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ABSTRACT

RESTRICTED K-SERVER PROBLEM

By

Jignesh Patel

The k-server problem is the problem of deciding how to use k servers in a metric

space to serve requests arriving in the metric space in an online manner. Many

practical online problems can be modeled using the k-server problem. Although

the k-server problem has been studied extensively, little work has been done about

its generalizations, and the work done focuses on caching, a special case of the

k-server problem. Many practical problems which cannot be modeled using the

simple k—server problem can be modeled by some generalization of it.

In this thesis, we first discuss the current work that has been done for the simple

k~server problem. Then we consider a particular generalization in which the servers

are not identical. We have types of requests and each server can serve only certain

types of requests. We consider the simple problem with two server types and two

request types. One server type can serve both request types and the other server

type can serve only one request type.

We consider the problem with three metric spaces. First the general metric

space, then the line metric space, and last the uniform metric space. For the

general metric space we present a partial result for the BALANCEZ algorithm. For

the line metric space we show that a modified version of the DOUBLE-COVERAGE

algorithm is competitive. We give competitive algorithms for the uniform metric

space.
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Chapter 1

Introduction

A problem consists of input and output, and is defined by the relation between

the two. An algorithm which solves the problem produces the desired output for

any given input. Generally we assume that the entire input data is available before

any output is produced. For example, for the problem of finding the shortest path

in a graph, we have the entire graph as the input.

For many practical problems this is not true. That is, we may not have the

complete input, and output has to be produced with the incomplete input. An

important class of such problems is online problems.

1. 1 Online Problems

An online problem consists of a sequence of inputs and a sequence of outputs,

one output for each input. The important thing is that there is temporal (or some

other) separation between the inputs in the input sequence. Each input is available

at a particular time and the corresponding output has to be produced before the

next input becomes available. That is, an online algorithm runs in real time or ‘on

line’.



A very common example of an online problem in computer science is the paging

problem. The input to the problem is a sequence of page requests. For each page

request, if the page is already in the fast memory, or there is room for the page

in the fast memory, then there is no output; otherwise the output is a page to be

evicted from the fast memory to make room for the current page. The algorithm for

deciding which page to evict, if any, is an online algorithm since it has to produce

the current output before it gets the next input. In paging the goal is to minimize

the number of page faults. Note that the best output for any input depends on

future inputs.

This is what makes online problems difiicult to solve. Since the optimal output

depends on future inputs, which are not available, typically we cannot generate an

optimal output. If we know the whole input sequence at the start, then we can

generate output for each input such that the output sequence is optimal. This is

referred to as the offline version of the online problem. With the online version the

goal then is to get as close to the optimal as possible. Since we can never get the

optimal output, the natural question we can ask is how close are we to the optimal.

This leads to the metric, called competitive ratio, which is used to compare the

performance of online algorithms.

1 .2 Competitive Ratio

The notion of competitive ratio was first defined by Manasse, McGeoch, and

Sleator [10, 11]. The same idea was introduced earlier by Sleator and Tarjan [12].

Unlike traditional algorithms where the performance metric is usually the running

time, for online algorithms the running time is usually ignored. Though algorithms

with any running times are theoretically important, most online algorithms need



to be fast since they run in a real time setting. As mentioned in the last section,

what we look for is how close is the output generated to the optimal output. Like

in the case of running time analysis, we perform worst case analysis. Following is

the definition of competitive ratio. COSTx(o) is the cost (or value, the quantity we

want to maximize/minimize) of the output sequence generated by online algorithm

X on input sequence 0. An online algorithm is generally referred as ON and the

corresponding omine optimal algorithm is referred as OPT.

Definition 1. An online algorithm ON has a competitive ratio of or if for all

input sequences 0‘, COSTONW) g ocCOSTopT(o) + B, where [3 is a constant

independent of a.

An algorithm with competitive ratio at is said to be oc-competitive. An algo-

rithm for which no such or exists is said to be non-competitive. If an algorithm is

oc-competitive, then no matter what the input sequence is, its solution will not be

worse than at times the optimal solution (plus a constant). This intuitively seems

like a good performance metric, though competitive analysis does have some draw-

backs. An algorithm with a bad competitive ratio might perform well on average.

Nevertheless, competitive analysis is a very useful theoretical tool.

1 .3 Examples

We have already seen one example of an online problem, paging. Online prob-

lems occur in many practical situations in computer science and other areas. We

give some examples of online problems.

Job Scheduling:

The general problem is as follows: we have one or more processors and jobs to be

processed by them. The jobs arrive over time and the problem is to determine when



and where to schedule the jobs. The quantity to be optimized could be something

like the total execution time or the total waiting time. It is an online problem

because the jobs arrive over time and the algorithm has to produce output (that is,

schedule the current jobs) without knowing the future inputs (jobs).

k-server problem:

The k-server problem is a general model for online problems. In this problem we

have a metric space and k servers located at k points in the metric space. The input

is a sequence of requests which are points in the metric space. If a request comes

at a point, we need to serve it by moving one of our servers to that point, if one is

not already present. The quantity to be Optimized is the total distance moved by

the servers to serve all the requests.



