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ABSTRACT

COEXISTENCE IN TEMPORALLY VARIABLE ENVIRONMENTS: ECO-EVOLUTIONARY
PERSPECTIVES

By
Colin T. Kremer

Ecological systems are rarely constant through time. The abundances of predators &
prey and competitors & mutualists fluctuate, driven by biotic interactions and underlying
variation in precipitation, nutrients, and temperature. This reality challenges our ability to
study ecology and disentangle its underlying mechanisms, both empirically and
theoretically. Temporal variation is more than just a nuisance: it contributes to creating
and maintaining the diversity of ecological communities, as changing environmental
conditions favor different species at different times. Tradeoffs limit the ability of individual
species to perform optimally in every situation; as a consequence, times that are the best
for some species are likely to be the worst for others. Temporal variation can also drive
evolution by imposing selective pressures on the traits that allow species to succeed under
particular conditions. Together, the interaction of ecological and evolutionary processes
influences how many species can coexist and their identity and traits. To better understand
the diversity, composition, and function of communities, [ adopt a synthetic, eco-
evolutionary approach to studying coexistence in temporally variable environments. [ seek
to understand how evolution modifies the functioning of ecological communities and under
what conditions this is possible. My work includes both theoretical investigations, applying
mathematical tools and approximations to the dissection, analysis, and interpretation of

models, and efforts to create models that generate testable predictions.



For my parents.

iii



ACKNOWLEDGEMENTS

This dissertation was many years in the making, growing from roots that were set and
nurtured long before I began graduate school. One of the best parts of completing this work
is the chance to recognize the people who have been important along the way.

First of all, to my family: my sister, my father, and perhaps most of all, my mother.
You taught me by example that I can learn anything I want to know, with persistence,
courage, and enough trips to the library. These powerful tools proved especially potent
when combined with your love and support.

[ could not have made it this far without many teachers and guides. Thanks go to
Dale Yerpe for challenging me to be a better writer, Deb Simpson for taking chances on a
naive and energetic youngster and teaching me how to teach, Amber Kautzman for opening
the doors to calculus and allowing me to wander through, and Bob Ratterman and Becky
Nystrom for showing me the tropics.

The biomathematics research group at SUNY Geneseo was hugely influential,
including Chris Leary, Gary Towsley, and especially my advisor Greg Hartvigsen. Looking
back, you prepared me for graduate school in so many ways, more than I can list. Most
importantly, you inspired and refined my aspirations, first hooking me on theoretical
ecology and then launching me on my way. [ hope to follow the example you have set.

At MSU, thanks to my advisors Chris Klausmeier and Elena Litchman for their
support, advice, and conversation. You provided me with a remarkable amount of freedom
to pursue my interests (for better or worse) and yet were unfailingly generous with your

time and knowledge. Together, you were an unshakeable source of excitement, confidence,

iv



and the firm belief that the work we do matters, something that is easy to lose sight of.
Thanks also to the rest of my committee, Jen Lau and [an Dworkin, for letting me find my
own path, and offering encouragement and instruction along the way.

Farther afield, I want to thank Lauren Sullivan for years of inter-institutional lab
meetings, for pushing me to take chances, and for your encouragement and camaraderie in
writing proposals. [ have also greatly enjoyed working with Carrie Seltzer: beyond studying
‘rodents of unusual size’, you have heart and courage of unusual size.

[ feel fortunate to have spent these years at the Kellogg Biological Station; [ can’t
imagine a better place, or a better group of people, to surround myself with through all the
challenges of graduate school. There are more of you than I can name: faculty, post-docs,
students and beyond. KBS also introduced me to my partner, Rachel Prunier, who has been
a constant source of balance and perspective through times both difficult and fun. My
fellow students, in addition to providing companionship and support, were a bottomless
source of interesting problems - the raw materials of a theoretician - for which [ am
grateful. [ particularly want to recognize Beth Miller, my lab-mate and friend from the
beginning: you are a brilliant person (in every sense) who tolerated my crazy ideas and
questionable puns with equal grace. Anne Royer was my dissertation buddy, always ready
to lend an ear or a hug when needed. Finally, thanks also to my co-conspirator Mridul
Thomas: in matters of science and soccer both, you have been an excellent collaborator,

equally enthusiastic, challenging, inspiring and tough.



TABLE OF CONTENTS

LIST OF TABLES ...t reetseetssesssessssessssssssessssessssessssssss s ssssess s bbb s sssses s viii
LIST OF FIGURES ...t reeteeteetsseessseesssesssessssesssssesssse s ssssessssessssssssse s s s ssss s ss s sssssssssssssssssasessanenes ix
CHAPTER T ettt seessessssessssessssessssesss s ss e s s s bbb R RS 1
INTRODUCTION .eetuieeueeesseessseessseesssessssessssessssessssesssssssssssssssessssessssessssessssessssessssessssesssssssssessssssssssesssssssssessssessasessas 1
REFERENCES ...ttt ssssessssessssessssee s sssse s sss s bbb s8R 6
CHAPTER 2 .eeteetseeeseesseesseessseessessss s s s s s bR R R 8
COEXISTENCE IN A VARIABLE ENVIRONMENT: ECO-EVOLUTIONARY PERSPECTIVES ......8
ABSTRACT coeteeeemeeeseessessssesssseessssessssessssassssessssessssess s sss s b es s RS R AR R e 8
R L L 0 e o n 10 1 PPN 8
2. Competition, fitness, and evolution in a variable resource environment ................. 12
2.1 EcOlOgICal MOAEL .....eeeeeereeseeseeseseeserseesessesssessssssssssssssssssss s s sassssssans 12
2.2 Growth rate-competitive ability tradeoff ... ieenseiseessesseessesssesseens 15
2.3 Fitness in a periodic environment and invasion analysSes ... 15
2.4 Modeling evolution with adaptive dyNamMICS ........onevseenseiseessesseesseesseaseen 18
3. Slow evolution and coexistence using T — 00 APPrOXIMALION ......cereeereereerrerreerrerssesseenns 21
3.1 Successional State Dynamics (SSD) approximation and motivation ........... 21
3.2 Resource availability ¢ and trait bifurcation diagram ... 21
3.3 Influence of tradeoff ASSUMPLIONS .......ceveeereeneereenresreesesseesseessssssesssssssssssssssssssssens 23
4. Slow evolution and coexistence under finite period flUCtUQtiONS ..........covereereenreereenn. 24
4.1 Evolutionary coexistence, length of the good season (@), and period
LENGER [T) oottt esss s b s s nsnpaes 24
5. Evolution on ecologiCal tIMESCAIES ........coeemeenreeneerernsenseessesssesssssesssssesssssssssssssssssssssssessssans 26
5.1 Fast evolution, SIOW €COLOGY .....ueumeeneeseenserssesesssessesssessssssssssssssssssssssssssssssseses 26
5.2 Quantitative genetics (QG) APPrOACH ... eeeeereeneeresreseeseeseeseeseessessessesssssseens 28
5.3 Intermediate evolutionary rates (QG approach) .......eesenseseesseeneens 29
5.4 Limitations Of QG APPIOACH ... eeeeereeeeeereeereseeseeseessesssesssssssssssssssssssssssssssssssees 34
6. DiISCUSSION & CONCIUSIONS ..corvvuirerierrsersirsissssssssssssssssssssssssssssss s sssssss s sssssssessssssssssssssssens 35
7. Supplement A: Modeling rapid @VOIULION .......eeeoreeneeneeseeseesesseesesssesssesesssessssssessssnes 40
7.1 Derivation and application of QG MOAEl ........eoreneeereeneereeereseereseeseeeseassens 40
7.2 Alternative t0 QG MOAEL ...t sss s ssessssssesassssesssssssans 42
REFERENCES ... eetseeteesseessessssessssesssses s s ss s sss s s s s sssssssessssessanes 47
CHAPTER 3ooeeeeteetseessseesseessessssessssessssssss s ess s s8R 54
A GLOBAL PATTERN OF THERMAL ADAPTATION IN MARINE PHYTOPLANKTON............... 54
ABSTRACT ooeteeeueeesseesseesssesssssessssessssessssesssse s sssssss s s bR 54
R L1 0 e o n 10 1 TN 54
2. BI0geograpRiCAl PALLETIS .....eveeeeereeeerseesesseessssesssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssanes 56
3. ECO-EVOIULIONATY MOTEL ...t s s ssss s ssssans 58

vi



4. Species diSErIDULION MOUEIS ..o s s ssssssassssssans 60

5. DIVEISIEY PALLETTIS .eeeereeereeeerreeeesseesesseesssssesssssssssssssesssssssssses s ssssans 61
6. CONCIUSIONS ourvereereersersessessssssssss s bbb bbb 64
REFERENCES ...t ssssssses 65
00 3 N ol S 2PN 69
ECO-EVOLUTIONARY DYNAMICS OF DIVERSE COMMUNITIES IN PERIODIC
ENVIRONMENTS oottt sess s ss bbb sssssssens 69
R L1 0 e o n 10 1 TP 69
1.1 Temporal variation & COBXISEENCE. ........wuuerrenreereeseensesssesessesssesssessssssssssssessssssssanes 69
1.2 Consequences of evolution for ecological coexistence mechanisms in
023 =) 7 OSSP 70
1.3 And fluctuation-dependent mechanisms in particul@r ..........oeeseennes 71
1.4 Evolutionarily stable coexistence: more restrictive than ecologically stable
(60120 (1Y 211 T 72
1.5 SUMMATY couereeeereeeeereeseeseessessessssss s ssssa s ss s s s s s ssssanes 73
B L (=2 oo KN 74
A 0 > o R ol 1 To o =) PP 74
2.2 Successional State Dynamics (SSD) approXimation .........eoeenseeseens 78
2.3 Finding ecologiCal AEETACEOLS ....ereenrereesreeseesesssesssesssssessssssessssssssssssssssssssssssssssans 80
2.4 Identifying singular strategies and evolutionarily stable states ................. 80
2.5 Bifurcation analysis 0f ESS COMMUNITIES .....ccveurereeereeneeseensesseesesseessesssessessesseeans 82
2.6 Comments on the advantages Of SYMMELTY ......oooeemeneeseessesseessessesssesssessesnns 85
TR0 2 =17 PP 85
3.1 lllustrative population AYNAMICS ......oeeoneeeseensesseessesssessssssssssesssssssssssssssssseseees 86
3.2 ESS bifurcation diagrams for sinusoidal & triangle waves ...........oen. 88
3.2.1 High tmax /TN ceeeceeereeseeseeecssesses e sesssesssssssssssssssssss s sssssss s sssssssssssssssans 88
3.2.2 LOW Hmax/TI oceeeeecereereeseesseeeessssssessssssesesssesssssssssssssssssssssssssssssssssssesssssssssssssssans 90
3.3 Accumulation of diversity and limiting SIMIlATItY ......eoeeerenseseesseeseens 92
3.4 General PAtterNS & tNEOIY ... ssss s sssssssssssseeas 94
4. DiSCUSSION & CONCIUSIONS couvvurieereersersirssssssssssesssssssssssssssss s sssssssssssssssssses s ssssssssssssssssans 97
4.1 General patterns of diVersity/COEXISEENCE ......uwrenreneerreeseesseessesseessesssessessesseens 97
4.2 Prevalence of alternative ESS COMMUNILIES ......oveureeereereerreenseereeseensessesssessesssesseens 98
4.3 Choice of forcing function drives divVersSity PALLEINS .......ooeoeoneerseensesseesesseens 99
4.4 Limitations of current results — theoretically ... oenreoneerserseereenn. 100
4.5 Limitations of current results — empirically .......onsevncesseseeseenn. 101
4.6 MUILIPIE EVOIVING ETAILS ..oreueeeeereeeerrreeerseeserseessessessessessssssessssssssssssssssesssssssssssssans 102
4.7 CONCIUAING FEOMATKS ..ereeeereereereeeereeeesssesssseessessesssssessesssessssssssssssssssssssssssssssesans 103
5. Supplement A: Successional State Dynamics for continuously forced systems ...... 104
6. Supplement B: Environmental timings for sinusoidal and triangle waves .............. 107
6.1 SINUSOIAAL WAVE ..o s ssssssssssnss 107
6.2 TTIANGLIE WAVE .. ssssss s s s s ss s sssssssanes 108
REFERENCES ... ssss s s s ssssssssssans 109

vii



LIST OF TABLES

Table 2.1 Model parameters, definitions, and default values ........oonncenneneccneennens

Table 4.1 Showing the variables and corresponding definitions used in this chapter

viii



LIST OF FIGURES

Figure 2.1 Growth curves & population dyNamiCs ......erneeneeeeessessessesssessesssssssenes 14

Figure 2.2 Tradeoff curve between maximum growth rate and half-saturation
(670) 0 ] 720 1 16

Figure 2.3 Pair-wise invasibility plots (PIPs) across a range of values of ¢, obtained from

