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ABSTRACT

FINANCIAL ECONOMETRIC MODELING OF RISK IN COMMODITY MARKETS

By

Jeongseok Song

This dissertation is composed of three interrelated body chapters. Its goal is to

identify underlying sources of return volatility movement and analyze important

problems in the economics of commodity markets by applying various time series

econometric models to commodity market price data.

Chapter 2 investigates stochastic properties of daily cash price changes for six

commodities: corn, soybeans, live cattle, live hogs, unleaded gasoline, and gold. We use

the FIGARCH conditional variance model and the semi-parametric local Whittle

estimation method to explore the daily cash return volatility behavior. We apply the long

memory models to the temporally aggregated daily cash returns and compare the

volatility dynamics at various sample frequencies.

Chapter 3 is concerned with commodity futures return volatility at daily and

higher sample frequencies. In particular, strong intra-day periodicity in the high

frequency return volatility is observed. We examine the high frequency futures return

volatility pattern after removing the intra-day seasonality using the Flexible Fourier Form

(FFF) filter and compare the volatility movement with the daily futures return volatility

process.



Chapter 4 introduces a newly suggested volatility measure, the realized volatility,

and applies the volatility measure to commodity futures market price data. The realized

volatility is calculated as the sum of high frequency squared returns and exhibits some

ideal statistical properties. Taking advantage of the stochastic properties of the realized

volatility measure allows us to study important economic determinants for commodity

futures market risk behavior.
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with the application of some modern financial

econometric techniques to daily and high frequency commodity markets. The

econometric methods are applied to the cash and futures markets. These cash and futures

markets are an active and important financial institution in the modern economy, and the

volatility associated with commodity futures markets is an important factor for study in

risk management and in commodity trading. The market in recent years has observed

remarkable growth in trading volume, the variety of contracts, and the range of

underlying commodities. Market participants are also becoming increasingly

sophisticated about recognizing and exercising operational contingencies embedded in

delivery contracts. For all of these reasons, there is a widespread interest in models for

pricing and hedging commodity-linked contingent claims. Despite these facts, relatively

little attention has been paid to commodity markets, in comparison with the enormous

recent empirical analyses of the currency and equity markets. While commodity markets

are smaller and possibly lack the glamour of currency and equity markets, they are

nevertheless important for the agricultural sector of the economy and for maintaining

overall supply and demand conditions in the macro economy.



Chapter 2 is concerned with commodity cash market price risks. The cash

markets are characterized by the unique physical properties of commodities since cash

prices are determined by supply and demand for commodities that are subject to various

unique factors such as weather and other environmental determinants. We introduce the

long memory property with its characteristic self-similarity and study daily cash return

volatility dynamics with reflection on various characteristics of commodities such as

annual seasonality for agricultural products and distinguishing trading patterns for

livestock. Accounting for those characteristics, our empirical investigation uses the

FIGARCH and local Whittle semi-parametric estimation method to reveal that the long

memory property is evident in the daily cash return volatility.

Chapter 3 is concerned with investigating the possible existence of the long

memory feature in commodity markets. Apart from the study by Cai et a1. (2002), this

thesis appears to be the first systematic study of the phenomenon and its applicability to

and implications for commodity markets. Hence, in chapter 3 we apply the FIGARCH

and the local Whittle estimator to commodity futures market price data and also report

the estimates of various long memory volatility models. We find overwhelming evidence

for the phenomenon, which is consistent with the evidence found in the securities and ‘

currency markets. We also investigate and discuss the property of self-similarity in

commodity markets, generally finding our empirical results to be consistent with self-

similarity. It turns out to be very important to consider issues of time to maturity when

modeling volatility in these markets. Further, chapter 3 deals with high frequency

commodity futures market data. We first discuss meaningful ways of constructing high

frequency returns, and then describe the empirical properties of these. Much emphasis is



placed 6n the particularly unusual intra-day periodicity that occurs in these futures

markets and its elimination through the application of Gallant’s (1981) FFF filtering

method. Our finding is supportive of self-similarity for high frequency commodity

futures return volatility.

Chapter 4 is concerned with the relatively new measure of realized volatility,

which has recently become a competitor with the dominant GARCH model of Engle

(1982). We find some interesting features of very persistent autocorrelation, or long

memory, in the realized volatility series. The realized volatility series are also partly

determined by USDA announcement effects and the local market conditions oftime to

maturity. We introduce the new concept of information flow, which is measured using

trading intensity built fiom a high frequency time dimension. We consider information

flow and time-to-maturity effects to explain realized volatility. Even allowing for these

effects, the long memory effects in the realized volatility series tend to remain. Chapter 4

also investigates the patterns of dependencies between the realized volatility series of

several different commodities. We discuss these results in the context of fractional

integration and the existence of a common structural long memory trend in the generation

of the realized volatility series.

We summarize our studies and conclude this dissertation with possible future

research in chapter 5.



CHAPTER 2

MODELING COMMODITY CASH RETURNS

2.1. Introduction

This chapter is concerned with the stochastic properties of daily commodity cash

prices for corn, soybeans, live cattle, live hogs, unleaded gasoline, and gold. This type of

analysis is an important precursor for many financial market applications, including

calculation of optimal hedge ratios, computation of Value at Risk (VaR), etc. While

previous studies have investigated the time series properties of commodity cash prices

using stable GARCH models, we are unaware of any previous investigation of the long

memory properties of daily cash series. For the successful application of financial market

analysis and policy, an investigation of the detailed properties of these asset prices seems

long overdue.

Commodities are physical products and possibly not involved in trading for

possible swift arbitrage. Commodity trading involves some transaction costs attributable

to storage and transportation that are not relevant to most financial assets. In particular.

commodity cash prices are directly determined by the supply and demand for actual

products, while commodity futures contracts are traded in order to reduce uncertainty for

the underlying commodities. Therefore, commodity cash markets are quite different

from other financial markets. Baillie and Myers (1991), and Cecchetti, Cumby, and

 



Figlewski (1988) used commodity cash and futures prices for the optimal hedge ratio

calculation. Mackey (1989), Yang and Brorsen (1992), and Burton (1993) documented

daily commodity cash prices by using nonlinear dynamic models. Yang and Brorsen

(1992) and Burton (1993) compared GARCH models with chaos models to explain

complicated commodity cash price volatility dynamics. Yang and Brorsen (1992)

considered GARCH, mixed diffusion-jump, and deterministic chaos models of cash

commodity prices and concluded that the GARCH volatility process provided the best fit.

Mackey (1989) suggested a theoretical model to argue that supply and demand for

commodities may cause nonlinear price dynamics.

The long memory property is well known to occur in squared returns, absolute

returns, and various transformations of volatility such as conditional variances and

stochastic volatility models. There are several plausible reasons for the occurrence of

long memory in absolute returns, conditional variances and other measures of volatility.

First, Granger (1980) showed how the contemporaneous aggregation of independent

AR(1) processes can lead to a long memory process as the number of cross section units

gets large. This result depends upon the autoregressive parameters having a beta

distribution in the interval (0, 1). Usually, the aggregation ofN independent AR(1)

processes leads to an ARMA(N, N-l) model. However, Granger (1980) shows that this

tends to follow fractional white noise as N gets large. Extension of this aggregation

argtunent to volatility models is less than straightforward. Ding and Granger (1996)

showed that if each asset’s return is a martingale with stable GARCH( l ,1) innovations,

then the autocorrelations of the squared returns of the contemporaneously aggregated

assets will exhibit hyperbolically decaying autocorrelations, and hence the long memory



property. Also, Andersen and Bollerslev (1997a) claimed that long memory can result

from aggregated heterogenous information components in line with the Mixture-of-

Distribution hypothesis noted by Clark (1973) and Tauchen and Pitt (1983). A further

suggestion of Parke (2000) is that long memory can arise from the aggregation of shocks,

each with a different duration time. Indeed, financial markets are subject to numerous

economic factors and considerably responsive to the vast amount of information available

in the markets.

This chapter adds to the literature by investigating the long memory for

commodity market price risk and examining self-similarity to verify the long-run

temporal dependence as an original property ofcommodity cash price changes. We start

with the daily cash price in this chapter and continue with daily and intra-day futures

prices in chapter 3.

The remainder of this chapter proceeds as follow. Section 2 provides a brief

theoretical background for long memory, self-similarity, and temporal aggregation. In

section 3, we document empirical findings for the long memory and self-similarity by

using the FIGARCH and the local Whittle semi-parametric model for the temporally

aggregated daily cash returns motivated in section 2. Section 4 concludes the chapter.

2.2. Long Memory, Self-Similarity, and Temporal Aggregation

In this section, we discuss definitions of long memory and relate it to the concept

of self—similarity. One possible definition of long memory is as follows: if the

population autocorrelation of a time series process at lag j , denoted by p1 , has the

following property,



lim 2 lpj|=oo, (2.1)
n

the process is said to exhibit long memory. For a sufficiently large number of lags j , a

process with autocorrelation function pj z chd’1 and a positive constant c , and where

-0.5 < d < 0.5 , can be formally defined as a stationary long memory process. We call 0'

the long memory parameter. Autocorrelation for such a type ofprocess decays very

slowly over long time lags.

Granger and Joyeux (1980), Granger (1980), and Hosking (1981) have developed

the Autoregressive Fractionally Integrated Moving Average (henceforth, ARFIMA)

model to represent a time series process with the long memory property. Baillie (1996)

provides a comprehensive survey of the long memory theories and applications in

macroeconomics and finance. As suggested by Granger and .oneux (1980), Granger

(1980), and Hosking (1981), the ARFIMA model takes the following form,

(I

¢(L)(1—L) (y,—,u)=6(L)3,, (2.2)

where all the roots of the p’th order polynomial in the lag operator ¢(L) and the q’th

order polynomial in the lag operator 9(L) are assumed to lie outside the unit circle. The

process a, is white noise. The operator (1 - L)d is the fractional difference operator

defined as follows:  



 (1-L)d a{1—dL+d_(‘:_!‘IIL2_d(d—13)!(d—2)L3+...}. (2.3)

The ARFIMA process combines the stationary and invertible ARMA model which

generates 1(0) behavior with the above fractional difference operator, which adds on the

long memory behavior for the time series process. For a large lagj, there is hyperbolic

decay in the autocorrelations of the ARFIMA process and p1- z cj2d_l where c > 0. To

describe another important property of the ARFIMA process, we consider the impulse

response weights, following Campbell and Mankiw (1987). The impulse response

weights are defined by first differencing the ARFIMA process, y, , to obtain

(1—L)y, = A(L)a, (2.4)

where A(L) = (1 — L)I—d ¢(L)_19(L). We can express the lag polynomial A (L) in

terms of the hypergeometric functions as

A(L)= F(d—1,1,1;L)¢(L)'16(L) (2.5)

where F(a,b,c;z) -=-. {F(c)/[F(a)F(b)]} {i [F(c+i)/I‘(i+1)]} and [(0) is a Gamma

i=1

function. Since F (d — 1,1,1; L) = 0 , as Gradszteyn and Ryzhnik (1980) Show, we

 



have A(1) = F(d—1,1,1;1)¢(1)_I 0(1) = 0 for d <1. The impact ofa unit innovation at

time t on the process y,+ k is then given by

1+ 21:” Aj . (2.6)

Therefore, a fractionally integrated process with d <1 is mean reverting. In particular,

 y, for 0.5 < d <1 is still mean reverting, although the process is not covariance

stationary. The long memory feature provides a flexible way of describing complicated

volatility temporal patterns, while conventional ARMA class models capture only short-

run dynamics in modeling time series and may be too strict in uncovering longer term

persistence for the series.

Another important property of the long memory process is self-similarity. The

general notion of self-similarity is that some random variables behave identically when

they are viewed at different scales on a dimension. The dimension may be space or time,

and, particularly, will be time when we analyze time series data. Consider a process y,

following the long memory property with autocorrelation pj- 2: chd'I forj lags. Given

the autocorrelation function, the corresponding spectral density for the associated process

can be expressed as follows,

2 oo .

f(/t) 427—”; pje’“ . (2.7)



Then, the spectral density is approximately of the form p1- z chd—1 with a constant c as

xi —) 0 where 1 represents Fourier frequencies. More formally, y, is called self-similar

with a self-similar parameter H, if for any positive stretching factor c the rescaled process

0‘”ye, has the same distribution as the original process y, .

Following the formal definition and basic concept of self-similarity, we proceed

with temporal aggregation. Let R,(k) 2 21:0 (k—I) R”, _, denote temporally aggregated

returns at a k-day sample frequency. For simplicity, assume that R, = 0,2, and z, are

independent and identically distributed and 0', represents a positive and measurable

time-varying function. According to many previous empirical findings for the long

memory property for squared asset returns, we can assume that

2

FUR: I2 {Rt—1'] )z jZd—I for 0 < d < 0.5 I. The temporally aggregated returns, R,(k),

can be expanded as follows:

(’0 2 2 2 2 2
RI = Rik +le—l “I’Rtk—Z +"'+Rrk—k+l +221”, Rrk-IRrk—m- (2'8)

Since we assume that z, are independent and identically distributed, R”, —lRtk-m terms

for l at m should not matter in considering the autocorrelation below. Then, thej-th order

2 2

autocorrelation pH121(k)] ,[ng] ] is simply the sum of autocorrelations for all the

 

' The long memory process with O < d < 0.5 shows all positive autocorrelations decaying at a hyperbolic

rate; see Baillie (1996).

10  



2 2

possible pairs of the squared terms underlying [R,(k)] and [ng] . In other words, the

2 2

j-th order autocorrelation p[[R510] ,[ng] ] can be obtained by summing the

(k) 2 (k) 2
autocorrelations between [R, ] and [R, 17,41] for h=—k+1,-k+2,---,k—1. After

some straightforward algebra, we have

p([RIk)]2,[RIf}]2]=k“2h=:+l(k-lhl)p([RIk)]2,[Rff}.k_,,]2]

k" 2d I

=k‘2 Z (k-Ihl)(jk+h) ‘
h=-k+l

(2.9)

k-l

where h=—k+1,—k+2,---,k—l. Note that k’2 2 (k—Ih|)=1. Further, iftime lagj

h=—k+l

is sufficiently large, we have

2 1‘4 2d—I 2d—I 2d 1
k‘ 2 (k-|h|)(jk+h) SUI) ~j ‘ (2.10)

h=—k+1

Consequently, we have

p([RI")]2,[RIfI-IZ]~12"“ (2.11)

11



According to this result, we assess that temporally aggregated squared returns

theoretically exhibit identical decaying rates for their autocorrelations regardless of the

sampling frequencies k. In other words, for sufficient lagsj, the autocorrelation

2 2

between[R,(k)] and [R53] takes an identical form to the autocorrelation between

R,2 and R3,]- for different values of k. Concretely, if R,2 exhibits long memory, then

2

[RI/0] also shows the same degree of long run temporal dependence. Consistent with

the self-similarity notion discussed above, temporally aggregated squared returns Show

identical long memory behavior if their underlying squared returns follow the long

memory process. This result can carry over to a temporally aggregated absolute return

case as below.

Especially if we assume further that a, from R, = 0,2, follows log-normal

26

distribution, then R,(k)| for all 6 > 0 will exhibit identical decaying rates for

 

autocorrelation behavior. This result has been noted by Granger and Newbold (1976) and

22

recently confirmed by Andersen (1994). Since [RI/Y] = R,(k)

  

, temporally aggregated

squared returns should be one particular case of power transformed absolute

20
k 0 O I I

returns, R,( I for 6 =1. Further, Identical decaying rates for autocorrelations of

 

 

29

R,(k) l for all 6 > 0 imply that temporally aggregated absolute returns also yield the

 

12



same autocorrelation behavior as temporally aggregated squared returns, since temporally

26

aggregated absolute retum R,(k)l is just another case for 0 = 0.5.

 

The theoretical self-similarity of temporally aggregated squared returns motivates

the application of FIGARCH conditional variance model to temporally aggregated daily

cash returns. Following Baillie, Bollerslev, and Mikkelsen (1996), the FIGARCH model

is defined as follows:

0,2 = a) +fl(L)a,2 +[1—,6(L)—(1—¢(L))(1—L)d]r:,2 - (2.12)

wherefl(L) = fllL+fl2L2 +---+,6pr and ¢(L)== ¢|L+¢2L2 ~~~+¢qu. Baillie,

Bollerslev, and Mikkelsen (1996) incorporated slow hyperbolic decay into the

conditional variance modeling. The FIGARCH process considers a slowly decaying

autocorrelation for lagged squared innovations and allows for persistent impulse response

weights without involving the never-dying-out cumulative impulse response weights.

The FIGARCH model can describe conditional variance in a more flexible way by

allowing for 0 < d <1 while the IGARCH model yields unrealistically everlasting

volatility persistence and the GARCH process considers only short run dynamics for

conditional variances. To describe the features that distinguish the FIGARCH from the

GARCH and the IGARCH process, we consider the impulse response functions. Another

expression for the FIGARCH process is
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{1—¢(L)}(1—L)" a} =w+{1—,B(L))u, (2.13)

where U, = 8,2 — 0,2 . Analogously to the impulse response function for the ARFIMA

process mentioned above, we express the first differenced 8,2 as,

(1—L)£,2=a)+7(L)v,. (2.14)

Then, we have the impulse response weights for the FIGARCH process such that

y(L) =(1—L)“" ¢(L)’l {1—fl(L)). (2.15)

By the same token, the impulse response weights for the GARCH process and the

—l

IGARCH are 7(L) = (1—L)(1—a(L)—,6(L)} {1 —,6(L)} and7(L) = {1 —,B(L)},

respectively. Since the limit of the cumulative impulse response weights is 7(1) , the

impact of past shocks on the FIGARCH volatility process from equation (2.15) is zero, as

for the GARCH process. Note that 7(1) =1— ,6 > O particularly for the IGARCH (1,1).

Further, we consider the FIGARCH cumulative impulse response weights for lagj as

I, : Zon, . (2.16)
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According to Stirling’s approximation, the cumulative impulse response weight for lagj,

,1]- for the FIGARCH process is

I, z[(1—,B)/I‘(d)]jd'l. (2.17)

Therefore, the hyperbolic decay component is present in the cumulative impulse response

weights so that a shock to the squared residuals will decay at a very slow rate although all

the past shocks eventually will die out.

Another class of models to describe long memory volatility was suggested by

Breidt, Crato, and de Lima (1993) and Harvey (1998). They model long memory for

conditional volatility series as follows:

Y: = 0151 (2-18)

and

0,2 = 02 exp(h, ) , (2.19)

where g, is normal and independently distributed. Estimation of the stochastic volatility

model uses the state space representation and Quasi-Maximum Likelihood Estimation

(QMLE) via the Kalman filter.
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In this chapter, by using both parametric and semi-parametric models, we

investigate whether daily commodity cash return volatility follows the long memory

process. The FIGARCH model is used to identify the long memory behavior in daily

cash return volatility parametrically while the local Whittle estimation method is chosen

for a semi-parametric counterpart to estimate the long memory parameter for the absolute

daily cash returns.

2.3. Application to Daily Cash Returns

In the previous section, we considered the theoretical relationship among the long

memory process, the self-similarity property, and temporal aggregation. We plan to

study the theoretical relationship empirically by using daily cash price data for various

types of commodities: corn, soybeans, live cattle, live hogs, gasoline, and gold.

We apply the FIGARCH model to the temporally aggregated daily cash returns to

analyze the return volatility temporal patterns across various daily sample frequencies.

We choose one-day through five-day sample frequencies because 5 trading days usually

form a week of business days. We temporally aggregate returns

R,(k) a 21:0 (,4) R,k _, at k-daily frequency by summing one-day cash returns over k- '

daily periods for k = 1, 2, 3, 4, 5. For the conditional mean, we choose MA(I) to capture

the usually small but significant autocorrelations of return levels at the first few lagsz.

The generic MA(q)-FIGARCH(p,d,q) model to estimate for daily cash returns is as

follows:

 

2 In the high frequency context, this MA(l) term is related to the market microstructure noise issue. We

will discuss this more in chapter 3 where high frequency commodity futures returns are considered.
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y, =100Aln(P,) = p + e, + 98H (2.20)

8t = 2.th (2.21)

0,2 = a) + fl(L)0',2 +|:1—,B(L)—(1—¢(L))(1—L)d:|a,2 (2.22)

where P, is the commodity cash price, 2, is an i.i.d.(0,l) random variable,

fl(L) 2 AL + ,6sz +---+ ,6pr , ¢(L) 2 (AL +¢2L2 ---+¢qL‘7 , and L is the lag operator.

Before proceeding further, we will briefly describe some characteristics of the

commodities considered here. Daily prices for cash commodities are cash prices for the

delivery location and specifications included in the corresponding futures contracts.

These were obtained from the Futures Industry Institute data center. The agricultural

product cash markets for corn and soybeans especially seem to display different volatility

patterns due to their inherent attributes. Figure 2-1 plots the sample autocorrelations for

absolute returns of daily cash prices for all the commodities considered. The horizontal

axis represents daily lags up to 1000 days in order to consider approximately four years

of trading days. In particular, the unique patterns of corn and soybean cash return

volatility in their sample autocorrelations are worth notice. In figure 2-1, the dotted line

represents the sample autocorrelations of the absolute (raw) cash returns for corn and

soybeans. As shown in the figure, there seems to be some pronounced yearly seasonality

for the original daily cash return volatility for corn and soybeans. The peaks are observed

almost every 250-day interval, which approximately corresponds to a year of trading

17



days. Typical yearly planting and harvesting cycles for the agricultural products may be

responsible for the seasonality. Such seasonality may impede proper analysis of inherent

volatility patterns. To cope with the annual periodic patterns in daily cash return

volatility, we apply the Fourier flexible functional filtering, as introduced by Gallant

(1981). The Fourier flexible functional filtering is formally discussed in chapter 3 when

we consider high frequency commodity futures price data, since we apply the FFF

filtering to cope with strong intraday seasonality for all of the commodities. For the other

types of commodities, seasonal patterns are not observed for the sample autocorrelations

of absolute daily cash returns. Hence, the other commodities do not require filtering

before we apply the FIGARCH model to those time series data. The solid lines for the

correlograms of corn and soybeans represent the sample correlations for the filtered

returns for those commodities. As shown in Figure 2-1, seasonal patterns seem to be

markedly reduced by the FFF filtering. Another striking feature is the unusual

autocorrelation patterns of live cattle cash returns. The sample autocorrelations of live

cattle absolute cash returns appear to be very different from the others and repeatedly

deviate very much from zero.

Tables 2-1 through 2-6 present the results of applying the FIGARCH model to

cash returns for (filtered) corn, (filtered) soybeans, gasoline, cattle, hogs, and gold at

various daily frequencies. Specification tests are performed by applying the Ljung-Box

portmanteau statistic on the standardized residuals resulting from quasi-maximum

likelihood estimation for the FIGARCH model on the grounds that the test statistics

asymptotically follow 1,2,4, distribution.
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The estimated long memory parameter in Tables 2-1 through 2-6 is strongly

statistically significant for the cash return series for corn, soybeans, gasoline, and gold.

