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ABSTRACT 
 

THE PERFORMANCE OF MLR, USLMV, AND WLSMV ESTIMATION IN STRUCTURAL 
REGRESSION MODELS WITH ORDINAL VARIABLES 

 
By 
 

Cheng-Hsien Li 
 

      In the educational, social, and behavioral sciences, ordered observed categorical 

variables are commonly used to operationalize latent constructs in structural regression 

models. Treating ordinal manifest variables as if they were continuous, the precision and 

accuracy of model parameter estimates, standard errors, and chi-square goodness of fit 

statistics are likely compromised, leading to invalid statistical inferences. Three robust 

estimators − robust maximum likelihood (MLR), robust unweighted least squares (ULSMV), 

and robust weighted least squares (WLSMV) − have been proposed in the literature over the 

past two decades, and are considered to be superior to normal theory-based maximum 

likelihood (ML) when ordinal observed variables are analyzed. 

      The purpose of this thesis was to carry out a Monte Carlo simulation study, in order to 

compare the performance of ML, the most widely known estimation method, with the three 

robust estimators (MLR, ULSMV, and WLSMV) on parameter estimates, standard errors, and 

chi-square goodness of fit statistics in a five-factor structural regression model with ordinal 

observed variables. There were 4 (level of asymmetric distributions of ordinal observed 

variables: symmetry, slight and moderate asymmetry, as well as bipolarization) × 4 (number 

of observed variables’ categories: 4, 5, 6, and 7) × 7 (sample size: 200, 300, 400, 500, 750, 

1,000, and 1,500) = 112 conditions in the study. Five hundred data sets were generated under 

each experimental condition. Model parameters, standard errors, chi-square goodness of fit 

statistics, and RMSEA were estimated for each replication using ML, MLR, ULSMV, and WLSMV. 

Data generation and analysis were performed with Mplus 7.  

      The results reveal that (1) the four estimators are all subjected to non-convergence 



problems with 4-category, moderately asymmetric data in the smallest sample size N = 200; 

(2) WLSMV and ULSMV are likely to produce inadmissible solutions in some conditions with 

sample sizes N = 200 or 300; (3) WLSMV and ULSMV yield more accurate factor loading 

estimates than ML and MLR across all conditions in the study; (4) the estimates of structural 

coefficients under ML and MLR outperform WLSMV and ULSMV in all symmetric data conditions, 

whereas WLSMV and ULSMV surpass ML and MLR in nearly all asymmetric data conditions; (5) 

the robust standard errors of factor loadings obtained with ULSMV are more precise than those 

produced by WLSMV and MLR across all conditions; (6) the robust standard errors of structural 

coefficients obtained with WLSMV are more precise than those with ULSMV and MLR in all 

asymmetric data conditions; (7) among the three robust estimators, MLR is inferior to WLSMV 

and ULSMV in controlling for Type I error rates of testing overall model fit in almost every 

condition, unless a larger sample size is used (i.e., N = 1,000 in this thesis); (8) RMSEA seems 

to be a reliable index in the evaluation of overall model fit when the model has no specification 

error; (9) the benefit of using diagonal weights can be found in the estimation of factor 

loadings and structural coefficients as well as robust standard errors of structural coefficients, 

but not in the estimation of robust standard errors of factor loadings and the mean- and 

variance-adjusted chi-square goodness of fit statistics across all conditions; and (10) the 

accuracy and precision of factor loading and structural coefficient estimates and standard error 

estimates of factor loadings and structural coefficients improve with increasing sample size 

and number of observed variables’ categories but decrease with a greater level of asymmetric 

distributions. 

      Collectively, the findings from this study provide a better understanding of the 

performance of the three robust estimators, and aim to inform the work of applied researchers 

with respect to the importance of attending to assumption violations and selecting an 

“appropriate” estimator under circumstances frequently encountered in practice. Finally, 

implications of the findings for structural regression models using these four estimators are 

discussed, as are the limitations of this study as well as potential directions for future research. 
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CHAPTER 1 

INTRODUCTION 

 

     Observed variables measured with a set of ordered categories (e.g., using Likert-type 

scales) are commonly employed to operationalize latent constructs in the educational, social, 

and behavioral sciences. Unlike continuous variables, calculation of means, variances, and 

covariances for ordered observed categorical variables (i.e., ordinal observed variables) is in 

general meaningless due to the lack of substantively interpretable origins and metrics for 

these variables (Jöreskog, 2005). When it comes to a statistical model, one with ordinal data 

on outcome variables entails different parameter specification than a model with continuous 

response variables. By treating ordinal observed variables as if they were continuous, applied 

researchers may not only possibly undermine the precision and accuracy of model parameter 

estimates − to varying degree depending on models, data characteristics, and related 

circumstances − but also arrive at misleading scientific conclusions drawn from empirical data. 

This problem, which generally plagues applied researchers utilizing various statistical 

frameworks, is also inevitable when employing latent variable modeling (LVM), in particular 

confirmatory factor analysis (CFA) and structural equation modeling (SEM). 

 

      Over the past few decades, an extensive body of research has used structural regression 

models in the applied educational, behavioral, and social science literature. A structural 

regression model takes into account the measurement error of observed variables, and it 

simultaneously captures the linear relationships among latent constructs of interest. The most 

widely known estimator used in structural regression (SR) models is the normal theory-based 

maximum likelihood (ML) method. This is largely due to its optimal properties of asymptotic 

unbiasedness, consistency, normality, and efficiency (Bollen, 1989). Use of ML, however, 
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assumes that the observed variables are continuous and multivariate normally distributed in 

the population conditional on the covariates if included in the model (Bollen, 1989; Jöreskog, 

1969). Therefore, ML is not, strictly speaking, appropriate for observed variables that are 

scaled ordinally. Several estimators with robust corrections to standard errors and chi-square 

goodness of fit statistics, such as robust ML (MLR: Muthén & Muthén, 2010), robust 

unweighted least squares (ULSMV: Muthén, 1993; Satorra & Bentler, 1994), and robust 

weighted least squares (WLSMV: Muthén, du Toit, & Spisic, 1997), have been proposed in the 

literature, and are considered superior to “conventional” ML when ordinal data on response 

variables are employed in latent variable analysis. It is noted in passing that robust ML has 

been suggested for use when ordinal observed variables have at least five response categories 

(e.g., Johnson & Creech, 1983; Rigdon, 1998; Raykov, 2012, and references therein). The 

robust ML estimator is also frequently used by applied researchers, based on the argument 

that ordinal data on response variables could be considered “approximately continuous” if the 

number of observed variables’ categories is sufficiently large. 

 

      A growing number of simulation studies have compared the relative performance of 

different estimators in ordinal CFA (Hoogland & Boomsma, 1998). However, one major 

limitation of previous ordinal CFA simulation studies is that researchers may have devoted less 

attention to inter-factor correlation estimates. Some simulation studies examined the joint 

performance of both factor loading and inter-factor correlation estimates (see, e.g., Lei, 2009; 

Yang-Wallentin, Jöreskog, & Luo, 2010). Yet, the performance of different robust estimation 

methods on inter-factor correlation estimates is unclear and unexplored. Although a few 

simulation studies compared the performance of different estimation methods in an SR model 

with ordinal observed variables (see, e.g., Anderson, 1996; Coender, Satorra, & Saris, 1997), 
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they failed to incorporate robust corrections to standard errors and chi-square statistics and 

excluded the effect of number of observed variables’ categories. To date, no simulation study 

has been identified in the extant literature that has employed an SR model with ordinal 

observed variables to compare the performance of robust estimators since the three robust 

estimators were developed and made available in widely circulated computer programs. 

Therefore, the comparison of the performance of robust estimators on structural coefficients 

remains an open research question. Additionally, the performance of MLR implemented in 

Mplus has not yet been systematically evaluated in the literature. Given that robust estimators 

have recently received considerable attention also in applied research settings, it can be 

expected that findings on their performance in structural regression models with ordinal data 

on response variables, in particular of the three robust estimators (MLR, WLSMV, and ULSMV), 

would be of particular importance for empirical researchers in the educational, social, and 

behavioral sciences. 

 

      The central objective of this thesis is to carry out a Monte Carlo simulation study 

addressing gaps in the extant literature and contributing to our understanding of the impact of 

ordinal observed variables on parameter estimates, in particular (but not limited to) of 

structural regression coefficients, their associated standard errors, the chi-square goodness of 

fit statistics, and RMSEA in SR models. Another important objective is to compare the 

performance of the four different estimators (ML, MLR, ULSMV and WLSMV) in SR models with 

ordinal observed indicators under different experimental conditions. Findings from this study 

are expected (1) to inform the work of applied researchers with respect to the importance of 

attending to assumption violations, and (2) to translate directly into recommendations for 

selecting an “appropriate” estimator under empirical circumstances frequently encountered in 
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current research practice. Finally, implications of the findings for structural regression models 

using these four estimators are discussed, and the limitations of this study as well as 

potentially directions for future research are discussed. 

 

      The remainder of this dissertation is organized as follows. It begins by (1) delineating the 

parameterization of a structural regression model with ordinal observed variables, followed by 

(2) describing the estimation of thresholds and polychoric correlations, subsequently (3) 

introducing two major estimation approaches: least squares and maximum likelihood, then (4) 

providing a brief review of prior research that has investigated the behavior of the four 

estimators in applications, (5) presenting the aims of the study, (6) outlining the model 

specification, simulation design, and evaluation criteria, (7) reporting the results, and finally (8) 

concluding with a discussion of limitations of this study, recommendations for applied 

researchers, and directions for future research, as well as a series of brief “take-home” 

messages for empirical researchers. 

 

Structural Regression Models 

      A structural regression model (i.e., a structural equation model with a regression 

relationship between some of its latent variables) permits testing hypothetical 

associations/relationships among latent variables measured each by a set of observed 

variables. A structural regression model with ordinal observed variables, in general, consists of 

two components: (i) the measurement models and (ii) the structural model. The measurement 

models can be expressed as follows (Bollen, 1989) 

 

y* = vy* + Λy*η + ε, (1) 
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and 

 

x* = vx* + Λx*ξ + δ, (2) 

 

where vy* is a p × 1 vector of intercept terms for y*, vx* a q × 1 vector of intercept terms for x*, 

y* represents a p × 1 vector of latent response variables y*s underlying ordinal observed, 

endogenous variables ys, x* a q × 1 vector of latent response variables x*s underlying ordinal 

observed, exogenous variables xs, Λy* a p × m matrix of factor loadings for y*, Λx* a q × n 

matrix of factor loadings for x*, η an m × 1 vector of endogenous latent variables, ξ a n × 1 

vector of exogenous latent variables with E(ξ) = κ and Cov(ξ) = Φ (a n × n 

variance-covariance matrix of latent variables ξ), ε a p × 1 vector of measurement errors in y* 

with E(ε) = 0 and Var(ε) = Θε (a p × p diagonal matrix of residual variances for y*, assuming 

measurement errors ε are uncorrelated with all other measurement errors and latent variables 

η), δ a q × 1 vector of measurement errors in x* with E(δ) = 0 and Var(δ) = Θδ (a q × q 

diagonal matrix of residual variances for x*, assuming measurement errors δ are uncorrelated 

with all other measurement errors and latent variables ξ). It is also assumed that ε is 

uncorrelated with δ.  

 

      The structural model is defined as 

 

η = α + Bη + Γξ + ζ, (3) 

 

where α is an m × 1 vector of latent means for η, B an m × m matrix of structural regression 
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coefficients with zero diagonal elements among η (assuming |I − B| ≠ 0), Γ an m × n matrix 

of structural regression coefficients between ξ and η, ζ an m × 1 vector of disturbance terms 

in η with E(ζ) = 0 and Cov(ζ) = Ψ (an m × m diagonal matrix of residual variances for η, 

assuming disturbance terms ζ are uncorrelated with all other disturbance terms and latent 

variables ξ). It follows that E(η) = (I − B)−1(α + Γκ) and Cov(η) = (I − B)−1(ΓΦΓ’ + Ψ)(I − 

B)−1’. 

 

      Let θ denote the vector of model parameters. Then, the mean structure for the latent 

response variable (y*, x*) of a general structural regression model parameterized in θ can be 

expressed as 

 

µ(θ) = 
µμ  !∗
µμ  !∗ , (4.1) 

 

where µy* = vy* + Λy*(I − B)−1(α + Γκ) and µx* = vx* + Λx*κ.  

 

      Similarly, the covariance structure implied by this model can be expressed as  

 

Σ*(θ) = 
𝚺!∗!∗ 𝚺!∗!∗
𝚺!∗!∗ 𝚺!∗!∗

, (4.2) 

 

where Σx*x* = Λx*ΦΛ’x* + Θδ, Σy*y* = Λy*(I − B)−1(ΓΦΓ’ + Ψ)(I − B)−1’Λ’y* + Θε, and Σy*x* = 

Λy*(I − B)−1ΓΦΛ’x*. Unlike a structural regression model with continuous observed variables, 

the variances of measurement errors (i.e., the diagonal elements of Θδ and Θε) are not 

identified here. These variances can be identified by either standardizing the latent response 
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variables y* and x* or standardizing the measurement errors δ and ε. The former is the default 

given by the Delta parameterization in Mplus; the latter is referred to as Theta 

parameterization (Muthén & Muthén, 2010). In order to introduce metrics for the latent 

response variables, the variances of the latent response variables y* and x* have been 

assumed for convenience to be equal to 1 when ordinal observed variables are observed. 

Therefore, Θδ has to be constrained as 

 

Θδ = I – diag(Λx*ΦΛ’x*), (4.3) 

 

and Θε has to be constrained accordingly as 

 

Θε = I – diag(Λy*(I − B)−1(ΓΦΓ’ + Ψ)(I − B)−1’Λ’y*). (4.4) 

 

As a consequence, the Σ*(θ) has unit diagonal elements and therefore reduces as a correlation 

matrix implied by the model under consideration. Next, the relationships between the latent 

constructs (η and ξ) and underlying latent response variables (y* and x*) are estimated via 

analysis of the correlation matrix among the latent response variables y* and x*, using the 

ordinal observed data. 

 

Thresholds and Polychoric Correlations 

      A correlation between two normal, latent response variables is referred to as a 

polychoric correlation, for which the two ordinal observed indicators have at least three 

response categories. A polychoric correlation is typically estimated using a two-stage 

procedure proposed by Olsson (1979; also see Bollen, 1989; Jöreskog, 2005): (i) the 
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estimation of thresholds from the univariate marginal distributions, and (ii) the estimation of 

polychoric correlations through the bivariate marginal distributions for given the threshold 

estimates. 

 

     A continuous, normal, latent response variable y* underlies an ordinal observed variable 

y in the population:  

 

y = c, if τc−1 < y* < τc,  c = 1, 2, …, g, (5) 

 

where c defines the observed value of an ordinal variable y, τ is the threshold (−∞ = τ0 < τ1 < 

τ2 …< τg−1 < τg = ∞), and g is the number of ordered categories. In the educational, 

behavioral, and social sciences, many latent constructs of interest are “conceptually” 

continuous, and therefore assuming an underlying continuous y* is a reasonable approach 

(Coenders, Satorra, & Saris, 1997). For example, a respondent tends to endorse the kth 

response category when her/his latent response value y* lies between τk−1 and τk. The ordinal 

observed data only provide an approximation of the underlying continuous, latent response 

variable because ordered observed categorical data in nature are discrete. A standard normal 

distribution is selected for the latent response variable y* with a probability density function 

𝜙! u = !
!!
e!

  !!
! ,−∞   < u <   ∞ and a cumulative distribution function Φ!(u). The probability of 

the ith category response is obtained as 

 

πi = p (y = i) = p (τi−1 < y* < τi) = 𝜙!(u)
!!
!!!!

𝑑𝑢 =   Φ! τ! − Φ!(τ!!!), (6) 
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and it follows that 

 

τ! = Φ!
!! π! +   π! +⋯ ,+  π! ,  i = 1, 2, …, g−1, (7) 

 

where Φ!
!! is the inverse of the standard normal cumulative distribution function. Next, τi 

can be estimated as 

 

τi = Φ!
!! p! +   p! +⋯ ,+  p! , i = 1, 2, …, g−1, (8) 

 

where pi is the sample proportion of responses in category i. It is noted that the threshold 

estimation model is saturated. Namely, the number of threshold parameters (i.e., m−1) is 

equal to the number of non-redundant sample proportions. 

 

      Let each ordinal observed variable y1 and y2 have g1+1 (τ1,1, τ1,2 …, τ1,g1) and g2+1 (τ2,1, 

τ2,2 …, τ2,g2) categories, respectively. Assume that underlying variables y1
* and y2

* are both 

standard normal distributions with zero means, unit variances, and a correlation ρ. A standard 

bivariate normality of y1
* and y2

* is also assumed with its probability density function 

𝜙! u, v, ρ = !
!" (!!!!)

e
!  !

!!!"#$!!!

!(!!!!) ,−∞   < u, v <   ∞. This correlation ρ between y1
* and y2

* defines a 

polychoric correlation. The likelihood function of yielding the observed bivariate sample can be 

defined as 

 

L = C π!"!!"
!!!!
!!!

!!!!
!!! , (9) 
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where C is a constant and nij is the frequency in cell (i, j) of a bivariate contingency table. πij 

is the probability in cell (i, j) defined as 

 

πij = p (y1 = i, y2 = j) = p (τ1,i−1 < y1
* < τ1,i, τ2,j−1 < y2

* < τ2,j) 

        = ϕ!(u, v, ρ)
!!,!
!!,!!!

dudv!!,!
!!,!!!

, 
(10) 

 

which can then be rewritten as 

 

πij =   Φ! τ!,!, τ!,!, ρ − Φ! τ!,!, τ!,!!!, ρ − Φ! τ!,!!!, τ!,!, ρ + Φ! τ!,!!!, τ!,!!!, ρ , (11) 

 

where Φ! is the standard bivariate normal cumulative distribution function with the 

correlation coefficient ρ. Take the natural logarithm of the likelihood function L and the partial 

derivative on lnL with respect to ρ: 

 

lnL = lnC + 𝑛!"   𝑙𝑛
!!!!
!!!

!!!!
!!! 𝜋!", (12) 

∂lnL
∂ρ

=   
n!"  
π!"

[ϕ! τ!,!, τ!,!, ρ − ϕ! τ!,!, τ!,!!!, ρ
!!!!

!!!

!!!!

!!!
 

(13) 

−ϕ! τ!,!!!, τ!,!, ρ + ϕ! τ!,!!!, τ!,!!!, ρ ], 

 

Threshold estimates are obtained using sample cumulative marginal proportions of the 

bivariate contingency table, for example,  

 

τ!,! = Φ!
!!    p!"

!!!!
!!!

!
!!! , (14) 
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where p!" is the sample proportion in cell (k, j). Next, solve the equation !!"!
!!

= 0  (i.e., 

maximizing lnL) using the given threshold estimates to obtain the polychoric correlation 

estimate ρ. It is noted that a Pearson product-moment correlation between two ordinal 

observed variables is generally attenuated because the underlying continuum is coarsely 

categorized to obtain ordinal observed variables. A greater amount of attenuation in Pearson 

product-moment correlation estimates occurs when ordinal observed variables have only a few 

alternatives, and/or opposite skewed and increasingly leptokurtic distributions (Bollen, 1989; 

Olsson, 1979; Muthén & Kaplan, 1992). In the next section, two estimation families used in 

SEM with ordinal observed variables to obtain model parameters, standard errors, and 

chi-square goodness of fit statistics are introduced in turn: least squares and maximum 

likelihood approaches.  

 

Least Squares Estimation  

      Muthén (1984) made a substantial breakthrough in analyzing a structural equation 

model with ordinal observed variables using a weighted least squares (WLS) approach. The 

thresholds and polychoric correlations are first estimated using two-stage ML estimation in 

the preceding paragraph. Parameter estimates are then obtained using a consistent estimator 

of the asymptotic covariance matrix of the polychoric correlation and threshold estimates 

(denoted as 𝐕) in a weight matrix W, to minimize the weighted least squares fit function 

(Muthén, 1984): 

 

FWLS = [s – σ(θ)]’ W−1 [s – σ(θ)], (15) 
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where θ is the vector of model parameters, σ(θ) is the model-implied vector consisting of the 

non-duplicated, vectorized elements of Σ*(θ) (i.e., vech[Σ*(θ)]), and s is the vector containing 

the non-duplicated, vectorized elements of sample statistics (i.e., threshold and polychoric 

correlation estimates). Note that the vech(.) operator strings out non-redundant matrix 

elements by stacking them up into a column vector, leaving out the upper-diagonal elements. 

The weight matrix includes variability of threshold and polychoric correlation estimates and 

interrelationships among polychoric correlation estimates. This procedure only incorporates 

univariate and bivariate margins into the estimation of model parameters, and it often has 

been termed as limited information estimation, in contrast to full information that uses 

subjects’ complete multivariate response pattern, typically paralleling the item response 

theory (IRT) framework (see, e.g., Forero & Maydeu-Olivares, 2009; Wirth & Edwards, 2007, 

for a full discussion of limited information vs. full information). 

  

      Standard errors are given by the square roots of the diagonals of the asymptotic 

covariance matrix of the parameter estimates θ from a Taylor expansion (see, e.g., Browne, 

1984; Satorra, 1989): 

 

aCov(θ)WLS = N−1(𝚫′𝐖!𝟏𝚫)−1𝚫′𝐖!𝟏𝐕𝐖!𝟏𝚫(𝚫′𝐖!𝟏𝚫)−1, (16) 

 

and because of W = 𝐕, it reduces to 

 

aCov(θ)WLS = N−1[𝚫′𝐕!!𝚫]−1, (17) 
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where N represents the sample size, 𝚫 = !!(!)
!!

 is the so-called Jacobian matrix of first 

derivatives when evaluating at the parameter estimates θ, and 𝐕 is the estimated asymptotic 

covariance matrix of s. The chi-square goodness of fit statistic is defined as 

 

TWLS = (N − 1) FWLS(θ, s),  df = s – t, (18) 

 

where s = the number of unique elements in s and t = the number of independent model 

parameters. That is, degrees of freedom are the difference between the number of parameters 

in the unrestricted model and the number of parameters in the estimated model. However, the 

performance of WLS deteriorates with small sample sizes and/or model complexity, mainly 

because of the size and the invertibility of the weight matrix W = 𝐕. Specifically, WLS has been 

subject to non-convergence problems with small sample sizes and/or complex models in 

simulation studies (Flora & Curran, 2004; Oranje, 2003). As the number of ordinal observed 

variables increases, the size of 𝐕 grows exponentially, leading to demanding computations 

and numerical problems in the process of estimation. In addition, when sample sizes are 

small, the estimated asymptotic covariance matrix 𝐕 has much sampling variation, and the 

inversion of 𝐕 is typically infeasible as well (Browne, 1984; Jöreskog & Sörbom, 1996; 

Muthén, 1993). These weaknesses render the WLS estimator less attractive for applications. 

 

      Empirical research has also suggested that WLS is inferior to other 

Least-Squares-family estimators (e.g., WLSMV or ULSMV) in CFA models when the sample 

size is small and/or the model becomes complicated (Flora & Curran, 2004; Oranje, 2003; 

Yang-Wallentin, Jöreskog, & Luo, 2010). Flora and Curran (2004) found that (1) parameter 

13



estimates were less overestimated by WLSMV than WLS; (2) standard errors were less 

negatively biased by WLSMV than WLS, relative to the standard deviation of parameter 

estimates across replications; and (3) chi-square statistics were less inflated by WLSMV than 

WLS. Yang-Wallentin, Jöreskog, & Luo (2010) revealed that the performance of WLS was 

uniformly worse in terms of parameter estimates, standard errors, and chi-square statistics, 

than WLSMV and ULS with robust corrections. 

 

       One possible way to circumvent the troubling features and ease the computational 

burden is to choose a simple weight matrix, such as the identity matrix I, or a reduced and 

invertible from of 𝐕 (e.g., retaining diagonal elements of 𝐕 only). The former choice 

simplifies WLS to unweighted least squares (ULS: Muthén, 1993), and the latter reduces to 

diagonally weighted least squares (TLS (two-step weighted least squares): Christoffersson, 

1977; DWLS: Jöreskog & Sörbom, 1996; robust WLS or WLSMV: Muthén, du Toit, & Spisic, 

1997). The fit function for each can be represented as follows 

 

FULS = [s – σ(θ)]’ (I) −1 [s – σ(θ)], (19) 

 

and 

 

FD-WLS = [s – σ(θ)]’ (WD)−1 [s – σ(θ)], (20) 

 

where WD = diag(𝐕) contains only diagonal elements of the estimated asymptotic covariance 

matrix of the polychoric correlation and threshold estimates. Throughout this dissertation, 

D-WLS is used to represent diagonally weighted least squares due to various terms used in 
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currently circulated computer programs. More specifically, D-WLS only weights the residual 

vector [s – σ(θ)] using the asymptotic “variances” of polychoric correlation and threshold 

estimates, and ULS weights all elements of the residual vector “equally” using the identity 

matrix I (Bollen, 1989; Muthén & Muthén, 2010).  

 

Robust Corrections to Standard Errors and Test Statistics 

      Unlike the aforementioned full weight matrix W in WLS, I and WD only contain limited or 

reduced/partial information in the weight matrix. A disadvantage of ULS is that the weight 

matrix I makes obtained parameter estimates less sensitive to differences in the elements of 

the residual vector (Bolt, 2005). Although improvement can be expected while using the 

diagonal weight matrix WD, the asymptotic covariances between ploychoric correlation 

estimates are still left outside the estimation procedure. The parameter estimates obtained by 

ULS and D-WLS are therefore not asymptotically efficient (i.e., smaller sampling error), 

resulting in potentially inaccurate standard error estimates. That is, the WLS parameter 

estimates have the smallest variances within the class of least squares estimators. Because 

both ULS and D-WLS are less efficient than WLS, upward corrections applied to standard errors 

are suggested. Underestimation of standard errors may affect statistical inferences for 

parameter estimates. Robust correction to standard errors are implemented in the estimated 

asymptotic covariance matrix of the parameter estimates θ for ULS estimation (Muthén, 1993; 

Satorra & Bentler, 1994): 

 

aCov(θ)ULS = N−1(𝚫′𝚫)−1𝚫′𝐕𝚫(𝚫′𝚫)−1, (21) 

 

and for D-WLS estimation (Muthén, du Toit, & Spisic, 1997): 
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aCov(θ)D-WLS = N−1(𝚫′𝐖𝐃
!𝟏𝚫)−1𝚫′𝐖𝐃

!𝟏𝐕𝐖𝐃
!𝟏𝚫(𝚫′𝐖𝐃

!𝟏𝚫)−1. (22) 

 

      Likewise, because of using a consistent estimator of the asymptotic covariance matrix of 

the polychoric correlation and threshold estimates (𝐕) as the full weight matrix, TWLS is 

asymptotically chi-square distributed. However, the standard test statistics TULS and TWLS are 

not appropriate for model fit evaluation because the test statistics produced by ULS and D-WLS 

are no longer asymptotically chi-square distributed. This robust correction entails adjusting 

both the mean and variance of the test statistics. Therefore the mean- and variance-adjusted 

chi-square statistic can each be implemented in the ULS estimator (Asparouhov & Muthén, 

2010): 

 

TULSMV = aTULS + b,  df = s – t, (23) 

 

where TULS = (N − 1) FULS(θ, s), 𝐕 is the estimated asymptotic covariance matrix of s, a = 

!"
!"#$%(𝐔𝐕𝐔𝐕)

 is a scale factor, b = df – !"  [!"#$% 𝐔𝐕 ]!

!"#$%(𝐔𝐕𝐔𝐕)
 is a shift parameter, and 𝐔 = I − 𝚫(𝚫′𝚫)−1𝚫′; 

and in the D-WLS estimator (Asparouhov & Muthén, 2010): 

 

TD-WLSMV = = aTD-WLS + b,  df = s – t, (24) 

 

where TD-WLS = (N − 1) FD-WLS(θ, s), 𝐕 is the estimated asymptotic covariance matrix of s, a = 

!"
!"#$%(𝐔𝐕𝐔𝐕)

 , b = df – !"  [!"#$% 𝐔𝐕 ]!

!"#$%(𝐔𝐕𝐔𝐕)
, and 𝐔 = 𝐖𝐃

!𝟏
 − 𝐖𝐃

!𝟏𝚫(𝚫′𝐖𝐃
!𝟏  𝚫)−1𝚫′𝐖𝐃

!𝟏. Unlike WLS, 𝐕 

need not be inverted (i.e., a positive definite matrix) in the computation of robust standard 
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errors and adjusted chi-square test statistics using ULS and D-WLS. Both TULSMV and TD-WLSMV 

result in smaller test statistics in comparison to TWLS. That is, chi-square statistics in the robust 

estimators are downwardly adjusted to compensate for the effect of only including limited or 

reduced/partial information in the weight matrix. This correction can help control for the 

probability of Type I error (i.e., rejecting a correctly specified model by chance). Furthermore, 

this new second order chi-square correction has been implemented in Mplus 6 and later 

versions. For the Satterthwaite (1941) type correction prior to Mplus 6, refer to Satorra & 

Bentler (1994) and Muthén, du Toit, & Spisic (1997). 