NIRYDIF: 16 02 40D 0 40 F= U (0] ¢ SR T 19
Figure 2.4 Evolutionary equilibria and their stability as a function of @ ... 22
Figure 2.5 As the strength of the tradeoff ... 24

Figure 2.6 The relationship between evolutionary outcome and fluctuation regime
PATAINIEEET'S .euveeueueeseesseesreseessesseessesseessesssessesssessee s s s s e s bR R s E s R AR R E s 25

Figure 2.7 Instantaneous fitness of a single species, g(w; R) from (2.1), as a function of

available resource R and SPECIES traIt L ..cooeoeereereeeerrereesseesesseesseeseesssseessesssesssssessessesssessssans 27
Figure 2.8 Examples of trait and population dynamics from the QG model ..........cconueeenece 30
Figure 2.9 Assessing evolutionary stability of singular cycles in the QG model ........ccccc....... 31

Figure 2.10 As the rate of adaptation (o) increases the potential for coexistence

COLLAPSES oneeeeereeeesreeeeure st seesse e es e s s s s R AR R R 33
Figure 2.A.1 A) PIP array and corresponding B) bifurcation plot.......cnensenneeneeineennes 44
Figure 2.A.2 Comparison of evolutionary outcomes as a function of oand ¢ .......ccccenrvunenn. 45

Figure 2.A.3 Demonstrating the difference between trait distributions of two guilds with
OpPOSING INitial trait VAIUES ...ttt esse s ssss s ssnees 45

Figure 2.A.4 Close up version 0Of Fig. 2. 10 .. ereereeseeseeeessessessessssssessssssssssssssesssssssssssssssanes 46

Figure 3.1 Latitudinal gradient in the optimum temperature for growth of marine and
estuarine phytoplankton STrains ... sessssssessssssesssees 56

Figure 3.2 Optimum temperatures for growth across a gradient of ocean temperature ...57

Figure 3.3 Estimated mean daily growth rates of all strains at their isolation locations,
between 1980 and 2010 ... s 60

ix



Figure 3.4 Changes in temperature drive changes in the potential diversity of
phytoplankton, as predicted by mechanistic species distribution models ................. 62

Figure 4.1. Sinusoidal versus triangle wave fluctuations (A and C), and associated of
density environmental states (B and D) ... sesseeseesssssesessseseens 75

Figure 4.2. Species exhibit environment-dependent growth rates that follow a Gaussian
function whose width is controlled DY 02 ... ssesseeans 75

Figure 4.3 ESS communities can undergo at least two kinds of bifurcations as described in
18 3 LR 1 PP 84

Figure 4.4. Diverse ecological attractors are possible, depending on species traits,
environmental fluctuations, and competition between species ........ccneereenrerreerreeneens 86

Figure 4.5 With increasing diversity, population dynamics become more complex ........... 87

Figure 4.6 A) The diversity of ESS states increases with the amplitude of fluctuations
(Tamp) given a sinusoidal forcing funCtion ... seeseeseesseenes 89

Figure 4.7 ESS bifurcation diagrams for A) sinusoidal and B) triangle wave forcing
100 011 0 ) o P 90

Figure 4.8. At low p = 0.02, ESS community diversity first increases, then decreases with

Tamp .............................................................................................................................................................. 92
Figure 4.9 Detailed views of the ESS bifurcation diagram for the sinusoidal forcing function

Wlth ‘Umax = 0.02 .................................................................................................................................... 92
Figure 4.10 Derived patterns from ESS bifurcation diagrams given sinusoidal

L0 (o D= ) o PP 94
Figure 4.11 Same as Fig. 4.10 but for triangle wave fluctuations ........omeomesreneesseeseesseennes 95

Figure 4.12. This figure provides a conceptual overview of the most important axes of
parameter variation fOr QUL SYSTEIM ... sessesssssssssessssssssssssssssssssssssssesasessssans 96

Figure 4.13. The size of the viability region (a proxy for ESS community diversity)
INCTEASES WILN Tamp wereereereeureeseesseseessessesseessessesssssssessssssesssssssssessesssss s st s s snsans 96

Figure 4.A.1. As period length 7 increases, the time series of population density.............. 106

Figure 4.A.2. A) The transformed dynamics of the continuous periodic model for finite
PETIOA IENGLN oottt s s 106



CHAPTER 1
INTRODUCTION
INTRODUCTION
“It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, [...] it was the season of Light, it was the season of Darkness, it was

the spring of hope, it was the winter of despair [...]”
Charles Dickens, A Tale of Two Cities

Ecological systems are rarely constant through time. The abundances of predators & prey
and competitors & mutualists fluctuate, driven by biotic interactions and underlying
variation in precipitation, nutrients, and temperature. This reality challenges our ability to
study ecology and disentangle its underlying mechanisms, both empirically and
theoretically. Temporal variation is more than just a nuisance: it contributes to creating
and maintaining the diversity of ecological communities, as changing environmental
conditions favor different species at different times. Tradeoffs limit the ability of individual
species to perform optimally in every situation; as a consequence, times that are the best
for some species are likely to be the worst for others. Temporal variation can also drive
evolution by imposing selective pressures on the traits that allow species to succeed under
particular conditions. Together, the interaction of ecological and evolutionary processes
influences not only how many species can coexist, but also their identity and traits. To
better understand the diversity, composition, and function of communities, we must adopt
a synthetic, eco-evolutionary approach to the study of temporally variable environments.
My dissertation focuses on exploring coexistence mechanisms that depend on
temporal variation from a perspective that integrates ecology and evolution. I seek to

understand how evolution modifies the functioning of ecological communities and under



what conditions this is possible. My work includes both theoretical investigations, applying
mathematical tools and approximations to the dissection, analysis, and interpretation of
models, and efforts to create models that turn theoretical ideas to the task of generating
testable predictions. Biologically, my research is motivated by studying the ecology of
phytoplankton. For the empirically motivated theoretician, they are ideal organisms: their
rapid generation times, predominantly asexual reproduction, quantifiable mechanistic
traits and size make them comparatively simple to model, assay, and manipulate in
laboratory experiments. They are also considerably important within ecosystems,
including both lakes and oceans, where they overwhelmingly comprise the foundation of
food webs and are intimately involved in nutrient cycling. However, many of the theoretical

results that | present can readily be applied or generalized to other organisms and systems.

In Chapter 2, [ investigate a coexistence mechanism that depends on fluctuating
resource availability (Kremer & Klausmeier 2013). Fluctuating resources can support
coexistence when there is a trade-off between how quickly a species can grow (when
nutrients are plentiful) and how good of a nutrient competitor it is (when nutrients are
scarce). This mechanism is well studied from an ecological perspective but virtually
unexplored in an evolutionary context, prompting my research. In particular, I ask whether
evolution permits species with distinct competitive strategies to arise and persist. I show
that the properties of resource fluctuations (duration and period) play an essential role in
determining when and how coexisting pairs of species occur. Increasingly extreme
tradeoffs between growth rate and competitive ability widen the range of fluctuations

permitting coexistence. Finally, I show that the time scale of evolution (trait change)



governs whether coexistence is possible: rapid evolution allows species to respond quickly
to changing resource conditions, preventing coexistence.

Temperature is an important regulating factor in many ecosystems. Chapter 3,
explores how marine phytoplankton adapt to ocean temperature variation over space and
time. This work represents the combined efforts of myself and Mridul K. Thomas, resulting
in a jointly first-authored publication (Thomas et al. 2012). This synergistic project
combines data gleaned from the literature (by MKT) and theoretical models (developed by
CTK) to elucidate patterns of adaptation to ocean temperatures across a diverse set of
species. Together, we show that the optimum temperatures of phytoplankton are strongly
related to mean annual temperatures. An eco-evolutionary model that I developed, driven
by realistic temperature fluctuations and physiology, largely recapitulates this relationship.
This represents one of the first applications of eco-evolutionary models to the task of
predicting trait distributions across environmental gradients; connecting these predictions
to empirical data is even less common. Finally, looking into the future, we explored how
phytoplankton communities adapted to contemporary ocean environments may be
affected by continued global warming. The fundamental range of most species will shift
towards the poles, prompting declines in diversity in the tropics. Addressing these and
related questions is central to understanding the future of global biogeochemical cycles and
marine food webs reliant on phytoplankton producers.

In my last Chapter (4), [ explore how complex patterns of coexistence and
community structure emerge from simple models of species competition in periodically
varying environments. This represents a generalization of the more targeted eco-

evolutionary model employed in Chapter 3. In this model periodic variation in an



environmental factor, such as temperature, determines the growth rates of species, each of
which specializes on a particular temperature but is identical in all other respects. Given
competition between species with different temperature preferences and various kinds of
temperature fluctuations, [ seek to determine the diversity and composition of
communities of coexisting species that are evolutionarily stable (ESS). Unsurprisingly, |
find that weak fluctuations support little or no diversity. As the amplitude of fluctuations
increases, however, the diversity of evolutionarily stable communities rises. Unexpectedly,
[ discovered that alternate, stable ESS communities are both possible and common across
many fluctuations. This challenges our ability to predict unique trait distributions across
habitats. I also show that temporal variation cannot support unlimited levels of diversity
under most situations; extreme fluctuations present too harsh of an environment for
diverse sets of species to persist. Finally, | demonstrate that the choice of a particular
periodic function describing environmental variation has underappreciated effects on

patterns of diversity across a range of fluctuation amplitudes.

Overall, the work [ present in this dissertation is significant because: 1) it improves
our knowledge of several basic theoretical models, showing how trait evolution can have
dramatic effects on temporally varying ecological systems, 2) it illustrates the use of
techniques that can employed in studying other models containing both temporal variation
and evolution, adding to a still limited field, and 3) it applies eco-evolutionary theory to
explaining and predicting empirical patterns. Collectively, these contributions advance our

understanding of fundamental, general ecological mechanisms and shed light on the role of



these mechanisms play in a specific system (marine phytoplankton) of considerable

environmental and social importance.
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CHAPTER 2

COEXISTENCE IN A VARIABLE ENVIRONMENT: ECO-EVOLUTIONARY PERSPECTIVES

ABSTRACT
A central question in community ecology is the means by which species coexist.
Models of coexistence often assume that species have fixed trait values and consider
questions such as how tradeoffs and environmental variation influence coexistence and
diversity. However, species traits can be dynamic, varying between populations and
individuals and changing over time as species adapt and evolve, at rates that are relevant to
ecological processes. Consequently, adding evolution to ecological coexistence models may
modify their predictions and stability in complex or unexpected ways. We extend a well-
studied coexistence mechanism depending on resource fluctuations by allowing evolution
along a tradeoff between maximum growth rate and competitive ability. Interactions
between favorable season length and the period of fluctuations constrain coexistence, with
two species coexistence favored by intermediate season length and arising through
evolutionary branching or non-local invasion. However, these results depend on the
relative rates of ecological and evolutionary processes: rapid evolution leads to a complete
breakdown of otherwise stable coexistence. Other coexistence mechanisms should be
evaluated from an evolutionary perspective to examine how evolutionary forces may alter
predicted ecological dynamics.
1. Introduction
Communities typically support many more species than classic theoretical models of

competition that predict to stably coexist. Hutchinson (1961) highlighted this apparent

violation of the competitive exclusion principle (Hardin 1960) as the “paradox of the



plankton”: the persistence of diverse plankton communities in seemingly homogeneous
environments with few limiting resources. The resolution of this paradox has inspired
much theoretical work identifying a variety of mechanisms promoting coexistence. Broadly
speaking, these mechanisms require factors such as predators or other natural enemies
(Holt 1977, Holt & Lawton 1994); mutualists (Gross 2008, Lee & Inouye 2010); spatial
heterogeneity (Tilman 1994, Amarasekare 2003, Edwards & Stachowicz 2010, Berkley et
al. 2010); or temporal variability (Levins 1968, 1979, Armstrong & McGehee 1980, Chesson
& Warner 1981, Abrams 1984, Grover 1990, Chesson 1994, Huisman & Weissing 1999,
Litchman & Klausmeier 2001, Abrams 2004, 2006). The coexistence mechanism we
investigate in this chapter is a member of this last category.

Temporal variability is ubiquitous in ecological systems. It occurs at a range of scales
and arises from multiple, often interacting, sources including exogenous and endogenous
cycles and stochasticity. Because the competitive exclusion principle is equilibrium-based,
non-equilibrium conditions have been suggested as a potential solution to the paradox of
the plankton, beginning with Hutchinson (1961). Since then, mathematical models have
shown that two or more species can coexist due to temporal variation, such as fluctuations
in a single resource (Armstrong & McGehee 1976, Levins 1979, Hsu 1980, Chesson &
Warner 1981, Tilman 1982, Litchman & Klausmeier 2001, Abrams 2004). At its simplest,
temporal variation can be incorporated into models by imposing switching between two
distinct environmental states (in our model, growing and non-growing seasons).
Coexistence can occur when resource levels fluctuate if there is a tradeoff between the
maximum growth rate and competitive ability of species (Hsu 1980, Smith 1981, Grover

1991, Litchman & Klausmeier 2001, Anderies & Beisner 2000, Tachikawa 2008, Xiao &



Fussmann 2013). This coexistence mechanism is termed relative nonlinearity by Chesson
(1994). Fast growing species (“opportunists”) and strong resource competitors
(“gleaners”) may coexist if the length of the good season where resource is available is
neither too short (opportunists outcompete gleaners) nor too long (gleaners outcompete
opportunists) (Litchman & Klausmeier 2001). Empirically, temporal variation in factors
including light, phosphorus, and temperature, promotes coexistence and enhances
diversity (Sommer 1984, 1985, Gaedeke & Sommer 1986, Floder et al. 2002; Litchman
1998, 2003, Jiang & Morin 2007, Shurin et al. 2010).

