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ABSTRACT

ON THE MATHEMATICS OF CACHING

By

Mark W. Brehob

Computers circuits get faster at a much more more rapid rate than memory. In order for

historical computer performance gains to continue, memory latency and bandwidth need

to continue to improve. The most common way provide this performance is to use small,

but very fast. memory devices to store the most commonly used data called caches. Cache

performance relies upon locality; the predictable way in which caches tend to access memory

elements that have accessed in the past or near those previous accesses.

Of fundamental importance to improving a complex device is understanding how that

device functions. This work contributes to that understanding in two ways. First, it. expands

upon an old and mostly unused model of locality called ‘stack distance’ and shows how that

locality interacts with various types of caches including victim and skew caches. Second, a

negative result is provided showing that it is computationally intractable to find an optimal

schedule for most non-standard caches. This result means that a. very useful tool for cache

evaluation is not available when working with these non-standard caches. It also means that

those working on finding a tractable optimal algorithm for these caches can stop—they will

not succeed.
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Chapter 1

Introduction and overview

Modern society has come to rely upon the computer and its ever-increasing performance

gains. In order to meet future expectations, both of society in general as well as the computer

industry, faster and better computers need to be designed and built. The computer industry,

citing a variant of Moore’s Law [39], has traditionally expected that processor performance

will improve by 60% per year (this is equivelent to the more commonly stated “double

in performance every 18 months” Of course, there are many roadblocks on the path to

continuing at this rate of exponential performance improvement. These roadblocks include

physical limitations of the devices being built, the difficulty of designing extremely large and

complex processors, and the amount of heat which must be removed from the processor.

One of the more immediate roadblocks is the relatively slow rate of improvement in

the speed of memory devices such as DRAM. This looming “memory wall” [80] stands

squarely in the path to continued processor improvement. DRAM process improvements

have historically generated a 7% improvement in latency per year. One professor at Berkeley

jokingly contrasted this much slower rate of improvement with Moore’s law by calling it

“Less’ Law. [22]”



The most common way to address this disparity is to use small. but very fast. memory

devices to store the most commonly used data. Those devices are called caches. Of course,

not all of the needed data. can be kept in these small caches, so some of the memory accesses

must go to the DRAM. Those DRAM accesses are said to have been cache misses.

Traditional methods for caching data are reasonably effective, but the widening gap

between memory performance and the expected processor performance has made further

decreasing the number of cache misses an important goal. As such, many novel caching

techniques have been proposed in the last ten years. One difficulty with this plethora of

ideas is that they are very difficult to evaluate. Certainly one can compare them in an

environment where the workload is held fixed and “similar” sized caches are compared. (In

fact we have done such a study for a number of these techniques [14]). However, such studies

give very little insight into why these caches perform well—something very important to

anyone who proposes to use them in a commercial processor. The focus of this dissertation

is to examine what. can and cannot be done to gain that needed insight.

The work in this dissertation provides some insight and results about how a cache

interacts with the pattern of memory requests made by the processor. The two main

contributions are:

0 An old technique, LRU stack distance, is Greatly expanded upon. It is used to evaluate

locality and understand how locality and caches interact.

a An important evaluation technique, the optimal replacement algorithm, is shown to

be NP-hard to compute for a large and important class of caches. This means that

this optimal replacement is a tool that designers of those caches, which include the

“newest” cache designs, will not. be able to utilize.



1 .1 Overview

As with most scientific endeavors, this work would be meaningless without the context of

other’s efforts. As such, Chapters 2 and 3 summarize that context. In Chapter 2 a short

tutorial on caching is presented along with a discussion concerning a number of non-standard

caching techniques. The tutorial mostly consists of material one would find in a standard

undergraduate class on the topic. However, the non-standard cache discussion should be

novel to most readers.

Chapter 3 is a. discussion of the memory reference stream of a processor. These patterns

(called locality of reference) are what allow small caches to perform as well as they do.

The various techniques in the literature for quantifying and taking advantage of the nature

and patterns of these reference streams is examined. At the end of that chapter the stack

distance model, which is used throughout Chapter 4, is introduced.

While bits and pieces of original work are scattered thoughout the early chapters, it is

Chapters 4 and 5 that contain the original work found in this thesis. Chapter 4 discusses how

the stack distance model can be used to visualize and measure the interaction of locality and

caches. Specifically that model is validated more extensively than before, new applications

are found and the model is expanded to work with non-standard caches.

Chapter 5 is a formal proof, showing that it is NP-hard to compute the optimal replace-

ment policy of certain non-standard caches. This result holds for skew caches, generalized

victim and assist caches, and in fact nearly all multi-lateral cache schemes. Further, various

results are given which show that it is also NP-hard to closely estimate the number of misses

an optimal replacement algorithm would cause on these caches.



1.2 On Terminology used in this document

In the computer profession, as in most professions, terminology is not. always as standardized

as its practitioners might like. III some cases this extends beyond terminology and into

differing standards and assumptions. Below is an attempt to address those terms that

might be unclear.

0 Throughout this dissertation, the function lg(:r) will be used in place of 109201?) as is

common in many Computer Science texts.

o A consistant big endian [39] notation shall be used thoughout this work.

0 The SPEC CPU2000 benchmark suite[21] is refered to thoughout this document as

the ‘SPEC’ benchmark suite. The integer and floating-point parts of the benchmark

are refered to as SPECint and SPECfp.



Chapter 2

On Caching and Non-standard

Caches

This chapter serves two purposes and as such is broken into two sections. The purpose of

the first section is to introduce the fundamentals of processor caching. This section does

not, and cannot, provide a complete overview of the topic. Rather. its purpose is to provide

a basic understanding of terms that will be used in further chapters. The experienced

computer architect will find the vast majority of the material in that first. section to be

review, while others may find the need to refer to computer architecture books such as

[39, 56,66] in order to provide needed context.

The second section of this chapter focuses on non-standard caching schemes. This ma-

terial is significantly more obscure than the material of the first sectionl. Because Chapters

4 and 5 assume a working knowledge of this material it is also included in this chapter along

with the more basic material of section 2.1.

 

1In fact, only one paper has been found which provides an overview of even a few of these caching schemes

[82].
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2.1 Introduction to Processor Caching

As a processor executes instructions it needs information from the memory system where

both data. and the instructions themselves are stored. However, the main memory is usually

very slow. In the time it takes to fetch one piece of information, a modern processor could

have executed many hundreds of instructions. Clearly this makes the memory system a

significant performance bottleneck. While there have been a large number of methods used

to cope with this bottleneck, the most common and pervasive is caching. As shown in Figure

2.1, a small, fast memory subsystem, the cache, is placed between the processor and the

main memory. The purpose of caching is to keep the most commonly accessed information

in a closer (and much faster) location. the cache.

P C 1 Main

cessor ' . 1 ‘ .
ro ac e Memory

........................................................................................

  

    
  

Figure 2.1: A simple caching structure.

The cache generally keeps a copy of the most recently referenced information found in

the main memory system. While this cache is usually orders of magnitude smaller than

main memory, it is common to find that well over 90% of all memory references are in the

cache [39]. The time it takes to fetch a piece of information from the cache is usually similar

to the time it takes to execute a single instruction [17]. Obviously, this greatly speeds up the

average time required to perform a memory access, and reduces the “memory bottleneck”

mentioned above.

It is instructive to include more detail at this point. Each byte2 of memory generally

 

2A byte generally consists of 8 bits and can be thought of as a single number in the range of O to 255.



has a certain numeric address. Normally the processor will request one to eight bytes of

information at a time. If the information is not in the cache (this event. is called a cache

miss), the cache requests it from main memory. Once retrieved from main memory, the

cache provides the information to the processor and keeps a copy. If the cache does have

the information (a cache hit), it simply supplies its copy of the information.

In the remainder of section 2.1 goes into greater details about caching, but not beyond

what. can be found in any standard computer architecture book. Books by Hayes [38] and by

Hennessy and Patterson [39, 56] in fact. contain this information in significantly more detail.

Interested readers may find that Smith's seminal work [64] on caching provides a complete, if

dated, overview on caching. Also, books by Przybylski [57] and Handy [37] are outstanding.

Przybylski’s book, while published in 1990, provides an architectural viewpoint similar to

that of this author. Handy's book is written from a circuit designer’s viewpoint.

2.1.1 The structure and organization of a standard cache

In general a cache consists of two parts. the data part, which is the information stored

in the cache, and the tag part, which indicates which address the data came from. Each

tag consists of enough information to identify from which address the data came. When a

memory access occurs one or more tags are searched and compared to the memory address of

the memory access. If a tag matches the address of the memory access, the data associated

with that tag is provided to the processor by the cache rather than requiring an access to

the (much slower) main memory to get the same data.

The one-to-one relationship between tags and data is illustrated in Figure 2.2.

Ideally the cache could keep the data is the most likely to be reused. In practice, however,

this is usually not viable. Imagine what would happen when the processor requests data



...............................................................

  

  

  

    
...............................................................

Figure 2.2: A cache with data and tags.

from the cache. The cache would need to search though each of the tags to find where

the data is in the cache (if it is there at all). Since the whole point of the cache is to

speedup access time, the time required to search all of the tags is usually not acceptable.

A common solution to this problem is to assign each memory location a single place in the

cache where it can reside. Since the main memory is much larger than the cache, many

memory locations share the same assigned place in the cache. This means that only one

of those memory locations could be in the cache at any given time. The net result is that

flexibility is traded away for speed. This type of cache is called a direct-mapped cache. A

cache where the data may be kept anywhere is called a fully-associative cache.

A compromise between the direct-mapped cache and the fully-associative cache is the

set-associative cache. A set-associative cache is broken into sets of locations, all of equal

size. Rather than mapping each main memory location to a specific line in the cache,

the memory location is mapped to a set of lines. A given main memory location is now

restricted to a very small number of locations in the cache. This increases the flexibility of

placing data into the cache while still greatly reducing the number of locations which need

to be searched. Caches where. the set size is of size n are referred to as “n-way associative

caches.” Figure 2.3 illustrates the organization of these three caches. One can think of both

a direct-mapped cache and a fully-associative cache as extremes of a set-associative cache.



In the remainder of section 2.1 we use the terminology associated with set-associative caches

when referring to any of these three standard cache types.

  

  

 

 

  

 

 

 

   
  

  
 

Direct-mapped Set-associative Fully-associative

Figure 2.3: The three types of standard caches. If X is some address, this figure shows the

different locations its cache block could be placed.

2.1 .2 Address mapping

A standard cache of C bytes consists of K cache; lines. each B bytes long. Further, there are

S sets of cache lines. where each set consists of N cache lines. It follows that C = K a: B and

K = S * N. In this section it is formally described how the various memory addresses are

mapped into a cache. The next few paragraphs are summarized by Figure 2.4, and referring

to that figure may be helpful.

Because of a property called spatial locality, (discussed in detail in section 2.1.6) it

is likely that one of the next memory references will be to a location near the current

reference. Thus, it makes sense to fetch the data near the current reference into the cache.

To accomplish this task, the entire memory space is broken into non-overlapping blocks3

of size B, and the entire block where the current memory reference resides is brought into

 

31h this document the term cache line (or line) is used to describe the location in the cache while the

data that goes into the cache line is called a cache block (or block). Some others use the term “block frame”

for line while other, mainly older works, make no attempt to distinguish between the two concepts.



the cache. If all the address bits other than bits 32 - lg(B) to bit 31 are the same, the two

memory locations are in the same cache block.

Mapping each cache block into a set of the cache is the next task. Because of spatial

locality it is best to insure that two cache blocks that have addresses near each other do

not get mapped into the same set. To insure this, the blocks are mapped into the cache

in a round-robin like scheme, so that a given set has every Sth block mapped to it. If two

memory locations have the same values in bits 32 — (lg(B) + lg(S)) to 31 — lg(B), the two

addresses are mapped into the same set. These bits are often called the index bits as they

are used as an index to select a set in the cache.

Finally the remainder of the address, that is bits 0 to 31 — (19(5) + lg(B)), make up the

tag. Because of the mapping into the set. and block. the remainder of the address is trivial

to determine, and thus the tag is a unique identifier of the memory address from which the

block came. Figure 2.4 summarizes the way a cache uses the address of a memory reference

to generate. the set number and tag. The offset. simply states where the data is inside of the

cache line.

....................................................................................................................................................................

 

  
 

 

 
 

 

 
 

 

High-order bits Low—order bits

Address: blto t0 bit31_([g(3)+lg(3)) bzt32—(19(B)+19(S)) t0 bit32_lg(3) t0 bit31

bit3l—lg(B)

Offset: ' ’ lg(B) bits

Set number (index): L; . ‘ lg(S) bits

Tag: 329I1g(B)+1g(S)J bits   
 

....................................................................................................................................................................

Figure 2.4: How an address is used by the cache. B is block size and S is set size. Both are

assumed to be greater than 1.
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An example is likely useful at this point. Consider a 2-way associative cache which has

512 cache lines. each 16 bytes in size. Thus the data portion of the cache is 8192 bytes (or

8 Kilobytes) in size and there are 256 sets. Say the one byte of data at address F012345616

is requested by the processor. Notice that the offset of this address is 615, the set number

is 4516 and the tag is F012316. Thus, the two tags associated with set number 4515 (6910)

are checked to see if they match the tag of the address (F0123416). If either does, the data

is found in the sixth byte (the offset) of the data part of the that cache line.

2.1.3 Replacement policies

If the cache is full and a new block needs to be put into the cache, some other block must

be evicted. Clearly the block that is to be evicted nmst be from the same set as the new

block. In a direct-mapped cache, there is no decision which needs to be made—there is

only one block to chose from. However, in a set-associative or fully-associative cache, some

decision must be made. By far the most common scheme is to evict the block which has

been unused the longest. This block is called the least-recently-used (LRU) block and the

algorithm is called the LRU replacement algorithm.

The reason the LRU algorithm is so commonly used is that programs tend to access

data they have accessed recently. This property of programs is called temporal locality and

is discussed further in 2.1.6.

2.1.4 Modern implementations

Modern caches are actually more complex than have been described above. III this section

we outline some of the techniques used in modern memory system design.

Modern processors generally have multiple levels of cache. If the first and smallest cache
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(called the L1 cache) does not have the requested block, it checks in the next level of the

cache (called the L2 cache). In theory this would continue until the last level of cache has

missed, when the data would be retrieved from the main memory. Today, most general-

purpose processors have only two levels of cache, although processors with three levels, and

even four levels of cache are starting to show up in the marketplace[35].

Another quirk of modern caching is that the L1 cache is often split into two parts,

one for data and one for instructions. This is done to improve bandwidth, improve miss

rates, and for several other reasons[39]. Usually the data and instruction request stream are

combined at the L2 cache. The caching scheme where the data and instructions are split is

often called the Harvard Architecture[39], and is illustrated in Figure 2.5.

............................................................................
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Instruction Data

Cache Cache
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Figure 2.5: The Harvard architecture.

Lastly the use of virtual addresses has an impact on caching, particularly non-standard

caching schemes. The details of virtual addressing can be found in most computer archi-

tecture and operating system texts[39, 63]. The net effect is that the address the processor
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uses (the virtual address) is different than the address the main memory system uses (the

physical address). 111 general, the 71 least significant bits will not change when the virtual

address is translated into the physical address. The value of 2" is then called the page size

and is often around 212 bytes in size.

The point at which the virtual address is translated into a physical address has a sig-

nificant impact on the cache. This translation can happen before, after or during the cache

lookup. While this decision has a Significant impact on cache performance, the only option

which impacts this discussion is if the translation happens during the cache lookup. In that

case, the index bits of the virtual address are used to select a set. The virtual address is

translated as the cache is searched and the tag(s) are compared against the resulting physi-

cal address. This scheme has a number of names, including “virtually addressed, physically

tagged,” “virtually indexed, physically tagged" or simply a V/R cache [79]. Notice that it

relies upon the index bits being the same for both the physical and virtual addresses‘l. This

observation implies that the number of sets multiplied by the line size cannot be larger than

the page size. The quick translation of virtual to physical addressing is done by a device

called a translation lookaside buffer or TLB.

2.1.5 Caching metrics

The previous sections have hinted at the two basic metrics for measuring the goodness of

a cache: hit rate and access time. Hit rate (HR) is simply the percent of accesses which

are cache hits. The access time is the amount of time it takes to service a hit (Tm-t) or

a miss (Tm-SS). From these metrics the average access time of a memory access can be

computed. It is simply HR * Thu + (1 — HR) * Tmiss. Recall that the advantage of direct-

 

4Although W'u, among others, proposes ways around this restriction [79].
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mapped caches is a faster access time (a lower Th") while they tend to have a lower hit rate

(HR). Fully-associative caches usually have longer access times but a higher hit rate. A

detailed, if somewhat out of date, analysis of these trade-offs can be found in section 5.3.3

of Przybylski’s book[57].

Tm,“ is the time it takes for an access to be fulfilled if the cache does not have a copy

of the data, so it has very little to do with the cache itself. Rather it is dependent upon

the memory system behind the cache. In fact Tmz-ss can be an important parameter when

designing a cache. If Tmiss is high, increasing the hit rate at the cost of Thy will-be more

beneficial than if Tmiss were lower.

2.1.6 Locality of reference

Locality of reference is the fundamental reason a. small cache can achieve a high hit rate.

A processor tends to access memory locations it. has referenced recently (temporal locality)

as well as locations near those it has referenced recently (spatial locality). A cache takes

advantage of spatial locality by fetching a larger chunk of data then the processor requests

(a cache block). As discussed in section 2.1.3, the temporal locality of a program is utilized

by the replacement algorithm, and by the very concept of a cache.

The above definition of locality is fairly terse and certainly qualitative rather than

quantitative. Unfortunately that definition is literally as detailed as any standard computer

architecture text gets. In Chapter 3 a number of locality metrics from the literature are

discussed. In Chapter 4 a method for quantifying and visualizing locality is introduced in

great detail.
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2.2 Non-standard caches

While section 2.1 details how the most common caching schemes work, there are a large

number of variations. Those variations include changes in replacement policy, cache struc-

ture, and address mapping. These variations usually can be evaluated in terms of the two

cache metrics mentioned above: hit rate and access time. Each scheme attempts to improve

one of the metrics, usually sacrificing the other to some small extent.

Evaluating these non-standard caching schemes can be difficult. First, it is difficult to

prove that a given scheme will really improve the hit rate—even increasing associativity

can hurt in certain cases [72]. Thus anyone proposing a new scheme has to show that their

scheme works well on most real programs, quite a tall order. In general the authors of these

schemes use the SPECCPU benchmark suite5 as a standard method of evaluation. Even

using this rather large suite of programs as a standard for measuring cache performance

does not always generate reliable results. For one thing, this benchmark suite is biased

toward certain types of programs [23]. Another problem is that when evaluating a novel

caching scheme, one generally needs to write the cache simulator from scratch. This can

be error-prone and has resulted papers full of errors. For example in an e-mail exchange

with D. Rhoades, he agreed with this author that at least. parts of their published work [59]

suffers from significant simulator error.

The other difficulty is evaluating the access times of a novel caching scheme. The prob-

lem is that evaluation is an engineering decision where the quality of design, the processor

layout, and the properties of the process technology used will have significant impacts on

the actual access time. There have been high-level models proposed to estimate the impact

of certain changes at this level [25]. However, even if those models are accurate, many

 

5Information about SPECCPU can be found at http://www.spec.org.
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non-standard caching schemes do not easily fit into the parameters of these models.

Keeping these problems in evaluation firmly in mind, it is worthwhile to point out

that just because these schemes are difficult. to evaluate does not mean that they are not

useful. Rather it means that when considering them one needs to keep a degree of healthy

skepticism about the reported results. Independent measures of the hit rates of these caches

have been reported [14,60] and are probably somewhat more reliable results.

2.2.1 Hash caches

Perhaps the simplest and most common modification to a standard cache is to modify the

way addresses are mapped into the sets of the cache. Rather than using the lg(S) bits,

where S is the number of sets. to select a set of the cache (as described in section 2.1.2),

a larger group of address bits are used as inputs to a function which selects the set. This

function is called the hashing function, and the cache which uses it is called a hash cache.

For example if there are 2m sets, one might use 2m different address bits and then perform a

bit-wise XOR of those values to get an output of 772. bits. Figure 2.6 illustrates this hashing

function. A more generic hashing cache was conceptually proposed by Smith in a 1978 work

[65] while at least. one real processor, Hewlett-Packard’s PA7200, uses a hashed L1 cache

[17].

The benefit of the hash cache is that it can reduce set conflicts in certain situations.

Imagine that a. program is striding [39] through memory 1024 bytes at a time. That is, it

might reference location 0, then 1024, then 2048, etc.6 Now imagine that we are using a

direct mapped cache with 32-byte cache lines and a total of 4096 bytes in size. That cache

has 4096/32 = 128 cache lines. As the program strides through memory it will only utilize

 

6This type of behavior is quite common and usually associated with arrays.
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Figure 2.6: An example of how the set number might be determined in a hash cache.

four of those cache lines. specifically lines 0, 32, 64, and 96. The hashing function described

above will allow the cache to utilize all 128 cache lines.

A hash cache also has a number of restrictions and drawbacks associated with it. Per-

forming the hashing function can take a significant amount of time. While a single XOR

gate delay may seem trivial, that extra time may not be available". Also, as described in

section 2.1.4, if the cache is virtually addressed but physically tagged, the extra bits used by

the cache to perform the hashing function may not be available until after the translation

fiom the virtual to the physical address[60].

 

7In modern processes wire delays are starting to dominate the processor latencies. This means that the

delay introduced by an XOR may become less significant in the future. [4]
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One’s complement cache

A one‘s complement cache [81] is a hash cache with a specific hashing function. Specifically,

in the case of a cache of size 2’", the address (other than the block number bits) is broken

into groups of m bits. These fields are then XORed together. That creates a. mathematical

function similar to what would occur if the cache were of size 2’” — 1 rather than 2'", which

can greatly reduce striding problems. The authors of the paper which introduced the one’s

complement cache claim that miss rates tend to drop 10% to 20%. Other studies indicate

that the improvement is much lower for most. traces, usually on the order of 1% to 3% [14].

However, we have found that in certain data—sets, a one’s complement cache can have a

significant impact, sometimes reducing miss rates by a factor of 10. While this may be due

to a horrible compiler. it is certain that horrible compilers exist in the real world.

2.2.2 Hash-rehash caches

While the hash cache tries to reduce the miss rate of the cache, a hash-rehash cache[1] tries

to decrease the time it takes for the cache to supply the data in the case of a hit (TM).

This reduction is accomplished by addressing the cache as a direct mapped cache. If this

access results in a miss, one of the index bits8 is toggled, and the resulting value is used

as the index to search the cache again. Notice that the toggling of a single bit means that

two cache lines are always paired although the search order will vary. In this section we

refer to X1 as the first line searched for a given memory reference and X2 as the second line

searched.