 

     It is worth reiterating that (1) the aim of the robust corrections to standard errors in the 

already available ULS and D-WLS estimators is to compensate for the loss of efficiency (i.e., 

smaller variability of parameter estimates) when the full weight matrix is not performed; and 

(2) the mean- and variance-adjustments for test statistics in ULS and D-WLS estimators are 

targeted to make the shape of test statistics be approximately close to the reference 

chi-square distribution with the associated degrees of freedom. Note that the mean-adjusted 

chi-square statistic in diagonally weighted least squares estimation is not presented here (i.e., 

ESTIMATOR = WLSM, see Appendix C for details).  

 

Maximum Likelihood Estimation 

      When the assumption of multivariate normality is considered tenable in a SEM model 

with “continuous” observed variables, parameter estimates can be obtained by maximizing the 

likelihood of the observed data; that is, the minimization of the maximum likelihood fit function 

(Bollen, 1989): 
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FML = ln|Σ(Θ)| + trace[SΣ−1(Θ)] – ln|S| – r, (25) 

 

where Θ denotes the vector of model parameters, Σ(Θ) is the model-implied “covariance” 

matrix, S is the sample-based “covariance” matrix, and r (= p + q) is the total number of 

continuous observed variables in the model. Under the multivariate normality assumption, 

standard errors are the square roots of the diagonal elements of the estimated asymptotic 

covariance matrix for Θ from FML: 

 

aCov(Θ)ML = !
!!!

E !!!!"
!!!!!

!!
. (26) 

 

The test statistic that uses Wishart-based likelihood is defined as 

 

TML = (N − 1) FML(Θ, S),  df = s – t, (27) 

 

where s = the number of unique elements in S and t = the number of independent model 

parameters (Bollen, 1989; Muthén & Muthén, 2010). However, it is generally not advisable to 

use ML for ordinal observed variables with only a few response categories. In order to use ML, 

one may assume that a given set of ordinal observed variables are “approximately continuous” 

if they have more than five response alternatives, and further one treats them as if they were 

continuous. The normality of ordinal observed variables due to categorization is typically not 

plausible. The superiority of the robust ML method (MLR) over the normal theory-based ML 

method has proved manifested in the extant literature when modeling ordinal observed 

variables.  
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Robust Corrections to Standard Errors and Test Statistics 

      In order to accommodate ordinal data on response variables (i.e., approximately 

continuous), standard errors and chi-square goodness of fit statistics are corrected in the MLR 

estimation to enhance robustness against the presence of non-normality. Ordinal observed 

variables are rarely normally distributed but often exhibit non-normality in the form of 

asymmetry to some degree (Micceri, 1989). Acquiescence (or disacquiescence) response 

style may introduce both skewed and leptokurtic distributions, whereas extreme response 

style may result in slightly skewed and platykurtic distributions (Weijters, Geuens, & 

Schillewaert, 2010). The parameter estimates obtained with ML are not asymptotically 

efficient, provided that the normality assumption is not tenable. The obtained aCov(Θ)ML in 

equation (26) is no longer consistent for the asymptotic covariance matrix of Θ, leading to 

inaccurate standard error estimates (Yuan, Bentler, & Zhang, 2005; Yuan & Hayashi, 2006). 

Rather, a consistent estimator of the asymptotic covariance matrix of the parameter estimates 

Θ for MLR can be estimated using the pseudo maximum likelihood (PML) approach 

(Asparouhov & Muthén, 2005; Savalei, 2010; Yuan & Schuster, 2013): 

 

aCov(Θ)MLR = N−1(𝚫′𝐈𝐎𝐁𝚫)−1𝚫′𝐈𝐎𝐁𝐕𝐈𝐎𝐁𝚫(𝚫′𝐈𝐎𝐁𝚫)−1, (28) 

 

and 

 

𝐈𝐎𝐁 = D’{Σ−1(Θ)⊗[(Σ−1(Θ)SΣ−1(Θ) – ½Σ−1(Θ)]}D, (29) 
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where 𝚫 = !!(!)
!!

 is the matrix of model first derivatives evaluated at the parameter estimates 

Θ, (𝚫′𝐈𝐎𝐁𝚫) is the estimated “observed” information matrix, and 𝐕 is the estimated asymptotic 

covariance matrix of S. The “duplication” matrix D is of order r2 × ½r(r+1) (r = the number of 

observed variables in Σ(Θ), see Magnus & Neudecker, 1986, p. 172) and ⊗ denotes a 

Kronecker product. Note that D is utilized to transform a r2 × r2 symmetric matrix, 

Σ−1(Θ)⊗(Σ−1(Θ)SΣ−1(Θ) – ½Σ−1(Θ), into a ½r(r+1) × ½r(r+1) symmetric matrix, 𝐈𝐎𝐁. The 

middle matrix 𝚫′𝐈𝐎𝐁𝐕𝐈𝐎𝐁𝚫 contains the sample estimates of skewness and kurtosis of observed 

variables in order to correct the possible violation of normality assumption (Yuan, Bentler, & 

Zhang, 2005). While modeling non-normal data, the ML standard error estimates in general 

are deflated, whereas the robust standard errors obtained with MLR are therefore adjusted 

upward to alleviate some underestimation of standard error estimates. 

 

      As is well known, non-normality of observed variables could lead to substantial 

overestimation of chi-square goodness of fit statistics. Similar to the two variants of the 

Yuan-Bentler (1997, 1998) and the Satorra & Bentler (1994) robust chi-square statistics, a 

modification of chi-square statistics proposed by Asparouhov & Muthén (2005) using the 

pseudo maximum likelihood (PML) estimator is defined as 

 

TMLR = ãTML,  df = s – t, (30) 

 

where ã = !"
!"#$%  [(𝐕  𝐈𝐎𝐁)]  !  !"#$%  [!!"#(!)!"#  (𝚫!𝐈𝐎𝐁𝚫)]

  is a scale factor, TML = (N − 1) FML(Θ, S), TMLR 

denotes the robust ML chi-square test statistic using MLR estimation in Mplus,  𝐕 is the 

estimated asymptotic covariance matrix of S, s = the number of unique elements in S, and t = 
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the number of total model parameters. The scale factor ã is used to remove the effect of 

skewness and kurtosis of observed data in order to adjust for deviation from normality. TMLR 

was found to perform well under a variety of conditions investigated by Asparouhov & Muthén 

(2005). It is worth noting that the downward adjustments for test statistics in MLR can yield 

the distributional behavior of test statistics that more closely follows a central chi-square in the 

presence of non-normality. Note that different robust corrections to standard errors and 

chi-square statistics in maximum likelihood estimation computations are also available but 

outside the scope of this study (i.e., ESTIMATOR = MLM or MLMV, see Appendix C for details). 
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CHAPTER 2 

EMPIRICAL FINDINGS 

 

     A review of simulation studies across six high-impact journals was conducted to 

determine whether a Monte Carlo simulation study examined ordinal confirmatory factor 

analysis or structural equation modeling with ordinal observed variables over 20 years 

(between the years 1994 and 2013) in Structural Equation Modeling, Psychological Methods, 

Multivariate Behavioral Research, Psychometrika, Educational and Psychological Measurement, 

and Applied Psychological Measurement. I have identified a total of 13 studies carrying out 

structural equation modeling with ordinal observed variables (4 articles) or ordinal 

confirmatory factor analysis (9 articles). The two studies using structural regression models 

with ordinal observed indicators examined the effect of parceling methods for categorical 

variable methodology, which is less relevant to the goals of current research. For the other two 

studies, Anderson (1996) mainly focused on an evaluation of distributional misspecification 

corrections applied to the McDonald Fit Index that was rarely used in empirical studies and 

typically not provided in software programs. Coenders, Satorra, and Saris (1997) examined 

the performance of three correlation estimation methods in an SR model, and their attention 

was only restricted to point estimates of model parameters using the normal-theory maximum 

likelihood method and the weighted least squares procedure. The night studies associated with 

ordinal confirmatory factor analysis typically compared the relative performance of different 

estimators on parameter estimates (i.e., factor loadings, inter-factor correlations if any), 

standard errors, and chi-square goodness of fit statistics. The empirical findings, using ML and 

the three robust estimators (MLR, ULSMV, and WLSMV), can be briefly summarized below. 

Table 1 lists 6 major simulation studies that have investigated the performance of the three 

robust estimators in ordinal CFA models. Because MLR has not been systematically studied in 
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the previous simulation literature across the six aforementioned journals, a review of robust 

corrections to standard errors and chi-square goodness of fit statistics in least squares and 

maximum likelihood estimators is included with all other robust methods in Mplus, EQS, and 

LISREL (see Table 2 for comparison of the three robust estimators in the 3 different SEM 

software programs; see Table 3 for comparison of the two major estimation approaches in 

Mplus). While these robust standard errors and chi-square statistics may exhibit very slight 

differences across varying adjustments in a finite sample, they should be asymptotically 

equivalent as the sample size approaches infinity.  

 

Parameter Estimates 

      Factor loading estimates were less biased by WLSMV than ML and MLR, even with more 

than five response alternatives (Beauducel & Herzberg, 2006). Relative bias in factor loading 

estimates from ULSMV was equal to or smaller than WLSMV (Forero, Maydeu-Olivares, & 

Gallardo-Pujol, 2009) across the conditions (i.e., varying distributions of ordinal observed 

variables, numbers of observed variables’ categories) investigated, and relative bias in factor 

loading estimates from ULSMV was smaller than ML and MLR even with more than seven 

response alternatives (Rhemtulla, Brosseau-Liard, & Savalei, 2012), irrespective of the level of 

asymmetric distributions of ordinal observed variables. Inter-factor correlations were, 

generally, less overestimated by ML and MLR than WLSMV (Beauducel & Herzberg, 2006) and 

ULSMV (Rhemtulla, Brosseau-Liard, & Savalei, 2012) across varying numbers of observed 

variables’ categories from two to seven, except under extremely asymmetric distributions of 

ordinal observed indicators. However, Yang-Wallentin, Jöreskog, & Luo (2010) gave empirical 

evidence that parameter estimates (consisting of factor loadings and inter-factor correlations 

jointly) were essentially unbiased for ULSMV, WLSMV, MLR, and ML, regardless of the number 
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of observed variables’ categories and the level of asymmetric distributions of ordinal observed 

variables. Lei (2009) found that relative bias in parameter estimates (including both factor 

loadings and inter-factor correlations) was generally negligible for WLSMV, MLR, and ML across 

different distributions of ordinal observed variables. Oranje (2003) concluded that ML, MLR, 

and WLSMV produced equally accurate parameter estimates across different numbers of 

observed variables’ categories. 

 

Standard Error Estimates 

      The “uncorrected” standard errors of factor loadings produced by ML were higher than 

the robust standard errors of those obtained by WLSMV across different numbers of observed 

variables’ categories (Beauducel & Herzberg, 2006). However, the “uncorrected” standard 

errors of factor loadings produced by ULS were more accurate, in terms of the standard 

deviation of parameter estimates over replication, than the robust standard errors of factor 

loadings produced by WLSMV (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). The robust 

standard errors of parameter estimates (including both factor loadings and inter-factor 

correlations) produced by ULSMV and WLSMV were generally less biased than those obtained 

by robust ML, regardless of the number of observed variables’ categories and the level of 

asymmetric distributions of ordinal observed variables (Yang-Wallentin, Jöreskog, & Luo, 2010; 

Lei, 2009). More specifically, Rhemtulla, Brosseau-Liard, and Savalei (2012) revealed that 

ULSMV produced less biased standard errors of factor loadings than MLMV, whereas ULSMV 

produced more biased standard errors of inter-factor correlations than MLMV, consistently 

across different numbers of observed variables’ categories.  

 

Chi-Square Goodness of Fit Statistics 
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      The “uncorrected” chi-square statistics produced by ML tended to over-reject the 

proposed models compared to the robust chi-square statistics obtained by WLSMV, when the 

number of observed variables’ categories was less than 4 (Beauducel & Herzberg, 2006). The 

“mean-adjusted” chi-square statistics obtained by MLM provided the most correct rejection 

rates compared to those obtained by WLSMV across varying numbers of observed variables’ 

categories (Oranje, 2003). On the contrary, the “mean- and variance-adjusted” chi-square 

statistics obtained by WLSMV have shown to be slightly more powerful than the 

“mean-adjusted” chi-square statistics produced by MLM across different levels of asymmetric 

distributions of ordinal observed variables (Lei, 2009). On the other hand, the “mean- and 

variance-adjusted” chi-square statistics were comparably good for MLMV and ULSMV when the 

number of observed variables’ categories ranged from four to six. Furthermore, when the 

number of observed variables’ categories was two or three, the “mean- and variance-adjusted” 

chi-square statistics produced by MLMV tended to over-reject the proposed models, and those 

obtained by ULSMV were likely to under-reject the proposed models (Rhemtulla, 

Brosseau-Liard, & Savalei, 2012). Finally, the “mean-adjusted” chi-square statistics were 

essentially equal for MLM, ULSM, and WLSM (Yang-Wallentin, Jöreskog, & Luo, 2010), 

regardless of the number of observed variables’ categories and the level of asymmetric 

distributions of ordinal observed variables. 
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CHAPTER 3 

PRESENT STUDY 

 

      The present study was designed to address gaps in the literature and to advance our 

understanding of the impact of ordinal observed variables on parameter estimates, standard 

errors, and chi-square goodness of fit statistics in a structural regression (SR) model using ML, 

MLR, ULSMV, and WLSMV. An SR model was selected to broaden the scope of methodological 

perspectives beyond any previous study in terms of model complexity, because numerous 

simulation studies have been conducted with ordinal CFA models under extensive conditions. 

Two literature reviews reported that the median number of latent factors for a CFA model was 

3, and the median number of observed indicators in total was 16, indicating that a CFA model 

in the areas of scale development and item analysis is in general smaller than an SR model in 

applied settings (Jackson, Gillaspy, & Purc-Stephenson, 2009; DiStefano & Hess, 2005). One 

major limitation of previous ordinal CFA simulation studies is that researchers have devoted 

excessive attention to factor loading estimates instead of inter-factor correlation estimates. 

More specifically, they have (1) simply excluded the inter-factor correlations (e.g., Forero, 

Maydeu-Olivares, & Gallardo-Pujol, 2009); (2) used homogeneous values for the population 

inter-factor correlations (e.g., Beauducel & Herzberg, 2006; DiStefano, 2002); or (3) 

examined the joint performance of both factor loading and inter-factor correlation estimates 

(e.g., Lei, 2009; Yang-Wallentin, Jöreskog, & Luo, 2010), leaving the undetermined 

performance of inter-factor correlation estimates.  

 

      When a researcher employs an SR model to study relational phenomena among latent 

constructs of interest, the ultimate goal is to identify successfully the structural coefficients 

(inter-factor correlations, structural regression coefficients, and possibly mediating effects), 
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given a tenable measurement model. The SR model proposed here has its practical advantage 

of allowing applied researchers to study the inter-factor correlations, direct effects, and 

mediating/indirect effects, which are not uncommon in published research. Heterogeneity of 

structural regression coefficients and inter-factor correlations in the proposed SR model is 

more realistic in applied settings and can also assess the effect of structural coefficient 

magnitude.   

 

      Hoogland and Boomsma (1998) systematically reviewed 34 studies in SEM from 1984 to 

1994. They found that 89% used CFA models and 11% employed SR models. The 

aforementioned literature search from 1994 to 2013 that I conducted reflects a growing 

interest in SR models (about 30% of 59 studies). Researchers also arrived at the same 

recommendation that future research on a more complex SR model is needed (see, e.g., 

Bandalos, 2006; Beauducel & Herzberg, 2006; Flora & Curran, 2004; Rhemtulla, 

Brosseau-Liard, & Savalei, 2012). In this study, an effort was undertaken to extend the 

existing literature (Anderson, 1996; Coenders, Satorra, & Saris, 1997; Ethington, 1987) on 

sample size, ordinal observed distributions, and number of observed variables’ categories to a 

broader set of structural regression models with ordinal observed variables. This study aims to 

address several important limitations of generalizability applied to the work by Anderson 

(1996) and Coenders, Satorra, and Saris (1997), in which (1) both studies failed to incorporate 

robust corrections to standard errors and chi-square statistics due to unavailability of 

computer programs; (2) one merely used two ordinal observed variables for each latent 

construct in the SR model, not generally reflecting realistic applications; and (3) both left the 

effect of number of observed variables’ categories outside the simulation design. Therefore, 

the proposed model design in this study first attempts to complement the related prior 
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research, and findings are expected to assist applied researchers in making more informed 

decisions while analyzing an SR model with ordinal observed indicators. 

 

      Second, although MLR is not designed specifically for ordinal data on response variables, 

one may assume that data are “approximately continuous” if the number of observed variables’ 

categories is sufficiently large. In practice, empirical researchers have congruously performed 

MLR in ordinal CFA or CFA-based models when the number of categories for each observed 

variable is more than five. Yet, unlike other robust ML estimators, MLR implemented in Mplus 

has not been systematically evaluated by means of a Monte Carlo simulation study in the 

literature, although its robust correction is similar but not equivalent to other robust ML 

estimators (e.g., MLM in Mplus or ML, ROBUST in EQS). The inclusion of WLSMV and ULSMV in 

the study also contributes to the existing literature because (1) MLR and WLSMV are very often 

regarded as the most common estimators in an SR model with ordinal observed indicators due 

to the violation of normality assumption; and (2) ULSMV has been shown to have some relative 

superiority over ML with robust corrections in the analysis of ordinal confirmatory factor 

models (Yang-Wallentin, Jöreskog, & Luo, 2010; Rhemtulla, Brosseau-Liard, & Savalei, 2012), 

although it has less appeared in applied research.  

 

      Comparison of WLSMV and ULSMV can shed some light on the effectiveness of the two 

weight matrices. More specifically, by looking into the weight matrices of ULSMV and WLSMV, 

it seems that using the identity matrix I essentially makes the parameter estimates consistent, 

and adding diagonal weights may possibly bring about a small improvement on parameter 

estimates (Muthén and Muthén, 2010). This study’s specificity in evaluating the effectiveness 

of diagonal weights can contribute to scholarly understanding of how the diagonal weight 
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matrix improves the accuracy and precision of parameter and standard error estimates. Finally, 

as clearly explicated in the existing literature, it is generally not recommended to use the 

normal theory-based maximum likelihood (ML) method when ordinal observed variables are 

analyzed. However, ML estimation in this study served as a baseline to explore the differences 

between ML and the three robust estimators. Therefore, it is worthwhile to investigate the 

performance of the four estimators in an SR model with ordinal data on response variables. 

 

      Third, several simulation studies have also examined the impact of the number of 

observed variables’ categories on ML and other least squares estimators in ordinal CFA (see, 

e.g., Rhemtulla, Brosseau-Liard, & Savalei, 2012; Yang-Wallentin, Jöreskog, & Luo, 2010). 

However, what has not yet been known is the impact of the number of observed variables’ 

categories on the overall quality of parameter estimates, especially structural regression 

coefficients, robust standard error estimates, and the sensitivity of adjusted chi-square 

statistics using MLR, ULSMV, and WLSMV in an SR model. Additionally, this study compared 

the behavior of the MLR, ULSMV, and WLSMV estimators under varying degrees of normality 

violation in an SR model, which extends the literature by the inclusion of asymmetric 

distributions of ordinal observed variables (Beauducel & Herzberg, 2006). MLR has been 

developed to permit modeling non-normal (approximately) continuous variables, whereas 

ULSMV and WLSMV have been implemented to deal with non-normal data because both 

estimators make no distributional assumption germane to the shape of observed variables in 

the population from which samples are drawn. When ordinal observed variables exhibit 

different levels of asymmetric distributions, the standard error estimates and chi-square 

statistics produced from these estimators are different. Without better understanding of the 

robustness of these estimators against non-normality, researchers are unlikely able to settle 
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upon an appropriate estimation method under suboptimal conditions in applications (e.g., 

Boomsma, 2013). The choice of estimation methods thus depends on the continuity 

(concerning the number of observed variables’ categories) and the distribution of the ordinal 

observed measures.  

 

      Finally, this study was designed to examine the effect of sample size while utilizing these 

four estimators, because researchers have noted that a desirable sample size is known to be 

an important factor in SR models. Sample size is almost universally an experimental factor in 

a Monte Carlo simulation study (Paxton, Curran, Bollen, Kirby, & Chen, 2001). Sample size has 

been shown to interact with the characteristics of the data (e.g., non-normality). A small 

sample size may not only cause inaccurate parameter estimates and unreliable standard errors, 

but can also give problems of non-convergence and improper or inadmissible solutions. In 

addition, for a small sample size, the test statistic is likely not asymptotically chi-square 

distributed. Applied researchers are therefore interested in determining the smallest sample 

size (i.e., the sufficient sample size) at which the accuracy of parameter estimates, the 

stability of standard error estimates, and the robustness of chi-square statistics can be 

fulfilled.  

 

     The four estimators were evaluated by the quality of parameter estimates (i.e., factor 

loadings, inter-factor correlations, and structural regression coefficients) and standard errors, 

and by the performance of chi-square goodness of fit statistics, detailed further in the Outcome 

Variables section of this thesis. In summary, this study builds on previous simulation studies 

and mixed findings in pursuing the following two research questions: 
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1. Are any of the four estimators (ML, MLR, ULSMV, and WLSMV) consistently better or 

worse than the others in the estimation of model parameters, standard errors, and 

chi-square goodness of fit statistics across the experimental conditions investigated? 

 

2. Are there any effects of the number of observed variables’ categories, the level of 

asymmetric distributions of ordinal observed variables, and sample size on the 

performance of ML, MRL, ULSMV, and WLSMV estimates in an SR model? 
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CHAPTER 4 

METHOD 

 

      A Monte Carlo simulation study was carried out to determine what effects of different 

configurations of the number of observed variables’ categories, the level of asymmetric 

distributions of ordinal observed variables, and sample size have on parameter estimates, 

standard errors, and chi-square goodness of fit statistics in a five-factor structural regression 

model with ordinal observed variables. 

 

Model Specification 

      A five-factor structural regression model (SRM) with ordinal data on response variables 

is depicted in Figure 1. A five-factor structural regression model with each factor having 4 

ordinal observed variables was examined as the representative of the “medium-sized” SEM 

model specification frequently encountered in applications. To ensure representativeness of 

the model design from an applied standpoint, I conducted another review of 29 empirical 

studies using structural equation modeling from journals published by the American 

Psychological Association, the APA Educational Publishing Foundation, and the Canadian 

Psychological Association (through the PsycARTICLES database) during 2013, and 7 empirical 

studies that appeared in Structural Equation Modeling since 1994. In terms of the size of model 

being tested, the median number of latent factors across 36 studies was 5 (with 38% of the 

models tested), and the median number of total observed variables was 18 (with 15 and 24 

representing the 25th and 75th percentiles, respectively).  

 

      It is critical to choose a number of observed indictors per factor that is not too small (e.g., 

2 indicators per factor; see Coenders, Satorra, & Saris, 1997; Ethington, 1987), yet remains 
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practical in the context of a simulation study. In structural equation modeling applications, the 

number of indicators per factor typically falls within the range of 2 to 5 (Ding, Velicer, & Harlow, 

1995), and five or more indicators per factor have rarely appeared in the literature (Gerbing & 

Anderson, 1985). I chose 4 ordinal observed indicators per factor, resulting in 20 ordinal 

observed variables in total, which represents a reasonable number of observed variables in the 

reviews of both Monte Carlo simulation studies and the applied literature, but apparently this 

number is smaller than some impressive studies (more than 40 ordinal observed indictors in 

total, e.g., see Beauducel & Herzberg, 2006; Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). 

Prior research has shown that the performance of parameter estimates and standard errors 

improves with increasing the number of observed variables per factor conditional on a set of 

good quality indicators (Forero & Mayedu-Olivares, 2009; Forero & Maydeu-Olivares, & 

Gallardo-Pujol, 2009; Gagné and Hancock, 2006; Gerbing & Anderson, 1985; Velicer & Fava, 

1998). Marsh, Hau, Balla, and Grayson (1998) noted that the maximum accuracy of parameter 

estimates appeared to be reached when the number of observed variables per factor was 4, 

and trivially improved as the number of observed variables for each factor increased. 

 

      Four different estimation procedures that are given by ML, MLR, ULSMV, and WLSMV in 

Mplus were used. For the first and second estimation procedures, each factor was measured by 

four ordinal observed indicators that were treated as if they were continuous variables. The 

parameter estimates, standard errors, and chi-square goodness of fit statistic were obtained 

using ML and MLR. Since the analyzed ordinal observed indicators were assumed to be 

approximately continuous in this case, data analysis for the ML and MLR estimators was based 

on a sample-based covariance matrix. Regarding the third and fourth estimation procedures, 

each ordinal observed indicator was instead determined by its continuous, normal, latent 
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response distribution. The asymptotic covariance matrix of the polychoric correlation and 

threshold estimates was used for data analysis in ULSMV and WLSMV estimators to obtain the 

parameter estimates, standard errors, and chi-square goodness of fit statistic. The analyzed 

ordinal observed indicators in this case were specified as categorical variables in Mplus. 

 

Simulation Design 

      For the sake of simplicity, homogeneous factor loadings are commonly used in 

simulation studies (see, e.g., Anderson, 1996; Flora & Curran, 2004; Forero & 

Maydeu-Olivares, 2009), which may not be representative of real-world conditions. In this 

study, four factor loadings (Λy* and Λx*) were held at .8, .7, .6, and .5, with corresponding 

residual variances (Θε and Θδ) automatically set to .36, .51, .64, and .75 under a standardized 

solution (according to equations (4.3) and (4.4)) in the population model across all exogenous 

and endogenous latent variables. The common standardized factor loadings range from .4 

to .9 in research practice and simulation studies (Bandalos, 2006; Ethington, 1987; Hoogland 

& Boomsma, 1998; Paxton, Curran, Bollen, Kirby, & Chen, 2001). The variance-covariance 

matrix of two exogenous latent variables (Φ) consists of two components: (1) the one 

inter-factor correlation was set to .3 in the population, reflecting a reasonable and empirical 

inter-factor correlation value in the reviews of both simulation studies (66% using .3) and 

applied literature (about 50% between .2 and .4); and (2) the two exogenous factor variances 

were set equal to 1. The two matrices of structural regression coefficients B and Γ were each 

set up as 

 

B = 
    0     0 0
. 3     0 0
. 2 . 5 0

 and Γ = 
. 4 . 6
. 4 . 2
  .1   .1

. 
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The residual variances of the three endogenous latent variables (Ψ) were designated 

at .336, .436, and .379, based on the computation of the equation (4.4), in order to obtain 

standardized structural regression coefficients. The common standardized solutions ranged 

from .1 to .7 for structural regression coefficients, and from .2 to .8 for residual variances (i.e., 

1−R2) in practice and simulation studies. Structural regression coefficients below .1 were, in 

general, not statistically and practically significant in applied research (Bandalos, 2006; 

Ethington, 1987; Hoogland & Boomsma, 1998; Paxton, Curran, Bollen, Kirby, & Chen, 2001). 

Note that the structural model is saturated (i.e., no unspecified relationships among the 

exogenous and endogenous latent variables). 

 

Number of Observed Variables’ Categories 

      Of the 157 psychometric measures in the SEM applications search that I conducted, the 

greatest percentage of response category was five (39.4%), followed by seven (29.9%), four 

(10.2%), and six (8.3%). Odd-numbered Likert scales with the middle response category 

seem to occur more frequently in empirical studies. Prior simulation studies in SR models with 

ordinal observed indicators did not fully examine the effect of number of observed variables’ 

categories (e.g., Anderson, 1996; Coenders, Satorra, & Saris, 1997; Ethington, 1987). 

However, MLR has been congruously considered “appropriate” in the majority of published 

studies when ordinal observed variables have more than five response categories without 

piling or flooring effects. The chief goal here is to examine whether this general 

recommendation is empirically valid in an SR model. In order to explore the impact of 

categorization, four, five, six, and seven categories were generated for each ordinal observed 

indicator within different levels of ordinal observed distributions; details are in the next 
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section.  

 

Ordinal Observed Distributions 

      Micceri (1989) found that non-normality in the form of asymmetry for psychometric 

distributions (due to categorization) was very usual in applied studies. Only about 3% of the 

125 distributions he examined were close to normal and near symmetric, and over 80% 

exhibited at least slight or moderate asymmetry. Micceri attempted to provide an empirical 

base from which a simulation study could be closely related to the real-world data. Therefore, 

four ordinal observed distributions that vary in symmetry and response style were 

manipulated in this thesis: (1) a symmetric distribution, (2) a slightly asymmetric distribution, 

(3) a moderately asymmetric distribution, and (4) a bipolarized distribution. When responding 

to Likert-type items in the educational, behavioral, and social sciences, respondents vary in 

their endorsement and exhibit different response styles. Distribution (1) can be considered as 

middle-category response style (reference pattern), Distributions (2) and (3) as acquiescence 

response style (disacquiescence if going toward the opposite direction), and Distribution (4) as 

extreme response style (Weijters, Geuens, & Schillewaert, 2010). For a symmetric distribution, 

the middle categories had the highest probabilities; for slightly and moderately asymmetric 

distributions, the probabilities increased from low to high categories to different degrees; and 

for a bipolarized distribution, the higher probabilities were placed on the both end-points. 