In contrast, the long memory estimates for live cattle and hogs seem to be less significant

than those for the other commodities. In particular, daily cash prices for live cattle seem

to be constant for Wednesdays, Thursdays, and Fridays mainly, while most ofthe daily

cash price changes seem to occur on Mondays and sometimes on Tuesdays, according to

our preliminary data analysis. This odd data feature may be responsible for the unusual

sample autocorrelation patterns as shown in Figure 2-1. The cash prices for live hogs

also seem to involve some unusual characteristics. Although the live hog cash price

changes are found quite evenly over the week’s days, the changes seem to have strong

day-of-week effects. To capture possible day-of-week effects on daily cash price

changes, we include dummy variables for Monday, Tuesday, Thursday, and Friday in the

conditional variance specification. From our pre-estimatidn, we found that there are

considerable day-of-week effects for live hog cash return volatility. The robust t-values

for Monday, Tuesday, Thursday, and Friday3 dummies are 3.867, 4.797, 1.694, and

2.507, respectively. Also, the mean level of live hog daily cash returns exhibits a

significant level of serial correlations during the course of the MA-FIGARCH estimation.

To capture such a strong serial correlation in the mean level of live hog cash returns, we

impose MA(15)4 for the conditional mean model.

Apart from the unusual features mentioned above for the livestock, the long

memory estimates from the FIGARCH conditional variance specification from (2.20) to

(2.22) seem to be significant, and the model performs fairly in fitting the daily cash return

 

3 To avoid a dummy trap, we drop dummies for Wednesday.

4 Our informal experiment revealed that beyond 15 time lags did not seem to be statistically significant.
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volatility. Particularly, we practiced a robust Wald test of the stationary GARCH(],l)5

null hypothesis versus a FIGARCH(1,d,1) alternative hypothesis. Under the null, the

robust Wald test statistic W will have an asymptotic [,2 distribution. Especially for a

one-day sample frequency, we reject the null hypothesis for d = 0, and thus the

GARCH(] ,1) model is rejected for most of the commodities, with the exception of the

liVestock. For the crops, gasoline, and gold, at many temporal aggregation levels the

formal statistical test supports the conclusion obtained both here and in Jin and Frechette

(1994) that the FIGARCH is superior to the GARCH for modeling commodity return

volatilities6. On the other hand, the W statistics for live cattle and hogs seem to be

extremely low and less likely to reject the null hypothesis ofGARCH specification at a 5-

day (i.e., weekly) sample frequency. Again, this feature can be attributed to inactive spot

market trading and the possible day-of-week effects for the livestock discussed above.

In addition, the long memory estimate levels themselves appear to be very stable

across different sample frequencies for most of the commodities, with few exceptions.

Our results imply that conditional variances of daily cash returns for each commodity

may demonstrate a similar degree of persistence at different sample frequencies. This

finding seems to be supportive of the self-similarity property discussed in section 2.

The semi-parametric local Whittle estimation methods have been suggested by

Kunch (1987) and Robinson (1995). As a robustness check for the FIGARCH estimation

results, we apply the local Whittle estimation for the long-memory parameter by using

the absolute daily cash returns. One of the motivations for the semi-parametric

 

5 For some instances, we test the null hypothesis for different GARCH specification other than

GARCH(I,1).

6 In fact, Jin and Frechette (1994) have used commodity futures price data.
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estimation method is that, while the long memory volatility parameter estimation results

using parametric models such as ARFIMA or FIGARCH specification may be affected

by any possible short run dynamics, the semi-parametric estimation method affords

general treatment of short run temporal dependence7. We discuss the local Whittle

estimation separately in more detail in chapter 3. Table 2-7 reports the estimates of the

long memory parameter by using absolute daily cash returns.

For the absolute daily cash returns, the semi-parametric long memory estimates

seem to be qualitatively similar to the FIGARCH estimation results. For example, the

low long memory estimate levels for live cattle and hogs can be found for the local

Whittle estimation results Similarly as in the FIGARCH long memory estimates. Also,

the local Whittle estimates for the long memory parameter seem to be stable, as we found

from the FIGARCH estimation results, and supportive of self-similarity for temporally

aggregated absolute returns, as the FIGARCH estimates are stable across different sample

frequencies.

2.4. Conclusion

The long run volatility dynamics for prices of physical commodities have been

considered in this chapter. By using both parametric and semi-parametric long memory

models, we confirmed that long memory exists for daily cash return volatility and,

further, that the long memory behaviors are consistently witnessed across various daily

frequencies for most of the commodities. We observed this evidence for temporally

aggregated absolute returns and squared returns in common. This feature is consistent

 

7 In general, semiparametric estimation methods may be somewhat controversial due to their poor

performance in terms of bias and mean squared error.
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with the theoretical self-similarity property of long memory, which implies that the

autocorrelation of the long memory process decays at the same rate regardless of the

sample frequency. Despite distinct aspects of commodity cash markets, the cash return

volatility seems to exhibit the long memory property with exceptions only for livestock,

as found in previous studies for many financial markets.

More practically, a proper understanding of cash price risks is important

information for the hedge ratio of commodity futures, since the optimal hedge ratio is the

conditional covariance between cash and futures returns divided by the conditional

variance of futures returns. Therefore, studies of conditional moments of cash price

change are very related to futures hedge modeling. Analysis ofcommodity futures return

volatility, using both daily and high frequency return data, follows this chapter.
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Table 2-1: Estimated MA-FIGARCH Models for Daily Cash Returns for Corn

(The sample period: 1/02/80 - 3/30/01)

 

1 day 2 days 3 days 4 days 5 days

T 5362 2681 1787 1340 1072

It 0.0009 0.0025 0.0035 0.0042 0.0032

(0.0018) (0.0037) (0.0055) (0.0074) (0.0095)

0 0.0215 0.0006 0.0162 0.0237 0.0269

(0.0162) (0.0220) (0.0259) (0.0313) (0.0321)

d 0.2720 0.2992 0.2641 0.3215 0.2702

(0.0438) (0.0675) (0.0618) (0.0808) (0.0827)

(1) 0.0026 0.0050 0.0086 0.0102 0.0156

(0.0008) (0.0017) (0.0032) (0.0038) (0.0066)

B 0.1730 0.1607 0.1 170 0.1040 0.0864

(0.0470) (0.0702) (0.0787) (0.0917) (0.0916)

m3 -0500 -0471 -0.372 -0394 -0455

m4 6.463 5.534 4.505 5.514 5.919

Q(20) 31.662 28.498 26.122 23.336 16.723

Q2(20) 5.745 7.504 1 1.648 8.343 8.542

w 38.492 19.631 18.286 15.846 10.666

 

Key: ln(L) is the value of the maximized log likelihood; Q(20) and Q2(20) are the

Ljung-Box statistics with 20 degree of freedom based on the autocorrelations of the

standardized residuals and autocorrelations of the squared standardized residuals. The

sample m3 and m4 are also based on the standardized residuals. T is the number of

observations.
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Table 2-2: Estimated MA-FIGARCH Models for Daily Cash Returns for Soybean

(The sample period: 1/02/80 — 12/29/00)

 

1 day 2 days 3 days 4 days 5 days

T 5300 2650 1766 1325 1060

[1 -0.0020 -0.0017 -0.0014 -0.0003 0.0024

(0.0016) (0.0031) (0.0046) (0.0061) (0.0076)

0 -0.0336 -0.0368 -0.0368 -0.0474 -0.0677

(0.0155) (0.0210) (0.0254) (0.0309) (0.0303)

(1 0.3291 0.3397 0.3904 0.2899 0.3498

(0.0488) (0.0649) (0.1 103) (0.0671) (0.0988)

0) 0.0016 0.0029 0.0036 0.0080 0.0078

(0.0004) (0.0009) (0.0015) (0.0033) (0.0035)

[3 0.2723 0.2753 0.3189 0.1102 0.1999

(0.0620) (0.0754) (0.131 1) (0.0910) (0.1201)

m3 -0.265 -0.256 -0.005 0.080 0.059

m4 5.152 4.538 3.772 3.509 3.761

Q(20) 22.361 26.364 15.869 19.815 21.595

Q2(20) 34.198 25.785 21.693 21.277 24.398

W 45.485 27.369 12.532 18.657 12.528

 

Key: As for table 2-1
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Table 2-3: Estimated MA-FIGARCH Models for Daily Cash Returns for Live Cattle

(The sample period: 1/02/80 — 12/29/00)

 

 

1 day 2 days 3 days 4 days 5 days

T 4800 2400 1 600 1 200 960

[.1 0.0037 0.0019 0.0122 -0.0024 -0.0018

(0.0233) (0.0195) (0.0275) (0.1231) (0.0619)

0 0.0297 -0.0091 -0.0421 -0.0493 -0.0855

(0.0161) (0.0169) (0.0293) (0.0357) (0.0363)

(1 0.1768 0.1534 0.1385 0.0661 0.0668

(0.0930) (0.0668) (0.0696) (0.0819) (0.0792)

0) 0.1546 0.6173 1.0479 1.2694 2.6452

(0.1050) (0.3500) (0.5645) (0.9834) (1.6237)

0 0.5832 0.1557 0.1354 0.3828 0.1077

(0.0679) (0.0656) (0.0638) (0.4618) (0.6031)

4) 0.4086 0.4615 0.1891

(0.0643) (0.4907) (0.6487)

m3 -1.538 -0.873 -0.630 -0.553 0426

m4 40.253 18.439 11.856 9.119 7.564

Q(20) 28.860 18.392 25.561 27.665 41.104

Q2(20) 24.741 18.294 9.771 14.416 10.133

W 3.167 5.269 3.962 0.652 0.71 l

 

Key: As for table 2-1
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Table 24: Estimated MA-FIGARCH Models for Daily Cash Returns for Live Hogs

(The sample period: 1/02/80 — 12/29/00)

 

1 day8 2 days 3 days 4 days 5 days

T 4551 2275 1517 1137 910

p -0.0037 -0.0152 -0.0212 -0.0174 0.0177

(0.0279) (0.0578) (0.0994) (0.1071) (0.0860)

0. -0.1524 -0.2878 -0.0692 0.0120 0.1001

(0.0170) (0.0277) (0.0284) (0.0335) (0.0369)

02 -0.2078 0.1482 0.0830 0.1 104 0.1384

(0.0153) (0.0232) (0.0275) (0.0319) (0.0343)

03 0.0463 0.0326 0.1200 0.0832 0.0086

(0.0159) (0.0228) (0.0268) (0.0312) (0.0346)

04 0.1229 0.0854 0.0862 0.0158 0.0006

(0.0159) (0.0229) (0.0274) (0.0306) (0.0341)

05 -0.0096 0.0734 0.0033 0.0147 -0.0947

(0.0165) (0.0232) (0.0269) (0.0329) (0.0341)

06 -0.0061 -0.01 15 0.0426 -0.0253 -0.0444

(0.0157) (0.0234) (0.0280) (0.0350) (0.0347) .

07 0.0562 0.0514 -0.0304 -0.0402 0.0230

(0.0158) (0.0225) (0.0284) (0.0350) (0.0362)

03 0.0394 -0.0287 0.0223 -0.0161 -0.0255

(0.0171) (0.0224) (0.0277) (0.0368) (0.0363)

09 0.0510 0.0562 -0.0412 0.0341 0.0337

(0.0144) (0.0225) (0.0308) (0.0333) (0.0363)

910 0.0196 -0.0223 0.0327 0.0195 -0.0246

 

8 For live hogs at one-day sample frequency, we could cope with higher 02(20) statistics by including day-

of-week dummy variables. All the coefficient estimates are 0.9437 with standard error, 0.2440 for

Monday; 1.3074 with standard error, 0.2725, for Tuesday; 0.3487 with standard error, 0.2058 for Thursday:

and 0.6577 with standard error, 0.2623 for Friday. We do not consider such day—of-week effects since they

seem to collapse by temporal aggregation beyond one-day sample frequency.
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(0.0174) (0.0233) (0.0321). (0.0320) (0.0342)

0.. -00151 -00014 -00301 0.0118 -0.1198

(0.0159) (0.0238) (0.0301) (0.0357) (0.0422)

0.2 -00155 -00094 -00214 -00250 -0.1273

(0.0165) (0.0222) (0.0295) (0.0340) (0.0404)

0.3 0.0496 .0.0305 0.0731 .0.0002 -0.0421

(0.0158) (0.0217) (0.0289) (0.0353) (0.0407)

0... 0.0434 0.0049 0.0326 -0.0337 -0.1069

(0.0153) (0.0209) (0.0279) (0.0339) (0.0377)

0.5 -0.0498 -00127 -00055 -0.0730 .0.0202

(0.0153) (0.0212) (0.0300) (0.0342) (0.0309)

(I 0.2083 0.1789 0.1361 0.1570 0.0981

(0.0548) (0.0395) (0.0411) (0.0574) (0.1203)

6) 0.1718 1.8094 3.0760 0.1614 1.1651

(0.1838) (0.4762) (0.8904) (0.0798) (2.2573)

[5. 0.5239 0.0914 0.0197 0.9654 0.7838

(0.2096) (0.0442) (0.0524) (0.0179) (0.3272)

82" 0.0230

(0.0266)

6. 0.4150 0.9498 0.8272

(0.1801) (0.0263) (0.2455)

m3 -0044 -0001 -0.146 0.130 0.008

m4 3.544 3.296 3.762 3.476 3.266

Q(20) 17.972 2.9234 9.510 1 1.983 6.753

Q2(20) 29.283 21.082 24.578 21.542 22.423

w 27.616 20.516 10.967 7.475 0.665

 

Key: As for Table 2-1

 

9 FIGARCH (2, d, 1) seems to fit the live hog cash daily return volatility at one-day sample frequency

fairly relative to FIGARCH (l, d, l) or FIGARCH (l, d, 0) conditional variances specifications.
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Table 2-5: Estimated MA-FIGARCH Models for Daily Cash Returns for Gasoline

(The sample period: 1/02/91 — 12/29/00)

 

  

1 day 2 days 3 days 4 days 5 days

T 2509 1254 836 627 501

[.1 -0.0192 -0.0632 -0.0970 -0.1201 -0.1151

(0.0451) (0.0949) (0.1442) (0.1834) (0.2230)

0 0.0926 0.0574 -0.0107 -0.0781 -0.0829

(0.0215) (0.0329) (0.0429) (0.0458) (0.0487)

(1 0.2900 0.2968 0.3715 0.2309 0.2105

(0.0694) (0.0979) (0.3187) (0.1524) (0.0845)

00 0.8453 1.9729 1.0488 5.8006 7.9115

(0.2650) (0.7972) (1.3298) (4.9808) (4.1986)

[3 0.1726 0.1372 0.6309 0.1930 0.1898

(0.0770) (0.1211) (0.1643) (0.2527) (0.1424)

(I) 0.4135

(0.1720)

m3 -0.103 -0.389 -0.214 -0.289 0160

m4 4.739 4.320 3.734 3.931 3.371

Q(20) 28.076 24.839 32.326 23.792 26.302

Q2(20) 17.416 16.398 9.190 15.708 17.395

W 17.463 23.160 1.359 2.295 6.204

 

Key: As for table 2-1
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Table 2-6: Estimated MA-FIGARCH Models for Daily Cash Returns for Gold

(The sample period: 1/02/80 - 12/29/00)

 

1 day 2 days 3 days 4 days 5 days

T 5283 2641 1761 1320 1056

[.1 -0.0167 -0.0316 -0.0677 -0.0796 -0.0643

(0.0096) (0.0207) (0.0298) (0.0392) (0.0559)

0 -0.0583 -0.0124 -0.0043 -0.0132 -0.0309

(0.0169) (0.0301) (0.0298) (0.0356) (0.0360)

d 0.2905 0.3438 0.2942 0.4093 0.3160

(0.0351) (0.0574) (0.0434) (0.0953) (0.1374)

00 0.0755 0.1374 0.2068 0.1316 0.4705

(0.0250) (0.0572) (0.1 155) (0.1 176) (0.5367)

0 ' 0.1512 0.1787 0.1071 0.2872 0.2477

(0.0490) (0.0694) (0.1 134) (0.1398) (0.1521)

m3 0.086 0.959 0.419 0.637 1.411

m4 9.563 15.589 8.085 10.058 18.805

Q(20) 39.257 19.918 18.735 12.869 22.962

Q2(20) 11.015 2.982 10.029 6.215 8.135

W 68.634 35.854 45.890 68.634 5.291

 

Key: AS for table 2-1
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Table 2-7. Semi-Parametric Long Memory Parameter Estimation:

Absolute Daily Cash Returns at Different Daily Sample Frequencies.

 

1 day 2 days 3 days 4 days 5 days

Corn (Filtered)

Local Whittle 0.3397 0.3633 0.3238 0.2823 0.2536

(0.0376) (0.0471) (0.0539) (0.0592) (0.0635)

Soybean (Filtered)

Local Whittle 0.3853 0.4693 0.4629 0.4568 0.4282

(0.0378) (0.0474) (0.0541) (0.0592) (0.0638)

Live Cattle

Local Whittle 0.1534 0.1457 0.1452 0.1995 0.1992

(0.0390) (0.0489) (0.0599) (0.0612) (0.0660)

Live Hog

Local Whittle 0.2418 0.2562 0.2224 0.1947 0.1492

(0.0397) (0.0497) (0.0569) (0.0625) (0.0672)

Gasoline

Local Whittle 0.2899 0.3027 0.3590 0.4061 0.4133

(0.0481) (0.0603) (0.0689) (0.0760) (0.0818)

Gold

Local Whittle 0.4436 0.4817 0.4626 0.4810 0.5073

(0.0378) (0.0474) (0.0541) (0.0595) (0.0638)

 

Key: Asymptotic standard errors are in parentheses below corresponding parameter

estimates.
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Fig. 2-1 Correlograms for Absolute Daily Cash Returns
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CHAPTER 3

MODELING DAILY AND HIGH FREQUENCY COMMODITY FUTURES

RETURNS

3.1. Introduction

This chapter is concerned with the stochastic properties of commodity futures

prices and applies some recent developments in volatility modeling, in particular the

FIGARCH long memory volatility model, to commodity futures returns. The volatilities

of daily futures returns are found to be well described by the FIGARCH model, with

relatively similar estimates of the long memory parameter across commodities. The

conditional means of the daily returns are close to being uncorrelated, with small

departures from martingale behavior being represented by low order moving average

models. We also estimate FIGARCH models for high frequency commodity futures

returns based on intra-day tick data. These high frequency commodity returns are

dominated by strong intra-day periodicity, hypothesized to be a result of repeated trading

day cycles resulting from the institutional features of the futures exchanges where trades

are taking place. The intra-day periodicity is removed using a deterministic Fourier

Flexible Form (FFF) filter. The filtered high frequency futures returns are also well

described by the FIGARCH process. The results of the chapter have important
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implications for our understanding of the stochastic properties of commodity prices, and

hence for empirical applications such as optimal hedge ratio estimation, tests for futures

market efficiency, tests for the announcement effect of market news, option valuation,

farm risk portfolio management, etc.

The FIGARCH model has already been applied gainfully to exchange rates, stock

returns, inflation rates, and a range of other economic data; for examples see Baillie,

Bollerslev and Mikkelsen (1996), Bollerslev and Mikkelsen (1996), Baillie, Han and

Kwon (2002), etc. However, there have been few applications of the model to

commodities. Crato and Ray (2000) study long memory in the daily volatilities of several

agricultural commodity futures returns, along with a stock index return, currencies,

metals, and heating oil. They find strong evidence of long memory in daily commodity

futures prices, though they do not explicitly estimate FIGARCH models. Iin and

Frechette (2004) estimate FIGARCH volatility models for 14 agricultural futures series

and find that FIGARCH fits the data significantly better than a traditional GARCH

volatility model. While these studies have provided valuable information on the long

memory properties of commodity futures price volatilities, much more work remains to

be done.

This chapter adds to our understanding of long memory in commodity price

volatilities in three main ways. First, while Iin and Frechette (2004) argue in favor of the

FIGARCH model over the GARCH model for commodity futures volatilities, they did

not undertake a formal statistical test comparing the two models. Here we undertake a

robust Wald test, which formally compares the fit of the GARCH and FIGARCH models.

Second, in addition to the standard quasi-maximum likelihood estimator (QMLE), we
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also apply the semi-parametric local Whittle estimator of the long memory parameter.

This provides additional information on the robustness of long-memory inferences

concerning daily commodity price volatilities. Third, in addition to daily returns we

study high frequency returns on futures contracts using intra-day tick data. This study is

the first to systematically examine volatility using high frequency commodity futures

data.lo We find that estimated models at different sampling frequencies are consistent

with the theory that commodity futures returns are “self-similar” processes, and hence

have long memory parameters that are invariant to the sampling frequency; see Beran

(1994). The “self-similarity” of the estimates of the long memory volatility parameter

across relatively short spans of high frequency data strongly suggests that the long

memory property is an intrinsic feature of the system rather than being caused by

exogenous shocks or regime shifts.

The plan of the rest of the chapter is as follows. Section 2 discusses the

application of the long memory FIGARCH volatility model to daily futures returns.

Similar to Jin and Frechette (2004), we find the FIGARCH models to be econometrically

superior to regular stable GARCH models. Section 3 describes the results from the

analysis of high frequency futures returns and compares them to the daily return results.

Section 4 presents an analysis of semi-parametric local Whittle estimation of the long

memory parameter as a robustness check, and also compares estimates of the long

memory parameter across a range of different sampling frequencies. This shows that the

commodity return series display self-similarity. Section 5 offers a brief conclusion.

 

10

Cai, Cheung and Wong (2001) have analyzed high frequency gold futures. However, their approach is

somewhat informal and does not include either FIGARCH or local Whittle estimation of the long memory

parameter.
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3.2. Analysis of Daily Commodity Returns

This section is concemed with the analysis of daily futures retums for different

commodities. We examine six commodities: corn, soybeans, cattle, hogs, gasoline, and

gold. Corn and soybeans are major annual crops that are of critical importance to US.

agriculture. These crops are related in the sense that they can be substitutes in production

and both are used heavily as animal feed. They are different, however, in that most com

is produced in the northern hemisphere, while soybeans have a significant southern

hemisphere harvest in Brazil and Argentina. This southern hemisphere harvest may

influence seasonal price and volatility patterns. Cattle and hogs are both important

livestock commodities in US. agriculture, but their different life cycles mean different

inherent price dynamics, even though we would expect a lot of similarity in the stochastic

properties of prices for these two livestock commodities. Gasoline is included to see if

results are markedly different for a natural resource-based commodity, and gold is

included as a commodity that has a central role as a store of wealth.