Chapter 2

The k—Server Problem

In the last chapter we mentioned the k-server problem as an example of online

problems. It is a very common example of online problems and has been studied

extensively. In this chapter we present the current results on the k-server problem

and discuss various modifications of the problem

2.1 Definition

The k-server problem is a general model for online problems. Many practical

online problems can be modeled using the k-server problem, and hence all the

results for the k-server problems apply to the practical problems. We define the

k-server problem as follows.

Definition 2. The input is a metric space M, a set of k servers located at points

in M, and a sequence of requests 01, 0‘2, . . ., each of which is also a point in M.

After each request, the problem is to move each server some distance, possibly

zero, with the condition that after moving the servers, there is a server at the

request point. The cost to serve the request is the distance moved by all the



servers. The goal is to minimize the total cost to serve all the requests in the

request sequence.

At any time, the location of the k servers is called the current configuration. The

set of configurations is denoted by Q. So for each request, the problem is to decide

the next configuration such that the request point is in the configuration. The server

moved to the request point is the server that serves the request. The metric space

is generally assumed to have a non-negative symmetric distance function satisfying

the triangle inequality. The optimal solution to the offline version of the k-server

problem can be computed in polynomial time using dynamic programming.

2.2 Current results

In this section we discuss some of the current results on the k-server problem.

The k-server problem was introduced by Manasse, McGeoch, and Sleator [10, 11].

They proved that no algorithm for the k-server problem is better than k-

competitive for a metric space with at least k + 1 points, and conjectured that

there is an algorithm which is k-competitive for any metric space. The problem of

whether such a k-competitive algorithm exists is still open.

The first competitive algorithm for the k—server problem for all metric spaces was

given by Fiat, Rabani, and Ravid [7]. But their competitive ratio was exponential in

k. The ratio was later improved by others. In Chrobak and Larmore [4] the authors

introduced the Work Function Algorithm (WFA). But they could only show that

the WFA was Z-competitive for the Z-server problem, and they conjectured that it

was actually k-competitive for the k-server problem.

In Koutsoupias and Papadimitriou [9], the authors showed that the WFA was

(2k — l)-competitive. It is believed that the WFA is in fact k-competitive.



2.2.1 Results for specific k

For k = 2, a 2-competitive algorithm was given by Manasse, McGeoch, and

Sleator [10]. After them many others have given Z-competitive algorithms. In gen-

eral these algorithms have time and space complexity in the order of the size of the

metric space. A lO—competitive constant time and space algorithm, BALAN CEZ,

was given by Irani and Rubinfeld [8]. In Chrobak and Larmore [5] the authors

gave a 4—competitive algorithm with constant time and space complexity. For

k = lMl — l, Manasse, McGeoch, and Sleator [11] gave a k-competitive algorithm.

For k = [M] — 2, Bartal and Koutsoupias [1] showed that the WFA is k-competitive.

2.2.2 Results for specific metric spaces

For a Line, a memoryless k—competitive algorithm, DOUBLE-COVERAGE, was

given by Chrobak et. al. [3]. Bartal and Koutsoupias [1] also showed that the WA

is k-competitive for the line. For a Tree metric space, Chrobak and Larmore [6]

gave a k-competitive memoryless algorithm.

If the metric space is a uniform metric space (the distance between any two

points is l), we get the problem of Paging. The points in the metric space are

virtual pages, and the k servers are main memory pages. If a server is at a point,

this means that the corresponding virtual page is in the corresponding main memory

page. We can also consider the metric space as a complete graph. We know there

are k-competitive algorithms for Paging.

2.3 Variations of the k—Server Problem

In the simple k—server problem, all the k servers are equal and the metric space

is symmetric. We can consider some generalizations of the simple problem. These



generalized problems can model many practical online problems which the simple

problem cannot.

We can have different variations by changing a property of the metric space or

by changing the equality of the servers or both. Very little work has been done in

this direction, and the work done is mostly with respect to the paging (caching)

problem (k-server problem with uniform metric space).

In Chrobak et. al. [3] the authors give a solution for the weighted-cache problem,

where the cost of moving a server to a point depends only on that point. This leads

to an asymmetric metric space. The restricted caching problem in Brehob et. al.

[2] leads to the problem where specific servers can only move to specific points in

the uniform metric space. Other variations for the cache problem where each server

has a different serving cost have been considered, like in Epstein, Imreh, and Stee

[13].

For this thesis we consider the following generalization: All servers can move

to every point in the metric space, but each server can serve only certain types

of requests. That is we have a fixed number of request types, and each request

type can only be served by some subset of the k servers. The metric space has

symmetric non-negative weights satisfying the triangle inequality. We call it the

restricted k-server problem (the servers are restricted as to which requests they

can serve).

The most general problem would be one where we have k servers and 2k types of

requests. Each type of request can be served by all servers in one of the 2k subsets

of the k servers.



2.3. 1 Our problem

In this thesis we consider the problem where we have two types of servers and

two types of requests. The type of servers and requests are as follows:

0 There are two types of servers, type A and type B. We call the type A server

the A server and the type B server the B server.

0 There are two request types, type 0 and type 1.

o A servers can serve requests of both types, B servers can serve requests of

only type 1 .

In most cases we consider the problem with just two servers defined below on

different metric spaces.