If a hit occurs when searching X1 the data is supplied to the processor and the cache

is unchanged. If a hit occurs when searching X2. the cache block there is swapped with

 

8Usually the most significant index bit. In any case, a given hash-rehash cache will always use the same

toggle bit.
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the one in X1. If a miss occurs on both accesses. the block in X1 is moved to X2, the one

that was in X2 is evicted, and the new block is moved into X1 The idea is to keep the

most-recently-used (MRU) block in the cache line where it will be searched for first in an

attempt to reduce the average value of Thir-

The advantage of the hash-rehash cache is that each access takes as long as a standard

direct-mapped cache, so if the first search is successful, the access time is reduced compared

to a two-way associative cache. At the same time, the hit rate, when considering both tries

to find the data, is better than a direct—mapped cache (but worse than a two-way associative

cache[1]).

It is worth noting that the name “hash-rehash” cache is perhaps inappropriate. The

index into the cache is usually done by bit selection, that is by using the index bits as

described in section 2.1.3, rather than using a more complex hashing function. The reason

for this indexing scheme is that even a short XOR delay might negate the access time

advantages of a. direct-mapped cache over a two-way associative cache.

While papers on hash-rehash caches and their variants [1, 3, 16] have been common, we

are unaware of one being used in a commercial productg. It is difficult to say exactly why

this is, but there are some obvious possibilities. Clearly the lack of index bits in a virtually

addressed, physically tagged cache is an issue, in part because an X-way set-associative

cache requires lg(X) fewer index bits than a hash-rehash cache of the same size. Further,

the access time advantage of a hash-rehash cache is going to be very dependent upon the

exact technology used as well as other clock-limiting. paths in the chip. One might. be

trading a lower hit rate for no actual improvement in access time.

 

9Although the IBM CMOS System/360’s cache organization is somewhat similar to a hash-rehash cache

and is described below.
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Column-associative caches

One variant on hash-rehash caches is the colunm-associative cache[3]. A “rehash” bit is

added to each cache line, which both improves the overall hit. rate of the cache and reduces

the average number of times the cache needs to be probed. As above, two paired cache

lines are given labels, but this time the labels A and B are used and no order of access is

implied. The rehash bit associated with a given cache line is set if it is accessed as a rehash

location, either during a search or during replacement. If a cache line with its rehash bit

set is searched. no attempt is made to search the rehash cache line. Say that lines A and B

both hold ‘hash blocks”, that is blocks that would be found during the first pass of a search.

In that case neither rehash bit will be set. so if a search of A fails, B will be searched.

During the search of B (which will miss) its rehash bit is set. During replacement the block

in A will move to B and the block in B will be evicted to make room for the new block.

Now if B gets searched first, it will result in a miss (it holds data associated with A) but

A will not be searched (because the rehash bit in B was set). The new data. when fetched,

will be placed in B and its rehash bit will be reset.

The net effect is two-fold. First, a more LRU-like replacement scheme is implemented,

resulting in a better hit rate than a hash-rehash cache [3,82]. Second, in some cases a miss

does not require two searches through the cache. slightly reducing both the average access

time and the number of requests to the cache.

Other hash-rehash schemes

There have been a number of other proposed schemes related to the hash-rehash cache.

Detailing each is outside the scope of this document, but short descriptions of a few are

provided in this section.
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The predictive sequential associative cache [16] is very similar to the column associative

cache. However, instead of swapping blocks to keep the MRU block in the first location,

a steering bit table determines which location to search first. It also maintains true LRU

ordering with a single LRU bit. A number of schemes for predicting the steering bit were

also proposed.

There are also two caches called the MRU cache. both of which have similarities to

hash-rehash caches. The first was used by IBM’s CMOS System/370 [18]. Here they kept

the MRU data of each set on chip, and had the rest of the cache off-chip. They then

speculatively used the MRU data whenever the cache was accessed. Because the time to

detect the mistake was always the same, the logic required to back out of a misprediction was

fairly straight—forward. The other MRU cache [47] simply did a sequential search through

a set of the cache. using MRU information to guide the search order.

2.2.3 Victim caches

The victim cache is perhaps the most exciting non-standard cache thus far proposed. As

originally proposed [45] it has no impact on the access time of an L1 hit (Thu) or on the

hit rate (HR). Rather it reduces the average access time for an L1 miss (Tmiss). The only

price is a small bit of additional die area.

A victim cache is simply a, very small (usually 2 to 16 cache lines) fully-associative

cache. It acts just like an L2 cache managed with an exclusive policy [9]. only rather than

the normal latency associated with an L2 cache. the small size allows the access to occur

in about 1 cycle. So when the cache evicts a block, rather than moving that block to the

L2 cache (or just throwing it away) it is moved into the victim cache, and a block from the

victim cache is evicted to the L2. Thus, the main L1 cache and the victim cache never store
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the same block. Even very small victim caches can expect to recover 30% or more of the

conflict misses that occur in a direct-mapped L1 [45]. The write buffers in Intel’s Pentium

Pro as well as the “victim buffers” of the Alpha 21264 both perform some of the functions

of a victim cache.

It is worth noting that due to the small size of the victim cache it is quite reasonable to

search the victim cache in parallel with the main L1 cache. While this will slightly increase

the total latency of the cache, we believe that the access time will be similar to a two-way

associative cache, assuming that the victim cache size is kept quite small.

2.2.4 Skew caches

Only a small modification to a set-associative cache is required to create a skew cache.

As illustrated in Figure 2.7 each bank in a set-associative cache can be thought of as a

direct-mapped cache with each of the banks indexed by the same function. In a skew cache

a different function is used for each bank. A 2-way skew-associative cache is illustrated in

Figure 2.8. In this case two different functions, f0 and f1, are used and a block may be

placed in different locations in different banks.

 

Bank 0 Bank 1

address

Figure 2.7: A model of a 2-way set—associative cache. [60]

Such a simple modification may not seem significant, but studies have shown that a two-
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Figure 2.8: A 2-way skewed-associative cache. [60]

way skew-associative cache produces hit rates similar to that of a four-way set associative

cache [14, 60, 61]. This performance can be attributed to three effects: data dispersion, the

effect of hashing, and self-data-reorganization [14,61]. The first effect creates an actual

increase in associativity [14]. That is, temporal locality is more helpful to a skew cache

than a standard cache of the same associativity. The second effect is an identical effect to

that found in the above section on hash caches. The third effect is more of a side-effect of

locality. A cache block can go into two different lines. If one line is an area of high—conflict,

the block will likely get evicted. Next time it comes in it may go to the other line and, due

to the lower conflict, stay there. Thus, on relatively slow changing data sets, skew caches

can “learn” where to place blocks.

2.2.5 Smart caches

All of the caches thus far discussed, both standard and non-standard, achieve their high

hit rates purely by taking advantage of locality. While high hit rates are achieved by these

caches, there are limits to how successful a cache can be by purely relying upon locality.

As these limits are discussed in section 2.1.6 of this document, they will not be dwelled

upon here. However, the basic observation is that even a fully-associative cache has non-
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compulsory misses, and no LRU cache can be expected to perform better than that.

Smart caches10 are those caches whose caching schemes rely upon something other than

just locality of reference. Many of these schemes rely upon the observed fact that certain

accesses are unlikely to be re-referenced in the near future [51,78], and having those refer-

ences bypass the cache may be the best solution. By bypassing these low locality references

other, ideally more-likely-to—be-used, cache blocks can be kept in the cache.

Each of the smart cache techniques utilizes different ways of identifying the low-locality

accesses. Additionally, many of these techniques provide methods for reducing the impact of

bypassing accesses which have a high degree of locality. We are unaware of any studies which

compare these smart caching schemes. The techniques used by these schemes are so diverse

that such a study would be extremely difficult to conduct, and even more difficult to conduct

fairly. Many of these techniques have not made it past the “proof of concept” stage—

comparing them to more refined methods would not. show that one idea was inherently

better than the other. While few quantitative comparisons seem to exist, it is possible to

detail how some of these schemes work.

Assist caches

Hewlett-Packard's PA7200 utilizes a smart caching scheme which can be referred to as an

assist cache [17]. Those familiar with HP’s recent endeavors will not be surprised that the

identification of the low locality memory references is left to the compiler. In fact the assist

cache, for which this scheme is named, is little more than the backup in case a high locality

access was misidentified.

 

10The term “active management” is perhaps a more common term than “smart caching.” However, that

term seems to imply a dynamic hardware caching scheme, and we Wish to also include compiler based

management.
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The PA72OO has two L1 data caches. The first, called the assist cache, is a physically-

indexed, 64—entry, fully-associative cache using a FIFO replacement scheme. The second is

a virtually—indexed, physically-tagged, hashed, direct-mapped cache and can be as large as

one megabyte. In general, data is first put in the assist cache and evictions from the assist

cache are placed in the main cache.

The compiler can identify a certain load or store as being. in HP’S terms, “spatially

local.” What they mean is that the compiler believes that the line may be accessed again

due to spatial locality, but not due to temporal locality. Lines so identified are still put into

the assist cache, but upon eviction the main cache is bypassed. This backup by the assist

cache allows the compiler to be aggressive in its attempts to identify low locality accesses.

Stream buffers

Another method of identifying low-locality accesses is the hardware stream buffer [45, 51].

A stream buffer is basically pipe, that is a FIFO queue, where information can only be

taken off the top of the pipe. By some method, either with information from the compiler

or observation of the data stream or both, streams of references are discovered. Streams of

references are generally individual load instructions walking though memory with a. known

stride. The data can be prefeteched into the FIFOs and the caches can be bypassed entirely.

There are many advantages to stream buffers. For one, traditional prefetches into a cache

can result in data being evicted before it is used due to conflict in a certain set. Secondly,

streaming data usually has very limited temporal locality, and steam buffers reduce the

pollution of the cache by this low-locality data [51]. Also, modern DRAM components

haven’t been truly random access since the introduction of prRAM [42]. For modern

DRAMs, spatial locality can be very important indeed. Reordering the memory accesses
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so that large chunks of each stream are fetched at once, rather than the program order of

interleaved access, can greatly reduce the total latency to fetch data from the DRAM [52].

There are some potential problems with stream buffers. W'hile stream buffers do show

significant performance increases on certain programs, non-scientific programs tend to see

more limited benefits. This characteristic makes their use questionable in general-purpose

processors. Also, stream buffers, unlike most of the. caching schemes discussed so far,

generally require compiler help to achieve any significant performance gain. That means

that effort by the chip designers is not enough; effort is required by the compiler writers too.

It is worth noting that while we are unaware of a commercial chip that uses stream buffers,

an experimental chip with stream buffers has been built at the University of Virginia [50].

Cacheable/Non-Allocatable Cache

It can be argued that the true beginning of smart caching algorithms was a paper by Tyson

et al. [74]. In that paper it is shown that not only do certain load instructions fetch the

vast majority of the data, but some load instructions are responsible for a disproportionate

amount of the cache misses. This observation means that identifying those instructions can

provide large hints about which memory references should bypass the cache.

They propose a number of techniques for identifying load instructions which should be

bypassed, including compiler/profiling methods and dynamic two-bit schemes that resemble

branch predictors. While their proposed schemes do not improve the average hit rate, they

do show that memory system bandwidth can be reduced. More importantly this paper

provided the fundamental basis for investigation of instruction-based load bypassing. This

scheme is called C/NA or CNA as the bypassed loads are marked as “cacheable but non—

allocatable,” meaning that a given cache block may be in the cache but. if it is not, do not

26



allocate space for it in the cache.

Other smart caching schemes

A number of other smart-caching schemes have also been proposed. Some of the more

interesting are briefly described in this section.

A rather novel hardware scheme for smart caching was proposed by Johnson and ku

[44]. The underlying idea is that certain data structures are, by their very nature, accessed

in a low-locality manner. They propose to group the entire memory space into macroblocks

and observe the reuse behavior of the various macroblocks. If a given macroblock has low

reuse, the data from that block bypasses the cache. Under one version of their proposal

they add a small buffer to act as a back-up in the event of a misprediction. The initial

results of their study were encouraging, but covered a very limited set of programs”. In

the literature this scheme is often called the MAT cache [69].

A research group at the University of Michigan has proposed a number of smart caching

schemes. Their NTS cache is is similar to the MAT model in that the data addresses are

used to predict the locality of a memory location. However, in the NTS cache the metric

of locality considers whether the cache block had been used more than once in its previous

“tour” of the L1 cache, rather than looking at a macroblock over a much longer time [70].

That some group has also improved the CNA scheme.

Wong and Baer proposed a scheme to improve the hit rate of a highly associative L2

cache [78]. They tag each load instruction as either generating “temporal” cache lines or

“nontemporal” cache lines. A standard L1 replacement policy is used, but the L2 gives

preference to temporal cache lines. They propose both a compiler-based profiling scheme

 

11For example, programs like TPC-B have a very different access pattern than this scheme assumes.
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and a hardware scheme to distinguish the two types of load instructions. Their results look

both complete and promising, showing as much as a 12% improvement in instructions per

clock for some programs, although 1 to 3% seems to be the norm.

Anderson et al. study the impact of bypassing and superloading on a miss. A superload

moves both the missed line and the surrounding lines into the cache [5]. They propose a

hardware scheme that decides to load or superload based upon past behavior of that part

of memory. They compare their on-line scheme to the off-line optimal algorithm, both with

and without bypassing. The net result is that their scheme shows marked reduction in

both the miss rate and bandwidth used when compared to a more traditional LRU cache.

However, their scheme also utilizes an unlimited amount of memory to maintain information

about previous loads. The net effect is that they show superloading and bypassing to

have significant potential in an on-line environment. However, their exact imtflementation

appears infeasible at this time.

Hallnor and Reinhardt have recently proposed a much more complex smart caching

scheme [36]. The fundamental argument they make is that memory is getting so slow

compared to the processor speed that it is wise to take extra time on an L2 access in”

exchange for a higher L2 hit rate. While this premise may be flawed”, their results are

quite promising. Just as others have done, they apply a replacement scheme that uses past

history. However, they also use techniques from operating systems to make the L2 cache

effectively fully-associative. This associativity comes at higher system latency, but allows

them to use their replacement scheme more effectively. The number of misses is greatly

reduced, sometimes by as much as a factor of two.

 

12For example, L2 misses, if rare enough. might be dealt with in other ways, including changing threads

or processes
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2.2.6 Further reading

While citations for each of the above non-standard caches have been provided. some of the

papers provide outstanding explanations of a wide variety of schemes. In particular [70, 82]

provide very nice overviews of hash-rehash caching and smart. caching respectively.
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Chapter 3

0n the Measurement of Locality

The purpose of this chapter is to provide an overview of research in the area of locality

measures. In the first section of this chapter, the meaning of the term "locality measure”

is discussed. In sections 3.2 and 3.3 various locality measures are classified and explained.

Section 3.4 contains a discussion about LR U stack distance, both as a locality measure as

well as some of its other applications in the literature.

3. 1 Locality measures

Measuring the locality of a data stream is an imprecise science. In general, it is an attempt

to reduce massive amounts of data, sometimes millions or billions of data points, into

something which can be easily understood and used by a human. Each researcher has

different. goals and hopes for their measure, so each researcher proposes a different scheme.

In fact, the motivation for each measure is perhaps as interesting as the measures themselves.
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3.1.1 What is locality?

The exact definition of locality is a bit vague. which, as one would expect, contributes

to the difficulty of measuring it. However, the term locality, as was briefly mentioned in

Chapter 2, is used describe the fact that there is a dependence between the addresses of

previous memory accesses and that of future accesses. A processor tends to access memory

locations it has referenced recently (temporal locality) as well as locations near those it has

referenced recently (spatial locality). This phenomenon is to be expected—as a program

moves through a data structure it will do so in a certain pattern; perhaps “walking” memory

at a fixed stride size, or perhaps moving though a linked list or tree. In reality, a program

will generally interleave its accesses to various data structures.

As an example, imagine a standard matrix multiply operation. One input array is

accessed in row order, one in column order, and the output array is usually accessed in

either row or column order. In addition, loop control variables and temporary variables

are heavily utilized (although many of those may be allocated to registers and not manifest

themselves as memory accesses). Now imagine that the matrix multiply operation is just

one of a number of subroutines used by the program. The net effect is that a number of

access patterns start, get interleaved with other access patterns, and then end. These access

patterns are much like threads in a tapestry. W'hen examining that tapestry what should be

the goal? One could evaluate the individual threads, the patterns formed by those threads,

or perhaps the tapestry as a whole. Each level of granularity is important, and each requires

a different perspective.
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3.1.2 Locality measures in the literature

The remainder of this chapter summarizes much of the existing literature about locality

measures. Section 3.2 provides an overview of the most common way of examining locality:

at the macroscopic level. These metrics are generally concerned with capturing the locality

of an entire program. and generally rely upon the law of large numbers to function correctly.

In that section a brief overview is also provided for a. closely related topic, cache-centric

locality models. Those models view locality as it is reflected in a cache.

Section 3.3 looks at those locality metrics which are generally concerned with a much

smaller number of references. These microscopic metrics tend to be most. useful when

examining certain program constructs or data structures. Many of them are loop-centric.

That is they assume the existence of a single large looping structure with relatively regular

behavior, something generally found in scientific computing.

Finally, in Section 3.4 the idea of LRU-stack distance is introduced. In addition to other

applications, this scheme is clearly a macroscopic locality measure. It is was one of the first

of the locality measures of any type. and has a large number of applications. In Chapter 4

this measure is discussed in great detail and novel alpiplications for it are introduced.

‘

3.2 Macroscopic locality measures

Macroscopic locality measures are generally concerned with characterizing the locality of

a program or a large portion of a program. Most of the papers in which these models

are discussed focus upon predicting the cache miss rate. Their goal is to allow the quick

characterization of a large number of programs on a large number of caches in a short period

of time. The huge increases in disk space and processing power. as well as the high speed
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of the cache simulators such as Cheetah [68], have made this less important, at least for

standard caches, than it was in the past. However, by attempting to predict a miss rate

these studies had to generate a model for locality. It is that part of their work, the locality

model, on which we concentrate in this section.

3.2.1 Chow’s empirical power law

Perhaps the simplest useful model of locality was proposed by Chow in the mid 19708 [19, 20].

He proposed that the miss rate of a cache could be matched to the equation A“! (C) = C'0',

where a would be fit to the available data and where C is the capacity of cache. Chow

claimed that the miss rate is “most sensitive to the capacity” and that in his analysis issues

such as “block size, the management algorithms and other factors” would be ignored. If

the cache is considered to be a fully—associative cache using an LRU replacement algorithm

(something his analysis would certainly allow). 1le (C) is precisely a prediction of temporal

locality as it is defined in Chapter 5.

While outdated and lacking significant quantity of empirical data to support it, Chow’s

power law is very important to the study of locality. First. it forms the basis for one of the

classic rules of thumb in cache design: increasing the cache size by a factor of 4 results in

one half the miss rate. This would be the case if a were 0.5. This general rule, if not the

0.5 value, is experimentally observed in [64] among others. '

Chow used his power law as the basis for a mathematical approach to the design of

multiple levels of the memory hierarchy [20], a research topic that has continued well into

the 1990’s [43]. While it is his power law that is relevant to our work, the primary result

of [19,20] was to show that the optimal number of cache levels scaled logarithmically with

the capacity of the cache hierarchy.
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3.2.2 The Fractal Model of Locality

Thiebaut's work [71] on the fractal model of locality is something of a variation on Chow’s

[20] power-law model from the decade before. How he arrives at his model is very different

than Chow. Thiebaut claims that the access patterns of many programs are fractal in

nature: having an access pattern in one area of memory and then jumpng to a different

area of memory and repeating that same pattern. He claims that if this is true, a two piece

power—function, very similar to Chow‘s, should model the ratio of the unique number of

memory locations over the total number of memory references. His function, f (3:), takes as

an argument a number of successive memory references .7‘ and predicts how many different

locations those :1: memory references will access.

The fundamental argument is that memory accesses are in fact a random walk though

memory. Also. the “jump size” of that random walk tends to be low. but has the occasional

long jump in it. Thiebaut states that such a random walk is a. special case of a fractal,

and that other work in fractals can be used to model this access pattern, and thus the

locality of the trace. He admits that other than in the instruction stream, much of the

random walk theory is not supported by his data. He believes that this is due to memory

accesses actually consisting of many different random walks. we suspect that. examining

the data stream generated by each individual load and store instruction might provide a

way to observe these random walks, if they do indeed exist.

What Thiebaut does demonstrate is that assuming the random—walks are occurring, he

should be able to predict the miss rate of a fully—associative LRU cache. His model has two

parts: one for the first no memory references, and one for the remainder of the accesses. In

effect he produces a formula of the form AIR(C) = AC9 with different values for A and 0

for accesses before and after access number no.
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The results can be criticized for only addressing a very small number of traces. we

believe his model is of marginal value, but the underlying idea of data streams being mod—

eled by a random walk is of interest, and may have applications to stream detection and

prediction found in [51] and related works.

3.2.3 Agarwal’s analytic cache model

In 1989 Agarwal et al presented a novel analytic cache model [2]. Although this work is

presented as a model of cache behavior, it can be viewed primarily as modeling the locality

of a reference stream. Their goal is to describe, with as few parameters as possible, the

various properties of the reference stream. They attempt to quantify temporal locality,

spatial locality, and the degree of conflict in the reference stream. The reference stream is

broken into “time granules,” and values are found for each parameter in each time interval

as well as for the entire reference stream.

Ignoring multi-programming related issues, this analytic model has four locality param-

eters. The first is the unique number of blocks that. are accessed. This provides a measure

of the degree of temporal locality very similar to that used by Thiebaut. The second pa-

rameter is the collision rate: an attempt to measure how prone a given reference stream

is to evicting live blocksl. The final two parameters are used as inputs into a two-stage

Markov model. The Markov model is used to describe the probability of memory accesses

being to successive locations. It is this measure that is used to account for spatial locality.

Their scheme does have its flaws. First, for computational reasons, it relies upon the

cache using random replacement rather than LRU replacement. While they do claim that

the miss rate for random replacement is a good indicator of a cache with LRU replacement,

 

1That is, blocks that. will be reused.
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neither their data, nor this author’s experiences support this. They report that the model

does a reasonable job estimating the miss rate for direct-mapped caches, with an average

error of 4% to 15%, depending on the block size. However, two-way set-associative caches

have an average error of 14% to 23%. They also note that their model always predicts too

high of a miss rate for the set-associative cache and attribute that behavior to the random

replacement policy assumed by their model. While their error rate might seem unacceptably

high, it should be noted that the space needed to store this analytic model is at least three

orders of magnitude smaller than the trace itself. Further, the results from this model can be

computed much faster than actual simulation. Thus, this model is a reasonable alternative

for fast design space explorations. The results from such an exploration could be used to

determine which cache configurations and traces to study in greater detail.