Data were obtained from the Futures Industry Institute data center.ll The daily

data are daily closing futures prices on major US. futures markets for the relevant

commodity, in particular, the Chicago Board of Trade for corn and soybeans, the Chicago

Mercantile Exchange for live cattle and hogs, and the New York Mercantile Exchange for

unleaded gasoline and gold. Returns are defined in the conventional manner as

continuously compounded rates of return and calculated as the first difference of the

natural logarithm of prices. To compute the futures returns, nearby contracts were used,

 

II

The Futures Industry Institute is now called the Institute for Financial Markets. For more information

and data availability, see http://www.theifm.org.
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and then the data was switched to the next available contract nearby on the first day of

the month in which the current nearby contract expires. For consistency, returns are

always defined using the same futures contract)2 The use of nearby futures contracts to

define our firtures return series has the advantage that we are using the most actively

traded contracts to generate our return data. However, if volatility depends on time to

maturity, as might be expected in at least some instances, then switching from an expiring

futures contract to the next nearby maturity may introduce jumps into the volatility

process because ofjumps in time to maturity at the switch points. We will discuss how

we allowed for the effects of these jumps in time to maturity when we outline the

econometric model further below.

The details of the sample periods used for each commodity are provided in Table

3-1, along with some summary statistics for daily returns over these periods. All the daily

data begin at the first trading day of January 1980, except for gasoline. For gasoline, we

exclude data from January 1980 through December 1990 and begin the sample period the

first trading day of January 1991. This is to avoid two periods of exceptional volatility in

gasoline prices that we argue are a result of structural shifts in the volatility process for

this commodity. The first period is 1986-87, a period in which Saudi Arabia expanded its

oil production significantly in order to discipline other OPEC countries. The second

period extends from August 1990 to December 1990 and is caused by the Iraqi invasion

of Kuwait and the subsequent Gulf War. By starting the gasoline price series in January

of 1991 we avoid having to model these structural breaks in the volatility process. All of

 

12

That is, at each point when the data switch to the next nearby maturing contract, the futures return is

defined as the difference between the natural logarithm of today’s futures price for a contract maturing at

the next nearby and yesterday’s futures price for a contract with exactly the same maturity date. In this

way, daily returns are never defined using prices from two different contracts with different maturity dates.
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the daily data end at the last trading day of December 2000, except for corn, which ends

the last trading day in March of 2001. In all cases we used the most recent data that was

provided in the data set obtained from the Futures Industry Institute.

Previous studies by Cecchetti, Cumby and Figlewski (1988), Baillie and Myers

(1991), and Yang and Brorsen (1992) have argued that most daily cash and futures

commodity returns are well described as martingales with GARCH effects. The

possibility ofmixed diffusion-jump processes has also been suggested as a way to

characterize volatility in commodity prices. Yang and Brorsen (1992) compared

GARCH, mixed diffusion-jump, and deterministic chaos models of cash commodity

prices and concluded that the GARCH volatility process provided the best fit. It is only

more recently that studies such as Crato and Ray (2000) and Jin and Frechette (2004)

have begun to investigate the long memory properties of commodity volatilities.

Figures 3-1 and 3-2 plot the sample autocorrelations for the returns, squared

returns and absolute returns in daily futures prices for two representative commodities,

namely live cattle and corn. There is one noticeable difference between the crop

commodity and the livestock commodity, namely that: both squared and absolute daily

returns for corn exhibit strong yearly seasonality in their sample autocorrelations, while ,

this does not occur for live cattle. To conserve space, the corresponding graphs for the

other commodities are not shown. However, it was observed that soybeans also display

seasonality in volatility (though not as pronounced as in the case of com, perhaps because

of the influence of a southern hemisphere harvest for soybeans) while live hogs, gasoline

and gold display no seasonality in volatility (similar to live cattle). In order to analyze

the intrinsic stochastic properties of the daily corn and soybean return volatilities we filter

39



out the seasonality by using a FFF filter. '3 The sample autocorrelations for the returns,

squared returns and absolute returns for the filtered daily corn futures price series is

provided in Figure 3-3. Notice that the FFF filter has been quite effective in removing

the seasonality in the squared and absolute corn futures returns. In all subsequent analysis

ofthe corn and soybean return volatilities we use the filtered volatility models.

Plots of the live cattle sample autocorrelations (Figure 3-1), the FFF filtered corn

sample autocorrelations (Figure 3-3), and other commodity return sample

autocorrelations (not shown) reveal a familiar lack of autocorrelation in returns and the

marked persistence in autocorrelations of squared and absolute returns that was first

noticed by Ding, Granger and Engle (1993) for the case of stock market returns. In

particular, the autocorrelation functions for the squared and absolute returns do not

display the usual exponential decay associated with the stationary and invertible class of

ARMA models, but rather appear to be generated by a long memory process with

hyperbolic decay.

More formally, the autocorrelation at lag k, p], , tends to satisfy pk z ckZd—I as k

gets large, where c is a constant and d is the long memory parameter. This type of

persistence is consistent with the notion of hyperbolic decay and is sometimes called the

“Hurst phenomenon.” The Hurst coefficient is defined as H = d +0.5. Ifd = 1, so that H

= 1.5, then the autocorrelation firnction does not decay and the series has a unit root. If d

= 0, so that H = 0.5, then the autocorrelation function decays exponentially and the series

is stationary. But for 0 < d < 1, i.e. 0 < H < 1.5, the series is sufficiently flexible to allow

for slower hyperbolic rates of decay in the autocorrelations. While many stochastic

 

13

See the appendix for the details ofthe FFF filter.
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processes could potentially exhibit the long memory property, the most widely used

process is the ARFIMA(p, d, q) process of Granger and Joyeux (1980), Granger (1980),

and Hosking (1981). In the ARFIMA process, a time series x. is modeled as

a(L)(1— L)dx, = b(L)£, with a(L) and b(L) being p’th and q’th order polynomials in the

lag operator L, with all their roots lying outside the unit circle, while a, is a white noise

process. The ARFIMA process is stationary and invertible in the region of

-0.5 < d < 0.5 . At high lags, the ARFIMA(p, d, q) process is known to have an

autocorrelation function that satisfies pk z ckZd'l , so that the autocorrelations may

decay at a slow hyperbolic rate, as opposed to the required exponential rate associated

with the stationary and invertible class ofARMA models. The sample autocorrelation

function of the squared and absolute daily filtered futures corn returns appears to be very

consistent with the above properties, and analogous plots for the. other commodity returns

were found to be extremely similar.

Virtually all studies of daily asset returns, including commodity assets, have

found return y. to be stationary with small autocorrelations at the first few lags, which can

be attributed to a combination of a small time-varying risk premium, bid-ask bounce,

and/or non-synchronous trading phenomena; see Goodhart and O’Hara (1997) for a

description of this issue in high frequency currency markets. On the other hand, volatility

has been found to be very persistently autocorrelated with long memory hyperbolic

decay. A model that is consistent with these stylized facts is the MA(n)-FIGARCH(p, d,

q) process,

y, =100Aln(P,)= ,u+b(L)£,, (3.1)
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and

[1-fl(L)10.2 =w+[1—{1—4<L)1-¢(L>(1—L>"]a.2. (3.3)

where P, is the asset price, 2, is an i.i.d.(0,1) random variable, and the polynomial in the

lag operator associated with the moving average process is

b(L) = 1+ blL + b2L2 + ...+ an". The FIGARCH model in equation (3.3) can be best

motivated from noting that the standard GARCH(p, q) model of Bollerslev (1986) can be

expressed as

a." = co +0406? + M003,

where the polynomials are a(L) s alL + (2sz + + (2qu and

,B(L) 5 AL + ,62 L2 + + ,6pr . The GARCH(p, q) process can also be expressed as the

ARMA[max(p, q), p] process in squared innovations as

[1 —a(L) — ,6(L)]t:,2 = a) + [1 — ,B(L)]v,

42



where u, s 8,2 -— 0,2 and is a zero mean, serially uncorrelated process which has the

interpretation of being the innovations in the conditional variance. The F1GARCH(p, d,

q) process in equation (3.3) can also be written as

¢(L)(1— 1.)d a} = a) +[1— ,6(L)]u,, (3.4)

where ¢(L) = [1— a(L) — ,6(L)](1— L)'d is a polynomial in the lag operator. Equation

(3.4) can be easily shown to transform to equation (3.3), which is the standard

representation for the conditional variance in the F1GARCH(p, d, q) process. Further

details concerning the FIGARCH process can be found in Baillie, Bollerslev and

Mikkelsen (1996). The parameter d characterizes the long memory property of hyperbolic

decay in volatility because it allows for autocorrelation decay at a slow hyperbolic rate.

The attraction of the FIGARCH process is that for 0 < d < 1, it is sufficiently flexible to

allow for intermediate ranges of persistence, between complete integrated persistence of

volatility shocks associated with d = l and the geometric decay associated with d = 0.

The volatility model in equation (3.3) has to be slightly adjusted to accommodate

the potential jumps in volatility that can occur at contract switching points, when futures

return data are computed from a sequence of nearby futures contracts. The long spans of

daily futures returns are constructed from contracts with different maturities, and the

resulting variations (and jumps) in time to maturity may have an influence on the

volatility process. To account for possible time to maturity effects we introduce a time to

maturity variable in the formulation of the F1GARCH(I, d, 1) model in (3.3), which then

becomes
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0'2 = a) + 50,24 + yTM, + [1 — flL — (1 — ¢L)(1— L)d 15,2 , (3.5)

where TM represents the time to maturity on the contract used to construct the futures

return for period t, and y is the associated parameter.

The above model (3.1), (3.2), and (3.5) is estimated for futures returns on our six

commodities of interest by maximizing the Gaussian log likelihood function

T

ln(L;O) = —(0.5T)1n(21t)— 0.5Z[1n(o,2) + 3.26:2 I (3.6)

t=l

where O/ =(p,61,..49,,,a),,61,..,6p,¢, ,...¢,) is the vector of unknown parameters.

However, it has long been recognized that most asset returns are not well represented by

assuming 2, in equation (3.2) is normally distributed; for examples, see McFarland, Pettit

and Sung (1982) and Booth (1987). Consequently, inference is usually based on the

quasi-maximum likelihood estimator (QMLE) of Bollerslev and Wooldridge (1992),

which is valid when z, is non-Gaussian. Denoting the vector of parameter estimates

obtained from maximizing (3.6), using a sample ofT observations on equations (3.1),

A A

(3.2) and (3.5), with 2, being non-normal by OT , then the limiting distribution of OT . is

Tl/2(@r-@o)->N[0,A(@o)-lB(@o)A(@0)—ll. (3.7)
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where A(.) and B(.) represent the Hessian and outer product gradient, respectively, and

90 denotes the vector of true parameter values. Equation (3.7) is used to calculate the

robust standard errors that are reported in the subsequent results in this chapter, with the

A

Hessian and outer product gradient matrices being evaluated at the point OT for practical

implementation.

Table 3-2 presents the results of applying the above model (3.1), (3.2), and (3.5)

to daily futures returns for the six commodities discussed earlier. The exact parametric

specification of the model which best represents the degree of autocorrelation in the

conditional mean and conditional variance of daily commodity returns, vari by

commodity. The exact model specification for each commodity is indicated by the

number of non-zero estimates provided for the polynomial in the lag operator terms in

Table 3-2. For corn and soybean futures returns, we apply FIGARCH estimation to the

FFF filtered returns (see the Appendix). Results from Box-Pierce portmanteau statistics

on the standardized residuals are at the bottom of the table. The standard portmanteau test

m

statistic, Q(m) = T(T + 2):: r} /(T — j), where r,- is thej’th order sample autocorrelation

j=1

from the residuals, is known to have an asymptotic 131—k distribution, where k is the

number of parameters estimated in the conditional mean. Similar degrees of freedom

adjustments are used for the portmanteau test statistic based on the squared standardized

residuals when testing for omitted conditional heteroscedasticity. This adjustment is in

the spirit of the suggestions by Diebold (1988) and others. The sample skewness and
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kurtosis of the standardized residuals (m3 and m4), are also provided at the bottom of

Table 3-2.

The Ljung-Box portmanteau statistics Show that the models specified for each

commodity do a good job of capturing the autocorrelations in the mean and volatility of

the commodity return series. In each case there is no evidence of additional

autocorrelation in the standardized residuals or squared standardized residuals, indicating

that the chosen model specification provides an adequate fit. It is interesting that

autocorrelation in the mean tends to persist more for the livestock commodities of live

cattle and hogs than for the other commodities (i.e., more MA terms in the mean are

required for an adequate fit). Furthermore, these commodities also seem to require more

flexible models to capture their autocorrelation in volatility as well (i.e., more GARCH

terms required for an adequate fit). The standardized residuals from all commodities,

except perhaps live cattle and hogs, exhibit the usual features of excess kurtosis of daily

asset returns. However, this is accommodated through use of the QMLE standard errors

for inference.

The estimated MA-FIGARCH models reported in Table 3-2 seem to fit the data

well. For each commodity there is weak evidence of small moving average effects in the

mean returns. As stated earlier, this may be attributed to a combination of a small time-

varying risk premium, bid-ask bounce, and/or non-synchronous trading phenomena. The

volatility autocorrelation parameters in B(L) and ¢1(L) indicate Strong evidence of

significant serial correlation in volatilities, which is consistent with previous findings of

autocorrelated volatility in commodity returns; see Baillie and Myers (1991), Jin and

Frechette (2004), and Yang and Brorsen (1992). Furthermore, the time to maturity
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parameter is statistically significant for all commodities except gold. Gold may not

experience a time to maturity effect in volatility because its special role as a store of

wealth means that cash and futures prices move very closely together, irrespective of the

time to maturity on the futures contract. It is interesting that the time to maturity effect is

negative for corn, soybeans and gasoline, but positive for cattle and hogs. This indicates

that the upward jumps in time to maturity that occur at contract switching points reduce

the volatility of returns for corn, soybeans, and gasoline, but increase volatility in live

cattle and hogs. Apparently, live cattle and hogs are relatively more volatile further away

from the maturity date, while corn, soybeans and gasoline are relatively more stable.

In this chapter we are primarily interested in the long memory parameter d. The

estimated long memory parameters reported in Table 3-2 are strongly statistically

significant for all six futures return series, and the hypotheses that d = 0 (stationary

GARCH) and also 6! =1 (integrated GARCH) are consistently rejected for all

commodities using standard significance levels. Table 3-2 also reports robust Wald test

statistics, denoted by W, for testing the null hypothesis ofGARCH versus a FIGARCH

data generating process. Under the null, Wwill have an asymptotic 1,2 distribution and,

from Table 3-2, the GARCH model is rejected for every commodity at standard

significance levels. This formal statistical test supports the conclusion obtained both here

and in Jin and Frechette (2004) that FIGARCH is superior to GARCH for modeling the

conditional variances of commodity returns. Evidently, long memory is a characteristic

feature of daily commodity futures returns, and FIGARCH represents a significant

improvement over GARCH.
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3.3. Analysis of High Frequency Commodity Returns

Considerable previous work has examined the properties of high frequency

returns in equity and currency markets, but to date very little analysis has been done on

high frequency commodity returns. The only study we are aware of is Cai, Cheung and

Wong (2001) who studied high frequency gold futures prices. Their study analyzed 5-

minute gold futures returns between 1994 and 1997, and they discovered slow hyperbolic

decay associated with the autocorrelation function of the returns. However, they used an

informal method for approximating the long memory parameter and did not estimate

formal FIGARCH models. This section of the chapter represents a first attempt at

extensive analysis of the volatility properties of high frequency commodity futures

returns using FIGARCH models.

The raw futures tick data for the analysis were obtained from the Futures Industry

Institute data center along with the daily data (see footnote 2), and correspond to the same

six commodities studied in the previous section. The prices are for real-time transaction

records, which we initially convert to 5-minute price intervals by using the last price

quoted before the end of every S-minute interval over the trading day. For 5-minute

intervals that have no price recorded we linearly interpolate between surrounding

intervals to fill in the missing data. As with all high frequency asset price analyses, there

are potential problems with data unreliability due to the sheer amount of data being used

and the fact that there is considerable noise in the series because of little trade occurring

at some of the recorded prices. However, we minimize these problems by running the

data through a filter to identify and adjust anomalous observations. This was done by

locating return observations greater than three standard deviations and evaluating these as
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possible data errors. A carefiil check and evaluation of these observations revealed a

small number of what appeared to be data errors in the high frequency gold returns.

These were then eliminated and replaced with a linearly interpolated value using the two

contiguous observations. No errors were detected in high frequency commodity returns

other than gold. Furthermore, instead of analyzing the 5-minute interval data (which will

be the most susceptible to data errors and noise) we convert the data to lower frequencies

(IO-minute for corn and soybeans, and lS—minute for live cattle and hogs, gasoline, and

gold) to undertake the analysis. Different intervals were chosen for different

commodities because they are traded on markets that have different trading day lengths.

Hence, in order to make sure interval returns could be computed that would exhaust the

recorded daily price change but not use consecutive intervals that stretched over two

different trading days, it was convenient to use 10-minute intervals for corn and soybeans

but 15-minute intervals for live cattle, live hogs, gasoline, and gold.

An interval return during day t is defined as y“. = 100 [ln(P.n)-ln(P,,,.- 1)], where

P”, is the futures price for the n-th intra-day interval during trading day I. As with many

analyses of high frequency asset price returns, it was found that the high frequency

commodity returns display considerable intra-day periodicity, which is usually attributed

to institutional trading features. This periodicity was removed using the FFF filtering

method, which is explained in detail in the Appendix.

Figure 3-6 plots the sample autocorrelations for lags of up to 5 trading days in 5-

minute intervals displayed in the horizontal axis for the absolute returns of the unadjusted

(raw) and the filtered 5-minute intervals for all the commodity futures returns series. The

dotted line represents sample autocorrelations for the unfiltered absolute 5-minute
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returns, while the solid line indicates the autocdrrelations for the filtered absolute 5-

minute returns. The FFF filter seems to remove much of intra-day periodicity present in

the raw absolute returns. As usual, there is a small negative but significant first-order

autocorrelation in returns, which may be due to the non-synchronous trading

phenomenon, while higher order autocorrelations are not significant at conventional

levels. The autocorrelation functions of the absolute returns also exhibit a pronounced U

shape, suggesting substantial intra-day periodicity. Similar U-shaped patterns are found

in the equity markets (Harris, 1986; Wood et al., 1985; Chang et al., 1995; and Andersen

and Bollerslev, 1997a). Figure 3-7 shows the average absolute filtered infra-day returns

within a trading day. For all the commodities, the intra-day volatility patterns display an

U-shaped pattern. Unless otherwise indicated, all remaining analyses were done on the

filtered series.

The MA-FIGARCH model (3.1) through (3.3) was estimated based on the filtered

high frequency filtered returns. AS with the daily data, the orders of the MA and GARCH

polynomials in the lag operator were chosen to be as parsimonious as possible but still

provide an adequate representation of the autocorrelation structure of the high frequency

data. For the high frequency data, MA(1)-FIGARCH(1,d,1) models proved adequate for

all commodities. Long high frequency series were constructed by splicing several nearby

futures contracts together, in the same way as described for the daily data. A time to

maturity effect in volatility was tested, similar to that found in the daily return series. For

the high frequency return data, however, the time to maturity effect was not statistically

significant and so the time to maturity effect was restricted to zero. One possible reason

for this result is that there are many fewer contract switches in the high frequency series,
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which combines a smaller number of futures contracts than the daily futures return series.

The number oftrading days and the number of intra-day periods are different across the

different commodities. This information is provided in Table 3-3.

Details of the estimated MA(1)-FIGARCH(I,d,1) high frequency models for the

six commodities are reported in Table 3-4. All the models have small but Significant

MA(l) parameter estimates, which are usually attributed to the non-synchronous trading

phenomenon. Similar features for high frequency exchange rate returns have been noted

by Andersen and Bollerslev (1997a), Goodhart and Figliuoli (1992), Goodhart and

O'Hara (1997), and Zhou (1996). The estimated long memory volatility parameter d

ranges from 0.2 to 0.3 for most ofthe commodities considered and is generally

statistically significant.

Similar to the daily return results, we found significant long memory volatility in

the high frequency returns data as well. In general, the long memory estimates for intra-

day return volatilities are slightly lower than those for daily returns. Furthermore, as in

the daily return models, the robust Wald statistics in Table 3-3 Show strong evidence in

favor of the FIGARCH specifications against the GARCH specifications in the high

frequency model.

Details for the FIGARCH estimation results for various daily and intradaily

sample frequencies are recorded in tables A-l through A-12 in the Appendix to this

chapter. Another remarkable observation from the detailed estimation results is that the

Robust Wald statistics W for testing the null hypothesis ofGARCH specification seem to

be proportional to the sample frequency. This finding could imply that the long memory

feature becomes more pronounced as we observe price changing more frequently within a

51



particular sample period, while the long memory estimate levels themselves remain

similar across different sample frequencies. Therefore, we can conjecture that, as higher

sample frequencies are considered, the FIGARCH conditional variance specifications

become superior to a simple GARCH model that does not implement long memory

volatility.

3.4. Local Whittle Estimation and Self-Similarity

An alternative to the parametric long memory models used so far in this chapter is

the application of the semi-parametric, local Whittle estimator for estimation of long

memory parameters. The advantage of this estimator is that it allows for quite general

forms of Short run dynamics while ARFIMA and FIGARCH models are potentially

sensitive to the specifications used to represent the short-run dynamics; see Kunch (1987)

and Robinson (1995). Of course, semi-parametric estimation has its own problems, as it

is very data intensive and often exhibits poor performance in terms of bias and mean

square error. We apply local Whittle estimation as a robustness check on the FIGARCH

parametric estimates of the long memory parameter d.

A characteristic of long memory that is independent of parametric model

specification is that the spectrum of the series will be given by f((0) ~ Griz", as

a) —-> 0 + and G is a constant. This suggests a useful objective function for estimating d

would be

j=1 j=1

Q = ln[(1/m)§w3d1(wj)]—(2d/m)§ 111(6),)
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where [(601) is the periodogram ofthe series at frequency raj (see Robinson, 1995).

Solving this objective function numerically gives the local Whittle estimator of d. Note

that it is not necessary to specify the short run dynamics of the process in order to

estimate d in this framework. As shown by Robinson (1995) and others, the main

decision variable is m, the choice of the number of ordinates of the periodogram. For

consistency, it is necessary that [(1/ m) + (m/ T)] -—> 0 as T —-> 90. For asymptotic

. . . . l+2,6 2 -26
normality,1trs required that (l/m)+m [ln(m)] T —> 0 as T —> 00. In the

empirical results reported in this chapter, m is chosen as T030. Note that the asymptotic

variance of the local Whittle estimator is given by (1 / 4m).

Local Whittle estimation of the long memory volatility parameter (1' was applied to

both the daily and high frequency returns for all six commodities studied earlier.