Definition 3. The restricted 2-server problem on metric space M is the server

problem on M with one A server and one B server.

In some sections, we generalize the results to more than two servers.

Some general conventions are given below:

0 We use uppercase letter words as names of algorithms. OPT is the optimal

algorithm, it solves the omine version-of the problem optimally. ADV denotes

the adversary against the online algorithm. We assume an adaptive offline

adversary, meaning that it generates its next input after seeing the online

algorithm’s current output, and also it produces its output optimally offline.

ON is a general name for any online algorithm.

0 We use uppercase A and B for an online algorithm’s A servers and B servers,

and lowercase a and b for optimal or adversary’s A servers and B servers.

- c We assume that all servers start at the same location.



Chapter 3

Results

In this chapter we present our results for the restricted k-server problem. First

we consider a general metric space, and then we consider two specific metric spaces.

3.1 Any Metric Space

In this section we consider the restricted Z-server problem on a general metric

space. We look at the BALAN CEZ (BALZ) and Work Function (WFA) algorithms.

3.1.1 BALZ

Here we first prove a partial result for any algorithm, and then we prove a

stronger partial result for BALZ.

BALZ was introduced by Irani and Rubinfeld [8]. It is lO-competitive for the

simple Z-server problem and uses constant time and space. The way it works is,

if X and Y are the two servers, when a request comes in, it compares Cx + 2x

with Cy + 2y. Here Cx is the total cost incurred by server X before serving the

current request and x is the distance of server X from the current request. Similarly

for server Y. If the first quantity is smaller, then it uses X to serve the request,

10



otherwise it uses Y. For our restricted problem we only use the cost incurred by

the A server to serve requests of type 1 in making this comparison.

Our basic approach is to split the costs to serve the requests of type 0 and type

1. C is the total cost. CO is the cost to serve type 0 requests and C l is the cost to

serve type 1 requests. C = C0 + Cl.

Notations:

o ng denotes the cost to serve requests of type x (the total cost if x is absent)

using the type y server for algorithm 2, where x can be 0, l or empty, y can

be A or B, and z can be OPT, ON or the name of some online algorithm.

0 C[i, i] denotes the cost from the i“ request to the i“1 request. C [j] = C [l , j]. If

there is no index, then it is the total cost. (x, y or 2 can be added as described

in last point).

0 A; denotes the A server of algorithm 2. Similarly 3,.

o A phase is a maximal contiguous sequence of requests of one type. We can

have a l-phase or a O-phase. A phase can be denoted as [i, j], which means

requests i to j are of one type and requests i — l and j + l are of the other

type.

c A cycle is a l-phase followed by a O-phase. Cycle [i, j, k] means [i,j — l] is a

l-phase and [j, k] is a O-phase.

o The difference between the costs incurred by BALZ’s two servers to service

type 1 requests after the ith request is denoted by F1, i.e. i“, : ICIQALZM —

C1%Au[i]|. F is the value after the last request.

11



Then we have the following.

Lemma 1. For any online algorithm, ON, for any cycle [i,j,k]

COON [is k] S COPTH) k] + CISN [i') k] (31)

Proof. Let AA be the distance between the two A servers before request j. Since

the A servers are aligned before request i we have

AA S COPTfinj — I] + CISNHJ — I]

And we have

COOND, k] = COONUtk]

S COP-TU, k] + AA

S COPT[j)k] + Corrliti — I] + CISNHJ — I]

S COPTH) k] + C13N[1’ k]

D

Theorem 1. For any online algorithm, ON

COON S COPT + CIoN

Proof. Summing equation 3.1 over all cycles we get

COON S COPT + CISN

Hence

COON g Copr + CION (3.2)

El

12



Corollary 1. Any online algorithm is 50/e-competitive for request sequences

for which the cost incurred to serve the type 1 requests is less than (50 — e)%

of the total cost, where e is any positive real number.

Proof. Given the condition of the request sequence we have

SO—e 50+e

CIONS 100 CON and COONZ 100 CON
  

Substituting these values in equation 3.2 we get

 

50 + E 50 — e
< _

100 CON _ COPT+ 100 CON

Ze

WCON S COPT

50

Next we consider BALZ.

Lemma 2. Let bi be the distance between ABM; and BEAU after serving request

i. Let A, = maxjsi 51* Then, after serving the i“ request (i 2 l)

I“, < 2A1

Proof. We prove this by induction on 1. Initially both LHS and RHS are 0. After

the first request F1 3 A], hence F] < 2A1 (assuming the first request is not at the

starting position of the two servers).

Now assume it is true for all values less than i. Consider the ith request. If it

is a type 0 request, then the LHS does not change and the RHS can only increase.

Since [1.] < 2AM we have I“, < 2A,.

If it is a type I request then we look at the server which served the request. Let

x be the distance (before servicing the request) between the request and the server

13



which served the request and let y be the distance between the request and the

other server. Then we have two cases

Case 1 The leading server served the request. Then we must have

Fi_1+ 2x 3 2y

[1+ X S 2A1

r1 < 2A1

Case 2 The lagging server served the request. Then we must have

[1-] + 2y 2 2X (3.3)

The lagging server moves by x. If x 3 PH then IT, < FH < ZAH 3 2A,. If

x > PH then

rt S X— ri—l

I} < 2X -- [1-1

Using equation 3.3 we get

Fi< 2y

I", < 2A1

Since A is bounded above by CQPT [i] we have the following corollary.