3.2.4 Grimsrud’s locality metric

In the early 1990’s Grimsrud, in some cases with others, wrote a number of papers about

quantifying locality [32—34]. Their work describes a method of visualizing locality with a

three-dimensional graph. The a: dimension is spatial locality, the y dimension temporal

locality, and the z dimension indicates the probability of access having this locality value.

Specifically, the locality of a memory reference trace F is defined to be L('f,s,d). This

is the probability that an address 8 away from the currently referenced address is, in the

remainder of the trace, first accessed (1 references in the future. More rigorously,

L(T", s,d) = Para-1+ s = fix + d] /\ (rm a fix +1],...,'f[:r + d — 1])

To make the graph readable, Grimsrud groups the values of s and d into bins. That is,

each value of d and s is rounded up to the nearest power of two. This rounding not only gives
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a logarithmic view. it also makes the surface of the graph much cleaner and meaningful. This

“binned” version of L is renamed L" and is also called the locality function. By graphing

the three-dimensional locality function for a given trace, one can gain an intuitive feel for

the type and degree of locality that exists in the trace.

Applications

Grimsrud provides a wide variety of applications for his locality metric, One very useful

application is in evaluating artificial trace-generation technique52. While he states that the

locality function cannot easily be used to generate an artificial trace, it is possible to check

the correspondence between the locality functions in the artificially generated trace and the

original trace it was based upon. Grimsrud evaluates a number of techniques, including

a stack-based model [6,8] and a Markov model, concluding that each of the models has

certain flaws and demonstrates the weaknesses of each.

There are a number of other proposed applications [34] including trace characterization,

benchmark evaluation, and the ability to visualize locality. The last is the most important

in the context of locality measures, and Grimsrud explains how this feature can be used

to help one identify loop characteristics including stride and the amount and nature of

temporal locality in the reference stream.

3.2.5 Cache based locality

W'hile Chow’s, Thiebaut’s, and Agarwal’s models are cache models after a sense, in each

case their results hinge upon their characterization of the reference stream in terms of a few

parameters. The interaction of caches with their locality model can be viewed strictly as an

 

2Briefly, artificial trace-generation is an attempt to summarize the locality properties of a trace in a set.

of parameters. This is mainly used to avoid the need to store long traces on a computer [8,33].
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application of the locality model. However, there are also “pure” cache models that have

some relevance to the study of locality. These models generally use "ideal” caches, which

are unrealistic to actually implement, as a baseline for use in gauging the performance of a

more realistic cache. In doing so they also provide a glimmer of insight into the locality of

the reference stream being examined.

Perhaps the most widely used model of this type is the “three C’s” model [23,41],

developed by Hill and popularized by Hennessey and Patterson in their two computer

architecture texts [39,56]. In this rather simplistic model. cache misses are broken down

into three categories: compulsory, capacity, and conflict. Compulsory misses are misses

to never-before referenced cache blocks. Capacity misses are those misses on which a fully-

associative LRU cache of the same size would also have missed. Conflict misses are misses

on which the fully-associative cache would not have missed. Clearly the compulsory misses

tell us about the number of unique blocks in the reference stream and the capacity and

conflict misses describe the degree of temporal locality available.

A model closely related to the three C ‘5 model was proposed by Sugumar and Abraham

in 1993 [68]. They take issue with using a fully-associative LRU cache as an “ideal” cache,

and consequently as the basis for comparison. Rather they suggest that more information

could be gathered by using optimal placement algorithms. They instead divide cache misses

into four categories: compulsory, capacity, mapping and replace-771cm. Using their nota-

tion, let A1(L, C, k, rep!) represent the number of cache misses, on a given trace, in a cache

where L, C, k and repl are the line size, cache size, associativity, and replacement strategy

respectively. Table 3.1 shows how their method categorizes those misses. C/L represents a

fully associative cache.

Suppose weare evaluating a C-byte, k-way associative LRU cache. Compulsory misses
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LMiss type Number of misses ]

 

Compulsory M(L,any,any,any)

Capacity M(L,C,C/LOPT) - l\"I(L,any.any,any)

Mapping M(L,C,k,OPT) - M(L,C,C/L,OPT)

Replacement M(L,Ck,LRU) - M(L,C,k,OPT)

 

 

 

   
 

Table 3.1: A classification of misses using the optimal replacement policy. The arguments to

the function M() are line size, cache size, associativity and replacement policy in that order.

L is the line size of the base cache, C is its cache size, and k is the degree of associativity.

would be those misses which occur because the cache block had never-before been referenced,

a definition identical to that of the three C’s model. Capacity misses, however, are defined

to be those non-compulsory misses which would also occur in a C-byte optimal, fully-

associative cache. Mapping misses are those misses which do not occur in a C-byte fully-

associative optimal cache, but do occur in a C-byte k-way associative optimal cache3. A'

replacement miss is one which occurs in a k—way set associative LRU cache but not in a

k—way associative optimal cache. Ideally then, capacity misses are those accesses on which a

cache is truly too small to expect to achieve a hit. Mapping misses represent misses due to

structural issues (conflict), while replacement. misses are those which a better replacement

policy would have avoided.

Sugumar and Abraham’s scheme has many advantages over the three C’s model. For

one thing the three C’s model assumes that an access which misses in the fully-associative

cache also will miss in a less associative cache. As is shown by [58, 72] and others, this need

not be the case. In fact, as we show in Chapter 4, an access which just barely qualifies as

a capacity miss has over a 40% chance of actually being a hit in a direct-mapped cache.

Because Abraham and Sugumar use OPT rather than LRU as their basis for comparison,

this issue does not arise in their work. In fact. the aggregate definitions in Table 3.1 can never

 

3Using our terminology from Chapter ‘2, we would call this a structural miss rather than a mapping miss
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be negative, something not true of the equivalent three C’s definitions [68]. Additionally,

this OPT—based scheme provides a method of evaluating the replacement policy, something

not addressed by the three C’s model.

There are other cache studies and metrics which can provide information about the

locality of the trace. Liveness, used by [15, 49, 54] among others, describes the percent of

blocks in the cache which will be re-referenced sometime in the future (or perhaps within

some fixed time window.) Additionally many of the smart caching studies have attempted

to find the relationship between locality and the referencing instruction [74] or locality and

the referenced location [44]. These were briefly described in Chapter 2.

3.3 Microscopic locality measures

As noted above. microscopic locality measures are concerned with relatively small numbers

of memory references, often on the order of hundreds to tens of thousands. This section

provides a brief overview of the various microscopic locality studies in the literature.

3.3.1 Instantaneous locality

Instantaneous locality, as proposed by Weikle et al., is perhaps the most recent attempt in

the literature to quantify locality [76]. They argue that caches filter locality, just as a lens

can filter light or electronic filters can filter signal frequencies. Their goal is to quantify

locality in such a way that this filtering can be observed and have a “high correlation to

intuition.”

An electronic signal is simply a changing voltage which has a single value at any given

time. As such they propose that the locality of the reference stream should also have some

value at any given time. The measure they tentatively propose for instantaneous locality,
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1,, of a reference a, in a stream of references (an. a1,a2, . . .) is:

i—l

I

z-~ E: ——

“(I‘li—ajl+1)(lj‘il)

The first term, 1 /(|ai — aj] + 1), corresponds to spatial locality. If the two addresses a,- and

aj are the same, this term will be unity, otherwise it will be (significantly) less than one.

The second term, 1 / [j — 2'] corresponds to temporal locality. If the two accesses are adjacent

(that is i = j :l: 1), this term is unity, otherwise it is less than one. When these two terms

are multiplied together a value ranging from nearly zero to one (for two adjacent accesses

to the same location) is generated. The summation of these terms determines the value of

the instantaneous locality of a,.

Once a definition of instantaneous locality has been created, the next step is using it to

see how well locality is filtered out of the reference stream. In order to visualize this, one

other term, the instantaneous hit rate for reference 2', is defined as h,- = 6, + Ola--1 where

a = 0.5 and (5, is one, if access 2' was a hit and zero otherwise. This gives h, a range from

zero to two, where higher values indicate a higher recent hit rate. With this definition firmly

in hand, they show that accesses with high instantaneous locality values tend to have high

bit rates and that the output locality stream (the requests made by the cache) generally has

less locality than the input stream. This metric is also used to compare different cache types

and to try to recognize program constructs from their instantaneous locality graphs [76].

Another application is that the “bursty” nature of real programs—real reference streams

tend to have periods of high locality separated by periods of low locality [10] -—can be easily

seen and measured.

The authors of this work readily admit that the exact formulas they have selected may
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not be the best. Rather they defend the notion that instantaneous locality, as a concept, is

both useful and important and better formulas will only improve the concept. This author

would certainly claim that their formula for instantaneous locality greatly underestimates

the importance of spatial locality. For example, two memory accesses that. are only 8 bytes

apart are given a spatial locality measure of 1 /9 on a scale of 0 to 1, too low by far in a time

when cache lines are often 64 bytes or larger. Another limitation of this work, and why we

characterize it as a microscopic locality measure, is that viewing large reference streams is

difficult. The largest example in their paper dealt with fewer than 4000 memory referees.

Of course, with the aid of a computer and some additional techniques, visualizing much

larger traces may be possible“.

3.3.2 Loop-based locality metrics

A common form of locality analysis has been based on the study of loop-nests. While it

is interesting, loop-based studies are only peripherally related to our own locality studies

(found in Chapter 4) and as such will only be briefly discussed. Two papers have been chosen

as representative of the field. McKinley and Teman's work [53] evaluates the applicability

of common assertions about program locality in the context of loop locality, while Ghosh

et al. [29], generate "cache I‘niss-equations” which can be used to guide code optimizations

in the compiler. In the remainder of this section some. of the basic jargon of this field is

introduced followed by a brief overview of the two selected papers.

In general, loop-based locality studies are targeted at compiler writers. Usually their

purpose is to propose an algorithm for analyzing the memory reference patterns and find a

way for the compiler to reduce the number of data cache misses. In doing so, these studies

 

4They have written a program which aids the analysis of instantaneous locality, but we have not had the

opportunity to examine it in any detail.



have adopted interesting terminology. Memory references are described in two methods.

The first method is the three C’s model discussed in Section 3.2.5. The other method

describes a non-compulsory reference with a three-word phrase consisting of hit or a miss;

temporal or spatial; and self or group. So a given memory access might be a. “spatial group

miss” or a “temporal self hit” or any combination of the three terms. An access to address

X by instruction I is called temporal, if the last time (which may be now) the block in

which X resides was in memory was when X was, referenced. Otherwise, the access is

labeled as spatial. If the access was temporal and instruction I was the instruction which

had last referenced X, the access is labeled as “self.” If the access was spatial and the last

instruction that referenced the block was I , the access is also labeled as “self.” Otherwise,

it is labeled as “group.”

This jargon is useful for a couple of reasons. First, it is the only locality terminology of

which we are aware that. indicates something about the referencing instruction. an important

concept for some smart caching schemes [74]. Second, it allows a high-level understanding

of the degree of temporal and spatial locality, something which otherwise has required a

more complex scheme such as [33]. It also considers the access patterns of hits as well as

misses, something the three C’s model does not.

Examples of loop-locality from the literature

McKinley and Terman [53] point out that most locality studies examine program locality,

while compiler writers tend to concentrate on cache optimizations restricted to looping

structures. They find that conflict misses are much more common in looping structures

than capacity misses. Also, they observe that loops see more spatial reuse than the overall

program. While neither of these results come as any surprise, they do provide further
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evidence that most of the cache misses occur between looping structures. This observation

means that rather than focusing on the “low-hanging fruit” of intra—loop cache placement,

inter-loop caching issues need to be examined more carefully by compiler writers.

Ghosh et al. [29] provide a much more traditional view of loop locality. They generate a

set of mathematical equations for certain highly-restricted looping structures. These equa—

tions can be used to determine the optimal tiling and array padding required to minimize

the miss rate. In creating these equations they have managed to quantify locality in a very

different way than any other study considered in this thesis. While it is unclear if their

methods would be useful to a human attempting to understand loop-locality, it is clearly

useful for an optimizing compiler.

3.4 Stack distance

A program trace consists of the ordered set of addresses referenced by a program. Imagine

pushing each memory reference onto a stack. If the reference had occurred earlier, it would

be removed from its current position in the stack and then pushed onto the top of the stack.

We define the stack distance of a reference R to be the depth in the stack from which it

~ was fetched. If R is not on the stack (because it. had never before been referenced) we

, define its stack distance to be 00. This concept has been used in [8. 13, 33, 41,49, 58, 64].

An equivalent definition of stack distance is to count the number of unique references which

have occurred since the last reference to R.

The earliest paper which used stack distance in this context was by Mattson et al.

[49], where they defined the top of the stack to be the ‘one‘ location rather than the more

standard convention of the top of the stack being the ‘zero’ location. Others followed suit,

and for sake of consistency with previous work we adopt the same notation in the remainder
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of this chapter. Thus, the stack distance of a reference is the number of unique references

which have occurred since the last reference to that location, plus one. Figure 3.1 illustrates

the computation of the stack distance value.

Reference Stream: A B C

Stack Distance: 3 2 1

.........................................................................................................................

Figure 3.1: Illustration of the stack distance of a reference stream

 

 

   
Figure 3.2: A graph of the locality found in the reference stream of Figure 3.1

3.4.1 Stack-distance distribution functions

Given a memory-reference trace T consisting of memory references (t1,t~_)....tL), define

f (T, i,d) to be 1, if it“ reference in T has a stack distance of d. Define the functions

sd(T,d) and SD(T, d) as follows:



 

1 if d 2 oc

SD(T,d) =

2:31 sd(T, 1') else

That is, sd(T, d) is the probability that in the trace T a randomly selected reference will

have a stack distance of cl, while SD(T, d) is the probability that such a reference will have

a stack distance of d or less. Figure 3.2 is a. graph of the values of sd(T, d) and SD(T,d)

for the trace used in figure 3.1.

3.4.2 Stack distance in the literature

Stack distance. as a means of examining reference streams, has been around for over three

decades[49]. In the literature one can find it used as an analytic model of locality [26, 41,

58, 65], as a method to generate artificial traces [6, 8, 33], and as part of an algorithm for

hardware simulation [49,68]. The remainder of this section address is these applications.

Stack distance as an analytic model of locality

It is fair to say that the Stack Distance Model (SDM) was one of the most popular models

of cache behavior during the late 19708 [58, 64], slowly replacing the Independent Reference

Model (IBM) and the W'orking Set Model (W'SM) [24,58]. The major difference between

the WSM and the SDM is that the WSM counts the number of intervening references,

rather than the unique number of intervening references, between successive accesses to the

same location. The WSM and the SDM are fairly similar and, for the most part, represent

the same information. However, the WSM is both larger to store (its maximum size is
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bounded by the number of accesses rather than the size of the working set) and is generally

more difficult to utilize. A detailed explanation of each of these models, and other related

models, can be found in [26].

In 1977, a Stanford technical report was written by Rau on the properties and ap-

plications of the stack model [58]. Rau’s highly mathematical paper develops a number of

important results for the stack distance model when applied to fully-associative caches. Rau

also shows that given sd(T, d), one can derive a number of values including the distribution

governing how long an item will stay in the cache, some occupancy results results for multi—

level caches, and how stack distance values relate to set-associative caches. Most relevant

to our work in Chapter 5, Rau finds that if ms(q, a.) is the miss rate for a set—associative

cache with q sets of size a, its value can be computed as:

N

ms(q«a) = 1— 220mm
i=1

These results assume that the cache blocks are randomly mapped into the cache. That.

is, any given cache block has an equal chance of conflicting with another block. This

assumption is empirically demonstrated in [65] as well as in Chapter 5. Also, the realization

that hash caches (discussed in section 2.2.1) generally contribute very little in the way of

performance gain hints that this assumption is reasonable.

Rau briefly discusses the function Ba(2') and concludes that a more highly set-associative

cache will result in a lower miss rate if (but not only if) Vi : sd(i) > sd(i + 1) is a non-

increasing function. In Chapter 5 we re-derive Ba(i) and examine it in much greater detail.

A year after Rau’s report, Smith proposed a variation on this caching model [65] and

then refined it slightly in 1982 [64]. His and Rau’s equations are equivalent, but Smith

changes the order of the summations and makes a few other cosmetic changes. Smith is
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mainly concerned with generating an analytic model for p(i) using the stack distance model,

combined with common sense. as a reality check. Smith also provides empirical evidence

that the actual miss ratio and predicted miss ratio are very similar. He provides five traces

and simply graphs the actual and predicted miss rates and shows that they are very similar.

While this evidence is intriguing, [2], among others, criticize this work as not being validated

on a wide variety of traces.

Hill and Smith again describe the same analytic model of locality in their 1989 work

[41]. This time a much larger set of programs are used to validate the model. They show

that the vast majority of programs they test achieve a. miss rate within 5% to 10% of the

value predicted by the model. These results are more satisfying, but no attempt is made to

explain the error or to reduce it.

3.4.3 Algorithmic use of the stack model

The first application of stack distances we are aware of came in 1970. Mattson ct al.

proposed using stack-based algorithms to quickly simulate the hit rate of caches over a wide

range of values and replacement policies [49]. Their algorithms apply to only a limited

number of replacement algorithms, but those include the LRU, FIFO, optimal, and certain

pseudo—random replacement algorithms.

Mattson et al. focus on fully-associative caches5 for nearly all of the paper, but do

address maintaining separate stacks for each set in the cache for less-associative caches.

The majority of this paper is dedicated to a stack-based optimal placement algorithm [11]

and its associated proof of correctness. This paper is interesting because it clearly sparked

 

5It is interesting to note that this paper never actually uses the terms “associativity” or “cache.” Rather

they use the terms “congruence mapping” and “buffer” respectively. We assume that this is because the

terminology used today did not exist or was not standard at that time.
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the idea of using a stack-based model as a locality metric as well as a means of artificial

trace generation. Further, this paper is the first to propose an efficient method of computing

the optimal placement policy of a cache, and would not be surpassed in that respect until

work by Sugumar and Abraham [67, 68].

3.4.4 Trace compression

Trace-driven simulation is a commonly used method for e raluating the behavior of a memory

hierarchy [75]. The trace is gathered by running the program, either in a simulator or on

real hardware, and recording every memory access that occurs. This address trace can then

be used to drive a variety of memory hierarchies. Pure simulation, where the processor and

memory hierarchy are simulated in tandem, will provide more accurate data than trace-

driven simulation. However, trace-driven simulation is considerably faster, and because the

future accesses are already known, allows for off-line replacement algorithms to be studied

such as OPT.

In 1981 Babaoglu proposed keeping the stack distances found in each trace rather than

storing the trace itself [8]. He then proposed generating an "artificial trace’ trace from these

values using a Monte-Carlo method. While his technique requires that some number of

accesses be wasted warming up the cache, it did allow outstanding savings in terms of disk

space. The size of the information stored depends solely upon the largest stack distance

considered—it is independent of the size of both the original and generated trace. It would

be expected that the same errors encountered by Hill’s analytic model [41] would also occur

when using Babaoglu’s technique.

There exist other stack-distance techniques which allow for perfectly accurate simula-

tions of higher levels of the memory hierarchy. The most recent and probably best of these
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techniques is used in the area of virtual memory simulations [46]. The basic idea is that

if all memory components have at least an associativity of 1:. some portion of the actual

memory trace is redundant—main1y those with a stack distance of less than k. They show

that for values of k = 5 the page-level traces are reduced by a factor of about about 20 on

the average. While a minimum associativity of 5 is probably unrealistic for standard cache

simulations, it is quite realistic when considering a TLB as the first level cache of the page

table.

3.4.5 Conclusion

In this chapter a large number of locality measures were discussed, concluding with an

overview of the stack distance measure of locality. Most of these techniques are used to

address a specific issue, for example compiler loop optimizations. to understand how locality

is filtered by a cache, or to compress memory reference streams. None of these techniques

are intended to be a tool for gaining insight into whole—program locality. The models of

locality proposed \Veikle and Grimsrud come the closest in terms of intent and ability. But

both of these work best on the small scale: on a single loop or a small segment of code

respectively.

In the following chapter it is argued that the stack distance model is a fine general

technique for understanding locality and how caches interact with that locality. Further it

can be used to identify excessive conflict, explain the behavior of non-standard caches, and

show how caches filter locality out of a reference stream.
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Chapter 4

Stack distance as a locality

measure

As described in Chapter 1, there is a widening gap between DRAM speeds and processor

performance. This widening gap has simultaneously made the interaction between locality

and caches more complex as well as more important. The additional complexity is, in

part, due to the fairly modern addition of the non-standard cache schemes discussed in

Chapter 2. Those caches, while similar to previous cache schemes, none-the-less interact

with locality very differently than standard caches. Further, locality itself is modified by

the filtering effect of caches. This filtering means that a reference stream to an L1 cache

will have significantly different locality properties than the reference stream to an L2 cache

[77]. As discussed in Chapter 3 simple rules of thumb such as the 2:1 Cache Rule and the

three C ’3 model [23, 39,41] over-simplify the situation by making assumptions about the

locality of reference streams and even about how that. locality interacts with the caches.

As also discussed in Chapter 3 other models of locality are either too complex [34], too

narrow in scope [29, 53], or otherwise inappropriate [76] for considering the locality of an
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entire program. This whole—program locality is important mainly for cache designers and

compiler writers.

The difficulty of understanding whole-program locality makes it very difficult for a cache

designer to propose appropriate cache schemes or to understand how and when non—standard

cache schemes will provide benefit. Without this understanding the only real options are

to rely upon flawed rules of thumb or upon hit-rate results on a large set of simulations.

Neither is satisfactory and both can lead to poor designs. Relying upon hit-rate results

is problematic because designer needs to worry about a huge set of programs including

programs which do not yet exist. This need results in huge amounts of simulation activity

as well as significant effort spent on prognostication. A model of locality would, at the least,

allow the cache designer to narrow the set of programs used by eliminating those with similar

locality properties. The model also could be used to find trends and make more informed

predictions about future workloads. That said. the most important use of the model would

not be in simply improving current techniques but in allowing the cache designer to better

understand locality and how that locality interacts with the various possible cache designs.

