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ABSTRACT

FINANCIAL ECONOMETRIC MODELING OF RISK IN COMMODITY MARKETS
By

Jeongseok Song

This dissertation is composed of three interrelated body chapters. Its goal is to
identify underlying sources of return volatility movement and analyze important
problems in the economics of commodity markets by applying various time series
econometric models to commodity market price data.

Chapter 2 investigates stochastic properties of daily cash price changes for six
commodities: corn, soybeans, live cattle, live hogs, unleaded gasoline, and gold. We use
the FIGARCH conditional variance model and the semi-parametric local Whittle
estimation method to explore the daily cash return volatility behavior. We apply the long
memory models to the temporally aggregated daily cash returns and compare the
volatility dynamics at various sample frequencies.

Chapter 3 is concerned with commodity futures return volatility at daily and
higher sample frequencies. In particular, strong intra-day periodicity in the high
frequency return volatility is observed. We examine the high frequency futures return
volatility pattern after removing the intra-day seasonality using the Flexible Fourier Form
(FFF) filter and compare the volatility movement with the daily futures return volatility

process.



Chapter 4 introduces a newly suggested volatility measure, the realized volatility,
and applies the volatility measure to commodity futures market price data. The realized
volatility is calculated as the sum of high frequency squared returns and exhibits some
ideal statistical properties. Taking advantage of the stochastic properties of the realized
volatility measure allows us to study important economic determinants for commodity

futures market risk behavior.
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with the application of some modemn financial
econometric techniques to daily and high frequency commodity markets. The
econometric methods are applied to the cash and futures markets. These cash and futures
markets are an active and important financial institution in the modern economy, and the
vo]at{lity associated with commodity futures markets is an important factor for study in
risk management and in commodity trading. The market in recent years has observed
remarkable growth in trading volume, the variety of contracts, and the range of
underlying commodities. Market participants are also becoming increasingly
sophisticated about recognizing and exercising operational contingencies embedded in
delivery contracts. For all of these reasons, there is a widespread interest in models for
pricing and hedging commodity-linked contingent claims. Despite these facts, relatively
little attention has been paid to commodity markets, in comparison with the enormous
recent empirical analyses of the currency and equity markets. While commodity markets
are smaller and possibly lack the glamour of currency and equity markets, they are
nevertheless important for the agricultural sector of the economy and for maintaining

overall supply and demand conditions in the macro economy.



Chapter 2 is concerned with commodity cash market price risks. The cash
markets are characterized by the unique physical properties of commodities since cash
prices are determined by supply and demand for commodities that are subject to various
unique factors such as weather and other environmental determinants. We introduce the
long memory property with its characteristic self-similarity and study daily cash return
volatility dynamics with reflection on various characteristics of commodities such as
annual seasonality for agricultural products and distinguishing trading patterns for
livestock. Accounting for those characteristics, our empirical investigation uses the
FIGARCH and local Whittle semi-parametric estimation method to reveal that the long
memory property is evident in the daily cash return volatility.

Chapter 3 is concerned with investigating the possible existence of the long
memory feature in commodity markets. Apart from the study by Cai et al. (2002), this
thesis appears to be the first systematic study of the phenomenon and its applicability to
and implications for commodity markets. Hence, in chapter 3 we apply the FIGARCH
and the local Whittle estimator to commodity futures market price data and also report
the estimates of various long memory volatility models. We find overwhelming evidence
for the phenomenon, which is consistent with the evidence found in the securities and
currency markets. We also investigate and discuss the property of self-similarity in
commodity markets, generally finding our empirical results to be consistent with self-
similarity. It turns out to be very important to consider issues of time to maturity when
modeling volatility in these markets. Further, chapter 3 deals with high frequency
commodity futures market data. We first discuss meaningful ways of constructing high

frequency returns, and then describe the empirical properties of these. Much emphasis is



placed 6n the particularly unusual intra-day periodicity that occurs in these futures
markets and its elimination through the application of Gallant’s (1981) FFF filtering
method. Our finding is supportive of self-similarity for high frequency commodity
futures return volatility.

Chapter 4 is concerned with the relatively new measure of realized volatility,
which has recently become a competitor with the dominant GARCH model of Engle
(1982). We find some interesting features of very persistent autocorrelation, or long
memory, in the realized volatility series. The realized volatility series are also partly
determined by USDA announcement effects and the local market conditions of time to
maturity. We introduce the new concept of information flow, which is measured using
trading intensity built from a high frequency time dimension. We consider information
flow and time-to-maturity effects to explain realized volatility. Even allowing for these
effects, the long memory effects in the realized volatility series tend to remain. Chapter 4
also investigates the patterns of dependencies between the realized volatility series of
several different commodities. We discuss these results in the context of fractional
integration and the existence of a common structural long memory trend in the generation
of the realized volatility series.

We summarize our studies and conclude this dissertation with possible future

research in chapter 5.