There is increasing evidence that rapid evolution occurs widely and alters ecological
dynamics (Yoshida et al. 2003, Hairston et al. 2005, Carroll et al. 2007, Fussmann et al.
2007, Pelletier et al. 2009, Post & Palkovacs 2009, Ellner et al. 2011). Where this modifies
interspecific interactions essential for coexistence, we must revisit our understanding of
coexistence mechanisms from a new perspective (Egas et al. 2004, Shoresh et al. 2008,
Lankau 2010, Bolnick et al. 2011, Snyder & Adler 2011, Abrams et al. 2012). Typically,
coexistence models focus on a few (often two) species with static traits (or phenotypes). In
reality, however, a continuous range of species trait values may be accessible through both
evolutionary (standing genetic variation and novel mutation) and ecological (dispersal
from the regional species pool) processes.

While immigration can increase local diversity and mutation is the ultimate source
of diversity, these processes can also result in the exclusion of species otherwise capable of
coexisting ecologically. First, a pair of distinct, stably coexisting species might be invasible
by a species with an intermediate phenotype that displaces them both, while also resisting

all other invaders (an evolutionarily stable strategy, or ESS) (Abrams 1987). Given

10



sufficient heritable genetic variation, such a strategy could result in convergent evolution
and even species extinction (terHorst et al. 2010, Vasseur & Fox 2011). Shoresh et al.
(2008) noted this convergent evolution exacerbates the paradox of the plankton. Second,
mechanisms based on temporal niche partitioning between species with distinct trait
values may be particularly sensitive to rapid evolution. If individual species are capable of
shifting their trait values in response to changing environments they may closely track the
temporally varying optimum, preempting any newly opened niches. For example, Abrams
(2006) showed that rapid evolution destroyed the coexistence of ecologically distinct
specialist and generalist species in a variable environment. We explore both of these
phenomena in this chapter, focusing on the resource competition in a variable
environment.

The remainder of the chapter adheres to the following structure: Section 2 details
our ecological model of competition for fluctuating resources, describes how fitness is
calculated, and summarizes the basic evolutionary modeling approach we employ
(“adaptive dynamics” sensu Abrams 2005). In Section 3 we determine the outcome of slow
evolution (or community assembly) as a function of environmental and tradeoff
parameters. This analysis is aided by analytical approximations from the limiting case
where the period of fluctuations is infinite (successional state dynamics). In Section 4, we
relax this infinite period approximation, exploring the outcome of slow evolution or
community assembly under finite period lengths. In Section 5 we investigate the effect of
more rapid evolution on species coexistence, relaxing the traditional separation of

ecological and evolutionary timescales. Finally, in Section 6 we discuss our results and
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subsequent conclusions. For convenience, all parameter definitions and values are

summarized (Table 2.1).

2. Competition, fitness, and evolution in a variable resource environment
2.1. Ecological model

In this chapter, we extend an ecological model describing competition for a single,
externally forced, fluctuating resource similar to one previously studied by Litchman &

Klausmeier (2001) to include continuous trait variation. They parameterized the basic

Parameter Definition Values
State variables
N Population density -
R Available resource -
Environmental parameters
Rin Total resource during good season 1000
T Period of the resource fluctuation -
¢ Proportion of period T over which growth 0 <
. : <¢<1
is possible (length of good season)
Physiological parameters
u Maximum growth rate Umin < U< Umax
Umin Smallest allowed maximum growth rate Umin=m = 0.1
Umax Largest allowed maximum growth rate 5
K Half-saturation constant, depends on u Kmin < K(u) < Kinax
Kmin Smallest allowed half-saturation constant 0.1
Kmax Largest allowed half-saturation constant 6
Exponent governing tradeoff between u
c 2.5
and K
m Per capita death rate 0.1
Evolutionary variables
g Instantaneous fitness / growth rate -
g Average fitness over one period -
o Phenotypic variance (rate of evolution) 0to 0.7

Table 2.1. Model parameters, definitions, and default values used in the text and
figures, unless otherwise specified (refer also to values in Reynolds 2006).
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model for two particular phytoplankton species, a fast growing, poor competitor (Nitzschia
sp.) and a slow growing, good competitor (Sphaerocystis sp.). Their results demonstrated
that when the resource is available either very briefly, or almost constantly, only a single
species can persist (the fast growing species and the good resource competitor,
respectively). However, with good seasons of intermediate length, both species were able
to coexist, partitioning the resource in time. While this model is relatively simple, it
provides realistic, well-understood ecological dynamics, including both competitive
exclusion and multi-species coexistence, and provides a foundation for subsequently
adding evolution.

To describe the population dynamics of species i we consider how its density N;
changes due to growth and density-independent mortality (rate m). Growth rates depend
on the resource R following Michaelis-Menten-Monod kinetics (Fig. 2.1, A), with maximum

growth rate y; and half-saturation constant K

dg,- = <.Ui1$Ki - m> Ni = g(Mi;R)N; 1)
We define instantaneous fitness g as the per capita growth rate of species i, which depends
on both the species trait y; and the environmental variable R. Resource levels change as a

function of biomass as well as external forcing, which is imposed with a period of length T

and consists of alternating good and bad seasons:

R(1) = {R"" —YiiNi for0<modt,T] < ¢T

0 for T <mod[t,T]| < T (2.2)

In the good season, the level of available resource R is determined by the difference

between total resource level (set to Ri;) and the amount of resource made unavailable by
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the formation of biomass, which changes as growth, competition, and mortality occur. The
good season lasts for a proportion ¢ of the total period T. This parameter ¢ is a key
environmental variable controlling the length of time in each period where resource is
available and growth is possible; it will be the focus of many of our results. At the end of the
good season resource availability ceases, growth is impossible, and all species suffer
mortality alike, declining exponentially in abundance for the duration of the bad season, (1-
¢@)T. At this point, the cycle repeats with the return of the good season. For example, if we
are considering fluctuations occurring on an annual scale (T = 365), and ¢ = 0.45, growth
would be possible for only forty-five percent of each year, governed by resource availability
(Fig. 2.1, B). Biologically, this dynamic might correspond to a resource such as light, an
essential resource for phytoplankton exhibiting strong diurnal and seasonal variation, or
serve as a coarse approximation of the annual forcing temperate lakes experience due to

many factors (temperature, lack of mixing, ice cover).
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Figure 2.1 Growth curves & population dynamics. A) Growth curves for a fast growing
species (gray, u; = 4.99, K; = 5.97) and a slow growing species with low half-saturation
constant (black, uz = 1.5, Kz = 0.36). B) Corresponding population dynamics illustrating the
stable coexistence of species in A. Resource is available (absent) in the intervals shown by
the white (grey) boxes (¢ = 0.45, T = 365). Each period, the fast growing species dominates
initially, then is replaced by the slow growing, better competitor as resources become
limiting, followed by exponential death of both species during the bad season.
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2.2 Growth rate-competitive ability tradeoff

It is well-known that when competing for a single, constantly supplied resource the
species with the lowest break-even resource level R*, defined as R* = mK/ (it — m) in this
model, will outcompete all other species, rendering coexistence impossible (Tilman 1982).
Low values of K yield lower values of R*, making species good competitors, favored to win
when competing for a constant resource. However, minimizing K is often thought to come
at the cost of lowering species’ maximum growth rate u. This tradeoff sets up the potential
for coexistence in environments where resource levels are not constant, as species with
high maximum growth rates are able to quickly take advantage of a newly abundant
resource (see Fig. 1 and Grover 1990, Litchman & Klausmeier 2001). We impose this

tradeoff in our model by making K an increasing power function of u:

KU — Hmin )C

K(U) :Kmin+<Kmax_Kmin> (H ~ L
max min

(2.3)
To restrict analysis to biologically relevant values, we also introduce bounds on p and K
such that pmin < p < pimax and Kmin < K() < Kmax (Table 2.1). The strength of this tradeoff is
controlled by parameter ¢, with ¢ = 1 corresponding to a linear relationship between p and
K, while ¢ >1 results in an increasingly convex relationship (Fig. 2.2). Collectively, equations
(2.1)-(2.3) completely describe the ecological dynamics of species competing for a
fluctuating resource and constrained by a tradeoff between maximum growth rate and

half-saturation constant.

2.3 Fitness in a periodic environment and invasion analyses
Prior to conducting evolutionary analyses, it is necessary to appropriately define the

fitness of a species as a function of its traits and environment. We have previously defined a
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Kmax T

Half saturation constant

Mmin 1 2 3 4 Mmax
Maximum growth rate
Figure 2.2 Tradeoff curve between maximum growth rate and half-saturation
constant, bounded between biologically realistic values, for various values of shape
parameter c.

species’ instantaneous fitness g in (2.1). However, in a fluctuating environment, the value of
the instantaneous fitness g will vary over the course of a single period. The measure of
fitness relevant for determining the long-term outcome of evolution and community

assembly is g, the time-average of instantaneous fitness over a period:

T
o) =7 [ e(usR()dr -
(Metz et al. 1992). This accounts for resource levels that vary through time due to external
forcing and internal nutrient dynamics arising from growth and competition.

With this definition of fitness we can conduct invasion analyses, to determine the
invasion rate, of a population with trait un». This invader can either arise through mutation
from an existing species (giving it a similar trait value to its progenitor), or be introduced

to the system through immigration (with no constraint on its trait value, as it comes from

an unknown ecological and evolutionary environment). In either situation we specify that
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its initial abundance is rare (i.e, Ninv= 0), which allows us to assume that resource dynamics
remain unaffected by the invading species and are governed only by external forcing and
the biotic effects of any resident species.

The invasion rate of a species with trait u;» into an empty (or unoccupied)

environment can be determined analytically:

B (Hin) = Ol —m
inv vain ‘f‘K(,Uinv) (25)

as resource dynamics can be simplified such that R(t)=Ri» during the good season and
R(t)=0 otherwise (Litchman and Klausmeier 2001). When g (uinv) > 0, the species has
positive fitness and can increase in abundance, ultimately reaching its population dynamic
attractor. If g (uinv) <0, the species has negative fitness and is unable to persist even in the
absence of competition. We can solve for the value of ¢ where (2.5) changes sign for a

species having the fastest permissible growth rate timax,

m
Minax [Rin/ (Rin + Kmax)] (26)

¢min -

This value demarcates environments too severe for even single species to exist (Litchman
& Klausmeier 2001).

Now consider a novel phenotype invading an environment occupied by one or more
resident species with traits given by the vector [,.;. We assume that invaders arise
infrequently enough that resident communities reach their attractor between invasions
and that multiple invasions do not occur simultaneously (separation of ecological and
evolutionary timescales). Therefore we can consider the invasion rate g (U, ﬁres) tobea
function only of the traits of the resident(s) and the invader. In general, it is impossible to

determine the resident species attractor analytically, which prevents calculating the
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invasion rate explicitly. We can either locate the attractor by numerically solving (2.1) until
| Nres(t) — Nres(t+T)| < € for some small ¢, or by an approximation valid for large period T (see
Section 3). The population attractor then determines the relevant resource dynamics that

an invader experiences, so we can calculate g (i, Hres)-

2.4 Modeling evolution with adaptive dynamics

Having defined the invasion fitness of a rare invader (mutant phenotype or immigrant
species) as a function of its trait and those of the resident species, we can use the
techniques of adaptive dynamics to analyze the outcome of evolution (or community
assembly) for any given environment (Dieckmann & Law 1996, Geritz et al. 1998, Geritz et
al. 2004, McGill & Brown 2007). For a single resident species s = Lyes, the sign of
& (Winy, Ures) for all pairs of resident and invader traits across a range of values determines
pair-wise invasibility plots (or PIPs), which can be used to graphically determine the
outcome of single species (“monomorphic”) evolution (cf. Fig. 2.3 and Geritz et al. 1998).
The fitness gradient 9g(Linvs res)/ O Minv| i —p1es determines the direction of selection:
positive (negative) values indicate that larger (smaller) trait values are favored. Singular
strategies (evolutionary equilibria) can be found by solving for the value(s) of win such that
the fitness gradient is zero, corresponding to situations where there is no directional
selection on the resident. The second derivative of the invasion fitness evaluated at the

resident trait,
azg(‘u“il’l\/? ,ures)/a.ui%w ’.uinv:,urex (27)

indicates whether the singular strategy experiences stabilizing or disruptive selection.