It is less obvious that compiler writers also have a need to understand locality at the

program level. It is clear and well accepted that “microscopic” locality, as discussed in

Chapter 3, is extremely important to complier writers. However, whole-program locality is

mostly a function of the program being compiled rather than the compiler itself. W'here

whole-program locality is important is in the context of data layout. If indeed the whole-

program locality is determined by the program and not the compiler the only whole-program

issue that can be addressed by the compiler is conflict between the various memory references

in the cache. The locality and cache models can be used to predict hit rates given random

conflict between references. If, through profiling, it can be determined that a given data
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layout has conflict that is worse than random, it. may be worth having the complier try a

different data layout. That is, the cache and locality models can provide guidance as to

expected hit rates and this can be tested against. the actual hit rates achieved. If the actual

hit rate is worse than the predicted value, a new data layout can be proposed and tested.

It may be that the program itself has lead to this conflict (for example by striding though

a one-dimensional array), but it may be that the arbitrary layout chosen by the complier

has lead to ‘excessive’ conflict.

This chapter provides a unified method for understanding and quantifying locality and

how caches interact with that locality. The chapter addresses general concepts of locality

(Sections 4.1 and 4.2), interactions with non-standard caches (Section 4.3), as well as ap-

plications (Section 4.4) and future work (Section 4.5). Even though there are many details

found in this chapter, our primary goal is to provide insight into caching and locality.

4.1 The stack distance model of locality revisited

In this section we describe two models which are based upon the stack distance metric.

The first is the locality model, that is, describing the locality of a trace by using the terms

sd(T,d) and SD(T,d) as defined in Chapter 3. This model of locality allows for a concise

description of the locality of a trace. As is shown later in this chapter, the stack-based model

of locality can be used to help understand the degree and type of locality in a trace. Such

understanding can otherwise be difficult to achieve when dealing with millions or billions

of data references.

The second model is a cache model. It describes how a cache interacts with the locality

of a reference stream. Specifically, it predicts the expected hit rate of memory references of

a given stack distance. It is important to note that this model is arrived at independent of



a specific reference stream: the model describes how the cache can be expected to interact

with any reference stream. As is shown later in this chapter, this model can greatly aid in

the understanding of caches as well as understanding the real impact of cache structure,

associativity and size.

These two models can be used together to produce a number of interesting results.

These results include the ability to predict the hit. rate a reference stream will achieve on

a given cache. None-the-less, it is important to keep in mind that these two models are

distinct. The locality model is simply a way of describing the locality of a memory reference

stream, while the cache model describes how a cache interacts with the locality of a memory

reference stream.

4.1.1 LRU stack distance revisited

In Chapter 3 the idea of stack distance was introduced. In this section that introduction is

refined and used to describe the characteristics of the various SPEC CPU2000 benchmarks,

hereafter referred to by the name “Spec”. These benchmarks are targeted to measuring

CPU performance, but are also the standard for measuring L1-cache performance. These

benchmarks are designed to mostly fit in the cache hierarchy, and it is well known that

these benchmarks do not generally put a significant load on any cache other than the L1

[21].

The Spec benchmarks run for minutes to hours on real hardware and generate well over

a hundred billion memory references. Gathering data on such large runs in simulated hard-

ware is extremely time consuming and storing such large traces, even on modern disk drives,

is impossible. As such, we limit our studies to samples of one billion memory references are

for each benchmark. A reasonable period of time is spent allowing the program to finish its
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initialization and begin doing actual work (at least 100 million memory references) before

this sample is gathered. Unless otherwise noted all traces are gathered from optimized

binaries for the DEC Alpha and run on the SimpleScalar simulator. The SimpleScalar

website, www.simplescalar.com, has details about this simulator as well as the executables

used. These traces were then run though a modified version of the Cheetah simulator [67]

to generate the data found in this section. These results were also cross-checked against

other, much less efficient, simulators written by this author and others.

Recall from section 3.4 that SD(T,d) is the percent of memory accesses in a memory

reference trace T that have a stack distance of d or less. Equivalently, SD(T, d.) is the hit

rate achieved by a fully-associative cache consisting of d + 1 cache lines on that same trace.

This function is termed the cumulative stack distance of the trace. Figure 4.1 provides a

graph of the cumulative stack distance for the first three benchmarks in the floating-point

portion of the Spec benchmark. For purposes of readability the X-axis has a logarithmic

scale. As will be true throughout this chapter, the cache line size is 32 bytes. Notice that

were the cache fully associative, art and ammp both would see very little improvement. in

hit rate from a size of 50 lines (about 2KB) to 2000 lines (about 65KB). However, ammp

would see a huge reduction in its miss rate from 2000 lines to 16000 lines( 256KB) while

art would see only a minor improvement.

At this time it is worthwhile to emphasize the fact that characterizations can be made

about the relative locality of the various traces. For example, figure 4.1 clearly shows that

art has less locality than the other two traces. Historically the characterization of a trace

was more ad hoc. One might examine hit rates over a number of different caches, varying

size and associativity. However, in general only “reasonable” caches would be considered——

generally powers of two and in the range of 4—64KB in terms of size and usually of small
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Figure 4.1: Cumulative stack distance for three floating-point benchmark traces

associativity. Instead we can gain detailed insight about the traces by considering a much

wider range of sizes. Also, by using fully-associative caches, the impact of conflict between

caches of specific sizes does not interfere with our view of the locality inherent in the traces.

(In section 4.4.2 it is shown that this allows us to measure conflict.)

One final observation is the locality difference between the Spec floating-point bench—

marks, which mostly involve scientific applications manipulating large arrays, and the Spec

integer benchmarks, which are much more of a mixed bag (compliers, games, graphic appli-

cations and more). Intuition is that the floating-point benchmarks operate on larger data

sets and thus have less locality. Figure 4.2 shows that this is quite true. Spech and SpecInt

both follow very similar trends, but Spech does have less locality than SpecInt.

4.1.2 Derivation of the cache model for standard caches

As described in Chapter 3, both Rau [58] and Smith [64] have provided equations to predict

the miss rate of a cache given the cache’s parameters and the probability of an access
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Symbol Meaning

The memory-reference trace

The current cache block being analyzed (referenced in T)

The set (or line for a DM cache) where R can be placed

Stack distance since the last reference to R in T

Degree of associativity of the cache 3

Number of lines in the cache

Number of sets in the cache (equal to B/A)

 

  m
m
m
b
m
m
s

 

Table 4.1: Symbols used in describing how caches interact with locality.

having a certain stack distance. Further, Rau introduced a formulation which allows one

to easily separate the cache’s characteristics from the program’s locality. However, we find

their equations somewhat unwieldy, both mathematically and algorithn'iically. As such we

introduce equivalent formulas. In Table 4.1 the various terms used in our formulation are

introduced. These terms will be used throughout the remainder of this chapter.

Start by considering the probability that a reference to a given block will be a hit in

a direct—mapped cache when there have been D unique intervening accesses since the last



reference to that block. The symbols found in Table 4.1 will be heavily utilized throughout

this derivation. Once the direct-mapped case is completed, the more general case of an

A-way associative cache will then be considered.

Consider a memory reference trace T, which, in addition to other references, includes

exactly two references to the block R. In the case of a direct-mapped cache, the second

access to R will result in a miss if, and only if. there had been an intervening access to

the cache line E since R was last referenced. If D = 1, there was exactly one unique

intervening access since R was last accessed. Assuming that the intervening access has

an equal probability of being stored in any cache line, there is one chance in B that the

intervening access was to the cache line E and thus -R was evicted.

So the probability of a hit when D = 1 is (1 — l/B) or equivalently (B — 1)/B. There

are effectively D Bernoulli trials each of which has 1 /B chance of causing an eviction of R.

We want to compute the probability that none of them causes an eviction. The odds of a

single intervening access not causing an eviction is (B — 1) / B. Thus the odds of none of

them causing an eviction is ((B — 1) /B)D .

Therefore, the expression ((B — 1) /B)D describes the probability of a direct—mapped

cache of size B achieving a hit when there were D unique intervening memory references

between the current memory reference to block R and when block R was last referenced.

The next step is to generalize this result for an A-way associative cache which uses LRU

replacement.

In an A-way set-associative cache there are a number of sets S, equal to B/A. Here

a miss will only occur if the number of unique intervening accesses to the set E is greater

than or equal to A. So, for a two—way associative cache a. hit will occur if there are 0 or 1

such accesses. Using the same argument as in the direct-mapped case, the probability of
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having none of the accesses go to the set in question is ((S — 1) /S)D . The probability of

having exactly one access to E can be. computed using standard counting techniques. D — 1

of the accesses must map to sets other than E, while one of the accesses must map to E.

The probability of D -— 1 accesses using a cache line other than E is ((S — 1) /S)(D‘1). The

probability of an access mapping to E is (1 /S) Additionally, any of the D accesses could

be the one which maps to E, so we need to multiply by D. Thus, for a two-way associative

cache we have the following chance of getting a hit: 3

S — 1 D S — 1 D“ 1
—, + D —— — (4.1)

S S S

Notice that this expression is just the probability of a hit on a direct-mapped cache

of size B/A plus a term for the second way of associativity. In general, for a cache of

associativity A the probability of a hit is equal to the probability of a hit on a cache with

associativity A — 1 plus an additional term. That term will be the probability of exactly

A — 1 of the accesses being mapped to the set E. The general form for that term is:

(.13.)Ha)“ (4.2)

So for a cache with S sets and associativity equal to A the chance of a hit is:

A—1 D—a a

D S — 1 1

P = —— — 4.3

son) (s) H

An equivalent, and sometimes more useful form of the equation results from replacing

S with B/A.
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PHITIB.A.D> = 4:16) (5%?)0—0 (g) (4.4)
020

Unless otherwise noted, the formulation of Equation 4.4, as well as the order of arguments,

will be used when computing PHIT for standard caches. Figure 4.3 provides a graphical

representation of these values for three caches of different associativity, each with 128 cache

lines. Notice that the more associative caches do better on references with a low stack

distance while the less associative caches do better on data with a higher stack distance.

Also note that the crossover point is approximately the same as the number of cache lines.
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Figure 4.3: Illustration of the theoretic relationship between hit rates, associativity, and

the locality of a given memory reference.

A few interesting properties of these formulas are worth mentioning, although formal

proofs are not provided. The first is that 230:0(PH1T(B.A, D)) = B. That. is, no matter

the associativity, the area under the curve is constant, it is simply distributed at different

points. The intuitive argument for this result is that at any given time B blocks are stored
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in the cache. Say that the status of the cache was sampled N times and the stack distance

of each block in the cache was recorded. After a large number of samples. taking the count

of each stack distance and dividing it by N should yield the curve described by Equation

4.4. Clearly, as B values are recorded at each step, the summation over all of the stack

distances must be B.

Another interesting fact is that for positive integer values of B and D and where the

associativity X is greater than Y it is the case that:

D D

Z(PH1T(B,X,2')) 2 Z(PmT(B,Yui))

i=0 i=0

That is. if you consider two caches of different associativity but the same number of

blocks and sum the area under the curve from zero to some point D the less associative

cache will never have a greater sum than the less associative cache. One can observe this

phenomenon in Figure 4.3, it is obvious that the less associative cache has more area to

the right of any given stack distance. As mentioned in Chapter 3, Rau formally derived a

corollary to the above result: that if sd(T, d) > sd(T, d + 1) for all values of (1, then it is the

case that a more associative cache can expect to achieve a higher hit rate.

4.2 Validation of the cache model

The cache model relies upon one fundamental assumption: conflict in a cache is random.

This assumption may seem somewhat counter-intuitive for two reasons. First, array-based

programs often stride though memory at even intervals [39]. This striding can result in

excessive conflict in some sets while others are virtually unused. The second reason to cast

doubt on the assumption of random conflict is more significant: spatial locality. Recall from
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Chapter 2 that standard caches are organized so that two accesses cannot conflict if they

are within S — 1 blocks of each other. FOr most modern computer systems this means that

two cache blocks will never conflict if they are placed into the same page. Because of spatial

locality it can reasonably be expected that memory references near each other in time are

less likely to conflict with each other than random selection might indicate.

In this section it is demonstrated that while the assumption of random conflict is not

exact, it is fairly close. Specifically, we do the following:

0 Choose two cache configurations, a 4KB direct—mapped cache and a 4KB two-way

associative cache, and show that the predicted hit rates at each stack distance map

fairly well to the actual hit rates.

0 Show that over a wide range of cache configurations the model generally predicts the

hit-rate within 2% of actual values.

0 Discuss what the error in predicted hit rates means.

The last point is expanded upon in Section 4.4.2.

Graphing actual vs. predicted hit rates as a function of stack distance

Figure 4.4 is a graphical representation of the accuracy of our cache model over all the

integer benchmarks. The cache in question is a 4KB direct-mapped cache. Obviously the

integer benchmarks perform almost exactly as the theory predicts. Accesses with low stack

distances seem to do slightly better than predicted. This small difference is actually quite

important as three-fourths of all accesses from the SpecInt. suite have a stack distance below

10. (You may recall this from Figure 4.2.) None-the-less, the integer benchmarks match

theory remarkably well.
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Figure 4.4: Stack distance hit-rates for SpecInt on a 4KB direct-mapped cache.

On the other hand, Figure 4.5 shows that the same data for the floating-point bench-

marks is significantly more noisy. While the general trend does track the predicted values

(other than perhaps the tail end of the curve) it is not anywhere as close as the integer

benchmarks.

This huge difference in locality properties is due to the very nature of the programs.

The floating-point. benchmarks tend to be fairly small kernels of code working over large

data sets. As such the access patterns tend to repeat which reduces the random nature of

conflict. The integer programs tend to have larger kernels and do not generally operate on

the same data sets over and over again.

Simply to show that the same general results hold for an associative cache, Figures 4.6

and 4.7 provide the same information, for two-way associative caches. The integer results

remain very close to the prediction while the floating-point values may be slightly less noisy

than they were on the direct-mapped cache.
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Figure 4.7: Stack distance hit-rates for SpecFP on‘ a 4KB two-way associative cache.

4.2.1 A comparison of actual hit rates to predicted values

Where Section 4.2 illustrated the accuracy of the caching model showing how well it pre-

dicted the hit rate at each stack distance over a set of benchmarks, here we measure how

well the model predicts actual hit rates. The results are provided by benchmark, cache size,

and cache structure. While general trends in accuracy are discussed, the primary goal of

this section is to give additional validation for the cache model as well as to provide some

insight into what errors should be expected.

Nineteen traces were run on 21 different cache configurations. Those configurations are

the cross—product of three cache schemes (direct-mapped, direct-mapped hash, and 2-way

set-associative) with seven cache sizes (1KB, 4KB, 8KB, 16KB, 32KB, 64KB and 128KB).

All caches have a 32-byte line size. In order to summarize these 399 data points into a useful

set of information, tables have been provided which show the average results when two of

the axes (benchmark, cache scheme, cache size) are held fixed. The results provided are
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the average predicted hit rate, the average actual hit rate, the average of the signed errors,

and the average absolute error. The floating-point. and integer benchmarks are considered

 

 

 

 

 

 

 

 

 

 

 

 

 

      

separately.

Benchmark Predicted Actual Average signed Average Absolute

hit rate hit rate error error

ammp 71.00% 71.68% -0.68% 0.68%

applu 82.40% 83.26% -0.86% 1.27%

art 57.49% 58.48% -0.99% 1.24%

equake 95.76% 97.21% -1.45% 1.45%

fma3d 96.63% 96.50% 0.13% 0.87%

galgel 81.41% 82.87% -1.47% 2.10%

lucas 81.43% 82.58% -1.15% 1.85%

mesa 94.24% 95.15% -0.91% 0.99%

mgrid 84.27% 80.31% 3.97% 4.90%

swim 76.35% 79.28% -2.93% 2.93%

wupwise 94.07% 94.94% -0.88% 1.00%

Average 83.19% 83.84% -0.66% 1.75%

 

 
Table 4.2: Hit rates and predicted hit rates for the SPECfp2000 benchmarks

As can be seen from Table 4.2 the quality of prediction varies quite a bit depending on

the benchmark. Three of the benchmarks have errors greater than 1.5%. Recall that if the

actual hit rates are better than the predicted values, the conflict in the memory reference

stream is lower than it would be if the conflict were purely random. This lower-than-

random conflict is generally thought to be a result of spatial locality and the fact that two

lines sufficiently close together will not conflict with each other. As discussed at the start of

this chapter, poorer hit rates than predicted are due to heavy conflict usually attributable

to striding. Notice that mgrid has the largest error and is one of only three benchmarks

which does worse than predicted. This information shows that the data layout generated

by the complier for mgrid has significant room for improvement. More information about

the detection of excessive conflict can be found in Section 4.4.2.
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Benchmark Predicted Actual Average signed Average Absolute

hit rate hit rate error error

bzip2 94.80% 95.28% -0.47% 0.57%

crafty 88.21% 88.87% -0.66%- 0.73%

gap 97.93% 98.42% -0.49% 0.49%

gcc 89.36% 89.96% -0.60% 0.60%

gzip 94.30% 95.25% ~0.95% 0.95%

mcf 81.09% 82.36% -1.27% 1.27%

parser 91.61% 92.29% -0.68% 0.70%

vpr 89.21% 88.60% 0.61% 1.40%

Average 90.81% 91.38% -0.56% 0.84%  
 

Table 4.3: Actual and predicted hit rates for SPECint2000 benchmarks

Examining Table 4.3 the error in hit rate for the integer benchmarks is significantly less

than what was found in the floating-point benchmarks. Once again the predicted hit rates

are generally a bit lower then reality. while only vpr suffers from more conflict than random.“

 

 

 

    

Configuration Predicted Actual Average signed Average Absolute

Direct-mapped 82.52% 83.43% -0.99% 2.00%

Hash 82.52% 83.14% -0.61% 0.97%

Two-way 84. 77% 84.96% -0. 19% 0.47%- 
 

Table 4.4: Prediction errors grouped by cache configuration for the SPECfp2000 bench-

 

 

 

     
 

marks.

Configuration Predicted Actual Average signed Average Absolute

Direct-mapped 90.20% 90.65% -O.45% 1.07%

Hash 90.20% 91.06% —0.85% 0.97%

Two-way 92.04% 92.42% -0.39% 0.47%

Table 4.5: Prediction errors grouped by cache configuration for the SPECint2000 bench-

marks.

One way to think of the cache model is that it takes hit rates for a fully-associative

cache and attempts to predict how less associative caches will behave.

therefore, Tables 4.5 and 4.4 show that the 2-way associative cache has significantly less

67

 

 

Unsurprisingly,



error associated with it than the two non-associative caches. What is unusual is that hash

caches are supposed to reduce the amount of conflict in a cache without reducing the value

of page-level locality. However, on the floating-point benchmarks the hash cache actually

harms performance. In any case, the model has the most problems predicting the behavior

of the direct-mapped cache. While that error is not trivial, it is plain that the model tracks

actual performance fairly well.

 

 
 

 

 

 

 

 

 

Cache Size ] Predicted Actual ] Average signed Average Absolute]

1k 73.35% 74.28% -0.92% 3.22%

4k 84.03% 84.80% -0.77% 2.15%

8k 86.94% 87.41% -0.47% 1.25%

16k 88.90% 89.21% -0.32% 0.81%

32k 90.09% 90.57% -0.48% 060%

64k 90.75% 91.21% -0.46% 0.55%

128k 91.23% 91.62% -0.39% 0.56%      
 

Table 4.6: Prediction errors grouped by cache configuration for the SPECint2000 bench-

marks.

Finally, Table 4.6 combines the integer and floating-point results as they are impacted

by cache size. Clearly the model is much better at predicting the hit rates of larger caches

than smaller ones.

From this section a number of things can be concluded. First, the cache model is more

accurate when modeling large, associative caches than it is modeling smaller, direct-mapped

caches. Secondly, and as noted in [40] the cache model only does a moderate job of actually

predicting hit rates. Lastly, and perhaps most importantly, the error in prediction is due to

the assumptions made about conflict being random this is not entirely a bad thing. Later in

this chapter these errors will be exploited in a novel way to gain additional understanding

about caching and conflict.
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4.3 Expansion of the model to non-standard caches

It is appropriate at this time to reflect on the stack model as discussed thus far. Recall that

in Section 4.1 PHIT for a given distance was shown to be independent of the locality of the

trace. In this section it shown that this property does not always hold for non-standard

caches. Two non-standard caches are examined: an LRU skew-cache and a true-LRU

victim cache. we show that the skew cache cannot accurately be correctly modeled under

the assumption that PHIT is independent of sd((1), while true-LRU victim cache can be so

modeled.

4.3.1 An analytic LRU skew-cache model

The skew cache was described in Section 2.2.4. An LRU skew cache is simply one where

replacement is always to the least-recently used location of those in which the new line can

be placed. Building such a cache can be difficult [60], but near approximations are possible

[14].

As previously mentioned, a stack-distance based skew-cache model which is independent

of sd(d) is not possible. The fundamental reason why is that the model proposed in Section

4.1 relies upon the fact that only the number of unique accesses between successive references

to the same cache line are important. That is, it did not matter if those intervening lines

were accessed once or 100 times, either way the effect would be the same. With a skew cache,

that is not the case. The reason is that if a line is evicted from the skew cache and then

re—referenced, it might occupy a different location than it did the first time. This concept,

which to our knowledge no one has ever noticed or even had the language to discuss, is best

explained by way of an example.
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Impact Of Sd(d) on PHI'I‘

In order to make this example readable, some terminology is introduced. Assume a two—way

associative skew cache. The two ways of the skew cache are named A and B. Line '1 in way

A will be called A[i], with a similar notation used for B. Say a given block, Y, can be placed

into either the 17th line in A or the jth line in B. We use the terminology Y -—+ {A[i], B[j]}

to represent that situation.

Assume that between two successive references to cache line X —+ {A[l], B[1]} there are

references to three other lines, L ——+ {A[1],B[2]}, A1 —+ {A[2], B[2]}, and N —+ {A[2], B[2]},

as shown in Figure 4.8. Assume that X is initially placed into block A[1]. For the moment.

assume that AI, N, and L are each referenced exactly once. Notice that if L is referenced

after Ill and N have both been referenced, X will be evicted. Further, notice that if L is

the first of the three lines (of L, M, and N) referenced, X will not be evicted. If L is the

second of these three lines to be referenced, there is a 50% chance X will be evicted (if

the previous reference was placed in B [2]) Thus, averaging over the six possible orderings

of the references to these three lines, there is a 50% chance of X being evicted before it

is re-referenced. In this exact situation, we observe that for the second reference to X,

PHIT = 0.5 and its stack distance is three.

Now, assume that each of these three lines is referenced a large number of times before

X is re-referenced. The stack distance for that second reference to X remains the same:

three. However, as the number of repetitions goes to infinity, the probability of X being

evicted goes to one. The reason for this is that all that has to happen for X to be evicted

is that there is some reference to L after both 111 and N are referenced. In that case L will

be assigned to A[1], evicting X. In this situation for the second reference to X, PHIT 2: 0

although its stack distance remains three.
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Figure 4.8: Example showing how locality interacts differently with a skew cache than a

standard cache.