CHAPTER 2

MODELING COMMODITY CASH RETURNS

2.1. Introduction

This chapter is concerned with the stochastic properties of daily commodity cash
prices for corn, soybeans, live cattle, live hogs, unleaded gasoline, and gold. This type of
analysis is an important precursor for many financial market applications, including
calculation of optimal hedge ratios, computation of Value at Risk (VaR), etc. While
previous studies have investigated the time series properties of commodity cash prices
using stable GARCH models, we are unaware of any previous investigation of the long
memory properties of daily cash series. For the successful application of financial market
analysis and policy, an investigation of the detailed properties of these asset prices seems
long overdue.

Commodities are physical products and possibly not involved in trading for
possible swift arbitrage. Commodity trading involves some transaction costs attributable
to storage and transportation that are not relevant to most financial assets. In particular,
commodity cash prices are directly determined by the supply and demand for actual
products, while commodity futures contracts are traded in order to reduce uncertainty for
the underlying commodities. Therefore, commodity cash markets are quite different

from other financial markets. Baillie and Myers (1991), and Cecchetti, Cumby, and




Figlewski (1988) used commodity cash and futures prices for the optimal hedge ratio
calculation. Mackey (1989), Yang and Brorsen (1992), and Burton (1993) documented
daily commodity cash prices by using nonlinear dynamic models. Yang and Brorsen
(1992) and Burton (1993) compared GARCH models with chaos models to explain
complicated commodity cash price volatility dynamics. Yang and Brorsen (1992)
considered GARCH, mixed diffusion-jump, and deterministic chaos models of cash
commodity prices and concluded that the GARCH volatility process provided the best fit.
Mackey (1989) suggested a theoretical model to argue that supply and demand for
commodities may cause nonlinear price dynamics.

The long memory property is well known to occur in squared returns, absolute
returns, and various transformations of volatility such as conditional variances and
stochastic volatility models. There are several plausible reasons for the occurrence of
long memory in absolute returns, conditional variances and other measures of volatility.
First, Granger (1980) showed how the contemporaneous aggregation of independent
AR(1) processes can lead to a long memory process as the number of cross section units
gets large. This result depends upon the autoregressive parameters having a beta
distribution in the interval (0, 1). Usually, the aggregation of N independent AR(1)
processes leads to an ARMA(N, N-1) model. However, Granger (1980) shows that this
tends to follow fractional white noise as N gets large. Extension of this aggregation
argument to volatility models is less than straightforward. Ding and Granger (1996)
showed that if each asset’s return is a martingale with stable GARCH(1,1) innovations,
then the autocorrelations of the squared returns of the contemporaneously aggregated

assets will exhibit hyperbolically decaying autocorrelations, and hence the long memory



property. Also, Andersen and Bollerslev (1997a) claimed that long memory can result
from aggregated heterogenous information components in line with the Mixture-of-
Distribution hypothesis noted by Clark (1973) and Tauchen and Pitt (1983). A further
suggestion of Parke (2000) is that long memory can arise from the aggregation of shocks,
each with a different duration time. Indeed, financial markets are subject to numerous
economic factors and considerably responsive to the vast amount of information available
in the markets.

This chapter adds to the literature by investigating the long memory for
commodity market ;;rice risk and examining self-similarity to verify the long-run
temporal dependence as an original property of commodity cash price changes. We start
with the daily cash price in this chapter and continue with daily and intra-day futures
prices in chapter 3.

The remainder of this chapter proceeds as follow. Section 2 provides a brief
theoretical background for long memory, self-similarity, and temporal aggregation. In
section 3, we document empirical findings for the long memory and self-similarity by
using the FIGARCH and the local Whittle semi-parametric model for the temporally

aggregated daily cash returns motivated in section 2. Section 4 concludes the chapter.

2.2. Long Memory, Self-Similarity, and Temporal Aggregation
In this section, we discuss definitions of long memory and relate it to the concept
of self-similarity. One possible definition of long memory is as follows: if the

population autocorrelation of a time series process at lag j, denoted by p, , has the

following property,



lim i lpj|=oo, 2.1)

j=-n

the process is said to exhibit long memory. For a sufficiently large number of lags j, a
process with autocorrelation function p; = ¢j 2d-1 and a positive constant ¢, and where

—0.5<d < 0.5, can be formally defined as a stationary long memory process. We call d
the long memory parameter. Autocorrelation for such a type of process decays very
slowly over long time lags.

Granger and Joyeux (1980), Granger (1980), and Hosking (1981) have developed
the Autoregressive Fractionally Integrated Moving Average (henceforth, ARFIMA)
model to represent a time series process with the long memory property. Baillie (1996)
provides a comprehensive survey of the long memory theories and applications in
macroeconomics and finance. As suggested by Granger and Joyeux (1980), Granger

(1980), and Hosking (1981), the ARFIMA model takes the following form,
d
#(L)(1-L)" (3, -u)=6(L), 2.2)

where all the roots of the p’th order polynomial in the lag operator ¢(L) and the q’th

order polynomial in the lag operator (L) are assumed to lie outside the unit circle. The

process &, is white noise. The operator (1- L)d is the fractional difference operator

defined as follows:




(1-1)* E{l-—dL+ d(‘;—l) - d(d'g)!(d'z) i +} 23)