Corollary 2. After any request i

rt S ZCOPTm

14



Theorem 2.

I

COBALZ S ZCOPT + 2 CIBALZ

Proof. Summing equation 3.1 (substituting ON with BALZ) over all cycles, we get

COBALz S COPT + CIBALZ

We have

I I

1" < — 1 —
C BALZ — 2C BALZ+ 2r

Using Corollary 2 we have

I

CIBALZ S iCIBALZ + COPT

So we get

I

COBALZ S 2CCPT + ‘Z‘CIBALZ (3-4)

C]

Corollary 3. BALZ is 400/3e-competitive for request sequences for which the

cost incurred to serve the type I requests is less than or equal to (g? — e)% of

the total cost, where e is any positive real number.

Proof. Given the condition of the request sequence we have

399 — e 10—O- + e

3100 CBALZ and COBALZZ 3100 CBALZ
  

CIBALZ S

Substituting these values in equation 3.4 we get

 

too 200
— + e l —- — e

3100 CBALZ S ZCOPT + 2 ’31—0‘6—‘CBAL2

3e

EECBALZ S ZCOPT

400

CBALZ S ‘3— COPT
e

15



We conjecture that the cost of serving type 1 requests, C 1 BALL can be bounded

as follows

CIBAL2 S mCOPT + (2 — 5ICOBAL2

where m is a positive integer and b is a positive real number > O. This bound can

then be combined with Theorem 2 to get a bound for CBALZ-

3.1.2 Work Function Algorithm

Here we consider the WFA for the restricted problem. The WFA was shown to

be (2k — l)-competitive in Koutsoupias and Papadimitriou [9]. We show that an

important property of the simple k—server problem, quasiconvexity does not hold

for the restricted case.

The central idea in the WFA algorithm is the work function, wt(X), which is

the optimal cost of servicing the first t requests and ending up with the servers in

configuration X. The quasiconvexity property is as follows:

Vt,VX,Y,Vx E X, Ely E Y : wt(X) + wt(Y) Z w,(X — x + y) + wt(Y — y + x).

What the property says is that given any two configurations, for any point in

the first configuration there is some point in the second configuration such that if

we swap the two points, the total work function does not increase.

Quasiconvexity does not hold for the restricted problem as seen by the example

in Figure 3.1. For the counterexample we consider the line metric space. Here all

servers start at the same location, p, and the request sequence consists of a single

request of type I at s.

The two figures show the configurations X and Y before and after the swap of

the A servers. As we can see the sum of work function increases from 3): + 2g + 3z

to 3x + 4y + 32 because of the swap.

16



 

 

Config. X B A

P x ‘i u Y 7- §

Config. Y a b

Config. X A B

P x ‘3 y I z §

Config. Y a b

Figure 3.1: Quasiconvexity Counterexample. Here p, q,r and s are

locations. x,y and z are distances between pq, qr and rs respectively.

All servers start at p and there is a single request of type I at s.

Quasiconvexity is critical for the proof in Koutsoupias and Papadimitriou [9] to

work. Although this proof won’t work, we conjecture that the WFA is competitive

for the restricted case, but not k—competitive.

3.2 Line Metric Space

In this section we consider the restricted 2-server problem on a line metric

space. We consider the double coverage approach for it. In Chrobak et. al. [3],

the authors have given the memoryless algorithm DOUBLE-COVERAGE, which

is k—competitive for the k—server problem. A memoryless algorithm is one whose

move depends only on the current configuration and the current request; it does not

look at the past requests. A memoryless algorithm can be described by a function

f : Q x IR ——> Q, where Q is the set of configurations. Memoryless algorithms are

appealing because they are easy to implement.

DOUBLE-COVERAGE behaves as follows: it moves the servers immediately on

the left and right of the request towards the request by an amount equal to the

distance between the closer server and the request. The closer server then serves

17



the request. If there is no server on one of the sides, then DOUBLE-COVERAGE

simply moves the closest server on the other side to the request.

The algorithm tries to ‘cover’ the request from both sides and hence the name.

Since we have two types of requests in the restricted case we need to decide the

double covering strategy for each type of request. The simplest approach is to do

usual double coverage for type 1 requests and only move the A server for type 0

requests. We show below that this strategy is not competitive.

Lemma 3. The simple double coverage strategy described above is not c—

competitive for the restricted k-server problem for any constant c.

Proof. We show this by example.

 

OPT a b

l? x ‘3 y T

ON B A

Figure 3.2: DOUBLE-COVERAGE Counterexample

Here p, q and r are locations on the line, x is the distance between p and q and

y is distance between q and r. The initial positions of the servers for OPT and ON

are given. Since all servers start at the same location (say at p), we can achieve this

configuration by requesting a type I request at r. OPT moves the oppoSite type of

the server moved by ON.

We first request a 0 at q. Both OPT and ON move their A server to q. Then

we request a I at r. OPT doesn’t have to move, ON moves the A server to 1'. Last

we request a. l at p, OPT moves the A server back to p, ON doesn’t have to move.