Furthermore, both MA-FIGARCH and local Whittle estimation ofd were undertaken for

a range of alternative frequencies (1 -day, 2-day, 3-day, 4-day and 5-day using the daily

data, and various return frequencies between 10 minutes and 2 hours using the high

frequency data). Estimation was undertaken over multiple frequencies to check for the

self-similarity feature. Self-similarity occurs when the magnitude of the long memory ,

parameter does not change across sampling frequencies; see Beran (1994). If the long

memory parameter is invariant across frequencies, then it suggests that the long memory

property is an intrinsic feature of the data and does not result from regime shifts or

exogenous external shocks. The self-similarity property is technically extremely difficult

to test empirically. However, one can subjectively evaluate changes in long memory
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parameter estimates across frequencies to see whether the self-similarity feature seems to

hold in general.

Results of both FIGARCH and local Whittle estimation of the long memory

parameter d are shown for a range of daily return frequencies in Table 3-5 and for a range

of intra-day return frequencies in Table 3-6. Numbers in parentheses below the estimates

are the estimated standard errors. The first thing to notice is that FIGARCH and local

Whittle estimates ofd appear quite consistent with one another, with d estimated in the

range supporting long memory in commodity return volatilities. Hence, previous

conclusions about the existence of the long memory property in commodity return

volatilities using FIGARCH appear robust to specification of alternative representations

of short-run dynamics. The second thing to notice in Tables 3-5 and 3-6 is that the long

memory parameter estimates are generally quite consistent across different return

frequencies, irrespective of whether we look at daily returns or intra-day returns. This

result is consistent with the notion of self-similarity and suggests that long memory and

hyperbolic decay are intrinsic features of commodity return data.

3.5. Conclusions

This chapter has examined the long memory volatility properties of both daily and

high frequency infra-day futures returns for six important commodities. The absolute and

squared returns all possess very significant long memory features and their volatility

processes are found to be well described as FIGARCH fractionally integrated volatility

processes. We also find small departures from the martingale in mean property. The long

memory property in absolute returns was also undertaken by semi-parametric local
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Whittle estimation of the long memory parameter. The estimation of MA-FIGARCH

models and the application of the local Whittle estimators to absolute returns were also

computed for a range of different sample frequencies using both the daily and infra-day

high frequency returns. The long memory parameter estimates are found to be quite

robust both across estimators and across sample frequencies. This is consistent with a

finding of self-Similarity, which implies that long memory in volatility is a pervasive and

consistent feature of commodity returns, and is not just being caused by shocks or regime

shifts to the underlying price processes.

Our findings suggest that any future empirical application using daily or infra-day

commodity futures returns (for example, optimal hedge ratio estimation, tests for futures

market efficiency, tests for the announcement effect of market news, option valuation,

farm risk portfolio management, etc.) will need to account for the long memory property

in commodity return volatilities.
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Table 3-1: Summary Statistics of Returns

Corn Soybean Cattle Hogs Gasoline Gold

 

First Day 1/02/80 1/02/80 1/02/80 1/02/80 1/02/91 1/02/80

Last Day 3/30/01 12/29/00 12/29/00 12/29/00 12/29/00 12/29/00

Sample Size 5362 5300 5306 5306 2509 5283

Mean -0.016 -0.005 0.037 0.042 0.0406 -0.0298

High 8.606 7.806 2.867 6.307 12.107 9.745

Low -10.472 -11.665 -2.812 -7.632 -30.987 -9.909

Std. Dev. 1.279 1.341 0.898 1.403 1.9594 1.227

Key: The above statistics refer to 100A ln(P,), where P, is the price of the asset in time

period t.
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Table 3-2: Estimated MA-FIGARCH Models for Daily Futures Returns

 

Com Soybeans Cattle Hog Gasoline Gold

[.1 -0.0171 -0.0229 0.0456 0.0524 0.0097 -0.0367

(0.0152) (0.0152) (0.01 17) (0.0217) (0.0337) (0.0102)

0 0.061 8 -0.0220 * * 0.0695 -0.0247

(0.0151) (0.0144) (0.021 1) (0.0163)

(1 4 0.3154 0.3451 0.3718 0.3687 0.3179 0.2969

(0.0362) (0.0493) (0.0422) (0.0609) (0.0577) (0.0261)

00 0.2036 0.2727 0.0185 0.0621 0.7625 0.0399

(0.0473) (0.0607) (0.0141) (0.0386) (0.2151) (0.0288)

,6, 0.2542 0.3313 0.3603 0.3420 0.2852 0.1923

(0.0442) (0.0597) (0.0466) (0.0639) (0.0650) (0.0438)

,6, 0.0819 0.1206

(0.0212) (0.0202)

7 -0.1820 0.4218 0.0701 0.1933 -1.0264 0.0595

(0.0890) (0.1226) (0.0383) (0.0994) (0.2978) (0.0587)

m3 -0.003 0.016 -0.170 -0.142 -0.166 -0.097

m4 4.218 4.917 3.100 3.079 3.916 8.750

Q(20) 20.232 21.446 29.906 17.147 25.765 22.476

Q2.(20) 30.887 34.976 16.875 21.426 13.407 19.697

W 76.092 48.950 77.698 36.699 30.406 55.693

 

Key: Robust standard errors based on QMLE are in parentheses below the corresponding

parameter estimates. The diagnostic statistics Q(20) and 02(20) are the Ljung-Box

statistics based on the first 20 autocorrelations of the standardized residuals and the

autocorrelations of the squared standardized residuals respectively. The statistics m3 and

m are the sample skewness and kurtosis respectively of the standardized residuals.

The symbol * indicates that MA(S) and MA(10) models respectively were estimated for

live cattle and live hogs respectively. The parameter estimates are not reported to

conserve space.
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Table 3-3: Summary Statistics for Five Minute Futures Returns

 

Number of Number of First Last time

trading days intraday intervals time period period

Corn 471 44 9:40 13:15

Soybeans 409 44 9:40 13: 1 5

Gasoline 401 63 10:00 15:00

Live Cattle 405 45 9:20 13:00

Live Hogs 400 45 9:20 13:00

Gold 401 72 8:30 14:25

Corn Soybean Cattle Hogs Gasoline Gold

First Day 5/03/99 5/03/99 5/03/99 5/03/99 5/03/99 5/03/99

Last Day 3/30/01 12/28/00 12/28/00 12/28/00 12/28/00 12/28/00

Sample Size 20724 17996 18225 18000 25263 25842

Mean -0.003 -0.001 0.013 0.027 0.033 -0.009

High 14.706 14.721 7.231 22.422 33.416 25.168

Low -15.783 -14.846 -7. l 60 -23.530 -32.308 -28.664

Standard Dev. 1.658 1.571 0.819 1.982 2.463 1.052
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Table 3-4: Estimated MA-FIGARCH model for Filtered High Frequency Futures

 

Returns

Corn Soybean Cattle Hog Gasoline Gold

Sample 10 min. 10 min. 15 min. 15 min. 15 min. 15 min.

frequency

p -0.0030 -0.0023 0.0031 0.0091 0.0145 -0.0037

(0.0017) (0.0021) (0.0015) (0.0032) (0.0039) (0.001 1)

0 -0.1560 -0.0659 -0.0525 -0.0490 -0.0274 -0.0750

(0.01 12) (0.0120) (0.0144) (0.0158) (0.0127) (0.0134)

(1 0.2429 0.2213 0.2097 0.3503 0.1843 0.2047

(0.0368) (0.0329) (0.0367) (0.0620) (0.0218) (0.0421)

0) 0.0014 0.0018 0.0024 0.0030 0.0449 0.0026

(0.0004) (0.0005) (0.0019) (0.0012) (0.0062) (0.0006)

0 0.8866 0.8736 0.4234 0.7242 0.0572 0.2534

(0.0339) (0.0309) (0.3885) (0.0816) (0.0291) (0.1666)

0 0.8314 0.8279 0.3450 0.5485 0.3573

(0.0462) (0.0417) (0.3810) (0.0964) (0.1726)

m3 0.366 0.106 -0.1 1 1 -0.199 -0.134 0.048

m4 6.882 7.335 4.728 6.138 5.151 8.508

Q(20) 28.673 19.973 17.685 23.944 34.336 25.893

Q2(20) 16.592 15.556 7.917 24.340 17.650 11.566

W 43.548 45.173 32.716 31.944 71.753 23.619

 

Key: As for Table 3-2
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Table 3-5: Long Memory Parameter Estimation at Different Daily Sample

 

Frequencies.

1 days 2 days 3 days 4 days 5 days

Corn

FIGARCH 0.3154 0.2734 0.3096 0.3312 0.2510

(0.0362) (0.0460) (0.0670) (0.0833) (0.0671)

Local Whittle 0.4072 0.3446 0.3052 0.3122 0.2359

(0.0376) (0.0471 ) (0.0539) (0.0592) (0.0635)

Soybeans

FIGARCH 0.3451 0.3403 0.4052 0.3096 0.3294

(0.0493) (0.0780) (0.1385) (0.0783) (0.0921)

Local Whittle 0.3902 0.3688 0.3918 0.3356 0.3260

(0.0378) (0.0474) (0.0541) (0.0592) (0.0638)

Live Cattle

FIGARCH 0.3718 0.4399 0.4208 0.4335 0.4747

(0.0422) (0.0863) (0.0821) (0.0984) (0.1395)

Local Whittle 0.3866 0.3383 0.3361 0.3234 0.3226

(0.0378) (0.0472) (0.0539) (0.0592) (0.0603)

Live Hogs

FIGARCH 0.3687 0.3041 0.3085 0.2900 0.241 1

(0.0609) (0.0578) (0.0659) (0.0935) (0.0805)

Local Whittle 0.4061 0.3416 0.3609 0.2987 0.2455

(0.0378) (0.0472) (0.0539) (0.0592) (0.0603)

Gasoline

FIGARCH 0.3179 0.3140 0.2851 0.2999 0.2052

(0.0577) (0.0707) (0.1041) (0.1430) (0.0874)

Local Whittle 0.2935 0.2548 0.2967 0.2722 0.2400

(0.0481) (0.0603) (0.0689) (0.0760) (0.0818)

Gold

FIGARCH 0.2969 0.3435 0.2754 0.3357 0.3108

(0.0261) (0.0520) (0.0400) (0.0470) (0.0857)

Local Whittle 0.4323 0.3766 0.3565 0.3659 0.3432

(0.0378) (0.0474) (0.0541) (0.0595) (0.0638)
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Table 3—6: Long Memory Parameter Estimation at Different Intraday Sample

 

 

 

 

 

 

Frequencies.

Corn 10 min- 20 min- 55 min- 1 hr. 50 min.

FIGARCH 0.2429 0.1919 0.2196 0.0814

(0.0368) (0.0430) (0.0951) (0.1556)

Local Whittle 0.1941 0.2037 0.1622 0.1652

(0.0255) (0.0324) (0.0462) (0.0595)

Soybeans 10 min. 20 min- 55 min. 1 hr. 50 min.

FIGARCH 0.2213 0.2689 0.2431 0.31 1 1

(0.0329) (0.0560) (0.0758) (0.1378)

Local Whittle 0.2533 0.2365 0.1706 0.1448

(0.0268) (0.0340) (0.0486) (0.0625)

Live Cattle 15 min. 25 min- 45 min- 1 hr. 15 min.

FIGARCH 0.2097 0.2580 0.2519 0.2483

(0.0367) (0.0492) (0.0806) (0.0986)

Local Whittle 0.2128 0.1833 0.1796 0.1421

(0.0307) (0.0366) (0.0451) (0.0540)

Live Hogs 15 min. 25 min. 45 min. 1 hr. 15 min.

FIGARCH 0.3503 0.3987 0.3936 0.4045

(0.0620) (0.0835) (0.1 127) (0.1405)

Local Whittle 0.2993 0.3414 0.2988 0.2802

(0.0308) (0.0368) (0.0453) (0.0543)

Gasoline 15 min. 35 min- 45 min. 1 hr. 45 min.

FIGARCH 0.1843 0.2672 0.2215 0.2191

(0.0218) (0.0556) (0.0590) (0.0828)

Local Whittle 0.2243 0.1876 0.1870 0.2436

(0.0274) (0.0376) (0.0401) (0.0543)

Gold 15 min- 45 min- 1 hr. 30 min. 2 hr. min.

FIGARCH 0.2047 0.2870 0.3167 0.4403

(0.0421) (0.3087) (0.1 180) (0.2742)

Local Whittle 0.3832 0.3818 0.2704 0.2486

(0.0261 ) (0.0381) (0.0486) (0.0540)
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Figure 3-2. Autocorrelation of Daily Corn Futures
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Figure 3-4. Autocorrelation of Daily Soybean Futures
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Figure 3-5. Autocorrelation of Filtered Daily Soybean Futures
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Figure 3-6 Correlograms for Absolute Raw and Filtered Five-minute Returns
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Figure 3-7 Fitted Intraday Volatility Pattern by the FFF filtering
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Appendix

The regular opening and closing of commodity markets and the institutionalized

features of lunch hours and so forth give rise to strong intra-day periodicity that is readily

observable from the recurrent U-shaped patterns in the correlograms of the squared and

absolute returns data. This is similar to but difi‘erent from the currency markets where

world-wide trading occurs. Following Andersen and Bollerslev (1998), we first remove

these deterministic intra-day periodicities by applying Gallant’s Flexible Fourier Form

(FFF) filter; see Gallant (1981) and (1982). The estimated model becomes

J’m = E(y,,,,)+(a, sl,n 21.nN-l/2 ) (Al)

where E(y,,n) is the unconditional mean of returns, 0', is the conditional variance of

daily returns, SM is a deterministic function to represent intra-day seasonality, 2,,n is an

i.i.d(0,1) process, which is independent of the daily volatility process 0', , and N is the

number of return intervals per day. From equation (Al),

x”, = Zln I y”, — E(y,,,,) | —ln(0',2)+ ln(N) = ln(s,,,,2)+ ln(zzm).

The observable variable xm is regressed on a nonlinear function of the time interval n,

and daily volatility 0', is pre-estimated from the MA-FIGARCH model using the daily

futures return, equivalently,
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xr,=n f(9§9’ n)+u,,,,,

where “Ln = ln(zzm) - E [ln(22,,,,)] is an i.i.d.(0,1) process and the functional form forf

is

2
n

f(9;,’n)= 20!}. {#Oj'i'luljiN] +#2j—N

F—0 2

+Zp—1,6€,k[pc.os(p27rn/N)+6Spsin(p27m/N)] (A2)

N N

where N,=(l/N)Zi=(N+1)/2, and N2 =(1/N)Zi2 =(N+1)(2N+1)/6. On taking

i=1 i=1

the variable x”, as the dependent variable, the parameters in equation (A2) were

estimated by OLS. The intra-day periodicity for interval n, on day t is then estimated as

gm, = T.[exp(f,,n nil/[2121,” / N)Zn=l,N exp(f,‘n /2)]. (A3) '

The 10- or 15-minute high frequency returns are then filtered by the estimated intra-day

periodicity series s”, to generate the filtered returns, which are defined as

ytm = yt,n /§t,n ' (A4)
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The same filtering approach is also used to remove yearly seasonality existing in

daily absolute returns. We use the sum of squared daily returns for each year as a

substitute for the conditional volatility factor of the corresponding year since the number

of sample years is less than 30 for all the commodities and is too short to model

conditional variances properly. Alternatively, since we have a sufficient number of daily

return observations within each year, the sum of squared daily returns yield desirable ex-

post volatility measures for the associated year. The volatility measure is called “realized

volatility” in the literature, including Andersen, Bollerslev, Diebold, and Labys (2001 ,

2003). They provided theoretical support for the use of the realized volatility measure

and empirically showed the forecasting and modeling performance of the volatility

measures in comparison to parametrically estimated conditional variances. The realized

volatility series for the commodity futures market is analyzed in chapter 4. The details

for the Fourier flexible functional regressions for the filtering are not reported here, but

are available upon request.
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Table A-1: Estimated MA-FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Corn

(The sample period: 1/02/80 — 3/30/01)

 

1 days 2 days 3 days 4 days 5 days

T 5362 2681 1787 1340 1072

p -0.0171 -0.0271 -0.0305 -0.0226 -0.0684

(0.0152) (0.0321) (0.0481) (0.0674) (0.0853)

0 0.0618 0.0206 0.0122 0.0225 0.0172

(0.0151) (0.0212) (0.0249) (0.0291) (0.0309)

d 0.3154 0.2734 0.3096 0.3312 0.2510

(0.0362) (0.0460) (0.0670) (0.0833) (0.0671)

0) 0.2036 0.5326 0.7719 0.6386 0.9331

(0.0473) (0.1660) (0.2935) (0.3850) (0.7374)

13 0.2542 0.1788 0.2451 0.2848 0.1426

(0.0442) (0.0583) (0.0855) (0.1083) (0.0969)

y -O.1820 -0.3458 -07737 02777 0.5884

(0.0890) (0.2751) (0.4779) (0.7623) (1.2967)

m3 -0003 -0020 0.060 0.1 16 0.139

m4 4.218 3.955 3.932 3.836 4.002

Q(20) 20.232 23.658 19.151 17.220 13.021

Q2(20) 30.887 21.600 21.215 15.462 15.388

w 76.092 35.281 21.362 15.793 13.399

 

Key: As for Table 3-2
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Table A-2: Estimated MA-FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Soybean

(The sample period: 1/02/80 — 12/29/00)

 

1 days 2 days 3 days 4 days 5 days

T 5300 2650 1766 1325 1060

p. 0.0229 -0.036O -0.0614 -0.0623 -0.0218

(0.0152) (0.0302) (0.0464) (0.0598) (0.0750)

0 -00220 -0.0234 .0.0090 -0.0250 0.0457

(0.0144) (0.0206) (0.0252) (0.0297) (0.0304)

d 0.3451 0.3403 0.4052 0.3096 0.3294

(0.0493) (0.0780) (0.1385) (0.0783) (0.0921)

(0 0.2727 0.5874 0.9308 1.5733 1.2153

(0.0607) (0.1934) (0.3575) (0.5494) (0.6612)

13 0.3313 0.2894 0.3571 0.1907 0.1695

(0.0597) (0.0961) (0.1625) (0.0981) (0.1164)

y -O.4218 -O.866O -1.9046 -2.3028 -1.0082

(0.1226) (0.3349) (0.4880) (0.8459) (1.1923)

m3 0.016 0.033 0.104 0.238 0.215

m4 4.917 4.347 3.700 3.426 3.862

Q(20) 21.446 18.607 14.427 17.265 15.823

Q2(20) 34.976 27.228 16.050 18.887 17.339

w 48.950 19.027 8.561 15.644 12.791

 

Key: As for Table 3-2
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Table A-3: Estimated MA-FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Live Cattle

(The sample period: 1/02/80 — 12/29/00)

 

1 days 2 days 3 days 4 days 5 days

T 5306 2653 1768 1326 1061

u . 0.0456 0.0948 0.1482 0.1882 0.2244

(0.01 17) (0.0213) (0.0308) (0.0446) (0.0525)

9 It

(1 0.3718 0.4399 0.4208 0.4335 0.4747

(0.0422) (0.0863) (0.0821) (0.0984) (0.1395)

0) 0.0185 0.0485 0.1 161 0.3017 0.3993

(0.0141) (0.0360) (0.0801) (0.1507) (0.1989)

[31 0.3603 0.3867 0.3401 0.4168 0.4051

(0.0466) (0.0901) (0.0878) (0.1037) (0.1380)

[32 0.0819 0.1174 0.0959 0.0617 0.0164

(0.0212) (0.0270) (0.0310) (0.0324) (0.0513)

y 0.0701 0.0304 -0.0674 -0.6927 -0.7675

(0.0383) (0.1186) (0.2362) (0.3897) (0.5539)

m3 -0.170 -0.186 -0.195 -0.225 -0.310

7724 3.100 3.275 3.175 3.274 3.290

Q(20) 29.906 13.801 15.224 15.729 9.886

Q2(20) 16.875 14.327 12.698 15.723 17.826

W 77.698 25.975 26.259 19.404 1 1.583

 

Key: As for table 3-2. (*) indicates that we omitted MA(5) coefficient estimates here

since they are not important to our argument in the current chapter.
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Table A-4: Estimated MA-FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Live Hogs

(The sample period: 1/02/80 - 12/29/00)

 

1 days 2 days 3 days 4 days 5 days

T 5306 2653 1768 1326 1061

p 0.0524 0.0987 0.1526 0.2184 0.2408

(0.0217) (0.0467) (0.0625) (0.0867) (0.1 164)

9 11:

d 0.3687 0.3041 0.3085 0.2900 0.241 1

(0.0609) (0.0578) (0.0659) (0.0935) (0.0805)

(0 0.0621 0.3920 0.5817 1.5508 2.9756

(0.0386) (0.1905) (0.31 16) (0.5974) (1.0538)

Br 0.3420 0.2895 0.2526 0.2225 0.1020

(0.0639) (0.0634) (0.073 1) (0.0964) (0.0797)

132 0.1206 0.0335 0.0168 -0.0349 -0.0680

(0.0202) (0.0291 ) (0.0500) (0.0471) (0.0645)

y 0.1933 0.0117 0.0930 -1.3551 -2.5735

(0.0994) (0.4768) (0.5817) (0.9273) (1.2072)

m3 -0.142 -0.278 -0.248 -0.349 -0.226

m4 3.079 3.636 3.622 3.734 3.648

Q(20) 17.747 16.775 1 1.670 8.097 1 1.780

Q2(20) 21.426 19.681 16.352 21.553 6.912

W 36.699 27.644 21.951 9.615 8.974

 

Key: As for table 3-2. (*) indicates that we omitted MA(lO) coefficient estimates

here since they are not important to our argument in the current chapter.
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Table A-5: Estimated MA-FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Gasoline

(The sample period: 1/02/91 — 12/29/00)

 

1 days 2 days 3 days 4 days 5 days

T 2508 1254 836 627 501

p. 0.0097 0.0148 0.0252 0.0806 0.1 140

(0.0337) (0.0692) (0.1063) (0.1366) (0.1820)

0 0.0695 0.0303 -0.0176 0.0017 0.0050

(0.0211) (0.0286) (0.0386) (0.0373) (0.0472)

d 0.3179 0.3140 0.2851 0.2999 0.2052

(0.0577) (0.0707) (0.1041) (0.1430) (0.0874)

00 0.7625 1.6346 3.4137 3.8882 8.2542

(0.2151) (0.5864) (1.6571) (2.6813) (3.4729)

(3 ' 0.2852 0.2949 0.2026 0.2829 0.0715

(0.0650) (0.0835) (0.1189) (0.1727) (0.1221)

y 4.0264 -2.2562 4.1021 -5.1878 -7.9280

(0.2978) (0.8571) (2.0028) (3.2309) (4.8035)

m3 -O.166 -0132 -0270 0.037 0.086

7714 3.916 3.444 3.716 3.467 3.375

Q(20) 25.765 20.823 17.493 22.675 24.154

02(20) 13.407 20.628 23.396 12.190 14.627

w 30.406 19.745 7.495 4.400 5.509

 

Key: As for Table 3-2
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Table A-6: Estimated MA—FIGARCH Models for Temporally Aggregated Daily

Futures Returns for Gold

(The sample period: 1/02/80 — 12/29/00)

 