The ARFIMA process combines the stationary and invertible ARMA model which
generates 1(0) behavior with the above fractional difference operator, which adds on the

long memory behavior for the time series process. For a large lag j, there is hyperbolic
decay in the autocorrelations of the ARFIMA process and p; ~ ¢/ 2d-1 where ¢>0. To

describe another important property of the ARFIMA process, we consider the impulse
response weights, following Campbell and Mankiw (1987). The impulse response

weights are defined by first differencing the ARFIMA process, y, , to obtain
(1-L)y,=A(L)¢ 2.4)

where A(L)=(1- L)l_d ¢(L)_I 6(L). We can express the lag polynomial A(L)in

terms of the hypergeometric functions as

A(L)=F(d-LLLL)¢(L) "' 6(L) 2.5)

where F (a,b,c;z) ={T'(c)/[T (a)T'(b) ]} {2 [[(c+i)/T(i+1)]}and [(e) is a Gamma

function. Since F (d -LL1; L) =0, as Gradszteyn and Ryzhnik (1980) show, we



have 4(1)= F(d —l,l,l;l)¢(l)—] 6(1)=0 for d <1. The impact of a unit innovation at

time t on the process y,,; is then given by
1+ 4 - (2.6)

Therefore, a fractionally integrated process with d <1 is mean reverting. In particular,

¥, for 0.5 <d <1 is still mean reverting, although the process is not covariance

stationary. The long memory feature provides a flexible way of describing complicated
volatility temporal patterns, while conventional ARMA class models capture only short-
run dynamics in modeling time series and may be too strict in uncovering longer term
persistence for the series.

Another important property of the long memory process is self-similarity. The
general notion of self-similarity is that some random variables behave identically when

they are viewed at different scales on a dimension. The dimension may be space or time,

and, particularly, will be time when we analyze time series data. Consider a process y,

following the long memory property with autocorrelation p; =~ ¢ 2d-1 for Jj lags. Given

the autocorrelation function, the corresponding spectral density for the associated process

can be expressed as follows,

2 © .
f(R)=5-2 et @7



Then, the spectral density is approximately of the form p; =~ ¢j 2d-1yith a constant cas

A — 0 where A represents Fourier frequencies. More formally, y, is called self-similar

with a self-similar parameter H, if for any positive stretching factor ¢ the rescaled process

cH Yot has the same distribution as the original process y,.

Following the formal definition and basic concept of self-similarity, we proceed

with temporal aggregation. Let R,(k )= Z 1=0,(k-1) Ry _; denote temporally aggregated

returns at a k-day sample frequency. For simplicity, assume that R, = 0,z,and z, are
independent and identically distributed and o, represents a positive and measurable

time-varying function. According to many previous empirical findings for the long

memory property for squared asset returns, we can assume that
2
p([R, ]2 ,[R,_j] ) = j?'d'I for 0<d <0.5'. The temporally aggregated returns, R,(k),

can be expanded as follows:

2
k 2 p2 2 2
[Rl( )] = tlc+le—l+Rtk—2+"'+R1k-k+l+221¢mR’k'/R’k‘”" 28)

Since we assume that z, are independent and identically distributed, R, _; Ry _,, terms

for I # m should not matter in considering the autocorrelation below. Then, the j-th order

2 2
autocorrelation p[[ Rz(k)} [ Rt(f}] J is simply the sum of autocorrelations for all the

! The long memory process with 0 < d < 0.5 shows all positive autocorrelations decaying at a hyperbolic
rate; see Baillie (1996).

10




2 2
possible pairs of the squared terms underlying [R,(k)] and [R,(fz] . In other words, the

2 2
J-th order autocorrelation p[[R,(k)] ,I:R,(i?] ] can be obtained by summing the

OF . [0 T
autocorrelations between [R, ] and [Rt-jk-h] for h=—k+1,-k+2,---,k—-1. After

some straightforward algebra, we have

AT 5 emfT ]

2.9)
2 kol 2d-1
=k 2 (k=|H)(jk+h)
h=—k+1
k-1
where h=-k+1,-k+2,---,k—1. Note that k2 Z (k—|h|)=l. Further, if time lag j
h=—k+1
is sufficiently large, we have
=l 2d-1 2d-1
k20Y (k=) (k+h) T = Ry~ 2 (2.10)
h=—k+1

Consequently, we have

p([k,(")]z,[k,(fﬂz]~j2""‘ @11)

11



According to this result, we assess that temporally aggregated squared returns
theoretically exhibit identical decaying rates for their autocorrelations regardless of the

sampling frequencies k. In other words, for sufficient lags j, the autocorrelation

2 2
between[R,(k)] and [R,(ﬂ] takes an identical form to the autocorrelation between

R,2 and R,z_ j for different values of k. Concretely, if R,2 exhibits long memory, then

2
[R,(k)] also shows the same degree of long run temporal dependence. Consistent with

the self-similarity notion discussed above, temporally aggregated squared returns show
identical long memory behavior if their underlying squared returns follow the long
memory process. This result can carry over to a temporally aggregated absolute return
case as below.