We end up in the original configuration.

18



By repeating the above requests a large number of times, the costs for the initial

requests needed to reach the above configuration can be neglected. The competitive

ratio will be the ratio for one cycle, which is y/x. By properly choosing x and y we

can asymptotically approach any ratio we want, and hence simple double coverage

is not competitive for any constant c. E]

Here we consider the problem with just 2 servers, but the above proof easily ex-

tends to more than 2 servers with at least one A server. We believe a strategy which

never moves the B server for requests of type 0 will not be constant competitive.

We give an algorithm, called MDC (for Modified Double Coverage), for the

restricted Z-server problem and show that it is competitive. The algorithm works

as follows: For an outside (not between A and B) request of type 0 on the B server

side, MDC does partial double coverage— it moves the A server to the request

point, but moves the B server only till the original position of the A server. For

all other outside requests it just moves the nearer server to serve it. For an inside

request MDC does complete double coverage.

MDC does simple double coverage for type I requests. It crosses servers for type

0 requests that are nearer to the B server than the A server. The intuition behind

crossing servers is as follows: If MDC has to move the A server from position p to

position q to serve a type 0 request, it needs to cover position p with another server,

because the adversary might might have a server at p and use it to call MDC’s

A server back. And since the A server can serve type I requests, the adversary

could use a type I request to bring MDC’s A server back; thus moving the B server

nearer to p may be helpful. We show that MDC is 6-competitive for the restricted

2-server problem on the line.

19



Theorem 3. MDC is 6-competitive for the restricted Z-server problem on the

line.

Proof. The proof technique is similar to the proof technique used to show

DOUBLE-COVERAGE is competitive in [3]. We show this by finding a nonneg-

ative potential function, (i), such that for any request:

1. when ADV serves it, (I) does not increase by more than 6 times the distance

moved by ADV, and

2. when MDC serves it, 4) decreases by at least the distance moved by MDC.

If the COSTMDC and COSTADV are the total costs of MDC and ADV, then

after serving all the requests, the maximum increase in (b is 6COSTADV, and the

minimum decrease in (I) is COSTMDC. Let (be be the initial value and (1),, be the

final value of (I). Since (I) is nonnegative, we have

0 g (I)n = (1)0 + increase in (I) — decrease in d)

0 S (be + 6COSTADV — COSTMDC

COSTMDC S 6COSTADV + To

This shows that MDC is 6-competitive. We give the potential function (I) below

and show that it has the above properties.

We define the following distances: LI. is the distance between the left (server on

the left side on the line) servers of MDC and ADV. Similarly RR is the distance

between the right servers of MDC and ADV. Ad is the distance between server A

(MDC’s A server) and server a (ADV’S A server). Similarly we define Ab, Eb and

AB. Let (1)1 2 LI. + RR, ([92 :2 Aa + min{Ab, Bb} and ([33 2 AB. Then we use the
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following potential function

¢=4¢1+2¢2+¢3

Let (1 be the distance ADV moves its server to serve the request (assuming a

lazy adversary). Clearly (I); increases by at most (1. Depending on which server

ADV moves, only one of the two terms of (I); can change and increase by at most

(1. (I)3 does not change. So (I) can increase by at most 4d + 2d 2 6d. Hence (I) has

property (1).

Then when MDC moves to serve, we have the following cases. Without loss of

generality we assume that A is the left server and B is the right server.

Case 1 Simple outside request. This includes any request to the left of A and type I

request to the right of B. The algorithm moves the closer server to serve the

request.

ADV a

MDC A B

 

c
s
-

Figure 3.3: One simple outside request. There is a type I request at

position p and ADV uses a to serve it. MDC moves B to p to serve

the request. x is the distance between the original positions of A and

B. y is the distance B moves.

Figure 3.3 shows one example, but we consider all simple outside requests.

No matter where the other ADV server is, one term in (In does not change

and the other decreases by y. So (I); decreases by y.
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Case 2

If the request is to the left of A, then (I); cannot increase, because, depending

on which server ADV uses, one of the terms in (I); decreases by y, and the

other cannot increase by more than y.

If the request is to the right of B then (I); increases by at most y, since the

first term does not change and the second can increase by at most y.

(I)3 always increases by y. So we have

decrease in¢24y—2y—y 2y

Non-crossing inside request. This includes any inside request nearer to A and

type I request nearer to B. The algorithm does the double coverage in all

cases and there is no crossing of servers.

ADV

MDC A B

Figure 3.4: One non-crossing inside request. There is a type I request

at position p and ADV uses a to serve it. MDC moves A to p to

serve the request, and moves B to position q to double cover. x is the

distance between the original positions of A and B. y is the distance

A and B move.

Again, figure 3.4 shows one example but we consider all non-crossing inside

requests. While one of the terms in (I); may increase by y, one of the terms in

(I); decreases by y, so (I); cannot increase. Similarly, while one of the terms in

(I); might increase by y, one of the terms in (I); decreases by y, so (I); cannot

increase. (b3 decreases by 2y. So we have

decrease in (I) 2 O + O + 2y 2 2y
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Case 3

Case 4

Crossing inside request. This is an inside request of type 0 nearer to B.