Thus, without attempting to generalize the effect, it is clear that repeating a reference

to the same memory location may not change the stack distance of some other reference,

but it can change PHIT. Notice that. the distribution of sd(d) plays a role in this. For our

example, if SD(2) = 0 there will be no repetitions of L, 1W. or N between the two references

to X. If SD(2) = 0.999, the probability of repeats will be quite high. Therefore, sd(d) has

an impact on PH1T.

Moving forward with the model

The previous example is enough to show that for a skew cache, sd(d) can have an impact

on PHIT. While acknowledging that observation, we none-the-less create a model which

assumes that PHIT is independent of sd(d). It is then shown that for real memory refer-

ence traces that such an assumption only introduces minimal error. For purposes of this

derivation, it is assumed that each intervening memory location is referenced exactly once.

Our goal is to find the probability that a memory access with stack distance D will

achieve a hit. This is equivalent to determining the probability that a given memory refer-
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ence, R, will remain in the cache after D unique accesses have occurred. For this derivation,

assume a two-way associative skew cache where each way of the cache consists of X cache

lines. Label the first way A and the second way B. Assume without loss of generality that

the reference in question, R, is to a block placed in A. Define a cache block to have been

“touched” if one of the D references that occurs after R is placed in that cache block. Define

a to be the number of lines in bank A that have been touched since immediately before R

was referenced. Define b similarly to a. but for bank B. Notice that by these definitions,

when D = 0 it is the case that a = 1 and b = 0.

Treat the triple (a. b, D) as the state of a cache where R remains in the cache. That

is, we are only keeping track of the states of the cache where R would still be found in the

cache. For a given state, there are at most three states which could have proceeded it. The

previous state may have been (a — 1, b, D — 1) in which case the Dth reference mapped to

a block in A that had not previously been touched. Similarly the previous state may have

been (a, b — 1, D — 1) in which case the most recent reference mapped to a block in B that

had not previously been touched. Going from state (a,b, D — 1) to (a,b, D) occurs if the

most recent reference mapped to blocks already touched in both A and B but not to the

block in A holding R.

The probability of moving from state (a, b, D — 1) to state (a, b, D) is ((a — 1)/X)(b/X),

which is exactly the probability of mapping to a touched line in A that isn’t R multiplied

by the chance of mapping to a touched line in B. Changing state from (a, b —- 1, D — 1) to

(a, b, D) requires that the most recent reference is to an untouched block in B and a touched

block in A, or it was to an untouched block in both A and B but B was the LRU block of

the two (which is assumed to happen 50% of the time). The probability of the reference

mapping to an untouched block in B is (X — (b— 1)) /X while the probability of it mapping to
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Table 4.7: Transition probabilities for a two-way associative skew cache.

a touched block in A (including the one holding R) is a/X . The probability of the reference

mapping to blocks which are untouched in A or B is ((X — (b — 1))/X) ((X -— a)/X). In

Table 4.7 the probability of each transition is provided.

Let the term P(a,b,D) be the probability of getting to state (a,b, D). Recall that

reaching state (a, b, D) implies that R is still in the cache. Using Table 4.7, it is trivial to

derive Equation 4.5.

 

  

x—(g—I) X76) (4.5)

   

The initial condition is that when D = 0, a = 1 and b = 0. So P(a,b,0) = 1 if a. = 1

and b = 0, otherwise P(a,b,0) = 0. Now define P,”,’j‘}“'(X,D) to be the probability of a

skew cache with two banks of size X to achieve a. hit on access with a stack distance of D.

X X

Pgtgll’ur =(ZZPij D) (4.6)

i=0 =0

K
)

As Equation 4.6 indicates the probability of a hit occurring at a stack distance D is

simply the probability of reaching a state (—, -—,D) where the “—” indicates any value.

Figure 4.9 shows the values of Pg§§3“(64, D), thatis the chance of a hit occurring in a skew
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cache of 128 cache lines at a given stack distance. PH/T for a two—way associative standard

cache of the same size is also displayed to provide some context. Notice that the skew cache

is slightly “more associative” than the 2-way associative cache.
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Figure 4.9: Predicted hit rate for a skew cache and a standard 2-way associative cache.

Both are 128 lines in size.

A more real situation

As noted in Section 4.3.1, P13)? does depend upon sd(d). Using simulation, one can show

the relationship between our predicted value of P3)?" and how it is impacted by sd(d). For

most realistic sd(d) distributions, our prediction is fairly close to reality. In Figure 4.10 the

PHIT is graphed for the analytic model as well as two different sd(d) distributions: that

of the integer Spec (as seen in Figure 4.2) and a uniform (flat) distribution where the first

300 stack distances each have a 0.3% chance of occurring. It is worth emphasizing that

these graphs are not of actual traces. Rather they are traces which have been artificially

generated to have the appropriate sd(d) distributions (see Section 4.4.1 for details). For a
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standard cache there would be no significant variation between these three lines.
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Figure 4.10: A magnified look at the ‘flaws’ in the skew cache analytic model.

Another issue with respect to the skew cache model involves the assumption that if an

access maps to untouched blocks in A and B,, it has a 50% chance of going to either of

them. In fact, assuming the first block maps to a location in A means we learned a little bit

about A and B—there is at least one location in B which is newer than the line we replaced

in A. This leads to a small bias. In Section 4.3.3 we show empirically that providing a 0.501

chance of the line being mapped to B in a 128-line skew cache significantly reduces this

already very small effect.

4.3.2 An analytic LRU victim cache model

The victim cache, described in Section 2.2.3, is another type of non-standard cache. Briefly,

it consists of two parts; a large main cache, and a much smaller fully-associative component].

 

1It is more common to refer to the smaller fully-associative component as the victim cache. However,

for reasons of convenience and clarity, the term ‘victim cache’ is used here to describe the two components

together, functioning as a whole.
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It is usually the case that the large main cache is direct-mapped to reduce access time. Lines

evicted from the direct-mapped component are placed in the fully-associative component

which is managed like a separate cache.

A ‘true—LRU’ victim cache is identical to the usual victim cache except that the fully-

associative component is managed using global LRU information. That is, when a block

gets evicted from the direct-mapped component, its “time stamp” is compared to those

blocks in the fully-associative component. The LRU block is evicted from the victim cache.

If the evicted line was in the fully-associative component, the line currently in the direct-

mapped component is moved into that location. In any case the direct-mapped component

is now unoccupied, leaving room for the block which caused the eviction. In the remainder

of this section we provide an analytic model which describes how a true—LRU victim cache

interacts with the locality of a reference stream.

Derivation of the model

To facilitate this derivation, the following terminology is introduced. The direct-mapped and

fully-associative component are said to contain a total of S1 and S2 cache lines respectively.

Let the direct-mapped component consist of cache lines labeled as 11,12, . . . 15,. Further, if

X is a cache block which maps to location [I in the component, let this be stated as X E II.

As before the goal is to compute the probability that a given cache block will still be in

the cache after D unique accesses have occurred. The fundamental observation is that an

LRU victim cache will evict a block, X, in cache line 1,. from the combined components if,

and only if, the following two conditions are met:

0 Some other block is accessed after X and is also mapped into 11.

0 At least SQ other blocks have been accessed and then evicted from the direct-mapped
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component. since X was last accessed.

The first condition must be true, otherwise X will still be in the direct—mapped com-

ponent. The second must be true, otherwise X can be in the fully-associative component.

Notice that the order in which these two conditions occur is not important. Once both have

occurred X will be evicted from the victim cache.

Say that there are exactly D unique memory blocks accessed between two accesses to

block X. In order to meet the first condition, at least one of those D blocks must be mapped

into lx. Meeting the second condition requires that no more than D — SQ different cache

lines are utilized by those D accesses. That is because only those lines accessed after X can

contribute to the 52 blocks needed to evict X from the fully-associative component of the

LRU victim cache.

Given the above result, it is possible to construct a relationship which computes the

probability of a given set of accesses accessing no more than D — 8‘2 different cache lines.

The same assumption of “random conflict” used before is used once again.

The number of times an access to a given block repeats has no influence upon the

probability of X being evicted. Consider the possibilities if one of the D blocks is accessed

repeatedly. Label the block which is repeatedly accessed as R. Upon the repeated access,

R is currently in one of three places: the direct-mapped component, the fully-associative

component. or has been evicted from the cache.

0 If R is in the direct-mapped component, the only change is to update the access time

of R. As it was already more recently used than X this action has no effect on X.

o If R is in the fully-associative component, some other of the D accesses must have

evicted it from the direct-mapped component. R will be placed in the direct-mapped
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component while the other block will either go into the fully-associative component

or be evicted. Both of these blocks are more recently used than X, so the swapping

has no impact on whether or not X will be evicted.

o If R has been evicted. and X is still in the LRU victim cache, it must be the case that

X is in the direct-mapped component. Otherwise X would have been evicted from

the fully-associative component before R. At this point X will be evicted from the

entire victim cache once an access occurs that uses 13,. As R clearly does not map to

la, (otherwise X could not be in the direct—mapped component) repeated accesses to

R have no impact.

Thus, the number of times any of the D accesses repeat has no influence upon the

probability of X being evicted.

The analytic model

Define P§F%""C(Sl. 52,D) to be the probability that an LRU victim cache with a direct-

mapped component of size 51 and fully-associative component of size 52 will achieve a hit

on a access with a stack distance of D.

For a fixed value of S1 and S2 let F(D, U) be the probability that at stack distance of

D exactly U different cache lines have been accessed, none of which are 13. For the same

fixed value of S1 and SQ, let E(D, U) be the probability that at stack distance of D exactly

U different cache lines have been accessed, one of which is l1. It then follows that:

D D

Pizit~""6(81.52. D) = Z F<D.U) + Z E(D, U) (4.7)

U=0 U=D—S2+I

The first summation of Equation 4.7 represents the probability that X is still in the
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direct-mapped component of the cache. The second summation in that equation represents

the probability the X is in the fully-associative component of the cache. For that second

summation, notice that this is the probability that lJr has been accessed (and thus X is not

in the direct-mapped component) plus the probability that enough different cache lines have

been accessed (D - SQ + 1 or more) that X will still be in the fully-associative component

of the LRU victim cache.

All that is left is to compute the various values of F and E. It is convenient at this time

to define the state of the LRU victim cache as the triple (G. D, U). D and U are defined as

above, while G = 0 if lx has not been accessed since X , and G = 1 otherwise. This state

will be used to create a recurrence relation as was done for the skew cache.

We now define the initial conditions. Notice that if D = 0 then U = 0. Therefore,

F(0,0) = 1, while E(0. if) = 0 ifi ¢ 0. Also note that if D = 0 then l;r could not have been

accessed after X (as nothing has been) and therefore E(0. i) = 0 for all i.

The recurrence relationship for F is now defined. In order to reach the state (0. D, U),

the previous state had to be either (0, D — l, U — 1) or (0, D — 1,U). A transition from

(0, D — 1, U — 1) to (0, D, U) will occur if the most recent access went to a cache line that

has not been accessed since X was placed in the cache and that newly accessed cache line is

not lg. This will happen with probability ($1 -— (U + 1)) /S1. A transition from (0, D — 1, U)

to (0, D. U) will occur if the most recent access went to a cache line that has been accessed

since X was placed in the cache. This will happen with probability U/S]. From these

observations the following recurrence for F can be trivially derived:

 
 1’[V+1)+F(D-1,U).g (4.8)F(D,U)=F(D—1,U—1)*S

l I

The recurrence relationship for E can be derived in a similar way. In fact the only
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difference is the case when the most recent access used If. and [I had not otherwise been

used after X was placed in the cache. Obviously, this transition will occur with probability

(1 /51). Thus the recurrence relation for E can be expressed as:

(E(D — 1,U — 1) * ————S"fgl,y+”) + (E(D —1,U)* %)

E(D,U) = (4.9)

+(F(D-—1,U—1)*-S‘—l)

Equations 4.7, 4.8 and 4.9 are enough to compute Pfiflalvc(Sl, SQ, D). In Figures 4.1] and

4.12 the PH[T values at various stack distances are plotted for a an LRU victim cache with

SI = 128 and S2 = 6. The hit rate achieved by each component is also graphed separately.

The line labeled “victim cache” is the sum of the hit rates of the twO components. Notice

that the direct-mapped component of the LRU victim cache behaves exactly the same as

a direct-mapped cache of the same size. Further, notice that unlike simply increasing the

associativity of the cache, the hit rate at low stack distances is dramatically improving

without any harm to the expected hit rate at larger stack distances.

4.3.3 Verification and the 100% miss-rate model

There are also empirical methods for finding PHIT for any arbitrary caching scheme. The

most obvious method is to build a cache simulator and feed it data accesses, keeping track

of the hit rates for the various stack distances, much as was done in Section 4.2. However,

doing this is not as simple as it appears, even using the artificial trace generation techniques

discussed in Section 4.4.1.

The major difficulty with the above “niave” simulation method is that some distribution

of stack distances will need to be selected. Because PH1T varies with sd(d) for some caching

schemes. one would ideally use the same sd(d) distribution for all cache schemes. However,
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Figure 4.11: Predicted hit rate at each stack distance for the LRU victim cache and its
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if that distribution includes large stack distances for a small cache, time will be wasted

collecting unneeded data. For large caches, the opposite problem might occur where the

distribution does not include some stack distances of interest. Another very noticeable

problem is the time required to run the simulation and gather the needed values. Simple

statistical analysis indicates that about 100,000,000 samples are required at each stack

distance to get the standard deviation for the estimate of the PH”((1) below 0.0001. When

thousands of different stack distances are being examined, the run time to gather this data

can be on the order of hours or days.

Instead a slightly different technique is used. The reference trace used is a random one

made up of non-repeating random addresses. That non-repeating stream is identical to a

reference stream generated by the techniques discussed in Section 44.1 where sd(oo) = 1

and sd(d) = 0 for all finite values of (1. Rather than keeping track of the hit rate for

each reference, the stack distances kept in the cache after each step are recorded. This

distribution of locations in the cache indicates which stack distances would result in a. cache

hit if it were the location next accessed. We have named this analytic technique the “100%

miss rate model.” It allows us to use the same sd(d) distribution for every cache studied.

Further, one can trivially modify this technique to find PH[T((1) for any sd(d) distribution.

In order to show that the 100% miss rate model is accurate, it can be compared to the

analytic model of the same cache scheme. Miss rates were gathered using 1,000,000,000

accesses to a true-LRU victim cache consisting of a 128 line direct-mapped component and

a four line, fully-associative, victim buffer. If each of the billion accesses were treated as

an independent test for a given stack distance, it would be expected that the error would

be under 0.00003 for the vast majority of the accesses2. As can be seen in Figure 4.13 the

 

2The expected error varies somewhat with the expected miss-rate. The 0.00003 value is for the worst-case

of 0.5 where it provides approximately a 95% confidence interval
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error rate falls well within that range.

A similar graph is presented for a 2-way associative skew cache with a total of 128 lines.

As discussed at the end of Section 4.3.1, there is a small error in the analytic model. That

error is due to the fact that when a. line is placed in a given bank due to an LRU decision, a

very small amount of information is gained about the state of the cache. The error creates

a small bias which can be greatly reduced with a small change. Figure 4.14 shows the error

in prediction with the bias set to .5/ .5 when selecting a block to evict when both potential

blocks had been ‘untouched" up to that. point. The measured errors are noticeably worse

than randomness would predict (though still very small). However, changing the bias to

0.501 /0.499 brings the error into the expected range of 95% of the data having an absolute

value of less than 0.00003.

While the error in the analytical model is very small, the 100% miss rate model allows

the error to be detected. If the miss rate were anything other than 100% it. would be

difficult, if not impossible, to know if the locality of the input were causing this small error

(as a skew cache’s performance is improved by locality).

4.4 Applications of the Models

As a conceptual tool, it is difficult to overstate the value of the model of locality presented

in this chapter. Such a tool makes it possible to see and understand the amount and

nature of locality in a given trace. The cache models which were introduced in this chapter

allow for an understanding not only of how caches interact with locality, but provide a

straightforward method of comparing the effects of caches.

In this section applications of the two models are provided. In many cases these applica-

tions simply use the models to aid in understanding a given situation or dynamic. In other
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cases these applications allow comparisons and analysis to occur which would otherwise be

difficult or impossible. Applications of the locality model are discussed in Section 4.4.1.

In Section 4.4.2 applications of the cache model are provided. while Section 4.4.3 provides

applications that involve both models.

4.4.1 Applications of the locality model

Figure 4.2 provides what is perhaps the most important insight into locality found in this

chapter—it illustrates the nature of locality in the Spec benchmark suite. It shows that

two-thirds of all memory accesses would hit on a 512-byte, fully associative cache. Further,

it shows that there is not a simple logarithmic relationship that describes locality—there is a

highly noticeable knee in the curve near a stack-distance of 50. This observation contradicts

the model proposed by Chow [20] (discussed in Section 3.2.1) and is closer to the two—part

model of locality discussed Section 3.2.2. Of course the Spec benchmark suite is by no

means representative of all workloads. None-the-less. most cache studies focus on these

benchmarks and understanding them is quite important.

Beyond simply understanding the whole-program locality of a benchmark suite, the

locality model can also provide insight into other issues. In the remainder of this section

two applications are examined. The first looks at how locality is filtered by L1 caches. The

second discusses how the locality model can be used to generate artificial traces.

Locality filtering by caches

One interesting question is how locality is effected by caches. That. is, caches tend to get

hits on high-locality memory accesses. Thus, the reference stream of misses and write-

backs issued from the cache seems certain to have less locality than the reference stream



going into the cache. As noted in Section 4.4.1. Weikle and her co—authors attacked the

issue of measuring how caches filter “instantaneous” locality [77]. As expected, they found

significantly less locality in the reference stream once filtered by the cache. However, it is

very difficult to get a feeling for the locality of even a. moderate sized data stream with their

scheme. (Recall that the largest set of memory accesses examined using their scheme was

under 4,000 accesses.)

Figure 4.15 shows the impact of locality filtering by a 64KB direct-mapped cache on

the gcc benchmark. That is, it illustrates the locality of the reference stream as it leaves

the L1 cache and enters the L2 cache. The graph is interesting for a number of reasons.

Notice that two different filtered results have been provided in addition to the unfiltered

locality information. The ‘all reads’ line treats all reads and writes to the L1 cache as if

they were reads, while the ‘read/write' line treats writes as normal in a write-back cache.

The difference between the two lines represents the impact of write-back accesses.
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Figure 4.15: Impact of cache filtering on the gcc benchmark and the impact of writebacks
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First, notice that the unfiltered trace is very flat from stack distance 100 to about 10,000.

As the 64KB cache will get a hit on a stack distance of 100 over 90% of the time, the vast

majority of the accesses with a stack distance less than 100 will be hits. As expected,

ignoring the impact of write—backs, this characteristic results in having very few (fewer

than 10%) of all accesses emerging from the L1 having a stack distance of less than 10,000.

The filtered trace then rises dramatically at a stack distance at just over 11,000, a magnified

version of a similar jump in the unfiltered trace.

Secondly, the write-backs are interesting. They clearly add a fair bit of locality to the

filtered trace, specifically accounting for about one-half of the accesses with a. stack-distance

less than 2000 (though the total number of access at 10.000 or less is still very near 10%.)

They seem to level out at around a stack distance of 5000. The cumulative probability only

increases again due to the read misses.

Perhaps the most important point about this data is the huge difference in locality

between the filtered and unfiltered traces. In the unfiltered trace a 16-entry fully-associative

cache would get a hit-rate of about 90%. In the filtered trace it is less than 3%. The entire

premise of caching is that high locality accesses are more common than low-locality accesses.

However, after the L1 filtering effect this is not true at all. The fundamental point is that

L1 and L2 caches see extremely different locality properties. Admittedly this instance is a

bit biased. The L1 cache is relatively large (though certainly reasonable in size). Figure

4.16 shows how smaller caches filter locality (in this case all accesses were treated as reads.)

It also shows the impact of having a more associative cache.
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Figure 4.16: Impact of associativity on cache filtering

Generation of artificial traces

Another application of the locality model is its ability to generate artificial traces using a

simple Monte-Carlo technique. This was briefly described in Section 3.4.4, and is described

in detail in a paper by Babaoglu [8]. The net effect is that it is trivial to generate a memory

reference trace which has any stack-distance properties desired. Babaoglu’s concern was

with a lack of storage space needed to keep long traces. While this is still an issue, disk

drive space has been outpacing CPU power for many years; and the bound on trace driven

simulation is now mainly CPU power and the network bandwidth needed to move these

large traces around. Further, these artificially generated traces are not perfect replicas of

the traces they are replacing. For one thing, they have truly random conflict. On these

traces a hash-cache will, on the average, perform exactly as well as a standard cache.

Even given the above limitations, these artificially generated traces have many interest-

ing uses. For one, it is possible to generate a reference trace that has certain specific locality
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properties. This feature can be useful when, for example, you want to know how a change

in the locality stream presented to the L1 cache will impact the reference stream seen by

the L2 cache. Mathematically analyzing this problem is very difficult, and searching for a

real trace that has the locality properties in question will be time consuming and may not

yield a match.

Another use of an artificially generated trace is as a point of comparison to a real

trace. For example, Hallnor and Reinhardt. [36] have [proposed a replacement scheme which

relies on the idea that past heavy utilization of a cache line will likely result in future

heavy utilization. For the trace generated by the Monte-Carlo method the degree of past

utilization has nothing to do with the future utilization. The characteristics of the actual

trace can then be compared with the characteristics of the artificial trace.

We define a streak of memory accesses to be the list of accesses in a given trace which

fit in a given cache line. The length of a given streak is defined to be the number of memory

accesses in that streak. Figure 4.17 provides a graphical representation of what percent of

memory access are in a streak of length N or more for both an actual trace (the first 10

million accesses in the gcc trace) as well as for a similarly sized artificial trace generated

using the same stack distances as the original trace. As can be seen accesses in the actual

trace are much more likely to be a part of a long streak than are those of the artificial trace.

Certainly an empirical model of expected streak length could be generated and used

instead of the artificial trace, though doing so seems fairly difficult. Instead we showed

that Hallnor and Reinhardt’s assumption about heavy utilization being predictive of future

utilization quite accurate for this trace. Further, artificial traces can often be used as a

point of comparison when there is a desire to separate out the impact of locality from other

trace characteristics. For example, it can be used to eliminate the impact of hashing (and
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Figure 4.17: Percent of accesses in a streak of size N or greater.

thus the reduction in non-random conflict) while keeping the locality of a given reference

stream. This would allow for a measurement of the reorganization ability of a. skew cache

[60].

4.4.2 Applications of the cache model

The cache model also can be used to gain insight into the behavior of caches and reference

streams. In this section some of those insights are explored.