Especially if we assume further that o, from R, =o,z, follows log-normal

20

distribution, then R,( 4 for all 8> 0 will exhibit identical decaying rates for

autocorrelation behavior. This result has been noted by Granger and Newbold (1976) and

2

(0] _[g®)
recently confirmed by Andersen (1994). Since [R, ] =R,

, temporally aggregated
squared returns should be one particular case of power transformed absolute

R,(k for 6 =1. Further, identical decaying rates for autocorrelations of

) 26
returns, ’

26

R(k) for all 6 >0 imply that temporally aggregated absolute returns also yield the

t

12



same autocorrelation behavior as temporally aggregated squared returns, since temporally
26
’l

aggregated absolute return R,(k

is just another case for #=0.5.

The theoretical self-similarity of temporally aggregated squared returns motivates
the application of FIGARCH conditional variance model to temporally aggregated daily
cash returns. Following Baillie, Bollerslev, and Mikkelsen (1996), the FIGARCH model

is defined as follows:
o =w+p(L)o? +[1—ﬂ(L)—(1—¢(L))(1 -L)"]g,2 : 2.12)

where B(L)= BiL+ o[> ++-+ B,LP and §(L)= g L+8yL*--+4,L7. Baillie,

Bollerslev, and Mikkelsen (1996) incorporated slow hyperbolic decay into the
conditional variance modeling. The FIGARCH process considers a slowly decaying
autocorrelation for lagged squared innovations and allows for persistent impulse response
weights without involving the never-dying-out cumulative impulse response weights.

The FIGARCH model can describe conditional variance in a more flexible way by
allowing for 0 <d <1 while the IGARCH model yields unrealistically everlasting
volatility persistence and the GARCH process considers only short run dynamics for
conditional variances. To describe the features that distinguish the FIGARCH from the
GARCH and the IGARCH process, we consider the impulse response functions. Another

expression for the FIGARCH process is
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{1-g(L)}(1-1)? & =w+{1- B(L)}v, 2.13)

where v, = 5,2 - 0',2 . Analogously to the impulse response function for the ARFIMA

process mentioned above, we express the first differenced 8,2 as,

(1-L)&? =w+y (L), 2.14)

Then, we have the impulse response weights for the FIGARCH process such that

y(L)=(1-1)"?g(L) {1- (1)} (2.15)

By the same token, the impulse response weights for the GARCH process and the

-1
IGARCH are y(L)=(1-L){1-a(L)-B(L)} {1-B(L)}andy(L)={1-B(L)},
respectively. Since the limit of the cumulative impulse response weights is }'(1) , the

impact of past shocks on the FIGARCH volatility process from equation (2.15) is zero, as

for the GARCH process. Note that y(1)=1- >0 particularly for the IGARCH (1,1).

Further, we consider the FIGARCH cumulative impulse response weights for lag j as

A =Zo,,-71 . (2.16)
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According to Stirling’s approximation, the cumulative impulse response weight for lag j,

A g for the FIGARCH process is

A;=[(1-B)/T(d)] 4. 2.17)

Therefore, the hyperbolic decay component is present in the cumulative impulse response
weights so that a shock to the squared residuals will decay at a very slow rate although all
the past shocks eventually will die out.

Another class of models to describe long memory volatility was suggested by
Breidt, Crato, and de Lima (1993) and Harvey (1998). They model long memory for

conditional volatility series as follows:

Y =0,¢ (2.18)

and

ol =c2exp(h), (2.19)

where £, is normal and independently distributed. Estimation of the stochastic volatility

model uses the state space representation and Quasi-Maximum Likelihood Estimation

(QMLE) via the Kalman filter.
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In this chapter, by using both parametric and semi-parametric models, we
investigate whether daily commodity cash return volatility follows the long memory
process. The FIGARCH model is used to identify the long memory behavior in daily
cash return volatility parametrically while the local Whittle estimation method is chosen
for a semi-parametric counterpart to estimate the long memory parameter for the absolute

daily cash returns.

2.3. Application to Daily Cash Returns

In the previous section, we considered the theoretical relationship among the long
memory process, the self-similarity property, and temporal aggregation. We plan to
study the theoretical relationship empirically by using daily cash price data for various
types of commodities: corn, soybeans, live cattle, live hogs, gasoline, and gold.

We apply the FIGARCH model to the temporally aggregated daily cash returns to
analyze the return volatility temporal patterns across various daily sample frequencies.
We choose one-day through five-day sample frequencies because 5 trading days usually

form a week of business days. We temporally aggregate returns
R,(k) = Z 1=0,(k-1) Ry _; at k-daily frequency by summing one-day cash returns over k-

daily periods for k=1, 2, 3, 4, 5. For the conditional mean, we choose MA(1) to capture
the usually small but significant autocorrelations of return levels at the first few lagsz.
The generic MA(q)-FIGARCH(p,d,q) model to estimate for daily cash returns is as

follows:

? In the high frequency context, this MA(1) term is related to the market microstructure noise issue. We
will discuss this more in chapter 3 where high frequency commodity futures returns are considered.
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v, =100A1In(P,) = p + €, +68,_, 2.20)

St = ZtO't (2-21)

o2 =w+p(L)o? +[1 -B(L)-(1 —¢(L))(1—L)d]g,2 2.22)

where P, is the commodity cash price, z; is an i.i.d.(0,1) random variable,
B(L)=pBL + By ++ B,1P, ¢(L)= ¢|L+¢2L2 ---+¢qL" , and L is the lag operator.