ADV

MDC A B

Figure 3.5: Crossing inside request. There is a type 0 request at

position p and ADV uses a to serve it. MDC moves A to p to serve

the request, and moves B to position q to double cover. x is the

distance between the original positions of A and B. y is the distance

A and B move.

If b is on the left of a, then LI. cannot increase by more than (x — y), and

RR decreases by (x — y). If h is on the right of a, then RR cannot increase by

more than (x — y) and LI. decreases by (x — y). So (I); cannot increase.

Aa decreases by y. Since the final position of B is (x — y) away from original

position of A, and vice versa, the min term cannot increase by more than

(x—y). So (I); decreases by at least y — (x —y) 2 2y —— x.

(I)3 decreases by 2(x — y). So we have

decrease in (I) 2 O +2(2y — x) +2(x —y) 2 2y

Outside request to O on B’s side. In this case MDC does double coverage, but

stops B at the original position of A.

Since B’s final position is the same as A’s original position, LL never changes.

RR always decreases by y, no matter where server b is. So (I); decreases by y.

Aa always decreases by (x + y). The min term cannot increase by more than

y, since B takes A’s place, and A’s final position is distance y from B’s original

position. So (I); decreases by at least (x + y — y) = x.
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ADV a

 

l

I

MDC A B

Figure 3.6: Outside request to O on B’s side. There is a type 0 request

at position p and ADV uses a to serve it. MDC moves A to p to serve

the request, and moves B to the original position of A to double cover.

x is the distance between the original positions of A and B. A moves

a distance of x + y and B moves a distance of x.

(I)3 increases by y. So we have

decrease in (I) Z 4(y) + 2(x) — (y) 2 2x + y

In each case the decrease in (I) is at least equal to the distance moved by MDC.

Hence (I) also has property (2) [:1

3.2.1 More Than 2 servers

In this section we consider the restricted problem with more than 2 servers.

The types of servers and requests are the same. We consider the problem with one

A server and k —- I B servers for a total of k servers. We call this the restricted

ABk‘I-server problem. We consider the restricted AB“‘"‘-server problem on the

line.

This is a simple generalization of the restricted Z-server problem, and MDC

works for this problem. The only difference in our analysis is for the case where

we have B servers both between the A server and a type 0 request and also on the

other side of the type 0 request. MDC works as follows:

It does the regular double cover for type I requests. For a type 0 request, let

p be the position of the type 0 request and q be the position of the A server.

We define regionl as the region between p and q, and region2 as the region
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on the other side of p. MDC always moves the A server from q to p to serve

the request. It moves other servers as follows:

— If there is no B server in both regionl and region2, MDC moves no other

server.

— If there is at least one B server in region2 and no B server in regionl,

then MDC does the usual double cover, with possibly crossing servers.

— If there is at least one B server in regionl and no B server in region2,

then MDC moves the B server in regionl that is closest to p, to q.

— If there is at least one server in both regions, then let S; be the B server

in regionl closest to p. Then SH; is the B server in region2 that is closest

to p. Let x be the distance of S; from q and y be the distance of S; from

p. Then MDC moves S; to q, and then it moves SH; by a distance y

towards p. Note here that the sum of the distances moved by the two B

servers is x + y which is equal (and in opposite direction) to the distance

moved by the A server.

We show that MDC is (2k + 3)-competitive.

Theorem 4. MDC is (2k+3)-competitive for the restricted AB"‘I -server prob-

lem on the line.

Proof. The proof is similar to the last proof; the main change is a slightly difierent

potential function. Here the potential function must have the following properties:

1. when ADV serves a request, (I) does not increase by more than (2k + 3) times

the distance moved by ADV, and
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2. when MDC serves a request, (I) decreases by at least the distance moved by

MDC.

As in the last proof, if such a nonnegative (I) exists then MDC is (2k + 3)-

competitive. We give the (I) below and show that it has the above properties.

Let S; be MDC’s servers and s; be ADV’s servers, both numbered from left

to right. Let (I); = 2;, Is; — 3;], (I); = An and (I)3 = Z S; — 3;). We use the
i<j(

following potential function

¢=(2k+1)¢1+2¢2+2¢3

Let (1 be the distance ADV moves its server to serve the request (assuming a

lazy adversary). Clearly (I); and (I); can both increase by at most (1. (I)3 does not

change. So (I) can increase by at most (2k + I)d + 2d = (2k + 3)d. Hence (I) has

property (1).

To prove property (2), we first consider the case when the request is of type I.

There are two possible cases. In the figures, we only show the MDC’s servers which

move .

Case 1.1 Outside request (all servers on one side of the request point). MDC moves

the closest server to serve the request.

ADV 5i

l

I

MDC (all other servers) Sk

1
3
-
1
-

Figure 3.7: Outside request. There is a type I request at position p

and ADV uses 5; to serve it. Sk is the rightmost server of MDC and

Sk moves to p to serve the request. x is the distance Sk moves.
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Since j g k, (I); decreases by x. (I); cannot increase by more than x. (I)3 always

increases by (k —— I)x. So we have

' decrease ind>2 (2k+l)x—2x—2(k—I)x=x

Case 1.2 Inside request (request between two servers). MDC does double cover in all

cases and there is no crossing of servers.