Associativity vs. cache size

The inside cover of the most widely used computer architecture text has provides the follow-

ing under “Rules of Thumb” “2:1 Cache Rule: The miss rate of a direct-mapped cache of

size N is about the same as a two-way set-associative cache of size N/2.” Figure 4.18 shows

the expected hit rates for N = 128. If the rule of thumb is true and one ignores excessive

conflict (and as was seen in Section 4.2 there is actually less conflict than random for most
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traces so this is very reasonable), it must be that there are so many memory references in

the range of 1 to 23 that the small advantage the two-way associative cache has in that

range is enough to compensate for the huge difference in hit rates after stack distance 23.

Figure 4.19 magnifies this portion of the graph. The “area” of that small region is slightly

larger than 0.6. While the area between the two regions starting at stack distance 24 and

onwards is slightly more than 64.6.

 

 

  
 

1 I I , I I _ I

direct-mapped, 128 lines ——

P 0-9 ‘ 2—way, 64 lines "1

r _. ._
e 0.8

(l 0.7 - -
1

f 0.6 ~ -

e

d 0.5 - _

l,‘ 0.4 - _

t 0.3 i- -
r

a
I, 0.2 '— -'

e

0.1 — d

0 1 1 1 1

0 50 100 150 200 250

Stack distance

Figure 4.18: Impact of associativity on cache filtering

None of the above analysis should be too surprising, after all Figure 4.2 showed that

the vast majority of accesses have a very low stack distance. What is interesting is that

the 2:1 Cache Rule is really a statement about the locality of most reference streams (a

large percentage of memory references have very low stack distances) rather than about

associativity or cache size.

The point of this discussion is not the validity of the rule. of thumb. Rather it is that

using our model of cache behavior the underpinnings of the rule of thumb can be understood.
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Figure 4.19: Impact of associativity on cache filtering

For example, consider the results from Section 4.4.1 on cache filtering. It was shown that

there are very few low-locality accesses in an L2 reference stream. Combining this fact with

Figure 4.18 would lead us to believe that this 2:1 Cache Rule is unlikely to apply to L2

caches—the needed locality just is not there.

Measuring conflict in a reference stream

One important issue in caching is the measurement of conflict. The caching models described

in this chapter assume that conflict is random, knowing full well that spatial locality will

cause the conflict to be less than random while striding and related issues will cause conflict

which is greater than random. In this section the issue of quantifying conflict is addressed.

First, the fact that a hit rate can be predicted assuming random conflict allows a trivial

measure of the non-random conflict found in the trace. Clearly the difference between the

actual hit rate and the predicted hit rate is due to non-random conflict. If the predicted hit.

rate is greater than the measured hit rate. there is clearly some source of excessive conflict
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due to the data layout. The problem is that sources of excessive conflict can be masked by

sources of scant conflict, so that even if the predicted hit rate exactly matches the actual

hit rate there is still quite a bit that could be achieved by changing the data layout. Our

assumption is that the sources of excessive conflict involve striding or other heavy use of a

single set while scant conflict is due to a high degree of page-level spatial locality.

The actual hit rate reflects the impact of both excessive and scant non-random conflict

while the predicted hit rate assumes that neither type of non-random conflict exists. As

mentioned in Chapter 2, a “one’s complement.” cache (a rather complex hash cache) has the

effect of reducing many of the sources of excessive conflict while having very little impact

on the scant conflict caused by page—level locality [81]. While it is not exactly true that a

one‘s complement cache removes all of the bad while leaving the good, it does come fairly

close. A new stride length causes excessive conflict (though one that is not a power of two)

in a one’s complement. cache, and two highly utilized variables could now map to the same

set where they didn’t previously. Thus, while a one’s complement cache does not perfectly

keep the sources of scant conflict while removing the sources of excessive conflict it does the

best of any scheme of which we are aware.

The three hit rates (direct-mapped, one’s complement. and predicted) can be used to

provide a rough quantification of conflict. Scant conflict can be measured as the difference

between the hit rate of the one’s complement cache (assumed to contain only sources of

scant conflict) and the predicted hit rate. Excessive conflict is measured as the difference

between the hit rate of the one’s complement cache and the actual hit rate achieved by a

direct-mapped cache. Table 4.8 shows the results over the Spec benchmarks. Notice that

the excessive conflict is occasionally negative, which is likely due the random chance that

two highly used variables conflict which did not conflict in the direct-mapped cache do '
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conflict in the one’s complement cache. More rarely the scant conflict is negative. This

result is due to the one’s complement cache not doing a perfect job of removing excessive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conflict.

benchmark direct- one’s predicted excessive scant

mapped complement conflict conflict

ammp 92.28% 91.80% 90.07% -0.48% 1.73%

applu 79.27% 79.33% 76.09% 0.05% 3.24%

apsi 75.00% 75.00% 75.01% 0.00% -0.01%

art 77.04% 77.33% 75.49% 0.30% 1.84%

bzip2 95.20% 95.18% 95.19% -0.02% 0.00%

crafty 82.17% 83.17% 83.05% 1.00% 0.12%

eon 90.77% 92.59% 90.10% 1.83% 2.49%

equake 94.46% 92.21% 91.99% -2.26% 0.22%

fma3d 95.40% 95.87% 95.25% 0.47% 0.62%

galgel 98.41% 98.46% 98.28% 0.05% 0.18%

gap 90.83% 90.83% 90.83% 0.00% 0.00%

gcc 89.28% 88.58% 87.22% -0.70% 1.35%

gzip 95.14% 95.13% 95.13% -0.02% 0.00%

lucas 97.57% 97.54% 93.29% -0.03% 4.25%

mcf 90.83% 90.83% 90.83% 0.00% 0.00%

mesa 94.07% 97.21% 93.27% 3.14% 3.94%

mgrid 69.57% 75.44% 75.91% 5.87% -0.47%

parser 94.10% 94.08% 93.14% -0.02% 0.94%

perlbmk 85.79% 85.85% 85.65% 0.06% 0.19%

swim 96.81% 96.67% 92.98% -0.14% 3.68%

twolf 92.79% 95.25% 94.04% 2.47% 1.21%

vortex 92.92% 92.90% 91.99% -0.01% 0.92%

vpr 98.26% 97.48% 95.55% -0.78% 1.93%

wupwise 97.31% 97.32% 96.04% 0.00% 1.28%

Average - - - 0.45% 1.24%      
 

 
Table 4.8: Measurement of excessive conflict

While the above measures are not perfect. we know of no previous work which can

determine if a low bit rate is due to poor data layout as opposed to there being a low degree

locality3. Looking again at the data in Table 4.8, it is obvious that eon, mesa, mgrid and

 

3The ‘three C’s model’ of caching [23,41]. discussed in Chapter 2. does make a rough attempt to dis-

tinguish these two concepts but it is so coarse in its granularity as to be nearly worthless as a quantitative

measure [13].
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twolf have significant room for improvement in their data layout. Fer a compiler writer

this information can provide focus to a study as to what is wrong with the data layout,

and could even be used as feedback in a profiling tool. For a cache designer the scant

conflict values provide insight into the importance of page—level locality while the excessive

conflict values provide insight into the importance of using a hash cache or other technique

to remove conflict.

4.4.3 Examining non-standard caches

The last area of application considered is understanding non-standard caches. The ability

to see how a cache interacts with locality can make comparisons and analysis much easier.

Skew cache replacement policies

In his various papers on skew caches Seznec has proposed a number of replacement schemes

including a time-stamp LRU scheme and a single-bit per set [60—62, 73]. In this section

those two schemes are compared to a novel scheme which uses partial time-stamps. This

novel scheme is evaluated by using the cache modeling techniques presented in this chapter

as well as by looking at traditional hit-rate numbers.

Figure 4.20 demonstrates how the skew—cache performance is impacted by changing from

the single-bit replacement scheme to a true-LRU scheme under the 100% miss-rate model

described in Section 4.3.3 . Clearly the LRU scheme has significantly better performance.

The problem with the LRU scheme is that it has fairly high overhead. In a skew cache, unlike

a standard cache, any given line might need to be compared to any of the lines in the other

way of the cache. To the best of this author’s knowledge, no one has formally proposed a

method to perform true-LRU replacement in a. skew cache. In a conversation with Seznec in
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1997, be indicated that the only way his group saw to perform this replacement scheme was

using a time stamp. This would be implemented with a counter that is incremented upon

every cache access. The line accessed, whether a hit or a miss, would have the current value

of that counter stored along with the tag for that data (in the same way LRU information

is usually stored). When a replacement decision is required, the ‘time stamps’ stored with

the two potential candidates for eviction would be compared and the smallest value would

be the replaced line. When the counter overflows and returns to zero, the cache will either

need to be purged or the time stamp values will somehow need to be updated. For a large

enough counter this overflow will be very rare (say a few times a minute for a 32-bit counter)

and the performance impact small.
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Figure 4.20: Illustration of the impact of the replacement scheme on performance for skew

caches. The direct-mapped cache is provided as a reference and all caches consist of 128

lines.

Another option is to use a counter that counts up to a much smaller value but handles

the overflow of the counter correctly. In order to get LRU right the vast majority of the

time (arbitrarily say 199 times out of 200), the scheme needs to be able to handle about
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42: misses where 3r. is equal to the number of lines in the cache“. As an example, consider a

cache with 128 lines (4 KB) that has an expected hit rate of 90%. Every tenth access will

cause a miss. Thus, the counter needs to be able to count up to 10 * 4 * 128 which requires

at least a 13 bit counter.

The 13-bit time stamp would require 208 bytes of additional storage, which increases the

amount of non-data storage needed by nearly 50%. (For a 32-bit processor 26 bits would

be needed for each tag in addition to state bits consisting of at least a dirty bit and a valid

bit.) As the cache gets larger the relative overhead goes up considerably, since as the cache

size doubles one more bit is required for LRU information while one less is required for the

tag. In any case, the LRU information is well less than 10% of the total size of the cache

for any reasonably sized cache.

No matter how large the cache, finding which cache line holds the LRU block requires

that the time stamps associated with both cache lines be subtracted from the current

counter and then a comparison performeds. For the 128 line example this would a 13 bit

subtractor followed by a 13—bit comparator. That should likely be fairly similar in speed

to the 32-bit comparator proposed above. Including routing to and from the comparator,

the replacement decision may take more than one cycle, which should not pose a significant

problem as the cache will be waiting for the block to be fetched from the L2 cache (or

memory) in any case. The complexity of a multi-cycle replacement policy would be minor

but potentially troublesome.

Reducing the number of bits required for the timestamps would have many obvious

 

“The 4:1: value comes from empirical results. It can also be deduced at by graphing the 100% miss rate

model for a skew cache and noting that only about 0.5% of the accesses have a stack distance that is greater

than 42:.

5While there may appear to be problems with overflow in the subtraction as the time stamp could be

smaller than either of the cache line time stamps, in reality this is not a problem as the overflow can be

ignored and the correct result will occur when using a standard subtractor.
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Replacement Average Improvement over l-bit

Scheme hit rate Average L Min Max

32-bit time stamp 92.72% 0.21% 0.14% 1.77%

5—bit time stamp 92.70% 0.19% ~0.31% 0.99%

 

 

 

 

      
 

Table 4.9: A comparison of replacement schemes for skew caches. Hit rate improvement is

in terms of absolute improvement over the one-bit replacement scheme.

benefits, the two most significant would be a reduction in the size of the tags and a reduction

in the time required to make the replacement decision. The easiest way to perform that

reduction would be to store only some of the bits of the time—stamp counter into each of

the tags. Experimentation using artificial traces showed that over the Spec benchmarks,

storing only bits 6 through 10 of the timestamp (where 0 is the least significant bit) provided

performance that was fairly close to that of a 32-l)it time stamp. More time-consuming

simulation over real traces of length 10 million confirmed this. Table 4.9 show the results

over these Spec traces. While the improvement for either scheme is fairly smalls, the much

shorter 5-bit time stamps get 90% of the improvement achieved by the full 32—bit time

stamps. Table 4.9 show how well this 5-bit scheme compares to the 32-bit timestamp and

the 1-bit replacement scheme over all the Spec benchmarks. Clearly the 5-bit scheme does

nearly as well on the average as the 32-bit time stamp but suffers somewhat on the extreme

C3585 .

Victim caches

In section 4.3.2 an analytic model for “true-LRU” victim caches was presented. Much like

skew caches, time stamps or the equivalently are required to maintain this perfect LRU

ordering between the two structures. The other, more standard, scheme is to have the

 

6Seznec saw much more significant differences on the memory reference traces he used. This difference is

very much a function of the compiler.
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two structures maintain LRU information separately. We call these schemes “true—LRU”

and “separate—LRU” respectively. Figure 4.21 shows that the difference between the two

schemes is quite large when using the 100% miss rate model. However, the separate scheme

performs much better when using real data. The reason is that an n—entry fully-associative

component of the cache contains the last n evictions. Under the 100% miss rate model

these evictions are simply the last 11 accesses—resulting in the stack distance vs. hit rate

graph being the same as the base-cache shifted to the right by n.
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Figure 4.21: Illustration of the impact of the. replacement scheme on performance for victim

caches.

Under a. reference stream with a greater degree of locality, the separate-LRU replacement

policy improves significantly while the true-LRU policy sees no improvement at all. Figure

4.22 shows the improvement that occurs when a higher locality reference stream is used,

in this case a memory reference stream that has the same locality as gcc. Recall that the

true-LRU replacement policy is unaffected by the input locality. That same graph shows

the impact of using the same 5-bit time stamp replacement policy discussed in Section 4.4.3
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Replacement Average Improvement over separate-LRU

Scheme hit rate Average Min Max

232-bit time stamp 91.95% 0.11% -0.17% 0.83%

5-bit time stamp 91.91% 0.08% -0.41% 0.74%       
 

Table 4.10: A comparison of replacement schemes for victim caches. Hit rate improvement

is in terms of absolute improvement.

for the skew cache. As was done in the skew cache section, Table 4.10 shows the impact

of the 5-bit time stamp and the 32-bit time stamps 'when compared to the more standard

replacement policy.

 

 

 

 

 
 

1 I I 7 T

100% miss rate, separate-LRU ——-—

0-9 " locality of gcc, separate-LRU -——-- "‘

I: 0 8 _ locality of gcc, 5—bit time stamp _

e .

9 0.7 ~ -
1

i 0.6 -
e

d 0.5 b

I; 0.4 r-

t 0.3 -
r

a
t 0.2 '-

e

0.1 -

0 1 1 1 1 1

50 100 150 200 250 300

Stack distance

Figure 4.22: Illustration of the impact of locality on the hit rate of the using a ‘separate

LRU’ replacement scheme. This graph also shows the impact of using 5—bit time stamps.

4.5 Future work

There is certainly a large amount of work that. can and is being done to expand on the work

in this section.

0 The ability to identify excessive conflict can be very valuable. It can be used to evalu-
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ate the quality of the data layout of a complier. This can help in evaluating compliers

in addition to being useful as a profiling technique. Certainly certain reference traces.

like our mgrid trace, had excessive conflict. Informing the complier of this excessive

conflict so that it can reorder the data layout could be a source of significant per-

formance improvement. Further, comparing the conflict in these reference traces to

that found in other work [13] it is obvious that certain compliers simply do a better

job laying out data. This can be a helpful piece of information to a complier writer.

Preliminary work has started on this, comparing the gcc, MIRV, and Ice compliers.

We are currently looking to get the optimized SPEC binaries complied by the Intel

Reference Complier.

Finding an analytic model for multi-level caches has been an insurmountable hurdle.

The modeling the interaction of locality and the cache characteristics is extremely

complex. While there may be little real value to such a model this work seems some—

what incomplete without it.

A “better than LRU” replacen‘ient policy may be possible using information about the

locality of the memory reference stream. While this is almost certainly not realistic

to implement in hardware, it may be able to provide something of an upper bound on

possible performance under different assumptions.

Spatial locality is currently only addressed with respect to a single cache line size.

Providing a means of understanding spatial locality would be useful when constructing

caches that use more than one line size.

The primary use of the work in this chapter is as a tool to help understand caches

and how they interact with locality. The next step in that direction is to make the
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tools widely available and otherwise be evangelical about the techniques found here.

To that end a website is being built as part of an NSF grant. It will provide traces,

simulators, graphs, and data to help get the ideas out into the world.

4.6 Conclusion

Every student of computer architecture knows that caches perform well because of spatial

and temporal locality. However, few attempts have been made at quantifying this fairly

abstract. concept of locality. In this chapter a. measurement of temporal was proposed with

spatial locality being implicitly dealt with though cache line size. This quantification of

locality leads to a much fuller understanding than previous models or rules-of-thumb have

provided.

In this chapter, an analytic model of how standard caches interact with locality was

presented. While very similar models had be proposed in the past by Rau, Smith, Hill and

others, we do not. know of any attempt to use these models as a method of understanding

locality. In addition, novel analytic models of two non-standard caches, LRU skew and

true-LRU victim caches, were derived. Next, the 100% miss-rate model of caching was

introduced, which makes it possible to find how locality and caching interact using an

empirical rather than an analytical model. This 100% miss-rate model allows any caching

structure to be modeled. That empirical method was also used to help verify that the

analytical models were correct. Other than where noted, this work has only been previously

seen in our own previous work.

While the primary application of these models is directed toward the understanding of

locality and caching, a number ofapplications were also presented. These applications of the

model include being able to measure non-random conflict as well as the ability to generate
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artificial traces which can be tuned to have whatever locality properties are desired. It is

our hope that the novel insight and applications produced in this work prove valuable to

those who are involved in cache design.
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Chapter 5

Optimal replacement is NP-hard

for non-standard caches.

When examining a new cache structure or replacement policy, it is often helpful to use the

optimal policy as a baseline. In this chapter it. is shown that it is NP-hard to find the

optimal schedule for any but the simplest of caching schemes. This is proven by a reduction

from 3-Occ-Max-2SAT, a known NP-hard problem [12]. It is also shown that there is no

polynomial time algorithm which is guaranteed to find a “good” approximation to this

problem unless P = NP. These results apply to cache structures that include a victim

cache or an assist cache, as well as skew caches and nearly all “multi-lateral" caches [70].

This result also applies to the optimal scheduling of many multi-level cache structures.

5.1 Introduction and Background

One of the greatest challenges of modern computer architecture is the disparity between

processor and memory speeds. This disparity has resulted in attempts to eke the last
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bit of performance out of the entire memory hierarchy, especially caches. As discussed

in Chapter 2, victim caches [45], assist caches [17], skew caches [60] and “smart” caches

[31, 44, 70, 74, 78] have all been proposed. and some have also been implemented. However,

a cache architect’s toolbox has not kept up with these changes, making these caches more

difficult to evaluate, understand and improve. In this chapter one of those tools. the optimal

replacement algorithm, is examined. It is shown that for many caching structures, it is a

tool cache designers and researchers will have to live without.

In 1966 Belady published a heavilyicited paper describing the optimal replacement policy

for a cache [11]. Other, faster algorithms have been developed which also find the minimal

hit rate [49, 67]. As these algorithms perform the same task and generate equivalent results,

we refer to this class of optimal replacement algorithms as a single algorithm named MIN.

MIN is important because it is used in comparative architectural studies. As was discussed

in Chapter 4, MIN has been used in many performance studies [15.68, 70, 73, 74, 78] and as

part of a. caching algorithm [78].

MIN is only applicable to “standard caches" such as direct-mapped, set-associative, and

fully-associative caches. For many other, more complex, caching schemes the algorithm

fails. In those caches it not only matters what block is evicted but where the new block

is placed, something MIN does not address. However, until now it has not been clear if a

computationally-tractable optimal algorithm could be found for these more complex caches.

The search for a tractable algorithm for optimal placement/replacement in a non-

standard cache has existed for a number of years. Most recently, Tam et al. [70] published

a paper where they could not find a computationally tractable algorithm for optimal place-

ment for their cache design. Instead they made use of a tractable, but sub-optimal, offline

algorithm to make the desired comparisons.
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5.1. 1 Companion caches

Every cache we are aware of has two major components: its structure and its replacement

policy. The structure of a cache describes the physical properties of the cache (such as cache

line size, number of cache lines, etc.) as well the legal locations for a given block in the

cache. The replacement policy describes when a block is placed into the cache, where that

block is placed, and which block, if any, is removed to make room for it. For example, a

standard “set-associative cache” uses a set-associative structure and an LRU replacement

policy.

The term Companion Cache Structure (CCS) is now introduced. A CCS consists of

two components: a set-associative or direct-mapped cache and a fully-associative cache. We

refer to the direct-mapped/set-associative component as the “main cache” and the fully-

associative component as the “companion buffer.” Both components must be able to store

any arbitrary cache block. A degenerate CCS is one in which the main cache is fully-

associative or the companion buffer is of size zero. In the first case the CCS reduces to

a fully-associative cache. In the second case the CCS is just a standard direct-mapped or

set-associative cache.

Many of the non-standard caching schemes discussed in Chapter 2 have a CCS un-

derlying them. Cache structures which include a victim cache or an assist cache with its

associated main cache are exactly CC33. Many of the smart caches discussed in Chapter 2

are also CC53. In addition, skew caches and certain multi-level caches can also be thought

of as CC55. The later two cases will be addressed in Theorems 5.3.7 and 5.3.8 respectively.

In this chapter it is proven that optimally scheduling a. non-degenerate CC5 is NP-

hard with respect to the number of sets in the main cache. We assume that there are no

placement restrictions other than those that are part of the CCS. For example, the victim
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caching scheme, as originally defined [45], consisted of both a structure (a direct-mapped

cache and the victim cache itself) as well as a replacement policy.

5.1 .2 Related terms

While CCSs encompass a large number of useful cache organizations. it is important to put

CCSs in the context of other terms and concepts. Perhaps the most closely related structure

to the CCS is the multi-lateral cache [70]. A multi-lateral cache consists of multiple cache

structures which are conceptually on the same level of the memory hierarchy and which can

store the same data. In general, multi-lateral caches contain an underlying CCS, although

it is not always obvious.

In a similar way. a multi-level cache can also have an underlying CCS. Suppose the

L1 cache is fully-associative and the L2 cache is direct-mapped. While these two caches

may have very different access times, they can be thought of as a single CCS. Similarly,

imagine that rather than being fully-associative, the L1 cache were instead set-associative.

As explained in Theorem 5.3.8 this can be thought of as scheduling a number of smaller

CC55. This relies upon having a caching scheme where the L2 is not required to be inclusive

of the L1 [9].

Two other terms which are important to the discussion are bypassing and internal

reorganization. Standard caching schemes require that each block be placed in the cache

when it is referenced. If this requirement is not in force, the cache is said to allow bypassing.