 

      For the sake of simplification, a standard normal distribution was selected for each latent 

response variable in the data generation (i.e., with zero mean and variance at one), which led 

to a zero mean structure. Random draws of the vector y* and x* were made from a multivariate 

normal distribution with a zero mean vector (i.e., µ = 0) and a correlation matrix Σ* (see 
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equations (4.1) and (4.2)). The multivariate normally distributed data were first generated, 

then ordinally scaled using prior thresholds to induce the desired asymmetric distributions and 

response probabilities along the standard normal distributions (Muthén & Muthén, 2010). 

Sixteen sets of thresholds (z-scores) were used to categorize the continuous response 

distributions into ordinal observed data. That is, the response probability for each category is 

the area under the standard normal density function between a pair of thresholds through 

integral calculus. In order to limit the complexity of the simulation, the underlying normal 

distribution was not manipulated in the study, because it requires an additional factor with 

several distributions of interest that would multiply the number of experimental design 

conditions beyond practical manageability. More importantly, the polychoric correlation 

estimates have been proved robust against violation of the latent normality assumption 

(Coenders, Statorra, & Saris, 1996; Flora & Curran, 2004; Micceri, 1989; Quiroga, 1992).  

 

      Response probabilities of ordinal observed indicators used in the study are displayed in 

Figure 2. Note that 1(a) to 1(d) represent a symmetric distribution with zero skewness and 

kurtosis from −.49 to −.48; 2(a) to 2(d) represent a slightly asymmetric distribution with 

skewness from −.92 to −.91 and kurtosis from .80 to .84; 3(a) to 3(d) represent a moderately 

asymmetric distribution with skewness from −1.39 to −1.38 and kurtosis from 1.14 to 1.19; 

and 4(a) to 4(d) represent a bipolarized distribution with skewness from −.32 to −.31 and 

kurtosis from −1.58 to −1.57.  

 

      In the symmetry condition, the threshold values were [−1.282, 0, 1.282] for four 

categories with 10%, 40%, 40%, and 10% falling into each category; [−1.282, −.524, .524, 

1.282] for five categories with 10%, 20%, 40%, 20%, and 10%; [−1.645, −.806, 0, .806, 
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1.645] for six categories with 5%, 16%, 29%, 29%, 16%, and 5%; and [−1.645, −.954, 

−.385, .385, .954, 1.645] for seven categories with 5%, 12%, 18%, 30%, 18%, 12%, and 5%. 

In the slight asymmetry condition, the threshold values were [−1.645, −1.08, .412] for four 

categories with 5%, 9%, 52%, and 34% falling into each category; [−1.751, −1.341, 

−.524, .706] for five categories with 4%, 5%, 21%, 46%, and 24%; [−1.751, −1.341, −1.08, 

0, .878] for six categories with 4%, 5%, 5%, 36%, 31%, and 19%; and [−1.751, −1.341, 

−1.036, −.613, .496, 1.341] for seven categories with 4%, 5%, 6%, 12%, 42%, 22%, and 

9%. In the moderate asymmetry condition, the threshold values were [−1.645, −1.08, −.253] 

for four categories with 5%, 9%, 26%, and 60% falling into each category; [−1.751, −1.282, 

−.842, .05] for five categories with 4%, 6%, 10%, 32%, and 48%; [−1.751, −1.341, −1.036, 

−.674, .202] for six categories with 4%, 5%, 6%, 10%, 33%, and 42%; and [−1.751, −1.341, 

−1.126, −.878, −.553, .279] for seven categories with 4%, 4%, 5%, 6%, 10%, 32%, and 

39%. In the bipolarization condition, the threshold values were [−.524, −.253, .253] for four 

categories with 30%, 10%, 20%, and 40% falling into each category; [−.583, −.332, 

−.151, .332] for five categories with 28%, 9%, 7%, 19%, and 37%; [−.674, −.385, −.253, 

0, .385] for six categories with 25%, 10%, 5%, 10%, 15%, and 35%; and [−.842, −.468, 

−.305, −.176, .100, .524] for seven categories with 20%, 12%, 6%, 5%, 11%, 16%, and 

30%. A check on the generated data sets was made to ensure that the response probabilities 

of observed variables approximated the four pre-specified targets (i.e., symmetry, slight and 

moderate asymmetry, and bipolarization).  

 

Sample Size 

      Sample size in SEM has been shown to interact with the size of model complexity (e.g., 

number of observed variables). The guideline for an adequate sample size in a CFA model is 
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commonly a function of the number of observed variables. For example, Jöreskog and Sörbom 

(1986; 1996) recommended a sample size requirement of 1.5p(p+1), where p is the number 

of observed variables. The five-factor structural regression model with 20 ordinal observed 

indicators in this study requires a minimum sample size of 630. Additionally, if a sample size is 

too small, polychoric correlation estimates may be unstable. Several reviews of published 

applications of SEM and CFA have appeared. Breckler (1990) reviewed 72 studies in both CFA 

and SEM between 1977 and 1987, and reported that the median sample size was 198. Only 

25% of the models were tested on samples of more than 200. Medsker, Williams, and Holohan 

(1994) identified 28 studies in both CFA and SEM between 1988 and 1993, and reported that 

the average sample size was 299. DiStefano and Hess (2005) reviewed 101 studies in CFA 

from 1990 to 2002, and reported that the median sample size was 377, and about 19% of the 

models were tested on samples of less than 200. Jackson, Gillaspy, and Purc-Olivares (2009) 

systematically reviewed 194 studies in CFA from 1998 to 2006. They reported that the median 

sample size was 389, and about 20% of the models were tested on samples of less than 200. 

The SEM applications search that I conducted showed that the sample size ranged from 110 to 

2,512, with a mean of 518, across 36 studies. The median sample size was 341, with the 25th 

and 75th percentiles of 245 and 603 respectively. About 14% of the models were tested on 

samples of less than 200. Overall, there seems to be a strong consensus to increase sample 

size for SEM and CFA models over the past 35 years. 

 

      Seven different sample sizes commonly encountered in empirical investigations were 

employed in this study: N = 200, 300, 400, 500, 750, 1,000, and 1,500 (see, e.g., Beauducel 

& Herzberg, 2006; Flora & Curran, 2004; Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). In 

the case of a five-factor SR model with 20 ordinal indicators, a sample size N = 200 and 300 is 
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considered as small, a sample size between 400 and 750 as medium, and a sample size N = 

1,000 or 1,500 as large. The corresponding ratio of N and p (N/p) are 10, 15, 20, 25, 37.5, 50, 

and 75, which reaches to the minimum recommendation of having sample size N at least 10 

times the number of variables p (Nunnally, 1978; DiStefano & Hess, 2005) and covers a wide 

range of N/P values (about 94%, from 7.41 to 49.27 that were observed in the aforementioned 

literature review). The values selected for this simulation study were intended to provide 

information across a broad array of sample sizes, and the N/P values reflected what has 

appeared in applied work. 

 

Data Generation and Analysis 

      There are 4 (ordinal observed distributions) × 4 (number of observed variables’ 

categories) × 7 (sample size) = 112 experimental conditions in the study. A random seed was 

set up across experimental conditions for the random draws on the process of data generation. 

The advantages of this decision are that the data can be regenerated, and the results can be 

reproduced by other researchers. Five hundred data sets were generated per experimental 

condition, yielding a total of 56,000 data sets. The choice of 500 replications was made with 

consideration to sampling variance reduction, adequate power, and practical manageability 

(Muthén, 2002). Note that this study did not consider the possible effects of missing data on 

the performance of the four estimation methods but only focused on complete case analysis. 

Model parameters, standard errors, and the chi-square goodness of fit statistic were estimated 

for each replication using ML, MLR, ULSMV, and WLSMV. Data generation and analysis were 

performed with Mplus 7 (Muthén & Muthén, 2010), unless explicitly noted otherwise. Appendix 

D includes Mplus code for data generation and analysis. 
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Outcome Variables       

      Seven outcomes were empirically studied in the study: (1) average relative bias of 

parameter estimates, (2) average mean squared error of parameter estimates, (3) average 

relative bias of standard error estimates, (4) average mean squared error of standard error 

estimates, (5) relative bias of chi-square goodness of fit statistics, (6) the model rejection rate 

associated with the chi-square goodness of fit statistic at an alpha level of .05, and (7) the 

model rejection rate judging by the 90% confidence interval for the RMSEA. 

 

    The difference between the estimated and the true values of a parameter (i.e., the bias) 

was used to evaluate the performance of the four different estimators. Since bias is highly 

dependent on the magnitude of the true parameter value, and a great number of parameter 

estimates were involved in each experiment being planned, the relative bias (RB) over the 

replications and average relative bias (RBA) across the total number of parameter estimates 

were calculated, in tandem, by 

 

RB(𝜃!) =
!
!!

!!"!!!
!!

×  100%! , i = 1, 2, …, np; j = 1, 2, …, nr, (31) 

 

and 

 

RBA(𝜃) = !
!!

RB(𝜃!)! , (32) 

 

where RB(𝜃!) denotes the relative bias of the parameter estimate 𝜃! over the replications, 𝜃!" 

is the parameter estimate of the ith population parameter estimate 𝜃! in the jth replication, nr 
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is the number of replications in each experimental condition, and np is the total number of 

parameter estimates. The formulae can be applied to model parameter estimates of interest, 

such as factor loadings (λ), inter-factor correlations (ϕ), and structural regression coefficients 

(β or γ). A RBA value less than 5% can be interpreted as a trivial bias, between 5% and 10% 

as a moderate bias, and greater than 10% as a substantial bias (Curran, West, & Finch, 1996). 

Note that RBA should be interpreted with caution, since it is used to describe an “overall” 

picture of average bias, i.e., lumping bias in a positive and negative direction together. 

 

      To quantify the overall quality of parameter estimates, the mean squared error is 

commonly used in simulation studies because it accounts for both the amount of bias and the 

sampling variability of parameter estimates (i.e., efficiency). The mean squared error (MSE) 

and average mean squared error (MSEA) can be defined as 

 

MSE(𝜃!) = !
!!

!!"!!!
!!

!

! , (33) 

 

and 

 

MSEA(𝜃) = !
!!

MSE(𝜃!)  ! , (34) 

 

where MSE(𝜃!) denotes the mean squared error of the parameter estimate 𝜃! over the 

replications; and other notations have been defined. A small MSEA value is suggested as 

favorable because it indicates better overall quality of parameter estimates, that is, less biased 

and more precise.  
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     To obtain accurate and precise standard error estimates is also a primary concern in 

applied and simulation studies. In a similar way, the bias formulations can be used for standard 

error estimates, relative to the standard deviation of the parameter estimates over the 

replications (also referred to as the empirical standard error). That is, the standard deviation 

of the parameter estimates over the replications is used as a proxy for the population standard 

error. The RB and RBA for standard error estimates are formulated as 

 

RB[SE(𝜃!)] =
!
!!

!"(!!)!!!"(!!)
!"(!!)

×  100%! , (35) 

 

and 

 

RBA[SE(𝜃)] = !
!!

RB[SE(𝜃!)]  ! , (36) 

 

where SE(𝜃!)!  is the estimated standard error of parameter 𝜃! in the jth replication, and SD(𝜃!) 

is the standard deviation of parameter 𝜃! over the replications. The mean squared error (MSE) 

and average mean squared error (MSEA) can also be defined as 

 

MSE[SE(𝜃!)] = !
!!

!"(!!)!!!"(!!)
!"(!!)

!

! , (37) 

 

and 
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MSEA[SE(𝜃)] = !
!!

MSE[SE(𝜃!)]! , (38) 

 

where MSE[SE(𝜃!)] denotes the mean squared error of the estimated standard error of 

parameter estimate 𝜃! over the replications. 

 

      Likewise, the performance of chi-square statistics can be assessed by the relative bias. 

Because of the expected value of a chi-square distribution equal to its degrees of freedom, the 

relative bias of chi-square statistics over the replications can be expressed as 

 

RB(𝜒!!)= 
!!!!!"

!"
×  100%, (39) 

 

and 

 

RB(𝜒!) = 
!"(!!!)!

  !!
, j = 1, 2, …, nr, (40) 

 

where 𝜒!! is the estimate of the chi-square statistic in the jth replication, df is the model 

degrees of freedom, and nr is the number of replications in each experimental condition.  

 

      Alternatively, chi-square test statistics have been examined often through the 

calculation of the rejection rate at a given nominal alpha level of .05 in simulation studies. The 

rejection rate equals the number of replications for which the chi-square value is greater than 

the critical value divided by the number of replications (successfully analyzed). The rejection 

rate of the proposed model should, therefore, approximate 5% specified in the population 
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model. The obtained rejection rates lying between .025 and .075 can be considered acceptable 

at a nominal alpha level of .05 (Bradley, 1978). A high rate of rejection suggests an inflated 

Type I error rate of testing overall model fit, reflecting that chi-square tests may have been 

over-rejected; a low rate of rejection otherwise indicates that chi-square test statistics may 

have been underestimated. Moreover, a high rate of rejection implies increased likelihood 

against the null hypothesis, whereas a low rate of rejection may indicate a potential 

compromise of the power of rejecting the hypothesized model.  

 

      Finally, applications of ad hoc fit indices have been less common in the extant literature 

(e.g., Flora & Curran, 2004; Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Rhemtulla, 

Brosseau-Liard, & Savalei, 2012; Yang-Wallentin & Jöreskog, & Luo, 2010). However, the root 

mean square error of approximation (RMSEA) has received the most attention, and it recently 

has been recognized as one of the most informative and trustworthy indices of model fit in 

applied research. RMSEA is a function of the sample estimate of the noncentrality parameter, 

𝜆: 

 

RMSEA = max   0, !
!!!   ×  !

 , (41) 

 

where 𝜆 = T – d, T is the estimated chi-square test statistic, and d is the degrees of freedom. 

One can replace T as TML, TMLR, TULSMV, or TD-WLSMV in the equation (41) to obtain RMSEAML, 

RMSEAMLR, RMSEAULSMV, or RMSEAD-WLSMV. RMSEA not only takes into account model complexity, 

as reflected in the degrees of freedom, but also it is least sensitive to sample size among ad 

hoc fit indices. It has been suggested that an RMSEA value of less than or equal to .05 is 
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indicative of a model of close fit (Browne & Cudeck, 1993). Because RMSEA, unlike chi-square 

statistics, does not have a known sampling distribution to assess its behavior, the performance 

of RMSEA was therefore assessed by the calculation of the rejection rate, judging by the 90% 

confidence interval. The upper and lower bounds of a 90% confidence interval for the RMSEA 

can be calculated as (Browne & Cudeck, 1993): 

 

RMSEA_low = max   0, !.!"
!!!   ×  !

 , (42) 

 

and 

 

RMSEA_upp = max   0, !.!"
!!!   ×  !

 . (43) 

 

λ.!" is the value that T is the 95th percentile of the noncentral chi-square distribution 𝜒!(d, 

λ.!"), and λ.!" is the value that T is the 5th percentile of the noncentral chi-square distribution 

𝜒!(d, λ.!"). Likewise, a 90% confidence interval for the RMSEA for ML, MLR, ULSMV, or 

D-WLSMV can be obtained by replacing T as TML, TMLR, TULSMV, or TD-WLSMV in the noncentral 

chi-square distribution. The rejection rate is determined as the number of replications for 

which the lower bound of a 90% confidence interval for the RMSEA is greater than the 

“practical” guideline of cutoff value of .05 divided by the number of replications (successfully 

analyzed). Also, means of RMSEA over the replications are reported to illustrate the practical 

relevance of the findings. 
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CHAPTER 5 

RESULTS 

 

      Due to an overwhelming amount available output, this results section needs reduction to 

accomplish a concise and attractive, though informative, presentation. The tables and figures 

are collapsed across several conditions, and the results for certain conditions not presented 

here are available in Appendix E. More specifically, results for sample sizes of N = 400, 750, 

and 1,500 are not presented here but are appended as supplemental materials in Appendix E, 

mainly because a similar pattern of the results for N = 400 and N = 750 was observed to those 

for N = 500; and results with N = 1,500 were comparable to N = 1,000, in terms of the 

performance of the parameter, standard error estimates, test statistics, and RMSEA. 

Furthermore, an exhaustive report of bipolarized data was not undertaken here, as the effect 

of bipolarization on model results fell between that of slight asymmetry and moderate 

asymmetry across most conditions; the effect of bipolarization on chi-square goodness of fit 

statistics fell between that of symmetry and slightly asymmetry across many conditions. 

However, Appendix F contains all results from the bipolarized data conditions. Because ML and 

MLR produced the same rates of non-convergence and inadmissible solutions, and the same 

values of parameter estimates (including both factor loadings and structural coefficients), 

these results were combined within the estimator denoted by “ML/MLR” in some tables. 

However, uncorrected standard errors and unadjusted chi-square goodness of fit statistics 

obtained with ML were different from MLR, so they were reported separately in the pertinent 

result tables. 

 

Non-Convergence and Inadmissible Solutions 

      Non-convergence was defined as the iterative estimation process that failed to converge 
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because the maximum number of iterations (by Mplus default) exceeded or because there 

were difficulties in optimizing the fit function before the maximum number of iterations had 

been reached (Muthén & Muthén, 2010). An inadmissible solution (i.e., Heywood cases) was 

defined as a statistically converged solution that, however, produced unbounded parameter 

estimates (i.e., an estimated inter-factor correlation larger than 1 in absolute value) or 

negative residual variances. 

 

      Tables 4(a) and 4(b) show the number of cases that failed to converge or produced 

inadmissible solutions. Note that ML and MLR produced the same number of cases of 

non-convergence and inadmissible solutions, so results were combined within the estimator 

denoted by “ML/MLR” in Tables 4(a) and 4(b). As shown in Table 4(a), estimation that failed to 

converge most likely occurred with 4-category, moderately asymmetric data in the smallest 

sample size N = 200 for all four estimators (in boldface). Convergence failures disappeared for 

all four estimators when sample size increased to N = 300, except for 2 cells (in boldface). 

Regarding inadmissible solutions in Table 4(b), ML and MLR did not yield any inadmissible 

solution across all conditions in the study. WLSMV and ULSMV tended to produce inadmissible 

solutions particularly when sample size was small. Among the four estimators, ULSMV had a 

higher probability of producing inadmissible solutions than the other three estimators across 

many conditions with sample size N = 200. The highest rate of inadmissible solutions obtained 

with ULSMV was 1.2% (6 cases), and it appeared with four-category, moderately asymmetric 

data, and sample size N = 200. However, there were no inadmissible solution across all but 

three conditions (in boldface) as sample size increased to N = 300 or more. In general, the four 

estimators (ML, MLR, WLSMV, and ULSMV) all resulted in convergence failures when data were 

4-category, moderately asymmetric in the smallest sample size N = 200. ULSMV and WLSMV 
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were more likely subjected to inadmissible solutions across many conditions with sample sizes 

N = 200 or 300. 

 

      In order to inform research practice and maximize external validity, the replications that 

were classified as non-convergence or inadmissible solutions were considered invalid empirical 

observations and were excluded from studying the impact of experimental factors on the 

performance of the four estimators and evaluating the parameter and standard error 

estimates, test statistics, and RMSEA (cf. Boomsma, 2013; Chen, Bollen, Paxton, Curran, & 

Kirby, 2001; Flora & Curran, 2004; Forero & Maydeu-Olivares, 2009). Note that additional 

analyses that included the inadmissible solutions were conducted. The analyses indeed 

brought about minor changes in outcome variables, but the conclusions remained unchanged.  

 

Parameter Estimates 

Factor Loadings 

      Tables 5−8 display average relative bias (RBA) and average mean squared error (MSEA) 

of factor loadings and structural coefficients by number of observed variables’ categories and 

ordinal observed distributions for all four estimators. Note that ML and MLR produced the same 

parameter estimates (both factor loadings and structural coefficients), so results were 

combined within the estimator denoted by “ML/MLR” in Tables 5−8. Factor loadings were, on 

average, underestimated by ML and MLR. They were moderately or substantially 

downward-biased across all sample size conditions, except for symmetric data with 5 

categories or more. The magnitude of this negative bias was reduced with increasing the 

number of observed variables’ categories but increased with increasing the level of 

asymmetric distributions of ordinal observed variables. Conversely, factor loading estimates 
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obtained by WLSMV and ULSMV appeared to be negligibly unbiased on average, irrespective of 

the number of observed variables’ categories, the shape of ordinal observed distributions, and 

sample size. Overall, WLSMV and ULSMV were consistently superior to ML and MLR for factor 

loading estimation in all investigated conditions, indicating that WLSMV and ULSMV yield more 

accurate factor loading estimates than ML and MLR.  

 

      In order to quantify the overall quality of parameter estimates, both the amount of bias 

and the sampling variability of parameter estimates (i.e., efficiency) should be considered 

simultaneously. An index that combines both squared bias and sampling variance is the mean 

squared error (MSE). A small MSE value is suggested as favorable because it indicates better 

overall quality of parameter estimates, that is, less biased and more precise. Regarding the 

overall quality of estimated factor loadings, the average mean squared error (MSEA) decreased 

with increasing sample sizes and the number of observed variables’ categories but increased 

with a greater level of asymmetric distributions. That is, the performance of factor loading 

estimates became better when sample size and the number of observed variables’ categories 

increased but turned worse when the level of asymmetric distributions increased. MSEA was 

most pronounced in the conditions where RBA was appreciable; in particular, it was noticeably 

large with four-category ordinal data. In general, MSEA obtained with WLSMV and ULSMV were 

smaller than ML and MLR across nearly all conditions.  

 

      However, there were few cells where MSEA obtained with ML and MLR was smaller than 

WLSMV and ULSMV when data were symmetric. In order to get a deeper understanding of this 

scenario, the MSEA was then partitioned into two components: squared bias and sampling 

variance in a stacked histogram. The lower portion in the stacked histogram is the squared bias, 
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whereas the upper portion represents the sampling variance. Figure 3 clarifies that ML and 

MLR displayed higher bias for categories 5, 6, and 7 than WLSMV and ULSMV in the 

combination of symmetric data and N = 200, despite generally lower MSEA. Specifically, ML 

and MLR produced more biased, but less variable, factor loading estimates, indicating that the 

estimates obtained in any given replications are likely to be close to each other but too far from 

the population value. Such observation disappeared as sample size increased, reflecting that a 

large sample size can wash out the advantage of symmetric data in ML and MLR estimation. 

 

      It is of particular interest that MSEA obtained with WLSMV was consistently slightly 

smaller than ULSMV across all cells, suggesting that the diagonal weights indeed contribute a 

small improvement on the overall quality of factor loading estimates. That is, factor loading 

estimates obtained with WLSMV were less biased and more precise than those produced by 

ULSMV. Uniformly, WLSMV and ULSMV are considered better than ML and MLR on the 

performance of factor loading estimates across nearly all conditions. However, the 

performance of ULSMV fell between that of WLSMV and ML/MLR. 

 

Structural Coefficients 

      The overall bias in structural coefficients (including both structural regression 

coefficients and the inter-factor correlation) obtained with the four estimators was, on average, 

trivially biased (either positively or negatively). Averaging over the structural coefficient 

estimates, the bias obtained with WLSMV and ULSMV appeared to be consistently trivial, rarely 

leading to the amount of bias greater than 1%. ML and MLR however introduced the amount of 

slightly marked bias into the estimates of structural coefficients with moderately asymmetric 

data (about −3%) across all sample sizes. In comparison, there was no remarkable distinction 
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among the four estimators, in terms of the absolute value of RBA. However, ML and MLR 

produced slightly larger bias than WLSMV and ULSMV in many conditions, except for certain 

symmetric data conditions. 

 

      With respect to the overall quality of estimated structural coefficients, the MSEA 

decreased with increasing sample size and the number of observed variables’ categories but 

increased with increasing the level of asymmetric distributions of ordinal observed variables. 

Similarly, the performance of structural coefficient estimates improved when sample size and 

the number of observed variables’ categories increased but dropped when the level of 

asymmetric distributions increased. Unlike factor loading estimates, the benefit of using 

diagonal weights to bring about a small improvement on the overall quality of structural 

coefficient estimates did not accrue until a medium sample size (N = 500) was reached. In 

general, there was no remarkable evidence suggesting that one of the four estimators is 

inferior to another one, in terms of MSEA. However, ML and MLR produced smaller MSEA than 

WLSMV and ULSMV in all conditions of symmetric data, while WLSMV and ULSMV produced 

smaller MSEA in nearly all asymmetric data conditions. 

 

      In addition to overall bias and quality of estimated structural coefficients, examination of 

each structural coefficient was also employed to gain further insight into which type(s) of 

structural coefficients performed better. In terms of MSEA, the performance of estimated 

structural coefficients became better as the magnitude of coefficients increased for all the four 

estimators. The estimates of the inter-factor correlation and structural regression coefficients 

in Γ generally were less biased and more precise than those of structural regression 

coefficients in B, provided with the same magnitude of coefficient. Table 9 shows that MSEA of 
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ϕ12 was about 4 to 5 times smaller than MSEA of β21, and MSEA of γ32 was consistently smaller 

than MSEA of β21 across the four estimators in the N = 1,000 conditions. Again, it was observed 

that ML and MLR produced smaller MSEA than WLSMV and ULSMV in all the conditions of 

symmetric data, while WLSMV and ULSMV produced smaller MSEA in all asymmetric data 

conditions. 

 

Standard Error Estimates 

      The RBA and MSEA for standard errors of factor loadings and structural coefficients are 

presented in Tables 10−13. Standard errors exhibited, on average, moderately downward bias 

for both WLSMV and ULSMV with the smallest sample size (N = 200), reflecting that robust 

standard errors were not upward adjusted enough to compensate the loss of efficiency caused 

by WLSMV and ULSMV estimation in the sample size N = 200 conditions. Not surprisingly, 

standard error underestimation improved when sample size increased. In contrast, the 

amount of negatively moderate-to-substantial bias was observed in ML estimation across most 

simulation conditions, except for all cells of symmetric data. The amount of trivial bias 

(essentially unbiased) was produced by MLR across most conditions. That is, this 

moderate-to-substantial underestimation of ML standard errors was significantly attenuated 

when robust corrections to standard errors in MLR estimation were employed. As soon as the 

sample size reached to N = 500 or more, the three robust estimators performed comparably 

well for estimating standard errors of parameter estimates, in terms of RBA. Uncorrected 

standard errors produced by ML still remained moderately-to-substantially biased in all 

asymmetric data conditions. Overall, the performance of MLR surpassed that of ML, WLSMV, 

and ULSMV across most conditions, in terms of RBA. The performance of ML was the worst in 

all asymmetric data conditions. However, there was no remarkable distinction between ML and 
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MLR in the conditions with symmetric data and sample size N = 300 or more. 

 

      Much as with the overall quality of parameter estimates, MSEA associated with standard 

error estimates decreased with increasing sample size but increased with increasing the level 

of asymmetric distributions of ordinal observed variables. MSEA obtained with ML and MLR 

demonstrated little sensitivity to the number of observed variables’ categories, whereas in 

estimating structural coefficients, MSEA obtained with WLSMV and ULSMV diminished as the 

number of observed variables’ categories increased. The advantage of incorporating diagonal 

weights into the estimated asymptotic covariance matrix of the parameter estimates was only 

sustained with robust standard errors of structural coefficient estimates, not with that of factor 

loading estimates.  

 

      In general, USLMV produced more precise estimated standard errors of factor loadings 

than WLSMV and MLR in all conditions, whereas WLSMV produced more precise estimated 

standard errors of structural coefficients than ULSMV and MLR across all asymmetric data 

conditions. The MSEA was partitioned into two components: squared bias and sampling 

variance in a stacked histogram, as described in the preceding section. As depicted in Figure 4, 

due to lower sampling variance, ULSMV displayed the lowest MSEA in the combination of 

slightly asymmetric data and N = 300, despite slightly higher bias. As sample size increased to 

N = 1,000, the bias produced by ULSMV was essentially equal to the other two robust 

estimators (see Figure 5), and ULSMV still had the lowest MSEA among the 4 estimators. 

Because of the amount of moderate bias, ML exhibited the highest MSEA among the 4 

estimators, although some lower sampling variances were observed. In Figure 6, WLSMV 

displayed lowest MSEA due to lower sampling variance, despite trivial bias. Although MLR 
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produced less biased standard error estimates, it had relatively high sampling variance, 

illustrating that the standard error estimates obtained in any given replications are usually not 

far from the empirical standard error (i.e., the standard deviation of parameter estimates over 

replications), but are widely spread out. In addition, ML produced higher biased standard 

errors but smaller sampling variances than MLR. 

 

Chi-Square Goodness of Fit Statistics 

      Tables 14−17 present findings for chi-square goodness of fit statistics and RMSEA with 

ML, MLR, ULSMV, and WLSMV estimators: (1) relative bias of chi-square goodness of fit 

statistics, (2) rejection rates associated with the Likelihood Ratio (LR) Test, (3) mean of 

RMSEA, and (4) rejection rates associated with the 90% CI for the RMSEA. The rejection rates 

associated with the LR test equal the number of replications for which the chi-square value is 

greater than the critical value divided by the number of successfully analyzed replications, and 

the rejection rates associated with the 90% CI for the RMSEA are determined as the number 

of replications for which the lower bound of a CI is greater than the practical cutoff value of .05 

divided by the number of successfully analyzed replications. The boldface numbers in these 

tables indicate unacceptable rejection rates, implying that acceptable difference rates in the 

tables are within the range [2.5%, 7.5%] (Bradley, 1978).  