1 days 2 days 3 days 4 days 5 days

T 5283 2641 1761 1320 1056

p -0.0367 -0.0702 -0. 1050 -0.1295 -0. 1 351

(0.0102) (0.0200) (0.0301) (0.0393) (0.0550)

0 -0.0247 -0.0166 -0.0342 -0.0216' -0.0557

(0.0163) (0.0262) (0.0384) (0.0390) (0.0380)

d 0.2969 0.3435 0.2754 0.3357 0.3108

(0.0261) (0.0520) (0.0400) (0.0470) (0.0857)

(0 0.0399 -0.0368 -0.0526 -0.3467 -0.6776

(0.0288) (0.0465) (0.1867) (0.1012) (0.3057)

[3 0.1923 0.2221 0.0805 0.1890 0.2219

(0.0438) (0.0465) (0.1426) (0.0837) . (0.1269)

y 0.0595 0.3543 0.5537 1.1286 2.9869

(0.0587) (0.1567) (0.3100) (0.3815) (1.6484)

m3 -0.097 0.1 18 0.031 0.248 0.726

m4 8.750 7.674 6.833 6.734 12.135

Q(20) 22.476 23.539 26.282 16.538 23.584

Q2(20) 19.697 26.551 14.605 10.474 8.722

W 55.693 61.185 22.961 42.882 5.570

 

Key: As for Table 3-2
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TableiA-7: Estimated MA(l)-FIGARCH(1,d,l) model for Temporally Aggregated

Filtered High Frequency Futures Returns for Corn

(The sample period: 5/03/99 - 3/30/01)

 

10 minute 20 minute 55 minute 1 10 minute

T 10362 5181 1884 942

p -0.0030 -0.0072 -0.0126 -0.0220

(0.0017) (0.0038) (0.01 10) (0.0222)

0 -0.1560 -0.0512 -0.0082 -0.0142

(0.01 12) (0.0158) (0.0276) (0.0370)

(1 0.2429 0.1919 0.2196 0.0814

(0.0368) (0.0430) (0.0951) (0.1556)

(0 0.0014 0.0147 0.0135 0.0934

(0.0004) (0.0107) (0.0134) (0.1416)

0 0.8866 0.4406 0.7952 0.6742

(0.0339) (0.3437) (0.1824) (0.3633)

¢ 0.8314 0.3647 0.7172 0.6372

(0.0462) (0.3341) (0.2076) (0.3489)

m3 0.366 0.068 0.026 -0.265

7724 6.882 9.105 6.102 6.463

Q(20) 28.673 16.375 12.699 17.424

Q2(20) 16.592 13.106 6.181 19.453

W 43.548 19.845 5.340 0.391

 

Key: As for Table 3-2
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Table A-8: Estimated MA(l)-FlGARCH(l,d,l) Model for Temporally Aggregated

Filtered High Frequency futures returns for Soybean

(The sample period: 5/03/99 — 12/28/00)

 

10 minute 20 minute 55 minute 110 minute

T 8998 4499 1636 818

p -0.0023 -0.006 -0.0136 -0.0231

(0.0021) (0.0043) (0.0122) (0.0247)

0 -0.0659 0.0027 -0.0042 -0.03 14

(0.0120) (0.0158) (0.0257) (0.0385)

(1 0.2213 0.2689 0.2431 0.31 1 1

(0.0329) (0.0560) (0.0758) (0.1378)

03 0.0018 0.0036 0.0184 0.0274

(0.0005) (0.0014) (0.0123) (0.0232)

[3 0.8736 0.8377 0.6989 0.7143

(0.0309) (0.0414) (0.1262) (0.0783)

(b 0.8279 0.7182 0.5075 0.4165

(0.0417) (0.0537) (0.1210) (0.1446)

m3 0.106 0.049 0.033 0.107

7724 7.335 6.480 4.802 4.409

Q(20) 19.973 14.269 18.634 17.421

Q2(20) 15.556 20.063 26.673 25.046

W 45.173 23.065 10.302 5.399

 

Key: As for Table 3-2



Table A-9: Estimated MA(l)—FIGARCH(p,6,q) Model for Temporally Aggregated

Filtered.5-minute returns for Live Cattle futures

(The sample period: 5/03/99 — 12/28/00)

 

15 minute 25 minute 45 minute 75 minute

T 6075 3645 2025 1215

p 0.0031 0.0056 0.0080 0.0151

(0.0015) (0.0026) (0.0049) (0.0086)

0 -0.0525 .0.0253 -0.0431 0.0696

(0.0144) (0.0180) (0.0230) (0.0351)

(1 0.2097 0.2580 0.2519 0.2483

(0.0367) (0.0492) (0.0806) (0.0986)

0) 0.0024 0.0020 0.0029 0.0046

(0.0019) (0.0012) (0.0016) (0.0032)

13 0.4234 0.6557 0.7716 0.7722

(0.3885) (0.1583) (0.0882) (0.0887)

0 0.3450 0.5147 0.6269 0.6064

(0.3810) (0.1613) (0.1211) (0.1105)

m3 -0.1 1 1 -0029 -0042 0.133

m4 4.728 4.862 4.894 3.927

Q(20) 17.685 18.159 25.909 23.868

Q2(20) 7.917 13.639 13.347 10.007

w 32.716 27.537 9.775 6.108

 

Key: As for Table 3-2



Table A-10: Estimated MA(l)-FlGARCH(p,6,q) Model for Temporally Aggregated

Filtered.5-minute returns for Live Hog futures

(The sample period: 5/03/99 — 12/28/00)

 

15 minute 25 minute 45 minute 75 minute

T 6000 3600 2000 1 200

p 0.0091 0.0155 0.0270 0.0402

(0.0032) (0.0058) (0.0105) (0.0171)

0 -0.0490 -0.0124 -0.0389 0.0063

(0.0158) (0.0214) (0.0252) (0.0349)

(1 0.3503 0.3987 0.3936 0.4045

(0.0620) (0.0835) (0.1 127) . (0.1405)

0) 0.0030 0.0033 0.0088 0.0083

(0.0012) (0.0014) (0.0050) (0.0076)

0 0.7242 0.7698 0.6719 0.7349

(0.0816) (0.0474) (0.1079) (0.0956)

0 0.5485 0.5081 0.4046 0.4788

(0.0964) (0.0658) (0.0921) (0.1297)

m3 -0.199 -0.232 -0.283 -0.100

m4 6.138 6.064 5.465 5.058

Q(20) 23.944 20.766 17.932 15.106

Q2(20) 24.340 9.11 1 23.959 25.850

W 31.944 22.779 12.205 8.287

 

Key: As for Table 3-2



Table A-ll: Estimated MA(l)-FIGARCH(p,6,q) Model for Temporally Aggregated

Filtered.5-minute returns for Gasoline futures

(The sample period: 5/03/99 — 12/28/00)

 

15 minute 35 minute 45 minute 105 minute

T 8421 3609 2807 1203

p. 0.0144 0.0295 0.0337 0.0683

(0.0039) (0.0092) (0.0121) (0.0294)

0 -0.0270 -0.0127 -0.0320 0.0209

(0.0127) (0.0184) (0.0191) (0.0258)

d 0.1725 0.2672 0.2215 0.2191

(0.0180) (0.0556) (0.0590) (0.0828)

0) -0.0745 0.0220 0.0522 0.1721

(0.0121) (0.0077) (0.0242) (0.1 181)

0 -0.6661 0.6872 0.5713 0.4257

(0.1391) (0.0675) (0.1 1 14) (0.1646)

11) -0.7085 0.5473 0.3915 0.1805

(0.1249) (0.0832) (0.1067) (0.1596)

m3 -0.129 -0.214 -0.152 -0.333

7724 5.078 4.804 4.498 4.213

Q(20) 34.733 22.744 30.990 20.415

Q2(20) 15.11 1 10.238 12.435 25.223

W 71.753 36.224 17.067 8.795

 

Key: As for Table 3-2



Table A-l2: Estimated MA(l)—FIGARCH(p,6,q) Model for Temporally Aggregated

Filtered.5-minute returns for Gold futures

(The sample period: 5/03/99 — 12/28/00)

 

15 minute 45 minute 1 hr. 30 min. 2 hr.

T 9624 3208 1604 1203

1.1 -0.0037 -0.0134 -0.0195 -0.0284

(0.001 1) (0.0037) (0.0107) (0.01 14)

0 -0.0750 —0.0368 -0.0130 -0.0130

(0.0134) (0.0365) (0.2437) (0.0481)

d 0.2047 0.2870 0.3167 0.4403

(0.0421) (0.3087) (0.1291) (0.2742)

0) 0.0026 0.0032 0.0024 0.0223

(0.0006) (0.0471 ) (0.0029) (0.0152)

[3 _ 0.2534 0.6250 0.7714 0.1646

(0.1666) (5.3126) (0.2648) (0.1522)

(11 0.3573 0.6230 0.6747

(0.1726) (5.0333) (0.3695)

m3 0.048 0.552 1.354 0.792

7714 8.508 13.644 18.805 9.259

Q(20) 25.893 27.094 29.200 21.872

Q2(20) 11.566 33.598 12.597 31.362

W 23.619 0.8643 6.0146 2.5788

 

Key: As for Table 3-2
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CHAPTER 4

REALIZED VOLATILITY IN COMMODITY FUTURES MARKETS

4.1. Introduction

This chapter considers the new concept of realized volatility (RV), which is

constructed from high frequency returns. We initially describe the new measurement and

its properties and then apply the idea to commodity futures markets for the six important

commodities considered in chapters 2 and 3. This study appears to be the first analysis

using these concepts for commodity futures markets.

One interesting finding in this study is that the pure volatility measure known

as realized volatility has almost ideal long memory features, which is consistent with

previous work of Anderson, Bollerslev, Diebold and Labys (2002), who examined

currency markets. We find that the commodity realized volatility is very well described

as a fractionally integrated process and, furthermore, appears to follow a Gaussian

distribution. At this level, our results are quite similar to the preceding literature, which-

has applied the concept of realized volatility to currency markets. However, unlike

previous studies, we suggest particular factors that may possibly generate and interact

with realized volatility series. In the context of commodity markets, these factors include

the time to maturity of the futures contract and also the arrival of important economic

news. Also, and particularly importantly, we consider a new concept: information flow,

which depends on the total number of transactions at each high frequency interval of the
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market being active. This information flow variable turns out to be simple to compute

and highly correlated with the measurement of realized volatility. In addition, this

chapter examines the dependency structures between the realized volatilities for the

different commodity futures data. This gives a clear indication of the mutual

dependencies between the factors driving agricultural-type commodities such as corn

and soybeans, while there is unsurprisingly little relationship between less related

commodities. There is also some evidence of fractional cointegration between the

realized volatility of com and that of soybeans.

In this chapter, section 2 provides formal and theoretical background information

for the concept of realized volatility. In section 3, we introduce and briefly discuss all of

the possible issues relevant to realized volatility before the empirical investigation

below. Section 4 investigates the stochastic properties of realized volatility to model and

forecast the volatility measurement. Various important economic factors relevant to

commodity futures markets are considered in section 5. Section 6 concludes the chapter.

4.2. Statistical Foundations of Realized Volatility:

Before defining the concept of realized volatility to be used in this chapter, it is

important to recognize that, historically, there has been an awareness of the desirability

of measuring the volatility associated with a continuous time diffusion process. In

particular, Merton (1980) and Nelson (1992) argue that, under the theoretical

assumption of a continuous diffusion process, the inherent volatility can be best

measured by integrating high frequency returns data. Indeed, the finance literature has

long focused on issues like instantaneous variance in the context of option pricing. The
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relevant previous studies include Hull and White (19887), Melino (1994), Scott (1987),

and Wiggins (1987). The basic idea of realized volatility is that it can approximate the

theoretical quadratic variation when the sample frequency within the time interval

considered is sufficiently high, and in turn, it can provide a consistent estimator for the

true latent volatility factor. These ideas are descendants of the approach of Porterba and

Summers (1986), French, Schwert, and Stambaugh (1987), and Schwert (1989), who

used daily returns to construct a measure of monthly volatility. Hence, the high

frequency returns data can be used to construct a measure of integrated volatility by

summing squared intra-day returns.

However, the measurement of realized volatility is difficult due to the fact that

high frequency returns have a number of contaminating or complicating factors. In

particular, as seen in chapter 3 of this dissertation, the high frequency commodity returns

data are intimately involved with market microstructure factors, including a bid-ask

spread and pronounced intra-day periodicity. Hence, the high frequency returns are first

filtered by Gallant’s (1981) Flexible Fourier Form (FFF) method before subsequent

analysis, as was done in chapter 3. There is also the issue of spreads and jumps occurring

at certain times. Before discussing the issues and practical problems with the

implementation of the concept of realized volatility in commodity markets, we will first

define the mathematical foundations of this concept.

The quadratic variation theory provides the theoretical foundation of realized

volatility as a model-free unbiased estimator of conditional variance. Quadratic variation

is a measure of the sample path oscillation for a special class of stochastic processes,

known as semi-martingale processes, which have finite variations along their paths. For
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semi-martingale process X (t) along the sample path (6 [0, T] with a positive integer T,

we define the quadratic variation process as follows:

[[X(r),X(t)]] a X(r)2 —2L’IX(8_)dX(s), 0 St 3 T, (4.1)

where the notation X_ indicates the process whose value at s is X_ = limu_,s,“S (XH ).

We assume that these processes have a finite variation on [0, T]. We also assume that the

stochastic integral IHdX = {fiH (s) dX (s)} is well defined for semi-martingale

te[0,T]

processes X. Further, we define X(t,h) E X(t)—X(t—h) for OS hsr s T. We

proceed to the following important properties in interpreting the quadratic variation as a

volatility measure.

Property (i):

If we define an increasing sequence of {0,z'm,0,rm,l,....} so that

0 S Tm,o S rmJ S ..., over the fixed time interval [0,T] with supjzl (Tm,j+1 -— rm,j)—> 0

and supjzl rm,j —) T for m —> 00 with probability one, then we have

{X(0)Y(0)+z,-21[X(’ A 71".} )—X(t A Tm,j—l )][X(t A z""’J')—X(t A Tm’j’l )J}

lim

m—no

—> [[X(t),X(t)]] , (4-2)
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where the convergence is uniform on [0, T] in probability and (z A x) denotes the

minimum of the quantities z and x. . The lefi-hand side of equation (4.2) above can be

approximated by the sum of squared returns at a sufficiently fine sample frequency, and

the right-hand side in (4.2) represents the quadratic variation measure according to the

definition in (4.1).

Property (ii):

If X (t) is a locally square integrable local martingale,

2

E[X(t,h) —([[X(t),X(z)]]—[[X(t—h),X(z—h)]])| F,_,,] = 0, 0 < h _<_: s T, (4.3)

where F,_h is the information set available at time (t-h).

The formal description of quadratic theory can be utilized for a deep appreciation

of the properties of a continuous time return process. A continuous arbitrage-free price

process for general financial assets is well known to be a special type of semi-martingale,

and thus, quadratic theory can be applied to this process under the assumptions

mentioned above. The price process can be decomposed into a local martingale and a

predictable finite variation process. The local martingale process is an “unpredictable”

innovation. Then we can express the arbitrage-free logarithmic price process p(t) over

the interval [0,T] as follows:

p(’)-P(0)=M(’)+A(1)~ (4.4)
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where M (t) is a local martingale and A (r) is a locally integrable and predictable

process of finite variation which is deterministic drifi for the price process. Since A (t) is

fully predictable and deterministic, [[A (t), A (t)]| = 0 can be implied. This argument is

intuitively equivalent to the fact that the variance of deterministic components should be

zero and conditional mean is of no import in considering conditional variance. Then, we

are allowed to focus only on martingale terms M (t) in considering the quadratic

variation of p(t) as follows:

(p(,),p(t)y=(M(.),M(.)). (45>

According to the quadratic variation theory and the assumption of a semi-martingale

price process, we can define the h-period quadratic variation for the continuous price

process as follows:

Qvaao)a[primal-172041121:-h)1
a flM(r),M(r)]|-|[M(t—h),M(r —h)]]

(4.6)

From equation (4.2), it is implied that the quadratic variation can be approximated by the

sum of squared high frequency returns for a given interval [1 — h,t]. Based on this

notion, we define the h-period Realized Volatility measure at time t,
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RI/(h)(r)-=-Zi=,,mhrf(m)(t—h+(i/m)) fori=1,2,...,m(h—1),mh, (4.7)

where rk,(m)(t—h+(i/m)) is equal to p(t—h+(i/m))—p(t—h+(i-1)/m). In fact,

the realized volatility in equation (4.7) is an empirical approximation for the left-hand

side of equation (4.2) over the interval [t - h,t] and, in turn, converges to the h-period

quadratic variation defined in equation (4.6) by the property in (4.2). Consequently, the

realized volatility is a consistent estimator of the theoretical volatility measure measured

by the quadratic variation.

Another important notion of the realized volatility is that the volatility measure

provides a model-free unbiased estimator of the conditional variance. This fact can be

clarified from the property stated in equation (4.3). If we assume thatM (t) is a' locally

square integrable martingale and make use of the property shown in equation (4.3), then

the conditional variance of p(t) is reduced to the conditional expectation of the squared

martingale term as follows:

ar(p(t,h)1 n4.) 2 E(M(t)2 14.).)—E(M(t)1m)2

E(M(l)2|1‘;-h)
(4.8)

E[[[M1)M(t)1|[[M(t—h).M(t—h)]l)lf}_h].

The first identity in equation (4.8) is simply a definition of the conditional variance for

the arbitrage price process, and the second equality is due to the assumption of a
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martingaleM (t). The last equality in equation (4.8) results from equation (4.3). The

term inside the expectation on the right hand side of the last equality in equation (4.8) is

the same as the volatility measure defined in (4.6). Consequently, the conditional

variance of the compounded return process over [t-h, t] interval is equivalent to the

conditional expectation of the quadratic variation over the interval. As discussed above,

the quadratic variation can be approximated by the realized volatility, as the number of

sub-sample periods within a given interval is sufficiently large. Thus, we state that the

realized volatility is an unbiased estimator for the conditional variance of the

compounded returns. We have not specified any functional form in our claim, (4.8) and

have instead utilized only the properties of the quadratic variation measure and the

assumption of a martingale price process based on the arbitrage-free price. On the other

hand, conventional GARCH models assume a parametric form to model conditional

variances. Thus, the realized volatility can be said to be a model-free unbiased estimator

for conditional variances.

In the theoretical asset and derivative pricing studies, it is frequently assumed that

logarithmic prices follow an univariate diffusion.

dp(t) =,u(t)dt+cr(t)W(t) (4.9)

where W (t) is a standard Brownian motion. Equivalently, we can rewrite the equation

as follows:
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p(t)—p(t —h) = I_h,tp(s)ds + I_h,ta(s)dW(s). (4.10)

By using the standard stochastic differential equation algebra and Ito’s Lemma, it follows

that

[dp(t):|2 = I_h,ta(s)2 ds. (4.11)

a(t)2 can be termed an instantaneous volatility under the diffusion set-up, and, by using

the volatility defined in (4.6), Q var}, (t)/h is close to a(t)2. Therefore, the integral of

0'(t)2 over the interval [t-h, t] is approximately equal to Qvarh (t) as follows:

Qvarh (t) E flM(t),M (01] —|IM (t — h).M (t — 17)]! = £41,102 (s)ds . (4.12)

Taking a conditional expectation for equation (4.12), then we have

E(Qvarh(’)|Fz-h)=€(I_h,,02(5)dS|Fz—h)- (4-13)

The expected value of the integral metric on the right-hand side of equation (4.13), called

“integrated volatility” in the literature, is of especially central interest in option pricing

studies, as in Hull and White (1987), Melino (1994), Scott, and Wiggins (1987). As
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shown above, the realized volatility over the interval [t-h, t] is an unbiased estimator of

the conditional expectation of Qvarh (t). Accordingly, the realized volatility provides an

unbiased estimator of the integrated volatility measure for pricing derivatives securities

and options.

In particular, for our applications to commodity markets, we consider the case of

a one-day horizon being indicated by h, since the daily time horizon is the sample

frequency that is of central interest for risk management, asset pricing, and portfolio

allocation. In particular, the realized volatility in our study is defined as follows:

RV, = 0.5111(2 ,=I,,,,,,rk2(m) (z — h +(i/m))). (4.14)

By using the properties of the quadratic variation under the assumption of a continuous

arbitrage-free price process, we found that the realized volatility is a consistent estimator

of true latent volatility and is a simple, unbiased estimator of conditional variances.

4.3. Practical Issues in the Calculation of Realized Volatility

High frequency commodity return data have some unique features and also some

features which may be shared with other asset markets, such as the possibility ofjumps

and discontinuities in the volatility process arising from major economic announcements.

One of the most important issues in realized volatility calculation is determining how to

model the persistence of the realized volatility. We pursue this issue by applying the long

memory model to the volatility measures. We also investigate the distributional
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properties of a realized volatility that is constructed from five-minute commodity futures

returns. The realized volatility measure is also used to derive the distribution of daily

commodity futures returns standardized by the new volatility measure. In addition, we

analyze various important economic factors that may affect realized volatility dynamics

by considering commodity-specific announcements, the time-to-maturity for the

commodity futures contracts, and an information flow variable. Our approach is

influenced by several previous studies. In particular, Andersen and Bollerslev (1998a)

and Andersen, Bollerslev, Diebold, and Vega (2002) have documented news

announcement effects on the five-minute return volatility for the US Dollar-Deutsch

Mark exchange rate. Also, Bauwens, Omrane and Giot (2003) directly analyzed the news

announcement effects on the realized volatility of Euro-Dollar foreign exchange returns.

In this chapter, we consider commodity-specific announcements as we analyze the news

effects on realized volatility using various time series methods. It appears from this study

that some commodities seem to depend on specific announcements, while major foreign

currencies rely on common macro news.

Unlike conventional financial assets, the volatility of commodity futures contracts

with different delivery dates appears to have its own discernible characteristics due to

possible seasonal patterns of the underlying physical products. Samuelson (1965) argues

that futures price volatility is likely to increase as the contract approaches maturity, which

has become known as the “Samuelson effect.” In that sense, we consider the time-to-

maturity effect on commodity futures return volatility. This time-to-maturity effect has

been documented in a variety of commodity futures market studies, such as Anderson

(1985), Milonas (1986), and Serletis (1992). Further, we consider information flow
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together with time to maturity in order to study the relationship between the realized

volatility and the time to maturity.

Another economic issue for the realized volatility analysis in this chapter is

mutual interdependence between the volatility measures for different commodities.

Intuitively, it seems reasonable that various physical aspects of the commodities

underlying the futures market may be related to their futures return volatilities. For

example, it is possible that the commodity futures return volatilities belonging to similar

commodity products have some dependence on one another. Later, we consider a time

series model to describe the contemporaneous interdependence between different

commodities’ futures return realized volatilities.

As noted before, realized volatility from commodity futures is one representation

of Volatility that does not require a parametric model and can be easily forecasted by a

simple time series econometric model.

