

shapes and parameters of resulting bond graph models (after the genotype-to-phenotype

mapping) are actually unbounded. In this way, the combined capabilities of genetic

programming to do efficient search in topologically unbounded space and bond graphs to

model and represent mixed-domain dynamic systems lead to a powerful design synthesis

approach for general open-ended multiport dynamic systems.

39

3.1.4 Fitness Evaluation

Fitness evaluation involves defining an objective or fitness function against which each

individual is tested for suitability for matching the design specifications under various

design constraints. As the algorithm proceeds, we would expect the individual fitness of

the "best" individual, or design candidate in the particular case of our research, to

increase, as should the total fitness of the population as a whole. An actual definition of

fitness function is quite dependent on problem domain. Each application may have a

different definition of the fitness function. More importantly, as design is the art of

making products for a changing world, and the creation of new products is an ever-

adapting and interactive process of integrating new information, new technologies and

new biases from the marketplace, the fitness function may therefore be adaptive itself,

enabling it to reflect changing design environments or preferences.

3.1.5 Selection

We need to select individuals from the current population for reproduction, or in other

words, to create another population of design candidates in the next generation. By

comparing the population of design alternatives, the best ones are selected to propagate to

the next iteration while the remaining ones are discarded to make room for new solutions

If we have a population of size 2N, the selection procedure picks out two parent

individuals, based on their fitness values, which are then used by the crossover and

mutation operators to produce two offspring for the new population. This

selection/crossover/mutation cycle is generally repeated until the new population contains

2N individuals. A rule of thumb for selection is, the higher the fitness value, the higher

the probability of that individual being selected for reproduction. This principle of

selection pressure is called “survival of the fittest,” which is the primary motivating

factor for finding successful designs.

40

3.1.6 Premature Convergence

Premature convergence is often a tough problem to be addressed by practitioners of

evolutionary computation. There is no guarantee that, for an arbitrary function to be

optimized, approaches using finite populations and search times, based on evolutionary

computation (EC), will always find a globally optimal solution. In fact, in practice, they

often do not. Premature convergence is one underlying reason for this phenomenon. The

EC-based approach may cease to search effectively for better solutions because all

individuals in the population converge to one region of the search space — offspring tend

to be only minor modifications of their parents. In the case of genetic programming, if the

population is converged, simple tuning of parameters or adjusting of ad-hoc operators is

not sufficient to make much difference, so few new individuals out of crossover and

mutation operations will survive even if mutation rates are increased. As a result, the

whole population tends to get stuck in one place and the evolutionary computations are

not able to do further search in the search space. Many approaches have been proposed to

combat the problem of premature convergence to sustain a continuing search pressure for

better solutions.

A Hierarchical Fair Competition (HFC) model is developed and is the major topic of

another dissertation in our group. It suggests a building block assembly line structure for

continuing evolutionary machines. In this model, individuals are organized into different

levels according to their fitnesses. Random individuals are continuously incorporated into

the lowest fitness level, while new individuals at any level with fitnesses higher than

others in that level progressively move out to higher levels. This kind of hierarchical

organization of individuals allow new individuals with promising new building blocks to

“grow up” gradually, without the severe competition from highly developed individuals.

41

The hierarchy of fitness serves as a repository for different levels of implicit building

blocks. As this is the major part of another parallel research effort, it is not elaborated on

further here, but is used throughout the experimental runs. Interested readers may refer to

(Hu, et a1. [2002]).

3.2 Overall Design Procedure

Now it is time to summarize our overall design procedure. As with any fairly general

system for design automation, the user must, as part of the specification of the problem to

be solved, indicate the target performance that is desired and how it is to be evaluated.

That generally includes identifying some input variable(s) or driver(s) and some output(s)

which are used to observe the behaviors. The desired behaviors must be specified. For a

system to be represented as a bond graph, this amounts to specifying an “embryonic”

physical model for the target system, which will remain invariant during the design

process. That embryo should include any exogenous inputs, usually specified as sources

of effort or flow (e.g., voltages, currents, forces, velocities, pressures, etc.). It must

include any outputs required to evaluate fitness (for example, voltages across a given load

resistance or flow rates through pipes). That these components should NOT be allowed

to be changed/eliminated during design evolution is obvious — the problem is not defined

without their presence. When the user has formulated the problem (i.e., the external

boundaries of the physical model with its environment and the performance measures to

be used), the user must specify it as an embryonic bond graph model and a “fitness”

function. The user also specifies one or more “sites” in the embryo model where

modifications/insertions are allowed. Then an initial population of GP trees is created at

random, using that embryo as a common starting point. For each GP tree (“individual”),

the bond graph is generated and analyzed. This analysis, including both causal analysis

and (under certain conditions) state equation analysis, results in assignment of fitness to

42

the individual. Then genetic operations — selection, crossover and mutation — are

performed on the evaluated population in the GP tree domain, generating new individuals

(designs) to be evaluated. The loop, including bond graph analysis and GP operation, is

iterated until the termination condition is satisfied. The result is one or more “best” bond

graphs that satisfy predefined specifications and ready for physical realization. There is,

of course, no basis for asserting the global optimality of any solution that arises - it is

simply the best generated, and the procedure is considered successful if the quality of that

design is adequate for the designer’s purposes.

It is also important to point out that it is possible to get an idea of the design domain

from “good” design candidates, not just “the best”. For example, the designer may notice

that a group of “good ” design candidates share commonality of design topology and

most component parameters. The only difference among those design candidates is the

sizing for one particular component (for example, a C component). Then the designer can

get a piece of heuristic knowledge that this C component may be very vital to the

optimization of the design, and can focus on choosing a “best” parameter for this C

component to further Optimize the whole design.

The flow of the complete algorithm described above is shown in Figure 3.7. This loop

of bond graph analysis and GP operation is iterated until a termination condition is

satisfied. The final step in instantiating a physical design would be to realize the highest-

fitness bond graph in physical components. We are going to illustrate this design

procedure in several case studies in our research.

43

Specify physical

schematic embryo

l 0

Specify bond graph

model embryo

1 Run GP operation

Create initial set of For each population <—

populations of GP Trees 4;

Selection

Reproduction

- Crossover, Mutation
Run evaluation operation

For each individual ‘—

l

TerminationFitness evaluation No

‘ condition?

Realize physical design

Figure 3.7 The overall design procedure of BG/GP approach

44

CHAPTER IV

CASE STUDIES OF BG/GP APPROACH

To test the ability of BG/GP approach for topologically open-ended design automation

for mixed-domain dynamic systems, we choose two design problems mainly belonging to

two different physical domains. They are 1). A passive analog filter design problem that

belongs to the electrical domain, and 2) a printer design problem that mainly belongs to

the mechanical domain.

4.1 Analog Filter Design Problem

Automatic synthesis of analog circuits is of great significance for electronic systems

design, which involves the determination of the topology of circuits and

sizing/parameterizing of their components. Many techniques have been used for such

problems. Some methods incorporate heuristics; some predefine the topology, and then

let the automated procedure optimize the parameters of the circuits. Some divide the

design into two stages -- topology optimization via a GA and parameter optimization

with numerical optimization methods (Grimbleby, [1995]). Some genetic algorithm

approaches also evolve both topology and component parameters; however, they

typically allow only a limited amount of components to be evolved (Lohn, [1999]). Using

netlists as the representation technique for the circuit, and genetic programming as the

evolutionary tool, Koza has developed very successful approaches to deal with circuit

synthesis problems, evolving topologies and parameters simultaneously (Koza, [1999]).

However, those applications are currently confined to the electrical domain, and exhibit

very heavy demand for computing resources.

45

4.1.1 Bond Graph Representation of Circuits

In the context of circuit design, a bond graph consists of the following types of elements:

Cl C, I, and R elements, which are passive one-port elements that contain no

sources of power, and represent capacitors, inductors, and resistors.

[:1 Power source elements including Sc and Sf, which are active one-port

elements representing sources of voltage or current, respectively. In addition,

when the current of a current source is fixed as zero, it can serve as an ideal

voltage gauge. Similarly, when the voltage of a voltage source is fixed as zero,

it can serve as an ideal current gauge

0 Transformer (TF) and gyrator (GY), which are two-port elements, and

represent transformers and gyrators, respectively. Power is conserved in these

elements.

Cl O-junctions and l-junctions, which are multi-port elements for representing

series and parallel relationships among elements. They serve to interconnect

elements into subsystem or system models

Cl Bonds, which are used to connect any two elements in the bond graph.

A unique characteristic of bond graphs is their use of 0- and l-junctions to represent

the series and parallel relationships among components in circuits. In fact, it is this

concept that led to the foundation of the bond graph field (Paynter, [1991]). Junctions

transform common circuits into a very clean structure with few loops, which can

otherwise make circuits appear very complicated. Figure 4.1 shows the comparison of a

circuit and a corresponding bond graph. The evaluation efficiency of the bond graph

46

model is further improved due to the fact that analysis of causal relationships and power

flow between elements and subsystems can reveal certain system properties and inherent

characteristics. This makes it possible for us to discard infeasible design candidates even

before numerically evaluating them, thus reducing time of evaluation to a large degree.

In addition, as virtually all of the circuit topologies created is valid, our system does not

need to check validity conditions of individual circuits to avoid singular situations that

could interrupt the running of a program evaluating them.

L1

H—WV 0

1 1

C1 R2

®E :: Cl

C3 :: L2

0

R2

R1
1 —_x0

/

1 \3
Se __A

1
—;0 —A1 —.A

0
_AS

f

Cl

Figure 4.1 Bond graph representation of an electrical circuit

47

4.1.2 Problem Definition

Three kinds of filter designs were chosen to verify our approach - high-pass, low-pass,

and band-pass filters. The embryo electric circuit and corresponding embryo bond graph

model used in our filter design are shown in Figure 4.2. We used converted Matlab

routines to evaluate frequency response of the filters created. As Matlab provides many

powerful toolboxes for engineering computation and simulation, it facilitates

development of source codes for our genetic programming evaluation dramatically. In

addition, as all individual circuits passed to Matlab code for evaluation are causally valid,

the occurrence of singularities is excluded, which enables the program to run

continuously without interruption. The fitness function is defined as follows: within the

frequency range of interest, uniformly sample 100 points; compare the magnitudes of the

frequency response at the sample points with target magnitudes; compute their

differences and obtain the squared sum of differences as raw fitness. Then normalized

fitness is calculated according to:

Fitness (Filter)=10%00 + 2 Error)

The GP parameters used for eigenvalue design were as follows:

Number of generations: 100

Population size: 300 in each of thirteen subpopulations

Initial population: half_and_half

Initial depth: 4-6

Max depth: 50

Max_nodes 5000

Selection: Tournament (size=7)

Crossover: 0.9

Mutation: 0.3

48

GND r ~

Circuit to be evolved

Rs

Se —>E1_l-—-‘*‘[0——> RL
as

Figure 4.2 Embryo of electrical circuit and its bond graph model

4.1.3 Results

To illustrate an intermediate step in the evolution of a high-pass filter with a target cutoff

frequency of 1000Hz, the performance of the best design evolved at generation 10 is

shown in Figure 4.3. It is clear that this design is far inferior to that evolved by the end of

the run (fewer than 100 generations), as shown in Figure 4.4. Figure 4.5 gives the

frequency response of an evolved low-pass filter with the same cut-off frequency. It

shows that this result is also quite satisfactory. Figure 4.6 gives the frequency response of

an evolved band-pass filter with cutoff frequencies at 10Hz and 1000Hz. Obviously, it is

the most difficult of the three filter design problems. The evolved high pass filter circuit

and bond graph are shown in Figures 4.7 and 4.8.

49

The statistical results of 10 runs each for high-, low- and band-pass filters are shown

in Table 4.1. The distance errors between ideal frequency output and the output obtained,

together with fitness values, are summarized. With the exception of some of the band-

pass results, most were quite acceptable. Figure 4.9 shows the fitness history of a typical

high-pass filter run.

50

51

Figure 4.4 Frequency response of a high-pass filter design with fitness value of 0.992

Frequency

£
3
2
.
8
3

0.2 ...-

0.0

100

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.
.
.
.
.
.
.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Cock-v.9...

I

I

I

I

l

I

a

A 1

10'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.
.
.
.
.
.
.

I
I
I
I
I
I
I

I
I
I
I
I
I
I

O
O
O
O
O
O
O

0
0
0
0
0
0
0

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

O
O
O
O
O
O
O

I
I
I
I
I
I
I

i

102

0
0
0
0
0
0
0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l
l
l
l
l
l
l
l
l
l

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O

i

10‘

1-o-mov-ewqauvr---v-

I
O
D
O
O
O
.
*
I
.
.
.
O
.
C

O

I

u

I

I

n

l

Can...-O‘CO‘DQOOOODOCCOOO.QCOODD01C.-*’.OO“‘....OOOO*‘D

H

II

II

t

I I

I I

'l
14

12

1.0

8

6

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

s
s
s
s
s
s
s
s

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I

I

I

I

I

I

o

J--L-L.Less

I
I
I
I
I
I
I

0
0
0
0
0
0
0

I
I
I
I
I
I
I

I
I
I
I
I
I
I

DI

II

ID

a.

on

Go

I)

II

II

I.

I!

II

II

ll

0"

00

i!