 

      For WLSMV and ULSMV, the empirical Type I error rates of testing overall model fit were 

almost all within the range of .025 and .075, very close to the nominal Type I error (alpha =. 

05), except for the smallest sample size (N = 200). When the sample size was too small, 

WLSMV seemed to reject the hypothesized model too frequently, whereas the corresponding 

chi-square statistics of ULSMV were too conservative, as evidenced by N = 200. On the other 
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hand, MLR appeared to be systematically inferior in controlling for Type I error rates of testing 

overall model fit across nearly all conditions, unless a larger sample size was used (e.g., N = 

1,000). ML performed worse than MLR across most conditions, except for some cells of 

symmetric data. When data were slightly or moderately asymmetric, ML seemed to reject the 

hypothesized model much beyond expectation (more than 10 times the nominal Type I error), 

indicating that uncorrected chi-square statistics may have been substantially inflated in the 

presence of non-normality. 

 

      Among the three robust estimators, the corrected chi-square test statistics tend to be 

positively biased across all experimental conditions, with MLR correction being particularly 

unstable. The degree of positive bias diminished as sample size increased. Also, the number of 

observed variables’ categories and the level of asymmetric distributions of ordinal observed 

variables had an increasing effect on the inflation of chi-square statistics, but this effect was 

more pronounced for small sample sizes (e.g., N = 200 or 300). In general, MLR estimation 

was prone to yield moderately inflated chi-square statistics in the conditions of moderately 

asymmetric data and the small sample size (e.g., N = 200 or 300). Compared to WLSMV 

estimation, the positive bias was seen to be slightly smaller with ULSMV estimation. 

 

      Graphical comparisons of the observed distributions of the test statistics to the expected 

chi-square distributions are further provided to visualize some information from Tables 14 

through 17 using Probability-Probability (P-P) plots. Figures 7 and 8 demonstrated extremely 

bad distributional behavior of TML and also evidently disclosed the effects of small sample size 

and asymmetric distributions on the inflation of chi-square statistics. The plots for the 

moderately asymmetric data with seven-category were shown for the worst scenario where N 
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= 200 for all four estimators. Remarkably, the overall behavior of TML is clearly deviant across 

most conditions unless the data were symmetric and sample size increased. Overall, TULSMV had 

the closest approximation to the reference chi-square distribution, followed by TWLSMV, TMLR, 

and then TML in all conditions.  

 

RMSEA 

      As seen in Tables 14−17, rejection rates associated with the 90% CI for the RMSEA were 

not sensitive to the conditions of the study. This may be attributed to the population SR model 

being correctly specified in data analysis. However, means of RMSEA were minimally positively 

biased for all four estimators. It is not surprising that this inflation was reduced monotonically 

with increasing sample size, regardless of the number of observed variables’ categories and 

the shape of ordinal observed distributions. 
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CHAPTER 6 

DISCUSSION 

 

      This study sought to compare the performance of ML, MLR, WLSMV, and ULSMV in 

regard to parameter estimates, standard errors, and chi-square goodness of fit statistics in a 

five-factor structural regression model with ordinal observed variables under different 

experimental configurations of ordinal observed distributions, number of observed variables’ 

categories, and sample size, resulting in 112 conditions. The conditions were chosen to 

highlight the differences among the four estimators, as well as to investigate a wide variety of 

empirical circumstances frequently encountered in research practice. Several general findings 

are discussed as follows. 

 

      First, the four estimators all results in convergence failures when data were 4-category, 

moderately asymmetric in the smallest sample size N = 200. Furthermore, ULSMV and WLSMV 

were more likely subject to inadmissible solutions when small sample sizes N = 200 or 300 

were analyzed. The small sample degradation of the ML and three robust estimators is 

consistent with previous simulation studies in which non-convergence or inadmissible 

solutions more frequently occur with small sample sizes (Herzog, Boomsma, & Reinecke, 2007; 

Rhemtulla, Brosseau-Liard, & Savalei, 2012; Forero, Maydeu-Olivares, & Gallardo-Pujol, 

2009). However, it is important to note that increasing sample size N to 300 apparently can 

help reduce the degree of this unfavorable outcome. 

 

      Second, this study replicated previous results that factor loadings were typically 

underestimated by ML and MLR but were essentially unbiased with WLSMV and ULSMV 

(Beauducel & Herzberg, 2006; Flora & Curran, 2004; Forero, Maydeu-Olivares, Gallardo-Pujol, 
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2009; Rhemtulla, Brosseau-Liard, & Savalei, 2012). The accuracy and precision of estimated 

factor loadings with WLSMV and ULSMV were better than that of estimated factor loadings with 

ML and MLR across nearly all conditions, in terms of MSEA. Interestingly, on the basis of this 

simulation study, a clear superiority of WLSMV and ULSMV over ML and MLR in factor loading 

estimates across all simulation conditions was confirmed in this study, irrespective of the 

number of observed variables’ categories, the shape of ordinal observed distributions, and 

sample size. Even when the number of observed variables’ categories in the data reached to 

seven, ML and MLR still led to moderately biased factor loading estimates (Beauducel & 

Herzberg, 2006; Rhemtulla, Brosseau-Liard, & Savalei, 2012), suggesting that prior studies 

with ordinal observed indicators using ML and MLR underestimated associations between 

ordinal observed variables and latent constructs. In turn, the estimates of reliability for 

composite scores on Likert-type scales may have been undermined, which is particularly more 

appreciable with increasing the level of asymmetric distributions of ordinal observed variables.  

 

      ML and MLR led to moderately biased factor loading estimates but only produced a small 

amount of bias in structural coefficients across all conditions. More specifically, ML and MLR 

displayed mind robustness against violation of normality in estimating structural coefficients 

but rather factor loadings. This “unique” finding contributes to the literature by demonstrating 

that a combination effect of categorization and asymmetric observed distributions is larger on 

the measurement model parameters than on the structural model parameters. Such 

observation is similar to that of Coenders, Satorra, and Saris (1997), who concluded that 

Pearson product-moment correlations between ordinal observed indicators (through 

maximum likelihood estimation) perform badly in the estimation of factor loadings but such 

lower measurement quality estimates can lead to approximately correct point estimates of 
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structural coefficients.  

 

      Moreover, in terms of the accuracy and precision of estimated structural coefficients, a 

clear superiority of ML and MLR over WLSMV and ULSMV was found in all symmetric data 

conditions, whereas the advantage shifted to WLSMV and ULSMV in nearly all asymmetric data 

conditions. This may be attributed to the symmetric data being analyzed and the desirable 

estimation properties of maximum likelihood, such as unbiasedness and maximal efficiency, 

can therefore be retained. It is readily apparent that the accuracy and precision of parameter 

estimates (including factor loadings, the inter-factor correlation, and structural regression 

coefficients) became better with increasing sample size and the number of observed variables’ 

categories but decreased with a greater level of asymmetric distributions of ordinal observed 

variables.  

 

     In addition, increasing the magnitude of population structural coefficients was associated 

with higher accuracy and precision of structural coefficient estimation. A finding worth noting 

is that given the same magnitude of structural coefficients, the inter-factor correlation and 

structural regression coefficients between exogenous and endogenous latent variables 

generally performed better than structural regression coefficients among endogenous latent 

variables across all conditions. Prior simulation studies rarely explored the effect of ordinal 

observed variables on structural coefficients, but these findings complement the existing 

literature by showing the performance of structural coefficient estimates in an SR model. The 

specification of heterogeneous structural coefficients also highlights the potential weakness in 

an SR model − estimating a small structural regression coefficient among endogenous latent 

variables is likely compromised.  
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      Third, it was observed that MLR gave more accurate, but less precise, standard error 

estimates than WLSMV and ULSMV across most conditions. Despite the slightly higher amount 

of bias, among the three robust estimators, ULSMV produced more precise estimated standard 

errors of factor loadings across all conditions, whereas WLSMV produced more precise 

estimated standard errors of structural coefficients, due to smaller sampling variation, in all 

asymmetric data conditions. These findings resonate with the existing literature, in showing 

that the performance of standard error estimates for WLSMV and ULSMV is better than for MLR 

(Rhemtulla, Brosseau-Liard, & Savalei, 2012; Yang-Wallentin, Jöreskog, & Luo, 2010). In 

addition, ML produced moderately-to-substantially biased standard error estimates across all 

conditions, except for the conditions of symmetric data, congruent with previous studies (e.g., 

Beauducel & Herzberg, 2006; Kaplan, 2009). Likewise, the accuracy and precision of standard 

error estimates improved with increasing sample size and the number of observed variables’ 

categories but was reduced with a greater level of asymmetric distributions of ordinal observed 

variables. However, standard error estimates obtained by ML and MLR were less sensitive to 

the number of observed variables’ categories. 

 

      Fourth, in the evaluation of overall model fit using chi-square goodness of fit statistics, 

WLSMV and ULSMV had empirical rejection rates within the acceptable range of .025 and .075, 

closed to the nominal Type I error α = .5. However, when the sample size was too small (e.g., 

N = 200), WLSMV was likely to over-reject the hypothesized model more often than expected, 

echoing the high tendency of WLSMV rejection rates (Beauducel & Herzberg, 2006; Flora & 

Curran, 2004). In contrast, ULSMV tended to under-reject the hypothesized model less than 

the alpha level with a small sample. As with previous studies, ML produced unacceptable 
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rejection rates and TML exhibited extremely deviant distributional behavior in all asymmetric 

data conditions (e.g., Kaplan, 2009; Muthén & Kaplan, 1992). Among the three robust 

estimators, MLR was systematically inferior to WLSMV and ULSMV in controlling for Type I 

error rates of testing overall model fit across many conditions, due to moderate-to-substantial 

inflation of chi-square goodness of fit statistics. The deviant distributional behavior of TMLR 

occurred with the moderately asymmetric data having seven categories in the smallest sample 

size N = 200. The finding also suggests that TMLR is subjected to sizeable overestimation in a 

small sample. Until the sample size increased to 1,000, an acceptable rejection rate associated 

with MLR chi-square statistics was consequently observed. 

 

      With respect to the supplemental fit index, RMSEA, rejection rates judging by 90% 

confidence intervals revealed less sensitivity to the correctly specified SR model in this study. 

Although RMSEA showed promise for assessing the adequacy of a hypothesized model, means 

of RMSEA were slightly positively biased for all four estimators. This is in line with Curran et al. 

(2002) and Herzog & Boomsma (2009), who found that RMSEA is upward biased in smaller 

sample size conditions. Overall, RMSEA seems to be a reliable index in the evaluation of overall 

model fit when the model has no specification error.  

 

      Fifth, this study also aimed to evaluate the performance of the two weight matrices (I 

versus WD) in the estimation of parameters, robust standard errors, and test statistics. An 

interesting finding of this study is that the benefit of incorporating diagonal weights into the 

least squares fit function and estimated asymptotic covariance matrix was observed with 

parameter estimates and robust standard error estimates across all conditions, except for 

robust standard errors of factor loadings. That is, the diagonal weights contributed a small 
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improvement upon the performance of parameters and robust standard errors estimates. 

Additionally, this advantage was not sustained with chi-square statistic corrections because 

TULSMV appeared to have the closest approximation to the reference chi-square distribution. 

However, these findings make a distinct contribution to the existing literature in which the 

effectiveness of the diagonal weights is not very clear. In sum, not only can this diagonal 

weight matrix get around computational troubles in the conditions of small sample sizes or/and 

complex models but also yield relatively accurate parameter and standard error estimates, and 

a well-behaved distribution of test statistics that is approximately close to a central chi-square. 

 

Implications for Applied Research 

Sample Size 

      There are several specific implications of the findings with respect to fitting an SR model 

with ordinal observed variables using these four estimators in practice. First, applied 

researchers are concerned with the rates of non-convergence and inadmissible solutions. A 

non-converged or inadmissible solution often plagues applied researchers, and it is of no use 

for substantive interpretation. Evidence suggests that the four estimators all resulted in 

convergence failures when data were 4-category, moderately asymmetric in the smallest 

sample size N = 200, but only WLSMV and USLMV were subjected to inadmissible solutions in 

many conditions with sample sizes N = 200 or 300. In addition, a small sample size is often 

problematic because parameter and standard error estimates can be biased seriously and less 

precise. Not surprisingly, increasing sample size not only protects against convergence failures 

and inadmissible solutions but also improves the performance of model estimation.  

 

      One of the relevant implications for applied researchers is the presence of conditions for 

63



which none of the three robust estimators yields adequate results. WLSMV and ULSMV do not 

need a large sample size for the recovery of population parameters and to evaluate overall 

model fit via the mean- and variance-adjusted chi-square goodness of fit statistics, but a 

medium sample (N = 500 or more) is needed to obtain better standard error estimates. On the 

other hand, MLR does not require a large sample to produce stable structural coefficient and 

standard error estimates, but may need a quite large sample (N = 1,000 or more) to control for 

Type I error rates of testing overall model fit, despite the existence of moderate 

underestimation in factor loading estimates.  

  

      Taken together, a sample size less than 500 should be avoided to use when fitting a 

medium-size model with ordinal observed variables in practice. In this case, the ratio of 

sample size (N) and the number of observed variables (p) is 25 which much more exceeds the 

recommendation of having N at least 10 times p (Nunnally, 1978). Additionally, the ratio of N 

and the number of free parameters (q) is 10 which just meets the minimum requirement of 

having at least N : q = 10 : 1 with non-normal data when using maximum likelihood estimation 

(Bentler & Chou, 1987; Hu, Bentler, & Kano, 1992). Note that the number of free parameters 

in MLR estimation was 50 because there were 20 factor loadings, 20 error variances, and 10 

structural coefficients. 

  

Estimation Methods 

      Regarding estimation method selection, if the structural relationships are of primary 

concern in a research setting, the use of MLR can be recommended when fitting an SR model 

with ordinal observed variables on this ground. The biases of MLR estimates remained quite 

small and were typically less than .01 in the standardized structural coefficient metric, 
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although a substantial amount of bias in estimating factor loadings is inevitable (about 5% to 

10%). Given this recommendation, a word of caution is warranted. In a small sample, the 

robust chi-square goodness of fit statistic obtained with MLR is likely compromised, and 

RMSEA can be regarded as another alternative to evaluate the plausibility of overall model fit. 

This fit index could be of particular benefit to applied researchers in evaluating overall model 

fit. In general, it is not advisable to use ML in an SR model with ordinal observed variables 

unless data are symmetric and the desired sample size N = 500 is reached. In this case, 

structural coefficient and standard error estimates are considered reliable but the factor 

loadings are slightly underestimated and the uncorrected chi-square statistic is still slightly 

inflated, and RMSEA should be used to evaluate overall model fit. Generally speaking, the 

moderate-to-substantial underestimation of standard errors and considerable inflation of 

chi-square statistics make ML less attractive and favorable in practice, particularly when data 

moderately deviate from normality. This study also supports the argument that the 

performance of ML is generally unacceptable in the presence of non-normality.  

 

      It seems that WLSMV and ULSMV compensate more effectively than MLR for the bias and 

model fit evaluation measures due to the observed indicators by virtue of being ordinal rather 

than continuous in the SR model. Furthermore, the benefit of using diagonal weights makes 

WLSMV superior to ULSMV in many conditions; however, in a very rare scenario, when WLSMV 

is subject to the non-convergent issue, ULSMV may serve as another alternative for applied 

researchers. It is worth noting that once applied researchers confront the problem of missing 

data, ML or MLR with full information estimation is considered as a promising approach to 

handling missing data without employing (single or multiple) data imputation. Yet, the 

treatment of missing data in WLSMV and ULSMV estimators remains technically 

65



underdeveloped, providing its bivariate orientation (pairwise deletion as the default in Mplus, 

Muthén & Muthén, 2010). Additionally, some applied researchers may be limited in the choice 

of software programs or by estimation availability of certain software programs that they are 

familiar with. For instance, diagonally weighted least squares estimation is only implemented 

in Mplus, LISREL, SAS PROC CALIS, and the R package ‘lavaan’ but currently unavailable in 

EQS, Amos, and STATA. 

 

      Finally, another relevant implication for applied researchers is related to practical 

differences among the three robust estimators in this study. Take the model inference for 

example, the robust chi-square goodness of fit statistics obtained with MLR may tend to 

over-reject the true model about 5-20% more in the conditions with small sample sizes (e.g., 

N = 200, 300, or 500) than WLSMV and ULSMV. Specifically, applied researchers are very 

likely to reach completely different conclusions by rejecting the true model if they employ MLR 

rather than WLSMV or ULSMV in data analysis. Additionally, applied researchers occasionally 

use the RMSEA estimates to evaluate the model misfit, instead of the 90% confidence interval 

of the RMSEA. They reject the hypothesized model if the RMSEA estimate is greater than the 

“practical” cutoff value of .05. Another observation of possibly misleading conclusions drawn 

from empirical data is that a slightly higher bias of the RMSEA estimates makes MLR a little 

vulnerable in the evaluation of overall model fit with the smallest sample size N = 200. Some 

replications ended up with rejecting the true model based on the RMSEA estimates when MLR 

was employed in the analysis, and this situation became even worse when ML was used. 

Regarding the model parameter inference, estimating a small structural regression coefficient 

of .1 in the population model is very likely challenging as well, in particular of the conditions 

with asymmetric data and/or small sample sizes. The parameter estimates obtained with 
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WLSMV and ULSMV had higher rates of statistical significance than those obtained with MLR 

across all asymmetric data conditions, regardless of number of observed variables’ categories 

and sample size. Namely, applied researchers have higher likelihood of detecting these small 

relationships (i.e., 0.1 in the standardized regression coefficient metric) between latent 

constructs if they employ WLSMV or ULSMV in data analysis. For instance, the statistical 

significant rates of WLSMV and ULSMV were about 5% higher than those of MLR in the 

conditions with sample size N = 1000 when data were slightly or moderately asymmetric. 

 

      Therefore, advocates of robust estimation methods take the view that if standard errors 

and chi-square goodness of fit statistics are statistically corrected, then the power of 

uncovering the relationships between observed variables and/or latent variables can be 

enhanced, and the overall model hypothesis testing is able to maintain the type I error rate 

close to the nominal level in the evaluation of overall model fit. These statistical properties 

directly translate into substantive and practical advantages − applied researchers are likely to 

detect genuine relationships with precision and have more reliable model inference. 

 

Response Categories and Observed Distributions 

      The accuracy and precision of parameter and standard error estimates improved as the 

number of observed variables’ categories increased. These findings support the 

recommendation that applied researchers are encouraged to use 7-category ordinal observed 

indicators in a measurement design whenever possible. As was stated in the preceding section, 

ML and MLR did not fare well on factor loading estimation even when the number of observed 

variables’ categories was seven across all sample sizes. Although the point of superiority of ML 

and MLR over WLSMV and ULSMV may probably be reached with a larger number of observed 
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variables’ categories (e.g., 9 or 10), the implication for applied research for this further 

investigation is limited because ordinal observed indicators with more than 9 categories are 

rarely used in practice. Of the 157 psychometric measures in the SEM applications search I 

conducted, there were only 6 cases (3.8%) in which ordinal observed indicators had more than 

7 categories. Previous studies appear to support the desirability of a larger number of 

observed variables’ categories (e.g., higher psychometric qualities), but increasing the 

number of response categories may also affect respondents’ cognitive capability to process the 

meaning of each response category (see, e.g., Cook, Heath, & Thompson, 2001; Lietz, 2010). 

The number of response categories is also closely related to the distributions of ordinal 

observed variables. Statisticians have agreed that none of the real-world data is perfectly 

symmetric or/and normal (Gartside, 2001; Nester, 1996). Given the pervasiveness of 

non-normal data in practice, a general guideline for applied researchers is to examine the 

extent to which normality violation in the distributions of ordinal observed variables occurs 

before conducting data analysis. If ordinal observed indicators with moderately asymmetric 

and leptokurtic distributions are present, interpretation should be with much caution in 

structural coefficients, factor loadings, standard errors, and chi-square goodness of fit 

statistics. A cross-validated study can also help replicate the findings. 

 

Limitations and Directions for Future Research 

      There are innumerable combinations to manipulate in a single simulation study, but one 

can only focus on certain factors of particular interest to make the research design feasible and 

manageable. One drawback of carrying out a Monte Carlo study is that results are conditional 

on the simulation design. This study shares the same limitation as all Monte Carlo simulation 

studies, in that generalizations are constrained by the specification of the experimental 
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conditions employed in this study. Several limitations embedded in this study can be 

considered as potentially fruitful directions for future research.  

 

      First, a thorough examination of the effects of violation of the latent normality 

assumption on WLSMV and ULSMV is beyond the scope of this study. However, the polychoric 

correlation estimates have been proved to be robust against moderate violations of normality 

assumption in the latent response variables (Coenders, Satorra, & Saris, 1996; Flora & Curran, 

2004; Quiroga, 1992). Thoughtful consideration of a given construct is necessary to judge 

whether the underlying normality is tenable. The underlying distribution of the frequency of 

aggressive behaviors per day, for example, is unlikely normally distributed in the population. 

Besides, a test of the underlying bivariate normality assumption is available with LISREL’s 

processor PRELIS. The assumption of underlying bivariate normality is needed to calculate the 

polychoric correlation. Future research may investigate ordinal observed indicators with 

non-normal underlying distributions, or a mixture of underlying normality and non-normality 

on the same factor.  

 

      Although this study did not empirically examine the effects of violation of the underlying 

normality distributions, some predictions could be made with caution while selecting the three 

robust estimators. For example, the effects of violation of the underlying normality 

distributions would likely be more saliently on the performance of WLSMV and ULSMV than 

that of MLR, holding other conditions constant. In addition, given the condition of multiple 

underlying distributions across several groups of interest, it could be expected that the 

situation of heterogeneous underlying distributions would exacerbate the effects of violation of 

the underlying normality distributions on the performance of WLSMV and ULSMV than that of 
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MLR with all remaining conditions being equal. Although I only considered ordinal observed 

variables for each latent construct in this study, I would predict that MLR would likely perform 

better in the estimation of factor loadings under the condition of a mixture of continuous 

observed variables and ordinal observed variables, compared to the condition of all ordinal 

observed variables. 

 

      Second, the 5-factor SR model in this study was selected to be the representative of the 

medium-sized SEM model specification, which is beyond any prior studies documented in the 

SEM literature. However, further investigation tailored to various applications of SEM is 

suggested, in which models approximate real-world situations likely to be encountered in 

empirical studies: (1) a latent growth curve model, with the aim to capture individual 

trajectories, (2) a multiple-group structural regression model to possibly study group 

similarities and differences, or (3) a multilevel structural equation model in consideration of 

clustering effects. Additionally, this study was limited to a saturated structural model; 

therefore a natural extension of this study is the investigation of a non-saturated structural 

model by manipulating the number of structural coefficients. 

 

      Third, due to the population SR model being correctly specified, the present study does 

not pursue the possible effects of model misspecification. In fact, applied researchers have to 

recognize that they may not always work with models without specification errors. The popular 

supplemental fit index, RMSEA, showed promise for assessing the adequacy of a hypothesized 

model without specification error in this study, but an interesting avenue of further 

investigation would examine the power of both corrected chi-square goodness of fit statistics 

and RMSEA to detect model misspecification. Although previous simulation studies have 
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suggested that the ordinal CFA models are robust to slight model misspecification (e.g., Flora 

& Curran, 2004; Maydeu-Olivares, 2006), a worthy topic for future research is to compare the 

performance of these robust estimators on parameter and standard error estimates, 

chi-square goodness of fit statistics, and ad hoc fit indices when an SR model with ordinal 

observed variables under different levels of model specification errors. For example, applied 

researchers may omit structural regression coefficients or cross-factor loadings, or include 

certain misspecified structural regression coefficients that are not actually in the population 

model. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

      The conclusions of this study can be summarized as follows:  

(1) the four estimators are all subjected to non-convergence problems with 4-category, 

moderately asymmetric data in the smallest sample size N = 200; 

(2) WLSMV and ULSMV are likely to produce inadmissible solutions in some conditions 

with sample sizes N = 200 or 300; 

(3) WLSMV and ULSMV yield more accurate factor loading estimates than ML and MLR 

across all conditions in the study; 

(4) the estimates of structural coefficients under ML and MLR outperform WLSMV and 

ULSMV in all symmetric data conditions, whereas WLSMV and ULSMV surpass ML 

and MLR in nearly all asymmetric data conditions; 

(5) the robust standard errors of factor loadings obtained with ULSMV are more precise 

than those produced by WLSMV and MLR across all conditions; 

(6) the robust standard errors of structural coefficients obtained with WLSMV are more 

precise than those with ULSMV and MLR in all asymmetric data conditions; 

(7) among the three robust estimators, MLR is inferior to WLSMV and ULSMV in 

controlling for Type I error rates of testing overall model fit in almost every 

condition, unless a larger sample size is used (i.e., N = 1,000 in this thesis); 

(8) RMSEA seems to be a reliable index in the evaluation of overall model fit when the 

model has no specification error; 

(9) the benefit of using diagonal weights can be found in the estimation of factor 

loadings and structural coefficients and robust standard errors of structural 

coefficients, but not in the estimation of robust standard errors of factor loadings 
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and the mean- and variance-adjusted chi-square goodness of fit statistics across all 

conditions; and 

(10) the accuracy and precision of factor loadings and structural coefficients, and 

standard error estimates of both factor loadings and structural coefficients improve 

with increasing sample size and number of observed variables’ categories but 

decrease with a greater level of asymmetric distributions. 

 

      Although WLSMV and ULSMV can be generally recommended to use when fitting an SR 

model with ordinal observed variables, it is worthwhile to point out that each estimator 

considered in this thesis has its own advantages and disadvantages. This study provides 

evidence that WLSMV and ULSMV perform better than MLR, and that MLR dose so than ML in 

many conditions. WLSMV and ULSMV do not need a large sample size for the recovery of 

population factor loadings and structural coefficients, and to evaluate overall model fit using 

the mean- and variance-adjusted chi-square goodness of fit statistics, but a medium sample 

(e.g., N = 500 or more) is required to obtain stable standard error estimates of both factor 

loadings and structural coefficients. In addition, the benefit of using diagonal weights in 

WLSMV can be observed in the estimation of factor loadings and structural coefficients as well 

as robust standard errors of structural coefficients. Compared to ML and MLR, WLSMV and 

ULSMV have more reliable model inference in small sample sizes and are more likely to detect 

small structural relationships with precision when data were slightly or moderately 

asymmetric. 

 

      On the other hand, MLR has its own strengths − e.g., generally less biased standard 

error estimates of factor loadings and structural coefficients, and accurate and precise 
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structural coefficient estimates in the conditions of symmetric data. MLR does not require a 

large sample to produce stable structural coefficient estimates and standard error estimates of 

factor loadings and structural coefficients, but may need a quite large sample (e.g., N = 1,000 

or more) to control for Type I error rates of testing overall model fit, despite the existence of 

moderate underestimation in factor loading estimates. However, the small amount of bias in 

structural coefficient estimates makes MLR practically recommendable when applied 

researchers are primarily concerned with structural relationships among latent constructs. 

Consistent with asymptotic theory, ML can perform pretty well in a relatively large sample 

when data are near symmetric (or close to normal). Generally speaking, the 

moderate-to-substantial underestimation of standard errors for both factor loadings and 

structural coefficients, and considerable inflation of chi-square goodness of fit statistics make 

ML less attractive and favorable in practice, particularly when data moderately deviate from 

normality. However, ML and MLR with full information estimation can be considered a 

promising approach in research practice when applied researchers have to deal with missing 

data because the treatment of missing data in WLSMV and ULSMV estimators remains 

technically underdeveloped. 

 

      It is important to keep in mind that any working recommendations provided herein are 

based on the current model configurations. This study did not consider the possible effects of 

violation of the underlying normality distributions. However, it can be expected that the effects 

of the underlying normality assumption violation would be more saliently on the performance 

of WLSMV and ULSMV than that of MLR on model estimation. Furthermore, it is unclear that the 

performance of the four estimators on parameter and standard error estimates, chi-square 

goodness of fit statistics, and RMSEA in an SR model with ordinal observed variables under 
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varying levels of model misspecification. Future investigations into these simulation design 

characteristics would likely render informative suggestions and more fine-grained 

recommendations. Applied researchers still have to weigh the pros and cons of different 

estimators, in order to make better-informed decisions while analyzing an SR model with 

ordinal observed indicators. 
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Table 1. Overview of Six Major Simulation Studies in Ordinal CFA 
  
 Studies 
 

Oranje Beauducel 
& Herzberg Lei 

Forero, 
Maydeu-Olivares, 
& Gallardo-Pujol 

Yang-Wallentin, 
Joreskog, 

& Luo 

Rhemtulla, 
Brosseau-Liard, 

& Savalei 
Year 2003 2006 2009 2009 2010 2012 

Sample Size 200, 500, 
1000 

250, 500, 750, 
1000 

100, 250, 
1000 

200, 500, 
2000 

100, 200, 400, 
800, 1600 

100, 150, 350, 
600 

No. Factors 1 & 3 1, 2, 4, 8 2 & 3 1 & 3 2 & 4 2 

No. Variables 5, 10, 15, 30, 
45 5, 10, 20, 40 6 & 9 9, 21, 42 6 & 16 10 & 20 

No. Categories 2, 3, 5 2, 3, 4, 5, 6 5 2 & 5 2, 5, 7 2, 3, 4, 5, 6, 7 
Item 

Asymmetry Yes Yes Yes Yes Yes Yes 

Estimation ML* & WLSMV ML & WLSMV ML, ROBUST 
& WLSMV ULS & WLSMV ML*, ULS*, DWLS* ULSMV & MLMV 

Software LISREL & 
Mplus Mplus EQS & Mplus Mplus LISREL Mplus 

Note. *Polychoric correlation estimates and estimated asymptotic covariance matrix need to compute from PRELIS before 
performing LISREL. 
 