Before proceeding further, we will briefly describe some characteristics of the
commodities considered here. Daily prices for cash commodities are cash prices for the
delivery location and specifications included in the corresponding futures contracts.
These were obtained from the Futures Industry Institute data center. The agricultural
product cash markets for corn and soybeans especially seem to display different volatility
patterns due to their inherent attributes. Figure 2-1 plots the sample autocorrelations for
absolute returns of daily cash prices for all the commodities considered. The horizontal
axis represents daily lags up to 1000 days in order to consider approximately four years
of trading days. In particular, the unique patterns of corn and soybean cash return
volatility in their sample autocorrelations are worth notice. In figure 2-1, the dotted line
represents the sample autocorrelations of the absolute (raw) cash returns for corn and
soybeans. As shown in the figure, there seems to be some pronounced yearly seasonality
for the original daily cash return volatility for corn and soybeans. The peaks are observed

almost every 250-day interval, which approximately corresponds to a year of trading
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days. Typical yearly planting and harvesting cycles for the agricultural products may be
responsible for the seasonality. Such seasonality may impede proper analysis of inherent
volatility patterns. To cope with the annual periodic patterns in daily cash return
volatility, we apply the Fourier flexible functional filtering, as introduced by Gallant
(1981). The Fourier flexible functional filtering is formally discussed in chapter 3 when
we consider high frequency commodity futures price data, since we apply the FFF
filtering to cope with strong intraday seasonality for all of the commodities. For the other
types of commodities, seasonal patterns are not observed for the sample autocorrelations
of absolute daily cash returns. Hence, the other commodities do not require filtering
before we apply the FIGARCH model to those time series data. The solid lines for the
correlograms of corn and soybeans represent the sample correlations for the filtered
returns for those commodities. As shown in Figure 2-1, seasonal patterns seem to be
markedly reduced by the FFF filtering. Another striking feature is the unusual
aﬁtocorrelation patterns of live cattle cash returns. The sample autocorrelations of live
cattle absolute cash returns appear to be very different from the others and repeatedly
deviate very much from zero.

Tables 2-1 through 2-6 present the results of applying the FIGARCH model to
cash returns for (filtered) corn, (filtered) soybeans, gasoline, cattle, hogs, and gold at
various daily frequencies. Specification tests are performed by applying the Ljung-Box
portmanteau statistic on the standardized residuals resulting from quasi-maximum

likelihood estimation for the FIGARCH model on the grounds that the test statistics

asymptotically follow ;(,2,,_,‘ distribution.
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The estimated long memory parameter in Tables 2-1 through 2-6 is strongly
statistically significant for the cash return series for corn, soybeans, gasoline, and gold.
In contrast, the long memory estimates for live cattle and hogs seem to be less significant
than those for the other commodities. In particular, daily cash prices for live cattle seem
to be constant for Wednesdays, Thursdays, and Fridays mainly, while most of the daily
cash price changes seem to occur on Mondays and sometimes on Tuesdays, according to
our preliminary data analysis. This odd data feature may be responsible for the unusual
sample autocorrelation patterns as shown in Figure 2-1. The cash prices for live hogs
also seem to involve some unusual characteristics. Although the live hog cash price
changes are found quite evenly over the week’s days, the changes seem to have strong
day-of-week effects. To capture possible day-of-week effects on daily cash price
changes, we include dummy variables for Monday, Tuesday, Thursday, and Friday in the
conditional variance specification. From our pre-estimation, we found that there are
considerable day-of-week effects for live hog cash return volatility. The robust ¢-values
for Monday, Tuesday, Thursday, and Friday’ dummies are 3.867, 4.797, 1.694, and
2.507, respectively. Also, the mean level of live hog daily cash returns exhibits a
significant level of serial correlations during the course of the MA-FIGARCH estimation.
To capture such a strong serial correlation in the mean level of live hog cash returns, we
impose MA(15)* for the conditional mean model.

Apart from the unusual features mentioned above for the livestock, the long
memory estimates from the FIGARCH conditional variance specification from (2.20) to

(2.22) seem to be significant, and the model performs fairly in fitting the daily cash return

* To avoid a dummy trap, we drop dummies for Wednesday.
* Our informal experiment revealed that beyond 15 time lags did not seem to be statistically significant.
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volatility. Particularly, we practiced a robust Wald test of the stationary GARCH(1,1)’

null hypothesis versus a FIGARCH(1,d,1) alternative hypothesis. Under the null, the

robust Wald test statistic W will have an asymptotic 112 distribution. Especially for a

one-day sample frequency, we reject the null hypothesis for d = 0, and thus the
GARCH(1,1) model is rejected for most of the commodities, with the exception of the
livestock. For the crops, gasoline, and gold, at many temporal aggregation levels the
formal statistical test supports the conclusion obtained both here and in Jin and Frechette
(1994) that the FIGARCH is superior to the GARCH for modeling commodity return
volatilities®. On the other hand, the W statistics for live cattle and hogs seem to be
extremely low and less likely to reject the null hypothesis of GARCH specification at a 5-
day (i.e., weekly) sample frequency. Again, this feature can be attributed to inactive spot
market trading and the possible day-of-week effects for the livestock discussed above.