In

an

00

0|

I.

eat

II

|l

Do

on

on

0|

II

AA

Frequency Response of High-Pass Filter Design

Figure 4.3 Frequency response of a high-pass filter design with fitness value of 0.917

Frequency

2
.
8
3
.
8
3

0

0.2

1.0

1.2

1.4

0
0
0
0
0
0
0

0
0
0
0
0
0
0

l
l
l
l
l
l

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

i

103

i

104
I
I
I
O
O
I
O
I

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I

l
l
l
l
l
l
l
l
l
l
l
l
l
l

O
O
O
O
O
O
O
O
O
O
O
O
O
O

0
0
0
0
0
0
0
0
0
0
0
0
0
0

l
l
l
l
l
l
l
l
l
l
l
l
l
l

.
.
.
.
.
.
.

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
O
I
O

I
E
I
O
I
O
I

t
l
l
l
t
l
l

l—---o-->-o-boopu----o-odaoa-o—Hob—--o--¢-~

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

esm---—o--o-.-¢4~ooou---o-—I-~-u-rt-ol

”ff!
po-O‘COrn

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

0
0
0
0
0
0
0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
C
O
¢
|
I
0

I
I
I
I
I
I
I

I
l
l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
l
l
t
fi
t
l
l
l
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.
.
.
.
.
.
.

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0
0
0

I
I
I
I
I
I
I

O
I
O
B
U
I
O

0
0
0
0
0
0
0

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
t

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I

J.---

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

l
l
i
l
l
fi

I
I
I
I
C
‘
I

-.-|-$JJJ

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

O
O
O
O
O
O

0
0
0
0
0
0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

105

Frequency Response of High-Pass Filter Desrgn

52

Figure 4.6 Frequency response of a band-pass filter design with fitness value of 0.884

0.2

3
3
3
.
8
9
.
.
.

i

10'

t

D

I

I

A

I
I
O
I

.
0
0
0

I
0
0
!

I
I
I
I
I
I

i

102

Frequency

l
e
e
.

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O

t
t
t
t
t
t
t
t
t

e
e
e
e
e

.
.
.
.
.

I
‘
l
l

I
.
.
.

0
0
0
0
0

!
!
!
!
!
!

I
I
I
I
I

I
I
I
I
I

I
I
I
I
I

I
I
I
I
I

e
e
e
e
e
e

I
I
I
I
I

I
I
I
I
I

o.3-------~-~- m.--...o<ueq- ae-oo-e<<aeeeu-o-eo-o<or>evoi

I

*.F-.-..-><-eo.m--

0.6”"

05.-..

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

D
e
e
!

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

l
l
l
l
l
l
l
l
l
l

I
I
I
I
I

I
I
I
I
I

O
O
O
O
O

I
I
O
I

I
‘
l
l

I
n
t
.

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l
l
l
l
l

I
I
I
I
I

I
I
O
I

'
O
U
I

I
I
C
I

l
l
l
l
l
l
l
l
l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0

0
0
0
0
0

O
O
O
O
O

l
l
l
l
l

I
I
I
I
I

l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I
I
I
I
I
I
I
I

t
i
e
!

O
O
I
I

I
I
I
I
I
I
I
I
I
I

08‘

0.7"“

l
l
l
l
l
l

I
0
0
0

!
!
!
!
!
!

I
l
l
!

0
0
0
0
0
0

I
I
I
I
I
I

n
n
n
n
n
n

!
!
!
!
!
!

C
e
l
i
l
e
e

e
e
e
e
e
e

I
I
I
I
I

O
O
O
O
O
O

!
!
!
!
!
!

I
I
D
I

I
I
C
O

l
l
l
l
l
l

10

0.9r“:
\"F"P'O'm"'

O
C
I
I
J
Q
O
C
I
O
D
A

.

D
e
l
l

.
0
0
0

.
I
I

I
I
I
!

I
I
I
I

i
l
l
.

o
u
t
.

0
0
.
.

Frequencv Response of Band-Pass Filter Desiqn

Figure 4.5 Frequency response of a low-pass filter design with fitness value of 0.980

Frequency

€
3
3
.
8
8

0.4

0.2

100

I
I
I
I
I
I
I

l
l
l
l
l
l
l

e
e
e
e
e
e
e

l
l
l
l
l
l
l

e
e
e
e
e
e
e

I
I
I
I
I
I
I

ii

10'

ii

102

I
I
I
I
I
I
I

CCDD‘OOCUNCO-C-FI“.‘O~‘.DOIIOID.‘-.O’.

I

l

O

I

I

O

I

L

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

.i

103

.
.
.
.
.
.
.

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I

e
e
e
e
e
e
e

 a. 0*DOOOd-‘OOOIO-OI*‘-ODOO‘

I.

II

.0

0'

0.

ll

:1

e
e
e
e
e
e
e

O
O
O
O
O
O
O

l

I

I

I

O

l

I

I

I

I

I

I

I

I

page‘s-f.

O
O
O
O
O
O
O
O

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
D
I
I
I
I
O
I
I
'
I
I
I
I
I
I
I
I
I
I
I
I
I

PfiO".-"e‘r"m""fi"'tfifi‘ l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
U
I
I
I
O
I
O
I
l
l
l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

l
l
l
l
l
l
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

l
l
l
l
l
l
l

I
I
I
I
I
I
I

I
I
I
I
I
I
I

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

e
e
e
e
e
e
e
e
e
e
e
e
e
e

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

e v-wooverqussv'O-Oe-vw-rrrn‘

I

O

I

0

I

I

I

I

I

I

I

0

I

O

-'v-r'nsnr°-°v'-rs-rrrm

12

IO

.8 "”

06

I I I I I I I I ..|.LJJJJA\.-.£..‘.J-LLL\A

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

p-.-e.-e. a-soe.

e

o

I

e

o

I

I

dv-coh-du ..e.saadoebo..o-*4

I
I
I
I
I
I
I

oUhLu.

105

Frequency Response of Low-Pass Filter Design

[119

R114 9104

R R flec

CH

C

T T W C” [
w—ne—m—«w—o—vc o—vum

095 J- 1' I 0100

c c

1117 cm cnoFiSlB'q 1‘ c:030

F2 5 I74 are as car 58 053 n7

C l C l C I 015

W I I I T f T °
/ Fl.

W1l—w0—711—71H1—fi0—fi1—71HTR

me

C

(75

m i :19

Cs—I1——71II

Figure 4.7 Evolved bond graphs model for high-pass filter

53

54

R
1

L1
C
2

C
3

R
5

A
l
l

_
"
'
W
—
m

15
1‘1

1'1
"
m

e

‘1
1.
79
31
91
0

1.
14
35
12
15
11
43
51
19

14
95
12
9

5.
17
39
11
5E

'
L
2

C
1

L
3

.
L
4

L
5

T

(.
3

V1
2.
33
42

2.
47

11
99

1.
43

37
1.

43
37

C
S

- v

VM

\A“J

”
0
9
5

8.
90

88
e-

11

 R
2

2
.
1
1
7
4
e
+
5

7
"

C
G

 L
7

0
.
1
0
6
2

\AM/

:
0
7

Yr 1:
R
3

2
1
1
7
4
e
+
5

2
.
5
0
4
0
e
+
5

5
.
8
3
3
9
9
1
3

1
.
3
2
1
4
1
3
0

4
.
1
1
5
9
1
9
5

3
.
6
0
3
8
9
1
6

,. ..______ 0

a
n

V
"

1
W
6

C
1
3

8.
06
40
9-
8

L
1
0

9
2
3
2
0
8
-
1
2

R
6

C
1
4

C
1
5

5
.
3
3
3
%

6
.
9
3
8
7
9
?

2
.
1
1
7
4
e
+
5

 C
1
6

9
2
6
4
4
6
-
1
0

\ LAM

L
1
0

1
0
u

C
1
7

R8

9
10
11

9
2
6
4
4
e
-
1
0

;

F
i
g
u
r
e
4
.
8
E
v
o
l
v
e
d
e
l
e
c
t
r
i
c
a
l
c
i
r
c
u
i
t
f
o
r
h
i
g
h
-
p
a
s
s

f
i
l
t
e
r
d
e
s
i
g
n

Table 4.1 Summary results (errors, fitnesses) for filter designs

Run Low-pass High-pass Band-pass

NO' Error Fitness Error Fitness Error Fitness

1 2.334 0.977 3.349 0.968 9.067 0.917

2 3.428 0.967 2.031 0.980 12.861 0.886

3 2.202 0.978 1.159 0.989 12.698 0.887

4 3.032 0.971 2.337 0.977 12.672 0.888

5 2.162 0.979 0.828 0.992 8.662 0.920

6 3.427 0.967 2.860 0.972 12.864 0.886

7 3.026 0.971 3.287 0.968 13.100 0.884

8 2.951 0.971 0.725 0.993 13.090 0.884

9 2.154 0.979 1.141 0.989 6.003 0.943

10 1.988 0.981 1.917 0.981 13.049 0.885

Best 1.988 0.981 0.725 0.993 6.003 0.943

Worst 3.427 0.967 3.349 0.968 13.100 0.884

Avg 2.670 0.974 1.963 0.981 1 1.407 0.898

S.D 0.530 0.005 0.936 0.009 2.541 0.021

A Typical Fitness Improvement Curve for High-Pass Filter Design Problem

1 r r v r r

0.98 -
.1

0-96 - _.

0.94 - -

8 0.92 _

'3

i 0.9 -«

8

5 0.88 -
ii."

0.86 a

0.84
..

0.82 ..

0'8 1 1 I I 1

30 40 60

Number of Generation

70

Figure 4.9 Fitness history for a typical high-pass filter run

55

80 SD 100

4.2 Design of Vibration Absorber for Mechanical Printer

4.2.1 Problem Formulation

The original design problem was presented by C. Denny and W. Oates of IBM,

Lexington, KY, in 1972. Figure 3 shows a closed-loop control system to position a

rotational load (inertia) denoted as JL. The system includes electric voltage source, motor

and mechanical parts. Bond graphs are used for modeling the system (please refer to

Figure 4.10 and Figure 4.11)

The problem with the design is the position output of the load JL for a step input in

voltage has intense vibrations (see figure 4.12). The design specification is to reduce the

vibration of the load to an acceptable level, given certain command conditions for

rotational position. We want the settling time to be less than 70ms when the input voltage

is stepped from zero to one. Note that the settling time of the original system is about

2000ms. The time scale in Figure 4.12 is 4000 ms.

(05p

,_._. 1 7 _ Rw r
)I‘ __ _ 1 _ q -

[érp f." >1 01111:} 1 V—GAIN(~rr»,oosp (o)

10) “E” .11“. R1.

1. '—TTL._._ 1 .0)M

A TACH ‘1 I.“ ' u— ,.:
“ . 1

1 Morel? 11 11,‘-, ,,-,

1 .c. 21* * ---__ 11
.1 1. 11r 1 NH

RM ; 1 ,~ 4 1 Fug __ __1 RL L

j , 33‘ 2 Is 15,95 :7 1 JL 17:1: ,.

.1 1 1 11:: *_1' "C57“1

1 15C ‘ J 1 FE C;

1 J11 1 ”if 1 1,1

1 A 1124;215:111 1

7 rq L _. ~0)__l'.¥ 2 _ _ _L;_ _ 1

Figure 4.10 The schematic of the original printer system

56

(“7) (r)

TheTF

‘—TFT—'1’fiTFlfi Ofi'TFfi'il—V 0fi'1'—70

1/ \n ('11)

IM RM

US

1

RCR\IC
Rs CS RL IL Cs

(r.) 1/\

P
o
s
i
t
i
o
n
(
c
m
)

20

N"

(5/5)

Figure 4.1] Bond graphs model for the original printer system

Position Output of the Load

“01111111111“.

UUVVVV'"

500 1000 1500 2000 2500 3000 3500 4000

Time (ms)

Figure 4.12 Simulation result of the original printer drive subsystem.

By analyzing the model, we conclude that the critical part for the design is a

subsystem that involves the drive shaft and the load (figure 4.13). The input is the driving

torque, Td, generated through the belt coupling back to the motor.

1 1 1 EE 1"”‘*7

1 —. 11Cs5— 41:1

1C-- H g "““
14 E1

Figure 4.13 The critical printer drive subsystem

This subsystem was deemed a logical place to begin the design problem. The

questions left to the designer now are: l) at which exact spots of the subsystem new

components should be inserted, 2) which types of components and how many of them

should be inserted, in which manner, and 3) what should be the values of the parameters

for the components to be added? The approach reported in this paper is able to answer

these three questions in one stroke in an automated manner, once the embryo system has

been defined.

4.2.2 Embryo of Design

To search for a new design using the BG/GP design tool, an embryo model is required.

The embryo model is the fixed part of the system and the starting point for GP to

generate candidates of system designs by adding new components in a developmental

manner. The embryo used for this example, expressed in bond graph language, is shown

58

in Figure 4.14, with the modifiable sites highlighted. The modifiable sites are places that

new components can be added. The choice of modifiable sites is typically easy for the

designer to decide. Note that modifiable sites are only possible spots for insertion of new

components; the search may not use all of them. In this particular example, designers

need have no idea whether assemblies of new components will be inserted at modifiable

site (1), or at modifiable site (2), at site (3), or at any combinations of them. Instead, the

algorithm will answer these questions in an automatic way, without intervention by the

human designer.

TF1 r _____. TF2

1 .. 1 i w

+ "WE" (1) WL "I“ (3)

C—4QR—‘MSo—1vl1: 70 ’11: Lo 5

_. MSel X'S‘X' J‘ ix Li“:

I R C C 1 R C

’5 R5 csr CL IL RL csz

K

Figure 4.14 The design embryo of the printer subsystem

The parameters for the embryo model are:

1:26.7x10'6kg-m2

R, I 0.013 x10'3N-m-sec /rad

C512 0.208 N -m-/rad

C322 0.208 N-m-/rad

RL 2 0.58x10'3Nom-sec/rad

IL 184.3x10’6kg-m2

CL :1.0x10°N-m-/rad

TF120.1, TF2 210

59

For simplicity and without loss of generality, both K and MSe gain are set to be unit.