Notice that disallowing bypassing places a restriction on the optimal algorithm and cannot

improve the miss rate. Another variation is to allow a block to move from location to

location without evicting it. We call this reorganization. Many modern caching schemes

allow for this to some extent; in fact it is at the heart of the replacement schemes for both
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victim and assist caches as well as certain hash-rehash cache variants 1. Notice that allowing

reorganization cannot increase the miss rate of an optimal algorithm. Further note that

reorganization does not affect the miss rate in a standard cache.

5.1.3 Chapter outline

In Section 5.2 it is formally proven that the problem of managing a CCS in order to minimize

the number of misses is NP-hard for a very specific instance. That proof is used as a starting

point to generalize and expand the results. The specific instance used is a 005 where the

companion buffer is of size one, the main cache is direct-mapped, bypassing is allowed,

and reorganization is not. This result is proven using a reduction from a known NP-hard

problem, 3-Occ—Max-2SAT [12]. The expanded results, found in Section 5.3, include:

o The problem is still NP—hard if the companion buffer is of a size greater than one

and/or the main cache is set-associative. (Theorems 5.3.1 and 5.3.2)

o The problem is NP-hard whether or not bypassing is allowed. (Theorem 5.3.3)

o Allowing the cache to freely reorganize does not. bring the problem into the class P.

(Theorem 5.3.4)

o A “good” approximation of OPT for a CCS cache is also NP-hard. (Theorems 5.3.5

and 5.3.6)

0 Skew and certain multi-level caches are NP—hard to schedule optimally. (Theorems

5.3.7 and 5.3.8)

The net result of all of these proofs is that using optimal scheduling to evaluate replace-

ment algorithms or cache structural changes is not viable for any but the simplest cache

 

1See Chapter 2 for details about these cache types.
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structures. This result is important so that cache researchers and designers do not "spin

their wheels” looking for a polynomial-time optimal replacement algorithm. If their cache

structure has an underlying CCS, they will have to live without that evaluation tool.

5.1.4 Problem definition and goal

Now the problem of offline cache scheduling is described more formally. An ordered list of

memory references is sent to the cache. Each reference is to a particular block, and each

block can be placed in some subset of the cache. In the offline environment it is known

exactly in which order the references will occur. The goal is to minimize the number of

misses which occur. A given instance of a caching problem consists of the ordered list of

references and a mapping which describes where each reference can be placed in the cache!

5.2 Proofs

In this section the results are proven in three parts, each corresponding to a subsection.

In subsection 5.2.1 the relationship between interval scheduling and cache scheduling is de—

scribed. A formal proof is provided in subsection 5.2.2 for a very restricted problem—when

the main cache is direct-mapped, the companion buffer is of size one, no internal reorgani-

zation is allowed, and bypassing is allowed. We call this restricted case the Fundamental

Companion Cache Scheduling (FCCS) problem. In subsection 5.3 the FCCS proof is used

as the foundation for several broader conclusions. These results include showing that the

general CCS problem is NP-hard and APX-completeQ. Also specific bounds are given for

how well an algorithm can approximate the FCCS problem.

 

2A problem is APX-complete if it can be approximated within some bound in polynomial time but cannot

be approximated to within some arbitrary constant in polynomial time.
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The FCCS problem is formally defined as follows.

Definition 5.2.1. Fundamental Companion Cache Scheduling(FCCS):

INSTANCE: A direct-mapped cache, D, consisting of sets of locations. D1, . . . D", a com-

panion cache consisting of a. single location C1, a set of memory items (cache lines) AI, a

mapping g : .M —> DJr indicating in which location in the direct-mapped cache each memory

item can be stored, a request sequence 3 E .M", and an integer K.

QUESTION: Each item of sequence 3 is selected in order. If that item is currently found

in D or Cl, it is counted as a hit. The memory item is then either placed into the location

in D indicated by Al, placed into C1, or not placed in the cache at all. Can the memory

items be legally placed in the cache such that at least K requests in the sequence 3 are hits?

5.2.1 Interval scheduling and caching

First, the relationship between cache scheduling and interval scheduling is described. Ini-

tially assume that the cache allows bypassing and does not allow internal reorganization

(as defined above.) When bypassing is allowed, it is clear that an item need only be put in

the cache if it will remain in the cache until its next access. With this in mind, the cache

scheduling problem on a cache of size I: can be described as a restricted interval scheduling

problem on 1: parallel machines.

In short the interval scheduling problem is the following. There is a set of parallel

machines and a set of intervals (jobs) that have a fixed starting time and a fixed ending

time. A machine can only work on one interval at a time. An interval must be worked on

continuously from its start time to its end time to be successfully processed. Each interval

can only be processed by a given subset of the machines. The goal is to maximize the

number of intervals processed.
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The interval scheduling problem relates to caching as follows. The cache locations

correspond to machines. Each memory access defines the start time of an interval. The

end time of that interval is defined by the next. access to that same memory item. This

relationship is illustrated in Figure 5.1. Notice that the last access to a given memory item

does not start a new interval. Also, notice that each interval corresponds to a possible cache

hit (that is, the access is not a compulsory miss [39]). The subset of machines that can

process an interval is determined by the set of cache locations in which the corresponding

memory item can be placed. As stated earlier, when bypassing is allowed, placing an item

in the cache is only profitable if the item will still be in the cache the next time it is

accessed. Likewise, scheduling an interval on a machine is only profitable if the machine is

not otherwise busy during that interval.

Accenws: 101 102 101 103 102 103 101 103 102 101

   

  

Jobs:

 

 

Figure 5.1: Relation between memory accesses and intervals.

If intervals can be placed on any machine, then the interval scheduling is solvable in

polynomial time [30]. In the restricted interval scheduling problem, each interval can only

be placed on a subset of the machines. If the machines can be partitioned into subsets such

that if an interval can be scheduled on a machine in one subset, it can be scheduled on all

machines in that subset, and it cannot be scheduled on any machine not in that subset,

the problem corresponds to a set-associative cache and is still solvable in polynomial time.

However, the general case of restricted interval scheduling is NP-complete[7, 48].

In order to show that the FCCS problem isNP-complete, it is first shown that the

Fundamental Companion Interval Scheduling problem (FCIS), a special case of restricted
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interval scheduling. is NP-complete. Then FCIS is reduced to FCCS.

5.2.2 Formal NP-hard proof for FCCS

Definition 5.2.2. Fundamental Companion Interval Scheduling (FCIS):

INSTANCE: A set C of m machines 01,...Gm. a “companion” machine C1, an integer

K. and a set I of n intervals (9,, f,,o,-) where s, E Z+ is the starting time of interval i.

fi 6 Z+ is the finishing time of interval i and o,- E G is the machine on which interval i

can be scheduled. Additionally, any interval can be scheduled on the companion machine.

QUESTION: Can at least K of the intervals be legally scheduled?

Theorem 5.2.1. FCIS is NP-complete.

Proof. 3-Occ-Max—QSAT is reduced to FCIS. 3-Occ-Max-2SAT is a restricted form of Max-

2SAT where each variable occurs at most three times.

More formally, 3-Occ-Max-2SAT consists of a set. of variables, U, a set of clauses, C,

and a value K. Each of the clauses contain exactly two variables. possibly in the negated

form. No variable occurs in more than three clauses. As noted above, this problem has

been shown to be NP-complete[12].

Let U = {21.1,ug,....va}, C = {c1.c2,...,cb} and K be an instance of 3-Occ-Max-

2SAT. For each variable u E U create two machines, A1,, and Ala. both elements of G.

For notational reasons, the function f (:1) and h(:r) are introduced. They are defined as

f(ui) = i and h(ck) = h.

For each variable u E U create the following four intervals (f (u), f (u) + 1,]lIu),

(f(u), f(u) + 1,1115), (0,a. + b, AI“), and (0,a + b, lily).3 This results in 4a intervals. Label

 

3An alternative notation would be to examine each variable u.~ and create intervals (i, i + 1, Nu, ), (i,i +

1, Mar). (0,a + b, M... ). and (0, a + b.11'lw)
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the first two intervals “short variable” intervals and the second two intervals “long variable”

intervals. For each clause c E C create the following two intervals. If variable 21 appears in

clause c in its positive form, create the interval (a + h(c),a + h(c) + 1,111,,). If it appears

in the negative form create the interval (a + h(c),a + h(c) + 1, Ala). Since there are two

variables per clause, this results in 2b “clause” intervals. Thus, a total of 4a + 2b intervals

are created and 2a machines are created. Both are clearly polynomial in the original input

size.

An example instance is shown in Figure 5.2. The intervals form an instance of FCIS.

The intervals can be broken into three groups: the long variable intervals, the short variable

intervals, and the clause intervals. The key observations about this reduction are that the

variable intervals (both long and short) are used to enforce a variable assignment and pairs

of schedulable clause intervals correspond to the satisfiable clauses.

......................................................................
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Figure 5.2: Example reduction from 3-Occ-Max—2SAT.

Notice that the short intervals on the left are the “short variable intervals” and the ones

on the right are the “clause intervals.”

Suppose one can satisfy K of the clauses in the 3-Occ-Max-2SAT instance. It will now

be shown that 3a + b + K of the intervals can be scheduled. Consider each variable u E U.

If u is true, machine Iii-,7 is used to schedule one of the long intervals corresponding to u,
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and machines A!“ and C1 are used to schedule the two short intervals corresponding to u.

If u is false, the roles of machines Mg and 111,, are reversed. Exactly 3a of the variable

intervals will be scheduled. Note that it is not possible to schedule more than 3a of the

variable intervals, because for each variable there are 4 overlapping jobs and only 3 available

machines.

Now consider each pair of clause intervals. If the corresponding clause c is satisfied in

the 3-Occ-Max-2SAT problem, then one of the literals in c must be true. Without loss of

generality. it can be assumed that this literal is 1. Because I is true, the long interval that

could be placed on AI, was not scheduled, and machine Ill; is free. Therefore the pair of

intervals that correspond to clause c using machines All and C1 can be scheduled. If the

clause is not satisfied, only one interval can be scheduled (011 C1). It is important to note

that for each u, the clause intervals either use machine All“ or machine Illa but not both.

A total of b + K of the clause intervals will be scheduled. Thus exactly 3a + b + K of the

intervals have been scheduled.

The proof is only half done at this point. It has been shown that if K of the clauses in

our 3-Occ-Max-2SAT problem can be satisfied, one can satisfy 3a + b + K of the intervals.

It now needs to be shown that if 3a + b + K intervals can be scheduled, that schedule can

be used to find a solution to the corresponding 3-Occ-Max-2SAT problem where K of the

clauses are satisfied.

Suppose there exists a schedule 5 that schedules 3a + b + K intervals. We will create a

modified schedule 5' that schedules at least. 3a + b + K intervals with the two following ad-

ditional constraints: no long variable interval will be scheduled on the companion machine,

and for each variable u, exactly one of its long variable intervals will be scheduled.

S’ is constructed as follows. First modify 5 so that C; is not used to schedule any long
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variable intervals. Suppose in schedule S that machine C1 is used to schedule one of the

long intervals for some variable u. In this case, either the corresponding short interval is

not currently scheduled or it is scheduled on its corresponding machine in G, Mu or 1115.

In the first case, modify S by having C1 schedule the unscheduled short interval. In the

second case, modify S by taking all intervals scheduled on the corresponding machine, ll/Iu

or lug, and schedule them on C1 and schedule the long interval on that machine. In either

case, the modified schedule now completes the same number of intervals as S does, while

C1 is not used to schedule a long variable interval.

Now suppose for a variable u, the modified schedule uses both 111,, and Illa to schedule

the corresponding long intervals. This must mean that. at least one of the short intervals

corresponding to u is not scheduled. Modify the schedule by scheduling one of the un-

scheduled short intervals on its corresponding machine in G, ll-Iu or big, and dropping the

corresponding long interval.

At this step there is now a schedule where for each variable u, at most one of its two long

intervals is scheduled on its corresponding machine in C, All.” or .Mg. The schedule is further

modified so that for each variable u, exactly one of the two long intervals for u is scheduled

on its corresponding machine in G. Let u be a variable where neither of its corresponding

intervals are scheduled. Consider the clause intervals. Because the variable 11 appears at

most three times, it either appears in its positive form at most once, or it appears in its

negative form at most once. It follows that there is at most one clause interval that can

be scheduled on machine A1,, or there is at most one clause interval that. can be scheduled

on machine Ill-g. Drop that single clause interval and use the freed machine to schedule

the corresponding long interval for u. If this machine was currently used to schedule the

corresponding short interval, modify the schedule to have C1 schedule this short. interval
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and the other machine, All, or Ali, to schedule the other short interval.

Call this final schedule S'. The schedule S’ now has at least 3a+b+K intervals scheduled

since all modifications performed did not decrease the number of intervals scheduled. For

each variable, exactly one long variable interval will be scheduled, and it will not be on

C1. This will define a valid truth assignment for 3-Occ-Max-2SAT. Specifically, if the long

interval 21 is not scheduled, then variable u is true; otherwise u is false. Since at most 3a

variable intervals can be scheduled, this means at least b+ K clause intervals are scheduled.

At most I) of these clause intervals can be scheduled on C1 which means that at least K

clause intervals will be scheduled on a machine in C. These “at least K” clause intervals

scheduled on a machine in G correspond to K satisfied clauses in the instance of 3-Occ-

Max-2SAT with the above truth assignment. Cl

Theorem 5.2.2. The Fundamental Companion Cache Scheduling (FCCS) problem is NP-

complete.

Proof. FC18 is reduced to FCCS. For each machine in FCIS create a cache location in D. For

each interval (3,, fi, 0,) create a memory item 3:,- and let g(.r,~) = 0,. In other words, memory

item I,- can be placed in the cache location that corresponds to the machine on which the

interval (31-, f,) can be scheduled. Sort the end points sl, f1, s2, f2, . . . s", fn of the intervals.

If two end points are equal, then ties are broken in the following manner. Finishing points

come before starting points. Otherwise, the endpoint from the lower indexed interval is

first. A sequence of memory references is generated as follows. For each end point in the

sorted list, reference the memory element that corresponds to the end point’s interval.

The intervals defined by the resulting sequence of memory references and the original set

of intervals are equivalent. For every interval that can be scheduled, there will be one cache

hit. Therefore, a schedule that schedules more than N intervals will also result in more than
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N cache hits. It is trivial to show that the FCCS E NP, and thus is NP-completesimply

by showing that a given proposed solution can be verified to legally schedule K jobs in

polynomial time. 1:]

5.3 Extending FCCS

The results of Section 5.2.2 apply only to the FCCS problem—a highly restricted instance

of the general problem of optimally scheduling a CCS. This section broadens those results

greatly. While it should not be surprising that instances where there are set-associative

main caches and larger companion buffers are still NP-hard, the outline of proofs to that

effect are provided for sake of completeness. It is also formally proven that allowing internal

reorganization, and/or disallowing bypassing. does not affect the difficulty of the problem.

Further, it is proven that these problems are all difficult to closely approximate and provide

some bounds for the FCCS problem. Lastly, it is proven that skew caches and certain

multi—level caches are also NP-hard to schedule optimally.

Theorem 5.3.1. If the main cache is k-way set—associative. the problem is still NP-

complete.

Proof. The problem statement for FCIS in definition 5.2.2 is used with a. slight modification.

Each element of C is redefined to be a set of lf. machines, rather than a single machine. An

interval which can be scheduled on 03- may now use any of the (otherwise unscheduled)

machines in Q, or the companion machine.

The construction is also modified. Each of the short variable intervals as well as the

clause intervals are replicated so that there are k copies of each. Also, in an attempt to

reduce confusion, the sets of machines corresponding to the variable 1‘. are referred to as St
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Figure 5.3: Example construction for a 2-way set-associative main cache.

rather than him.

Figure 5.3 is an example construction similar to that of Figure 5.2. Notice that exactly

one of the variable intervals will still be unschedulable as for each variable there are now

2(k + 1) variable intervals and only 213 + 1 machines on which they can be run. Also

notice that if the long variable jobs corresponding to the literals of a given clause are

both scheduled, one of the clause jobs corresponding to the clause will be unschedulable.

Thus the same basic arguments of Theorem 5.2.1 still apply, and the conversion from an

interval scheduling problem to a set-associative caching problem is only a simple variation

of Theorem 5.2.2.

Theorem 5.3.2. If the companion buffer is of size 2 > 1, the problem is still NP-complete.

Proof. The problem statement for FCIS in definition 5.2.2 is used with a slight modification.

The single companion machine C1, is now a set C of companion machines C1 . . . C2. Much

like before, any job can be run on any of the machines in C.
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Figure 5.4: Example construction for a companion buffer of size 3

The construction used in Theorem 5.2.1 is used with slight modifications. A new ma-

chine, A13 6 G' is added. For each pair of short intervals, add 2 — 1 intervals with the same

start and end times as that pair of intervals and which can run on machine 11713. Figure 5.3

illustrates the modified construction for a. companion buffer of size 3.

If all of these “B” intervals are scheduled they will use the .: — 1 extra machines of

the companion buffer. When creating the schedule 5' as described in Theorem 5.2.1 an

additional step is added. After the long variable intervals have been fixed, any unscheduled

B intervals will be scheduled if a free machine is available. If no such machine is available,

it must be the case that both .of the non-B short. interval jobs are using a machine from

the set C. Unschedule one of those intervals and let the unscheduled “B” interval use that.

machine. The remainder of the construction is identical. [:1

Theorem 5.3.3. If bypassing is not allowed in the cache, the problem is still NP-complete.

Proof. This proof uses nearly the same construction as Theorem 5.2.1. The only change is

that the long intervals are lengthened so they start at time —1 rather than time 0. Notice
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that this change does not have any impact on either of the theorems used to show that

FCCS is NP-hard. All that is left is to prove that disallowing bypassing will not decrease

the number of intervals which can be scheduled by an optimal algorithm. Clearly, disallow-

ing bypassing cannot increase the optimal number of intervals which can be scheduled in

any instance: any schedule legal under the no—bypassing case is also a legal schedule with

bypassing.

Let us now define the following terms. I is an instance of the FCIS problem. 5135395“)

is the optimal schedule for I when bypassing is allowed. Further we define SgSgSU) to

be of the form of S’ described in Theorem 5.2.1. That is, all of the short variable jobs are

scheduled, one long variable job is left. unscheduled for each variable, and some of the clause

intervals may be left unscheduled. That theorem showed that such a schedule exists which

is still optimal.

Notice that under the no—bypassing restriction, it must be the case that all of the short

intervals are scheduled. That is because the short intervals must be started and no other

interval starts while they run, so no interval can preempt them. Clearly the short intervals

may be preempting the long intervals. In fact the only impact of disallowing bypassing for

any I is that all of the short intervals must be scheduled: as long as that rule is followed

the schedule will be a legal non-bypassing schedule. The long intervals must all initially be

scheduled, but may be preempted later, and thus count as unscheduled. This means that

if nggs can be converted to a form where the long jobs are the only jobs left unscheduled

and the total number of jobs scheduled does not decrease then there exists a schedule that

does not. require bypassing and still schedules exactly as many jobs.

A schedule 520155038 is now constructed from the schedule $85,123. Label the k. unsched-

uled clause intervals in 8815333 as UCI1 . . . UCIf. and label the long variable interval which
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uses the same machine in C used by UCIj as LVIj. UCIJ- could be scheduled if LVIJ- were

unscheduled. That is because LVIJ- is the only interval which can possibly use its machine

in G at that time. Since LVI, overlaps with at. least all of the intervals that UCI)- overlaps

with, it cannot decrease the number of schedulable jobs to schedule UCIj and unschedule

LVIj. This can be done for each of the k unscheduled clauses and will result in no fewer

intervals being scheduled.

. OPT . .. . .. ' . -. OPT
It has been shown that Snobypass schedules exactly as many Intervals as Sbypass. As

- - OPT - - OPT .
fmdmg Sbypass rs NP-hard, finding Snobypass must be NP-hard also. [3

Theorem 5.3.4. If reorganization is freely allowed in the cache, the problem is still NP-

complete.

Proof. The same construction as Theorem 5.2.1 is used once again. Notice that this problem

is less restricted than the FCIS problem. Thus the optimal schedule for the reorganiza-

tion variation can be no worse than the optimal non-reorganization schedule for the same

instance. It will be shown that allowing reorganization does not improve the number of

intervals which can be scheduled and therefore FCIS where reorganization is allowed must

also be NP-hard.

The fundamental observation is that given m intervals. all of which desire to be run

during some given time, and m — 1 machines on which to run those intervals, one of the

intervals must be left unscheduled. Reordering does not help in that. case. Another impor-

tant observation is that once an interval is left unscheduled, even for a moment, there is

no benefit to scheduling it in the future. Using these facts, it will be shown that the proof

in Theorem 5.2.1 holds for the reorganization case also. First it is shown that no extra

variable intervals can be scheduled due to reorganization. Next it is shown that no extra

clause intervals can be scheduled due to reorganization. As that is all of the intervals in

121

 



the instance, it is enough to show that reorganization never allows extra intervals can be

scheduled in the optimal cache for any FCIS instance.

As before, at least one of the variable intervals must be left unscheduled. Again, leaving

a short variable interval unscheduled can be no better than leaving a long variable interval

unscheduled, and thus it can be assumed that one long variable interval is left unscheduled

per variable. It is therefore clearly the case that just before the first. clause interval has

been scheduled exactly as many intervals can be scheduled in the standard FCIS version as

in the FCIS version where reorganization is allowed.

It is now shown that no extra clause intervals can be scheduled due to reorganization.

Label each of the pairs of short clause intervals as (CI11 , C112) where CIn can be assigned to

machine ll 6 G and C113 is defined similarly. Further, the term LVI3r will be used to mean

the long variable interval which can be run on machine :1: E G. Examine each pair of clause

intervals in turn. As before. if LVIII and/or LVIIQ was left unscheduled, both CI“ and C112

can be scheduled. If LVI” and LV112 are both scheduled, there exist four simultaneous

intervals (C111. C112, LVI“ and LVIIQ which can only be run on three machines (A111, AI”,

and C1). Thus, as in Theorem 5.2.1, one of those four intervals cannot be scheduled.

The only issue which remains is to show that there is no advantage to leaving two long

variable intervals associated with the same interval unscheduled. The argument for this is

identical to the argument presented in Theorem 5.2.1: if both long variable intervals are left

unscheduled, the one for which there exists only one clause interval which uses its machine

in C can be scheduled while that clause interval is unscheduled. Recall that this is due to the

3—occurrence restriction of 3-Occ-Max-2-SAT. Therefor, the same number of intervals are

scheduled by the optimal solution to FCIS with reorganization as are scheduled by standard

FCIS. As FCIS is NP-complete, FCIS with reorganization must also be NP-complete. Cl
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Theorem 5.3.5. Any algorithm which can guarantee to approximate the miss rate within

0. 012.4% of the optimal for FCIS must have an exponential running time if P 74 NP.