Negative values of (2.7) indicate stabilizing selection where no invader with a nearby trait
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Figure 2.3 Pair-wise invasibility plots (PIPs) across a range of values of ¢, obtained
from SSD approximations. Positive (negative) invasion fitness is shown in black (white).
As ¢ increases across the panels evolutionary cases change: no species persists (¢ = 0.02);
single species global ESS at maximum trait value (¢ = 0.04 to 0.2); local but not global ESS
(¢=0.22 to 0.4); branching point (¢ = 0.42 to 0.82); single species global ESS at low value of
u (¢=0.84 to 0.98).

value will be able to invade the resident, leading to a local evolutionarily stable state (ESS).
If it is also true that invasion fitness is negative for all values of uin (excepting ures of course,
and such that pmin < tinv < max), then we identify this ESS as a global ESS. However, in some
cases values of uinv sufficiently different from wres can have positive invasion fitness. Then,

through immigration or mutations of large effect, the single species ESS is invasible and
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may give way to two species coexistence. We describe this situation as a "local but not
global evolutionarily stable state" (or LESS, see McGill & Brown 2007). In contrast, if (2.7)
is positive, corresponding to disruptive selection, and convergence stability holds, a
branching point is identified. Following the identification of a branching point (or a LESS), a
two species singular strategy can be located by solving for the values of Hyes = (Wrest  Ures2)
such that the fitness gradient, 9g(Uiny, Hres)/d Uiny, simultaneously equals zero when ;,, is
evaluated at each element of [. The stability of the resulting singular strategy is
determined as before (refer to equation 2.7) and the process repeated until a global ESS
state is determined. In this way, for any environment (given ¢, T, or other parameters of
interest), we can solve for both the number of species capable of arising and persisting
stably through evolution and their associated trait values (Geritz et al. 1998, Geritz et al.
2004).

Note that care must be taken in these calculations to maintain u between pmin and
umax- The lower value of u is effectively constrained by mortality rate m. However, in many
cases, evolution would drive the maximum value of u above ymax despite the corresponding
cost of high K. When this happens, we hold the species’ trait at umax as if it had reached a
singular strategy, even if its fitness gradient was positive. In real biological systems,
maximum growth rates may be constrained by additional factors such as metabolic
tradeoffs, competitive abilities, predation, and temperature, preventing runaway selection

for unrealistically high growth rates.
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3. Slow evolution and coexistence using T — o0 approximation
3.1 Successional State Dynamics (SSD) approximation and motivation

Because the numerical evaluation of (2.1) is relatively costly, for our initial results we
use an approximation method termed ‘Successional State Dynamics’ (SSD, see Klausmeier
2010), to arrive at analytically tractable expressions for population attractors (2.1) and
invasion rates (2.4). This approach hinges on the observation that as T — o0 in externally-
forced, piecewise, periodic systems, the dynamics consist entirely of discrete states, in
which individual populations are either rare and exponentially increasing or decreasing in
abundance or common and at constant abundances. The transitions between these discrete
states occur almost instantaneously relative to the length of a period T. We can determine
the identity of these states as well as critical transition times between states. For specifics
refer to the example of competition for a periodically available resource provided in detail
in (Klausmeier 2010). While the assumption of infinitely long periods may be initially
disconcerting, it is often the case that numerical results from finite period environments
converge rapidly on the SSD approximations as T increases (in our case, the results are
indistinguishable from T = 365). We first present results using the SSD approach, and then

investigate dynamics given finite values of T, indicating where these findings converge.

3.2 Resource availability ¢ and trait bifurcation diagram

We now turn to examining how the length of the good season, governed by ¢,
influences species coexistence and ESS trait values. Figure 3 shows a sequence of PIPs
across a range of ¢ values, classified according to their stability (see section 2.4 and Figs.

2.3 and 2.A.1, A). This information can be condensed into a bifurcation diagram covering a
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Figure 2.4 Evolutionary equilibria and their stability as a function of ¢, the proportion
of a period over which growth is possible. The black line follows the location of the one
species singular strategy as ¢ changes. The stability of the singular strategy transitions
between global ESSs (solid line), local but not global ESSs (LESSs, dashed), and branching
points (dotted). Grey lines indicate the traits of the two-species (dimorphic) ESS
populations arising from LESSs or branching points. Whenever the fast growing strategy is
favored it takes on the value of timax = 5.

continuous range of ¢ values, showing simultaneously the trait values of one and two
species singular strategies and categorizing the corresponding evolutionary regimes (Figs.
2.4 and 2.A.1, B). This result shows that at either low or high values of ¢ (near 0 or 1), only
a single species can exist at the ESS (with high or low maximum growth rates, respectively).
For intermediate values of ¢, two species coexistence is possible via evolutionary
branching. Flanking either side of this range of ¢ values are local but not global ESS (LESS)
cases, where two species coexistence is possible, but can be attained only through

immigration or mutations of large effect, rather than by small mutations (Fig. 2.4). These

results are consistent with the findings of the ecological model of (Litchman & Klausmeier
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2001), with fast growing species dominating at low ¢, good competitors dominating at high
¢, and both strategies coexisting under intermediate resource availability. However, the
range of values over which coexistence is possible is significantly larger when species trait
values are optimized by evolution along our tradeoff, rather than given by the specific fixed
parameters of Litchman & Klausmeier (2001). Additionally, we gain insight into the
potential origin of coexisting species, and when the two species community can arise in situ
through gradual evolutionary processes, or depends on a source of variation stemming

from immigration or large mutations.

3.3 Influence of tradeoff assumptions

Coexistence depends heavily on the assumed tradeoff between maximum growth rate
w and half saturation constant K, the strength of which is governed by parameter c (Fig.
2.2). We examine the sensitivity of the preceding results to variation in this parameter (Fig.
2.5). When ¢ = 1, the relationship between y and K is linear, and the lowest value of R
occurs at Umax (Fig. 2.2). As such, there is no competitive advantage to having a lower
maximum growth rate and coexistence does not occur for any value of ¢. However, as ¢
increases, coexistence becomes possible and the width of the coexistence region increases
rapidly. As c increases further, the region of coexistence shifts gradually from higher to
lower values of ¢, where the resource is available more briefly. Collectively these results
illustrate another potential role for evolution in moderating coexistence, to the extent that

tradeoffs may arise through evolutionary as well as physiological constraints.
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Figure 2.5 As the strength of the tradeoff between maximum growth rate and half-

saturation constant (c) increases, the range of ¢ value across which two species coexistence
occurs increases (shaded grey region). The black rectangle indicates the region where ¢ is
so small that no allowable species persists. These results were obtained using the SSD
approach. For comparison, the dashed line corresponds to c = 2.5, the parameter value
used in all other results.

4. Slow evolution and coexistence under finite period fluctuations

4.1 Evolutionary coexistence, length of the good season (@), and period length (T)

Within aquatic environments, and across habitats, resources can be more or less
ephemeral and fluctuate on different time scales (in other words, with periods of different
lengths). Given the diversity of possible environments, it is important to understand in
which environments (with what kind of fluctuations) the coexistence of multiple species is
possible based on the coexistence mechanism we study. In section (3.2) we examined the
effect of the length of the good season where resource is available (regulated by ¢) on

evolution and coexistence, assuming that T — 00. Now we relax this assumption, varying

both ¢ and T, while addressing the same questions (Fig. 2.6). As with the SSD results,
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increasing ¢ produces a transition from a single fast growing species at the ESS to two
species coexistence via a LESS, then branching, returning to LESS, and finally a single highly
competitive species at the ESS. The SSD approximation is very accurate for the annual
period of T = 365 days. However, as period length T becomes shorter, resource fluctuations
become very rapid and coexistence collapses. When resource fluctuations occur rapidly
relative to the rate species respond to their environment, individual species average their

dynamics over the course of fluctuations, removing the potential for temporal niche

partitioning.
365 — 365
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10 Global Branching Global |,
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Figure 2.6 The relationship between evolutionary outcome and fluctuation regime
parameters. The region of two species coexistence is shown in grey. Environments with
brief resource availability (¢ < 0.2) are dominated by fast growing species, while good
resource competitors dominate in environments with consistent resources (¢ > 0.8). For
very short periods, no coexistence is possible, as resource fluctuations for any value of ¢
occur too rapidly to allow temporal niche partitioning. Arrows indicate the predicted
boundaries between evolutionary regimes obtained from the SSD approach; note that the
results for T=365 are practically indistinguishable from T=co. The black region at low ¢
indicates environments too extreme for the survival of even a single species.
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5. Evolution on ecological timescales

We have demonstrated that evolutionarily stable two species coexistence can occur
when ecological dynamics occur much more quickly than mutation and evolution (Fig. 2.4).
However, population and trait dynamics may often occur on the same timescale, given the
increasing recognition that phenotypic changes can occur rapidly through evolution
(Hairston et al. 2005, Carroll et al. 2007, Pelletier et al. 2009, Ellner et al. 2011) or plasticity
(Agrawal 2001, Yoshida et al. 2003, Miner et al. 2005). Microbes, including phytoplankton,
are known to evolve quickly and also exhibit plasticity, commonly in response to
environmental stimuli that vary seasonally, including grazing and light availability (van
Donk 1997, Stomp et al. 2008). Collectively, this suggests that species may often be capable
of changing their phenotypes in response to shifting environmental conditions while
fluctuations occur, potentially altering coexistence via temporal niche partitioning. We
explore this possibility by first examining the extreme case of instantaneous evolution (fast
evolution, slow ecology). Then we investigate the transition between instantaneous
evolution and the usual Adaptive Dynamics limit (slow evolution, fast ecology) using two

different approaches. Along the way, we highlight various obstacles these approaches face.

5.1 Fast evolution, slow ecology

When evolution occurs infinitely rapidly relative to ecological processes, we can
assume that a species will be able to adopt the trait value that maximizes its instantaneous
fitness faster than any changes occur in population density or resource availability. Such
rapid adaptation is perhaps most intuitively interpreted as phenotypic or behavioral
plasticity in response to the environment, rather than evolution in a classic sense. We can

map instantaneous fitness g (Winv; R) as a function of species trait and resource availability
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Figure 2.7 Instantaneous fitness of a single species, g(u; R) from (2.1), as a function of
available resource R and species trait u. Fitness increases with darker shading. The
dashed line traces out the trait value corresponding to the strategy maximizing g at each
given resource level R. A species capable of instantaneous adaptation would track the
dashed line over the course of a period from right to left, jumping abruptly between the
line’s endpoints at the beginning of each period. The thick black line where fitness equals
zero corresponds to the break-even nutrient concentration R* for each distinct trait value.
(Fig. 2.7). At any given resource level, instantaneous fitness is maximized at a single trait
value. This suggests that in the case of extremely rapid evolution it is not possible for
multiple species to coexist. This result holds for all values of ¢, as this parameter influences
only the duration of various nutrient states, rather than the shape of the instantaneous

fitness function g (Uin;R). A single species becomes, in effect, a Darwinian demon, capable

of being either a fast grower or good resource competitor as resource levels dictate, and
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effectively no longer subject to a tradeoff between these abilities. In the next section, we
study the transition between coexistence given slow evolution and competitive exclusion

given rapid evolution.

5.2 Quantitative genetics (QG) approach

Adopting a modeling approach from quantitative genetics allows us to explicitly
specify the rate at which species’ traits respond to the strength of selection they
experience. Variations of this approach have been derived several times (see Lande 1976,
Charlesworth 1990, Iwasa et al. 1991, Taper & Case 1992, Abrams et al. 1993, Abrams
2001), and use a differential equation to track how a population’s mean phenotypic trait
responds to selection given available phenotypic variation. These approaches can be used
to describe trait evolution on ecological time scales in combination with equations
describing population dynamics, such as (2.1); see derivation and comments in Abrams et
al. 1993) and the supplement of this chapter. With respect to our model, this leads to a
differential equation modeling change in species i’s mean trait u; as a function of the
direction and magnitude of its instantaneous fitness gradient, the traits of any other species

present i = (U, U, ..., Uy), and a rate parameter o, describing phenotypic variation or

mutation,
i _ [8g(um,ﬁ)}
dt auinv Hiny=H; (5 . 1)

The sign of the fitness gradient indicates whether selection favors increased (or decreased)
values of ;. Numerically, constraints on the range of y; are achieved using Heaviside step
functions to prevent evolution beyond the trait values pmi» (if the fitness gradient is

negative) or umax (if the fitness gradient is positive). The rate at which trait y; responds to
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selection depends entirely on parameter oand the magnitude of selection. An alternative
interpretation of (5.1) is that it models the dynamics of phenotypic plasticity (Abrams
2005) which places no upper limit on o

As 0 — 0, trait change declines to zero and the trait becomes effectively constant.
However, competitive dynamics still play out between species having different, near-
stationary trait values, potentially leading to invasion, competitive exclusion, and the
replacement of residents. In this way, as 0 — 0 we effectively re-create the Adaptive
Dynamics limit, where ecological and evolutionary timescales are separated (Abrams
2005). In this limit, all of the results obtained previously hold; in particular, for
intermediate values of ¢, two species arranged along the fast grower to good competitor

tradeoff coexist.