 
 
Table 2. Robust Estimation Comparison in the Three SEM Software Packages 
 
 SEM Software Programs 

Estimation Mplus EQS LISREL 
Robust Maximum Likelihood MLR ML, ROBUST ML* 
Robust Unweighted Least Squares ULSMV LS, ROBUST ULS* 
Robust Weighted Least Squares WLSMV × DWLS* 
Note. *Polychoric correlation estimates and estimated asymptotic covariance matrix need to compute from PRELIS before 
performing LISREL. Robust weighted least squares estimation is currently unavailable in EQS. 
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Table 3. Comparison of Two Major Estimation Approaches: Maximum Likelihood and Least Squares in Mplus 
 

Estimators Parameters Standard Errors Chi-square 

Maximum Likelihood 
 

   

ML ML ML ML 
MLM MLM = ML MLM = MLMV ≠ ML MLM ≠ ML 
MLMV MLMV = ML MLMV = MLM ≠ ML MLMV ≠ ML 
MLR MLR = ML MLR ≠ ML MLR ≠ ML 

    
Least Squares 

 
   

ULS ULS ULS ULS 
ULSMV ULSMV = ULS ULSMV ≠ ULS ULSMV ≠ ULS 

    
WLS WLS WLS WLS 

WLSM WLSM = WLSMV ≠ WLS WLSM = WLSMV ≠ WLS WLSM ≠ WLS 
WLSMV WLSMV = WLSM ≠ WLS WLSMV = WLSM ≠ WLS WLSMV ≠ WLS 

Note. ML = maximum likelihood, MLM = maximum likelihood with a mean-adjusted chi-square statistic, MLMV = maximum 
likelihood with a mean- and variance-adjusted chi-square statistic; ULS = unweighted least squares, ULSMV = unweighted least 
squares with a mean- and variance-adjusted chi-square statistic; WLS = weighted least squares, WLSM = weighted least squares 
with a mean-adjusted chi-square statistic, WLSMV = weighted least squares with a mean- and variance-adjusted chi-square 
statistic. 
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Table 4(a). Cases of Non-Convergence 

  Dis. Symmetry Slight Asymmetry Moderate Asymmetry Bipolarization 

Est. N Cat. 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

ML/MLR 

200  0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

300  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                   

WLSMV 

200  0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 

300  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                   

ULSMV 

200  0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

300  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Note. Est. = Estimators, Dis. = distribution type, and Cat. = number of categories. ML/MLR = maximum likelihood/robust 
maximum likelihood, WLSMV = robust weighted least squares, ULSMV = robust unweighted least squares. N = sample sizes. 
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Table 4(b). Cases of Inadmissible Solutions 

  Dis. Symmetry Slight Asymmetry Moderate Asymmetry Bipolarization 

Est. N Cat. 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

ML/MLR 

200  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

300  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                   

WLSMV 

200  0 1 0 0 0 1 0 0 0 0 0 2 3 1 1 0 

300  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                   

ULSMV 

200  0 1 0 0 1 2 0 0 6 0 0 1 4 1 1 1 

300  0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 

400  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

750  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1000  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1500  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Note. Est. = Estimators, Dis. = distribution type, and Cat. = number of categories. ML/MLR = maximum likelihood/robust 
maximum likelihood, WLSMV = robust weighted least squares, ULSMV = robust unweighted least squares. N = sample sizes. 
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Table 5. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 200) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -7.00 

 

-2.13 

 

0.0142 

 

0.9570 

 

0.30 

 

-1.73 

 

0.0118 

 

0.9716 

 

-0.08 

 

-1.89 

 

0.0122 

 

0.9454 

  5  -4.44 

 

-1.33 

 

0.0107 

 

0.7460 

 

0.22 

 

-0.74 

 

0.0108 

 

0.7847 

 

-0.13 

 

-0.82 

 

0.0112 

 

0.7637 

  6  -3.20 

 

-0.90 

 

0.0095 

 

0.6817 

 

0.22 

 

-0.52 

 

0.0103 

 

0.7338 

 

-0.11 

 

-0.82 

 

0.0107 

 

0.7123 

  7  -2.49 

 

-0.42 

 

0.0089 

 

0.6734 

 

0.13 

 

-0.17 

 

0.0100 

 

0.7222 

 

-0.19 

 

-0.20 

 

0.0104 

 

0.7002 

 slight 4  -10.10 

 

-2.79 

 

0.0216 

 

1.3215 

 

0.20 

 

-0.65 

 

0.0136 

 

1.1989 

 

-0.23 

 

-0.97 

 

0.0140 

 

1.1492 

  5  -6.92 

 

-2.17 

 

0.0154 

 

0.8693 

 

0.21 

 

-1.02 

 

0.0118 

 

0.9212 

 

-0.18 

 

-1.00 

 

0.0122 

 

0.8813 

  6  -6.04 

 

-2.35 

 

0.0138 

 

0.8267 

 

0.15 

 

-1.50 

 

0.0111 

 

0.8199 

 

-0.20 

 

-1.69 

 

0.0115 

 

0.7826 

  7  -5.43 

 

-1.40 

 

0.0132 

 

0.7546 

 

0.18 

 

-0.31 

 

0.0105 

 

0.7231 

 

-0.16 

 

-0.41 

 

0.0109 

 

0.7017 

 mod 4  -11.86 

 

-3.23 

 

0.0291 

 

1.2265 

 

0.06 

 

0.50 

 

0.0161 

 

1.4529 

 

-0.55 

 

-0.02 

 

0.0168 

 

1.4251 

  5  -9.26 

 

-3.03 

 

0.0218 

 

1.1744 

 

0.11 

 

-0.25 

 

0.0133 

 

1.1013 

 

-0.37 

 

-0.69 

 

0.0138 

 

1.1302 

  6  -8.78 

 

-3.18 

 

0.0212 

 

1.0577 

 

0.10 

 

0.11 

 

0.0126 

 

1.0693 

 

-0.32 

 

-0.35 

 

0.0131 

 

1.0445 

  7  -8.73 

 

-3.03 

 

0.0213 

 

1.0262 

 

0.11 

 

0.25 

 

0.0121 

 

0.9686 

 

-0.30 

 

-0.16 

 

0.0126 

 

0.9564 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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Table 6. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 300) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.91 

 

-0.05 

 

0.0108 

 

0.4427 

 

0.23 

 

0.27 

 

0.0076 

 

0.4781 

 

-0.03 

 

0.18 

 

0.0079 

 

0.4693 

  5  -4.44 

 

-0.26 

 

0.0076 

 

0.4325 

 

0.12 

 

0.23 

 

0.0069 

 

0.4365 

 

-0.12 

 

0.09 

 

0.0072 

 

0.4316 

  6  -3.19 

 

0.04 

 

0.0065 

 

0.3915 

 

0.10 

 

0.44 

 

0.0065 

 

0.4135 

 

-0.11 

 

0.35 

 

0.0068 

 

0.4155 

  7  -2.43 

 

0.08 

 

0.0060 

 

0.3824 

 

0.08 

 

0.47 

 

0.0064 

 

0.3997 

 

-0.12 

 

0.35 

 

0.0067 

 

0.3995 

 slight 4  -9.96 

 

-0.89 

 

0.0174 

 

0.6313 

 

0.13 

 

0.55 

 

0.0088 

 

0.6205 

 

-0.15 

 

0.32 

 

0.0091 

 

0.6097 

  5  -6.87 

 

-0.81 

 

0.0117 

 

0.5484 

 

0.11 

 

0.57 

 

0.0076 

 

0.5144 

 

-0.15 

 

0.42 

 

0.0079 

 

0.5208 

  6  -5.88 

 

-0.64 

 

0.0101 

 

0.4766 0.14 

 

0.48 

 

0.0071 

 

0.4545 

 

-0.10 

 

0.33 

 

0.0074 

 

0.4618 

  7  -5.36 

 

-0.67 

 

0.0097 

 

0.4908 

 

0.06 

 

0.40 

 

0.0069 

 

0.4304 

 

-0.17 

 

0.25 

 

0.0072 

 

0.4297 

 mod 4  -11.72 

 

-3.51 

 

0.0238 

 

0.7830 

 

0.07 

 

-0.23 

 

0.0107 

 

0.8631 

 

-0.32 

 

-0.64 

 

0.0112 

 

0.7905 

  5  -9.12 

 

-2.62 

 

0.0173 

 

0.6345 

 

0.07 

 

0.08 

 

0.0088 

 

0.6117 

 

-0.24 

 

0.05 

 

0.0092 

 

0.6212 

  6  -8.63 

 

-2.81 

 

0.0164 

 

0.7001 

 

0.10 

 

0.34 

 

0.0081 

 

0.5747 

 

-0.19 

 

0.18 

 

0.0084 

 

0.5856 

  7  -8.65 

 

-2.68 

 

0.0166 

 

0.6522 

 

0.04 

 

0.51 

 

0.0078 

 

0.5210 

 

-0.23 

 

0.32 

 

0.0082 

 

0.5271 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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Table 7. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 500) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.95 

 

-0.78 

 

0.0084 

 

0.2751 

 

0.12 

 

-0.48 

 

0.0045 

 

0.2953 

 

-0.05 

 

-0.53 

 

0.0046 

 

0.3000 

  5  -4.40 

 

-0.59 

 

0.0053 

 

0.2451 

 

0.09 

 

-0.28 

 

0.0041 

 

0.2618 

 

-0.06 

 

-0.33 

 

0.0043 

 

0.2676 

  6  -3.18 

 

-0.89 

 

0.0043 

 

0.2371 

 

0.06 

 

-0.69 

 

0.0039 

 

0.2522 

 

-0.08 

 

-0.73 

 

0.0041 

 

0.2560 

  7  -2.43 

 

-0.38 

 

0.0038 

 

0.2211 

 

0.06 

 

-0.13 

 

0.0038 

 

0.2366 

 

-0.08 

 

-0.19 

 

0.0039 

 

0.2413 

 slight 4  -9.85 

 

-1.27 

 

0.0141 

 

0.3203 

 

0.14 

 

-0.18 

 

0.0052 

 

0.3231 

 

-0.04 

 

-0.26 

 

0.0053 

 

0.3279 

  5  -6.78 

 

-1.70 

 

0.0087 

 

0.2976 

 

0.10 

 

-0.68 

 

0.0045 

 

0.3035 

 

-0.06 

 

-0.75 

 

0.0047 

 

0.3082 

  6  -5.86 

 

-1.35 

 

0.0073 

 

0.2775 

 

0.08 

 

-0.62 

 

0.0041 

 

0.2794 

 

-0.08 

 

-0.68 

 

0.0043 

 

0.2865 

  7  -5.27 

 

-1.26 

 

0.0067 

 

0.2640 

 

0.07 

 

-0.24 

 

0.0040 

 

0.2422 

 

-0.08 

 

-0.29 

 

0.0042 

 

0.2475 

 mod 4  -11.56 

 

-3.65 

 

0.0192 

 

0.3944 

 

0.11 

 

-0.69 

 

0.0062 

 

0.4510 

 

-0.14 

 

-0.91 

 

0.0065 

 

0.4686 

  5  -9.00 

 

-3.48 

 

0.0133 

 

0.3458 

 

0.09 

 

-1.35 

 

0.0052 

 

0.3485 

 

-0.10 

 

-1.52 

 

0.0054 

 

0.3566 

  6  -8.56 

 

-3.44 

 

0.0126 

 

0.3428 

 

0.03 

 

-1.15 

 

0.0048 

 

0.3113 

 

-0.15 

 

-1.28 

 

0.0050 

 

0.3162 

  7  -8.49 

 

-3.39 

 

0.0125 

 

0.3428 

 

0.04 

 

-0.90 

 

0.0047 

 

0.3017 

 

-0.13 

 

-1.03 

 

0.0049 

 

0.3084 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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Table 8. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 1,000) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.89 

 

-0.44 

 

0.0065 

 

0.1363 

 

0.08 

 

-0.23 

 

0.0023 

 

0.1433 

 

0.01 

 

-0.27 

 

0.0024 

 

0.1452 

  5  -4.34 

 

-0.60 

 

0.0035 

 

0.1246 

 

0.09 

 

-0.34 

 

0.0020 

 

0.1284 

 

0.01 

 

-0.37 

 

0.0021 

 

0.1299 

  6  -3.07 

 

-0.54 

 

0.0025 

 

0.1133 

 

0.11 

 

-0.36 

 

0.0019 

 

0.1177 

 

0.04 

 

-0.39 

 

0.0020 

 

0.1190 

  7  -2.34 

 

-0.59 

 

0.0021 

 

0.1082 

 

0.09 

 

-0.37 

 

0.0019 

 

0.1126 

 

0.03 

 

-0.39 

 

0.0020 

 

0.1142 

 slight 4  -9.78 

 

-1.18 

 

0.0117 

 

0.1632 

 

0.15 

 

-0.27 

 

0.0026 

 

0.1622 

 

0.05 

 

-0.24 

 

0.0027 

 

0.1647 

  5  -6.69 

 

-1.51 

 

0.0065 

 

0.1484 

 

0.11 

 

-0.87 

 

0.0022 

 

0.1431 

 

0.03 

 

-0.92 

 

0.0023 

 

0.1446 

  6  -5.79 

 

-1.20 

 

0.0053 

 

0.1345 

 

0.10 

 

-0.51 

 

0.0021 

 

0.1248 

 

0.03 

 

-0.54 

 

0.0022 

 

0.1263 

  7  -5.20 

 

-1.08 

 

0.0046 

 

0.1377 

 

0.10 

 

-0.47 

 

0.0020 

 

0.1228 

 

0.04 

 

-0.50 

 

0.0021 

 

0.1246 

 mod 4  -11.49 

 

-3.04 

 

0.0162 

 

0.1840 

 

0.14 

 

-0.16 

 

0.0031 

 

0.2001 

 

0.02 

 

-0.25 

 

0.0033 

 

0.2021 

  5  -8.94 

 

-2.47 

 

0.0106 

 

0.1694 

 

0.11 

 

-0.16 

 

0.0026 

 

0.1648 

 

0.02 

 

-0.21 

 

0.0027 

 

0.1660 

  6  -8.46 

 

-2.57 

 

0.0098 

 

0.1699 

 

0.11 

 

-0.32 

 

0.0024 

 

0.1498 

 

0.03 

 

-0.38 

 

0.0025 

 

0.1524 

  7  -8.44 

 

-2.47 

 

0.0098 

 

0.1709 

 

0.11 

 

-0.32 

 

0.0023 

 

0.1476 

 

0.03 

 

-0.36 

 

0.0024 

 

0.1495 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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Table 9. The Average Root Mean Squared Error (MSEA) for the Four Structural Coefficients (N = 1,000) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Structural Coefficients 

Dis. & Cat.  γ22= .2 β31= .2 β21= .3 ϕ12= .3 γ22= .2 β31= .2 β21= .3 ϕ12= .3 γ22= .2 β31= .2 β21= .3 ϕ12= .3 

sym 4  0.1288 0.2066 0.0820 0.0176 0.1323 0.2227 0.0866 0.0179 0.1349 0.2283 0.0884 0.0178 

 5  0.1203 0.1769 0.0805 0.0172 0.1241 0.1855 0.0846 0.0176 0.1258 0.1893 0.0864 0.0176 

 6  0.1045 0.1596 0.0688 0.0175 0.1086 0.1668 0.0721 0.0179 0.1105 0.1701 0.0735 0.0179 

 7  0.1038 0.1473 0.0676 0.0169 0.1090 0.1565 0.0719 0.0172 0.1105 0.1602 0.0730 0.0171 

slight 4  0.1541 0.2350 0.1009 0.0227 0.1576 0.2353 0.1031 0.0217 0.1588 0.2414 0.1044 0.0216 

 5  0.1440 0.2010 0.0987 0.0207 0.1392 0.1965 0.0967 0.0193 0.1407 0.2018 0.0981 0.0193 

 6  0.1211 0.1904 0.0821 0.0194 0.1148 0.1795 0.0761 0.0180 0.1163 0.1841 0.0777 0.0180 

 7  0.1324 0.1863 0.0895 0.0197 0.1238 0.1677 0.0816 0.0175 0.1265 0.1714 0.0836 0.0175 

mod 4  0.1890 0.2554 0.1197 0.0310 0.2014 0.2926 0.1350 0.0264 0.2048 0.2995 0.1370 0.0262 

 5  0.1551 0.2488 0.0999 0.0266 0.1433 0.2446 0.0959 0.0226 0.1453 0.2494 0.0978 0.0226 

 6  0.1614 0.2319 0.1088 0.0271 0.1384 0.2069 0.0952 0.0210 0.1402 0.2137 0.0970 0.0210 

 7  0.1521 0.2381 0.1005 0.0273 0.1285 0.2112 0.0883 0.0199 0.1304 0.2169 0.0899 0.0199 

Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. 
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Table 10. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 200) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -1.98 

 

-4.28 

 

0.0093 

 

0.0963 

 

-0.66 

 

-2.56 

 

0.0143 

 

0.0990 

  5  -2.34 

 

-2.82 

 

0.0103 

 

0.0451 

 

-1.14 

 

-1.17 

 

0.0152 

 

0.0505 

  6  -2.53 

 

-2.61 

 

0.0103 

 

0.0399 

 

-1.37 

 

-1.19 

 

0.0150 

 

0.0452 

  7  -2.79 

 

-4.27 

 

0.0114 

 

0.0358 

 

-1.59 

 

-2.71 

 

0.0162 

 

0.0415 

 slight 4  -7.32 

 

-8.21 

 

0.0143 

 

0.3196 

 

0.31 

 

-1.93 

 

0.0166 

 

0.4033 

  5  -8.13 

 

-5.80 

 

0.0159 

 

0.0751 

 

-0.80 

 

0.64 

 

0.0170 

 

0.0898 

  6  -6.86 

 

-5.14 

 

0.0143 

 

0.0643 

 

-0.10 

 

0.59 

 

0.0167 

 

0.0738 

  7  -8.46 

 

-4.81 

 

0.0167 

 

0.0527 

 

-0.48 

 

1.57 

 

0.0162 

 

0.0637 

 mod 4  -16.97 

 

-11.63 

 

0.0374 

 

0.3579 

 

0.33 

 

2.71 

 

0.0191 

 

0.4418 

  5  -14.85 

 

-12.33 

 

0.0310 

 

0.2261 

 

0.30 

 

-0.04 

 

0.0186 

 

0.2428 

  6  -16.07 

 

-12.02 

 

0.0348 

 

0.1406 

 

-0.09 

 

1.01 

 

0.0178 

 

0.1590 

  7  -16.75 

 

-12.47 

 

0.0370 

 

0.1186 

 

0.02 

 

1.18 

 

0.0176 

 

0.1314 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 10 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -5.77 

 

-6.62 

 

0.0157 

 

0.1017 

 

-3.81 

 

-4.27 

 

0.0120 

 

0.1088 

  5  -5.96 

 

-5.91 

 

0.0158 

 

0.0528 

 

-4.67 

 

-3.87 

 

0.0122 

 

0.0514 

  6  -7.45 

 

-8.11 

 

0.0173 

 

0.0544 

 

-6.31 

 

-5.86 

 

0.0139 

 

0.0543 

  7  -8.10 

 

-9.96 

 

0.0187 

 

0.0522 

 

-7.23 

 

-7.80 

 

0.0150 

 

0.0475 

 slight 4  -6.14 

 

-6.32 

 

0.0169 

 

0.1399 

 

-4.97 

 

-4.37 

 

0.0134 

 

0.1251 

  5  -7.15 

 

-7.34 

 

0.0176 

 

0.0816 

 

-6.11 

 

-5.15 

 

0.0140 

 

0.0709 

  6  -7.38 

 

-7.82 

 

0.0175 

 

0.0551 

 

-6.38 

 

-5.49 

 

0.0142 

 

0.0546 

  7  -8.05 

 

-7.54 

 

0.0180 

 

0.0581 

 

-6.93 

 

-5.27 

 

0.0144 

 

0.0514 

 mod 4  -6.66 

 

5.13 

 

0.0188 

 

0.2212 

 

-5.06 

 

-3.56 

 

0.0142 

 

0.2649 

  5  -6.84 

 

-7.11 

 

0.0172 

 

0.1199 

 

-5.30 

 

-5.64 

 

0.0134 

 

0.1272 

  6  -7.86 

 

-10.01 

 

0.0182 

 

0.0971 

 

-7.06 

 

-8.28 

 

0.0146 

 

0.0918 

  7  -7.72 

 

-9.52 

 

0.0184 

 

0.0936 

 

-7.14 

 

-8.05 

 

0.0154 

 

0.0916 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 11. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 300) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -0.74 

 

2.52 

 

0.0065 

 

0.0392 

 

-0.02 

 

3.95 

 

0.0098 

 

0.0451 

  5  -1.10 

 

-0.08 

 

0.0068 

 

0.0273 

 

-0.43 

 

1.18 

 

0.0098 

 

0.0314 

  6  -0.71 

 

0.95 

 

0.0065 

 

0.0278 

 

0.05 

 

2.06 

 

0.0096 

 

0.0316 

  7  -1.25 

 

1.38 

 

0.0069 

 

0.0274 

 

-0.54 

 

2.56 

 

0.0100 

 

0.0324 

 slight 4  -7.26 

 

-4.63 

 

0.0114 

 

0.0557 

 

-0.43 

 

1.50 

 

0.0103 

 

0.0679 

  5  -7.98 

 

-6.75 

 

0.0144 

 

0.0460 

 

-0.87 

 

-0.62 

 

0.0108 

 

0.0501 

  6  -7.08 

 

-4.13 

 

0.0115 

 

0.0401 

 

-0.78 

 

1.45 

 

0.0105 

 

0.0509 

  7  -8.94 

 

-5.46 

 

0.0147 

 

0.0348 

 

-1.51 

 

0.66 

 

0.0107 

 

0.0414 

 mod 4  -16.82 

 

-14.01 

 

0.0346 

 

0.2006 

 

-0.69 

 

-0.35 

 

0.0121 

 

0.2541 

  5  -15.08 

 

-10.93 

 

0.0292 

 

0.0867 

 

-0.84 

 

1.46 

 

0.0114 

 

0.1692 

  6  -16.06 

 

-12.60 

 

0.0325 

 

0.1475 

 

-0.99 

 

0.18 

 

0.0115 

 

0.0519 

  7  -16.68 

 

-12.79 

 

0.0345 

 

0.0623 

 

-0.96 

 

0.49 

 

0.0112 

 

0.0640 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 11 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -3.04 

 

-0.22 

 

0.0101 

 

0.0435 

 

-1.97 

 

1.41 

 

0.0080 

 

0.0456 

  5  -3.03 

 

-1.06 

 

0.0097 

 

0.0325 

 

-2.68 

 

0.63 

 

0.0080 

 

0.0334 

  6  -4.02 

 

-3.04 

 

0.0100 

 

0.0341 

 

-3.50 

 

-1.78 

 

0.0079 

 

0.0341 

  7  -4.69 

 

-2.51 

 

0.0105 

 

0.0345 

 

-4.49 

 

-0.97 

 

0.0086 

 

0.0335 

 slight 4  -3.97 

 

-1.56 

 

0.0106 

 

0.0550 

 

-3.06 

 

0.33 

 

0.0083 

 

0.0598 

  5  -3.91 

 

-3.73 

 

 

0.0103 

 

0.0460 

 

-3.72 

 

-2.44 

 

0.0084 

 

0.0522 

  6  -4.28 

 

-3.25 

 

0.0102 

 

0.0361 

 

-3.50 

 

-1.82 

 

0.0082 

 

0.0374 

  7  -5.33 

 

-3.78 

 

0.0113 

 

0.0337 

 

-5.02 

 

-2.16 

 

0.0093 

 

0.0339 

 mod 4  -5.34 

 

-4.21 

 

0.0135 

 

0.1137 

 

-4.89 

 

-1.26 

 

0.0110 

 

0.2204 

2.42 

 

 5  -4.73 

 

-2.70 

 

0.0116 

 

0.0913 

 

-4.09 

 

-1.51 

 

0.0092 

 

0.1000 

  6  -4.49 

 

-3.27 

 

0.0113 

 

0.0555 

 

-4.12 

 

-1.91 

 

0.0091 

 

0.0692 

  7  -4.89 

 

-3.08 

 

0.0114 

 

0.0382 

 

-4.74 

 

-1.73 

 

0.0093 

 

0.0407 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood, WLSMV 
= robust weighted least squares, ULSMV = robust unweight least squares. SEFL represents standard errors of factor loadings 
and SESC is standard errors of structural coefficients. 
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Table 12. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 500) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  0.74 

 

-1.45 

 

0.0041 

 

0.0150 

 

0.88 

 

-0.59 

 

0.0060 

 

0.0166 

  5  0.08 

 

-0.47 

 

0.0048 

 

0.0120 

 

0.23 

 

0.50 

 

0.0066 

 

0.0137 

  6  -0.18 

 

-0.97 

 

0.0046 

 

0.0119 

 

0.16 

 

-0.25 

 

0.0065 

 

0.0134 

  7  -0.29 

 

-0.35 

 

0.0051 

 

0.0113 

 

0.09 

 

0.48 

 

0.0070 

 

0.0130 

 slight 4  -5.91 

 

-3.55 

 

0.0084 

 

0.0249 

 

0.49 

 

2.38 

 

0.0075 

 

0.0295 

  5  -6.10 

 

-5.77 

 

0.0089 

 

0.0186 

 

0.42 

 

0.16 

 

0.0080 

 

0.0196 

  6  -5.04 

 

-5.05 

 

0.0075 

 

0.0163 

 

0.96 

 

0.23 

 

0.0077 

 

0.0175 

  7  -7.00 

 

-4.72 

 

0.0097 

 

0.0159 

 

0.04 

 

1.26 

 

0.0072 

 

0.0175 

 mod 4  -15.22 

 

-12.88 

 

0.0276 

 

0.0402 

 

0.38 

 

0.23 

 

0.0080 

 

0.0331 

  5  -13.61 

 

-10.90 

 

0.0228 

 

0.0275 

 

0.17 

 

1.05 

 

0.0074 

 

0.0224 

  6  -14.59 

 

-11.81 

 

0.0259 

 

0.0310 

 

-0.03 

 

0.76 

 

0.0074 

 

0.0246 

  7  -15.14 

 

-12.79 

 

0.0276 

 

0.0323 

 

0.12 

 

0.15 

 

0.0074 

 

0.0227 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 12 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -0.43 

 

-3.00 

 

0.0065 

 

0.0169 

 

0.25 

 

-2.05 

 

0.0054 

 

0.0171 

  5  -1.23 

 

-1.70 

 

0.0069 

 

0.0145 

 

-1.36 

 

-1.04 

 

0.0055 

 

0.0149 

  6  -1.74 

 

-2.76 

 

0.0068 

 

0.0139 

 

-1.56 

 

-1.83 

 

0.0055 

 

0.0141 

  7  -1.91 

 

-2.60 

 

0.0069 

 

0.0135 

 

-2.06 

 

-1.80 

 

0.0056 

 

0.0138 

 slight 4  -1.64 

 

-0.14 

 

0.0070 

 

0.0239 

 

-1.46 

 

0.49 

 

0.0057 

 

0.0249 

  5  -1.80 

 

-3.20 

 

0.0074 

 

0.0183 

 

-2.14 

 

-2.51 

 

0.0062 

 

0.0185 

  6  -0.94 

 

-4.00 

 

0.0066 

 

0.0155 

 

-1.32 

 

-3.92 

 

0.0053 

 

0.0160 

  7  -1.99 

 

-1.15 

 

0.0069 

 

0.0147 

 

-2.09 

 

-0.54 

 

0.0058 

 

0.0152 

 mod 4  -2.03 

 

-2.60 

 

0.0080 

 

0.0295 

 

-1.80 

 

-2.48 

 

0.0060 

 

0.0324 

  5  -1.70 

 

-2.07 

 

0.0070 

 

0.0202 

 

-0.97 

 

-1.82 

 

0.0061 

 

0.0212 

  6  -2.32 

 

-1.69 

 

0.0071 

 

0.0201 

 

-1.96 

 

-0.87 

 

0.0060 

 

0.0207 

  7  -2.58 

 

-3.04 

 

0.0071 

 

0.0180 

 

-2.49 

 

-2.42 

 

0.0062 

 

0.0187 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 13. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 1,000) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  0.56 

 

-1.09 

 

0.0028 

 

0.0072 

 

0.29 

 

-0.55 

 

0.0036 

 

0.0079 

  5  0.36 

 

-2.31 

 

0.0026 

 

0.0060 

 

0.14 

 

-1.74 

 

0.0034 

 

0.0066 

  6  1.18 

 

-0.82 

 

0.0028 

 

0.0056 

 

1.16 

 

-0.35 

 

0.0037 

 

0.0063 

  7  1.51 

 