In addition, the long memory estimate levels themselves appear to be very stable
across different sample frequencies for most of the commodities, with few exceptions.
Our results imply that conditional variances of daily cash returns for each commodity
may demonstrate a similar degree of persistence at different sample frequencies. This
finding seems to be supportive of the self-similarity property discussed in section 2.

The semi-parametric local Whittle estimation methods have been suggested by
Kunch (1987) and Robinson (1995). As a robustness check for the FIGARCH estimation
results, we apply the local Whittle estimation for the long-memory parameter by using

the absolute daily cash returns. One of the motivations for the semi-parametric

* For some instances, we test the null hypothesis for different GARCH specification other than
GARCH(1,1).
® In fact, Jin and Frechette (1994) have used commodity futures price data.
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estimation method is that, while the long memory volatility parameter estimation results
using parametric models such as ARFIMA or FIGARCH specification may be affected
by any possible short run dynamics, the semi-parametric estimation method affords
general treatment of short run temporal dependence’. We discuss the local Whittle
estimation separately in more detail in chapter 3. Table 2-7 reports the estimates of the
long memory parameter by using absolute daily cash returns.

For the absolute daily cash returns, the semi-parametric long memory estimates
seem to be qualitatively similar to the FIGARCH estimation results. For example, the
low long memory estimate levels for live cattle and hogs can be found for the local
Whittle estimation results similarly as in the FIGARCH long memory estimates. Also,
the local Whittle estimates for the long memory parameter seem to be stable, as we found
from the FIGARCH estimation results, and supportive of self-similarity for temporally
aggregated absolute returns, as the FIGARCH estimates are stable across different sample

frequencies.

2.4. Conclusion

The long run volatility dynamics for prices of physical commodities have been
considered in this chapter. By using both parametric and semi-parametric long memory
models, we confirmed that long memory exists for daily cash return volatility and,
further, that the long memory behaviors are consistently witnessed across various daily
frequencies for most of the commodities. We observed this evidence for temporally

aggregated absolute returns and squared returns in common. This feature is consistent

7" In general, semiparametric estimation methods may be somewhat controversial due to their poor
performance in terms of bias and mean squared error.
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with the theoretical self-similarity property of long memory, which implies that the
autocorrelation of the long memory process decays at the same rate regardless of the
sample frequency. Despite distinct aspects of commodity cash markets, the cash return
volatility seems to exhibit the long memory property with exceptions only for livestock,
as found in previous studies for many financial markets.

More practically, a proper understanding of cash price risks is important
information for the hedge ratio of commodity futures, since the optimal hedge ratio is the
conditional covariance between cash and futures returns divided by the conditional
variance of futures returns. Therefore, studies of conditional moments of cash price
change are very related to futures hedge modeling. Analysis of commodity futures return

volatility, using both daily and high frequency return data, follows this chapter.
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Table 2-1: Estimated MA-FIGARCH Models for Daily Cash Returns for Corn

(The sample period: 1/02/80 — 3/30/01)

1 day 2days 3days 4days Sdays

T 5362 2681 1787 1340 1072
p 0.0009  0.0025 0.0035 0.0042  0.0032
(0.0018) (0.0037) (0.0055) (0.0074) (0.0095)
0 0.0215 0.0006 00162 0.0237  0.0269
(0.0162) (0.0220) (0.0259) (0.0313) (0.0321)
d 02720 02992 02641 03215 02702
(0.0438) (0.0675) (0.0618) (0.0808) (0.0827)
® 0.0026  0.0050 0.0086 0.0102  0.0156
(0.0008) (0.0017) (0.0032) (0.0038) (0.0066)
B 0.1730  0.1607 0.1170  0.1040  0.0864
(0.0470) (0.0702) (0.0787) (0.0917) (0.0916)
my -0.500 -0471 -0372  -0.394  -0.455
my 6463 5534 4505 5514 5919
Q(20) 31.662 28498 26122 23336  16.723
Q*(20) 5745 7504  11.648 8343  8.542
w 38492  19.631 18.286 15846  10.666

Key: In(L) is the value of the maximized log likelihood; Q(20) and Q’(20) are the
Ljung-Box statistics with 20 degree of freedom based on the autocorrelations of the
standardized residuals and autocorrelations of the squared standardized residuals. The

sample m; and m, are also based on the standardized residuals. T is the number of
observations.
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Table 2-2: Estimated MA-FIGARCH Models for Daily Cash Returns for Soybean
(The sample period: 1/02/80 — 12/29/00)