5.3 Intermediate evolutionary rates (QG approach)

We can begin to investigate the collapse of two species coexistence with the increase
of evolution rates by combining equations (2.1) and (5.1). Together, these equations can
describe the population and trait dynamics of one or more competing species in our
seasonally forced environment. Evolution enables species to adapt over the course of a
period, rather than maintaining constant trait values. Consequently, trait values typically
increase at the beginning of a period to allow rapid growth when the resource is plentiful,
then decrease again as the resource becomes limiting. Despite this variation in traits on a
short time scale, two species can still exhibit distinct trait attractors, consistent with
multispecies coexistence (Fig. 2.8, A and B). However, this coexistence collapses when ois

high (Fig. 2.8, C and D); despite having dramatically different initial trait values, two species
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rapidly converge on the same trait dynamics. Essentially, cbecomes so large that any
species is able to rapidly approach the trait values optimizing its fitness over the course of
the resource fluctuations and no niche space remains for ecologically distinct species. Once
competitively neutral, the addition of any demographic stochasticity would lead to the
eventual exclusion of one species or the other. The collapse of coexistence agrees with our

previous finding regarding the limit of fast evolution and slow ecology (Section 5.1 and Fig.

2.7).
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Figure 2.8 Examples of trait and population dynamics from the QG model for (A-B)
low (o= 0.1) and (C-D) high (o= 0.65) rates of adaptation. At low adaptation rates, two
species with very similar initial trait values (u; = 4.99 and uz = 4.9) diverge from one
another, undergoing branching and coexisting using divergent strategies, while continuing
to exhibit small-scale trait fluctuations during the period of resource variation (A-B).
Contrastingly, when o'is large, even species with dramatically different initial trait values
(11 =4.99 and uz = 0.15) converge on a single shared trait trajectory, becoming effectively
neutral (C-D). Differences in population abundances after trait convergence are generated
by the species’ distinct transient stages.
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We can map out how coexistence and evolutionary regimes change with increasing o
(and across variation in ¢). For non-zero values of g, species’ trait values vary through
time, rendering typical adaptive dynamics approaches that assume constant trait values
inapplicable. Population and trait attractors (denoted N; (t) and f; (¢), and consisting of
their dynamics over the course of one period, T) must be determined numerically, solving
the system of equations described by (2.1) and (5.1) until both |Ni(t) - Ni(t+T)| < € and |wi(t)
- ui(t+T)| < e for small € and all i species under consideration. We then proceed to identify
singular cycles, branching cycles, and evolutionarily stable cycles (ESCs) in these systems

by performing numerical invasion experiments (see graphical schematic in Fig. 2.9).

O Repeller Invader initial 'T‘ Growth rate Evolutionary
O Attractor trait condition (+or-) outcome
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Figure 2.9 Assessing evolutionary stability of singular cycles in the QG model.
Horizontal arrows indicate the net direction of change of a rare invader's trait dynamics
over one cycle, given a resident singular cycle with initial trait w.s. Grey nodes represent
invader trait attractors, while white nodes correspond to repellers, separating basins of
attraction of invader trait dynamics. Vertical arrows indicate the time-averaged growth
rate of an invader at an invader trait attractor. Finally, diamonds indicate initial invader
trait conditions used to ascertain GESCs, LESCs, and branching cycles.
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First, we locate one-species singular cycles by solving for fi () and N (¢) until a stable
cycle is reached. To determine the uniqueness of this singular cycle, we identify i (¢)
separately given different initial trait conditions (tmin and pmax). If the resulting attractors
are identical, we conclude that the singular strategy fi (¢) is both unique and convergence
stable in the trait range [min, max]- All of the singular cycles identified while examining this
model were unique. Second, we determine the evolutionary stability of singular cycles (Fig.
2.9). We solve for the trait equation of an invading species assumed to be rare (to have no
impact on resource dynamics) and forced by the singular cycle solution, starting from a
variety of initial trait values. Once the invader's trait attractor is reached, we calculate its
time-averaged growth rate. We can identify three different types of singular cycles: global
evolutionarily stable cycles (GESCs), local but not global evolutionarily stable cycles
(LESCs), and branching cycles (Fig. 2.9). GESC’s arise in two ways. 1) The invader trait
dynamics converge on the resident trait attractor whether its initial trait value is gmin or
Umax- 2) The invader trait dynamics converge on the resident attractor for initial conditions
close to the resident attractor, while converging on a distinct, non-local trait attractor when
starting at Umin OT Umax; however, the average growth rate of the invader at this new trait
attractor is negative, so that the invader cannot persist. LESC’s represent a very similar
case to 2) above, with the distinction that the average growth rate of an invader at a non-
local trait attractor is positive instead of negative. Finally, branching cycles occur when
invaders with initial trait values similar to the resident diverge from the resident trait
attractor, settling on two distinct trait attractors with positive average invader growth
rates. These outcomes are analogous to the three different types of singular strategies

from traditional Adaptive Dynamics.
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Figure 2.10 As the rate of adaptation (o) increases, the potential for coexistence
collapses (shaded area corresponds to the region of two species coexistence). At c— 0,
the coexistence and evolutionary boundaries converge on those predicted for the same
period (T = 365) by the Adaptive Dynamics approach, shown by the arrows (Fig. 6). A small
region of the parameter space where coexistence collapses contains a variety of esoteric
dynamics (not shown here).

Using this approach, we outline the environments producing these three distinct
regimes provided in Fig. 2.10 as a function of the length of the good season ¢ and evolution
rate o. Collectively, GESC’s, LESC’s, and branching cycles represent the overwhelming
majority of evolutionary outcomes observed in our model. However, we do note the
presence of a variety of more baroque alternatives arising in a small area of parameter
space where these evolutionary regimes converge at high o (not shown, but see Fig. 2.A.4);

for simplicity we do not discuss these here. For 0 — 0, boundaries between evolutionary

regimes identified with this quantitative genetics model agree closely with those obtained
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from Adaptive Dynamics (see arrows in Fig. 2.10). As expected, however, the region of
coexistence declines with increasing o, deteriorating completely around o = 0.6. At this
value, species are able to respond rapidly enough to variation in resource levels over the
course of a single period to be both fast growing initially and highly competitive as
resources become limiting. The exact evolutionary rate permitting this to occur varies with
the overall length of each fluctuation period, which controls the amount of time a species
has to adapt to resource conditions (see Fig. 2.A.2). Ultimately, these results show that
rapid evolution can sabotage the coexistence of species otherwise able to persist in a purely

ecological model with constant trait values.

5.4 Limitations of QG approach

Equation (5.1), describing trait evolution, is derived from a Taylor series
approximation of the effect of selection on the mean phenotypic trait of a population (see
supplement and Abrams et al. 1993). The population is assumed to exhibit Gaussian
phenotypic variation governed by a constant variance parameter proportional to o, which
governs the rate of trait change in response to selection (Taper & Case 1992, Abrams et al.
1993). The validity of this approximation is limited when the fitness function is highly
nonlinear or the phenotypic variance parameter is sufficiently large (Abrams et al. 1993).
Additional terms from the Taylor series approximation are required to avoid this source of
error as phenotypic variance increases. This observation is significant to our results (and
the results of several recent papers in this field, for example Yamauchi & Yamamura 2005,
Mougi 2012), as we are explicitly interested in how eco-evolutionary regimes are altered

by increasing o. The collapse of two species coexistence occurs for increasingly lower
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evolution rates as higher order terms are included in (5.1), but the qualitative results of Fig.
2.10 remain unchanged (see supplement, Fig. 2.A.2).

When phenotypic axes are constrained or bounded, additional issues arise.
Interactions between the distribution of phenotypic values within a population and trait
constraints can lead to departures from assumptions of normality and constant phenotypic
variance. Equations (5.1), (A.1), and (A.3), all typically assume that phenotypic variation
follows a normal distribution. It is unclear if (5.1) remains valid when modeling the rapid
evolution of a bounded trait regardless of how many higher order terms are included. To
confirm our results while avoiding this assumption, we also model rapid evolution as a
mutation/diffusion process, as described in the supplement. This approach reinforces our
previous finding that two species coexistence at intermediate values of ¢ collapses as
mutation rates, and hence evolution rates, increase (Fig. 2.A.3). While the exact point at
which coexistence collapses is difficult to pinpoint, collectively our results from a variety of
approaches demonstrate that sufficiently rapid evolution precludes coexistence by

temporal niche partitioning.

6. Discussion & Conclusions

This chapter is motivated by our desire to understand how classic coexistence models
at the heart of community ecology behave when species traits can evolve. Other recent
papers have begun to consider this same question (Egas et al. 2004, Lankau 2010, Snyder &
Adler 2011, Abrams et al. 2013). In particular, we have focused here on studying an
existing ecological model of competition and coexistence that relies on temporal variation
in resource levels. Concentrating on discovering when coexistence is evolutionarily stable

and how it might arise, we have explored the significance of various kinds of environmental
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variation as well as the tradeoff essential for coexistence. We have also carefully studied
how our results depend on the way in which evolution is modeled, paying particularly close
attention to the dependence of coexistence on the rate at which evolution occurs relative to
ecological dynamics.

In general, when evolution occurs slowly, our results agree qualitatively with existing
ecological models on this mechanism of coexistence (Litchman & Klausmeier 2001). For
example, two species coexistence was only possible when resource fluctuations were not
too rapid (T sufficiently large) and resource neither too briefly nor too constantly available
(Fig. 2.6). The proportion of each period when resource was available (¢) had a strong
effect on the occurrence of two species coexistence, but a weak effect on the specific traits
comprising two species ESSs (grey lines in Fig. 2.4 are almost constant). Thus in this case
evolution (or community assembly) expanded the region of coexistence relative to
Litchman & Klausmeier (2001) by identifying a more broadly successful pair of gleaner and
opportunist traits, as opposed to driving trait adaptation across a gradient in ¢. Identifying
boundaries separating evolutionary regimes, and more importantly the possibility of
coexistence, as a function of environmental parameters may prove important, as shifts in
the environment could lead to abrupt changes in species diversity (e.g., transitioning
between two and one species ESS’s, see Fig. 2.6).

By analyzing this model from an evolutionary perspective, we also gained insight into
differences in the development of two species coexistence across environments. In some
cases two species coexistence can arise in situ through evolutionary branching or
disruptive selection (branching point region in Fig. 2.6). In others, coexistence cannot arise

from local evolutionary processes reliant on small trait changes (low mutational variance),
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but can develop if large trait changes or immigration are possible (LESS regions in Fig. 2.6).
This sets up the potential for complex, higher-level interactions between ecology and
evolution, with evolution generating trait diversity through adaptive processes occurring
across heterogeneous environments, and dispersal influencing the exchange of diversity
between habitats.

Tradeoffs are an essential part of coexistence mechanisms. Their exact nature and
origin are rarely determined, yet their forms can dramatically influence the number of
species that coexist in given environment. While a tradeoff between maximum growth rate
and half-saturation constant is often assumed, we know little about its actual shape. For
this reason, we explored how variation in its strength influences coexistence in our model
(Fig. 2.5). While the coexistence of at least five species was demonstrated in (Litchman &
Klausmeier 2001), we never observed the coexistence of more than two species in any of
our results. We attribute this to the realistic constraints on trait ranges that we impose, as
the diversity achieved in (Litchman & Klausmeier 2001) required variation in trait values
across orders of magnitude.

In addition to exploring the effects of ecological parameters governing resource
fluctuations and trait tradeoffs, we also explored the rate of evolutionary responses to the
environment, rather than assuming only slow evolution. This was a pressing question, both
because ever more examples of rapid evolution are being documented (Yoshida et al. 2003,
Hairston et al. 2005, Carroll et al. 2007, Fussmann et al. 2007, Pelletier et al. 2009, Ellner et
al. 2011), and because the coexistence mechanism we focused on depends critically on
differences in species’ growth rates leading to temporal niche partitioning. We argue that

the expected consequence of extremely rapid evolution (or high plasticity) is the collapse of
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coexistence, even in environments otherwise capable of supporting multiple species
(Section 5 and Fig. 2.7, 2.8 and 2.10). We also show, using a variety of methods, how
coexistence collapses as rates of evolutionary response increase. This occurs well before
the limit of an instantaneously adapted species is reached, as species need only to become
flexible enough in their trait strategies to prevent niche partitioning in order to preclude
coexistence. The precise value of the evolutionary rate leading to competitive exclusion will
vary depending on the timescale of the fluctuations enabling coexistence, as well as species’
growth rates. In general, empirical rates of adaptation are not well quantified, although for
phytoplankton, as with other microbes, evolution rates are potentially quite high, given
short generation times. Collectively, these results suggest that attention must be paid to the
rates at which species can adapt and evolve before temporal variation is invoked as the
mechanism responsible for coexistence in any particular system. However, it remains an
open question whether or not other coexistence mechanisms are equally sensitive to rapid
evolution.