A notable difference exists between this design embryo and that of the filter design

problem as discussed in the last session. While the embryo for the filter design was quite

simple, the embryo for the printer redesign is much more complex. This is because in the

printer redesign problem, most parts of the printer system are fixed. The designer only

wants to insert or reconfigure components at a few positions in the original system, in an

effort to form a mechanical vibration absorber subsystem. This difference of embryos

manifests the major difference of solving design and redesign problem using BG/GP

approach. In a design problem, the approach should generate and evolve a design from

scratch, so the embryo is left to be simple and trivial. While for the redesign problem, the

major part of the system is required to be intact. The modifiable part of the system, on the

other hand, becomes relatively minor part of the whole system. As a result, in a redesign

problem, we are more apt to see a nontrivial embryo for the design, which means we are

going to spend more time in analyzing and defining a suitable embryo in a redesign

problem before we start a genetic programming run.

The following cases were run on a single Pentium III 1. GHz PC with 256MB RAM.

The GP parameters were as shown below.

Number of generations: 100

Population sizes: 200 in each of 15 subpopulations

Initial population: half_and_ha1f

Initial depth: 3-6

Max depth: 17

Selection: Tournament (size=7)

Crossover: 0.9

Mutation: 0.1

60

Three major code modules were created in our work. The algorithm kernel of I-IFC-

GP was a modified version of an open software package developed in our research group

-- lilgp. A bond graph class was implemented in C++. The fitness evaluation package is

C++ code converted from Matlab code, with hand-coded functions used to interface with

the other modules of the project. The commercial software package ZOSim was used to

verify the dynamic characteristics of the evolved design.

The GP program obtains satisfactory results on a Pentium-IV lGl-Iz in 5~15 minutes,

which shows the efficiency of our approach in finding good design candidates

4.2.3 Results

Ten runs of this problem have been done and most of the runs produced very good

solutions. The fitness history of a typical run is shown in Figure 4.15. Two competing

design candidates with different topologies, as well as their performances, are provided in

Figure 4.16 to Figure 4.21 (evolved components are circled). We can see from the output

rotational position responses that they all satisfy the design specification of settling time

less than 70ms. Note that the time scale of the plots is 100 ms.

One of the designs is shown in Figure 4.16. It is generated in only 20 generations

with 200 designs in each of 15 subpopulations, and has a very simple structure. Three

elements, one each of O-junction, C, and R, are added to modifiable site 1 of the embryo

model (Figure 4.16). The performance of this model is shown in Figure 4.18. The

position response for step function input quickly converges in about 50msec, which was

an acceptable timeframe. Physical realization of the bond graphs model is shown in

Figure 4.17. A spring and a damper are added and coupled to the original printer

subsystem as shown in Figure 4.13.

61

F
i
t
n
e
s
s
V
a
l
u
e

A Typical Fitness Improvement Curve for Printer Redesign Problem

0990 r r r r r r r r— —r

0.988 -

0.986 ~ 11"“,
1-

0.984 »- 1

0.982 - 1

0.980 ~

0.978 ~

0.976 »

0.974 - ,r—--——4

.1
0.972 1 I l I I 1 l l l

0 10 20 3O 40 50 60 70 8O 90 100

Number of Generation

Figure 4.15 Fitness history for a typical printer drive redesign run

7F1 TF2

'II'F‘K TF

WS w- I

+ M.

MSe ’1 L ,0——7| 1+—fi0

" MSe! / :1 f\ :1

l R

rs "0“» as c c a c

x/\\CS1CL I Fl. csz
' l

1 . L
\R C"

RA CA

RA: 12.7E-03 N m sec / rad

CA: 0.196 N m/rad

Figure 4.16 The evolved bond graph model I

62

P
o
s
i
t
i
o
n
(
c
m
)

_~*——~~L

1.1 11
1 1 1'1 1' I] 121' if;

11 1 *5 ; .

Rs 1 1! p — 1 1: _ RL E1

1 4 1 1 ‘1 1 1 ' 1 i1 {—— 1*‘_ “11 fl £1

E _ 71 1 - C1 1 CSI 7‘ 1.. ‘_._ _' 1 1‘

LA __ jH “fig; ‘1 JS _"< 1., 1. .1" H1 ‘1 1“ __1 ,1 1,1,1 ._

‘" 1 ’ 11 W 1 _1i « 12.1
1' 10 ._- v.1 r ____ 1

1 ‘1 1 1 1:1
1“, 1 _r L j 1 fl

- 1 .. 1:7
E 21 2 2

1 J ' * 14
RA E?

Figure 4.17 The physical realization of evolved bond graph model I

Position Output of the Load

15

1o 7-

5 Settling tlme IS about 50ms

0 f

20 40

63

60

Time (ms)

30 100

Figure 4.18 Simulation result of evolved bond graph model I

x617 RI‘ \

I, ‘

‘1’ C R \“

| I

71:1 1‘ '1: T I,’ 7F2

\

Tnc—‘a—oe—mw—TF

—‘:§?——*371%:7Ei—wh

I R R

5 FB C ' H. 6‘20}

631 L (:32

R20: 75.1E-03 N m sec / rad

R15: 0.142E—03 N m sec / rad

C17: 10.0 N m / rad

Figure 4.19 The evolved bond graph model II

1};
R15

1*} 1 C1711
1 +4}

{111_ _::::: : “ :_::::
r—1 ‘ ’

* _j

1 a ‘1: 1'1 l
1 r

11 11 v 1 t1 V

1
L ¥ 1:1 CS] 1 1RL__

LJ 1,- ~T *1 ____1

fl _ : 1 F“ 18 1‘1 1 1717377151 JL :4‘111‘“ 1 1”— -

1 1 1 ‘1 £1 .__ _ _1 C82
R

1 1 M h— 1 ~
20

1 1~1 1
1
1
-

1
.
1
.
1
1

Figure 4.20 The physical realization of evolved bond graph model 11

O
u
t
p
u
t
(
c
m
)

15;

.
8

O
.
.
.

0
1

Position Output of the Load

_
A
.
.

.
.

\
Settling time is about 40ms

20 40 60 80

Time (ms)

Figure 4.21 Simulation result of evolved bond graph model 11

Table 4.2 Summary results of fitness for printer

Run Fitness of Printer

NO' Distance Fitness

1 15.076 0.985

2 15.818 0.984

3 15.188 0.985

4 16.720 0.983

5 15.053 0.985

6 14.085 0.986

7 15.122 0.985

8 15.502 0.985

9 15.132 0.985

10 15.881 0.984

Best 14.085 0.986

Worst 16.720 0.984

Avg 15.358 0.985

S.D 0.6903 0.000669

65

100

Another design is shown in Figure 4.19. Four elements, O-junction with C, l-junction

with R are added to modifiable site 2 and one R is added to modifiable site 3. The

physical realization of the design is shown in Figure 4.20. Figure 4.21 displays the

performance of this model.

Table 4.2 represents the statistical results of 10 runs for the printer drive.

4.3 Discussion

Two design examples show the feasibility of the proposed BG/GP approach in various

aspects. First, the two design examples belong to different physical domains. Filter

design problem is the design of an electrical system, while printer redesign problem is

basically a design problem for a mechanical vibration absorber. This fact simply

demonstrates the mixed-domain design capability of BG/GP approach. Second, the result

of the passive high-pass analog filter design demonstrates both effectiveness and

efficiency of our approach combining bond graphs and genetic programming. It shows

that the approach is capable of evolving very satisfactory results in a moderate period of

time on a single personal computer. To get the results shown in section 4.1, a typical

program ran in a P-III lGHz for 44.8 minutes. It took the genetic programming algorithm

100 generations to evolve it. This result is considered to be acquired in an efficient

manner because for an evolutionary computation algorithm to evolve designs with similar

complexity, it usually takes a much longer time and consumes much more computational

resources, such as clusters of computers (Koza et a1. [1997]). No one single factor stands

out as the sole reason for this efficiency -- we believe several factors contribute. First, the

bond graph representation of dynamic systems has strong topological expression

66

capability. Second, the genetic operators used promote efficient generation and

reconfiguration of bond graph topologies. Third, causality analysis of the bond graph

model before evaluating design candidates in detail helps to discard a large volume of

improper designs without requiring full evaluations, thus reducing computation time and

resources. In summary, the printer redesign problem demonstrates the strong topological

exploration ability of BG/GP approach. In a very short period of time, BG/GP approach

successfully identified a variety of design candidates satisfying design specifications for

further analysis and tradeoff by design engineers.

67

CHAPTER V

EVOLUTIONARY SYNTHESIS OF MEMS

Even though the successful case studies discussed in the previous chapter show that the

BG/GP approach can be a useful tool for dynamic systems design, one is still driven to

ask, “Why is mechanical systems design not more like VLSI design?” As is well known,

Electronic Design Automation (EDA) has achieved tremendous success in both industry

and academia. However, similar success has not been achieved in design automation of

mechanical systems. One fundamental reason for this is that mechanical systems lack

highly modularized components that have clearly specified interfaces among each other,

as VLSI components do. Fortunately, mechatronic systems, which are increasingly

replacing conventional mechanical systems, can transfer energy and information flows

among their components through electric wires, thus can be modularized far more than

mechanical systems. This feature makes mechatronic systems generally more amenable

to design automation approaches and it is expected that next generation mechatronic

systems will become increasingly modularized. Accordingly, Mechatronic Design

Automation (MDA), as an emerging research area, holds great promise. In particular,

Micro-Electro—Mechanical-Systems (MEMS), actually micro-mechatronic systems, might

be the first type of mechatronic systems to achieve success comparable to that already

attained by EDA, due to its close affinity with VLSI. MEMS actually evolved from

microelectronics and inherited many fabrication techniques of VLSI.

This chapter starts with an analysis of both the challenges and promises of MEMS

design and synthesis. A structured design automation method is strongly recommended,

by which the design process is deliberately divided into several levels. Each level has its

own design focus and objectives, as well as its own design automation and optimization

68

approaches. After following a top-down design process, a bottom-up verification process

is also carried out to verify that at each level the design specifications are exactly

satisfied. The BG/GP approach discussed in the previous chapters is very suitable to be

extended and applied to the first level, or system-level design for MEMS. The feasibility

of the extended BG/GP approach is demonstrated through an example of MEMS design

in a particular domain of RF MEM devices, namely, micromechanical bandpass filter

design level. Then at the second level, the physical layout synthesis problem is

formulated as a constrained optimization problem and treated with a special type of

constrained genetic algorithm presented by Deb, [2000]. Finally, some implementation

considerations to extend the approach across various design levels are also identified and

discussed.

5.1 Introduction to MEMS Design and Synthesis

Simply put, MEMS are electromechanical systems built on a very tiny length scale.

Figure 4.1 shows two typical MEMS. The left one shows a gear-mechanism with a length

scale of millimeters, while the right one shows a combination of parallel comb-driven

resonators with a length scale of micrometers.

The comb driven resonators, which have a length scale of micrometers, can hardly be

seen clearly by the naked eye. Design of systems on such a tiny scale is very difficult.

The following is a paragraph quoted from Professor G. K. Fedder, a pioneer and

specialist in MEMS design and synthesis.

“No rapid design process is available today for MEMS... this is very expensive...

Full verification of designs requires months of effort, and design optimization is not

realistic in all but the simplest of cases.”

—G.K. Fedder et al., 1999

69

,.

-‘
.2

l'

a

I‘t

It

I

\

,
x
.
(
a

\‘
1
'
1
1
"
}
!

, s t .5
-

‘
3

A geared mechanism of MEMS COMb Driven Resonators

Length scale ls millimeters Length Scale '8 mlcrometers

Figure 5.1 Examples ofMEMS

5.2 Promises and Challenges ofMEMS Design and Synthesis

Some people may be surprised that MEMS design and synthesis is so difficult. Their

argument is that MEMS evolved from microelectronics, so should have similar design

tools available. A strong relationship between Very Large Scale Integrated circuits

(VLSI) and MEMS does exist. Actually, MEMS has borrowed or inherited the fabrication

process of VLSI. As is known, VLSI has such successful and highly structured "toolkits"

for design automation that the whole new industry of Electronic Design Automation

(EDA) has been created based on them. It seems that a similar design automation

approach for MEMS should be very promising.

However, one major difference between VLSI and MEMS makes design of MEMS

much more difficult. MEMS are intrinsically a hybrid system with both electrical parts

and mechanical parts, while VLSI is basically a single-energy-domain system comprised

of only electronic or electrical components. The mechanical subsystems of MEMS give

rise to many difficulties and design problems. For example, the interface between an

electrical subsystem and a mechanical subsystem is still not well studied and definitely

needs further investigation, because a large portion of design and fabrication problems

arise in the interface zone where signal and energy transitions across physical domains

occur very frequently. Another example of a difficulty is that the mechanical subsystem

often includes moving parts, like vibrating beams or shifting combs. These moving parts

are usually more fragile than fixed parts under external pressure loads or environmental

changes (e. g. temperature changes). Design of these moving parts requires considerations

not required of electronic parts, and is more complicated.

Due to the complexity and intricacy involved in MEMS design, designing MEMS

still remains an art in most applications, requiring a large investment of human resources,

time and money. Much of the investment is consumed in the iterative trial-and-error

design process. As a result, we have only seen a handful of successful commercial

MEMS products — those that the market has demanded in large quantities, including

automotive accelerometers and gyroscopes, pressure sensors, ink-jet print heads and a

few others. Prevalence of design and fabrication of MEMS application-specific integrated

circuits (ASICs) analogous to electronic ASICs is still not seen.