-0.76 

 

0.0030 

 

0.0054 

 

1.48 

 

-0.26 

 

0.0038 

 

0.0062 

 slight 4  -5.50 

 

-5.64 

 

0.0055 

 

0.0118 

 

0.45 

 

-0.15 

 

0.0037 

 

0.0107 

  5  -6.38 

 

-8.22 

 

0.0067 

 

0.0135 

 

-0.24 

 

-2.74 

 

0.0038 

 

0.0094 

  6  -5.34 

 

-5.04 

 

0.0058 

 

0.0090 

 

0.26 

 

0.13 

 

0.0041 

 

0.0084 

  7  -6.24 

 

-7.11 

 

0.0066 

 

0.0113 

 

0.49 

 

-1.51 

 

0.0038 

 

0.0083 

 mod 4  -14.72 

 

-13.60 

 

0.0239 

 

0.0262 

 

0.28 

 

-0.70 

 

0.0039 

 

0.0111 

  5  -12.31 

 

-11.68 

 

0.0178 

 

0.0205 

 

1.17 

 

-0.08 

 

0.0043 

 

0.0100 

  6  -13.46 

 

-13.17 

 

0.0208 

 

0.0244 

 

0.71 

 

-1.14 

 

0.0041 

 

0.0102 

  7  -13.67 

 

-13.55 

 

0.0213 

 

0.0257 

 

1.19 

 

-1.08 

 

0.0041 

 

0.0105 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 13 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -0.73 

 

-1.91 

 

0.0035 

 

0.0082 

 

0.23 

 

-1.47 

 

0.0031 

 

0.0084 

  5  -0.10 

 

-2.32 

 

0.0034 

 

0.0070 

 

0.29 

 

-1.75 

 

0.0031 

 

0.0071 

  6  -0.45 

 

-1.82 

 

0.0033 

 

0.0066 

 

-0.32 

 

-1.25 

 

0.0029 

 

0.0068 

  7  0.05 

 

-1.89 

 

0.0034 

 

0.0065 

 

-0.02 

 

-1.31 

 

0.0029 

 

0.0066 

 slight 4  -0.26 

 

-1.36 

 

0.0038 

 

0.0098 

 

0.38 

 

-1.01 

 

0.0032 

 

0.0103 

  5  -0.84 

 

-3.48 

 

0.0035 

 

0.0088 

 

-0.58 

 

-2.79 

 

0.0031 

 

0.0089 

  6  -0.80 

 

-0.62 

 

0.0034 

 

0.0070 

 

0.02 

 

-0.18 

 

0.0028 

 

0.0074 

  7  -0.69 

 

-2.35 

 

0.0036 

 

0.0072 

 

0.13 

 

-1.76 

 

0.0032 

 

0.0073 

 mod 4  -1.41 

 

-1.93 

 

0.0042 

 

0.0115 

 

-1.17 

 

-1.31 

 

0.0035 

 

0.0119 

  5  -0.41 

 

-0.57 

 

0.0037 

 

0.0093 

 

-0.33 

 

-0.14 

 

0.0033 

 

0.0095 

  6  -0.57 

 

-1.89 

 

0.0040 

 

0.0085 

 

-0.87 

 

-1.56 

 

0.0036 

 

0.0087 

  7  -0.07 

 

-2.34 

 

0.0038 

 

0.0081 

 

-0.16 

 

-1.88 

 

0.0031 

 

0.0083 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table 14. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 200) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  5.14 

 

9.60 

 

0.015 

 

0.00 

 

5.99 

 

11.60 

 

0.016 

 

0.00 

  5  5.69 

 

13.80 

 

0.015 

 

0.00 

 

6.431 

 

15.80 

 

0.016 

 

0.00 

  6  5.61 

 

14.00 

 

0.015 

 

0.00 

 

6.37 

 

15.00 

 

0.016 

 

0.00 

  7  5.77 

 

12.40 

 

0.015 

 

0.00 

 

6.54 

 

14.60 

 

0.016 

 

0.00 

 slight 4  13.52 

 

32.20 

 

0.023 

 

0.00 

 

9.58 

 

21.20 

 

0.019 

 

0.00 

  5  14.33 

 

34.40 

 

0.024 

 

0.00 

 

9.57 

 

22.20 

 

0.019 

 

0.00 

  6  13.53 

 

31.40 

 

0.023 

 

0.00 

 

9.33 

 

19.80 

 

0.019 

 

0.00 

  7  14.79 

 

36.60 

 

0.025 

 

0.00 

 

9.59 

 

23.00 

 

0.019 

 

0.00 

 mod 4  28.44 

 

74.49 

 

0.036 

 

0.00 

 

11.70 

 

26.11 

 

0.022 

 

0.00 

  5  25.90 

 

68.40 

 

0.034 

 

0.00 

 

11.37 

 

26.20 

 

0.021 

 

0.00 

  6  27.41 

 

67.74 

 

0.035 

 

0.00 

 

11.62 

 

27.66 

 

0.021 

 

0.00 

  7  28.92 

 

74.50 

 

0.036 

 

0.00 

 

11.78 

 

26.91 

 

0.021 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table 14 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  2.88 

 

4.80 

 

0.011 

 

0.00 

 

0.80 

 

2.60 

 

0.009 

 

0.00 

  5  3.45 

 

6.21 

 

0.012 

 

0.00 

 

1.50 

 

3.61 

 

0.010 

 

0.00 

  6  4.65 

 

7.20 

 

0.013 

 

0.00 

 

2.55 

 

4.80 

 

0.011 

 

0.00 

  7  5.23 

 

8.20 

 

0.014 

 

0.00 

 

2.99 

 

5.04 

 

0.012 

 

0.00 

 slight 4  4.04 

 

4.82 

 

0.013 

 

0.00 

 

1.83 

 

1.61 

 

0.010 

 

0.00 

  5  4.73 

 

6.02 

 

0.014 

 

0.00 

 

2.62 

 

3.22 

 

0.011 

 

0.00 

  6  5.25 

 

7.01 

 

0.014 

 

0.00 

 

3.26 

 

4.81 

 

0.012 

 

0.00 

  7  5.78 

 

9.02 

 

0.015 

 

0.00 

 

3.45 

 

5.81 

 

0.012 

 

0.00 

 mod 4  5.19 

 

4.89 

 

0.014 

 

0.00 

 

3.36 

 

2.86 

 

0.012 

 

0.00 

  5  5.58 

 

8.22 

 

0.015 

 

0.00 

 

3.76 

 

5.20 

 

0.012 

 

0.00 

  6  5.94 

 

9.02 

 

0.015 

 

0.00 

 

4.12 

 

6.81 

 

0.013 

 

0.00 

  7  6.47 

 

9.70 

 

0.016 

 

0.00 

 

4.65 

 

7.46 

 

0.013 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Table 15. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 300) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  2.83 

 

9.80 

 

0.010 

 

0.00 

 

3.24 

 

10.80 

 

0.010 

 

0.00 

  5  3.59 

 

10.00 

 

0.011 

 

0.00 

 

3.89 

 

10.80 

 

0.011 

 

0.00 

  6  3.53 

 

10.80 

 

0.010 

 

0.00 

 

3.92 

 

11.40 

 

0.011 

 

0.00 

  7  3.82 

 

10.40 

 

0.011 

 

0.00 

 

4.17 

 

11.20 

 

0.011 

 

0.00 

 slight 4  11.82 

 

27.60 

 

0.018 

 

0.00 

 

6.12 

 

12.80 

 

0.013 

 

0.00 

  5  13.59 

 

33.87 

 

0.019 

 

0.00 

 

7.24 

 

18.04 

 

0.014 

 

0.00 

  6  11.95 

 

27.66 

 

0.018 

 

0.00 

 

6.14 

 

13.63 

 

0.013 

 

0.00 

  7  13.76 

 

33.40 

 

0.019 

 

0.00 

 

6.91 

 

16.60 

 

0.013 

 

0.00 

 mod 4  26.40 

 

67.74 

 

0.028 

 

0.00 

 

7.37 

 

 

17.43 

 

0.014 

 

0.00 

  5  24.11 

 

64.20 

 

0.027 

 

0.00 

 

7.40 

 

18.60 

 

0.014 

 

0.00 

  6  26.62 

 

69.00 

 

0.028 

 

0.00 

 

8.39 

 

20.00 

 

0.015 

 

0.00 

  7  27.29 

 

68.60 

 

0.029 

 

0.00 

 

7.87 

 

19.80 

 

0.014 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table 15 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  1.65 

 

4.00 

 

0.009 

 

0.00 

 

0.23 

 

3.40 

 

0.007 

 

0.00 

  5  2.13 

 

5.00 

 

0.009 

 

0.00 

 

0.80 

 

4.40 

 

0.008 

 

0.00 

  6  3.12 

 

6.20 

 

0.010 

 

0.00 

 

1.71 

 

4.60 

 

0.008 

 

0.00 

  7  3.44 

 

7.60 

 

0.010 

 

0.00 

 

1.98 

 

5.60 

 

0.008 

 

0.00 

 slight 4  2.57 

 

4.01 

 

0.009 

 

0.00 

 

1.17 

 

2.61 

 

0.008 

 

0.00 

  5  3.61 

 

6.61 

 

0.010 

 

0.00 

 

2.11 

 

4.61 

 

0.009 

 

0.00 

  6  3.53 

 

6.81 

 

0.010 

 

0.00 

 

2.15 

 

5.21 

 

0.009 

 

0.00 

  7  4.06 

 

7.60 

 

0.010 

 

0.00 

 

2.51 

 

6.20 

 

0.009 

 

0.00 

 mod 4  3.44 

 

5.24 

 

0.010 

 

0.00 

 

2.39 

 

4.05 

 

0.009 

 

0.00 

  5  3.67 

 

6.40 

 

0.010 

 

0.00 

 

2.58 

 

5.20 

 

0.009 

 

0.00 

  6  4.00 

 

5.80 

 

0.011 

 

0.00 

 

2.85 

 

4.41 

 

0.009 

 

0.00 

  7  4.12 

 

5.60 

 

0.011 

 

0.00 

 

2.95 

 

3.60 

 

0.010 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Table 16. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 500) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  2.84 

 

9.20 

 

0.008 

 

0.00 

 

2.92 

 

8.80 

 

0.008 

 

0.00 

  5  2.56 

 

9.20 

 

0.008 

 

0.00 

 

2.54 

 

9.20 

 

0.007 

 

0.00 

  6  2.37 

 

8.40 

 

0.007 

 

0.00 

 

2.45 

 

8.60 

 

0.008 

 

0.00 

  7  2.68 

 

9.60 

 

0.008 

 

0.00 

 

2.70 

 

9.40 

 

0.008 

 

0.00 

 slight 4  10.79 

 

24.00 

 

0.013 

 

0.00 

 

3.86 

 

9.40 

 

0.009 

 

0.00 

  5  11.11 

 

25.40 

 

0.013 

 

0.00 

 

3.59 

 

9.20 

 

0.008 

 

0.00 

  6  11.05 

 

27.05 

 

0.013 

 

0.00 

 

3.98 

 

11.02 

 

0.009 

 

0.00 

  7  11.38 

 

26.80 

 

0.014 

 

0.00 

 

3.46 

 

9.60 

 

0.008 

 

0.00 

 mod 4  25.65 

 

66.53 

 

0.022 

 

0.00 

 

5.00 

 

10.06 

 

0.009 

 

0.00 

  5  23.57 

 

60.32 

 

0.021 

 

0.00 

 

5.15 

 

12.22 

 

0.009 

 

0.00 

  6  24.48 

 

63.40 

 

0.021 

 

0.00 

 

4.72 

 

12.80 

 

0.009 

 

0.00 

  7  25.88 

 

67.40 

 

0.022 

 

0.00 

 

4.94 

 

12.40 

 

0.009 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table 16 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  1.55 

 

4.80 

 

0.007 

 

0.00 

 

0.64 

 

4.00 

 

0.006 

 

0.00 

  5  1.46 

 

4.60 

 

0.006 

 

0.00 

 

0.60 

 

3.80 

 

0.006 

 

0.00 

  6  1.86 

 

5.60 

 

0.007 

 

0.00 

 

0.86 

 

4.40 

 

0.006 

 

0.00 

  7  2.30 

 

7.40 

 

0.007 

 

0.00 

 

1.34 

 

5.80 

 

0.006 

 

0.00 

 slight 4  1.36 

 

3.00 

 

0.006 

 

0.00 

 

0.34 

 

2.60 

 

0.006 

 

0.00 

  5  1.99 

 

3.80 

 

0.007 

 

0.00 

 

1.01 

 

3.80 

 

0.006 

 

0.00 

  6  2.13 

 

5.61 

 

0.007 

 

0.00 

 

1.21 

 

5.20 

 

0.006 

 

0.00 

  7  1.91 

 

3.80 

 

0.007 

 

0.00 

 

1.03 

 

3.20 

 

0.006 

 

0.00 

 mod 4  2.31 

 

4.62 

 

0.007 

 

0.00 

 

1.56 

 

3.80 

 

0.007 

 

0.00 

  5  2.41 

 

6.83 

 

0.007 

 

0.00 

 

1.65 

 

4.80 

 

0.007 

 

0.00 

  6  2.28 

 

4.80 

 

0.007 

 

0.00 

 

1.48 

 

3.60 

 

0.006 

 

0.00 

  7  2.66 

 

6.60 

 

0.007 

 

0.00 

 

1.88 

 

5.20 

 

0.007 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Table 17. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 1,000) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  0.81 

 

5.60 

 

0.005 

 

0.00 

 

0.70 

 

5.40 

 

0.005 

 

0.00 

  5  0.88 

 

6.00 

 

0.005 

 

0.00 

 

0.67 

 

5.80 

 

0.005 

 

0.00 

  6  1.28 

 

7.20 

 

0.005 

 

0.00 

 

1.12 

 

7.20 

 

0.005 

 

0.00 

  7  1.10 

 

5.80 

 

0.005 

 

0.00 

 

0.93 

 

5.80 

 

0.005 

 

0.00 

 slight 4  10.06 

 

22.20 

 

0.009 

 

0.00 

 

2.22 

 

6.60 

 

0.005 

 

0.00 

  5  9.51 

 

22.00 

 

0.009 

 

0.00 

 

1.12 

 

7.80 

 

0.005 

 

0.00 

  6  9.36 

 

19.80 

 

0.009 

 

0.00 

 

1.45 

 

7.40 

 

0.005 

 

0.00 

  7  9.73 

 

21.20 

 

0.009 

 

0.00 

 

0.93 

 

6.80 

 

0.005 

 

0.00 

 mod 4  23.43 

 

63.20 

 

0.014 

 

0.00 

 

1.78 

 

7.80 

 

0.005 

 

0.00 

  5  21.09 

 

56.40 

 

0.014 

 

0.00 

 

1.69 

 

5.40 

 

0.005 

 

0.00 

  6  22.43 

 

58.00 

 

0.014 

 

0.00 

 

1.60 

 

5.60 

 

0.005 

 

0.00 

  7  23.35 

 

59.80 

 

0.014 

 

0.00 

 

1.50 

 

7.40 

 

0.005 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table 17 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  0.28 

 

3.00 

 

0.004 

 

0.00 

 

-0.21 

 

2.80 

 

0.004 

 

0.00 

  5  0.30 

 

3.60 

 

0.004 

 

0.00 

 

-0.13 

 

3.01 

 

0.004 

 

0.00 

  6  1.14 

 

3.60 

 

0.005 

 

0.00 

 

0.74 

 

3.80 

 

0.004 

 

0.00 

  7  0.90 

 

4.40 

 

0.004 

 

0.00 

 

0.56 

 

3.80 

 

0.004 

 

0.00 

 slight 4  1.04 

 

3.60 

 

0.005 

 

0.00 

 

0.56 

 

3.41 

 

0.004 

 

0.00 

  5  0.62 

 

4.80 

 

0.005 

 

0.00 

 

0.19 

 

4.80 

 

0.004 

 

0.00 

  6  0.91 

 

4.40 

 

0.004 

 

0.00 

 

0.49 

 

4.40 

 

0.004 

 

0.00 

  7  0.79 

 

4.60 

 

0.004 

 

0.00 

 

0.30 

 

3.80 

 

0.004 

 

0.00 

 mod 4  0.61 

 

5.00 

 

0.004 

 

0.00 

 

0.30 

 

4.41 

 

0.004 

 

0.00 

  5  0.89 

 

4.20 

 

0.004 

 

0.00 

 

0.55 

 

3.60 

 

0.004 

 

0.00 

  6  0.71 

 

3.60 

 

0.004 

 

0.00 

 

0.35 

 

2.60 

 

0.004 

 

0.00 

  7  0.55 

 

4.20 

 

0.004 

 

0.00 

 

0.19 

 

3.60 

 

0.004 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Figure 1. The postulated five-factor structural regression model with standardized coefficients. 

Note. Ordinal observed variables of each latent construct are not depicted for clarity.
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1(a)                         1(b)                        1(c)                         1(d) 

Distribution 2: Slight Asymmetry 

 
2(a)                         2(b)                        2(c)                         2(d) 

Distribution 3: Moderate Asymmetry 

 
3(a)                         3(b)                        3(c)                         3(d) 

Distribution 4: Bipolarization 

 
4(a)                         4(b)                        4(c)                         4(d) 

Figure 2. Response probabilities of ordinal observed indicators. 
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Figure 3. Average mean squared error for the factor loading estimates across the number of categories with symmetric 
data and the smallest sample size N = 200. 
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Figure 4. Average mean squared error for the standard error estimates of factor loadings across the number of 
categories with slightly asymmetric data and the sample size N = 300. 
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Figure 5. Average mean squared error for the standard error estimates of factor loadings across the number of 
categories with slightly asymmetric data and the sample size N = 1,000. 
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Figure 6. Average mean squared error for the standard error estimates of structural coefficients across the number of 
categories with slightly asymmetric data and the sample size N = 300. 
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Sample size N = 200 
 

	
  
	
  

Sample size N = 500 
 

	
  
	
  

Sample size N = 1,000 
 

	
  
	
  
	
  
Figure 7. P-P plots for TML, TMLR, TWLSMV, and TULSMV (Moderate Asymmetry and 7-category) 
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Symmetry 
 

	
  
	
  

Slight Asymmetry 
 

	
  
	
  

Moderate Asymmetry 
 

	
  
	
  
Figure 8. P-P plots for TML, TMLR, TWLSMV, and TULSMV (N = 300 and 7-category) 
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Appendix C 

Technical Details 

 

1. Robust correction to the chi-square statistic for WLSM 

 

The mean-adjusted chi-square statistic can also be implemented in the D-WLS estimator 

(Muthén & Muthén, 2010): 

 

TD-WLSM = = !"
!"#$%(𝐔𝐕)

TWLS,  df = s – t, (A.1) 

 

where TWLS = (N − 1) FWLS(θ, s), 𝐕 is the estimated asymptotic covariance matrix of s, 𝐔 = 

𝐖𝐃
!𝟏 − 𝐖𝐃

!𝟏𝚫(𝚫′𝐖𝐃
!𝟏  𝚫)−1𝚫′𝐖𝐃

!𝟏, s = the number of unique elements in s, and t = the number of 

independent model parameters. 

 

2. Robust corrections to the standard error for MLM or MLMV 

 

A consistent estimator of the asymptotic covariance matrix of the parameter estimates Θ for 

MLM or MLMV can be expressed as (Muthén & Muthén, 2010; Satorra & Bentler, 1994): 

 

aCov(Θ)MLM or MLMV = N−1(𝚫′𝐖𝐍𝐓𝚫)−1𝚫′𝐖𝐍𝐓𝐕𝐖𝐍𝐓𝚫(𝚫′𝐖𝐍𝐓𝚫)−1, (A.2) 

 

and 

 

WNT = ½N{D’[Σ−1(Θ)⊗Σ−1(Θ)]D}, (A.3) 

 

where 𝚫 = !!(!)
!!

 is the matrix of model first derivatives evaluated at the parameter estimates 

Θ, WNT is the normal-theory weight matrix (see Browne, 1974), 𝐕 is the estimated asymptotic 

covariance matrix of S, D is the “duplication” matrix (see Magnus & Neudecker, 1986) and ⊗ 

denotes a Kronecker product. 

 

3. Robust corrections to the chi-square statistic for MLM and MLMV 

 

The mean-adjusted chi-square statistic is available in the robust ML estimator (also known as 

the Satorra-Bentler scaled chi-square statistic: Satorra & Bentler, 1994; Muthén, 1993): 
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TMLM = TSB = !"
!"#$%(𝐔𝐕)

 TML,  df = s – t, (A.4) 

 

where TML = (N − 1) FML(Θ, S), 𝐕 is the estimated asymptotic covariance matrix of S, 𝐔 = 

𝐖𝐍𝐓 − 𝐖𝐍𝐓𝚫(𝚫′𝐖𝐍𝐓  𝚫)−1𝚫′𝐖𝐍𝐓, s = the number of unique elements in S, and t = the number of 

total model parameters. 

 

Alternatively, the mean- and variance-adjusted chi-square statistic can also be implemented 

in the robust ML estimator (Asparouhov & Muthén, 2010): 

 

TMLMV = !"
!"#$%(𝐔𝐕𝐔𝐕)

 TML + df – !"  [!"#$% 𝐔𝐕 ]!

!"#$%(𝐔𝐕𝐔𝐕)
,  df = s – t, (A.5) 

 

where TML = (N − 1) FML(Θ, S), 𝐕 is the estimated asymptotic covariance matrix of S, 𝐔 = 

𝐖𝐍𝐓 − 𝐖𝐍𝐓𝚫(𝚫′𝐖𝐍𝐓  𝚫)−1𝚫′𝐖𝐍𝐓, s = the number of unique elements in S, and t = the number of 

total model parameters. 
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Appendix D 
Mplus Code for Data Generation and Analysis 

 
1. Mplus code for data generation 
 
TITLE: Data generation in an SR model with symmetry data, 4 categories, and N = 200 
 
MONTECARLO: 
     NAMES = y1-y20;  
     NOBSERVATIONS = 200; ! sample size N = 200 
     NREPS = 500; ! number of replications = 500 
     SEED = 4533; 
     REPSAVE = ALL;  
     SAVE = ex1_rep*.dat;  
     ! The SAVE option is used to name the files to which the 500 datasets were written.  
     ! The asterisk * was replaced by the replication number. A file, ex1_replist.dat, was also 
     ! produced. The file contains the file names of the 500 generated datasets.  
     GENERATE = y1-y20 (3); ! number of thresholds = 3 
     CATEGORICAL = y1-y20; 
 
      
MODEL POPULATION: 
     F1 BY y1*.8 y2*.7 y3*.6 y4*.5; ! standardized factor loadings 
     F1@1; ! latent variance 
      
     [y1$1*-1.282 y1$2*0 y1$3*1.282]; ! pre-specified thresholds 
     [y2$1*-1.282 y2$2*0 y2$3*1.282]; 
     [y3$1*-1.282 y3$2*0 y3$3*1.282]; 
     [y4$1*-1.282 y4$2*0 y4$3*1.282]; 
      
     y1*.36 y2*.51 y3*.64 y4*.75; ! residual variances 
 
     F2 BY y5*.8 y6*.7 y7*.6 y8*.5; 
     F2@1; ! latent variance 
      
     [y5$1*-1.282 y5$2*0 y5$3*1.282];  
     [y6$1*-1.282 y6$2*0 y6$3*1.282]; 
     [y7$1*-1.282 y7$2*0 y7$3*1.282]; 
     [y8$1*-1.282 y8$2*0 y8$3*1.282]; 
      
     y5*.36 y6*.51 y7*.64 y8*.75;  
 
      
     F3 BY y9*.8 y10*.7 y11*.6 y12*.5; 
     F3@.336; ! residual variance of latent variable 
      
     [y9$1*-1.282 y9$2*0 y9$3*1.282]; 
     [y10$1*-1.282 y10$2*0 y10$3*1.282]; 
     [y11$1*-1.282 y11$2*0 y11$3*1.282]; 
     [y12$1*-1.282 y12$2*0 y12$3*1.282]; 
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     y9*.36 y10*.51 y11*.64 y12*.75;  
      
     F4 BY y13*.8 y14*.7 y15*.6 y16*.5; 
     F4@.4364; ! residual variance of latent variable 
      
     [y13$1*-1.282 y13$2*0 y13$3*1.282];  
     [y14$1*-1.282 y14$2*0 y14$3*1.282]; 
     [y15$1*-1.282 y15$2*0 y15$3*1.282]; 
     [y16$1*-1.282 y16$2*0 y16$3*1.282]; 
      
     y13*.36 y14*.51 y15*.64 y16*.75; 
      
     F5 BY y17*.8 y18*.7 y19*.6 y20*.5; 
     F5@.3798; ! residual variance of latent variable 
      
     [y17$1*-1.282 y17$2*0 y17$3*1.282];  
     [y18$1*-1.282 y18$2*0 y18$3*1.282]; 
     [y19$1*-1.282 y19$2*0 y19$3*1.282]; 
     [y20$1*-1.282 y20$2*0 y20$3*1.282]; 
      
     y17*.36 y18*.51 y19*.64 y20*.75; 
      
     F1 WITH F2*.3; ! inter-factor correlation 
 
     F3 ON F1*.4 F2*.6; ! gamma coefficients 
     F4 ON F1*.4 F2*.2; 
     F5 ON F1*.1 F2*.1; 
      
     F4 ON F3*.3; ! beta coefficients 
     F5 ON F3*.2 F4*.5; 
      
      
MODEL: 
     F1 BY y1*.8 y2*.7 y3*.6 y4*.5; 
     F1@1; 
      
     [y1$1*-1.282 y1$2*0 y1$3*1.282];  
     [y2$1*-1.282 y2$2*0 y2$3*1.282]; 
     [y3$1*-1.282 y3$2*0 y3$3*1.282]; 
     [y4$1*-1.282 y4$2*0 y4$3*1.282]; 
 
     F2 BY y5*.8 y6*.7 y7*.6 y8*.5; 
     F2@1; 
      
     [y5$1*-1.282 y5$2*0 y5$3*1.282];  
     [y6$1*-1.282 y6$2*0 y6$3*1.282]; 
     [y7$1*-1.282 y7$2*0 y7$3*1.282]; 
     [y8$1*-1.282 y8$2*0 y8$3*1.282]; 
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     F3 BY y9*.8 y10*.7 y11*.6 y12*.5; 
     F3@1; 
      
     [y9$1*-1.282 y9$2*0 y9$3*1.282]; 
     [y10$1*-1.282 y10$2*0 y10$3*1.282]; 
     [y11$1*-1.282 y11$2*0 y11$3*1.282]; 
     [y12$1*-1.282 y12$2*0 y12$3*1.282]; 
      
     F4 BY y13*.8 y14*.7 y15*.6 y16*.5; 
     F4@1; 
      
     [y13$1*-1.282 y13$2*0 y13$3*1.282];  
     [y14$1*-1.282 y14$2*0 y14$3*1.282]; 
     [y15$1*-1.282 y15$2*0 y15$3*1.282]; 
     [y16$1*-1.282 y16$2*0 y16$3*1.282]; 
      
     F5 BY y17*.8 y18*.7 y19*.6 y20*.5; 
     F5@1; 
      
     [y17$1*-1.282 y17$2*0 y17$3*1.282];  
     [y18$1*-1.282 y18$2*0 y18$3*1.282]; 
     [y19$1*-1.282 y19$2*0 y19$3*1.282]; 
     [y20$1*-1.282 y20$2*0 y20$3*1.282]; 
      
     F1 WITH F2*.3; 
      
     F3 ON F1*.4 F2*.6; 
     F4 ON F1*.4 F2*.2; 
     F5 ON F1*.1 F2*.1; 
      
     F4 ON F3*.3; 
     F5 ON F3*.2 F4*.5; 
      
OUTPUT: TECH9;  
! The TECH9 option is used to request error messages related to convergence for each 
! replication. 
 
Notes: (1) This is an example Mplus code for ordinal indicators that have symmetric 
distributions and four categories in a sample size of N = 200. The number of thresholds, the 
pre-specified values of thresholds, and sample size (i.e., the NOBSERVATIONS option) can 
be correspondingly modified to target different experimental conditions. (2) See Chapter 12: 
Monte Carlo simulation studies of the Mplus User’s Guide for further details about other 
commands and options. (3) The exclamation mark ! is used to make notes and comments 
but not read by Mplus. 
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2. Mplus code for data analysis using ML and MLR 
 
TITLE: Data analysis in an SR model using ML  
 
DATA: FILE=ex1_replist.dat; 
          ! The FILE option is used to carry out data analysis for each replication. 
          ! “ex1_replist.dat” contains the file names of the 500 generated datasets. 
          TYPE = MONTECARLO; 
 
 
VARIABLE:   
NAMES= y1-y20; 
 
ANALYSIS: 
ESTIMATOR = ML; 
! One can replace ML by MLR to obtain robust maximum likelihood estimation. 
 
  
MODEL: 
       F1 BY y1* y2-y4; 
       F1@1; 
 
       F2 BY y5* y6-y8; 
       F2@1; 
 
       F3 BY y9* y10-y12; 
       F3@1; 
 
       F4 BY y13* y14-y16; 
       F4@1; 
 
       F5 BY y17* y18-y20; 
       F5@1; 
        
       F1 WITH F2; 
      
       F3 ON F1 F2; 
       F4 ON F1 F2; 
       F5 ON F1 F2; 
      
       F4 ON F3; 
       F5 ON F3 F4; 
        
OUTPUT: STDYX; ! The STDYX option is used to request standardized solutions. 
 