Several theoretical developments were required in these analyses. First, we applied
the SSD approximation (Klausmeier 2010) to Adaptive Dynamics methods (Geritz et al.
1998), a combination which offers the potential to facilitate numerical and analytical study
of a variety of models and coexistence mechanisms involving environmental fluctuations.
Second, we developed an approach for classifying evolutionary outcomes in systems where
trait dynamics fluctuate according to the QG-type differential equations in forced
environments. These techniques extend the notion of ESS to evolutionary cycles and should
be applicable to other non-equilibrium models with evolution on ecological time scales.

Finally, methods for modeling rapid evolution using QG models with large trait variances
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have important limitations, recognized by Abrams et al. (1993). We have explored these
limitations, and an alternative approach, contributing to a better understanding of how to
appropriately, transparently, and efficiently model rapid evolution (supplement, Fig. 2.A.2
and 2.A.3).

There are a number of potential extensions to this work. While we generally conceive
of our model as describing phytoplankton competing for a variable resource, its basic
structure, including the alternation of discrete environmental states, may be applicable to
other biological systems. For example, Hamelin et al. (2011) used an analogously
structured model to explore the evolutionary divergence of plant parasite traits, leading to
the coexistence of species that differed in their over-winter mortality and infectivity rates.
Other extensions include considering competition between species with different evolution
rates or levels of plasticity (values of ¢), which can arise due to fundamental differences in
biology, genetics, and reproductive system. Different rates of adaptation control the
sensitivity and response of organisms to environmental fluctuations, and may incur
different costs. These factors could generate additional, interesting behaviors in our model
(Sniegowski et al. 1997, de Visser 2002). We primarily considered the mechanism driving
trait change in this work to be evolution (or community assembly). However, physiological
plasticity or behavior are both plausible factors endowing individuals and species with the
ability to change their trait strategies in response to their environment. Indeed either of
these expand the capacity of species to respond to selective pressures more rapidly than
population dynamics might respond. These phenomena, and their interplay, may have the
potential to modify ecological dynamics and coexistence mechanisms (for example, see

Cortez 2010).
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Temporal variation abounds in nature. Using a well-established model of competition
in a variable environment, we have shown that evolution can modify species coexistence,
with important roles for fluctuation regime, tradeoffs between traits, and evolutionary
rates. Other coexistence mechanisms should be similarly evaluated from an evolutionary
perspective. Such investigations can improve our understanding of the role of evolution in

driving diversity patterns in community ecology.

7. Supplement A: Modeling rapid evolution
7.A.1 Derivation and application of QG model
As described by Abrams et al. (1993) and derived by Lande (1982), the rate of

change of the mean phenotypic trait of a species can be modeled by the following:

du* o,

praiaioe [(u—p")g(us ™) p(u)]du (A1)

Here u"is the mean trait value. The additive and total phenotypic variances are denoted by
oz and o, respectively. The distribution of phenotypic values around the mean is given by
p(u), which is typically assumed to be a normal distribution, such that:

p(u)~Gaussian (mean = u*, variance = o) (A2)
The integral in equation (A.1) can then be simplified using a Taylor series approximation,
after Abrams et al. (1993), providing us with:

[l =18 (s p () du 0 (9g/ o) |

+(02/2) (%g/on’) |

+(c/8) (9%g/ow) |
... (A3)

40



where ois the variance of the phenotypic distribution and |* indicates evaluation at u = u".
When the value of ois sufficiently small and/or the values of higher order derivatives are
small (g function is not strongly nonlinear), the first term of (A.3) adequately approximates
the value of the integral. As phenotypic variance increases, increasing the rate of evolution,
the quality of the approximation decreases and the inclusion of higher order terms is
required to maintain accuracy.

Assuming that o; = 0, equations (A.1) and (A.3) reproduce equation (5.1),
depending on the number of higher order terms retained:

*

du
dt

=0 (dg/om)|"+ (67/2) (I*g/ou®) "+ ... (A4)

In our investigation of the evolutionary stability of coexistence as evolutionary rates
increase on the timescale of ecological dynamics, we explicitly manipulate the value of o
By increasing this value to speed up evolution, we risk invalidating the Taylor series
approximation that provided (5.1). We repeated the calculations described in sections 5.3
and 5.4, and shown in figure 9, using the first two terms of equation (A.4) instead of (5.1).
This second order approach yielded qualitatively similar patterns, with the region of
coexistence collapsing as oincreases, although the precise value of o at which this occurs
decreases somewhat (Figs. 2.A.2 and 2.10). Additionally, the second order approach does
not prevent the occurrence of unusual dynamical outcomes observed as coexistence
collapses. It remains possible that even the second order approximation is insufficient for
the task at hand. We deemed avoiding the approximation by implementing (A.1) in full to
be too computationally intensive, and took an alternative approach to confirm our

qualitative findings.
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7.A.2 Alternative to QG model

Instead of modeling trait evolution by deriving explicit expressions for du/dt, we
can instead consider the dynamics of a set of populations, spaced evenly along the
phenotypic axis. We treat mutation as a diffusion process between populations that are
adjacent in trait space. This approach has several advantages, including avoiding the Taylor
series approximation issue described in the previous section, and does not require an
explicit assumption about the shape of the phenotypic distribution. The system of

differential equations describing this approach is as follows:

dN; Om
o = 8(uiR) 1+52( 1+MN2)
dN. (o]
=2 = g(U2: R)N2 + 3 (N1 — 2N3 + N3)
dt o
dN; (o}
= g(ui;R)N; + —’; (Ni—1 —2N;+Niy1)

dt o

- n;R Nn o ]Vn— _]vn

for w1, uz, ..., un given n number of species, and i = tmin + (i-1)6 with 6 = (tmax-timin) /(n-1).
In other words, d is the distance in trait space between adjacent populations N;. In this
model, oi is a scaling parameter controlling the rate at which mutation moves population
density between populations that are adjacent in trait space, and is qualitatively analogous
to oin our preceding analyses. As 6 — 0, system A.5 could be represented as a partial
differential equation, but is more computationally tractable as stated.

With this model we wish to manipulate mutation rate (om) to observe its effect on
the stable coexistence of species exhibiting distinct gleaner-opportunist strategies. We set

up two duplicate sets of ODE’s following (A.5), and denoting the populations of each set as

42



N and M. All Ni’s and M;’s are linked by the consumption of the shared resource, but not
capable of mutation between systems (i.e., between any N; and M;). We start each of the
ODE sets with different initial conditions (where initial abundances of N and M are 0.1 at
Umin OT Umax, Tespectively, and 0 elsewhere). This is the case even if the environmental
fluctuation is sufficient to support distinct gleaner and opportunist strategies. To observe
whether or not these two ODE systems converge rapidly on the same trait/population
distribution, indicative of selection for a single preferred strategy, or first converge on
distinct distributions (despite converging in the long term), we followed their dynamics for
100 periods. We then measure the propensity of the system to have converged
(characteristic of a one species solution), or remain divergent (two species solution), by

calculating

|Ni/Niot — Mi /M1
i=1 (A.6)

N | —
1=

where Nioo = Y Niand Miot = Y M; are the total abundances of N and M summed across
trait values. When the distributions of N and M are completely disjunct, (A.6) achieves a
maximum value of 1, whereas when N and M have completely converged, (A.6) approaches
0. Figure 2.A.3 uses this metric to demonstrate the collapse of the coexistence of distinct
gleaner and opportunist strategies with increasing evolution rate. While this approach
gives us qualitatively similar results to Figures 2.10 and 2.A.2, o and o are not
quantitatively comparable, and it is not possible to differentiate between evolutionary

regimes (such as LESCs or branching cycles).
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for T = 365.
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Figure 2.A.3 Demonstrating the difference between trait distributions of two guilds
with opposing initial trait values after 100 periods. White areas correspond to regions
where both guilds converged on the same trait distribution, while dark grey areas indicate
that distinct trait distributions have been maintained despite mutation. At high mutation
rates, distinct trait distributions collapse, for all values of ¢ = proportion of period that is
‘good’.
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Figure 2.A.4 Close up version of Fig. 2.10, in the region where esoteric dynamics occur.
A similar region exists in the second order approximation (Fig. 2.A.2). Two species results
are indicated by grey shading. Additional complexity is added by the formation of local
maxima in the fitness gradient at which invasion rates remain negative. These represent
local attractors for the trait dynamics of potential invaders, yet do not endow them with
positive growth rates, situations that we refer to as ‘sea mounts’. The distinct cases we
identified are labeled A-H, may not be exhaustive, and consist of the following: A) single
species, global ESS, B) initial growth of non-local invader, followed by convergence on
resident strategy, C) branching point leads to sea mount and the extinction of one species,
D) single species, global ESS but seamount present, E) local ESS, F) branching point
resulting in either a seamount (1 species) or an ESS (2 species), depending on initial
invader population size, G) evolutionary branching point, H) local ESS.
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CHAPTER 3
A GLOBAL PATTERN OF THERMAL ADAPTATION IN MARINE PHYTOPLANKTON

ABSTRACT

Rising ocean temperatures will alter the productivity and composition of marine
phytoplankton communities, thereby affecting global biogeochemical cycles. Predicting the
effects of future ocean warming on biogeochemical cycles depends critically on
understanding how existing global temperature variation affects phytoplankton. Here we
show that variation in phytoplankton temperature optima over 150 degrees of latitude is
well explained by a gradient in mean ocean temperature. An eco-evolutionary model
predicts a similar relationship, suggesting that this pattern is the result of evolutionary
adaptation. Using mechanistic species distribution models, we find that rising
temperatures this century will cause poleward shifts in species’ thermal niches and a sharp
decline in tropical phytoplankton diversity in the absence of an evolutionary response.
1. Introduction

Marine phytoplankton are responsible for nearly half of global primary productivity
(Field et al. 1998). They play essential roles in food webs and global cycles of carbon,
nitrogen, phosphorus, and other elements (Redfield 1958, Falkowski et al. 1998). Empirical
studies have shown that recent ocean warming has driven changes in productivity
(Behrenfeld et al. 2006), population size (Boyce et al. 2010), phenology (Edwards &
Richardson 2004), and community composition (Moran et al. 2010). Global ocean
circulation models predict further temperature-driven reductions in phytoplankton
productivity this century, with con- sequent decreases in marine carbon sequestration

(Bopp etal. 2001, Steinacher et al. 2010). The main mechanism that these studies have
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identified is indirect: Rising temperatures drive an increase in ocean stratification, which in
turn leads to a decrease in nutrient supply to surface waters. However, most models do not
consider the direct effects of rising temperatures on individual phytoplankton species,
which experience sharp declines in growth rate above their optimum temperatures for
growth. They may, therefore, underestimate the effects of warming on ecosystems.

To understand how ocean warming will directly affect marine and estuarine
phytoplankton, we examined growth responses to temperature in 194 strains belonging to
more than 130 species from the major phytoplankton groups (See methods in Thomas et al.
2012). Temperature-related traits, such as the optimum temperature for growth and the
thermal niche width (the temperature range over which growth rate is positive), are
among the most important in ectothermic species, especially given predictions of global
warming (Kingsolver 2009). We estimated these traits from >5000 growth rate
measurements, synthesized from 81 papers published between 1935 and 2011. The strains
were isolated from 76°N to 75°S, giving us exceptionally broad cover-age of the latitudinal
and temperature gradients (Fig. S1 in Thomas et al. 2012).

Growth responses to changes in temperature are characterized by thermal tolerance
curves (reaction norms). Two features of these curves are common to all ectotherms:
unimodality and negative skewness (i.e., a sharper decline in fitness above the optimum
temperature than below) (Fig. S2 in Thomas et al. 2012, see also Kingsolver 2009, Eppley
1972). The latter condition makes ectotherms living at their optimum temperature more
sensitive to warming than cooling, with important consequences for their performance in
the environment (Martin & Huey 2008). Furthermore, there is an exponential increase in

the maximum growth rate attainable with increasing temperature (across species). These
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curves may be described using three principal traits: maximum growth rate, optimum
temperature for growth, and thermal niche width. We estimated these traits for each strain
by fitting a thermal tolerance function to the data (Norberg 2014) and examined their

relationships with environmental and taxonomic covariates (See methods in Thomas et al.

2012).
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Figure 3.1 Latitudinal gradient in the optimum temperature for growth of marine
and estuarine phytoplankton strains (n = 194 strains, R? = 0.55, p < 0.0001). Each point
represents the optimum temperature for growth of a single strain, estimated by fitting a
thermal tolerance function (Norberg 2004) to the data. The regression line (black) is
shown, along with 95% confidence bands (gray). Confidence bands account for asymmetric
uncertainty in trait estimates using a bootstrapping algorithm (See methods and Fig. S9 in
Thomas et al. 2012).