Despite the numerous difficulties presented in automated synthesis of macro—

mechanical systems, MEMS holds the promise of being amenable to structured

automated design due to its similarities with VLSI, provided that the synthesis is carried

out in a properly constrained design domain. However, it turns out that translating the key

insights of the successful silicon evolution into MEMS technologies is a much more

challenging task than most people had expected. Major research topics to be addressed

include

1) developing a broad base of building blocks in MEMS technologies so that huge

networks of micro-devices can be assembled into arbitrary architectures with

desirable functionalities,

71

2) abstracting design hierarchies to stratify and conquer design complexity, thus

making the design more amenable to an automated process,

3) improving models of computation and extending current synthesis methodologies

to facilitate generation of viable design candidates and smoother transitions from

conceptual and embodied designs to process fabrication, and

4) combining MEMS component layout extraction and lumped-parameter bond

graph (or other multi-domain) simulation and design synthesis to provide MEMS

designers with VLSI-like environments enabling faster design cycles and

improved design productivity.

This chapter seeks to partially address the above challenges, especially the first two.

The proposed hierarchical and evolutionary design framework for MEMS aims to

eliminate tedious and repetitive design tasks, facilitate hierarchical problem

decomposition, and combine the power of multiple evolutionary computation algorithms

working simultaneously to identify better product designs and process solutions. In

particular, we divide design representations of MEMS design into two levels, the system-

level behavioral macromodel and the detailed-level physical geometric layout model. At

the system level, we use a combination of genetic programming and bond graphs to

automatically generate and search for viable design candidates represented by behavioral

macromodels satisfying high-level design specifications. At the second detailed (layout)

level, constrained genetic algorithms are used to optimize the geometric parameters that

relate the physical device model to the behavioral macromodel and satisfy more detailed

design constraints

72

5.3 Hierarchical MEMS Design Methodology

In MEMS, there are a number of levels of designs that need to be synthesized (Fedder

and Jing [1999]). Usually the design process starts with basic capture of the schematic of

the overall system, and then goes on through layout and construction of a 3-D solid

Top-down High-level objective description

design I A

i“
System-level schematic specification

1
Component geometry specification

1
Three dimensional continuum specification

 1 i

V Process and mask Specificaflons Bottom-up

Verification

Figure 5.2 Hierarchical Design ofMEMS

model. So the first design level is the system level, which includes selection and

configuration of a repertoire of planar devices or subsystems. The second level is 2-D

layout of basic structures like beams to form the elementary planar devices. In some

cases, if the MEMS is basically a result of a surface micro-machining process and no

significant 3-D features are present, design at this level will end one cycle of design.

More generally, modeling and analysis of a 3-D solid model for MEMS is necessary.

However, even if we have obtained an optimized 3-D device shape, it is still very

difficult to produce a proper mask layout and correct fabrication procedures. Automated

mask layout and process synthesis tools would be very helpful to relieve designers from

considering the fabrication details and allow them to focus on the functional design of the

device and system (Ma and Antonsson [2000]). After a “top-down” design path, a

73

“bottom-up” verification process usually follows to guarantee that at each design level

the design specifications are met exactly as defined (Fig. 5.2). The ultimate goal is to

develop tools for MEMS design to ensure first-pass success by having a well-defined

“top-down” design path and “bottom-up” verification path.

5.4 System-Level Synthesis of MEMS

For system-level design, hand calculation is still the most popular method in current

design practice. This is largely for the following reasons: 1) The MEMS systems we are

considering, or designing, are relatively simple in dynamic behavior -- especially the

mechanical parts -- largely due to limitations in fabrication capability. 2) There is no

powerful and widely accepted synthesis approach to automated design of multi-domain

systems. In addition, most MEMS system-level design is accomplished by modeling

entire microelectromechanical systems as single behavioral entities having no lower

hierarchical level in design. If there is any change in geometric parameters or topology, a

whole new model must be created, and this substantially lengthens design cycles.

The BG/GP approach, which combines the capability of genetic programming to

search in an open-ended design space and the merits of bond graphs for representing and

modeling multi-domain systems elegantly and effectively, proves to be a promising

method to do system-level synthesis of multi-domain dynamical systems (Fan et al.

[2001][2002]). At the first or higher level of system synthesis of MEMS, the BG/GP

approach can help to obtain a high-level description of a system that assembles the

system from a library of existing components in an automated manner to meet a

predefined design specification. Then at the second or lower level, other numerical

optimization approaches (Zhou, [1998]), as well as evolutionary computation, may be

used to synthesize custom components from a functionality specification. It is worthwhile

to point out that for the system designer, the goal of synthesis is not necessarily to design

the optimum device, but rather to take advantage of rapid prototyping and "design reuse"

74

through component libraries; while for the custom component designer, the goal may be

maximum performance. These two goals may lead to different synthesis pathways as well

as different results. Figure 5.3 shows a typical structured MEMS synthesis procedure; the

BG/GP approach aims to solve the problem of system-level synthesis in an automated

manner at the first level.

Design Process

Concept Technology

Schematic <———~

i Component

[Library st

Simulation 1— 1 Level

Physical Numerical nd

Layout ' Analysis 2 Level

Mask & Fabrication

Packing and Test 3rd Level

Final

Product

Figure 5.3 Structured MEMS Design Flow

75

However, in trying to establish an automated synthesis approach for MEMS, we

should take cautious steps. Due to the limitations of fabrication technology, there are

many constraints in design of MEMS. Unlike VLSI, which can draw on extensive sets of

design rules and programs that automatically test for design-rule violations, the MEMS

field lacks design verification tools at this time. This means that no design automation

tools are available at this stage capable of designing and verifying any kind of

geometrical shapes of MEMS devices. Thus, automated MEMS synthesis tools must

solve sub-problems of MEMS design in particular application domains for which a small

set of predefined and widely used basic electromechanical elements are available, to

cover a moderately large functional design space.

5.4.1 Bond Graphs

The reason we used bond graphs in research on MEMS synthesis is because MEMS

are intrinsically multi-domain systems, unlike electronic systems. We need a uniform

representation of MEMS so that designers can not only shift among different hierarchies

of design abstractions but also can move around design partitions in different physical

domains without difficulty. The bond graph is a modeling tool that provides a unified

approach to the modeling and analysis of dynamic systems, especially hybrid multi-

domain systems including mechanical, electrical, pneumatic, hydraulic components, etc.

It is the explicit representation of model topology that makes the bond graph a good

candidate for use in open-ended design search. Figure 5.4 shows an example of a single

bond graph model that represents a resonator unit in any of three different application

domains. It is also very natural to use bond graphs to represent a dynamic system, such as

a mechatronic system, with cross-disciplinary physical domains and even controller

subsystems (Fig. 5.5).

76

Bond Graphs Model of

Resonator Umt MEM Resonator

Mechanical Resonator

a

F=cdxldt=cv

Figure 5.4 One bond graph represents resonators in different application domains

Mechanical

Subsystem

Electrical

Subsystem F
D

"
-
_
-
-
~

I

‘
a

~
-
.
_
.
p
-
-
'

’
—
-
-
‘

‘
\ I

~
‘
—
"
’

a
’
_
-
-
-
~
‘

‘
\

\

i
—
—
—
7

0
‘
,

’

“
-
—
—
-
‘

\ ’

~‘ O

‘~——-‘

Figure 5.5 Bond graph representing a mechatronic system with mixed energy

domains and a controller subsystem

77

5.4.2 Combining Bond Graphs and Genetic Programming

As was discussed in Chapter 3, the most common form of genetic programming (Koza

[1994]) uses trees to represent the entities to be evolved. Defining a proper function set

is one of the most significant steps in using genetic programming. It may affect both the

search efficiency and validity of evolved results and is closely related to the selection of

building blocks for the system being designed. In this work, the genotypes assembled

from the function sets are constructors which, upon execution, specify a bond graph. In

other words, when the genotype is executed, it generates the phenotype in a

developmental manner. In this research, we have an additional dimension of flexibility in

generating phenotypes, because bond graphs are used as modeling representations for

multi-domain systems, serving as an intermediate representation between the mapping of

genotype and phenotype, and those bond graphs can be interpreted as systems in different

physical domains, chosen as appropriate to the circumstances. Figure 5.6 illustrates the

role of bond graphs in the mappings from genotypes to phenotypes and Figure 5.7 gives a

particular example in the domain of electrical circuits.

 I Genotype } >{ Phenotype }

T i

The Bond The

A Graph Physical

Genetic Model Realization

Programming :> OfA [:> Of The

Tree Dynamic Dynamic

System System

78

Figure 5.6 Genotype-Phenotype mapping

.
4
:

g
C

l
:
0
1
5
‘

)

.
'

l
\
‘
\
:
:
\
\
-
-
a
-
.
-
r

[
T
s

.

C
d
d
.
»

)
(
A
)
k

C
)

(
\
i
M
L
J
f
I
/
l

(
u
p
?
)

F
r
i
"
)

K
a
d
d
_
R
“
)
Q
Q
Q

O
’
O

C
w
!

)
‘
f

\
\
(
i
j
f
fi
{
\
O
C
J

1.w
“

‘
:
i
C
I
J
b
i
)

0
*

e
n
d

O
—
—

C
I
'
C

F
i
g
u
r
e
5
7
E
x
a
m
p
l
e
o
f
G
e
n
o
t
y
p
e
P
h
e
n
o
t
y
p
e
M
a
p
p
i
n
g

i
n
t
h
e
E
l
e
c
t
r
i
c
a
l
C
i
r
c
u
i
t
D
o
m
a
i
n

(
t
o
b
e
c
o
n
t
i
n
u
e
d
)

P
a
r
t

I
T
h
e
G
e
n
e
t
i
c
P
r
o
g
r
a
m
m
i
n
g
T
r
e
e
t
o
g
e
n
e

t
e
B
o
n
d
G
r
a
p
h
m
o
d
e
l
s
f
o
r
t
h
e
p
h
e
n
o
t
y
p
e

t
h
e
e
l
e
c
t
r
i
c
a
l
C
i
r
c
u
i
t

R» R5 C32 I29 C27 Sf:

C9\/ I /C.u ’] 1 I /R5 Rt.

se, > i X 1 ‘ o X l \ o \ 1,,

0S \

I I I R,,

C7 < 0 ‘ C8 04C33 C‘s

I V

Co \/1\ \ C l6 l\—: Iill BOHd Graph MOdCl

Rn / C14 I C38

CIS C39

Phenotype

0
L— .A. --__ ._._ .F —.k. h.... b,—

I[956 . (33

R21RS) a) l C3 ! (:32 (34 j 9545 I ‘37- “‘.V',_ . ,, _ ._. ._. _ -29.... _.__ ___.__.~._ ii _. _,. ._.. .._ v. ,.__ __ __ . M—

i 1k 9543 i 913-6 1 9545 956 EQQ C38 . r31“. 1 i 0.:23915} i i “j

I lCl6 (is C14 C15 rm . 9E—6 954, 3.0mm l I, i i r

U ' 9E—6 9‘06" aésfiaeéiloisin i I I i i

s i, 129:3; 045, Nd: 144:} mom}:

2v; 0.035574 omnn' 0.372055? 0.034505; 1k

. l l i i i

l I I ' i i

;____ _ L _ I- _ i -_ ”L i ii A iiL_i,il-i,i-iL__

(N)

Figure 5.7 Example of Genotype-Phenotype Mapping in the Electrical Circuit Domain

Part II: The Bond Graph Model Realized to the Phenotype - the Electrical Circuit Model

80

5.4.3 Filter Topology

Automated synthesis of an RF MEM device, a micro-mechanical bandpass filter, is used

as an example in this research (Wang and Nguyen [1999]). Through analyzing two

popular topologies used in surface micromachining of micro—mechanical filters, we found

that they are topologically composed of a series of concatenated Resonator Units (RUs)

and Bridging Units (BUS) or RUs and Coupling Units (CUs). Figure 5.8 shows the layout

of a typical resonator unit widely used in microsystems, along with its equivalent circuit

representation and bond graph representation. Figure 5.9 and Figure 5.10 illustrates the

layouts and bond graph representations of two widely accepted filter topologies, labeled I

and II. Their corresponding bond graph representations are also shown.

-
_
\
‘
,
-

1
”

,
z

I

I

I

l

I

H

Figure 5.8 Resonator Unit and its Representations as both Bond Graph and

Equivalent Circuit

Resonator

Unit

Unit I

Coupling

i

Resonator

Unit

Figure 5.9 MEM filter topology I

82

m”.4.
uu
.

t_.
u..
n
v
.
.
.
.
.
.
.
:
-
-
.
.
.
.
.
.
.
.
.
:
.
.
.
.
.
.
.
.
.
:
.
.
.
:
.

I

I

I

I

\i

Cfl'l‘lt

l

I

ill

\

I I

II

H

II

’I

‘I3

’ \

/
I

—~—A

\ 1—‘0—‘1l

Resonator

Unit

ii

Bridging

Unit

Bridging

Unit

Figure 5.10 MEM Filter Topology II

nit

Resonator

U

Resonator

Unit ,

5.4.4 Realizable Function Set

The most common form of genetic programming uses trees to represent the entities to be

evolved. Defining of a proper function set is one of the most significant steps in using

genetic programming. It may affect both the search efficiency and validity of evolved

results and is closely related to the selection of building blocks for the system being

designed. In this research, a basic function set and a higher-complexity, modular function

set are presented and listed in Tables 5.1 and 5.2. Operators in the basic function set aim

to construct primitive building blocks and assemble them into a system, while operators

in the modular function set purport to utilize relatively modular and predefined building

blocks composed of primitive building blocks, assembling them into a system. Notice

that numeric functions are included in both function sets, as they are needed in both

cases. In other research, we hypothesize that usage of modular operators in genetic

programming has some promise for improving its search efficiency (Seo et al. [2003]).