 
SAVEDATA: RESULTS ARE <Name of Results File>; ! The SAVEDATA command is used to 
save estimation results obtained from the 500 replications. 
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3. Mplus code for data analysis using ULSMV and WLSMV 
 
TITLE: Data analysis in an SR model using ULSMV  
 
DATA: FILE=ex1_replist.dat; 
          TYPE = MONTECARLO; 
 
 
VARIABLE:   
NAMES= y1-y20; 
CATEGORICAL= y1-y20; 
 
ANALYSIS: 
ESTIMATOR = ULSMV; 
! One can replace ULSMV by WLSMV to obtain robust weighted least squares estimation. 
  
MODEL: 
       F1 BY y1* y2-y4; 
       F1@1; 
 
       F2 BY y5* y6-y8; 
       F2@1; 
 
       F3 BY y9* y10-y12; 
       F3@1; 
 
       F4 BY y13* y14-y16; 
       F4@1; 
 
       F5 BY y17* y18-y20; 
       F5@1; 
        
       F1 WITH F2; 
      
       F3 ON F1 F2; 
       F4 ON F1 F2; 
       F5 ON F1 F2; 
      
       F4 ON F3; 
       F5 ON F3 F4; 
        
OUTPUT: STDYX; 
 
SAVEDATA: RESULTS ARE <Name of Results File>; 
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Appendix E 

Results for sample sizes of N = 400, 750, and 1,500 are presented below:  

1. Tables E1−E3 display average relative bias (RBA) and average mean squared error (MSEA) of factor loadings and structural 
coefficients by number of categories and observed distributions for all three robust estimators.  

Table E1. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 400) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.97 

 

-1.08 

 

0.0094 

 

0.3552 

 

0.11 

 

-0.76 

 

0.0058 

 

0.3705 

 

-0.09 

 

-0.93 

 

0.0061 

 

0.3751 

  5  -4.49 

 

-0.02 

 

0.0063 

 

0.3315 

 

0.00 

 

0.21 

 

0.0053 

 

0.3494 

 

-0.18 

 

0.04 

 

0.0055 

 

0.3577 

  6  -3.22 

 

-0.37 

 

0.0053 

 

0.2930 

 

0.03 

 

-0.24 

 

0.0051 

 

0.3095 

 

-0.14 

 

-0.39 

 

0.0053 

 

0.3136 

  7  -2.48 

 

-0.59 

 

0.0047 

 

0.2963 

 

0.01 

 

-0.37 

 

0.0049 

 

0.3112 

 

-0.16 

 

-0.50 

 

0.0051 

 

0.3172 

 slight 4  -9.95 

 

-1.04 

 

0.0155 

 

0.4576 

 

0.08 

 

-0.48 

 

0.0066 

 

0.4513 

 

-1.14 

 

-0.58 

 

0.0068 

 

0.4452 

  5  -6.88 

 

-0.71 

 

0.0100 

 

0.4010 

 

-0.01 

 

0.12 

 

0.0058 

 

0.3897 

 

-0.20 

 

-0.02 

 

0.0061 

 

0.3904 

  6  -5.92 

 

-1.12 

 

0.0086 

 

0.3694 

 

0.03 

 

-0.52 

 

0.0055 

 

0.3361 

 

-0.15 

 

-0.70 

 

0.0057 

 

0.3396 

  7  -5.37 

 

-0.65 

 

0.0080 

 

0.3950 

 

0.00 

 

-0.01 

 

0.0052 

 

0.3479 

 

-0.17 

 

-0.17 

 

0.0054 

 

0.3509 

 mod 4  -11.67 

 

-2.93 

 

0.0212 

 

0.5442 

 

0.02 

 

-0.07 

 

0.0081 

 

0.5969 

 

-0.28 

 

-0.29 

 

0.0085 

 

0.6034 

  5  -9.03 

 

-2.60 

 

0.0149 

 

0.4678 

 

0.10 

 

-0.54 

 

0.0067 

 

0.4472 

 

-0.14 

 

-0.81 

 

0.0070 

 

0.4511 

  6  -8.62 

 

-2.47 

 

0.0142 

 

0.4849 

 

0.06 

 

-0.21 

 

0.0062 

 

0.4317 

 

-0.15 

 

-0.40 

 

0.0065 

 

0.4308 

  7  -8.60 

 

-2.57 

 

0.0143 

 

0.4901 

 

0.04 

 

-0.17 

 

0.0060 

 

0.4147 

 

-0.17 

 

-0.36 

 

0.0063 

 

0.4139 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
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robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 

Table E2. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 750) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.85 

 

-0.30 

 

0.0071 

 

0.1879 

 

0.17 

 

-0.21 

 

0.0031 

 

0.1979 

 

0.06 

 

-0.26 

 

0.0032 

 

0.2011 

  5  -4.31 

 

-0.05 

 

0.0041 

 

0.1606 

 

0.15 

 

-0.01 

 

0.0027 

 

0.1732 

 

0.04 

 

-0.04 

 

0.0028 

 

0.1762 

  6  -3.09 

 

-0.39 

 

0.0031 

 

0.1572 

 

0.12 

 

-0.33 

 

0.0026 

 

0.1698 

 

0.03 

 

-0.35 

 

0.0027 

 

0.1732 

  7  -2.34 

 

-0.29 

 

0.0027 

 

0.1490 

 

0.12 

 

-0.23 

 

0.0025 

 

0.1618 

 

0.03 

 

-0.27 

 

0.0026 

 

0.1654 

 slight 4  -9.80 

 

-1.34 

 

0.0125 

 

0.2267 

 

0.18 

 

-0.38 

 

0.0034 

 

0.2357 

 

0.05 

 

-0.44 

 

0.0035 

 

0.2406 

  5  -6.71 

 

-1.25 

 

0.0072 

 

0.1936 

 

0.14 

 

-0.30 

 

0.0030 

 

0.1940 

 

0.03 

 

-0.29 

 

0.0031 

 

0.1975 

  6  -5.81 

 

-1.14 

 

0.0060 

 

0.1832 

 

0.13 

 

-0.28 

 

0.0028 

 

0.1812 

 

0.02 

 

-0.33 

 

0.0029 

 

0.1860 

  7  -5.23 

 

-0.94 

 

0.0053 

 

0.1753 

 

0.11 

 

-0.21 

 

0.0026 

 

0.1689 

 

0.01 

 

-0.25 

 

0.0028 

 

0.1720 

 mod 4  -11.54 

 

-3.17 

 

0.0173 

 

0.2488 

 

0.11 

 

-0.31 

 

0.0042 

 

0.2875 

 

-0.05 

 

-0.39 

 

0.0044 

 

0.2917 

  5  -8.97 

 

-2.61 

 

0.0115 

 

0.2277 

 

0.10 

 

-0.26 

 

0.0035 

 

0.2377 

 

-0.02 

 

-0.32 

 

0.0036 

 

0.2427 

  6  -8.52 

 

-2.70 

 

0.0108 

 

0.2186 

 

0.10 

 

-0.23 

 

0.0033 

 

0.2086 

 

-0.02 

 

-0.31 

 

0.0034 

 

0.2137 

  7  -8.48 

 

-2.52 

 

0.0108 

 

0.2177 

 

0.12 

 

-0.01 

 

0.0031 

 

0.2079 

 

0.00 

 

-0.06 

 

0.0033 

 

0.2115 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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Table E3. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients (N = 1,500) 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

Dis. Cat.  FL SC FL SC FL SC FL SC FL SC FL SC 

sym 4  -6.88 

 

-0.01 

 

0.0059 

 

0.0805 

 

0.08 

 

0.12 

 

0.0015 

 

0.0840 

 

0.03 

 

0.12 

 

0.0016 

 

0.0855 

  5  -4.33 

 

-0.18 

 

0.0030 

 

0.0781 

 

0.07 

 

0.03 

 

0.0013 

 

0.0820 

 

0.03 

 

0.03 

 

0.0014 

 

0.0839 

  6  -3.08 

 

-0.14 

 

0.0020 

 

0.0715 

 

0.08 

 

0.02 

 

0.0013 

 

0.0748 

 

0.03 

 

0.01 

 

0.0014 

 

0.0764 

  7  -2.36 

 

-0.28 

 

0.0016 

 

0.0692 

 

0.06 

 

-0.13 

 

0.0012 

 

0.0720 

 

0.02 

 

-0.12 

 

0.0013 

 

0.0737 

 slight 4  -9.80 

 

-0.93 

 

0.0111 

 

0.1058 

 

0.10 

 

-0.05 

 

0.0017 

 

0.1042 

 

0.04 

 

-0.01 

 

0.0017 

 

0.1051 

  5  -6.72 

 

-0.78 

 

0.0059 

 

0.0918 

 

0.08 

 

0.07 

 

0.0015 

 

0.0902 

 

0.03 

 

0.08 

 

0.0015 

 

0.0924 

  6  -5.81 

 

-0.65 

 

0.0047 

 

0.0855 

 

0.07 

 

-0.03 

 

0.0014 

 

0.0800 

 

0.03 

 

-0.03 

 

0.0015 

 

0.0814 

  7  -5.22 

 

-0.70 

 

0.0040 

 

0.0869 

 

0.08 

 

0.05 

 

0.0013 

 

0.0790 

 

0.03 

 

0.07 

 

0.0014 

 

0.0806 

 mod 4  -11.57 

 

-2.92 

 

0.0155 

 

0.1237 

 

0.04 

 

-0.19 

 

0.0021 

 

0.1309 

 

-0.04 

 

-0.20 

 

0.0022 

 

0.1333 

  5  -8.98 

 

-2.40 

 

0.0099 

 

0.1053 

 

0.07 

 

-0.12 

 

0.0017 

 

0.1012 

 

0.00 

 

-0.13 

 

0.0018 

 

0.1026 

  6  -8.51 

 

-2.53 

 

0.0091 

 

0.1075 

 

0.06 

 

-0.18 

 

0.0016 

 

0.0934 

 

0.01 

 

-0.16 

 

0.0017 

 

0.0944 

  7  -8.48 

 

-2.49 

 

0.0091 

 

0.1064 

 

0.07 

 

-0.10 

 

0.0015 

 

0.0881 

 

0.02 

 

-0.09 

 

0.0016 

 

0.0897 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML/MLR = maximum likelihood/robust maximum likelihood, WLSMV = 
robust weighted least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural 
coefficients. 
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2. The RBA and MSEA for standard errors of factor loadings and structural coefficients are presented in Tables E4−E6.  

 

Table E4. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 400) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  0.18 

 

-0.06 

 

0.0048 

 

0.0201 

 

0.46 

 

1.03 

 

0.0071 

 

0.0227 

  5  -0.21 

 

-1.44 

 

0.0052 

 

0.0162 

 

0.08 

 

-0.31 

 

0.0075 

 

0.0189 

  6  -0.95 

 

-0.18 

 

0.0054 

 

0.0152 

 

-0.55 

 

0.80 

 

0.0077 

 

0.0177 

  7  -0.80 

 

-0.93 

 

0.0052 

 

0.0141 

 

-0.40 

 

0.02 

 

0.0075 

 

0.0164 

 slight 4  -5.45 

 

-7.23 

 

0.0077 

 

0.0289 

 

1.16 

 

-1.61 

 

0.0082 

 

0.0290 

  5  -6.39 

 

-7.05 

 

0.0094 

 

0.0241 

 

0.16 

 

-1.25 

 

0.0088 

 

0.0243 

  6  -6.32 

 

-6.10 

 

0.0089 

 

0.0220 

 

-0.37 

 

-0.86 

 

0.0081 

 

0.0233 

  7  -6.93 

 

-8.47 

 

0.0098 

 

0.0254 

 

0.27 

 

-2.75 

 

0.0081 

 

0.0232 

 mod 4  -16.07 

 

-14.70 

 

0.0316 

 

0.0514 

 

-0.22 

 

-1.44 

 

0.0087 

 

0.0385 

  5  -14.28 

 

-13.28 

 

0.0264 

 

0.0405 

 

-0.17 

 

-1.40 

 

0.0086 

 

0.0292 

  6  -14.58 

 

-14.59 

 

0.0259 

 

0.0429 

 

0.20 

 

-2.51 

 

0.0085 

 

0.0301 

  7  -15.33 

 

-14.83 

 

0.0282 

 

0.0428 

 

0.10 

 

-2.24 

 

0.0084 

 

0.0287 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table E4 (cont’d)  

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -2.21 

 

-1.28 

 

0.0072 

 

0.0223 

 

-1.41 

 

-0.55 

 

0.0060 

 

0.0230 

  5  -2.49 

 

-2.50 

 

0.0072 

 

0.0198 

 

-2.12 

 

-2.27 

 

0.0078 

 

0.0220 

  6  -3.66 

 

-2.61 

 

0.0079 

 

0.0183 

 

-3.52 

 

-1.68 

 

0.0067 

 

0.0186 

  7  -3.66 

 

-3.36 

 

0.0077 

 

0.0175 

 

-3.33 

 

-2.57 

 

0.0064 

 

0.0176 

 slight 4  -2.19 

 

-3.00 

 

0.0078 

 

0.0293 

 

-1.86 

 

-1.53 

 

0.0064 

 

0.0290 

  5  -2.97 

 

-3.17 

 

0.0080 

 

0.0227 

 

-2.85 

 

-2.29 

 

0.0068 

 

0.0228 

  6  -3.63 

 

-1.89 

 

0.0079 

 

0.0211 

 

-3.14 

 

-1.04 

 

0.0066 

 

0.0219 

  7  -3.78 

 

-4.78 

 

0.0079 

 

0.0206 

 

-3.43 

 

-3.82 

 

0.0065 

 

0.0203 

 mod 4  -3.76 

 

-2.96 

 

0.0098 

 

0.0406 

 

-3.75 

 

-3.11 

 

0.0082 

 

0.0429 

  5  -3.33 

 

-2.05 

 

0.0084 

 

0.0301 

 

-3.57 

 

-1.97 

 

0.0072 

 

0.0295 

  6  -3.15 

 

-5.10 

 

0.0085 

 

0.0279 

 

-3.72 

 

-4.11 

 

0.0072 

 

0.0271 

  7  -3.71 

 

-5.04 

 

0.0086 

 

0.0243 

 

-4.00 

 

-4.12 

 

0.0075 

 

0.0239 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table E5. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 750) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -0.03 

 

-2.20 

 

0.0027 

 

0.0108 

 

-0.19 

 

-1.54 

 

0.0039 

 

0.0120 

  5  1.23 

 

-1.28 

 

0.0036 

 

0.0090 

 

1.12 

 

-0.60 

 

0.0047 

 

0.0102 

  6  0.63 

 

-1.63 

 

0.0032 

 

0.0086 

 

0.69 

 

-1.06 

 

0.0044 

 

0.0096 

  7  0.59 

 

-1.47 

 

0.0034 

 

0.0077 

 

0.66 

 

-0.88 

 

0.0045 

 

0.0087 

 slight 4  -5.11 

 

-6.27 

 

0.0053 

 

0.0167 

 

1.00 

 

-0.85 

 

0.0045 

 

0.0161 

  5  -5.21 

 

-5.84 

 

0.0061 

 

0.0130 

 

1.10 

 

-0.14 

 

0.0055 

 

0.0124 

  6  -4.38 

 

-5.70 

 

0.0048 

 

0.0133 

 

1.38 

 

-0.58 

 

0.0048 

 

0.0128 

  7  -5.32 

 

-5.88 

 

0.0060 

 

0.0134 

 

1.54 

 

-0.24 

 

0.0053 

 

0.0126 

 mod 4  -14.02 

 

-11.18 

 

0.0222 

 

0.0267 

 

1.29 

 

2.03 

 

0.0049 

 

0.0198 

  5  -11.69 

 

-11.75 

 

0.0162 

 

0.0250 

 

2.02 

 

-0.15 

 

0.0051 

 

0.0156 

  6  -13.00 

 

-11.59 

 

0.0195 

 

0.0256 

 

1.40 

 

0.69 

 

0.0051 

 

0.0170 

  7  -13.91 

 

-12.25 

 

0.0220 

 

0.0258 

 

1.06 

 

0.40 

 

0.0047 

 

0.0152 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table E5 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  -1.07 

 

-3.16 

 

0.0044 

 

0.0124 

 

-0.53 

 

-2.76 

 

0.0041 

 

0.0123 

  5  0.63 

 

-2.39 

 

0.0045 

 

0.0108 

 

0.44 

 

-1.96 

 

0.0039 

 

0.0108 

  6  -0.35 

 

-3.42 

 

0.0045 

 

0.0106 

 

-0.26 

 

-2.99 

 

0.0039 

 

0.0103 

  7  -0.17 

 

-3.37 

 

0.0043 

 

0.0098 

 

-0.22 

 

-2.97 

 

0.0035 

 

0.0098 

 slight 4  0.04 

 

-3.53 

 

0.0044 

 

0.0153 

 

0.43 

 

-3.02 

 

0.0039 

 

0.0156 

  5  -0.30 

 

-2.49 

 

0.0044 

 

0.0117 

 

0.02 

 

-2.09 

 

0.0037 

 

0.0119 

  6  -0.71 

 

-3.36 

 

0.0041 

 

0.0115 

 

-0.46 

 

-3.07 

 

0.0036 

 

0.0117 

  7  0.07 

 

-3.39 

 

0.0047 

 

0.0109 

 

-0.19 

 

-2.72 

 

0.0038 

 

0.0108 

 mod 4  -1.01 

 

-0.76 

 

0.0050 

 

0.0196 

 

-0.78 

 

-0.33 

 

0.0041 

 

0.0202 

  5  -0.57 

 

-2.68 

 

0.0045 

 

0.0149 

 

-0.57 

 

-2.38 

 

0.0041 

 

0.0151 

  6  -1.13 

 

-2.50 

 

0.0049 

 

0.0138 

 

-1.33 

 

-2.14 

 

0.0043 

 

0.0141 

  7  -1.31 

 

-3.18 

 

0.0045 

 

0.0127 

 

-1.28 

 

-2.73 

 

0.0042 

 

0.0128 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table E6. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients (N = 1,500) 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  1.10 

 

1.69 

 

0.0023 

 

0.0048 

 

0.68 

 

2.18 

 

0.0027 

 

0.0057 

  5  1.19 

 

-0.41 

 

0.0023 

 

0.0041 

 

0.88 

 

0.15 

 

0.0027 

 

0.0048 

  6  0.42 

 

0.78 

 

0.0017 

 

0.0039 

 

0.32 

 

1.20 

 

0.0023 

 

0.0046 

  7  0.94 

 

0.52 

 

0.0021 

 

0.0038 

 

0.86 

 

1.00 

 

0.0026 

 

0.0047 

 slight 4  -5.12 

 

-5.92 

 

0.0046 

 

0.0090 

 

0.66 

 

-0.56 

 

0.0028 

 

0.0069 

  5  -4.71 

 

-5.24 

 

0.0045 

 

0.0078 

 

1.39 

 

0.40 

 

0.0035 

 

0.0065 

  6  -5.07 

 

-4.50 

 

0.0045 

 

0.0062 

 

0.42 

 

0.59 

 

0.0029 

 

0.0054 

  7  -5.19 

 

-5.87 

 

0.0049 

 

0.0079 

 

1.43 

 

-0.33 

 

0.0032 

 

0.0055 

 mod 4  -14.52 

 

-13.61 

 

0.0230 

 

0.0246 

 

0.25 

 

-0.92 

 

0.0030 

 

0.0083 

  5  -12.40 

 

-11.33 

 

0.0173 

 

0.0183 

 

0.83 

 

0.17 

 

0.0032 

 

0.0071 

  6  -12.98 

 

-12.37 

 

0.0188 

 

0.0207 

 

1.02 

 

-0.40 

 

0.0031 

 

0.0072 

  7  -13.69 

 

-12.78 

 

0.0208 

 

0.0218 

 

0.92 

 

-0.41 

 

0.0033 

 

0.0072 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table E6 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

Dis. Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

sym 4  0.31 

 

1.36 

 

0.0026 

 

0.0056 

 

-0.09 

 

1.54 

 

0.0021 

 

0.0058 

  5  0.67 

 

-0.60 

 

0.0026 

 

0.0051 

 

0.60 

 

-0.48 

 

0.0025 

 

0.0052 

  6  -0.18 

 

0.14 

 

0.0024 

 

0.0046 

 

-0.68 

 

0.40 

 

0.0020 

 

0.0048 

  7  0.32 

 

0.17 

 

0.0025 

 

0.0045 

 

0.05 

 

0.41 

 

0.0023 

 

0.0047 

 slight 4  0.65 

 

-1.10 

 

0.0030 

 

0.0065 

 

1.07 

 

-0.62 

 

0.0031 

 

0.0065 

  5  0.50 

 

-0.35 

 

0.0027 

 

0.0064 

 

0.30 

 

-0.32 

 

0.0024 

 

0.0065 

  6  -0.57 

 

0.29 

 

0.0024 

 

0.0047 

 

-0.81 

 

0.63 

 

0.0020 

 

0.0049 

  7  0.53 

 

-0.90 

 

0.0029 

 

0.0049 

 

0.52 

 

-0.65 

 

0.0028 

 

0.0050 

 mod 4  -0.53 

 

-1.07 

 

0.0034 

 

0.0083 

 

-0.74 

 

-0.99 

 

0.0031 

 

0.0084 

  5  -0.76 

 

0.21 

 

0.0026 

 

0.0070 

 

-0.98 

 

0.56 

 

0.0023 

 

0.0072 

  6  -0.49 

 

0.58 

 

0.0026 

 

0.0064 

 

-0.32 

 

0.93 

 

0.0023 

 

0.0066 

  7  -0.26 

 

1.12 

 

0.0025 

 

0.0061 

 

-0.37 

 

1.31 

 

0.0023 

 

0.0062 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. SEFL represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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3. Tables E7−E9 present findings for chi-square test statistics and RMSEA with MLR, ULSMV, and WLSMV estimation. 

 

Table E7. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 400) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  2.55 

 

8.00 

 

0.008 

 

0.00 

 

2.78 

 

8.40 

 

0.008 

 

0.00 

  5  3.63 

 

6.80 

 

0.009 

 

0.00 

 

3.79 

 

7.20 

 

0.009 

 

0.00 

  6  2.74 

 

6.80 

 

0.009 

 

0.00 

 

2.91 

 

7.40 

 

0.009 

 

0.00 

  7  2.91 

 

7.00 

 

0.009 

 

0.00 

 

3.06 

 

7.40 

 

0.009 

 

0.00 

 slight 4  12.08 

 

30.60 

 

0.016 

 

0.00 

 

5.55 

 

14.40 

 

0.011 

 

0.00 

  5  11.80 

 

28.40 

 

0.015 

 

0.00 

 

4.72 

 

10.80 

 

0.010 

 

0.00 

  6  11.39 

 

27.00 

 

0.015 

 

0.00 

 

4.82 

 

11.40 

 

0.010 

 

0.00 

  7  13.17 

 

31.60 

 

0.016 

 

0.00 

 

5.55 

 

12.60 

 

0.011 

 

0.00 

 mod 4  25.15 

 

63.53 

 

0.024 

 

0.00 

 

5.37 

 

14.23 

 

0.010 

 

0.00 

  5  23.67 

 

62.73 

 

0.023 

 

0.00 

 

5.98 

 

11.62 

 

0.011 

 

0.00 

  6  25.48 

 

64.80 

 

0.024 

 

0.00 

 

6.32 

 

13.00 

 

0.011 

 

0.00 

  7  26.49 

 

68.80 

 

0.025 

 

0.00 

 

6.20 

 

13.80 

 

0.011 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table E7 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  1.30 

 

5.20 

 

0.007 

 

0.00 

 

0.12 

 

3.20 

 

0.006 

 

0.00 

  5  2.28 

 

3.80 

 

0.008 

 

0.00 

 

1.15 

 

2.81 

 

0.007 

 

0.00 

  6  2.63 

 

5.40 

 

0.008 

 

0.00 

 

1.42 

 

4.80 

 

0.007 

 

0.00 

  7  2.97 

 

5.80 

 

0.008 

 

0.00 

 

1.84 

 

4.80 

 

0.008 

 

0.00 

 slight 4  2.91 

 

6.20 

 

0.008 

 

0.00 

 

1.69 

 

4.20 

 

0.007 

 

0.00 

  5  2.50 

 

5.40 

 

0.008 

 

0.00 

 

1.31 

 

3.80 

 

0.007 

 

0.00 

  6  2.67 

 

5.60 

 

0.008 

 

0.00 

 

1.52 

 

4.20 

 

0.007 

 

0.00 

  7  3.86 

 

5.00 

 

0.009 

 

0.00 

 

2.58 

 

3.40 

 

0.008 

 

0.00 

 mod 4  2.42 

 

4.02 

 

0.008 

 

0.00 

 

1.43 

 

3.81 

 

0.007 

 

0.00 

  5  3.13 

 

6.43 

 

0.008 

 

0.00 

 

2.13 

 

5.00 

 

0.008 

 

0.00 

  6  3.52 

 

7.80 

 

0.009 

 

0.00 

 

2.54 

 

6.40 

 

0.008 

 

0.00 

  7  4.20 

 

6.80 

 

0.009 

 

0.00 

 

3.25 

 

5.40 

 

0.009 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Table E8. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 750) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  2.18 

 

9.60 

 

0.006 

 

0.00 

 

2.12 

 

9.60 

 

0.006 

 

0.00 

  5  1.95 

 

6.60 

 

0.006 

 

0.00 

 

1.80 

 

6.40 

 

0.006 

 

0.00 

  6  2.11 

 

9.80 

 

0.006 

 

0.00 

 

2.04 

 

9.80 

 

0.006 

 

0.00 

  7  1.85 

 

8.20 

 

0.006 

 

0.00 

 

1.75 

 

8.00 

 

0.006 

 

0.00 

 slight 4  9.37 

 

22.20 

 

0.010 

 

0.00 

 

1.87 

 

5.80 

 

0.006 

 

0.00 

  5  10.98 

 

25.20 

 

0.011 

 

0.00 

 

2.81 

 

8.80 

 

0.006 

 

0.00 

  6  10.55 

 

24.00 

 

0.010 

 

0.00 

 

2.86 

 

8.80 

 

0.006 

 

0.00 

  7  10.71 

 

26.80 

 

0.011 

 

0.00 

 

2.11 

 

6.80 

 

0.006 

 

0.00 

 mod 4  24.44 

 

63.60 

 

0.017 

 

0.00 

 

3.14 

 

9.20 

 

0.007 

 

0.00 

  5  22.23 

 

57.20 

 

0.016 

 

0.00 

 

3.11 

 

8.60 

 

0.006 

 

0.00 

  6  23.67 

 

63.40 

 

0.017 

 

0.00 

 

3.07 

 

8.60 

 

0.007 

 

0.00 

  7  24.38 

 

66.60 

 

0.017 

 

0.00 

 

2.77 

 

8.00 

 

0.006 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table E8 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  1.11 

 

5.40 

 

0.005 

 

0.00 

 

0.48 

 

4.80 

 

0.005 

 

0.00 

  5  0.89 

 

4.60 

 

0.005 

 

0.00 

 

0.27 

 

3.41 

 

0.005 

 

0.00 

  6  1.60 

 

5.60 

 

0.005 

 

0.00 

 

0.99 

 

5.20 

 

0.005 

 

0.00 

  7  1.66 

6.40 

 

6.40 

 

0.006 

 

0.00 

 

1.02 

 

5.40 

 

0.005 

 

0.00 

 slight 4  1.07 

 

5.20 

 

0.005 

 

0.00 

 

0.34 

 

3.80 

 

0.005 

 

0.00 

  5  1.75 

 

3.80 

 

0.006 

 

0.00 

 

1.13 

 

3.80 

 

0.005 

 

0.00 

  6  1.85 

 

5.80 

 

0.006 

 

0.00 

 

1.23 

 

5.00 

 

0.005 

 

0.00 

  7  1.41 

 

5.40 

 

0.005 

 

0.00 

 

0.72 

 

4.20 

 

0.005 

 

0.00 

 mod 4  1.32 

 

4.60 

 

0.005 

 

0.00 

 

0.72 

 

3.80 

 

0.005 

 

0.00 

  5  2.00 

 

6.80 

 

0.006 

 

0.00 

 

1.45 

 

6.00 

 

0.005 

 

0.00 

  6  1.94 

 

6.40 

 

0.006 

 

0.00 

 

1.39 

 

5.80 

 

0.005 

 

0.00 

  7  2.04 

 

6.20 

 

0.006 

 

0.00 

 

1.48 

 

5.20 

 

0.005 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Table E9. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA (N = 1,500) 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  0.90 

 

6.20 

 

0.004 

 

0.00 

 

0.69 

 

6.20 

 

0.004 

 

0.00 

  5  1.02 

 

5.80 

 

0.004 

 

0.00 

 

0.71 

 

5.40 

 

0.004 

 

0.00 

  6  1.15 

 

6.80 

 

0.004 

 

0.00 

 

0.93 

 

6.60 

 

0.004 

 

0.00 

  7  1.11 

 

6.60 

 

0.004 

 

0.00 

 

0.84 

 

6.00 

 

0.004 

 

0.00 

 slight 4  9.85 

 

21.80 

 

0.007 

 

0.00 

 

1.66 

 

6.60 

 

0.004 

 

0.00 

  5  10.34 

 

21.20 

 

0.007 

 

0.00 

 

1.53 

 

8.00 

 

0.004 

 

0.00 

  6  9.74 

 

21.60 

 

0.007 

 

0.00 

 

1.44 

 

7.40 

 

0.004 

 

0.00 

  7  10.91 

 

23.20 

 

0.008 

 

0.00 

 

1.68 

 

8.00 

 

0.004 

 

0.00 

 mod 4  24.03 

 

63.60 

 

0.012 

 

0.00 

 

1.87 

 

7.40 

 

0.004 

 

0.00 

  5  21.89 

 

59.00 

 

0.011 

 

0.00 

 

1.95 

 

7.40 

 

0.004 

 

0.00 

  6  23.41 

 

59.60 

 

0.012 

 

0.00 

 

1.98 

 

7.20 

 

0.004 

 

0.00 

  7  24.69 

 

62.80 

 

0.012 

 

0.00 

 

2.20 

 

7.60 

 

0.004 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. ML = maximum likelihood, MLR = robust maximum likelihood. M = 
mean. 
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Table E9 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

Dis. Cat.  bias % M % bias % M % 

sym 4  0.57 

 

5.00 

 

0.004 

 

0.00 

 

0.36 

 

4.21 

 

0.004 

 

0.00 

  5  0.40 

 

5.40 

 

0.004 

 

0.00 

 

0.19 

 

4.20 

 

0.004 

 

0.00 

  6  0.98 

 

6.40 

 

0.004 

 

0.00 

 

0.79 

 

6.40 

 

0.004 

 

0.00 

  7  0.86 

 

6.20 

 

0.004 

 

0.00 

 

0.61 

 

5.20 

 

0.004 

 

0.00 

 slight 4  1.04 

 

6.00 

 

0.004 

 

0.00 

 

0.75 

 

5.84 

 

0.003 

 

0.00 

  5  0.86 

 

5.60 

 

0.004 

 

0.00 

 

0.67 

 

5.60 

 

0.004 

 

0.00 

  6  0.96 

 

5.80 

 

0.004 

 

0.00 

 

0.76 

 

5.40 

 

0.003 

 

0.00 

  7  0.81 

 

6.20 

 

0.004 

 

0.00 

 

0.57 

 

5.80 

 

0.004 

 

0.00 

 mod 4  0.67 

 

5.20 

 

0.004 

 

0.00 

 

0.49 

 

5.42 

 

0.004 

 

0.00 

  5  1.22 

 

6.00 

 

0.004 

 

0.00 

 

1.08 

 

5.00 

 

0.004 

 

0.00 

  6  1.05 

 

7.60 

 

0.004 

 

0.00 

 

0.83 

 

7.00 

 

0.004 

 

0.00 

  7  1.33 

 

7.60 

 

0.004 

 

0.00 

 

1.16 

 

7.60 

 

0.004 

 

0.00 

 Note. Dis. = distribution type and Cat. = number of categories. sym = symmetric distribution, slight = slightly asymmetric 
distribution, mod = moderately asymmetric distribution. WLSMV = robust weighted least squares, ULSMV = robust unweight 
least squares. M = mean. 
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Appendix F 

Results for bipolarization data are presented below:  

1. Table F1 displays average relative bias (RBA) and average mean squared error (MSEA) of factor loadings and structural 
coefficients by number of categories and sample sizes for all three robust estimators.  