ADV 5i

MDC Si 51+]

Figure 3.8: Inside request. There is a type I request at position p and

ADV uses 5; to serve it. S; is the MDC’s server nearest to p and S;+;

is the nearest server on the other side of p. MDC moves S; to p to

serve the request, and moves S;+; to position q to double cover. x is

the distance between the original positions of S; and S;+;. y is the

distance S; and S;+; move.

Depending on whether j g i or j > i, one of the terms (either ith or (i+ I )3’) in

(I); decreases by y. The other increases by at most y. So (I); cannot increase.

(I); can increase at most by y. (I); decreases by 2y. So we have

decrease in (I) 2 O — 2g + 2(2y) 2 2y

Now we consider the case when the request is of type 0. Depending on whether

or not there are B servers in regionl and region2, we get the following four cases.

Case 2.1 No B servers in both regions. MDC just moves the A server to the request

point.

This case is equivalent to Case 1.1.
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Case 2.2 No B server in regionl and at least one B server in region2. Here MDC does

double cover using the A server and the B server in region2 closest to the

request point. Depending on whether or not the servers cross we get two

cases.

Case 2.2.1 The servers do not cross.

This case is equivalent to Case 1.2.

Case 2.2.2 The servers cross.

 

a

ADV 1 1y Sui .

MDC 5'1 a X B 51;]

It ('3'.

Figure 3.9: Only regionl empty, with servers crossing. There is a type

0 request at position p and ADV uses 5; to serve it. S; is MDC’s A

server and S;+; is the B server in region2 nearest to p. MDC moves

S; to p to serve the request, and moves S;+; to position q to double

cover. x is the distance between the original positions of S; and S;+;.

y is the distance S; and S;+; move.

While one term, out of Is; — 5;] or |s;+; — S;+;|, in (I); might increase by

x — y, the other term decreases by (x — y). Thus (I); cannot increase. (I);

decreases by y. (I)3 decreases by 2()( — y). So we have

decrease in (I) 2 O +2y +2(2(x —y)) 2 2x 2 2y

Case 2.3 No B server in region2 and at least one B server in regionl. In this case, MDC

moves the A server to the request point and the B server in regionl closest to

the request point to the original position of the A server.
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ADV 5i

MDC Si Sk

Figure 3.10: Only region2 empty. There is a type 0 request at position

p and ADV uses 5; to serve it. 5; is MDC’s A server and 8;; is MDC’s

rightmost server. MDC moves 5; to p to serve the request, and moves

S;‘ to the original position of S; to double cover. x is the distance

between the original positions of S; and Sk. 5; moves by distance

x +1; and S;< moves by distance x.

'
’
t
H
i
t
-
m

Here only the kth term in (I); changes, and it decreases by y, so (I); decreases

by y. (I); decreases by (x + y). (I); increases by (k — I)y. So we have

 II

decrease in¢2 (2k+l)(y)+2(x+y)—2(k—I)y 22x+y

Case 2.4 At least one B server in both regions. This case is shown in figure 3.11 below.

 

C1

II

ADV 5)

l l y 1 z 1

I x T fi 1

MDC Si 51 51+]

II II Ii

A Bt Bt+I

Figure 3.11: Neither region empty. There is a type 0 request at position

p and ADV uses 5; to serve it. 5; is MDC’s A server. S; and SH; are

MDC’s B servers in regionl and region2, respectively, nearest to p.

x is the distance between the original positions of S; and 5;, y is the

distance between S; and p, and z is the distance between p and S;+;.

MDC moves 5; to p to serve the request. It moves 3; to the original

position of S; and moves SH; by a distance y towards p. S; moves by

distance x + y, S; moves by distance x and 51+; moves by a distance

y.  
If 7. 2 y, then S; and SH; will not cross (S; would be renamed as 3;). In this

case, depending on whether j g l or j > I, either the 1”1 term or the (1+ I)st
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term in (I); will decrease by y, and the other can increase by at most y. So

(I); does not increase.

If z < y, then S; and S;+; will cross (S; will be renamed as S;+; and S;+; will

be renamed as 3;). In this case, depending on whether j g I or i > I, either

the 1"11 term or the (1+ I)st term in (I); will decrease by z, and the other can

only increase by at most 2. So (I); does not increase.

(I); decreases by (x + y).

If 2 2 y, we can view the movement of MDC’s servers as S; and SH; moving

towards each other by a distance y, so (I)3 decreases by 2y. And if z < y, we

can view the movement of MDC’s servers as S; and S;+; moving towards each

other by a distance 1. So (I)3 decreases by 22. In either case, we can say that

(I)3 does not increase.

So we have

decrease in (I) Z 0+2(x+y) +O=2(x+y)

In each case, the decrease in (I) is at least equal to the distance moved by MDC.

Hence (I) also has property (2) E]

The problem with more than one A server is much more complex than the

problem with just one A server. MDC does not easily extend to the case with

more than one A server. We conjecture that no memoryless algorithm is constant

competitive for this case.