However, in this research, we concentrate on another issue, proposing the concept of a

realizable function set. By using only operators in a realizable function set, we seek to

guarantee that the evolved design is physically realizable and has the potential to be

manufactured. This concept of realizability may include stringent fabrication constraints

to be fulfilled in some specific application domains.

Examples of operators, namely insert_CU and insert_RU, are illustrated in Figures

5.11 and 5.12. Examples of basic operators are available in our earlier work (Fan et a1.

[2001]). Figure 5.11 explains how the insert_BU function works. A Bridging Unit (BU)

is a subsystem composed of three capacitors with the same parameters, attached together

with a O-junction in the center and l-junctions at the left and right ends. After execution

of the insert_BU function, an additional modifiable site (2) appears at the rightmost

newly created bond. As illustrated in Figure 5.12, a resonator unit (RU), composed of one

I, R, and C component all attached to a l-junction, is inserted in an original bond with a

84

modifiable site through the insert_RU function. After the insert_RU function is executed,

a new RU is created and one additional modifiable site, namely bond (3), appears in the

resulting phenotype bond graph, along with the original modifiable site bond (1). The

newly-added l-junction also has an additional modifiable site (2). As components C, I,

and R all have parameters to be evolved, the insert_RU function has three corresponding

ERC-typed sites, (4), (5), and (6), for numerical evolution of parameters.

Table 5.1. Operators in Basic Function Set

Basic Function Set

add C Add a C element to a iunction

add_I Add a I element to a junction

add_R Add a R element to a junction

insert_J Insert a O-junction in a bond

insert_J Insert a l-junction in a bond

replace_ Replace the current element

replace_ Replace the current element

replace_ Replace the current element

+ Sum two ERCs

- Substract two ERCs

enda End terminal for add functions

endi End terminal for insert

endr End terminal for replace

erc Ephemeral Random Constant

Table 5.2. Operators in Modular Function Set

Modular Function Set

insert RU Insert a Resonator Unit

insert_CU Insert a Coupling Unit

insert_BU Insert a Bridging Unit

add_RU Add a Resonator Unit

insert_JO] Insert a O-l-junction

insert_CIR Insert a special CIR

insert_CR Insert a special CR

Add_J Add a junction compound

+ Sum two ERCs

- Subtract two ERCs

endn End terminal for add

endb End terminal for insert

endr End terminal for replace

erc Ephemeral Random Constant

85

(I) \ \ ‘x (6)
\

/(2) (3) (4)\ (5)\\\ \\\.A

\V kl

Figure 5.12 Operator to Insert Resonator Unit

BG/GP is a quite general approach to automate synthesis of multidisciplinary

systems. Using a basic set of building blocks, BG/GP can perform topologically open

composition of an unconstrained design. However, engineering systems in the real world

are often limited by various constraints. So if BG/GP is to be used to synthesize real-

world engineering systems, it must enforce those constraints.

86

Unlike our previous designs with basic function sets, which impose fewer topological

constraints on design, MEMS design features relatively few devices in the component

library. These devices are typically more complex in structure than those primitive

building blocks used in the basic function set. Only evolved designs represented by bond

graphs matching the dynamic behavior of those devices belonging to the component

library are expected to be manufacturable under current or anticipated technology. Thus,

an important and special step in MEMS synthesis with the BG/GP approach is to define a

realizable function set that, throughout execution, will produce only phenotypes that can

be built using existing or expected technology.

As is already known, if we analyze the system of MEM filters of (Wang and Nguyen

[1999]) from a bond graph viewpoint, we find that the filters are basically composed of

Resonator Units (RUs) and Coupling Units (CUs). Another popular MEM filter topology

includes Resonator Units and Bridging Units (BUs). A realizable function set for these

design topologies often includes functions from both the basic set and modular set. In

many cases, multiple realizable function sets, rather than only one, can be used to evolve

realizable structures of MEMS. In this research, we used the following function set, along

with traditional numeric functions and end operators, for creating filter topologies with

coupling units and resonator units.

90 = {f _tree,f_insert_J1,f _insert_RU,

f _insert_CU,f_add_C,f_add_R,f_add_I }

9i2 ={f_tree,f_insert _Jl,f_insert _RU,

f_insert _BU,f_add_C,f_add_R,f_add_I}

5.4.5 Design Embryo

All individual genetic programming trees create bond graphs from an embryo.

Selection of the embryo is also an important topic in system design, especially for multi-

87

port systems. In our filter design problems, we use the bond graph shown in Figure 5.13

as our embryo.

Rs RL

Se—_ATF'—'—‘1
E i ‘0——-;TF——"‘Sf

Evolved

Part:

Mechanical

, resonators +

Coupling/

Bridging

units.

voltage current voltage

C
o
m
b

d
r
i
v
e

C
o
m
b

d
r
i
v
e

Figure 5.13 Design Embryo of the MEM Filter

5.4.6 Adaptive Fitness Function

Within the frequency range of interest, fmnge = [fmin , fmam] , logarithmically sample 100

points. Here, f = [0.1, 1000K] Hz.
range

Compare the magnitudes of the frequency response at the sample points with target

magnitudes, which are 1.0 within the pass frequency range of [316, 1000] Hz, and 0.0

otherwise, between 0.1 and lOOOKHz.

Compute their differences and get a sum of squared differences as raw fitness,

0< Threshold, change
raw

defined as Fitnessmw. If the initial raw fitness value Fitness

88

fmm to fmg,‘ = [fmm', fm‘ 1 Usually fmg,‘ c W. Repeat the above steps and obtain

a new raw fitness value Fitnessmwl . We obtain a final raw fitness value as sum of the two,

represented by Fitnessm, = Fitnessmw0 + Fitnessm'.

Then normalized fitness is calculated according to:

. = Norm
Flmessnorm 05 + (Norm + Fitness raw)

The reason to use adaptive fitness evaluation is that after a GP population has reached

a fairly high fitness value as a group, the differences of frequency responses of

individuals need to be centered on a more constrained frequency range. In this

circumstance, if there is not sufficient sampling within this much smaller frequency

range, the GP may lack sufficient search pressure to push the search forward. The

normalized fitness is calculated from the sampling differences between the frequency

response magnitudes of the synthesized systems and the target responses. Therefore, we

adaptively change and narrow the frequency range to be heavily sampled. The effect is

analogous to narrowing the search window onto a smaller yet most significant area,

magnifying it, and continuing to search this area with closer scrutiny.

5.4.7 Experimental Setup

We used a strongly-typed version of lilgp to generate bond graph models. The major GP

parameters were as shown below.

Population size: 500 in each of thirteen subpopulations

Initial population: half_and_half

Initial depth: 4-6

Max depth: 50 Max_nodes 5000

Selection: Tournament (size=7)

Crossover: 0.9 Mutation: 0.3

Three major code modules were created in this work. The algorithm kernel of HFC-

GP was a modified version of an open software package developed in our research group

89

-- lilgp. A bond graph class was implemented in C++. The fitness evaluation package is

C++ code converted from Matlab code, with hand-coded functions used to interface with

the other modules of the project. The commercial software package 2OSim was used to

verify the dynamic characteristics of the evolved design.

5.4.8 Experimental Results

The GP program obtains satisfactory results on a Pentium-IV lGHz in 1000~l250

minutes. Experimental results show the strong topological search capability of genetic

programming and feasibility of our BG/GP approach for finding realizable designs for

micro-mechanical filters. Although significant fabrication difficulty is currently presented

when fabricating a micro-mechanical filter with more than 3 resonators, it does not

invalidate our research and the topological search capability of the BG/GP approach

BG/BP shows potential for exploring more complicated topologies of future MEMS

Fitness Improvement Curve for Band Pass Micromechanical Filter

0.99 f T I I I I I l

k=7

0.98 - k -

_ \

0.97
-

0.96

0.95

0.94

F
i
t
n
e
s
s
V
a
l
u
e

0.93

0.92

 0.91

0 .g l l l l l i i l

0 50 1 00 1 50 200 250 300 350 400 450

Number of Generation

Figure 5.14 Fitness Improvement Curve

90

design and the ever-progressing technology frontiers of MEMS fabrication.

In Figure 5.14. K is the number of resonator units appearing in the best design of the

generation on the horizontal axis. As fitness improves, the number of resonator units, K,

grows — unsurprising because a higher-order system with more resonator units has the

potential of better system performance than its low—order counterpart. The plots of

corresponding system frequency responses at generations 27, 52, 117 and 183 are shown

in Figure 5.15.

Responses of Design Candidates

Iol ' ' ' .- - . ~ - E

100 ‘
[KNEE

:

10"r .3 7. \ ii

1 --_._____,___
T." I \‘

" 10 i H “I x' =4; I

u Cllllllll - ~i K=4
‘ :

ED]0_3 " ,-MMMMM.__..1 .' II ~
Ci

=3 i' '(_ll ‘
x1

10* l..........i,\, -l
1

. l K:

10‘5 V

I 'i
3

i0_6
.5: .‘i , I"

l .

100 lol 102 103 104 105

Frequency (Hz)

Figure 5.15 Frequency responses of a sampling of design candidates, which evolved

topologies (and associated parameter sets) with larger numbers, K, of resonators as the

evolution progressed. All results are from one genetic programming run of the BG/GP

approach

A layout of a design candidate with four resonators and three coupling units as well

as its bond graph representation is shown below in Figure 5.16. Notice that the geometry

of resonators may not show the real sizes and shapes of a physical resonator and the

layout figure only serves as a topological illustration.

Using the BG/GP approach, it is also possible to explore novel topologies of MEM

filter design. In this case, we may not necessarily use a strictly realizable function set.

91

Instead, a semi-realizable function set may be used to relax the topological constraints,

with the purpose of finding new topologies not realized before but still realizable after

careful design. Figure 5.17 gives an example of a novel topology for a MEM filter design

evolved using such a semi-realizable function set. An attempt to fabricate this kind of

topology is being carried out at the University of California, Santa Barbara [Shaw, 2004].

a“~\ I”””\\ ’ ‘

I, ‘\ ‘ I \ ‘ ,1 \\ s 1’ \

,’ \\ I; \ I” X 1’ \\ II \\ I’ \‘ II ‘\

I \

xC \ : llC Rt : HC i : I: RI
I I l l l I l l I I l I i t

I l I i I '\ i l I l I l i l \ I

l I | I I l l I | |

l I I I I ‘ l I I ' l l l i
I 3 1 ' I I I l f | l l 1 ,' i i 1 i

\ j 0 i \ I i 0 I \ I i 0 l ‘ ,

\ I l l \ t 1 \ I l l \

\ ’ \ [\ I i I \ I i I \ I

‘ I \ I ‘ 1’ \ I ‘ I i , \ ,’

\ / \ I ‘ I \ I \ ’ \ I \x I
\\ I \I \\‘ ’I \’ ‘s ”’ \ \s ”

x 4’ ‘_,.—

Resonator Coupling Resonator Coupling Resonator Coupling R5003“!

Unit Unit Unit Unit Unit Um! Unit

Figure 5.16 Layout and bond graph representation of a design candidate from

the experiment, with four resonator units coupled by three coupling units

Resonator Evolved Mass Coupling Resonator

Unit Unit Unit Umt

Figure 5.17 A novel topology ofMEM filter and its bond graph representation as evolved by

the BG/GP approach using a semi-realizable function set.

5.5 Second-Level Physical Layout Synthesis

For the second level -- two-dimensional layout designs of cell elements -- layout

synthesis usually takes into consideration a large variety of design variables and design

constraints. Layout synthesis automatically generates valid or optimized geometric sizing

parameters for cell components, which in most cases are commonly used

micromechanical devices with fixed topologies, according to engineering design

objectives. In this research, the cell component is a resonator device in the MEMS

domain. The design objectives come from either high-level specifications such as

behavioral model parameters that need to be satisfied, or from layout-level objectives

such as minimum areas occupied. Our approach is to model this lower-level design

problem as a formal constrained optimization problem, and then solve it with powerful

optimization techniques, resulting in a tool that automates the design synthesis of MEMS

93

structures. Two categories of optimization techniques are used: one category includes

stochastic algorithms such as genetic algorithms, and the other category includes

deterministic algorithms such as nonlinear programming. For both categories, the process

of solving the optimization problem involves detemiining the design variables, the design

constraints, and the design objectives.

5.5.1 Formulation of Layout Synthesis as an Optimization Problem

In this research, we decided to use 14 design variables for an example cell component, a

folded-flexure comb-drive microresonator fabricated in a polysilicon surface

microstructural process (Fig. 5.18). Design variables and their constraints are listed as

follows (Fig. 5.19) (Fedder and Mukherjee [1996]):

23L, $400, ZwaSZO, 2sL, $400, 2sw, $20,25LWS400,

103w“, $400. 105w” $400,103“ 5400, 2qu 5700,

83L, $400, 2swtszo, 23L” 340091905400, OSVSIOO

shuttle

mass

comb

drive

g

.31
39'
t

substrate (

(b)

Figure 5.18 A folded-flexure comb-drive microresonator fabricated in a

polysilicon surface microstructural process a) Layout; b) Cross-section

A-A’ (Fedder G. and Mukherjee T. [1996])

94

umwuua-a-uwmumn ~
k—Lb—oi

Figure 5.19 Major design variables for microresonators

Note that the first 13 design variables have units of m. The fourteenth design

variable has units of volts.