1 day 2days 3days 4days Sdays

T 5300 2650 1766 1325 1060
M -0.0020 -0.0017 -0.0014 -0.0003 0.0024
(0.0016) (0.0031) (0.0046) (0.0061) (0.0076)
) -0.0336 -0.0368 -0.0368 -0.0474 -0.0677
(0.0155) (0.0210) (0.0254) (0.0309) (0.0303)
d 03291 03397 03904 02899  0.3498
(0.0488) (0.0649) (0.1103) (0.0671) (0.0988)
® 0.0016 0.0029  0.0036 0.0080  0.0078
(0.0004) (0.0009) (0.0015) (0.0033) (0.0035)
B 02723 02753 03189  0.1102  0.1999
(0.0620) (0.0754) (0.1311) (0.0910) (0.1201)
ms 0265 -0256  -0.005  0.080  0.059
my 5152 4538 3772 3509  3.761
Q(20) 22361 26364 15869 19.815  21.595
Q*(20) 34.198 25785 21.693 21277  24.398
W 45485 27369 12.532  18.657  12.528

Key: As for table 2-1
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Table 2-3: Estimated MA-FIGARCH Models for Daily Cash Returns for Live Cattle

(The sample period: 1/02/80 — 12/29/00)

1 day 2 days 3 days 4 days S days

T 4800 2400 1600 1200 960
M 0.0037 0.0019 00122 -0.0024 -0.0018
(0.0233) (0.0195) (0.0275) (0.1231) (0.0619)
0 0.0297 -0.0091 -0.0421 -0.0493  -0.0855
(0.0161) (0.0169) (0.0293) (0.0357) (0.0363)
d 0.1768  0.1534  0.1385  0.0661  0.0668
(0.0930) (0.0668) (0.0696) (0.0819) (0.0792)
® 0.1546  0.6173  1.0479 12694  2.6452
(0.1050) (0.3500) (0.5645) (0.9834) (1.6237)
B 0.5832  0.1557 0.1354 0.3828  0.1077
(0.0679) (0.0656) (0.0638) (0.4618) (0.6031)
) 0.4086 0.4615  0.1891
(0.0643) (0.4907) (0.6487)
ms -1.538  -0873  -0.630 -0.553  -0.426
my 40253 18439 11856 9.119  7.564
Q(20) 28.860 18392 25561  27.665  41.104
Q%(20) 24741 18294 9771 14416  10.133
w 3.167 5269 3962 0652  0.711

Key: As for table 2-1
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Table 2-4: Estimated MA-FIGARCH Models for Daily Cash Returns for Live Hogs
(The sample period: 1/02/80 — 12/29/00)

1day? 2days 3days ddays 5days

T 4551 2275 1517 1137 910

M -0.0037 -0.0152 -0.0212 -0.0174 0.0177
(0.0279) (0.0578) (0.0994) (0.1071) (0.0860)

0, -0.1524 -0.2878 -0.0692 0.0120  0.1001
(0.0170) (0.0277) (0.0284) (0.0335) (0.0369)

0, -0.2078 0.1482  0.0830 0.1104 0.1384
(0.0153) (0.0232) (0.0275) (0.0319) (0.0343)

63 0.0463  0.0326 0.1200 0.0832  0.0086
(0.0159) (0.0228) (0.0268) (0.0312) (0.0346)

04 0.1229  0.0854 0.0862 0.0158  0.0006
(0.0159) (0.0229) (0.0274) (0.0306) (0.0341)

0s -0.0096 0.0734  0.0033  0.0147  -0.0947
(0.0165) (0.0232) (0.0269) (0.0329) (0.0341)

06 -0.0061 -0.0115 0.0426 -0.0253 -0.0444
(0.0157) (0.0234) (0.0280) (0.0350) (0.0347) .

0, 0.0562 00514 -0.0304 -0.0402 0.0230
(0.0158) (0.0225) (0.0284) (0.0350) (0.0362)

03 0.0394  -0.0287 0.0223  -0.0161 -0.0255
(0.0171) (0.0224) (0.0277) (0.0368) (0.0363)

05 0.0510  0.0562 -0.0412 0.0341  0.0337
(0.0144) (0.0225) (0.0308) (0.0333) (0.0363)

610 0.0196  -0.0223 0.0327  0.0195  -0.0246

8 For live hogs at one-day sample frequency, we could cope with higher 02(20) statistics by including day-
of-week dummy variables. All the coefficient estimates are 0.9437 with standard error, 0.2440 for
Monday; 1.3074 with standard error, 0.2725, for Tuesday; 0.3487 with standard error, 0.2058 for Thursday:
and 0.6577 with standard error, 0.2623 for Friday. We do not consider such day-of-week effects since they
seem to collapse by temporal aggregation beyond one-day sample frequency.
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(0.0174) (0.0233) (0.0321)‘ (0.0320) (0.0342)