Proof. Berman and Karpinski proved that it is NP—hard to approximate 3—Occ-IV'Iax-2SAT

within 0.05% [12]. Specifically, they showed that there exist instances of 2016n clauses where

it is NP-hard to compute if the number of satisfiable clauses is (2011 + e)n or (2012 + e)n

for any 6 in the range (0,0.5). Utilizing the construction in Theorem 5.2.1 it is possible to

take an instance of these 2016n clauses and convert it into a. FCIS problem. Recall from the

construction in Theorem 5.2.1 that 4a + 2b clauses were generated when the 3-Occ-Max—

2SAT problem consisted of a variables and b clauses.

Because the instances generated in [12] all utilize each variable exactly three times,

there are exactly 1344n distinct variables used. Therefore, there will be exactly (4 * 1344 +

2 * 2016)n = 940871 clauses in the FCIS instance. Again, recall from Theorem 5.2.1 that

if K clauses in the 3-Occ—Max—2SAT problem could be satisfied, 30. + b + K clauses in

the FCIS instance could be scheduled. For K = (2012 + e)n and (K = 2011 + e), that.

means that (8060 + e)n and (8059 + e)n could be scheduled respectively. Clearly, as n

gets large and 6 can therefore approach 0, it is NP-hard to distinguish between 8060n and

805971 schedulable intervals. It is then the case that estimation of FCIS within a factor of

8060/8059 is NP-hardThis is the same as being unable to estimate within 0.0124% of the

optimal.

It should be noted that the technique used in Theorem 5.3.6 could easily be used to

compute a similar result. However that generic technique yields a looser result of 0.0079%.

Theorem 5.3.6. An algorithm which can guarantee to approximate the miss rate within

1.01% of the optimal for FCCS is non-trivial to find.
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According to Berman and Karpinski [12]. the best known polynomial-time approxima-

tion algorithm for 3-Occ-Max-2SAT is the same as that for Max-2-SAT found by Feige and

Goemans [27]: 1.0741. Clearly, as FCIS can be used to solve 3-Occ-Max-2SAT, this result

could be improved if there were a sufficiently good approximation algorithm for FCIS. It is

now shown that if there exists a 1.013-algorithm for FCIS (that is, it can approximate FCIS

within 1.01%) it would result in an improvement in the best known approximation algo—

rithm for 3-Occ-Max-2SAT. As this problem has been fairly well studied, we are comfortable

labeling such an improvement in 3-Occ-Max-2SAT as non-trivial.

An L-reduction, as explained by Papadimitriou in [55], can be used to show how an

inapproximability result for one problem can be reduced to another. To quote from various

parts of pages 309—311“.

Suppose that A and B are optimization problems (maximization or minimiza-

tion). An L-reduction from A to B is a pair of functions R and S, both com-

putable in logarithmic space, with the following two additional properties: First,

if a: is an instance of A with optimum cost OPT(;r), then R(:r) is an instance of

B with optimum cost that satisfies

OPT(R(:r)) s a - OPT(;I:) (5.1)

where a is a positive constant. Second, if s is any feasible solution of R(:r), then

S(s) is a. feasible solution of :1: such that

10PM) — c<S<s>>I s momma» — c(s)I. (5.2)

 

4We have replaced Papadimitriou’s (non-standard) use of c with the symbol 6. Otherwise the quotes are

verbatim.
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where [3 is another positive constant particular to the reduction (and we use c

to denote that cost in both instances).

Papadimitriou goes on to state:

If there is an L-reduction (R, S) from A to B with constants a and [3, and

there is a polynomial-time 6-approximation algorithm for B, then there is a

polynomial-time

0,136 ,.

1 _ 5 (0.3) 

-approximation algorithm for A.

It should be noted that Papadimitriou uses the term arr-approximation algorithm in a

non-standard way. He defines an :r-approximation algorithm as:

I = lc(M(a.-)) — 0pm);

OPT(:r) ‘

 

rather than the more standard form of :r. = c(hI(:r))/OPT(.r). For the remainder of

this section the term “:r-approximation algorithm.” where :r. is a real number, will refer to

the standard definition. The symbols 6 and 6 will be used to refer to the inapproximablilty

using Papadimitriou’s or the standard scheme respectively. Simple algebra can show that

 

Thus, if A is 3—Occ—Max-2SAT and B is FCIS, there is an 6-approximation for A of 1.0741.

That e-approximation is the same as a 6-approximation of about 0.069. It is now shown
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that if an e-approximation algorithm of less than 1.013 exists for B, an e of less than 1.0741

also exists for A. This would be an improvement in the best-known algorithm for 3-OCc-

Max-2SAT.

The value of [3 from Equation 5.2 is now found via a two-part. argument. Let s be a

feasible solution of FCIS which schedules i intervals and let m be the optimal number of

intervals that could have been scheduled in that instance. First assume that s schedules

at least 3a + b intervals, where the instance consists of a variables and b clauses. Recall

from Theorem 5.2.1 that. if 3a + b + K clauses in FCIS could be satisfied, at least K clauses

in the 3-Occ-Max-2SAT instance could be scheduled. Thus, OPT(.r) — c(S(s))| = m — c

and [OPT(R(:r)) — c(s)[ = (3a + b + m) — (30 + b + c) = m — c. and from Equation 5.2,

0 = 1. Now assume that instead 3 schedules fewer than 3a + b intervals. In that case. even

if no 3-Occ-Max-2SAT clauses are satisfied, 0 is clearly less than or equal to one. That is

because OPT(:r.) — c(S(s))| < m S lOPT(R(r)) — c(s)|.

Computing (1 requires one additional fact: At least 3/4 of all clauses in a Max-25AT

problem can always be scheduled. Given that, if m is the optimal solution for the 3-Occ-

Max-2SAT problem, there could have been no more than 4m/3 clauses in the problem

instance. Further if a variable only occurs once, that literal can safely be set to true and

the problem reduced in size by one variable and one clause. It can therefore be assumed

that each variable occurs at least twice. If, as before, a is the number of variables in the

instance and b is the number of clauses, a S 4m/3 and b 3 4m/3. Thus, the FCIS problem

can schedule exactly 3a + b + m = 12m/3 + 4m/3 + m = 19m/3 intervals. Plugging the

appropriate values into Equation 5.1, a = 19/3.

Having oz and ,3 available, and using Equations 53,55. and 5.4 it can be shown that,

if a better than 1.0101-approximation algorithm for FCIS were found, that would lead to
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an improvement in the best known approximation algorithm for 3-Occ-l\lax-2SAT5. This

does not mean that there is no polynomial time algorithm which can guarantee a result

of better than 1.6%. However, such a result would show an improvement over the best

known algorithm for a fairly well-studied problem. We are comfortable labeling such an

approximation algorithm “non-trivial,” ' El

Theorem 5.3.7. Finding the optimal schedule for a skew cache is NP-hard.

Proof. This is proven by restriction [28]. Notice that. it is possible to have a schedule where

all of the accesses to one of the banks of the skew cache are always to the same location. In

that restricted case the problem is exactly the same as FCCS. Thus if an algorithm existed

which could optimally schedule a skew cache, that same algorithm could be used to schedule

a. FCCS. Since FCCS is NP-hard, skew cache scheduling is also NP-hard. 1:]

Theorem 5.3.8. It is NP—hard to optimally schedule a multi-level cache as a single unit

where exclusion is allowed.

Proof. This is also a proof by restriction [28]. Assume a two-level cache hierarchy where

the L1 cache can hold kl blocks and the blocks are grouped into 31 sets. Define s2 and kg

in a similar way for the L2 cache. Without loss of generality we will assume that 32 > s16.

Table 5.3 lists the values of 82/81, for a few selected processors. Values near 8 or 16 are

most common.

Consider the set of blocks, 8,, which are mapped into the ith set of the L1 cache. Under

all reasonable indexing functions (see Chapter 2 for a discussion on indexing functions)

elements of B, will also be mapped into at least s2/s1 different sets of the L2 cache. Now

 

5This solution can be easily verified. However finding the value 1.0101 required some additional work

6With only slight modifications The same argument can be used if s] > .52
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Table 5.1: Ratio of the number of sets in the L2 cache over the number in the L1 data cache

for selected processors.
 

[ Processor I 82/81J

Intel P6 w 512KB L2 cache 64

Intel Celeron (Coppermine) 8

Compaq 21364 8

AMD 1GHz Athlon 0.5

 

 

 

 

 

   
 

notice that optimally scheduling accesses to the blocks in the set. B,- is exactly the same as

scheduling a companion cache, where the companion buffer is of size In /sl. and the main

cache consists of at least 82/81 sets each of size 152/51.

It is worth noting that for small values of 32/81. the problem may be computational

tractable. In fact, for a. fixed value of 333/81 the problem is technically requires only poly-

nomial run time. However, the large values for 32/51 in real processors, combined with the

very large address traces (usually greater than 1,000,000 addresses) would seem to make

this problem generally intractable. C]

5.4 Conclusion

It has been shown that an important tool for cache studies, the optimal replacement policy,

is NP-hard to compute for many non-standard caches. It has also been shown that this

result applies to the optimal scheduling of multi-level caches where the caches are kept

exclusive. Additionally, it was proven that a good approximation to these problems is also

NP-hard to compute. While these results will not help one build faster caches, researchers

who are aware of this will not waste their time in a futile attempt to find efficient algorithms

for these problems. Unless P = NP such algorithms simply do not exist.

128

 



Bibliography

[1]

l3]

l4]

l6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Agarwal. J. Hennessy, and Horowitz M. Cache performace of operating systems

and multiprogramming. ACM Trans. on Computer Systems, 6(4):393—431, November

1988. V

A. Agarwal, J. Hennessy, and Horowitz M. An analytical cache model. ACM Trans—

actions on Computer Systems, 7(2), May 1989. ‘

A. Agarwal and S. D. Pudar. Column-associative caches: a technique for reducing the

miss rate of direct-mapped caches. In Proc. of the 20th Int ’1 Symposium on Computer

Architecure, pages 179—190, 1993.

V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate verse IPCzThe

end of the road for conventional microarchitecures. In Proc. of the 27th Int ’1 Symposium

on Computer Architecture, June 2000.

E. Anderson, P.V. Vleet, L. Brown, J-L Baer, and AR. Darlin. On the performace

potential of dynamic cache line 'sizes. Technical Report UW-CSE-99-02-01, Dept. of

Computer Science and Engineering, University of Washington, February 1999.

J. Archibald and J-L. Baer. Cache coherence proto—cols: Evaluation using a multi-

processor simulation model. ACM Transactions on Computer Systems, 4(4):273-298,

November 1986.

EA. Arkin and EB Silverberg. Scheduling jobs with fixed start and end times. Discrete

Applied Mathematics, 18:1—8, 1987.

O. Babaoglu. Efficient generation of memory reference strings based on the lru stack

model of program behaviour. In PERFORMANCE ’81, pages 373-383, 1981.

J-L. Baer and W-H. Wang. On the inclusion properties of multi-level cache hiearehies.

In Proc. of the 15th Int 7 Symposium on Computer Architecture, June 1988.

AP. Batson and A. W. Madison. Characteristics of program locality. Communications

of the ACM, 19(5):285—294, May 1976.

L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM

Systems Journal, 5(2):282-288, 1966.

P. Berman and M. Karpinski. On some tighter inapproximability results. Technical

Report 99-23, DIMACS, 1999. ’

129

 



[13] M. Brehob and R.J. Enbody. An analytical model of locality and caching. Techni—

cal Report MSUCPSzTR99-31, Michigan State University, Department of Computer

Science and Engineering, 1999.

[14] M. Brehob, R.J Enbody, and N. Wade. Analysis and replacement for skew-associative

caches. Technical Report MSUCPS:TR97—32, Michigan State University, Department

of Computer Science and Engineering, 1997.

[15] D. Burger, J.R. Goodman, and A. Kagi. Memory bandwidth limitations of future

microprocessors. In 23nd Annual Int ’1 Symposium on Computer Architecture. pages

78—89, 1996.

[16] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative cache. In Proc.

2nd Int ’1 Symposium on High Performace Computer Architecture, pages 244-253, 1993.

[17] K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X. Schumacher, and J. Zheng.

Design of the HP PA7200. Hewlett-Packard Journal, February 1996.

[18] J .H. Chang, H. Chao, and K. So. Cache design of a sub-micron CMOS system/370. In

Proc. of the 14th Int’l Symposium on Computer Architecture, pages 179-190, 1987.

[19] C. K. Chow. An optimization of storage hierarchies. IBM Journal of Research and

Development, 18(3):194-203, May 1974. i

[20] CK. Chow. Determination of cache’s capacity and its matching storage hierarchy.

IEEE Transactions on Computers, C-25(2):157-164, February 1976.

[21] Standard Performace Evaluation Corporation. Spec benchmarks. \Vorld Wide web.

[22] DE. Culler. Caches. World Wide Web, February 2002.

[23] Gee J. D., Hill M. D., Pnevmatikatos D. N., and Smith A. J. Cache performance of

the SPEC92 benchmark suite. IEEE Micro, 13(4):17—27, August 1993.

[24] P.J. Denning. The working set model for program behavior. Communications of the

ACM, 11(5), May 1968.

[25] Wilton S. J. E. and Jouppi N. P. Cacti: An enhanced cache access and cycle time

model. IEEE Journal of Solid-State Circuits, 31(5):677—688, May 1996.

[26] and P.J. Denning E.G. Coffman. Operating Systems Theory. Prentice-Hall, 1973.

[27] Uriel Feige and Michel Goemans. Approximating the value of two prover proof systems,

with applications to max 2sat and max dicut. In In Proc. of 3rd Israel Symposium on

the Theory of Computing and Systems, pages 182—189, 1995.

[28] MR. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, 1973.

[29] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical represen-

tation of cache misses. In Proc. of the 11th ACM Int ’1 Conference on Supercomputing,

July 1997.

130



[30] MC. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New

York, 1980.

[31] A. Gonzalez, C. Aliagas, and M. Valero. Data cache with multiple caching strategies

tuned to different types of locality. In Proc. of the 1995 Conference on Supercomputing,

pages 338—347, 1995.

[32] K. Grimsrud. Quantifying Locality. Doctoral dissertation, Brighman Young University,

1993.

[33] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson. On the accuracy of memory

reference models. Lecture Notes in Computer Science, 794:369—388, 1994.

[34] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson. Locality as a visualization tool.

In IEEE Transactions on Computers, volume 45, pages 1319—1325, November 1996.

[35] M. Hachman. IBM and Intel chip vendors showcase road maps at microprocessor

forum. BYTE, October 1999.

[36] E. Hallnor and S. K. Reinhardt. A fully associative software-managed cache design. In

27th Int ’1 Symposium on Computer Architecture, June 2000.

[37] J. Handy. The Cache Memory Book. Academic Press, second edition, 1998.

[38] J .P. Hayes. Computer Architecture and Organization. McGraw Hill Text, 1988.

[39] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, San Mateo, CA, third edition, 2002.

[40] MD. Hill. A case for direct.~mapped caches. IEEE Computer, pages 25—40, December

1988.

[41] MD. Hill. Evaluating associativity in cpu caches. IEEE Trans. on Computers,

38(12):1612—1630, December 1989.

[42] Micron Technology Inc. 1997 DRAM Data Book. Micron Technology Inc., Boise, Idaho,

1997.

[43] B. Jacob, P. Chen, S. Silverman, and T. Mudge. An analytical model for designing

memory hierarchies. IEEE Transactions on Computer, 45(10), Oct 1996.

[44] TL. Johnson and W-M. ku. Run-time adaptive cache hierarchy management via

reference analysis. In Proc. of the 24th Annual Int ’1 Symposium on Computer Archi-

tecture, volume 25,2 of Computer Architecture News, pages 315-326, New York, June

1997. ACM Press.

[45] N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. Proc. of the Seventeenth Annual International

Symposium on Computer Architecture, 18(2):364—373, May 1990.

[46] SF. Kaplan, Y. Smaragdakis, and P. R. Wilson. Trace reduction for virtual memory

simulations. In Proc. of ACM SIGMETRICS, May 1999.

131

 



[47] R. R. Kessler and et al. Inexpensive implementations of set—associativity. In Proc. of

the 16th Int ’1 Symposium on Computer Architecture, pages 131-139, 1989.

[48] A.VV.J. Kolen and J .G. Kroon. On the computation complexity of (maximum) class

scheduling. European Journal of Operational Research, 54:23—38, 1991.

[49] R.L. Mattson, J. Gecsei, D. R. Slutz, and IL. Traiger. Evaluation techiques for storage

hierarchies. IBM system Journal, 9(2), 1970. Periodical Room, TA168 .114 v.12 1973.

[50] SA. McKee. A. Aluwihare, B.H. Clark, R.H. Klenke, T.C. Landon, C.W. Oliver, M.H.

Salinas, A.E. Szymkowiak, K.L. Wright, W.A. Wulf, and J.H. Aylor. Design and

evaluation of dynamic access ordering hardware. In Proc. 10th ACM Int ’1 Conf. on

Supercomputing, May 1996.

[51] SA McKee, R.H. Klenke, K.L. W'right, W'.A. Wulf, M.H. Salinas, J.H. Aylor, and

AP. Batson. Smarter memory: Improving bandwidth for streamed references. IEEE

Computer, July 1998.

[52] SA. McKee, W.A. Wulf, J .H. Aylor, R..H. Klenke, S.I. Salinas, M.H. Hong. and Weikle

D.A.B. Dynamic access ordering for streamed computations. IEEE Transactions on

Computers, To appear.

[53] Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loop nest local—

ity. In Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 94—104, Cambridge, Massachusetts, October

1996. ACM Press.

[54] G. D. McNiven and E. S. Davidson. Analysis of memory referencing behavior for

design of local memories. In H. J. Siegel, editor, Proc. of the 15th Int ’1 Symposium

on Computer Architecture, pages 56—63. Honolulu. Hawaii, May 1988. IEEE Computer

Society Press.

[55] CH. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity.

In Proc. 20th ACM Symp. on Theory of Computing, pages 229-234, 1988.

[56] D. A. Patterson, J. L. Hennessy, and D. A. Peterson. Computer Organization and De-

sign : The Hardware/Software Interface. Morgan Kaufmann, San Mateo, CA, second

edition, 1997.

[57] SA. Przybylski. Cache memory hierarchy design: A Performance-Direted Approach.

Morgan Kaufmann, 1990.

[58] R. Rau. Properties and applications of the least-recently-used stack model. Technical

Report 139, Dept. of Electical Engineering, Stanford Univ., May 1977.

[59] UL. Rhodes and W.Wolf. Unbalanced cache systems. In Proc. of the IEEE Int’l

Workshop on Memory Technology, Design and Testing, pages 16—23, 1999.

[60] A. Seznec. A case for two—way skewed-associative caches. In Proc. of the 20th Inter-

national Symposium on Computer Architecture, pages 169—178, 1993.

[61] A. Seznec and F. Bodin. Skewed-associative caches. In Proc. of PARLE .93. 1993.

132

 

 



[ml

[631

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[76]

A. Seznec and F. Bodin. Skewed associativity enhances performance predictablility. In

Proc. of the 22nd International Symposium on Computer Architecture. pages 256—275,

1995.

A Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts. Addison-

Wesley, third edition, 1991.

A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473—530, September

1982.

A.J. Smith. A comparative study of set associative memory mapping algorithms and

their use for cache and main memory. IEEE Transactions on Software Engineering.

4(2):1‘21—130, March 1978.

HS. Stone. High-Performance Computer Architecture. Addison-VVesley Publishing

Company, 1990.

RA. Sugumar. Multi Configuration Simulation Algorithms for the Evaluation of Corn-

puter Architecture Designs. Doctoral dissertation, University of Michigan, 1993.

RA. Sugumar and SC. Abraham. Efficient. simulation of caches under optimal re-

placement with appliations to miss characterization. In Proc. of ACM SIGMETRICS,

May 1993.

ES. Tam, J.A. Rivers, V. Srinivasan, G.S. Tyson, and ES. Davidson. Evaluating

the performance of active cache management. schemes. In Proc. of the 1998 IEEE

International Conference on Computer Design, pages 368—375, October 1998.

ES. Tam, J.A. Rivers. V. Srinivasan, G.S. Tyson, and ES. Davidson. Active man-

agement of data caches by exploiting reuse information. IEEE Trans. on Computers,

48(11), November 1999.

D. Thiebaut. On the fractal dimension of computer programs and its application to

the prediction of the cache miss ratio. IEEE Transactions on Computers, 38(7), July

1989.

E. Torng. A unified analysis of paging and caching. Algorithmica, 20:175—200, 1998.

D. Truong, F. Bodin. and A. Seznec. Accurate data layout into blocks may boost cache

performance. In Interact-2, February 1997.

G. Tyson, M. Farrens, J. Matthews, and AR. Pleszkun. A modified approach to data

cache management. In Proceedings of the 28th Annual International Symposium on

Microarchitecture, pages 93—103, Ann Arbor, Michigan, 1995. IEEE Computer Society

TC-MICRO and ACM SIGMICRO.

R.A. Uhlig and TN. Mudge. Trace-driving memory simulation: a survey. ACM Com-

puting Surveys, 29(2):128—170, June 1997.

D.A.B Weikle, S.A. McKee, and W.A. W.A. Wulf. Caches as filters: A new approach to

cache analysis. In Proc. of the Sixth International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems, July 1998.

133

 

.
1
.
5
.
)
?
m

 

  



[77] Dee A. B. Weikle, Kevin Skadron, Sally A. McKee, and W. A Wulf. Caches as filters:

[78]

[79]

[80]

[81]

[82]

A unifying model for memory hierarchy analysis. Technical Report CS-2000-16, Dept.

of Computer Science, University of Virginia, June 2000.

W.A. Wong and J-L. Baer. Modified lru policies for improving second-level cache be-

havoir. In 6th Int’l Symposium on High-Performance Computer Architecture, January

2000.

CE. Wu, Y. Hsu, and Y—H Liu. A quantitative evaluation of cache types for high-

performace computer systems. IEEE Trans. on Computers, 42(10), October 1993.

W.A. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.

Computer Architecture News, 23:20—24, 1995.

Q. Yang and S. Adina. A one’s complement cache memory. In Proceedings of the

23rd International Conference on Parallel Processing. Volume 1: Architecture, pages

250—257, Boca Raton, FL, USA, August 1994. CRC Press.

C. Zhang, X. Zhang, and Y. Yan. Two fast and high-associativity cache schemes. IEEE

Micro, 17(5):40—49, September 1997.

134

 

 

 



  II[Willi]lit][l]i]lu]][l]m