In addition, we assume I: wc = g =d in our design for simplicity. Some design

variables are predefined for this technology: they are wba =11, wm =14, 6 = 4 , N =10.

There are also a number of design constraints for the microresonator cell component,

including both geometric constraints and functional constraints. In this paper, without

loss of generality, we consider the following constraints:

0 s L”, + 2g +2w, s 700

0 s L”. + 2L, + 2w, 3 700

0 3 3L, + w”, + 4L, - 2x0 + 2%, + 2w,“ 3 700

4 s L, — (x, mm) s 200

95

Among them, the first three are linear constraints, and the fourth is a nonlinear constraint

because the term xm is highly nonlinear. 1‘an = QFM /K1K , where

Fm =1.12£0NV2t/g, Q=,/M,r<,/13,2 .

Suppose that in the system-level synthesis, we get a set of behavioral parameters for

the cell component of a microresonator as

K; =0.27N/m

Bx = 5.18X10’6kg -m2

M; = 4.0x10'6kg

Then we have three additional equation constraints. Equations to relate the design

variables and the three behavioral model parameters are as follows:

25%} L,2 +14aL,L, + 36a2Lb2

L,3 4L,2 + 4m,L, + 36cm,2

KI:

where a=(Wi/Wb)3

3. = #[(A, +0.5A, +0.5A,)(j+%) +i]

MI=M.+iM,+§§-Mb
8

where M, =pAS, M, =pA,, Mb :pAb

A..=w L +2w,L
sa so S) .t)‘

ca cv ’
A, = 2w _

Ab = 8wab + 2w,(2L, + we + 2wb)

As an alternative, we can also put reformulations of these three constraint equations

into our design objectives, expressing them as differences to be minimized. In that case,

we actually deal with a multi-objective constrained optimization problem. We take the

objective function with the following normalized Sum of Squared Error (SSE) format:

f(;)=fi73(Kx—O.27)2+ 1 (B,-5.18x10*‘)2+ I (M,-4.0x10‘)2
(518(10'6)2 (4.0(106):

Finally, it is important to note the role of feature size in VLSI and MEMS design.

Feature size, which is often represented as 1, means the minimum size or size difference

96

a particular design can achieve, based on specific fabrication procedures. In addition, the

actual sizes of geometric shapes should be integer multiples of the feature size A , such as

xi, 2)., 5,1, 10,1 etc. Inthis research, we set 1:0.09 gm.

While it is very difficult for many numerical optimization approaches (for example,

gradient-based approaches) to include considerations of feature size constraints (Fedder

and Mukherjee [1996]), it is quite convenient for genetic algorithms to do so. We need to

modify the objective function only slightly, mapping real values of design variables to

integer multiples of the feature size/i before using them in formulations of constraints

and objectives. No modifications to the genetic algorithm are needed.

5.5.2 Solving the Optimization Problem Using GA

In trying to solve constrained optimization problems using genetic algorithms or classical

deterministic optimization methods, penalty function methods have been the most

popular approach, because of their simplicity and ease of implementation. In this chapter,

we use a special constrained GA that exploits pair-wise comparisons in a tournament

selection operator to devise a penalty function approach that does not require any penalty

parameter (Deb [2000]). Careful comparisons among feasible and infeasible solutions are

made so as to provide a search direction towards the feasible region. Once sufficient

feasible solutions are found, a niching method (along with a controlled mutation

operator) is used to maintain diversity among feasible solutions. This allows a real-

parameter GA’s crossover operator to continuously find better feasible solutions,

gradually leading the search nearer to the true optimum solution.

The parameters for setting the constrained GA are as follows:

Variable Boundaries: Rigid Population size: 500

Total no. of generations: 100 Crossover probability: 0.9000

Mutation probability (real): 0.15 Niching parameter: 0.9000

Exponent (n for SBX): 2.00 Exponent (n for mutation): 50.00

97

In ten runs of the genetic algorithm using different random seeds, we obtained the

sizing parameters and values of the objective function (to be minimized) listed in Table

5.3. It can be seen that during the ten GA runs using different seeds, the GA performs

very steadily. Almost all runs achieved objective values, namely, the Normalized Squared

Sum of Errors (NSSE), within the range of 1.0E-6. The mean value of NSSE is 3.4E-6,

while the standard deviation of NSSE is 3.86E—6. The biggest NSSE is 1.4E-5. However,

the normalized squared sum of errors of 1.4E-5 is still considered very good result. It also

appears that there are many alternative and rather different ways in which parameters can

be set and still produce behavior rather close to that desired.

Table 5.3 Layout parameters obtained in ten GA runs (different random seeds)

RUN NO. I 2 3 4 5 6 7 8 9 10

Lb (,wn) 261.63 261.45 261.09 262.44 262.35 260.82 261.72 261.90 262.62 259.47

W1 (m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98

L, (m) 3.87 4.32 3.87 3.60 8.46 2.43 2.52 5. I 3 6.84 11.88

w, (m) 2.70 2.25 2.52 2.52 2.25 1.98 1.98 2.88 3.33 1.98

L” (m) 3.69 2.88 2.07 4.41 1.98 1.98 3.60 1.98 2.79 2.79

w” (pm) 14.13 12.60 15.93 11.52 10.80 9.99 11.52 15.30 12.60 14.31

wm (m) 18.63 18.18 10.98 11.70 11.34 11.16 10.17 11.70 14.58 i0.80

wcy (,um) 146.16 151.83 122.31 141.12 137.25 56.61 110.70 76.14 247.50 173.16

LC). ([07!) 15.66 20.79 23.85 17.37 23.85 30.69 22.68 21.96 8.91 20.79

LC (,Um) 199.26 187.29 174.06 202.41 181.89 154.71 188.19 162.09 161.91 183.60

wc(;1m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98

Lm (am) 2.25 2.16 2.52 2.43 2.88 1.98 2.70 2.70 6.30 2.70

x0 (,um) 10.26 96.12 24.66 34.92 10.35 14.94 30.87 20.34 25.83 4.86

V(volt) 66.06 70.29 75.51 64.98 72.27 85.14 69.93 81.09 81.27 71.55

Obj, Value 45-006 3E-006 313-006 15006 iii-006 145-005 213-006 213-006 lE-006 313006

98

The Figure 5.20 shows a typical GA run with Normalized SSE vs. Generation. It is

noted that the logarithmic value of NSSE reduces at a nearly linear rate in accordance to

generation number. At generation 91, the NSSE reduces to the value of LOB-6.

NNSE vs. Generation

3 1 1 I i I

2 ----------- ;. ----------- + ----------- é ----------- é ----------- i ---------- -

1--- ----- 2 ----------- r ----------- s ----------- s ----------- e ---------- -

D r-------- ----------- E ----------- 5 ---------- —

a: : . 5 5 5

an -1 - ---------- I --------- I ----------- I ----------- I ----------- 1 ---------- -
z o I I I I

g : : I : :

c3 2 i t i 2

‘5. '2 """"""" .' """ 'r """"""" t """""" :"""""" : """""""

2 2 i i 2

a»---------- :~ ----------- : -------- e ----------- s ----------- e ---------- -

-4» ---------- f ----------- i -------- ' ---------- i ----------- i ---------- -+

8.. , a,- .-

,0. 1 i i 1 1
0 20 40 BO 80 10] 120

Generation

Figure 5.20 Curve of Normalized SSE vs. Generation

5.6 Conclusions

In MEMS, there are two or three levels of designs that need to be synthesized. Usually

the design process must start with synthesis of a schematic design of the overall system,

including topology and behavior-related parameters, and then goes on through layout and

construction of a 3-D solid model. So the first design level is the system level, which

includes selection and configuration of a repertoire of planar devices or subsystems. The

second level is 2-D layout of basic structures like beams to form the elementary planar

devices. In some cases, if the MEMS is basically a result of a surface-micro machining

99

process and no significant 3-D features are present, design of this level will end one cycle

of design. More generally, modeling and analysis of a 3-D solid model for MEMS is

necessary.

This chapter has suggested a design methodology for automatically synthesizing

hierarchical designs for MEMS. While there has been much research using evolutionary

computation techniques to synthesize MEMS (Ma and Antonsson [2000]) (Zhou and

Agogino [2001]), this is the first work reported to seek to automate the hierarchical

MEMS synthesis process in an integrated framework. Our first step is to synthesize

system-level behavioral models using a combination of genetic programming and bond

graphs. Then as the second step, we use a constrained genetic algorithm to automatically

optimize the geometric sizing parameters for the cell components. An example of MEM

filter design with coupling of multiple microresonators is used to illustrate the approach.

Extension of this work can lead to a composable design and synthesis environment for

micromechatronic systems (Paredis et al. [2001]). In addition, target cascading in optimal

system design needs to be investigated in depth to propagate the desirable top-level

design specifications to appropriate specifications for the various subsystems and

components in a consistent and efficient manner (Kim and Papalarnbros [2000]). More

work is underway to improve the efficiency of genetic programming to explore

topologically open-ended design spaces, and the robustness of the constrained genetic

algorithm to solve real-world constrained optimization problems.

The third level design calls for FEA (Finite Element Analysis). FEA is a

computational method used for analyzing mechanical, thermal, electrical behavior of

complex structures. The underlying idea of FEA is to split structures into small pieces

and determine behavior of each piece. It is used for verifying results of hand calculations

for simple models, but more importantly, for predicting behavior of complex models

where 1‘“-order hand calculations are not available or insufficient. It is especially well

100

suited for iterative design. As a result, it is quite possible that we can use an evolutionary

computation approach to evolve a design using evaluation by means of FEA to assign

fitness. Much work in this area has already been reported and it should also be an ideal

analysis tool for use in the synthesis loop for final 3-D structures of MEMS. However,

even if we have obtained an optimized 3-D device shape, it is still very difficult to

produce a proper mask layout and correct fabricate procedures. Automated mask layout

and process synthesis tools will be very helpful to relieve designers from having to

consider the fabrication details, allowing them to focus on the functional design of the

device and system instead (Ma and Antonsson [2000]). Our long-time task of research is

to include computational synthesis for different design levels, and to provide support for

design engineers in the whole MEMS design process.

10]

CHAPTER VI

CONCLUSIONS

6.1 Contributions

With mechatronics emerging as an independent and integrated discipline of the 21St

century, the research results of this dissertation are of particular significance because it is

one of the first endeavors to address the challenging issue of design automation of

mechatronic systems. In this research, we have developed and applied a general

framework, namely, the BG/GP approach, for automated conceptual design of

mechatronics systems. The BG/GP approach combines both bond graphs as a modeling

tool to unify representations of mixed-domain subsystems across different physical

domains in typical mechatronic systems, and genetic programming as a strong search tool

to explore the Open-ended design space of mechatronic systems. We have verified the

effectiveness and efficiency of the BG/GP approach through a set of case studies,

including electrical passive analog filter design, mechanical typewriter redesign, and

system-level synthesis of MEMS.

An interesting and instructive comparison is made between Electronic Design

Automation (EDA) and Mechatronic Design Automation (MDA). Because energy and

information flow between modules of mechatronic systems can be transferred through

electric wires, mechatronic systems can be modularized more easily than conventional

mechanical systems, and are thus more amenable to modular design automation

approaches. It is believed that MDA holds great promise and may be the next big wave

after EDA. In particular, micromechatronic (microelectromechanical) systems (MEMS)

have the potential to be the first type of mechatronic systems that can achieve comparable

102

success to that achieved in Electronic Design Automation. A structured and hierarchical

design methodology for MEMS is recommended and studied in this research. The

preliminary results of both system-level behavioral synthesis and second level layout

synthesis show that automated synthesis of MEMS is a very promising research area.

Because block diagrams could be mapped to bond graphs, bond graphs can also be

used to represent designs of controllers. This feature of bond graphs is important for

mechatronics research because a typical modern mechatronic system not only includes a

plant consisting of mechanical, electrical, and/or hydraulic subsystems, etc., but also

includes a critical controller part that regulates and coordinates movements and

functionalities of various physical subsystems in the plant. It has been proved that the

BG/GP approach is capable of concurrent design of both controllers and plants of

mechatronic systems in a joint research project on vehicle suspension system design

(Wang, Fan et al. [2004]). However, as that joint work is a major topic in the dissertation

of Wang, it is not included in this dissertation.

6.2 Future work

There are many research directions to undertake in the future to extend the current

BG/GP framework.

One direct enhancement is to include more complex multi-port components in the

component library as the building blocks for design configurations. For example, in the

current implementation of case studies in Chapter 4, basic components used to construct

design candidates include l-port C, l-port I and l-port R elements. These components

can be generalized to multiport C-field, I-field and R-field (Karnopp, [2000]). Actually,

103

"
'
”
I
’
M

 I
f
.

in Chapter 5, the modular component of coupling unit can be represented by a 2-port C-

field. However, in this dissertation, multiport field is not investigated in depth. More

understanding of using multiport field is underway and integration of multiport field into

the BG/GP framework is the next research task of the author.

In the current BG/GP framework, we focus our research on generating conceptual

designs of mechatronic systems that satisfy predefined design specifications, in case

studies of Chapter 4. Detailed design, as well as design hierarchy, is discussed in Chapter

5. More work to build a composable design and simulation environment is needed so that

designers can migrate among different design levels conveniently. In composable design

and simulation environment, any component involved in design not only has a high-level

behavioral model, but also one or more detailed physical form models (Diaz-Calderon,

[1999]).