2. Biogeographical patterns
Our analysis revealed large-scale patterns in thermal traits. First, strains exhibited a
clear latitudinal trend in the optimum temperature for growth (Fig. 3.1, coefficient of

determination, R?, = 0.55, p < 0.0001), demonstrating the existence of a global pattern in a
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key microbial trait. Second, optimum temperature was even more strongly related to mean
annual temperature at the isolation location (Fig. 3.2 A, R = 0.69, p < 0.0001), suggesting
that temperature is a major selective agent and that adaptation to local environmental
conditions occurs in marine microbes despite the potential for long-distance dispersal
through ocean currents. In contrast, the width of the thermal niche was unrelated to

temperature regimes.
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Figure 3.2 Optimum temperatures for growth across a gradient of ocean
temperature. A) The optimum temperature of phytoplankton strains is well explained by
variation in the mean annual temperature at their isolation locations (n = 194, R2 = 0.69, p
< 0.0001), indicating adaptation to local environmental conditions. The 1:1 line (black,
straight), regression line (black, curved) and 95% confidence bands (gray) from
bootstrapping are shown (see methods in Thomas et al. 2012). The regression line shown
is for the best model (Table S4 in Thomas et al. 2012), which posits a quadratic relationship
between mean temperature and optimum temperatures. B) The eco-evolutionary model
predicts evolutionarily stable optimum temperatures (red points) for each isolation
location that are several degrees higher than the mean environmental temperatures (i.e.,
above the black line) and agree well with the data, except in the warmest waters. The
confidence band from A) is shown in gray for comparison.

Third, strains from polar and temperate waters had optimum temperatures that were
considerably higher than their mean annual temperatures, whereas tropical strains had

optima closer to or lower than the mean temperatures (Fig. 3.2 A). Finally, variation in
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optimum temperature and niche width was not explained by taxonomic differences above
the level of genus, indicating that thermal adaptation is not highly phylogenetically

constrained in this group (Tables S1 and S2 in Thomas et al. 2012).

3. Eco-evolutionary model

This strong trait-environment relationship suggests that microbes are adapted to
the temperatures that they experience locally. However, this pattern could also occur
through a correlated response to selection on other traits. To test whether the observed
pattern arose as an adaptive response to variable thermal regimes, we used an eco-
evolutionary model (Geritz et al. 1998, Abrams 2001) to predict the optimum temperatures
that maximize fitness at each isolation location. The model allows us to study the effects of
thermal adaptation alone by forcing all other aspects of strains to be identical. Purely
theoretical applications of such eco- evolutionary models have been extensive, but they
have rarely been compared to quantitative field data (Stegen et al. 2011).

In the model, strains differ only in their thermal tolerance curves (characterized by
their optimum temperature) while competing for a single nutrient. The growth rates of all
strains are bounded by an exponential function that increases with temperature, an
empirical relationship known as the Eppley curve (Eppley 1972). We require that each
individual strain’s thermal tolerance curve touch the Eppley curve at a single point, forcing
maximum growth rate to become a function of optimum temperature. Niche widths are
held constant across strains, because we found no significant relationship in our data set
between niche width and environmental or taxonomic covariates (Tables S1 and S2 in
Thomas et al. 2012). Given these constraints, we allow optimum temperatures of a set of

strains to evolve in response to deterministic temperature regimes. These regimes were
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based on model fits to a 30-year sea surface temperature time series at every isolation
location (see methods in Thomas et al. 2012, Reynolds et al. 2007). For each environment,
we used an evolutionary algorithm based on quantitative genetics to identify evolutionarily
stable states (ESSs) (see methods in Thomas et al. 2012, Abrams 2001). At an ESS, the
strains that persist (defined by their traits) cannot be invaded by any other strain. These
temperature optima serve as a theoretical prediction of the best strategy (or strategies) at
each isolation location, which we can then compare to our data as a test of thermal
adaptation.

Our eco-evolutionary model predicts that optimum temperatures should increase
with mean temperature and exceed it by several degrees (Fig. 3.2 B, also Fig. S3 in Thomas
etal. 2012). This is in agreement with the observed pattern (Fig. 3.2 A) and bolsters the
case that this relationship arises from adaptation to mean temperature. However, in
regions with the highest mean temperatures (the tropics), the model predicts optima that
are significantly higher than those observed. Although this discrepancy suggests that
tropical strains may be less well-adapted to their environmental temperatures, we
estimated that these strains are capable of persistence under the temperature regimes they
experience (Figs. 3.2 B and 3.3) (Reynolds et al. 2002). The difference may be a result of
interactions between temperature and other factors, constraints on thermal adaptation at
high temperatures, or adaptation to laboratory temperatures before measurement.
Examining model predictions across a range of assumed niche widths reveals that wider
niches lead to larger differences between predicted optima and the mean annual
temperatures and to a decrease in the number of coexisting strains (Fig. S3 in Thomas et

al.2012). These results illustrate that temperature variation can support species
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coexistence, although it cannot fully explain the levels of trait diversity observed in the

data.

4. Species distribution models

Phytoplankton strains may be adapted to their current conditions, but could be
negatively affected by warming oceans. Moving from the eco-evolutionary model to purely
physiological mechanistic species distribution models (SDMs), we then examined whether
changing environmental temperatures could alter species ranges and global diversity
patterns. These models use physiological trait measurements to predict species
abundances across environmental gradients (Kearney & Porter 2009) but do not account

for species interactions or evolution. We generated growth rate predictions across the
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Figure 3.3 Estimated mean daily growth rates of all strains at their isolation
locations, between 1980 and 2010. These estimates were based on monthly temperature
records (Reynolds et al. 2002) and each strain’s thermal tolerance curve, and depend on
the assumption that growth is limited solely by temperature. Even warm-water strains
have mean growth rates exceeding zero (the horizontal line), indicating that they are
capable of persisting in their environment, although their optima are below what our
model predicts to be most adaptive.
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ocean for each strain represented in our data set, based on their thermal tolerance curves
and a 10-year temperature time series (See methods in Thomas et al. 2012). If the 10-year
mean growth rate of a strain was positive at a location, the location was deemed to fall
within its range. We repeated this using both historical (1991-2000) and future (2091-
2100) temperature regimes, the latter having been predicted by a global climate model
(See methods in Thomas et al. 2012, Reynolds et al. 2002, IPCC 2007, Nakicenovic¢ et al.
2000, Delworth et al. 2006). These estimates indicate that ocean warming is likely to drive
poleward shifts in strains’ equatorial boundaries, although polar range boundaries remain
approximately constant (Fig. S4 in Thomas et al. 2012). Consequently, many strains are
predicted to experience a reduction in range size (Figs. S5, S6, and S12 in Thomas et al.
2012), potentially increasing extinction probabilities. Our SDMs assume that growth rates
are limited solely by temperature, but other factors, such as nutrient availability, could also

be incorporated if relevant trait data were available.

5. Diversity patterns

When the range shifts of all strains are considered in the aggregate, they can be used
to predict global patterns of phytoplankton diversity change as a result of ocean warming
(Fig. 3.4) (McKenney et al. 2007). In order to do this, we calculated “potential diversity,”
defined as the number of phytoplankton strains (out of the 194 in our data set)
theoretically capable of growing at a location, assuming that temperature is the sole
limiting factor (Figs. S7 and S8 in Thomas et al. 2012). A comparison of potential diversity
patterns under both historical and future temperature regimes shows that temperature

change may drive a large reduction in tropical phytoplankton diversity over the course of
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Figure 3.4 Changes in temperature drive changes in the potential diversity of
phytoplankton, as predicted by mechanistic species distribution models. A) Mean
annual temperature across the oceans over historical (1991-2000) temperature regimes.
B) Change in mean annual temperature between historical (1991-2000) and predicted

future temperature regimes (2091- 2100).
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Figure 3.4 (cont’d)
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C) Percent change in potential diversity between historical and predicted future
temperature regimes. Potential diversity is reduced sharply in the tropical oceans, despite
these regions experiencing relatively small increases in temperature.

this century. Approximately one-third of contemporary tropical strains are unlikely to
persist there in 2100 (Fig. 3.4 C), despite a change in mean temperature of only ~2°C (Fig.
3.4, A and B). High latitudes may experience small increases in potential diversity, as a
result of poleward shifts in strain ranges. Rising temperatures have the strongest effect on
tropical strains, because tropical optima are close to current mean temperatures (Fig. 3.2
A) and thermal tolerance curves are negatively skewed. Small increases in temperature can
therefore lead to sharp declines in growth rate. A decrease in diversity is likely to have a
strong impact on tropical ecosystems, because biodiversity loss is a major cause of
ecosystem change (Hooper et al. 2012). One possible consequence is a decrease in tropical

primary productivity, which could occur through two distinct mechanisms: the loss of
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highly productive species or a decrease in complementarity (Tilman et al. 1996, Reich et al.
2012).
6. Conclusions

Our findings lend support to the hypothesis that tropical communities are most
vulnerable to increases in temperature (Deutsch et al. 2008). However, the existence of
high genetic diversity within species, as has been noted in some cases (Harnstrom et al.
2011), may prevent the loss of entire species. Adaptation to changing temperatures may
mitigate some of the predicted losses in diversity, particularly in rapidly reproducing taxa
such as phytoplankton. The evolution of thermal tolerance has been examined in a few
taxa, including phytoplankton (Bennett & Lenski 2007, Knies et al. 2006, Huertas et al.
2011), but we currently lack the information necessary to accurately model the
consequences of evolutionary change on ecosystem processes (Chown et al. 2010,
Angilletta et al. 2003). In the case of phytoplankton, we need estimates of rates of
adaptation to high temperature stress in a variety of taxa, as well as an examination of the
evolutionary constraints and trade-offs that may be associated with this. Characterizing
these constraints will allow us to make improved forecasts of species survival and may

prove critical for understanding the fate of tropical communities and oceanic ecosystems.
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CHAPTER 4
ECO-EVOLUTIONARY DYNAMICS OF DIVERSE COMMUNITIES IN PERIODIC
ENVIRONMENTS
1. Introduction.

Organisms are commonly confronted by temporal variation in the environments
they inhabit. Ecologically, this variation has important consequences for the growth and
persistence of particular organisms. It can also support the coexistence of species,
influencing community diversity and composition. Evolutionarily, variation affecting the
growth (or fitness) of populations and species can impose selective pressures leading to
trait evolution and adaptation. Ecological and evolutionary processes can interact in the
presence of temporal variation, influencing not only how many species can coexist, but also
which species can coexist and with which traits. In this chapter, we explore how complex
patterns of coexistence and community structure emerge from simple models of species
competition in periodically varying environments. Our investigations combine both
ecological and evolutionary approaches, enriching our understanding of this coexistence

mechanism.

1.1 Temporal variation & coexistence

Many previous authors have studied the effects of diverse kinds of temporal
variation on species coexistence. Hutchinson suggested non-equilibrium mechanisms as a
solution to his own ‘paradox of the plankton’ (1961). Temporal variation comes in many
forms. It can occur in factors that are biotic (abundances of prey, predators, mutualists) or
abiotic (temperature, nutrients, precipitation). It can be stochastic or deterministic, and

may be driven by external forces (temperature, climate) or arise endogenously from
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interactions occurring within communities. Resource fluctuations have been thoroughly
shown to support multispecies coexistence (Armstrong & McGehee 1976, Levins 1979, Hsu
1980, Abrams 1984, Grover 1990, 1991, Anderies & Beisner 2000, Litchman & Klausmeier
2001, Xiao & Fussman 2013), including both generalists and specialists (Abrams 2004,
Abrams 2006). Several early theoretical papers examined the consequences of fluctuating
growth rates and/or carrying capacities in simple two species Lotka-Volterra competition
models (Koch 1974, Cushing 1980, Namba 1984), demonstrating coexistence through
stable limit cycles. Temporal variation provides the raw material for two different
coexistence mechanisms recognized by Chesson: relative non-linearity and the temporal

storage effect (Chesson & Warner 1981, Chesson 1994, Chesson 2000).