3.3 Uniform Metric Space

In this section we consider the restricted problem with the uniform metric space

(or the complete graph). The cost to move a server from any point to any other
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point is I. We consider the problem with more than two servers. Let n be the

number of points in the metric space, k be the number of A servers and I be the

number of B servers. We assume that k < I. We call this problem the restricted

AkBI-server problem on Kn, where Kn is the complete graph on n vertices.

For this problem we assume that requests are always generated at points where

the online algorithm does not have a server which can serve the request. That is

the online algorithm faults on all requests. We can easily trim (since it can only

reduce the optimal cost) any request sequence to get this property. We consider

the following two cases.

331 k+l=n

For the simple k—server problem, this case is trivial. However, for the restricted

problem it is not trivial.

First we consider the case with just two servers, one A server and other B

server, and two points, that is the restricted AB-server problem on K;. We give an

algorithm, USEB (for USE the B server whenever possible), which works as follows:

it always uses the B server to serve a request of type I. We prove that USEB is

3-competitive.

Theorem 5. USEB is 3-competitive for the restricted AB-server problem on K;.

Proof. We cut the input sequence into phases as follows: A new location is a

location where a request of a particular type has not been requested in the current

phase. A request of type 0 at the 2nd new location ends the current phase. The

request ending the current phase is part of the next phase.
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Because of the way the phases are defined, OPT must have one fault correspond-

ing to each phase. A simple case analysis shows that the maximum length of a phase

can be 3. This gives a competitive ratio of 3. E]

Next we consider more than-2 servers, that is the restricted AkBl-server problem

on Kk+;. We extend the phase definition as follows. Since there are k (instead of I)

A servers, a phase ends when a type 0 is requested at the (k + I)”t new location.

Again the ending request is not part of the current phase.

USEB still always uses B servers to serve requests of type I. It uses a marking

scheme to select which B server to use as follows:

USEB uses two types of marks, type I-mark and type O-mark. If a server serves

a type x request it gets a type x-mark. When a request of type 0 comes in, USEB

uses any one of the type O-unmarked A servers. When a type I request comes in,

it uses any one of the type I-unmarked B servers. When USEB moves an A server

to a location where there is already a B server, it unmarks that B server. At the

end of a phase, USEB converts all 0 marks into I marks.

Theorem 6. USEB is 3k-competitive for the restricted AkBl-server problem on

Kk+l-

Proof. As before, because of the way a phase is defined, OPT must have at least

one fault corresponding to each phase. USEB faults on every request, so we find a

limit on the number of requests in a phase.

From the way the algorithm works, we can never have a type I request when

there is no unmarked B server. The 0 request, when there is no type 0 unmarked

A server, ends the phase. Thus there are at most k type 0 requests in a phase. At

the start of a phase there can be a maximum of k unmarked B servers (except for
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the first phase) corresponding to the k A servers being co-located with k B servers.

During a phase USEB can unmark a maximum of k B servers. So we can have

maximum of k type 0 requests and 2k type I requests, which gives a competitive

ratio of 3k. [:1

332 k+I<n

In this case there are two ways for a phase to end. A phase ends when either a

O is requested to the (k + I)“t new location or any request (0 or I) is requested to

the (k + I + I )3" new location. Also, at the end of a phase, everything is unmarked.

For this case we give the algorithm, BTHENA (for first B THEN A), which is a

natural extension of USEB. It works as follows: When a type I request comes in,

the algorithm first uses any unmarked B servers, and if there are none, then it uses

any unmarked A servers.

Theorem 7. BTHENA is 3k+ l-competitive for the restricted AkBI-server prob-

lem on K; (k+l<n).

Proof. The proof is similar. A type 0 request when there is no O-unmarked A

server ends the phase, and a type I request when there is no unmarked server ends

the phase. In the worst case there can be k + I type I requests to get all servers

I-marked, k type 0 requests to get the A servers 0 marked (and potentially k B

servers unmarked), and k more type I requests to get the B servers remarked. So

there can be a maximum of 3k +1 requests giving a competitive ratio of 3k +1. [I
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Chapter 4

Conclusion

In this thesis we consider the k-server problem. We first described the k—server

problem and then described the current work done in the field. We then discussed

various generalizations of the normal k-server problem and we studied one gener—

alization which we called the restricted k-server problem. In this generalization,

we have different types of servers and types of requests. Certain types of servers

can only serve certain types of requests. The particular problem we look at in the

thesis has two types of of servers, A and B, and two types of requests 0 and I. An

A server can serve both types of requests, and a B server can only serve type I

requests.

We looked at the restricted k-server problem with three metric spaces: the

general metric space, the line metric space, and the uniform metric space. For the

general metric space, we proved a partial result for the BALAN CEZ algorithm. For

the line metric space, we give a competitive algorithm which is a modified version

of the DOUBLE-COVERAGE algorithm. We give competitive algorithms for the

uniform metric space.
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In the future we wish to extend the results of this thesis and prove the conjec-

tures that we make. In particular we wish to complete the partial result for the

BALAN CEZ algorithm. We also think the work function algorithm is competitive

and wish to prove so.

The generalization that we consider in this thesis is a very simple one. The

problem with more complex relations between types of servers and types of requests

is much more difficult, and a lot of work can be done in this area.
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