4.4. Stochastic Properties for Realized Volatility for Modeling and Forecasting

4.4.1. The Distributional Facts of the Realized Volatility

The distributions of asset returns have been an important issue since

unconditional distributions of most asset returns are usually fat-tailed, and such a feature

has motivated conditional distributions relevant to various GARCH conditional variance

modelings. However, the conditional distributions still remain leptokurtic, although they

are less leptokurtic relative to the unconditional distributions. Turning to the distribution

issue, we describe distributional characteristics of the realized volatility process for the

commodities in Tables 4-2 and 4-3, while Table 4-1 shows that the unconditional

99



distribution of daily commodity futures returns is leptokurtic. In contrast to the raw daily

commodity returns, (i) realized volatilities appear to follow a normal distribution, and (ii)

daily commodity returns standardized by the realized volatility are also close to normal

random variables. To be precise, we assume that return process can be modeled as

follows:

’1 = 0'1 81. (4.15)

where r, represents return at time t, 0, denotes the time-varying conditional standard

deviation, and s, is independently and identically distributed with a zero mean and unit

variances for simplicity. The traditional GARCH model estimates conditional variance,

0.2, by assuming parametric form. As found in many previous studies, the distributions

of returns standardized by the GARCH estimated conditional variances seem to still have

higher kurtosis than a normal distribution, although the kurtosis seems to be lower than

an unconditional return distribution. As shown in Table 4-3, the kurtosis of daily

commodity returns noticeably decreases after standardization by the realized volatility.

In particular, the excess kurtosis for gold futures returns is remarkably reduced from 28.9

to 3.39 by standardization using the realized volatility. For live hogs, the associated

kurtosis is decreased from 7.04 to 2.92. The fact that standardized daily commodity

futures returns are normally distributed is supportive of the theoretical assumption of an

underlying continuous-time diffusion, which is found in many mathematical finance

studies. As shown from Figure 4-1 (a), the kernel density graphs for corn, soybean,

cattle, and gasoline realized volatilities are supportive of a normal distribution, while the
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density graphs for live hog and gold realized volatilities are still quite leptokurtic. The

kernel densities for the distributions of daily returns standardized by the realized

volatilities are presented in Figure 4-1 (b). For the standardized futures returns, the

kernel density functions look similar to those for the normal distributions for all the

commodities considered. From the realized volatility levels in Figures 4-2 (a) through

(1‘), we can observe some peaks in the realized live hog volatility and pronounced jumps

for the realized gold volatilities. This feature is consistent with the exceptional

leptokurtic distribution of the realized volatility for live hogs and gold. Other than this

abnormal data feature, the realized volatility seems to follow a normal distribution.

4.4.2. The Long Memory of Realized Volatility

One ofthe well-known facts of asset return volatility is that it is very persistent,

while returns underlying the volatility are serially uncorrelated. As discussed in Baillie

(1996), the ARFIMA model is a conventional parametric form used to describe slowly

decaying time series processes. The theoretical background for long memory has been

discussed in more detail in chapters 2 and 3. In the current chapter, we estimate a simple

ARFIMA(0,d,0) model to estimate the long memory parameter for the realized volatility.

For completeness of the long memory estimation, we also use the local Whittle semi-

parameter approach that is explained in chapter 3. The estimation results for the

ARFIMA and the local Whittle method are shown in Tables 4-4 and 4-5, respectively.

The long memory parameter estimates for the commodities are in the range of 0.2 to 0.3

in most cases. Some exceptions can be found for estimates for hogs and gold greater than

0.3. The long memory estimate values for all the commodities seem to be very similar
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for both parametric and semi-parametric methods. As shown in Figure 4-2, the realized

volatilities for hogs and gasoline seem to include some significant changes. Their higher

long memory estimates may be due to some possible structural breaks. This issue would

benefit from independent research but is not pursued firrther here. For the other

commodities without unusual data features, the long memory estimates are within a

stable range.

4.4.3. Forecast for Realized Volatility

Based on the theoretical background discussed in section 2, the realized volatility

generated from a sufficient number of high frequency sample returns is a consistent

estimator of true latent volatility factor under the assumption of an arbitrage-free price

process. In that sense, we are allowed to treat the realized volatility as an observable

proxy for the true underlying volatility and assess that the future realized volatility

measure is the “volatility” to be forecasted. We can evaluate various volatility forecasts

by considering which model provides the closest forecast to the realized volatility

measure. Following Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen and

Bollerslev (1998b), we evaluate the forecasting performance by using a simple least

square regression. The regression approach was originally employed in the literature to

evaluate forecasting of the conditional mean in Mincer and Zamowitz (1969). The

generic evaluation regression can be set up as follows:

V, =a0+alCV,_] +61, (4-16)
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where V. is the future volatility at time t, CV... is the one-period ahead forecast generated

under alternative conditional variance models, and e, is an error term. In principle, it can

be implied that do and a. should be equal to zero and unity, respectively, if we correctly

specify a forecasting model for the future volatility factor, for which

E (V, |Q,_l ) = a0 + alCV,_1 . As we assess how the future realized volatility is to be

forecasted, a natural candidate for a good volatility forecast is the one generated from the

past realized volatility time series, since they are very persistent, as illustrated by the long

memory estimation results for the ARFIMA and the semi-parametric estimation shown in

Tables 4-4 and 4-5. The other alternative volatility forecast is generated from the

GARCH-estimated conditional variances that have been elaborated by many previous

studies since Engle (1982) and Bollerslev (1986).

We empirically compare the forecasting performance of the ARFIMA forecast

with the GARCH forecast by running the following three OLS regression set-ups as

shown in Table 46

RV: = 170 +b1RVARFIMA.z—1 + 8: (4-17)

and

RV: = b0 + bZGGARCH,t—I + 51 ~ (4'18)

where R VARFIMA‘,_l denotes one period ahead forecasts from the ARFIMA(0,d,0) model

using the past realized volatility series and O'GARCHJ4 forecasts from the GARCH( 1 ,l)
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model using the compounded daily futures returns. Based on the robust standard errors

in Table 4-6, all the b1 estimates for the regression set-up (4.17) are not significantly

different from one another, although the b0 estimates are significantly different from zero

only for live cattle and gasoline. Our finding implies that the ARFIMA forecasting

model is correctly specified in most cases. The forecast ability of the GARCH estimated

conditional variance model'4 can be evaluated by using the set-up (4.18). According to

Table 4-6, all the b2 estimates for the GARCH forecasts are more different fiom one

another than the corresponding estimates for the ARFIMA forecasts. In particular, the b2

estimates for the regression (4.18) seem to be significantly different from one another for

live cattle, live hogs, gasoline, and gold. The GARCH conditional variance model for

those commodities seems to be mis-specified. Thus, it can be implied that using

historical realized volatility series with the ARFIMA model seems to provide more

correctly specified conditional variances than the GARCH model. We have some mixed

evidence for R squares, since the R squares for (4.17) are higher than for (4.18) for com,

soybeans, and live cattle, while we found the opposite to be true of the other

commodities.

For a more fair comparison of the forecasting performance of the ARFIMA model

and the GARCH model, we regress the realized volatility of the ARFIMA forecast and

the GARCH estimated conditional variances jointly as follows:

R V: = 170 + b1R VARFIMA,r—1 + 1’20GARCH,t—1 + 5}- (4J9)

 

'4 We also performed comparisons of the ARFIMA forecasts with the FIGARCH estimated conditional

variances. The results made no meaningful difference and, thus, are not reported separately in the current

paper.
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Including both types of forecasts seem to improve forecasting performance quite

significantly relative to the individual regressions of (4.17) and (4.18), since the adjusted

R squares are higher than those for (4.17) and (4.18)”. All of the b. estimates, except for

those for corn, seem to be significantly different from one. The b2 coefficient estimates

for the GARCH forecast are also significantly different from one. However, the sum of

the b. and b2 estimates for the regression equation (4.19) seems to be close to one for the

commodities, with the exception of gold futures. This result implies that a linear

combination of the ARFIMA forecast and the GARCH forecast may jointly serve to

specify the correct forecasting model and may yield improved forecasting ability with

higher R squares. Our findings suggest that the ARFIMA forecasts can provide a correct

forecasting model when we forecast the firture realized volatility for commodity futures,

and their forecasting performance is not inferior to the GARCH model.

4.5. Economic Factors for the Commodity Futures Realized Volatility

An important possibility is that economic variables are relevant factors with

which to describe commodity futures return volatility. To consider various types of

economic factors under an integrated framework, we estimate a simple ARFIMA(0,d,0)

model for each realized volatility with announcement dummies, time-to—maturity

variables, and another commodity’s realized volatility. This is a joint estimation for all of

the considered coefficient estimates, including the long memory parameter. The

estimation model takes the following form:

 

'5 We report the adjusted R squares for (4-8) for apprOpriate interpretation, since R squares generally tend

to increase with the number of regressors.
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61

(1-1.) (y, —’U_Zi=—1,26ili —y -TM, —)ex,)= 5,, (4.20)

where TM, is the time-to-maturity variable, 1,- indicates i-days after the relevant

announcements, 6, denotes the coefficient for 1,- , and x, is the realized volatility of a

counterpart commodity that is considered. The variable TM. is calculated as the ratio of

the number of remaining trading days (as of day t) before the futures contract’s expiration

to the total number of trading days within the "nearby" contract, so that the time-to-

maturity variable is scaled between zero and one.

4.5.1. Announcement Effects

Intuitively, it is reasonable that commodity-specific announcements may have a

meaningful relation with the relevant commodity volatility, while more general economic

announcements can indirectly affect commodity markets. Recent empirical studies,

including Andersen, Bollerslev, Diebold, and Vega (2003) and Andersen and Bollerslev

(1998a), document the effect of macroeconomic announcements and news on the five-

minute DM-US dollar return volatility. Cai, Cheung, and Wong (2001) studied how

various relevant economic announcements influence five-minute gold futures return

volatility. In this section, we focus on more specific announcements for the commodities

in order to investigate the announcement effect together with other economic factors. An

important extension from the previous studies is that we use the realized volatility

measure.
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We use the monthly announcement for our analysis since, for example, quarterly

announcements are too sparse over the current sample period to extract sufficient

information for daily volatility, and also, weekly announcements are not available for the

commodities considered here. Since including more general announcement dummies

may reduce parameter estimation efficiency and the degrees of freedom without making a

difference for the results of the estimation, we therefore only include the most relevant

announcements for each commodity. We select the following announcements for each

commodity:

(l) the monthly crop production report for corn and soybeans;

(2) the monthly cattle report for live cattle;

(3) the utility capacity report for unleaded gasoline; and

(4) the production price index announcement for gold.

The hog announcements are quarterly rather than monthly-based for the sample periods

of our data set, so we do not consider the announcement effects for live hogs in the

current section. Since we are only considering other economic effects jointly with the

announcements, we do not consider live hogs any further in the rest of this chapter. To

analyze dynamic patterns of the announcement timing effect on the volatility, we classify

announcement timing effects further as (1) pre-announcement effects, (2)

contemporaneous effects, and (3) post-announcement effects. The pre-announcement

argument is to capture any possible news-leakage effect prior to the announcements. To

consider these three types of announcement timing effects, we assign dummy variables

for one day before, the day of, one day after, and two days after the relevant

announcements. The estimation results are presented in Tables 4-7 through 4-1 1, in
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panels (a) and (b). We mainly discuss empirical findings recorded in panel (a) in Tables

4-7 through 4-11, since those announcement results are qualitatively similar to those in

panel (b) in Tables 4-7 through 4-11. We practiced the likelihood ratio test to evaluate if

inclusion ofthe announcement dummies could yield meaningful different estimation

results. The hypothesis to be tested here is that all the coefficients for the announcement

dummies are equal to zero. For the corn futures realized volatility, the coefficient

estimates seem to be significant and negative for one day before the announcement.

According to these results, the realized volatility of corn seems to decrease one day

before the monthly crop reports. Particularly for the realized soybean volatility, the

likelihood ratio test statistics for the hypothesis 8.] = 80 = 6) = 52 = 0 are significant, and

therefore the hypothesis is rejected. Therefore, including the announcement dummies in

the ARFIMA estimation of the realized soybean volatility seems to make a significant

difference in terms of the maximized log likelihood values. For soybeans, the

contemporaneous announcement and one day after announcement dummy coefficient

estimates are significant and positive, while the estimates for the pre-announcement

dummy variable are significant but negative. Such a negative pre-announcement effect is

a commonality with the corn realized volatility mentioned above. For the live cattle

realized volatility, the hypothesis 6-. = 80 = 5. = 82 = 0 is for some instances rejected at a

10 percent significance level. Thus, including the announcement dummies can contribute

to some degree to an explanation of the realized volatility. However, our findings show

that none of the individual announcement coefficient estimates for live cattle are

significant. For the gasoline realized volatility, the individual coefficient estimates for

one day before and two days after announcements appear to be significant and negative,
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while the hypothesis 5-. = 60 = 6. = 62 = 0 cannot be rejected by the likelihood ratio test.

We found marginally significant one day after announcement estimates for the gold

futures realized volatility but insignificant likelihood ratio test statistics for the hypothesis

5-. =80=8.=82=0.

We have mixed evidence for announcement effects for the realized volatilities in

the presence of the time-to-maturity effect and possible relationships between different

commodities’ realized volatilities. Especially for soybeans, we found that the monthly

crop production reports seem to significantly affect this crop’s realized volatility.

1

4.5.2. Time to Maturity and Information Flow

We spliced multiple futures contracts to construct a long series of futures return

series. Switching from an expiring futures contract to the next nearby maturity may

introduce jumps into the volatility process because ofjumps in time to maturity at the

switch points. In the current section, we consider the effect on the realized volatility

series of varying times to maturity from different contracts. One well-known hypothesis

is that futures return volatility rises as contracts approach their maturity, as Samuelson

(1965) assessed. The intuition behind the Samuelson hypothesis is that there is little

information flow that resolves uncertainty about futures prices in the far distant future.

On the other hand, as we come closer to the maturity date. we become more sensitive to

information that influences the final level of the futures price. Some previous studies

support the Samuelson hypothesis, while other research failed to find evidence for the

hypothesis. Anderson and Danthine (1983) and Anderson (1985) argue that the

Samuelson hypothesis is generally not true unless we have information flows
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incorporated into the model. Anderson and Danthine (1983) introduce information flows

into their theoretical model and demonstrate that the resolution of uncertainty is the

source of increased volatility in futures prices. Milonas (1986) and Galloway and Kolb

(1996) found some mixed evidence for the Samuelson hypothesis by using futures price

series of financial assets and commodities. Chen, Duan, and Hung (1999) tested and

considered the Samuelson effect to model optimal hedging under the GARCH framework

by using daily spot and futures stock index data. They found the Samuelson hypothesis

unsupported by their empirical findings.

According to the results in panel (a) in Tables 4-7 through 4-11, the time-to-

maturity coefficient estimates for corn, soybeans, and cattle realized volatilities are

significant and positive. It can be implied that, for example, the realized soybean

volatility is reduced as the contracts approach their expiration dates. Seemingly, our

findings may be inconsistent with the Samuelson hypothesis, since the numerical sign of

the estimates should be negative according to that hypothesis. However, we use only

nearby parts of the commodity futures contracts and thus do not observe the early time

periods of the contracts. Therefore, we should be careful in interpreting the resulting

significantly positive coefficient estimates for time-to-maturity variables. More relevant

discussion of this topic will follow when we consider information flow. Particularly,

lower firtures return volatility immediately prior to expiration may be due to the liquidity

effect. On the other hand, the time-to-maturity coefficient estimates are not significant

and are negative-signed for the realized volatilities associated with gasoline and gold

futures returns.
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To consider an underlying factor in the relation between time to maturity and

realized volatility, we introduce information flow following Anderson & Danthine (1983)

and Anderson (1985), who argued the importance of information flow in explaining the

Samuelson hypothesis. In a different line of previous studies including Andersen (1998),

Tauchen and Pitt (1983), and Clark (1973), daily trading volumes were used as an

information flow measure on the grounds of the mixture-of-distribution hypothesis.

Andersen and Bollerslev (1997a) supported the long memory ofhigh frequency US-DM

return volatility based on the mixture-of-distribution hypothesis. In our study, we use the

trading intensity within each day, which can be informative about how often trading

occurs due to new information arriving at the relevant market. To measure trading

intensity, we simply calculate the percentage offive-minute intervals associated with

actual transactions out of the total sub-period intervals for each day. Not all of the intra-

day intervals involve real-time trading since transactions occur unevenly. This is so-

called “non-synchronous trading” in market microstructure literature.

To diagnose any possible relations among realized volatility, trading intensity,

and time to maturity, we display correlations between those factors in Table 4-12. We

focus on corn, soybeans, and cattle to reflect on their features which are seemingly

inconsistent with the Samuelson hypothesis, as we mentioned above. We chose contracts

with relatively long lifetimes for those commodities. From Table 4-12, we observe a

negative correlation between time to maturity and realized volatility when we consider

the whole contract periods. All the signs for the correlation data are negative, excepting

only the November 2000 soybean contract. This feature is consistent with the Samuelson

hypothesis. In contrast, the correlations are positive for most of the commodities if we
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use nearby contract,s as shown from the ARFIMA model estimation (4.20). An

apparently positive correlation: between time to maturity and realized volatility may be

caused by the use of nearby contracts rather than a real inconsistency with the Samuelson

hypothesis.

Another noteworthy thing is that the correlation between trading intensity

(information flow) and realized volatility is very strong and positive, if we consider the

whole contract periods. Motivated by this fact, we add the information flow variable into

the ARFIMA model (4.20) and specify another time series model as follows:

d .

(1 — L) ( y, — p -Zi=_1’26,-I,~—y-trmat, - ,Bx, -—¢9« flow, ) = 5,, (4.21)

whereflow. is the number of five-minute intervals with actual transactions divided by the

number of total subperiods within a trading day. The coefficient estimates for the trading

intensity variable from the ARFIMA estimation for (4.21) are presented in panel (b) in

Tables 4-7 through 4-1 1, and they are statistically significant and positive for all of the

commodities. It is worth notice that the time-to-maturity coefficient ,6 estimates for

corn, soybeans, and cattle are no longer significant using the set-up that includes the

information flow variable, although those commodities showed significant time-to-

maturity estimates for the original model (4.20). On the other hand, the time-to-maturity

coefficient estimates for the gasoline and gold realized volatilities are insignificant for the

estimation model (4.20) without considering the information flow variable. However,

those estimates become significant and negative after including the information flow

variable in the ARFIMA model as in (4.21).
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According to our findings, trading intensity as information flow proxy seems to

explain a sizeable portion of realized volatility, while time to maturity has become less

relevant to the volatility for those commodities. This result is consistent with the

theoretical claim by Anderson and Danthine (1983) that time to maturity could matter to

futures return volatility since information flow is linked to the volatility. According to

the theory, information flow is a driving factor channeling between time to maturity and

realized volatility, and therefore, once information flow is taken into account in

explaining the volatility measure, we may be able to observe some genuine time-to-

maturity effects on the realized volatility, if any.

Another theory relevant to our findings is the mixture-of-distribution hypothesis.

In particular, Clark (1973) theoretically asserted that daily returns are generated from

many intra-day returns within a day, and variance in the daily price change is

proportional to the number of daily transactions, although he used the daily trading

volume to embody the number of daily transactions. Our finding of a significantly

positive relation between the realized volatility and the trading intensity within a day can

be theoretically justified by the mixture—of-distribution hypothesis since trading intensity

reflects effective intra-day price changes, and those intra-day price changes underlie the

realized volatility.

In addition, the comparison between the realized volatility and the squared daily

return, one of the usual daily volatility measures, can be made in terms of time to

maturity and information flow issues. The last two columns in Table 4-12 show (i) a

correlation between trading intensity and squared daily returns, and (ii) a correlation

between the time-to-maturity variable and squared daily returns. Table 4-12 shows that
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correlations between trade intensity and squared daily returns are very low and even

negative in some instances. This is markedly in contrast with the strong and high

correlations between trading intensity and the realized volatility. The average value of

the correlations between trading intensity and the realized volatility is 0.5902. From the

correlation results, we can imply that squared daily returns may not fully reflect the

relationship between information flow and daily futures volatility. On the other hand,

time to maturity and squared daily returns are negatively correlated to a less significant

degree than time to maturity and realized volatilities if we consider the whole contract ”A

periods. The data for the correlations between time to maturity and squared returns are i

even positive for five out of 13 instances, while only one correlation between time to

maturity and the realized volatility is positive. From the correlation check, we can imply

that the realized volatility measure is more consistent with the Samuelson hypothesis, as

well as the theoretical linkage between volatility and information flow, than the squared

daily return.

4.5.3. Interdependence Between the Realized Volatilities for Different Commodities

Another economic dimension in analyzing the realized volatility is possible

interdependence between different commodity volatilities. The volatility linkage

between different markets is one of the active issues in empirical finance, since it is

informative for portfolio management, derivative pricing, and risk management. Brunetti

and Gilbert (2000) have found two similar gasoline price volatility processes correlated
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by using a bivariate FIGARCH model in a fractional cointegration context”. Fleming,

Kirby, and Ostdiek (1998), Kodres and Pritsker (2002), and Fleischer (1998) examine

volatility linkages by considering the relation between volatility and information flow.

Fleming, Kirby, and Ostdiek (1998) argue that common information can cause a strong

volatility linkage for stock, bond, and foreign currency markets. Andersen, Bollerslev,

Diebold, and Labys (2003) applied the VAR model to fractionally differenced realized

volatilities constructed from DM-US Dollar, Yen-Dollar, and DM-Yen exchange rate

returns for the purpose of forecast modeling, and they found that many of the VAR

coefficient estimates are significant. However, we use the fi'actional VAR estimation

approach to diagnose any lead and lag relations across different commodities. We

fractionally difference the realized volatilities by using the long memory parameter

estimates from the ARFIMA (0,d,0) model shown in Table 4-4 and apply a VAR model

to those fractionally differenced realized volatility series. The estimation results are

presented in Table 4-13. According to our findings, most of the estimated VAR

coefficients do not seem to be significant, therefore implying that, after we control the

long memory feature for the realized volatility process, there may not be significant lead

and lag interdependence between the commodities considered here. Based on this

finding, we allow ourselves to concentrate on contemporaneous relations and include a

counterpart commodity in the ARFIMA model for each realized commodity volatility.

Table 4-14 shows a correlation matrix for the realized volatilities for corn, soybeans, live

cattle, live hogs, gasoline, and gold. Higher correlations between corn and soybeans and

between live cattle and hogs seem to be sensible since they belong to the same category

 

'6 Since we can have an observable volatility measurement, it is possible to test fractional cointegration

relations directly by using several semi-parametric approaches suggested by Robinson and Marinucci

(1999). This is an area of possible future research, but is not pursued further here.
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of products. As shown in Tables 4-7 through 4-11, we simultaneously estimate the long

memory parameter and the coefficient for linear relations between two realized volatility

 series in the presence of the announcement dummy variables, time-to-maturity variables,

and information flow variables discussed above.