01 -0.0151 -0.0014 -0.0301 00118 -0.1198
(0.0159) (0.0238) (0.0301) (0.0357) (0.0422)
02 0.0155 -0.0094 -0.0214 -0.0250 -0.1273
(0.0165) (0.0222) (0.0295) (0.0340) (0.0404)
03 0.0496  -0.0305 0.0731  -0.0002 -0.0421
(0.0158) (0.0217) (0.0289) (0.0353) (0.0407)
014 0.0434  0.0049  0.0326 -0.0337 -0.1069
(0.0153) (0.0209) (0.0279) (0.0339) (0.0377)
015 -0.0498 -0.0127 -0.0055 -0.0730  -0.0202
(0.0153) (0.0212) (0.0300) (0.0342) (0.0309)
d 02083 0.1789 0.1361 0.1570  0.0981
(0.0548) (0.0395) (0.0411) (0.0574) (0.1203)
o 0.1718  1.8094 3.0760 0.1614  1.1651
(0.1838) (0.4762) (0.8904) (0.0798) (2.2573)
B 0.5239  0.0914 0.0197 09654  0.7838
(0.2096) (0.0442) (0.0524) (0.0179) (0.3272)
B, 0.0230
(0.0266)
o 0.4150 09498  0.8272
(0.1801) (0.0263) (0.2455)
my -0.044  -0.001 -0.146 0.130  0.008
my 3544 3296  3.762 3476  3.266
Q(20) 17972 29234 9510 11983  6.753
Q*(20) 20283  21.082 24578 21542  22.423
w 27.616 20516 10967 7475  0.665

Key: As for Table 2-1

9 FIGARCH (2, d, 1) seems to fit the live hog cash daily return volatility at one-day sample frequency
fairly relative to FIGARCH (1, d, 1) or FIGARCH (1, d, 0) conditional variances specifications.
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Table 2-5: Estimated MA-FIGARCH Models for Daily Cash Returns for Gasoline
(The sample period: 1/02/91 - 12/29/00)

1 day 2days 3days d4days Sdays
T 2509 1254 836 627 501
7] -0.0192 -0.0632 -0.0970 -0.1201 -0.1151

(0.0451) (0.0949) (0.1442) (0.1834) (0.2230)
0 0.0926 0.0574 -0.0107 -0.0781 -0.0829

(0.0215) (0.0329) (0.0429) (0.0458) (0.0487)
d 02900 0.2968 03715  0.2309 0.2105

(0.0694) (0.0979) (0.3187) (0.1524) (0.0845)
® 0.8453 19729 1.0488 5.8006 79115

(0.2650) (0.7972) (1.3298) (4.9808) (4.1986)
B 0.1726  0.1372  0.6309  0.1930  0.1898

(0.0770) (0.1211) (0.1643) (0.2527) (0.1424)
¢ 0.4135

(0.1720)

my -0.103 -0.389 -0.214 -0.289 -0.160
my 4.739 4.320 3.734 3.931 3.371
Q(20) 28.076  24.839 32326 23.792  26.302
Q%(20) 17416 16.398  9.190 15.708  17.395
w 17463  23.160 1.359 2.295 6.204

Key: As for table 2-1
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Table 2-6: Estimated MA-FIGARCH Models for Daily Cash Returns for Gold
(The sample period: 1/02/80 - 12/29/00)

1 day 2days 3days 4days Sdays

T 5283 2641 1761 1320 1056
p 0.0167 -0.0316 -0.0677 -0.0796 -0.0643
(0.0096) (0.0207) (0.0298) (0.0392) (0.0559)
0 -0.0583 -0.0124 -0.0043 -0.0132  -0.0309
(0.0169) (0.0301) (0.0298) (0.0356) (0.0360)
d 02905 0.3438 02942 04093  0.3160
(0.0351) (0.0574) (0.0434) (0.0953) (0.1374)
® 0.0755 0.1374 02068 0.1316  0.4705
(0.0250) (0.0572) (0.1155) (0.1176) (0.5367)
B 0.1512  0.1787  0.1071 02872  0.2477
(0.0490) (0.0694) (0.1134) (0.1398) (0.1521)
my 0.086 0959 0419 0637 1411
my 9.563 15589 8.085  10.058  18.805
Q(20) 39257 19918 18735 12.869  22.962
Q*(20) 11015 2982 10029 6215 8135
w 68.634 35854 45890 68.634 5291

Key: As for table 2-1
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Table 2-7. Semi-Parametric Long Memory Parameter Estimation:
Absolute Daily Cash Returns at Different Daily Sample Frequencies.

1 day 2days 3days 4days Sdays

Corn (Filtered)
Local Whittle 0.3397  0.3633  0.3238  0.2823  0.2536
(0.0376) (0.0471) (0.0539) (0.0592) (0.0635)

Soybean (Filtered)
Local Whittle 0.3853  0.4693  0.4629  0.4568  0.4282
(0.0378) (0.0474) (0.0541) (0.0592) (0.0638)

Live Cattle
Local Whittle 0.1534 0.1457 0.1452 0.1995 0.1992
(0.0390) (0.0489) (0.0599) (0.0612) (0.0660)

Live Hog
Local Whittle 0.2418  0.2562  0.2224  0.1947  0.1492
(0.0397) (0.0497) (0.0569) (0.0625) (0.0672)

Gasoline
Local Whittle 0.2899  0.3027 0.3590 0.4061 0.4133
(0.0481) (0.0603) (0.0689) (0.0760) (0.0818)

Gold
Local Whittle 04436  0.4817 04626 04810  0.5073
(0.0378) (0.0474) (0.0541) (0.0595) (0.0638)

Key: Asymptotic standard errors are in parentheses below corresponding parameter
estimates.

30



Fig. 2-1 Correlograms for Absolute Daily Cash Returns
Com
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Key: Dotted line and solid line indicate the sample autocorrelations for absolute daily raw
and filtered cash returns.
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