Design robustness is a very important research topic to bridge the gap between

academic research results and industrial application tools. In industrial practices, the

design parameters may have many more constraints than those in the academic research

environment. Fabrication and measurement errors make it difficult for component

parameters of a real-world product to match the design parameters exactly. In addition,

changes in working environments such as temperature fluctuation and/or electromagnetic

interference may easily introduce noise to the working system and make its components’

equivalent parameters deviant from their designed values. Robust design (Sanchez,

[1994]) aims to address the issue of making designs that are insensitive to those noise and

parameter variations, and is an interesting research topic that the author is going to

undertake in his future career.

104

To increase scalability of evolutionary synthesis, another line of research has drawn

much attention recently. By augmenting experimental biology with computer models of

development, biologist are building a greater understanding of how developmental

process construct the staggering complexities of living organisms (Kumar and Bentley,

[2003]). Taking advantage of this understanding, I expect to enhance the capability of the

current evolutionary synthesis approach to reach designs that is far more complex than

current evolved designs in terms of functional complexity. Related research topics

include morphogenesis, cell signaling and regeneration, investigations of synthetic

developmental mechanisms, and its implications in automated synthesis of engineering

systems.

105

APPENDIX A

CAUSAL CONSTRAINTS

Fixed Causality

Fixed causality holds at a port when the equations only allow one of the two port

variables to be the outgoing variable. This occurs at sources: an effort source (Se), by

definition, always has its effort variable as signal output, and has the causal stroke

outwards. This causality is called effort-out causality or effort causality. A flow source

(Sf) clearly has a flow-out causality or flow causality.

Another situation where fixed causality occurs is at nonlinear elements, in cases in

which the equations for that port cannot be inverted (for example, potentially yielding

division by zero). This is possible at R, GY, TF, C and I elements. Thus, there are two

reasons to impose a fixed causality:

1. There is no relationship between the port variables.

2. The equations are not invertable (‘singular’).

Constrained Causality

At TF, GY, 0- and l—junctions, relationships exist between the causalities of the various

ports of the element. These relations are causal constraints, since the causality of a

particular port imposes the causality of the other ports. At a TF, one of the ports has

effort-out causality and the other has flow-out causality. At a GY, either both ports have

effort-out causality or both have flow-out causality. At a 0—junction, where all efforts are

the same, exactly one bond must bring in the effort. This implies that 0—junctions always

have exactly one causal stroke on junction side of their ports. The causal condition at a 1—

junction is the dual of the 0-junction. The flows must sum to zero, thus exactly one bond

106

can have its value determined by the junction, implying that exactly one bond has the

causal stroke away from the l—junction. [Zhun, I think that what you had said was wrong,

but please check that what I said is correct for bond graphs. This would represent a major

error if uncorrected. Where did this language come from?]

Preferred Causality

At the storage elements, the causality determines whether an integration or differentiation

with respect to time will hold. Integration has preference over differentiation in causal

assignment. In the integrating form, an initial condition must be specified. Integration

with respect to time is a process that can be realized physically. Differentiation is not

always physically realizable, since information at future time points is needed. Another

drawback of differentiation is that when the input contains a step function: the output

then becomes infinite. Therefore, integrating causality is seen as the preferred causality.

This implies that C—elements have effort-out causality and I—elements have flow-out

causality as their preferred causal assignments.

We will present an example to illustrate this. When a voltage u is imposed on an

electrical capacitor (a C—element), the current i is the result of the constitutive equation of

the capacitor:

. du

l = C—

d1

A differentiation is thus happening. We have a problem when the voltage instantly

steps to another value, since the current required to achieve that will be infinite (the

derivative of a step is infinite). This is not the case when the current is imposed on a

capacitor. Now, an integral is used:

u=u0+ id!

107

The first case is flow-out causality (effort imposed, flow the result), and the second

case is effort—out causality, which is the preferred causality. Furthermore, an effort—out

causality also results in a state variable with an initial condition, u0.

In an inductor, the dual form of the C—element is used: flow-out causality will result

in integral causality, and is the preferred assignment. Step changes in voltage produce

integral changes in current.

Indifferent Causality

Indifferent causality is used when there are no causal constraints. At a linear R, it does

not matter which of the port variables is the output (or response). Consider an electrical

resistor. Imposing a current (flow) yields:

14 = iR

, u

It is also possible to impose a voltage (effort) on the linear resistor: ' = E

There is no difference in feasibility between choosing the current as stimulus variable

and the voltage as response variable, or the other way around.

In summary, the Se and Sf have fixed causalities, the C and I have preferred

causalities, the TF, GY, 0 and l have constrained causalities, and the R has an indifferent

causality (provided that the equations characterizing these basic elements are all

invertable). When the equations are not invertable, a fixed causality must be used.

108

”
T
.
.
.

'
.

APPENDIX B

STATE-SPACE FORMULATION FOR BOND GRAPH

MODELS

The problem of state—space formulation for bond graph models can be formulated as

follows. Given a bond graph composed of elements from the basic set {C, I, R, Se, SI, TF,

GY, 0, 1}, find a method of generating state-space equations of the form

X = AX + BU (B.1)

or

X = ¢(X.U) (13.2)

where

C — capacitance I — inertance R — dissipation

Se-- source of effort Sr- source of flow TF — modulated transformer

GY — modulated gyrator 0 — zero junction 1 — one junction

A bond graph can be organized into a form consisting of storage field, loss field,

source field and junction structure. The storage (energy) field is a collection of C and I

elements. The loss (dissipation) field is composed of R elements. The source field is

composed of source elements Se and Sf. The collection of elements from the set {TF,

GY, 0, 1} forms the junction structure, which is a power-preserving multi-port

subsystem. Any bond graphs composed of elements from the basic set may be organized

into the form shown in the Figure B.1 describing the system division.

109

C R

[—.—" Junction Structure —‘—.—\‘

I . {TF, GY, 0, 1} . : R

Figure 8.1 Basic fields of multiport systems: acausal form

After causality is assigned to the bond graphs according to the systematic approach

described above, Figure B] becomes Figure B.B. The graph is said to have integral

causality. In particular, this means that every C-field port and every I-field port is as

shown in Figure B.B. According to causality, Figure B.2 identifies for the port of each

characteristic field the input and output variables, namely, loss, storage and source. An R

port can have either e in and f out, or the reverse, depending upon causality. C and I ports

are always defined as shown. The variable x in the storage field is the true energy

variable, and its derivative dx/dt is taken as input, with the co-energy variable 2 as output.

The outputs of the source field are the independent driving functions u (e for Se, f for Sf),

and the inputs to the source elements are the complementary bond variables v.

C R

Junction Structure

{TF, GY, 0, 1}

—:il

e—A R
Figure 13.2 Symbolic form for integration causality

6—1

I l/__

110

Based on the definitions given for each field port in Figure B.2, the entire system may

be represented in causal form as shown in Figure B.3. Each of the arrows represents a

vector of variables, and the vector sets are paired according to the field types.

Source {83, Sf}

4“

U : V

dx/dt ' DIn

S _ Junction Structure I S

{C9 I} {TF, GY, 0, 1} {C, 1}

fi _

Z

Dont

Figure 8.3 Significant vectors for systems having integration causath

Then, the linear field equations in standard form in the dissipation field can be given

by D0“, = L-Din, (B.3)

For the case of storage field, we have Z = S . X (B4)

The junction structure yields expressions for the dx/dt and Din vectors in terms of the

inputs to the junction structure, namely, 2, DouL and U. Provided the elements TF and GY

all have constant modulus, we have

X =JSSZ+JSLDM +JSUU (B.5)

Din =JLSZ+JLLDM +JLUU (B.6)

where J matrices are the constraints imposed by the junction structure between sets of

ports. Reduction of the four equations (B.3) through (B6) to a single state-space equation

of the desired form may be accomplished quite directly. Substituting (B .4) into (8.5), we

get

x = JSSZ + 1,,me + JSUU (3.7)

111

(Vl'fl)

(EI'EI)

(ZI'EI)

(NH)

(019)

(6'8)

(8'8)

211

[mi.177"!—1)?“[+”31]:9

s[“r._(7T’r—D7731+”[1=V

aieqm

na+xv=x

seuenpmoqueosun

at”7r,_(7"r—[)77‘r+”Sr]+X{S“r,-(7””r—m”?+$55!]=X

198am‘(8‘8)ow!(01'a)3unmusqns

nT’r._(7"r-m+xs“r,_(7'”r—[)7="’"a

19391“T610010!(E'fl)Bunmnsqns

nT’I.-(7""r—1)?+257/._(7"r—1)?=”'"a

enrfiorpanjospunpourqwoosqKent(98)pure(7'3)uonenbg

["0

11‘”?+(amt+a"!+25707“?+Z”[=X

1118190am‘(L'EDow!(9'8)Eunnmsqnsu911.1.

BIBLIOGRAPHY

F. Broenink, [1999], “Introduction to physical systems modelling with bond graphs,”

In SiE Whitebook on Simulation methodologies,

http://www.rt.el.utwente.nl/bnk/papers/BondGraphsVZ.pdf.

Amerongen, J. van and RC. Breedveld, [2003], “Modelling of physical systems for

the design and control of mechatronic systems (IFAC Professional Brief),” Annual

Reviews in Control 2 7, Elsevier Ltd., ISBN SI367-5788, pp 87—117

M. 1. Campbell, I. Cagan and K. Kotovsky, [1999] “A-Design: An Agent-Based

Approach to Conceptual Design in a Dyanmic Environment,” Research in

Engineering Design, vol. 11, pp.172-l92.

J. M. Cabanells, J. Feléz, [1999], “Dynamic Systems Optimization Based on Pseudo

Bond Graph,” I999 lntemational Conference on Bond Graph Modeling and

Simulation, pp.50—55.

Antonio Dial-Calderon, [2000], A Composable Simulation Environment to Support

the Design of Mechatronic Systems, PhD Dissertation, Department of Electrical and

Computer Engineering, Carnegie Mellon University.

S. Carlson-Skalak, M. D. White, Y. Teng, [1998] ”Using Evolutionary Algorithm for

Catalog Design,” Research in Engineering Design, vol 10, pp. 63-83.

Chakrabarti, T. P. Bligh, [1996a], “An Approach to Functional Synthesis of Solutions

in Mechanical Conceptual Design. Part I: Kind Synthesis,” Research in Engineering

Design, vol. 8, pp.52-62.

Chakrabarti, T. P. Bligh, [1996b], “An Approach to Functional Synthesis of Solutions

in Mechanical Conceptual Design. Part 1: Spatial Configuration,” Research in

Engineering Design, vol. 8, pp.116-124.

Chakrabarti, T. P. Bligh, [1994], “An Approach to Functional Synthesis of Solutions

in Mechanical Conceptual Design. Part I: Introduction and Knowledge

Representation,” Research in Engineering Design, vol. 6, pp.127-141.

E. Coelingh, T. J. A. de Vries, J. V. Amerongen, [1998], “Automated Performance

Assessment of Mechatronic Motion Systems During the Conceptual Design Stage,”

Proceedings of the 3nd International Conference on Advanced Mechatroncis,

Okayama, Japan, pp.472-477

B. Danielson, J. Foster and D. Frincke, [1998], “GABSys: Using Genetic Algorithms

to Breed a Combustion Engine,” Proc. of IEEE Conf. on Evolutionary Computation,

pp. 259-264.

113

Deb K., [2003], Multi-Objective Optimization Using Evolutionary Algorithms,

Chichester, UK: Wiley Publisher

Deb K., “An efficient constraint handling method for genetic algorithms”, Comput.

Methods Appl. Mech. Engrg., Vol. 186, (2000) 311-338

D. Eby, R. C. Averill, W. Punch, E. D. Goodman [1998], "Evaluation of Injection

Island GA Performance on Flywheel Design Optimization,” Proceedings, Third

Conference on Adaptive Computing in Design and Manufacturing, Plymouth,

England, Springer Verlag, pp.12l-l36.

Z. Fan, K. Seo, R. C. Rosenberg, J. Hu, E. D. Goodman, [2003], “System-Level

Synthesis of MEMS via Genetic Programming and Bond Graphs”, Proc. 2003

Genetic and Evolutionary Computing Conference, Chicago, Springer, Lecture Notes

in Computer Science, 2058-2071

Z. Fan, K. Seo, R. C. Rosenberg, J. Hu, E. D. Goodman, [2002], “Exploring Multiple

Design Topologies using Genetic Programming and Bond Graphs,” Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO-2002, New York,

pp. 1073-1080.

Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, and B. Zhang, [2001], “Bond

Graph Representation and GP for Automated Analog Filter Design.” Genetic and

Evolutionary Computation Conference Late-Breaking Papers, San Francisco, pp. 81-

86

Fedder, GK. and Q. Jing, [1999], “A Hierarchical Circuit-Level Design Methodology

for Microelectromechanical Systems”, IEEE Transactions on Circuits and Systems [I

(TCAS), vol. 46, no. 10, pp. 1309-1315.

Fedder G. and Mukherjee T., [1996], “Physical Design for Surface-Micromechined

MEMS”, Proceedings of the Fifth ACM/SIGDA Physical Design Workshop, April,

pp. 53-60.

J. S. Gero, [1996], Computers and Creative Design, in M. Tan and R. Teh (eds), The

Global Design Studio, National University of Singarpo, pp. 11-19

D. Goldberg, [1989], Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley

E. D. Goodman, R. C. Averill, W. F. Punch, D. J. Eby, [1997a], "Parallel Genetic

Algorithms in Optimization of Composite Structures,” Proc. Second World

Conference on Soft Computing (WSCZ), Springer Verlag, pp. 199-208.

E. D. Goodman, [1996], An Introduction to GALOPPS, GARAGe Technical Report

#96-07-01, Michigan State University.