In this chapter, we directly employ realized volatility measures to consider any

possible volatility linkage across different or similar types of commodities, since the

realized volatility is an observable volatility proxy, unlike the stochastic volatility model

"
7
"
“
"
"
'
“
I
§
a
.
“

Fleming, Kirby, and Ostdiek (1998) used to estimate latent volatility factors. We find

mixed evidence for contemporaneous relations across different commodity futures

 

markets. Our results show that the realized volatilities of corn and soybeans exhibit

mutually significant interdependence. The long memory estimates for the realized

volatility of corn are lower when they are evaluated together with soybeans than they are

when evaluated with other commodities. Hence, it can be implied that the realized

volatilities of corn and soybeans share long memory time trends and that there is a

possible fractional cointegration relation between com and soybean realized volatilities”.

This finding does not seem to change with respect to different specification choices,

either in (4.20) or in (4.21). On the other hand, the long memory estimates for the cattle

realized volatility are slightly lower when considered in conjunction with the hog realized

volatility than when other commodities are considered as its counterparts.

 

'7 Recent literature on the fractional cointegration tests includes Marinucci and Robinson (2001) under a

semi-parametric framework and Dueker and Starz (1998) using a vector ARFIMA model.
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4.6. Conclusion

The cumulative sum of squared intra-day returns can be a model-free and

consistent estimator of the true volatility factor on the grounds of quadratic variation

theory and the assumption of a continuous arbitrage-free price process under conditions

of regularity, as we discussed in this chapter. More importantly, the realized volatility

measure provides an observable volatility factor. In this chapter, we identified stochastic

properties of the realized volatility and used the volatility measure to consider economic

factors in analyzing daily futures return volatilities in major commodity futures markets.

The main statistical finding is that the commodity realized volatility process is normally

distributed and exhibits slowly decaying temporal dependences. This is consistent with

the long memory volatility findings from many previous studies of exchange and stock

markets, for example, those which produce FIGARCH estimation results using exchange

rates and stocks. Based on these stochastic properties of realized volatility, we used an

ARFIMA type model to analyze the presence of the announcement effect, the time-to-

maturity effect (accounting for information flow), and contemporaneous interdependence

between different commodity markets. Our findings are that there is significant

contemporaneous interdependence between the realized volatilities of corn and soybeans,

and that information flow is a key factor in commodity realized volatility, consistent with

the futures return volatility model suggested by Anderson and Danthine (1983) and

Clark’s (1973) mixture-of-distribution hypothesis. After all the factors have been

elaborated, the long memory dynamic patterns remain, and thus, slowly decaying

volatility seems to be intrinsic for the commodity futures markets considered in this

chapter.
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With access to longer sample periods of high frequency commodity price data,

there would be more opportunities to study various aspects of realized volatility

 
dynamics. First, the out-of-sample forecasting performance of a simple ARFIMA model

could be evaluated using realized volatilities. Second, a data set encompassing a longer

time span may contain firrther nonlinearities, such as structural breaks; it would be

possible to test the realized volatility series being considered for these nonlinearities. If

structural change in realized volatility series were to be detected, then it would be

possible to adjust to account for the breaks and to reconsider the temporal dynamic

patterns of realized volatility. One last but important research possibility would be to

 

relate realized volatility to market micro-structure issues. For example, transaction

occurrences at tick time intervals and the corresponding durations may provide more

insights into the relationship between information flow and volatility. We leave these

issues for future studies.
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Table 4-1: Basic Descriptive Statistics: Unconditional Distribution of Daily

Commodity Futures Returns

 

 

 

 

 

 

 

 

  

Corn Soybean Live Cattle Live Hggs Gasoline Gold

No. of Obs. 471 409 405 400 401 401

Mean -0.0414 -0.0179 0.0538 0.1205 0.1899 -0.0615

Median -0.0856 -0.0907 0.0649 0.1494 0.2843 -0.0878

Maximum 3.2232 3.9491 1.4069 6.1608 6.3237 8.6236

Minimum -4.1582 -3.6473 -l.3549 -6.3229 -5.0272 -5.6716

Std. Dev. 0.9658 1.0958 0.5138 1.265 1.7899 0.9209

Skewness 0.1579 0.2837 0.1 132 -0. 1692 -0.2364 1.7325

Kurtosis 4.0318 3.9841 3 .0026 7.0436 3.2606 28.9425
 

Table 4-2: Basic Descriptive Statistics: Distribution of Realized Volatility

 

 

 

 

 

 

 

 

 

Corn Soybean Live Cattle Live Hog Gasoline Gold

No. of Obs. 471 409 405 400 401 401

Mean 0.0818 0.0337 -O.6834 0.1 138 0.5745 -0.4305

Median 0.0882 0.0155 -0.681 0.0829 0.5536 -0.5078

Maximum 1.1441 0.898 0.3411 1.5969 1.4124 1.7832

Minimum -1.0067 -0.8194 -1.5099 -2.526 -0.1352 -l.1943

Std. Dev. 0.2925 0.295 0.2895 0.4084 0.2574 0.4136

Skewness -0.0536 0.2203 0.0051 -0.3 881 0.2253 1.51 14

Kurtosis 3 .7882 2.9894 3.316 7.0984 3.1453 6.6992 
 

Table 4-3: Basic Descriptive Statistics: Daily Returns Standardized by Realized

 

 

 

 

 

 

 

 

  

Volatility

Corn Soybean Live Cattle Live Hog Gasoline Gold

No. of Obs. 471 409 405 400 401 401

Mean -0.0786 -0.0451 0.1033 0.1128 0.1362 -0.1159

Median -0.0905 -0.1202 0.1311 0.1496 0.1789 -0.1550

Maximum 1.9920 2.5650 2.4143 2.9544 2.5809 3 .2496

Minimum -2.5425 -2.3841 -2.1058 -2.3745 -2.3058 -2.0908

Std. Dev. 0.7988 0.9280 0.9299 0.9128 0.9285 0.8119

Skewness 0.0353 0.1795 0.0708 -0.0467 -0.0754 0.3923

Kurtosis 2.8075 2.6010 2.4013 2.9226 2.5930 3.3921
 

 

 

 

 
Key: For the basic description of each realized volatility series, we use the whole

sample period of high frequency data. In contrast, we should use the realized
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volatility series with common trading days for the joint estimation for the

ARFIMA(0,d,0) below. Thus, the numbers of sample observations for the ARFIMA

estimation in Tables 4-4 through 4-11 are different from the sample numbers in

Tables 4-1 through 4-3 above.  
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Table 4-4: ARFIMA(0,d,0) Estimation for Realized Volatility Series

(1-1m, - .0 = 8.

Corn Soybean Cattle Hog Gasoline Gold

 

Sample (5/03/99 (5/03/99 (5/03/99 (5/03/99 (5/03/99 (5/03/99

Period 42/28/00) 42/28/00) 42/28/00) -12/28/00) -12/28/00) -12/28/00)

1.1 0.0699 0.0049 -0.6548 0.1204 0.5609 .0.5395

(0.0545) (0.0554) (0.0540) (0.1046) (0.0402) (0.1456)

d 0.2460 0.2591 0.2702 0.3409 0.2325 0.3961

(0.0403) (0.0385) (0.0356) (0.0607) (0.0390) (0.0550)

0’2 0.0703 0.0725 0.0660 0.1093 0.0565 0.1 148

(0.0053) (0.0051) (0.0050) (0.0211) (0.0043) (0.0133)

ln(L) -35.582 41.472 .23.255 421.157 6.744 430.604

m3 0.075 0.094 0.025 4.205 0.289 1.131

m4 3.221 2.916 3.206 15.494 3.272 6.203

Q(20) 29.729 20.658 17.784 15.867 9.112 21.984

Q2(20) 31.441 29.764 19.998 27.349 12.924 28.223

 

Key: Robust standard errors based on QMLE are in parentheses below the corresponding

parameter estimates. The diagnostic statistics Q(20) and Q2(20) are the Ljung-Box

statistics based on the first 20 autocorrelations of the standardized residuals and the

autocorrelations of the squared standardized residuals respectively. The statistics 7713 and

m4 are the sample skewness and kurtosis respectively of the standardized residuals.

121



Table 4-5: The Local Whittle Estimation for the Long Memory Parameter

 

Local Whittle Estimates for

 

Realized Volatility

Corn 0.2644

Soybean 0.2419

Cattle 0.2805

Hog 0.3404

Gasoline 0.2374

Gold 0.3756
 

Key: We use the sample size powered to 0.8 for the bandwidth.
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Table 4-6: Mincer-Zamowitz Regressions for Realized Volatilities

(One-day-ahead Forecast)
 

18

 

b0 b1 132 R square

Corn 0.0171 1.0013 0.1572

(0.0153) (0.1220)

-0.7726 0.8885 0.0745

(0.1566) (0.1655)

-0.2847 0.8758 0.3221 0.1599

(0.1494) (0.1452) (0.1640)

Soybeans 0.00146 1.03492 0.1625

(0.0125) (0.1314)

-0.8189 0.7875 0.1600

(0.1194) (0.1 104)

-0.4804 0.6219 0.4569 0.1833

(0.1260) (0.1427) (0.1196)

Live Cattle -0.20762 0.88849 0.2501

(0.0392) (0.0742)

-2.5065 3.6166 0.2141

(0.2120) (0.4191)

.0.9971 0.6473 1.31 0.2536

(0.3587) (0.1285) (0.5994)

Live Hogs 0.0021 1.0413 0.3494

(0.0175) (0.0987)

-0.8197 0.7660 0.3532

(0.0847) (0.0740)

-0.4676 0.5511 0.4286 0.3678

(0.1313) (0.1612) (0.1244)

Gasoline 0.2239 0.8345 0.1409

(0.0481) (0.1 107)

-0.4683 0.5857 0.1485

(0.1253) (0.0686)

-0.415 0.5758 0.4199 0.1898

(0.1067) (0.1086) (0.0631)

Gold -0.0561 0.9758 0.3255

(0.0498) (0.1019)

-0.7893 0.3845 0.3373

(0.0428) (0.0495)

-0.4508 0.5005 0.2284 0.3665

(0.0998) (0.1488) (0.0445)

Key: The table reports OLS parameter estimates for Mincer-Zamowitz regressions of

realized volatility on a constant and forecasts from different models. The OLS regression

 

'8 We used the adjusted R squares for the regression including both the ARFIMA forecast and the GARCH

conditional variance for more accurate interpretation since R squares generally tends to increase with the

number of regressors.
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is RV. = be + b. RVARFIMA. + b2 CVGARC”. + u.. The robust standard errors are reported

in the parenthesis. RV. is 0.5*ln(E,-=. J. r,,,-) where A is the number of intraday returns

within each trading day. RVARFIMA,t is the forecasted value of RV. using ARFIMA(0,d,0)

model and CVGARCH. is the GARCH estimated conditional variances. To evaluate the

ARFIMA forecast alone, we restrict b2 =0. To evaluate the GARCH forecast alone, we

restrict b. =0.
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Corn

Table 4-7 (a): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, and Contemporaneous Dependence between Commodity Markets:

 

Dependent variable: Corn realized volatility
 

Soybeans Cattle Hogs Gasoline Gold

11 -0.0286 -0.0333 -0.0592 -0.0516 -0.01 31

(0.0450) (0.0690) (0.0620) (0.0680) (0.0607)

(1 0.1658 0.2170 0.2227 0.2163 0.2220

(0.0369) (0.0387) (0.0394) (0.0390) (0.0390)

02 0.0568 0.0662 0.0656 0.0662 0.0658

(0.0043) (0.0049) (0.0048) (0.0049) (0.0049)

6-. -0.0699 -0.1 177 -0.1 166 -0.1 182 -0.1094

(0.0431) (0.0497) (0.0489) (0.0497) . (0.0499)

60 -0.0380 0.0197 0.0300 0.0208 0.0191

(0.0503) (0.0523) (0.0518) (0.0524) (0.0521)

6. -0.0291 0.0142 0.0186 0.0142 0.0204

(0.0649) (0.0631) (0.0599) (0.0639) (0.0632)

62 0.1046 0.0850 0.0892 0.0863 0.0889

(0.0561) (0.0627) (0.0633) (0.0625) (0.0622)

y 0.2104 0.2305 0.2421 0.2310 0.2231

(0.0549) (0.0664) (0.0668) (0.0664) (0.0656)

[3 0.3720 0.0138 0.0757 0.0161 0.0598

(0.0465) (0.0477) (0.0431) (0.0575) (0.0343)

ln(L) 5.731 -23.866 -22.037 -23.860 -22.651

m3 -0.13 5 0.075 0.082 0.078 0.084

m4 3.170 3.137 3.112 3.153 3.139

Q(20) 30.454 29.537 26.063 29.358 29.183

Q2(20) 26.895 27.232 30.1 19 26.618 26.398

LR Test 6.57 7.104 7.602 7.242 6.762
 

Key: As for Table 4-4. The estimation is based on

 

(1 — L)d (y, - p — 21:4 2 6.1,- —7 TM, — fix, ) = a, where TM. is time-to-maturity

variable, and 1,- indicates for i-days after the relevant announcements, and

6,- denotes for the coefficient for 1,. x, is the realized volatility for a counterpart

commodity considered. The variable TM. is calculated as the ratio of the number

of remaining trading days as of day t before the futures contract expiration to the
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total number of trading days within the "nearby" contract so that the time-to-

maturity variable is scaled between zero and one.

126



Table 4-7 (h): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, Information Flow, and Contemporaneous Dependence between

Commodity Markets: Corn

 

Dependent variable: Corn realized volatility
 

Soybeans Cattle Hogs Gasoline Gold

11 -0.6857 -0.7836 -0.8174 -0.8380 -0.7799

(0.1502) (0.1541) (0.1572) (0.1639) (0.1578)

d 0.1796 0.2296 0.2331 0.2292 0.2385

(0.0444) (0.0418) (0.0420) (0.0423) (0.0434)

02 0.0510 0.0586 0.0582 0.0586 0.0585

(0.0036) (0.0042) (0.0042) (0.0042) (0.0042)

6-. -0.0377 -0.0797 -0.0793 -0.0812 -0.0745

(0.0437) (0.0497) (0.0493) (0.0494) (0.0498)

60 -0.0049 0.0452 0.0588 0.0496 0.0490

(0.0502) (0.0518) (0.0516) (0.0521) (0.0522)

6. 0.0085 0.0514 0.0549 0.0514 0.0551

(0.0514) (0.0509) (0.0495) (0.0519) (0.0519

62 0.1073 0.0861 0.0918 0.0906 0.091 1

(0.0540) (0.0596) (0.0599) (0.0593) (0.0589)

y -0.0545 -0.0937 -0.0784 -0.0908 -0.0956

(0.0672) (0.0773) (0.0768) (0.0772) (0.0777)

[3 0.3416 0.0496 0.0709 0.0449 0.0425

(0.0444) (0.0453) (0.0374) (0.0525) (0.0339)

0 0.8646 1.0322 1.0143 1.0266 1.0135

(0.1733) (0.1791) (0.1770) (0.1799) (0.1808)

ln(L) 26.884 -0. l 34 1.187 -0.287 0.034

m3 0.240 0.387 0.397 0.407 0.400

m4 2.985 2.988 3.036 3.010 3.005

Q(20) 26.735 28.544 23.647 28.310 27.842

Q2(20) 15.995 28.977 31.075 28.753 29.019

 

Key: As for Table 4-4. The estimation is based

on(l — L)d(y,-p—Zi=_126,-1,--y-TM,—,6x,—0-flow,)= e, where TM. is

time-to-maturity variable, and I,- indicates for i-days after the relevant

announcements, and 5,- denotes for the coefficient for 1,. x, is the realized
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volatility for a counterpart commodity considered. The variable TM. is calculated

as the ratio of the number of remaining trading days as of day t before the futures

contract expiration to the total number oftrading days within the "nearby"

contract so that the time-to-maturity variable is scaled between zero and one.

flow. is the number of five-minute intervals with actual transactions divided by the

number of total subperiods within a trading day.
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Table.4-8 (a): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, and Contemporaneous Dependence between Commodity Markets:

Soybean

 

Dependent variable: Soybean realized volatility

Corn

11 -0.0808

(0.0526)

(1 0.2188

(0.0374)

0'2 0.0590

(0.0044)

6-. -0.071 1

(0.0585)

60 0.1656

(0.0471)

6. 0.1248

(0.0536)

62 -0.0832

(0.0458)

7 0.1 127

(0.0535)

0 0.3684

(0.0504)

ln(L) -1.327

m3 0.246

m4 3.127

Q(20) 24.099

Q2(20) 19.150

00’

LR Test 20.124

Cattle

-0.0281

(0.0767)

0.2525

(0.0377)

0.0677

(0.0051)

-0.1 193

(0.0655)

0.1610

(0.0491)

0.1231

(0.0495)

-0.0486

(0.0527)

0.1436

(0.0599)

0.0701

(0.051 1)

-28.238

0.186

3.160

28.412

25.281

0..

19.230

Hogs

-0.0772

(0.0645)

0.2528

(0.0385)

0.0679

(0.0051)

-0.1 1 89

(0.0644)

0.1730

(0.0499)

0.1247

(0.0496)

-0.0433

(0.0526)

0.1413

(0.0599)

0.0312

(0.0429)

-28.841

0.201

3.161

28.774

27.717

‘0‘

20.212

Gasoline

-0.141 1

(0.0747)

0.2562

(0.0364)

0.0672

(0.0051)

-0.1247

(0.0653)

0.1640

(0.0479)

0.1221

(0.0489)

-0.0401

(0.0508)

0.1380

(0.0588)

0.1242

(0.0561)

-26.651

0.245

3.205

31.350

25.461

OD.

19.856

Gold

.0042

(0.0684)

0.2547

(0.0371)

0.0676

(0.0051)

-0.11 l 1

(0.0656)

0.1672

(0.0486)

0.1293

(0.0506)

-0.0428

(0.0510)

0.1317

(0.0588)

0.0582

(0.0369)

-28.015

0.193

3.224

28.741

26.377

0..

19.242

Key: As for table 4-7 (a). (m) represents significant the Likelihood Ratio test

statistic at one percent level.
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Table 4-8 (b): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, Information Flow, and Contemporaneous Dependence between .

Commodity Markets: Soybean

 

Dependent variable: Soybean realized volatility
 

Corn Cattle Hogs Gasoline Gold

.1 -0.4625 -0.4930 -0.5338 -0.5603 -0.4870

(0.1756) (0.1831) (0.1817) (0.1800) (0.1841)

(1 0.261 1 0.2902 0.2901 0.2922 0.2927

(0.0488) (0.0435) (0.0442) (0.0426) (0.0431)

02 0.0574 0.0653 0.0658 0.0653 0.0657

(0.0044) (0.0050) (0.0051) (0.0051) (0.0051)

6-. -0.0494 -0.0907 -0.0915 -0.0978 -0.0874

(0.0560) (0.0622) (0.0614) (0.0628) (0.0628)

60 0.1795 0.1749 0.1894 0.1799 0.1833

(0.0468) (0.0489) (0.0498) (0.0485) (0.0492)

6. 0.1391 0.1403 0.1414 0.1378 0.1431

(0.0568) (0.0542) (0.0544) (0.0536) (0.0549)

62 -0.0662 -0.0309 -0.0250 -0.0238 -0.0263

(0.0436) (0.0488) (0.0487) (0.0473) (0.0475)

y -0.0522 -0.0644 -0.0585 -0.0505 -0.0576

(0.0919) (0.0943) (0.0941) (0.0929) (0.0940)

[3 0.3554 0.0932 0.0363 0.1060 0.0390

(0.0492) (0.051 1) (0.0414) (0.0550) (0.0363)

9 0.5073 0.6369 0.6065 0.5716 0.5795

(0.2224) (0.2202) (0.2206) (0.2191) (0.2218)

ln(L) 3.837 -21.309 -22.523 -21.076 -22.438

m3 0.266 0.220 0.238 0.263 0.227

m4 3.303 3.280 3.312 3.359 3.370

Q(20) 24.637 28.745 28.692 30.750 28.825

Q2(20) 21 .446 26.225 29.634 26.361 28.436

 

Key: As for table 4-7 (b)
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Table 4-9 (a): ARFIMA(0,d,0) Estimation for the Announcement effect,

Time-to-maturity effect, and Contemporaneous Dependence between Commodity

Markets:

Cattle

 

Dependent variable: Cattle realized volatility

Corn Soybeans Hogs Gasoline Gold

0 -0.8165 -0.8182 -0.8207 -0.8399 -0.7899

(0.0595) (0.0588) (0.0573) (0.0644) (0.0634)

d 0.2537 0.2521 0.2452 0.2555 0.2561

(0.0324) (0.0327) (0.0343) (0.0326) (0.0328)

62 0.0597 0.0595 0.0593 0.0596 0.0592

(0.0042) (0.0042) (0.0042) (0.0042) (0.0041)

6-. 0.1139 0.1169 0.1074 0.1104 0.1197

(0.0755) (0.0748) (0.0752) (0.0752) (0.0750)

60 -00394 -0.0310 -0.0408 -0.0374 .0.0379

(0.0597) (0.0591) (0.0599) (0.0607) (0.0611)

6. -0.0008 0.0068 -0.0058 0.0026 0.0154

(0.0530) (0.0550) (0.0544) (0.0540) (0.0545)

62 -0.1170 -0.1075 -0.1165 -0.1 109 -0.1 126

(0.0607) (0.0623) (0.0602) (0.0610) (0.0600)

y 0.3241 0.3233 0.3156 0.3198 0.3315

(0.0626) (0.0627) (0.0615) (0.0633) (0.0625)

13 -00070 0.0550 0.0644 0.0448 0.0683

(0.0440) (0.0446) (0.0369) (0.0572) (0.0390)

ln(L) -3.856 -3173 -2.406 -3.510 -2099

m3 0.018 0.035 -0003 0.015 -0013

m4 2.940 2.926 2.924 2.918 2.880

Q(20) 27.495 26.498 24.246 28.064 27.914

Q2(20) 17.899 16.619 18.749 18.605 15.898

LR Test 8064‘ 7.620 7.644 8.438‘ 8.538‘
 

Key: As for table 4-7 (a)
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Table 4-9 (h): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, Information Flow, and Contemporaneous Dependence between

Commodity Markets: Cattle

 

Dependent variable: Cattle realized volatility
 

Corn Soybeans Hogs Gasoline Gold

.1 -2.2860 -2.2778 -23152 -2.2885 -2.2474

(0.1473) (0.1464) (0.1474) (0.1512) (0.1445)

d 0.2248 0.2221 0.1924 0.2265 0.2299

(0.0331) (0.0332) (0.0389) (0.0337) (0.0339)

0'2 0.0480 0.0479 0.0472 0.0480 0.0476

(0.0035) (0.0035) (0.0034) (0.0035) (0.0034)

6-. 0.1039 0.1099 0.0979 0.1042 0.1 122

(0.0612) (0.0611) (0.0621) (0.0614) (0.0608)