 

Table F1. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Factor Loadings and Structural 
Coefficients with Bipolarization Distribution 

  ML/MLR 

Robust WLS 

WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA RBA MSEA 

 Cat
. 

 FL SC FL SC FL SC FL SC FL SC FL SC 

N = 200 4  -10.36 

 

-2.09 

 

0.0219 

 

1.2664 

 

0.20 

 

-0.67 

 

0.0140 

 

1.3447 

 

-0.28 

 

-0.80 

 

0.0145 

 

1.2803 

  5  -9.89 

 

-2.36 

 

0.0208 

 

1.2004 

 

0.17 

 

-0.58 

 

0.0131 

 

1.2148 

 

-0.29 

 

-0.79 

 

0.0136 

 

1.1765 

  6  -9.04 

 

-2.15 

 

0.0189 

 

1.1454 

 

0.14 

 

-0.57 

 

0.0127 

 

1.0955 

 

-0.29 

 

-0.77 

 

0.0132 

 

1.0687 

  7  -7.74 

 

-1.55 

 

0.0163 

 

0.9636 

 

0.15 

 

-0.10 

 

0.0117 

 

0.9089 

 

-0.26 

 

-0.26 

 

0.0121 

 

0.8856 

 N = 300 4  -10.36 

 

-2.08 

 

0.0180 

 

0.6648 

 

0.08 

 

-0.29 

 

0.0089 

 

0.6808 

 

-0.03 

 

0.18 

 

0.0079 

 

0.4693 

  5  -9.82 

 

-2.18 

 

0.0168 

 

0.6092 

 

0.08 

 

-0.22 

 

0.0085 

 

0.6339 

 

-0.21 

 

-0.42 

 

0.0089 

 

0.6274 

  6  -8.96 

 

-1.93 

 

0.0150 

 

0.5489 

 

0.10 

 

-0.02 

 

0.0081 

 

0.5497 

 

-0.18 

 

-0.14 

 

0.0084 

 

0.5469 

  7  -7.69 

 

-1.60 

 

0.0126 

 

0.5139 

 

0.08 

 

0.19 

 

0.0075 

 

0.5025 

 

-0.18 

 

0.09 

 

0.0078 

 

0.4991 

 N = 400 4  -10.33 

 

-1.40 

 

0.0163 

 

0.4485 

 

0.08 

 

-0.06 

 

0.0069 

 

0.4910 

 

-0.16 

 

-0.19 

 

0.0072 

 

0.4941 

  5  -9.81 

 

-1.52 

 

0.0152 

 

0.4281 

 

0.06 

 

-0.28 

 

0.0066 

 

0.4641 

 

-0.17 

 

-0.40 

 

0.0069 

 

0.4656 

  6  -8.98 

 

-1.67 

 

0.0135 

 

0.3999 

 

0.02 

 

-0.42 

 

0.0063 

 

0.4311 

 

-0.19 

 

-0.57 

 

0.0066 

 

0.4320 

  7  -7.70 

 

-1.50 

 

0.0111 

 

0.3795 

 

0.04 

 

-0.35 

 

0.0059 

 

0.3845 

 

-0.16 

 

-0.50 

 

0.0061 

 

0.3863 
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Table F1 (cont’d) 

N = 500 4  -10.34 

 

-2.20 

 

0.0151 

 

0.3299 

 

0.04 

 

-0.96 

 

0.0055 

 

0.3649 

 

-0.16 

 

-1.06 

 

0.0057 

 

0.3698 

  5  -9.83 

 

-2.33 

 

0.0141 

 

0.3161 

 

0.03 

 

-0.93 

 

0.0052 

 

0.3445 

 

-0.15 

 

-1.01 

 

0.0054 

 

0.3503 

  6  -8.97 

 

-2.17 

 

0.0123 

 

0.3082 

 

0.04 

 

-0.77 

 

0.0049 

 

0.3198 

 

-0.13 

 

-0.84 

 

0.0051 

 

0.3249 

  7  -7.69 

 

-2.03 

 

0.0100 

 

0.2864 

 

0.06 

 

-0.71 

 

0.0045 

 

0.2898 

 

-0.11 

 

-0.80 

 

0.0047 

 

0.2955 

 N = 750 4  -10.21 

 

-1.57 

 

0.0133 

 

0.2309 

 

0.16 

 

-0.12 

 

0.0036 

 

0.2558 

 

0.03 

 

-0.10 

 

0.0038 

 

0.2588 

  5  -9.69 

 

-1.45 

 

0.0122 

 

0.2207 

 

0.15 

 

-0.02 

 

0.0034 

 

0.2395 

 

0.03 

 

-0.03 

 

0.0035 

 

0.2430 

  6  -8.84 

 

-1.44 

 

0.0106 

 

0.2117 

 

0.14 

 

-0.12 

 

0.0032 

 

0.2252 

 

0.02 

 

-0.14 

 

0.0034 

 

0.2298 

  7  -7.58 

 

-1.17 

 

0.0084 

 

0.1992 

 

0.11 

 

-0.04 

 

0.0030 

 

0.2051 

 

0.00 

 

-0.05 

 

0.0031 

 

0.2097 

 N = 1,000 4  -10.21 

 

-1.51 

 

0.0126 

 

0.1629 

 

0.12 

 

-0.26 

 

0.0027 

 

0.1752 

 

0.02 

 

-0.32 

 

0.0028 

 

0.1758 

  5  -9.70 

 

-1.35 

 

0.0116 

 

0.1622 

 

0.12 

 

-0.19 

 

0.0025 

 

0.1689 

 

0.03 

 

-0.27 

 

0.0026 

 

0.1697 

  6  -8.84 

 

-1.42 

 

0.0099 

 

0.1521 

 

0.13 

 

-0.22 

 

0.0024 

 

0.1566 

 

0.04 

 

-0.27 

 

0.0025 

 

0.1579 

  7  -7.59 

 

-1.21 

 

0.0078 

 

0.1475 

 

0.09 

 

-0.16 

 

0.0022 

 

0.1438 

 

0.01 

 

-0.22 

 

0.0023 

 

0.1456 

 N = 1,500 4  -10.26 

 

-1.39 

 

0.0120 

 

0.0955 

 

0.07 

 

-0.09 

 

0.0018 

 

0.1033 

 

0.00 

 

-0.12 

 

0.0019 

 

0.1052 

  5  -9.74 

 

-1.40 

 

0.0110 

 

0.0939 

 

0.07 

 

-0.03 

 

0.0017 

 

0.0977 

 

0.02 

 

-0.06 

 

0.0018 

 

0.0996 

  6  -8.90 

 

-1.34 

 

0.0094 

 

0.0912 

 

0.06 

 

-0.05 

 

0.0016 

 

0.0939 

 

0.01 

 

-0.07 

 

0.0017 

 

0.0956 

  7  -7.62 

 

-1.22 

 

0.0072 

 

0.0876 

 

0.06 

 

-0.03 

 

0.0015 

 

0.0885 

 

0.01 

 

-0.04 

 

0.0016 

 

0.0902 

 Note. Cat. = number of categories. ML = maximum likelihood, MLR = robust maximum likelihood, WLSMV = robust weighted 
least squares, ULSMV = robust unweight least squares. FL represents factor loadings and SC is structural coefficients. 
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2. The RBA and MSEA for standard errors of factor loadings and structural coefficients are presented in Table F2.  

 

Table F2. The Average Relative Bias (RBA) and Average Root Mean Squared Error (MSEA) for Standard Errors (SE) of Factor 
Loadings and Structural Coefficients with Bipolarization Distribution 

  ML 

Robust WLS 

MLR 

Robust WLS    RBA MSEA RBA MSEA 

 Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

N = 200 4  -5.94 

 

-9.17 

 

0.0123 

 

0.1581 

 

0.53 

 

-2.57 

 

0.0124 

 

0.1957 

  5  -5.80 

 

-8.76 

 

0.0122 

 

0.2144 

 

0.85 

 

-1.99 

 

0.0124 

 

0.2638 

  6  -5.88 

 

-9.01 

 

0.0123 

 

0.1749 

 

0.54 

 

-2.59 

 

0.0124 

 

0.2026 

  7  -5.76 

 

-8.33 

 

0.0124 

 

0.0712 

 

0.36 

 

-2.24 

 

0.0125 

 

0.0817 

 N = 300 4  -4.55 

 

-6.27 

 

0.0087 

 

0.0695 

 

0.94 

 

-0.65 

 

0.0082 

 

0.0735 

  5  -4.72 

 

-5.51 

 

0.0088 

 

0.0544 

 

0.94 

 

0.28 

 

0.0081 

 

0.0592 

  6  -4.71 

 

-4.16 

 

0.0085 

 

0.0449 

 

0.76 

 

1.56 

 

0.0077 

 

0.0501 

  7  -4.62 

 

-4.50 

 

0.0088 

 

0.0392 

 

0.62 

 

0.96 

 

0.0082 

 

0.0446 

 N = 400 4  -4.99 

 

-5.21 

 

0.0070 

 

0.0282 

 

-0.17 

 

0.17 

 

0.0057 

 

0.0293 

  5  -5.13 

 

-5.18 

 

0.0072 

 

0.0271 

 

-0.13 

 

0.23 

 

0.0057 

 

0.0280 

  6  -5.08 

 

-4.39 

 

0.0070 

 

0.0243 

 

-0.20 

 

0.97 

 

0.0055 

 

0.0261 

  7  -4.98 

 

-4.37 

 

0.0071 

 

0.0216 

 

-0.32 

 

0.66 

 

0.0058 

 

0.0227 
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Table F2 (cont’d) 

N = 500 4  -4.83 

 

-4.86 

 

0.0061 

 

0.0198 

 

-0.22 

 

0.30 

 

0.0047 

 

0.0204 

  5  -5.10 

 

-4.49 

 

0.0063 

 

0.0188 

 

-0.33 

 

0.77 

 

0.0045 

 

0.0198 

  6  -4.69 

 

-4.84 

 

0.0060 

 

0.0179 

 

-0.01 

 

0.23 

 

0.0047 

 

0.0182 

  7  -4.21 

 

-4.10 

 

0.0056 

 

0.0157 

 

0.33 

 

0.73 

 

0.0048 

 

0.0166 

 N = 750 4  -3.99 

 

-5.13 

 

0.0044 

 

0.0151 

 

0.21 

 

-0.43 

 

0.0033 

 

0.0147 

  5  -3.72 

 

-5.33 

 

0.0044 

 

0.0146 

 

0.66 

 

-0.57 

 

0.0036 

 

0.0140 

  6  -3.58 

 

-5.26 

 

0.0042 

 

0.0138 

 

0.72 

 

-0.64 

 

0.0035 

 

0.0131 

  7  -3.37 

 

-4.56 

 

0.0040 

 

0.0129 

 

0.78 

 

-0.17 

 

0.0034 

 

0.0128 

 N = 1,000 4  -3.50 

 

-5.96 

 

0.0033 

 

0.0109 

 

0.46 

 

-1.44 

 

0.0025 

 

0.0086 

  5  -3.72 

 

-6.50 

 

0.0038 

 

0.0116 

 

0.41 

 

-1.89 

 

0.0029 

 

0.0088 

  6  -3.14 

 

-5.77 

 

0.0033 

 

0.0102 

 

0.94 

 

-1.25 

 

0.0028 

 

0.0081 

  7  -3.29 

 

-5.89 

 

0.0034 

 

0.0099 

 

0.62 

 

-1.62 

 

0.0028 

 

0.0076 

 N = 1,500 4  -4.56 

 

-2.29 

 

0.0042 

 

0.0060 

 

-0.83 

 

2.23 

 

0.0025 

 

0.0068 

  5  -4.60 

 

-2.41 

 

0.0044 

 

0.0060 

 

-0.71 

 

2.21 

 

0.0026 

 

0.0068 

  6  -4.28 

 

-2.73 

 

0.0040 

 

0.0056 

 

-0.45 

 

1.75 

 

0.0024 

 

0.0059 

  7  -4.33 

 

-2.96 

 

0.0039 

 

0.0060 

 

-0.63 

 

1.28 

 

0.0023 

 

0.0061 

 Note. Cat. = number of categories. ML = maximum likelihood, MLR = robust maximum likelihood. SEFL represents standard 
errors of factor loadings and SESC is standard errors of structural coefficients. 
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Table F2 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    RBA MSEA RBA MSEA 

 Cat.  SEFL SESC SEFL SESC SEFL SESC SEFL SESC 

N = 200 4  -3.90 

 

-5.10 

 

0.0138 

 

0.1609 

 

-2.72 

 

-3.71 

 

0.0106 

 

0.1311 

  5  -3.31 

 

-5.41 

 

0.0138 

 

0.1372 

 

-2.30 

 

-4.39 

 

0.0108 

 

0.1120 

  6  -4.05 

 

-5.02 

 

0.0141 

 

0.1114 

 

-2.90 

 

-3.91 

 

0.0112 

 

0.0987 

  7  -4.10 

 

-4.81 

 

0.0139 

 

0.0715 

 

-3.10 

 

-3.36 

 

0.0111 

 

0.0692 

 N = 300 4  -0.99 

 

-0.97 

0 

0.0095 

 

0.0609 

 

-1.97 

 

 

1.41 

 

0.0080 

 

0.0456 

  5  -1.43 

 

-0.86 

 

0.0093 

 

0.0576 

 

-1.51 

 

0.54 

 

0.0074 

 

0.0601 

  6  -1.47 

 

0.43 

 

0.0089 

 

0.0435 

 

-1.22 

 

1.69 

 

0.0071 

 

0.0459 

  7  -1.83 

 

-0.70 

 

0.0092 

 

0.0390 

 

-1.50 

 

0.53 

 

0.0073 

 

0.0419 

 N = 400 4  -1.90 

 

-1.07 

 

0.0068 

 

0.0285 

 

-1.67 

 

-0.34 

 

0.0054 

 

0.0284 

  5  -1.92 

 

-2.32 

 

0.0068 

 

0.0273 

 

-1.62 

 

-1.52 

 

0.0056 

 

0.0274 

  6  -2.13 

 

-2.19 

 

0.0069 

 

0.0267 

 

-1.87 

 

-1.27 

 

0.0057 

 

0.0265 

  7  -2.40 

 

-1.57 

 

0.0069 

 

0.0207 

 

-2.38 

 

-0.71 

 

0.0057 

 

0.0206 
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Table F2 (cont’d) 

N = 500 4  -0.93 

 

-0.86 

 

0.0063 

 

0.0227 

 

-0.55 

 

-0.27 

 

0.0052 

 

0.0237 

  5  -1.14 

 

-0.98 

 

0.0059 

 

0.0208 

 

-0.77 

 

-0.39 

 

0.0049 

 

0.0223 

  6  -0.88 

 

-0.70 

 

0.0059 

 

0.0192 

 

-0.66 

 

-0.04 

 

0.0049 

 

0.0202 

  7  -0.55 

 

-0.56 

 

0.0061 

 

0.0163 

 

-0.36 

 

0.01 

 

0.0051 

 

0.0174 

 N = 750 4  -0.66 

 

-1.95 

 

0.0040 

 

0.0155 

 

-0.31 

 

-1.67 

 

0.0036 

 

0.0157 

  5  -0.16 

 

-2.76 

 

0.0041 

 

0.0146 

 

0.32 

 

-2.54 

 

0.0037 

 

0.0146 

  6  -0.02 

 

-2.93 

 

0.0040 

 

0.0134 

 

0.24 

 

-2.79 

 

0.0036 

 

0.0137 

  7  0.25 

 

-2.44 

 

0.0039 

 

0.0130 

 

0.35 

 

-2.18 

 

0.0035 

 

0.0132 

 N = 1,000 4  -0.14 

 

-1.79 

 

0.0030 

 

0.0092 

 

-0.16 

 

-1.21 

 

0.0026 

 

0.0093 

  5  0.04 

 

-1.89 

 

0.0033 

 

0.0090 

 

0.15 

 

-1.33 

 

0.0027 

 

0.0091 

  6  0.32 

 

-1.87 

 

0.0031 

 

0.0081 

 

0.12 

 

-1.43 

 

0.0026 

 

0.0083 

  7  0.40 

 

-1.60 

 

0.0031 

 

0.0073 

 

-0.05 

 

-1.20 

 

0.0027 

 

0.0075 

 N = 1,500 4  -0.80 

 

2.15 

 

0.0026 

 

0.0072 

 

-1.04 

 

2.19 

 

0.0024 

 

0.0074 

  5  -0.42 

 

1.92 

 

0.0025 

 

0.0067 

 

-0.40 

 

1.99 

 

0.0024 

 

0.0069 

  6  0.08 

 

1.63 

 

0.0026 

 

0.0063 

 

-0.19 

 

1.79 

 

0.0024 

 

0.0066 

  7  0.06 

 

0.38 

 

0.0025 

 

0.0061 

 

-0.01 

 

0.55 

 

0.0023 

 

0.0064 

 Note. Cat. = number of categories. WLSMV = robust weighted least squares, ULSMV = robust unweight least squares. SEFL 
represents standard errors of factor loadings and SESC is standard errors of structural coefficients. 
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3. Table F3 presents findings for chi-square test statistics and RMSEA with ML, MLR, ULSMV, and WLSMV estimation. 

	
  

Table F3. Bias and Rejection Rates of Chi-Square Statistics as well as Means and Rejection Rates of RMSEA with Bipolarization 
Distribution 

  ML 

Robust WLS 

MLR 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

 Cat.  bias % M % bias % bias % 

N = 200 4  11.86 

 

29.20 

 

0.022 

 

0.00 

 

7.02 

 

14.60 

 

0.017 

 

0.00 

  5  11.92 

 

27.80 

 

0.022 

 

0.00 

 

6.93 

 

15.40 

 

0.017 

 

0.00 

  6  12.06 

 

28.60 

 

0.022 

 

0.00 

 

7.15 

 

15.20 

 

0.017 

 

0.00 

  7  11.77 

 

26.65 

 

0.022 

 

0.00 

 

7.13 

 

15.63 

 

0.017 

 

0.00 

 N = 300 4  8.53 

 

19.80 

 

0.015 

 

0.00 

 

3.46 

 

9.00 

 

0.011 

 

0.00 

  5  8.82 

 

22.80 

 

0.015 

 

0.00 

 

3.55 

 

8.80 

 

0.010 

 

0.00 

  6  8.74 

 

18.80 

 

0.015 

 

0.00 

 

3.61 

 

10.20 

 

0.010 

 

0.00 

  7  8.46 

 

17.60 

 

0.015 

 

0.00 

 

3.55 

 

10.20 

 

0.010 

 

0.00 

 N = 400 4  8.25 

 

17.00 

 

0.013 

 

0.00 

 

2.93 

 

8.60 

 

0.009 

 

0.00 

  5  8.23 

 

17.20 

 

0.013 

0.00 

 

0.00 

 

2.74 

 

8.60 

 

0.009 

 

0.00 

  6  7.80 

 

16.80 

 

0.012 

 

0.00 

 

2.47 

 

7.80 

 

0.008 

 

0.00 

  7  7.57 

 

15.00 

 

0.012 

 

0.00 

 

2.50 

 

6.60 

 

0.008 

 

0.00 
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Table F3 (cont’d) 

N = 500 4  7.74 

 

18.40 

 

0.011 

 

0.00 

 

2.30 

 

10.20 

 

0.008 

 

0.00 

  5  7.74 

 

18.20 

 

0.011 

 

0.00 

 

2.13 

 

9.00 

 

0.007 

 

0.00 

  6  7.72 

 

18.40 

 

0.011 

 

0.00 

 

2.22 

 

9.20 

 

0.007 

 

0.00 

  7  7.62 

 

19.60 

 

0.011 

 

0.00 

 

2.39 

 

10.60 

 

0.007 

 

0.00 

 N = 750 4  7.79 

 

17.00 

 

0.009 

 

0.00 

 

2.22 

 

7.80 

 

0.006 

 

0.00 

  5  7.94 

 

16.20 

 

0.009 

 

0.00 

 

2.19 

 

9.60 

 

0.006 

 

0.00 

  6  7.78 

 

18.20 

 

0.009 

 

0.00 

 

2.17 

 

9.20 

 

0.006 

 

0.00 

  7  7.43 

 

17.00 

 

0.009 

 

0.00 

 

2.08 

 

8.20 

 

0.006 

 

0.00 

 N = 1,000 4  6.85 

 

15.00 

 

0.007 

 

0.00 

 

1.18 

 

7.00 

 

0.005 

 

0.00 

  5  7.10 

 

16.60 

 

0.007 

 

0.00 

 

1.26 

 

6.80 

 

0.005 

 

0.00 

  6  6.89 

 

16.40 

 

0.007 

 

0.00 

 

1.19 

 

7.40 

 

0.005 

 

0.00 

  7  6.71 

 

14.40 

 

0.007 

 

0.00 

 

1.26 

 

5.40 

 

0.005 

 

0.00 

 N = 1,500 4  7.01 

 

16.40 

 

0.006 

 

0.00 

 

1.28 

 

8.60 

 

0.004 

 

0.00 

  5  7.25 

 

15.80 

 

0.006 

 

0.00 

 

1.33 

 

6.00 

 

0.004 

 

0.00 

  6  7.34 

 

15.00 

 

0.006 

 

0.00 

 

1.56 

 

8.00 

 

0.004 

 

0.00 

  7  6.99 

 

16.80 

 

0.006 

 

0.00 

 

1.47 

 

7.40 

 

0.004 

 

0.00 

 Note. Cat. = number of categories. ML = maximum likelihood, MLR = robust maximum likelihood. M = mean. 
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Table F3 (cont’d) 

  WLSMV 

Robust WLS 

ULSMV 

Robust WLS    Chi-square RMSEA Chi-square RMSEA 

 Cat.  bias % bias % M % bias % 

N = 200 4  2.65 

 

3.82 

 

0.011 

 

0.00 

 

1.46 

 

1.41 

 

0.010 

 

0.00 

  5  2.54 

 

4.41 

 

0.011 

 

0.00 

 

1.40 

 

3.21 

 

0.009 

 

0.00 

  6  2.89 

 

3.82 

 

0.011 

 

0.00 

 

1.74 

 

3.01 

 

0.010 

 

0.00 

  7  3.23 

 

5.01 

 

0.012 

 

0.00 

 

1.98 

 

4.22 

 

0.010 

 

0.00 

 N = 300 4  1.19 

 

3.40 

 

0.008 

 

0.00 

 

0.23 

 

3.40 

 

0.007 

 

0.00 

  5  1.04 

 

3.40 

 

0.008 

 

0.00 

 

0.22 

 

2.80 

 

0.007 

 

0.00 

  6  1.27 

 

3.20 

 

0.008 

 

0.00 

 

0.46 

 

2.60 

 

0.007 

 

0.00 

  7  1.42 

 

4.80 

 

0.008 

 

0.00 

 

0.61 

 

4.20 

 

0.008 

 

0.00 

 N = 400 4  1.66 

 

4.41 

 

0.007 

 

0.00 

 

1.01 

 

3.81 

 

0.007 

 

0.00 

  5  1.63 

 

4.40 

 

0.007 

 

0.00 

 

1.01 

 

4.00 

 

0.007 

 

0.00 

  6  1.62 

 

4.20 

 

0.008 

 

0.00 

 

0.99 

 

2.80 

 

0.007 

 

0.00 

  7  1.82 

 

3.60 

 

0.008 

 

0.00 

 

1.11 

 

3.40 

 

0.007 

 

0.00 
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Table F3 (cont’d) 

N = 500 4  0.87 

 

4.40 

 

0.006 

 

0.00 

 

0.29 

 

4.00 

 

0.006 

 

0.00 

  5  0.61 

 

4.60 

 

0.006 

 

0.00 

 

0.04 

 

4.00 

 

0.006 

 

0.00 

  6  0.60 

 

5.00 

 

0.006 

 

0.00 

 

0.04 

 

4.00 

 

0.006 

 

0.00 

  7  0.69 

 

4.00 

 

0.006 

 

0.00 

 

0.04 

 

3.40 

 

0.005 

 

0.00 

 N = 750 4  1.15 

 

5.80 

 

0.005 

 

0.00 

 

0.76 

 

6.20 

 

0.005 

 

0.00 

  5  1.18 

 

5.60 

 

0.005 

 

0.00 

 

0.79 

 

5.60 

 

0.005 

 

0.00 

  6  1.21 

 

6.00 

 

0.005 

 

0.00 

 

0.80 

 

5.40 

 

0.005 

 

0.00 

  7  0.78 

 

4.60 

 

0.005 

 

0.00 

 

0.34 

 

5.00 

 

0.005 

 

0.00 

 N = 1,000 4  0.15 

 

4.80 

 

0.004 

 

0.00 

 

-0.11 

 

4.40 

 

0.004 

 

0.00 

  5  0.21 

 

5.40 

 

0.004 

 

0.00 

 

-0.04 

 

5.20 

 

0.004 

 

0.00 

  6  0.16 

 

4.80 

 

0.004 

 

0.00 

 

-0.11 

 

3.80 

 

0.004 

 

0.00 

  7  0.28 

 

3.80 

 

0.004 

 

0.00 

 

-0.01 

 

4.20 

 

0.004 

 

0.00 

 N = 1,500 4  0.42 

 

5.40 

 

0.003 

 

0.00 

 

0.33 

 

5.40 

 

0.003 

 

0.00 

  5  0.57 

 

5.00 

 

0.004 

 

0.00 

 

0.49 

 

5.40 

 

0.004 

 

0.00 

  6  0.95 

 

6.20 

 

0.004 

 

0.00 

 

0.86 

 

6.20 

 

0.004 

 

0.00 

  7  0.86 

 

5.60 

 

0.004 

 

0.00 

 

0.75 

 

5.20 

 

0.004 

 

0.00 

 Note. Cat. = number of categories. WLSMV = robust weighted least squares, ULSMV = robust unweight least squares. M = 
mean. 
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