114

J. B. Grimbleby [2000] Automatic analogue circuit synthesis using genetic

algorithms. IEE Proc. - Circuits Devices Systems.319—323.

M. Heinrich, W. E. Jeungst, [1996], “ Resource Base Paradigm for the Configuring of

Technical Systems from Modular Components,” Proceedings of the 1996 ASME

Design Engineering Technical Conference and Computers in Engineering

Conference, Irvine, CA, August, pp.18-22.

1. H. Holland, [1975], Adaptation in Natural and Artificial Systems, University of

Michigan Press.

J. Hu, E. D. Goodman, K. Seo, M. Pei, [2002] Adaptive Hierarchical Fair

Competition (AHFC) Model for Parallel Evolutionary Algorithms, Proceedings ofthe

Genetic and Evolutionary Computation Conference, GECCO-ZOOZ, New York, 772-

779.

S. P. Hoover, J. R. Rinderle, [1989], “A Synthesis Strategy for Mechanical Devices,”

Research in Engineering Design, vol 1, pp.87-103.

D. C. Karnop , D. L. Margolis, R. C. Rosenberg, [2000] System Dynamics, A Unified

Approach, 3' Ed, John Wiley & Sons.

Kim, H.M., Michelena, N.F., Papalambros, P.Y., and Jiang, T., [2000], “Target

Cascading in Optimal System Design,” Proceedings of the 2000 ASME Design

Automation Conference, DAC-14265, Baltimore, Maryland, USA.

S. Kota, C. L. Lee, [1993], “General Framework for Configuration Design: Part I—

Methodology,” Journal ofEngineering Design, vol. 4, no. 4, pp.277-289.

J. R. Koza, F. H. Bennet, D. Andre, M. A. Keane, [1999a], Genetic Programming III,

Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers.

J. R. Koza et al., [1999b], “Automatic Creation of Both the Topology and Parameters

for a Robust Controller by Means of Genetic Programming,” Proceedings ofthe 1999

IEEE International Symposium on Intelligent Control, Intelligent Systems, and

Semiotics. Piscataway, NJ: IEEE. pp.344-352.

J. R. Koza, F. H. Bennet, D. Andre, M. A. Keane, F. Dunlap, [1997a], ”Automate

Synthesis of Analog Electrical Circuits by Means of Genetic Programming,” IEEE

Trans. on Evolutionary Computation, vol. 1, no. 2, pp.109-128.

J. R. Koza, D. Andre, F. H. Bennet, M. A. Keane, [1997b], “Evolution Using Genetic

Programming of a Low-Distortion 96 Decibel Operational Amplifier,” Proceedings

of the 1997ACM Symposium on Applied Computing, San Jose, California, pp.207-

216.

J. R. Koza, [1994], Genetic Programming [1, Automatic Discovery of Reusable

Programs, MIT Press.

115

J. R. Koza, [1992], Genetic Programming: On the Programming of Computers by

Means ofNatural Selection, MIT Press.

Kumar, S. and Bentley, P. J. [2003], On Growth, Form and Computers. Academic

Press, London.

J. D. Lohn, S. P. Colombano, [1999]. “A circuit representation techniques for

automated circuit design”, IEEE Transactions on Evolutionary Computation. 205-219

Luke 8., “Strongly-Typed, Multithreaded C Genetic Programming Kernel”,

http://www.cs.umd.edu/users/-seanl/gp/patched-gp/ (1997)

Ma, L. and E. K. Antonsson, [2000], “Automated Mask-Layout and Process

Synthesis for MEMS”, Technical Proceedings of the 2000 International Conference

on Modeling and Simulation ofMicrosystems pp. 20-23.

C. J. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K. Khosla, [2001], “Composable

Models for Simulation-Based Design”, Engineering with Computers 17, pp. 112-128.

D. R. Prabhu, [1989], “Synthesis of Systems from Specifications Containing

Orientations and Positions Associated with Flow Variables”, Proc. 1989 Design

Automation Conference, Montreal, Canada

W. Punch, [1998], lil-gp 1.] User’s Manual, Technical Report, Genetic Algorithms

Research and Algorithms Group, Michigan State University.

W. Punch, R. C. Averill, E.D. Goodman, S.-C. Lin, Y. Ding [1995], "Design Using

Genetic Algorithms - Some Results for Laminated Composite Structures,” IEEE

Expert, vol 10 (1), pp. 42-49.

M. Raymer, W. Punch, E. Goodman, and L. Kuhn [1996], “Genetic Programming for

Improved Data Mining —Application to the Biochemistry of Protein Interactions,”

Proc. First Genetic Programming Conference, Stanford University, pp. 375-380.

R. C. Redfield, [1999], “Bond Graphs in Dynamic Systems Designs: Concepts for a

Continuously Variable Transmission,” 1999 International Conference on Bond

Graph Modeling and Simulation, pp. 225-230.

Y. Reich, [1995], “A Critical Review of General Design Theory,” Research in

Engineering Design, vol. 7, pp. 1-18.

D. W. Rosen, T. J. Peters, [1996], “The Role of Topology in Engineering Design

Research,” Research in Engineering Design, vol. 8, pp.81-98.

R. C. Rosenberg, [1996a], The ENPORT User’s Manual, Rosencode Associates, Inc.

R. C. Rosenberg, M. K. Hales, and M. Minor, [1996b], “Engineering Icons for

Multidisciplinary Systems,” Proc.ASME IMECE 1996, DSC-V.58, pp.665-672.

11.6

R. C. Rosenberg and Y-y. Wang , [1993a], “Multiport Subsystems,” Proc. 1993

IEEE International Conference on Systems, Man and Cybernetics, Le Touquet,

France.

R. C. Rosenberg, [1993b], “Reflections on Engineering Systems and Bond Graphs,”

ASME Trans. J. Dynamic Systems, Measurements and Control, V.115, pp.242-251.

R. C. Rosenberg, J. Whitesell, and J. Reid, [1992], “Extendible Simulation Software

for Dynamic Systems,” SIMULATION, 58:3, pp.175-183.

R. C. Rosenberg, [1971], “State-Space Formulation for Bond Graph Models of

Multiport Systems,” ASME Trans. J. Dynamic Systems, Measurements and Control,

v.93. pp.35-40.

Susan M. Sanchez, [1994], “A Robust Design Tutorial”, Proceedings of the 26th

conference on Winter simulation, pp. 106-113.

K. Seo, Z. Fan, J. Hu, E. Goodman, R. Rosenberg, [2003], “Toward an Automated

Design Method for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic

Programming,” Mechatronics, 13 (8-9), pp: 851-885

J. E. Sharpe, R. H. Bracewell, [1995]. “ The Use of Bond Graph Reasoning for the

Design of Interdisciplinary Schemes,” 1995 International Conference on Bond

Graph Modeling and Simulation, pp. 116-121.

J. L. Stein, L. S. Louca, [1995], “ A Component-based Modeling Approach for

System Design: Theory and Implementation,” 1995 International Conference on

Bond Graph Modeling and Simulation, pp. 109-1 15.

S. Shaw, Michigan State University, October, 2003, pers. comm.

E. Tay, W. Flowers and J. Barrus, [1998], “Automated Generation and Analysis of

Dynamic System Designs,” Research in Engineering Design, vol 10, pp. 15-29.

Vargas-Hemandez N., J. Shah, Z. Lacroix, [2003], “Development of a Computer-

Aided Conceptual Design Tool for Complex Electromechanical Systems”,

Computational Synthesis: From Basic Building Blocks to High Level Functionality,

Papersfrom the 2003 AAA] Symposium Technical Report 55-03-02, pp. 255-261.

G. Wang, E. D. Goodman, W. Punch, [1997b], “Toward the Optimization of a Class

of Blackbox Optimization Algorithms,” Proc. IEEE Intemat. Conf on Toolsfor Artif.

Intell., pp. 348-356.

Jiachuan Wang, Zhun Fan, Janis P. Terpenny, and Erik D. Goodman, [2004],

“Knowledge Interaction with Genetic Programming in Mechatronic Systems Design

Using Bond Graphs,” IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews, Special Issue on Knowledge Extraction and Incorporation

in Evolutionary Computation (to appear).

ll7

Wang, J. and Terpenny, J., [2003], “Interactive Evolutionary Solution Synthesis in

Fuzzy Set-based Preliminary Engineering Design”, Special Issue on Sofi Computing

in Manufacturing, Journal ofIntelligent Manufacturing, Vol. 14. pp. 153-167

D. E. Whitney, [1996], “Why Mechanical Design Cannot be like VLSI Design,”

Research in Engineering Design, vol 8, pp. 125-138.

K. Youcef—Toumi, Y. Ye, A. Glaviano, P. Andrson, [1999], “Automated Zero

Dynamics Derivation from Bond Graph Models,” 1999 International Conference on

Bond Graph Modeling and Simulation, pp. 39-44.

N. Zhou, B. Zhu, A.M. Agogino, K.S.J. Pister, [2001], “Evolutionary Synthesis of

MEMS (Microelectronic Mechanical Systems) Design”. Proceedings of ANNIE

2001, Intelligent Engineering Systems through Artificial Neural Networks, Volume

11, ASME Press, pp. 197-202

Zhou Y., [1998], Layout Synthesis of Accelerometers, Thesis for Master of Science,

Department of Electrical and Computer Engineering, Carnegie Mellon University.

118

AUTHOR’S PUBLICATION

,lournal Papers

1. Z. Fan, K. Seo, R. Rosenberg, J. I-Iu, E. Goodman, A Novel Evolutionary

Engineering Design Approach for Mixed-Domain Systems. Journal of

Engineering Optimization (in press), 2004

Jiachuan Wang, Zhun Fan, Janis P. Terpenny, and Erik D. Goodman, Knowledge

Interaction with Genetic Programming in Mechatronic Systems Design Using

Bond Graphs. IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews, Special Issue on Knowledge Extraction and

Incorporation in Evolutionary Computation (to appear), 2004

J. Hu, E. D. Goodman, K. Seo, Z. Fan, R. C. Rosenberg, The Hierarchical Fair

Competition (HFC) Model for Continuing Evolutionary Algorithms, Journal of

Evolutionary Computation (to appear), 2004.

K. Seo, Z. Fan, J. Hu, E. Goodman, R. Rosenberg, Toward an Automated Design

Method for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic

Programming. Mechatronics 13 (8-9), 2003, pp: 851-885

K. Seo, J. Hu, Z. Fan, E. D. Goodman, and R. C. Rosenberg, Automated Design

Approaches for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic

Programming, The International Journal of Computers, Systems and Signals,

vol.3, no.1, pp.55-70, 2002.

Conference Papers

1. Z. Fan, Jiachuan Wang, E. Goodman, Ronald Rosenberg, Kisung Seo, Jianjun

Hu, Hierarchical Evolutionary Synthesis of MEMS, IEEE Congress on

Evolutionary Computation, CEC2004 (to appear)

Z. Fan, K. Seo, R. Rosenberg, J. Hu, E. Goodman, System-Level Synthesis of

MEMS via Genetic Programming and Bond Graphs, Proc. 2003 Genetic and

Evolutionary Computing Conference, Chicago, Springer, Lecture Notes in

Computer Science, July, 2003, pp. 2058-2071, Best-Paper Award Finalist.

119

K. Seo, Z. Fan, J. Hu, E. Goodman, and R. Rosenberg, Dense and Switched

Modular Primitives for Bond Graph Model Design, Proc. 2003 Genetic and

Evolutionary Computing Conference, Chicago, Springer, Lecture Notes in

Computer Science, July, 2003, pp. 1764-1775.

Z. Fan, K. Seo, R. Rosenberg, J. Hu, E. Goodman, Computational Synthesis of

Multi-Domain Systems - Application in MEMS, Proceedings of the 2003 AAAI

Spring Symposium - Computational Synthesis: From Basic Building Blocks to

High Level Functionality, Stanford, California, March, 24-26, 2003, pp. 59-66.

. Erik D. Goodman, Kisung Seo, Zhun Fan, Jianjun Hu, Ronald C. Rosenberg,

Automated Design of Mechatronic Systems: Novel Search Methods and Modular

Primitives to Enable Real-World Applications, Service and Manufacturing

Grantees and Research Conference Proceedings, Edited by R.G. Reddy, The

University of Alabama, Tuscaloosa, AL 35487, USA, 2003, pp 120-138.

. J. Hu, E. D. Goodman, K. Seo, Z. Fan, R. C. Rosenberg, HEMO: A Sustainable

Multi-Objective Evolutionary Optimization Framework. Proc. 2003 Genetic and

Evolutionary Computing Conference, Chicago, Springer, Lecture Notes in

Computer Science, July, 2003, pp. 1029-1040.

Z. Fan, K. Seo, R. Rosenberg, J. Hu, E. Goodman, Exploring Multiple Design

Topologies using Genetic Programming and Bond Graphs, accepted for full

presentation by 2002 Genetic and Evolutionary Computation Conference, ISGEC

Press, New York, July, 2002, pp. 1073-1080

. J. Hu, K. Seo, S. Li, Z. Fan, R. C. Rosenberg, E. D. Goodman, Structure Fitness

Sharing (SFS) for Evolutionary Design by Genetic Programming, Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO-2002, New

York, July, 2002, pp. 780-787.

Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, and B. Zhang, Bond Graph

Representation and GP for Automated Analog Filter Design, 2001 Genetic and

Evolutionary Computation Conference Late-Breaking Papers, ISGEC Press, San

Francisco, 2001, pp. 81-86.

I
n

l
'
{

“
(

S

u[limititigimyiij u