60 -0.0614 0.0553 -0.0662 -0.0624 -0.0623

(0.0511) (0.0500) (0.0488) (0.0511) (0.0519)

6. 0.0701 0.0781 0.0651 0.0722 0.0852

(0.0553) (0.0556) (0.0564) (0.0556) (0.0558)

62 -0.0975 -0.0893 .0.0973 -0.0950 .0.0949

(0.0564) (0.0580) (0.0556) (0.0568) (0.0557)

y 0.0293 0.0317 0.0128 0.0301 0.0404

(0.0591) (0.0592) (0.0578) (0.0597) (0.0590)

[3 0.0283 0.0566 0.0954 0.0295 0.0634

(0.0393) (0.0405) (0.0412) (0.0517) (0.0367)

0 1.7114 1.7015 1.7387 1.6983 1.6970

(0.1629) (0.1625) (0.1648) (0.1628) (0.1598)

ln(L) 38.403 39.097 41.906 38.370 40.093

m3 0.088 0.095 0.040 0.078 0.028

m4 3.044 3.025 3.033 3.019 3.006

Q(20) 33.359 32.712 29.739 34.787 32.848

Q2(20) 25.928 25.355 24.515 26.001 27.595

 

Key: As for table 4-7 (b)
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Table 4-10 (a): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, and Contemporaneous Dependence between Commodity Markets:

Gasoline

 

Dependent variable: Gasoline realized volatility

Corn Soybeans Cattle Hogs Gold

11 0.5866 0.5838 0.6478 0.5826 0.6108

(0.0507) (0.0504) (0.0607) (0.0519) (0.0536)

d 0.2373 0.2384 0.2468 0.2435 0.2425

(0.0418) (0.0412) (0.0399) (0.0412) (0.0415)

(32 0.0555 0.0549 0.0550 0.0553 0.0552

(0.0042) (0.0041) (0.0041) (0.0042) (0.0041)

6-. -0. 1097 -0.0961 -0.1 170 -0.1 137 -0.1056

(0.0489) (0.0477) (0.0470) (0.0500) (0.0493)

60 -0.0252 -0.0175 -0.0186 -0.0324 -0.0221

(0.0468) (0.0471 ) (0.0477) (0.0472) (0.0458)

6. -0.0015 0.0169 0.0024 -0.0050 -0.001

(0.0539) (0.0554) (0.0559) (0.0532) (0.0527)

62 -0.1133 -0. 1048 -0.1105 -0.1141 -0. 1093

(0.0618) (0.0594) (0.0632) (0.0609) (0.0616)

y -0.0308 -0.0309 -0.0428 -0.0315 -0.0318

(0.0514) (0.0517) (0.0506) (0.0513) (0.051 1)

[3 0.0007 0.0920 0.0862 0.0385 0.0532

(0.0471 ) (0.0452) (0.0510) (0.0356) (0.0355)

ln(L) 10.348 12.438 12.000 10.907 11.531

m3 0.287 0.303 0.297 0.309 0.285

m4 3.213 3.189 3.126 3.240 3.173

Q(20) 9.099 9.671 9.034 8.865 9.719

Q2(20) 10.941 12.602 13.329 1 1.193 11.080

LR test

statistic 6.866 6.1 12 7.362 7.108 7.246
 

Key: As for table 4-7 (a)
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Table 4-10 (h): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, Information Flow, and Contemporaneous Dependence between

Commodity Markets: Gasoline

 

Dependent variable: Gasoline realized volatility

Corn Soybeans Cattle Hogs Gold

.1 4.0029 0.9843 0.9394 0.9969 0.9728

(0.2086) (0.2082) (0.2106) (0.2105) (0.2098)

d 0.2024 0.2037 0.2132 0.2075 0.2071

(0.0401) (0.0397) (0.0399) (0.0425) (0.0399)

0'2 0.0471 0.0467 0.0467 0.0470 0.0469

(0.0038) (0.0037) (0.0037) (0.0038) (0.0038)

6-. 0.1489 0.1389 0.1557 0.1513 -0.1461

(0.0454) (0.0444) (0.0438) (0.0457) (0.0457)

60 0.0439 0.0383 0.0379 0.0480 0.0417

(0.0470) (0.0477) (0.0475) (0.0473) (0.0462)

6. 0.0422 0.0283 -0.0387 0.0443 0.0418

(0.0454) (0.0471) (0.0473) (0.0451) (0.0446)

62 0.1250 0.1187 0.1224 0.1255 0.1219

(0.0502) (0.0493) (0.0517) (0.0500) (0.0507)

y 0.1864 0.1841 0.1969 0.1861 -0.1861

(0.0469) (0.0475) (0.0464) (0.0469) (0.0469)

B 0.0079 0.0697 0.0784 0.0212 0.0393

(0.0423) (0.0424) (0.0484) (0.0398) (0.0326)

0 1.8066 1.7820 1.7981 1.7969 1.7920

(0.2280) (0.2281) (0.2257) (0.2308) (0.2286)

ln(L) 42.291 43.687 43.878 42.471 43.049

m3 0.406 0.425 0.402 0.427 0.392

m4 3.510 3.468 3.430 3.523 3.493

Q(20) 7.158 7.873 7.378 7.391 7.658

Q2(20) 13.014 13.033 15.750 12.680 14.289

 

Key: As for table 4-7 (b)
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Gold

Table 4-11 (a): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, and Contemporaneous Dependence between Commodity Markets:

 

Dependent variable: Gold realized volatility
 

54

50

51

ln(L)

m3

m4

Q(20)

02(20)

LR test

statistic

Corn

0.5267

(0.1471)

0.3997

(0.0583)

0.1126

(0.0130)

0.0167

(0.0713)

0.0079

(0.0700)

0.1239

(0.0651)

-0.0363

(0.0622)

-0.0173

(0.1 163)

0.1340

(0.0571)

-l26.814

1.123

6.177

20.654

28.617

2.774

Soybeans

0.5075

(0.1461)

0.3967

(0.0583)

0.1129

(0.0131)

-0.0329

(0.0724)

0.0000

(0.0672)

0.1274

(0.0646)

0.0284

(0.0615)

-0.0365

(0.1 159)

0.1130

(0.0592)

-l27.382

1.138

6.213

21.082

28.985

3.172

Key: As for table 4-7 (a)

Cattle

0.4562

(0.1499)

0.4006

(0.0577)

0.1131

(0.0132)

-0.0331

(0.0715)

-0.0018

(0.0660)

0.1256

(0.0651)

0.0400

(0.0631)

0.0267

(0.1 162

0.1012

(0.0661)

-127.814

1.168

6.269

21.109

28.738

3.036
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Hogs

-0.5239

(0.151 1)

0.4029

(0.063 8)

0.1137

(0.0129)

0.0325

(0.0724)

0.0018

(0.0674)

0.1248

(0.0659)

-0.0376

(0.0625)

0.0292

(0.1 160)

0.0382

(0.1030)

-128.734

1.109

6.006

19.187

28.937

3.052

Gasoline

0.5954

(0.1548)

0.4006

(0.0581)

0.1128

(0.0133)

-0.0427

(0.0728)

-0.0044

(0.0686)

0.1229

(0.0649)

0.0309

(0.0613)

0.0182

(0.1130)

0.1322

(0.0686)

-127.269

1.131

6.367

21.165

26.186

2.980



Table 4-11 (h): ARFIMA(0,d,0) Estimation for the Announcement effect, Time-to-

maturity effect, Information Flow, and Contemporaneous Dependence between

Commodity Markets: Gold

 

Dependent variable: Gold realized volatility
 

Corn Soybeans Cattle Hogs Gasoline

.1 -2.2811 -2.2563 -2.2270 -2.3143 -2.3558

(0.4323) (0.4396) (0.4409) (0.4484) (0.4259)

d 0.4030 0.4000 0.4035 0.4092 0.4021

(0.0641) (0.0637) (0.0631) (0.0714) (0.0633)

0'2 0.1004 0.1010 0.1009 0.1011 0.1005

(0.0119) (0.0121) (0.0121) (0.0117) (0.0122)

6-. 0.0486 0.0631 0.0632 0.0622 0.0723

(0.0709) (0.0714) (0.0707) (0.0718) (0.0719)

60 0.0216 0.0147 0.0162 0.0116 0.0188

(0.0695) (0.0692) (0.0668) (0.0711) (0.0689)

6. 0.1194 0.1225 0.1208 0.1187 0.1183

(0.0603) (0.0608) (0.0608) (0.0622) (0.0605)

62 0.0350 0.0300 0.0383 0.0357 0.0299

(0.0603) (0.0596) (0.0605) (0.0601) (0.0595)

y 0.2022 0.2156 0.21 14 0.2174 0.2021

(0.1255) (0.1249) (0.1253) (0.1279) (0.1242)

13 0.1 185 0.0776 0.0893 0.0557 0.1237

(0.0552) (0.0563) (0.0640) (0.1002) (0.0658)

0 1.9566 1.9455 1.9659 1.9921 1.9681

(0.4324) (0.4400) (0.4437) (0.4473) (0.4299)

ln(L) 404.679 405.746 ' 405.559 405.964 404.892

m3 1.299 1.320 1.344 1.276 1.308

m4 6.473 6.557 6.596 6.178 6.685

Q(20) 26.239 26.326 26.951 24.996 27.286

02(20) 28.877 28.831 28.529 32.131 26.776

 

Key: As for table 4-7 (b)
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Table 4-12: Correlation among the realized. volatility, squared daily return, trading

intensity, and time-to-maturity

 

 

Corr.

Corr. Corr. Corr. Corr. Corr. Between

Between Between Between Between Between Squared

Item Contract Realized Realized Realized Time-to- Squared Returns

Volatility Volatility Volatility maturity Returns and

and and and and and Time-to-

Time-to- Time-to- Trading Trading Trading maturity

maturity maturity Intensity Intensity Intensity (Whole)

(Whole) (Nearby) (Whole) (Whole) (Whole)

Corn 2000.05 0313 0.220 0.501 -0.833 0.053 0.048

Corn 2000.07 -0.521 0.348 0.608 -0.684 0.1 12 -0.105

Corn 2000.09 -0.650 0.403 0.857 -0.794 0.240 -0.132

Soybean 2000.05 ' -0.067 0.202 0.221 -0.861 -0.030 0.109

Soybean 2000.07 -0.015 0.062 0.178 -0.630 0.008 0.035

Soybean 2000.08 -0.399 0.092 0.552 -0.856 -0.01 1 0.027

Soybean 2000.09 0477 -0.380 0.668 -0.852 0.079 -0.043

Soybean 2000.1 1 0.049 0.339 0.561 -0.128 0.056 0.038

Cattle 2000.04 0522 0.292 0.737 -0.856 0.179 -0.092

Cattle 2000.06 0400 0.635 0.665 -0.814 0.056 0.072

Cattle 2000.08 0429 0.426 0.662 -0.732 0.014 -0.038

Cattle 2000.10 -0.510 0.289 0.637 -0.836 0.169 -0.160

Cattle 2000-12 0755 0.056 0.820 -0.902 0.324 -0.321
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Table 4-13: VAR Parameter Estimates (reggsion form)

X Corn Soybean Cattle Hogs Gasoline Gold

Const. 0.0099 -0.0129 -0.1596 0.0252 0.1597 0.0121

(0.0337) (0.0346) (0.0326) (0.0421) (0.0306) (0.0417)

Lagl

Corn -0.0710 0.0233 0.0181 -0.1596 -0.0531 -0.0058

(0.0580) (0.0595) (0.0562) (0.0725) (0.0526) (0.0718)

Soybean 0.0487 -0.0544 0.027 -0.019 0.0671 0.1000

(0.0567) (0.0582) (0.0550) (0.0709) (0.0515) (0.0702)

Cattle -0.021 -0.0471 -0.0658 -0.0487 0.0576 0.0784

(0.0550) (0.0565) (0.0534) (0.0689) (0.0500) (0.0681)

Hogs 0.0224 0.0509 0.022 0.0397 0.0351 0.1881

(0.0427) (0.0439) (0.0415) (0.0535) (0.0388) (0.0529)

Gasoline 0.0879 -0.0458 0.0247 0.0360 -0.0281 -0.057

(0.0598) (0.0614) (0.0580) (0.0748) (0.0543) (0.0740)

Gold -0.059 0.0338 -0.0056 -0.0352 0.0131 -0.0752

(0.0430) (0.0442) (0.0417) (0.0538) (0.0391) (0.0533)

Lag2

Corn 0.1144 0.0548 0.0532 -0.0201 0.0504 0.0964

(0.0580) (0.0596) (0.0563) (0.0726) (0.0527) (0.0718)

Soybean -0.0119 -0.1047 -0.0046 0.0256 0.022 -0.0917

(0.0568) (0.0583) (0.0551) (0.0711) (0.0516) (0.0703)

Cattle 0.003 0.0955 0.0036 0.0366 0.0336 0.0783

(0.0548) (0.0563) (0.0531) (0.0686) (0.0497) (0.0678)

Hogs 0.0097 0.0749 0.015 0.0208 0.0314 0.0591

(0.0429) (0.0440) (0.0416) (0.0536) (0.0389) (0.0531)

Gasoline -0.0969 0.0664 -0.0231 0.0561 0.0049 -0.1081
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(0.0594) (0.0610) (0.0576) (0.0743) (0.0539) (0.0735)

Gold 0.0089 0.0144 0.062 0.0598 0.0428 0.0031

(0.0429) (0.0441) (0.0416) (0.0537) (0.0390) (0.0531)

Lag3

Corn -0.0337 0.0402 -0.0132 0.0978 -0.0335 -0.0194

(0.0582) (0.0597) (0.0564) (0.0728) (0.0528) (0.0720)

Soybean 0.0884 0.0573 0.0434 0.02 0.0291 0.0752

(0.0568) (0.0583) (0.0551) (0.0710) (0.0515) (0.0703)

Cattle 0.0968 0.0124 0.0347 0.0669 0.0076 0.0346

(0.0551) (0.0566) (0.0534) (0.0689) (0.0500) (0.0682)

Hogs 0.0289 0.0554 0.0412 0.0725 0.0199 0.0729

(0.0431) (0.0442) (0.0418) (0.0539) (0.0391) (0.0533)

Gasoline 0.0285 0.0098 0.0193 0.0977 0.0485 0.0571

(0.0598) (0.0614) (0.0580) (0.0748) (0.0543) (0.0740)

Gold -0.011 0.0505 -0.0027 0.0036 -0.0287 0.1055

(0.0426) (0.0437) (0.0413) (0.0533) (0.0386) (0.0527)

Lag4

Corn 0.0326 0.0601 -0.0082 -0.036 0.1221 0.0235

(0.0573) (0.0589) (0.0556) (0.0718) (0.0521) (0.0710)

Soybean 0.0113 0.0174 0.106 0.0171 0.045 0.1459

(0.0563) (0.0578) (0.0546) (0.0705) (0.0511) (0.0697)

Cattle -0.0283 0.0001 0.0256 0.1546 -0.0285 -0.0275

(0.0555) (0.0570) (0.0539) (0.0695) (0.0504) (0.0688)

Hogs 0.0216 0.0911 0.0142 0.0529 0.011 0.0583

(0.0433) (0.0444) (0.0420) (0.0541) (0.0393) (0.0536)

Gasoline 0.0906 0.0104 0.0552 -0.029 0.0497 -0.0481

(0.0597) (0.0613) (0.0579) (0.0747) (0.0542) (0.0739)
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Gold 0.0215 0.0145 -0.0651 0.0427 0.018 0.005

(0.0422) (0.0434) (0.0410) (0.0529) (0.0384) (0.0523)

Lag5

Corn -0.017 -0.0045 0.017 01346 -0.0034 -0.0511

(0.0571) (0.0586) (0.0554) (0.0714) (0.0518) (0.0707)

Soybean 0.0195 0.0327 0.0682 0.0587 0.0264 0.0355

(0.0568) (0.0583) (0.0551) (0.0711) (0.0516) (0.0703)

Cattle 0.1075 0.0706 -0.0084 -0.0303 0.0077 -0.0035

(0.0554) (0.0569) (0.0537) (0.0693) (0.0503) (0.0686)

Hogs 0.0252 0.0535 0.0552 0.0421 -0.0083 0.0251

(0.0431) (0.0442) (0.0418) (0.0539) (0.0391) (0.0533)

Gasoline 0.0539 0.0167 0.0976 0.0662 0.0305 0.0963

(0.0594) (0.0610) (0.0577) (0.0744) (0.0540) (0.0736)

Gold 0.0279 -0.0458 0.0172 0.028 0.0301. 0.1167

(0.0411) (0.0422) (0.0399) (0.0515) (0.0373) (0.0509)

Key: The standard errors are in parentheses.
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Table 4-14: Correlation matrix for six realized volatility series

 

Corn Soybean Cattle Hog Gasoline Gold

Corn 1.00000 0.43224 -0.00395 0.02822 0.04000 0.07547

Soybean 0.43224 1.00000 0.12513 0.12368 0.08430 0.10974

Cattle -0.00395 0.12513 1.00000 0.28375 -0.04924 0.03887

Hogs 0.02822 0.12368 0.28375 1.00000 -0.10063 -0.02247

Gasoline 0.04000 0.08430 -0.04924 -0.10063 1 .00000 0.04274

Gold 0.07547 0.10974 0.03887 -0.02247 0.04274 1.00000
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Figure 4-1(a). Kernel Density for Realized Volatility

Kernel Density (Epanechnikov, h = 0.1529)
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Kernel Density (Epanechnikov, h = 0.1735)
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Kernel Density (Epanechnikov, h = 0.1533)
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Figure 4-1 (b). Kernel Density for Daily Returns Standardized by Realized Volatility

Kernel Density (Epanechnikov, h = 0.4643)
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Kernel Density (Epanechnikov, h = 0.5570)
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Kernel Density (Epanechnikov, h = 0.5573)

 0.5

0.4 -

0.3 4

0.2 -

0.1-

 0.0 

0.5

I I I I

-2 -1 0 1 2 3

.
4

Standardized Gasoline Daily Futures Return

by the Realized Volatility

Kernel Density (Epanechnikov, h = 0.4844)

 

0.4 4

0.3-

0.2 -

0.1-

 0.0 
I I I I

-2 -1 0 1 2 3

Standardized Gold Daily Futures Return

by the Realized Volatility

147

 

 



Figure 4-2 Realized Commodity Volatility Level

Corn Futures
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CHAPTER 5

CONCLUSION

This dissertation has studied commodity market price risks by using various time

series econometric models. The empirical investigation in this dissertation is focused on

commodity markets but is extensive in that we analyze the volatility dynamics for 1)

daily cash and futures price changes, and 2) higher frequency futures returns. Further, we

employed parametric, semi-parametric, and new volatility modeling in our investigations

of the commodity return volatility movements. In this final chapter, we list and discuss

important factors considered in this dissertation. Possible fixture research is discussed at

the end of this chapter.

First, we found evidence for slowly decaying autocorrelations for daily

commodity cash and futures as well as for intra-daily futures return volatility. This

observation is consistent with much previous evidence from conventional financial asset

return volatility studies. Our findings imply that commodity price risk patterns seem to

be similar to financial asset risk behavior, despite some unique characteristics of the

commodity markets based on the physical properties of the various types of products. In

particular, we observed the long memory phenomena for cash and futures returns at

various sample frequencies within the same sample period. This result is consistent with

one of the theoretical properties of the long memory process, “self-similarity.” We
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utilized both the parametric FIGARCH model and the semi-parametric local Whittle

estimation to identify the long memory return volatility feature. Our findings in chapter 2

and 3 are supportive of long-run temporal dependence in commodity price risks at daily

and high frequency sample frequencies.

We used high frequency price data in particular in this dissertation. Tick sample

frequency data have become more available recently due to developments in computer

technology. Motivated by the mixture-of-distribution hypothesis and empirically well-

known volatility persistence, recent and active studies have highlighted high frequency

return data to pursue deeper understandings of return volatility patterns. However, the

use of high frequency data necessarily involves market microstructure issues to be

resolved in order to analyze the intrinsic volatility dynamics. In chapter 3, we applied the

Flexible Fourier Form filtering to remove strong intra-day volatility periodicity, one of

the market microstructure biases.

Secondly, we applied a newly suggested volatility measure to increasingly

available high frequency return data. The so-called “realized volatility” is easy to

calculate since the measure is the sum of the squared high frequency returns. This

volatility measure can provide important implications of data which are consistent with

financial theory for option pricing and derivative modeling. According to formal

quadratic variation theory, the realized volatility measure is a consistent estimator for true

latent volatility factors. Taking advantage of this observable volatility measure, we can

enrich volatility dynamics without relying on the complicated parametric form of

traditional GARCH models. In chapter 4, we confirmed that the realized volatility

measure can provide some enhanced frameworks for commodity market risk
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management. We considered important economic determinants such as commodity-

specific announcements, time to maturity, information flow, and volatility linkage across

markets.

After applying various classes of econometric models at different sample

frequencies, we consistently witnessed long memory in the return volatility. The slowly

decaying autocorrelations seem to be an intrinsic property of the commodity return

volatility.

Since we have uncovered the commodity return volatility for both cash and

futures markets, a stage for further risk management modeling is ready. Baillie and

Myers (1991) noted that the optimal futures hedge ratio (OHR) is time-varying, and they

calculated the OHR using a bivariate GARCH model. Since the optimal hedge ratio is

defined to be a ratio of the conditional covariance between cash and futures to the

conditional variance of futures, proper modeling of conditional moments is important in

calculating the optimal hedge ratio. One possibility for further study is to build a

bivariate futures hedge model implementing the long memory property. This idea faces

some modeling issues since conditional variance matrices in multivariate contexts may

involve additional time—varying components. In previous studies on regular GARCH

models, constant conditional correlation matrices were assumed. We could allow for

more flexible forms of conditional correlation structures that may yield more implications

for the optimal hedge ratio modeling, as Tse and Tsui (2002) assume time-varying

correlations for a multivariate GARCH model.

Although it is true that cash and futures prices are not necessarin cointegrated,

there may be a possible cointegration relation between their squares. If cointegration
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exists between cash and futures price volatilities, it will be necessary to include a lagged

error correction term in the bivariate FIGARCH model. In particular, Brunetti and

Gilbert (2000) considered fractional cointegration in a bivariate FIGARCH set up to

study the relationship among volatilities in closely-related oil markets. Cointegration

analysis of commodity cash and futures return volatilities seems to create room for

improvement of the optimal hedge ratio.

Another possible extension is to use the realized volatility (RV) for daily futures

variance and any of the previous methods for computing the covariance between cash and

futures price changes. AS studied in chapter 4, the realized volatility constructed from

high frequency commodity futures price data could provide relatively accurate

conditional variances without relying on the parametric form of the GARCH model.

Therefore, incorporating realized volatility into the hedge model may afford a simple

framework for the optimal hedge ratio calculation. The authors are in the process of

producing further work on the issues above.
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