1.2 Consequences of evolution for ecological coexistence mechanisms in general

The expanding eco-evolutionary synthesis studies the effects of evolutionary
processes on the dynamics and stability of ecological systems, and how ecological
processes structure selection and evolution. An important line of research within this
growing discipline focuses on exploring how trait evolution affects coexistence
mechanisms. Theoretical results suggest that evolution can affect both how many species
can coexist (typically reducing diversity relative to pure ecological models) and what traits
or functions they have. The development of a number of analytical techniques, including
adaptive dynamics (Geritz et al. 1998, Abrams 2001, Gertiz et al. 2004, McGill & Brown
2007) has provided new insights into eco-evolutionary models. For example, trait
evolution decreases coexistence between generalists and specialists (Egas et al. 2004), and
between species competing for limiting resources (Shoresh et al. 2008). Under different

competitive scenarios evolution can result in either trait convergence or divergence
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(Edwards et al. in review), influencing the interpretation of patterns of over- or under-
dispersion of traits in communities or across phylogenies (Mayfield & Levine 2010). When
species traits are allowed to evolve a variety of unexpected dynamics can arise, including
evolutionary cycles and evolutionary suicide (Dieckmann & Metz 2006, Kisdi et al. 2001,
Gyllenberg & Parvinen 2001). When evolution is considered in models, but treated as much
slower than ecological processes, it leads to communities with diversity less than or equal
to that of the corresponding ecological model. However, evolution can occur rapidly in
many systems, influencing coexistence (Lankau 2011). When this occurs, dynamic changes
in trait values may result in additional regulating factors and potentially enhance the
number of species that can coexist. Additionally, differences in rates of evolutionary
response between species may be sufficient to support coexistence. Throughout the
remainder of this chapter, however, we will focus on models where evolution is slow

relative to ecology.

1.3 And fluctuation-dependent mechanisms in particular

Coexistence mechanisms dependent on temporal variation are not exempt from re-
examination in light of evolution, though only a few papers have addressed the topic.
Levins (1968) studied the optimal choice or mix of phenotypes in a fluctuating or variable
environment, using an optimization approach to study evolution in changing environments.
Species with distinct competitive strategies can arise through evolutionary processes and
coexist in systems with fluctuating resource levels (Kremer & Klausmeier 2013). However,
coexistence is contingent on the relative rates of resource fluctuations and adaptive
responses; despite temporal variation, rapid evolution in this system can preclude

coexistence. Earlier, Kisdi & Meszéna (1995) showed that trait evolution constrained
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coexistence in a lottery competition model (similar to that of Chesson & Warner 1981).In a
model of annual plants, a temporal storage effect only evolved and persisted under
restrictive conditions (Snyder & Adler 2011). In contrast, the storage effect readily evolved
for a wide range of assumptions in a modified lottery model (Abrams et al. 2013). These
results focused on one or two species competing in an environment oscillating between
two discrete environmental states according to varying rules. Additional eco-evolutionary
studies, spanning different kinds of temporal variation and temporal coexistence

mechanisms, are needed before general patterns can be identified.

1.4 Evolutionarily stable coexistence: more restrictive than ecologically stable coexistence.

If a set of species can coexist with fixed trait values (parameters), they form an
ecologically stable community. If it is also true that no species with a different trait value
can invade this set of species, then they represent a community that is both ecologically
and evolutionarily stable. In this case, each species experiences stabilizing selection and
sits at the peak of an adaptive landscape. Such communities are of considerable interest, as
they represent the culmination of evolutionary (or community assembly) processes in a
system, if it persists long enough that an eco-evolutionary attractor is reached.
Evolutionarily stable communities provide predictions not only of community diversity,
but also of the distribution of traits represented in the community. These predictions can
be made across environmental gradients, and used to study real-world patterns of
adaptation (eg, Thomas et al. 2012, Litchman et al. 2009).

Ecological stability is a prerequisite for evolutionarily stability, so principles
governing ecological coexistence apply. This includes fundamental ideas such as

competitive exclusion (Gause 1934), which restricts the number of species that can coexist
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to be less than or equal to the number of limiting (or regulating) factors (Tilman 1982,
Chase & Leibold 2003, Levin 1970). An associated principle, limiting similarity,
encapsulates the idea that species that are too similar to each other will compete strongly,
generally leading to competitive exclusion (Hutchinson 1959, MacArthur & Levins 1967,
Abrams 1983). Dissimilar species experience weaker interspecific competition (relative to
intraspecific competition), favoring coexistence. While it can be shown that there is in fact
no theoretical limit to similarity in several models (May & MacArthur 1972, Roughgarden
1979), such cases are degenerate, as the conditions permitting arbitrarily similar species to
coexist become prohibitively restrictive and consequently unlikely to occur (Meszéna et al.
2006). Meszéna et al. (2006) focus on limits to how similar species can be, in terms of
either their sensitivity to regulating factors or the impact they have on regulating factors,
and still coexist robustly in fixed point systems. Their results have also been shown to hold
in non-equilibrium, periodically varying systems (Barabas et al. 2012). We expect these
principles and patterns of limiting similarity to hold within the evolutionarily stable
communities identified in eco-evolutionary models, because such communities are a subset

of possible ecologically stable communities.

1.5 Summary

The present work contributes to the currently limited set of studies investigating
how evolution moderates coexistence mechanisms that depend on temporal variation. We
focus on a model where species’ growth rates depend on how closely their trait matches an
environmental parameter that varies smoothly through time, following deterministic,
periodic fluctuations. For example, the growth rate of ectothermic organisms depends on

environmental temperatures, which can fluctuate over time. Different organisms or species

73



typically specialize, achieving their peak growth rates at different temperatures (Thomas et
al. 2012). We consider a continuous set of environmental states (in contrast to Abrams et
al. 2013), and extend our results to highly diverse communities. These communities display
strong patterns of limiting similarity. We also explore the consequences of selecting
different periodic forcing functions, which turn out to have substantial effects on the
composition, diversity, and persistence of evolutionarily stable communities.

The remainder of this chapter is structured as follows. In section 2, we provide
details on our model, techniques for studying periodic systems and conducting
evolutionary analyses. The results of our analyses are presented in section 3, and discussed

in section 4. Variables used throughout this chapter are defined in Table 4.1.

2. Methods.
2.1 Basic model

We let T(t) describe the fluctuation of some non-interactive, externally forced
environmental variable, such as temperature. This variable changes through time
according to either a sine wave

T (t) = Toy + Tymp sin (27t / ) (1a)

or a triangle wave

T(t)="Ty+ Tamp% sin~! {sin (27r (% — %))1 (1b)

with period 7, peak amplitude Tump and mean Ty (which we set to zero without loss of
generality). These functions are illustrated in Fig. 4.1, which also shows that for the same
mean, amplitude, and period, they imply different distributions of environmental states,

with important consequences.
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Figure 4.1. Sinusoidal versus triangle wave fluctuations (A and C), and associated
density of environmental states (B and D). The sinusoidal fluctuation produces a
bimodal distribution B), as environmental conditions change most slowly near extreme
states (low and high). In contrast, the triangle wave leads to an environmental state that
changes at a constant rate at any point in the fluctuation, leading to a uniform density of
environmental states D).
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Figure 4.2. Species exhibit environment-dependent growth rates that follow a
Gaussian function whose width is controlled by o2. They achieve their highest growth
rates when the environmental state T(t) matches their optimum z. Density independent
mortality m further constrains environmentally determined growth rates.
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Variable | Definition Value
T(t) Environmental forcing function -
Tav Average of fluctuation 0
Tamp Amplitude of fluctuation -
T Period of fluctuation -
U Environmentally determined growth rate -
Umax Maximum growth rate possible {0.02, 1}
z Trait specifying optimum environmental state -
(corresponding to ¢ = tmax)
0? Controls width of growth rate function (‘niche width’) 8
n Population density -
m Density independent mortality rate 0.1
g Instantaneous per capita growth rate/invasion -
rate/fitness
R(1) Available resource -
Riot Total resource supply 100
R" Break-even resource level capable of sustaining a species. | -
S State of system (in SSD approximation) {9,1,2,
3, ...k}
g Denotes the empty state -
N Transformed population density (in SSD approximation) | -
& Average per capita growth rate (over one period) -
te Critical timings corresponding to potential transitionsto | -
the empty state

Table 4.1. Showing the variables and corresponding definitions used in this chapter.

Parameter values are provided when used consistently for subsequent results.

Next we describe how this environmental fluctuation affects the growth rate u of species i

having some trait z; characterizing its preferred or optimal environmental state:

. )2
u (Ta Zi) = WUmax EXP <(T—Zl)>

o2

(2)
Here pmaxprovides the maximum growth rate of i achievable only when the environmental
state T matches z;. Finally, 02 governs the width of this Gaussian function, essentially
controlling the range of T over which species i experiences non-negligible growth rates

(Fig. 4.2).
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Combining this temporally-variable growth rate with a basic model of resource
competition based on linear (or Type I) resource uptake, we arrive at an equation for the

per capita growth rate of species i as a function of its trait z;:

ldn,-
—— =u(T,z;))R(t) —m=g;
e dt .u( 7Z) () m=g (3)

where n; provides the population density of species i, R(t) describes the level of available
resources, and m is a density independent mortality term. The minimum level of resource
able to sustain species i, referred to as its R, is given by R;"(t) = m/ui(t), introducing u; as
shorthand for the time-varying growth rate of a species with trait z. Finally, assuming a

closed system, available resource levels

R(l) :Rtot_ il’li (4)
i=1

depend on the difference between resource supply R:: and the amount of resource
sequestered in biomass across all k species present. Together, (1a) or (1b), and (3) and (4)
define a complete system of ordinary differential equations (ODEs) governing the
population dynamics of one or more species as a function of their environmental
tolerances, given some particular choice of T(¢t) such as (1a) or (1b).

This non-linear, non-autonomous system is not amenable to analytical solution.
However, numerical techniques can be used to obtain solutions this ODE system, given the
initial population densities and traits of each of the k species considered and the
environmental forcing function T(¢). For large t, the solutions of this system are typically
characterized by intervals of relatively constant dynamics punctuated by abrupt changes
(ie, the solutions are stiff), presenting difficulties for standard ODE solvers. These

challenges motivate the use of an approximation.
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2.2 Successional State Dynamics (SSD) approximation

The model outlined in 2.1 can be simplified using the successional state dynamics
(SSD) approach of Klausmeier 2010 (see also Kremer & Klausmeier 2013, Klausmeier &
Litchman 2012). Originally developed for systems with piecewise periodic forcing, we
justify applying this technique to systems with continuous forcing, such as (1a) or (1b) and
large 7 in section 5, Supplement A.

One of the key advantages of the SSD approach is that at any point in time ¢ over a
single fluctuation our system is characterized by some state S from a finite set of possible
states. In the present model, either all species are rare, creating an ‘empty state’ &, or one
species i is dominant, such that SE{ 4, 1, 2, 3, ..., k} up to k number of species. During the
empty state, R(t) = Rt but when species i dominates it reduces resource levels to R(t) = R;".
Using the SSD approach, we shift from modeling population density as n to considering N, a
transformation of n that equals 0 when a species is dominant and takes on negative values
when a species is rare (for details, section 5, Supplement A).

There are two ways that the state S of this system can change, driven by competition

and changes in growth rates due to environmental forcing:

S—i ifN;=0andS#i
{S — 0 if RG =Ry (5)
In the first, species i rises to dominance, either replacing the empty state or the previous
dominant species, as N; switches from negative to zero. In the second, a dominant species i
is replaced by the empty state (rather than a competitor). This happens when its Ri" > Rt

as a result of the effects of environmental forcing on y;.. When R;” first exceeds Rw: as R;” is

increasing (ie, dR;*/dt > 0), the growth rate of species i must necessarily become negative. If
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no competing species has increased in abundance enough to become dominant at this
point, the dominant species will be replaced by the empty state. For many fluctuations it is
possible to solve for R;" = R explicitly as a function of species trait z and the parameters of
T(¢t), yielding the timings of transitions between dominance and the empty state for each
species (See section 6, Supplement B).

We can now define the instantaneous per capita growth rate g;s (or invasion rate or

fitness) of species i, depending on the current state S:

(1L(T,2) Rypr —m ifS=0
u(T,z)R;—m ifS=j
8is=19 _ w(lz)
- (”(T7Zj) 1)

Together, the above equations (5 and 6) specify the dynamics of k competing species under
each possible state of the system, as well as how and when state changes occur in this
system. The resulting model is a hybrid dynamical system, consisting of a discrete state
variable and a set of coupled ODEs (6) for k species. Sufficient tools for numerically solving
hybrid dynamical systems are found in Mathematica (v. 9), which we use for all of the
numerical results presented here. Converting our initial model (generating stiff systems of
ODEs) into a hybrid dynamical system using the SSD approximation (and assuming that t
— 00) grants us improved numerical tractability and stability. Finally, it is worth noting
that the results of SSD approximations typically correspond closely to those of the original
ODE system for even moderately large values of 7 (Klausmeier 2010, Kremer & Klausmeier

2013).
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2.3 Finding ecological attractors

Given some deterministic, periodic environmental forcing T(t), we can identify the
attractors of this model, which will consist of limit cycles. A simple condition for identifying
these stable limit cycles is obtained by considering Poincare sections of the cyclical
population dynamics of each species. When population dynamics have converged on a limit
cycle, they must necessarily pass through the same point of the Poincare section every
period. In other words, the density of species i at the beginning of one cycle must equal its
density by the end of that cycle (ie, the beginning of the next cycle); otherwise the
population size is increasing or decreasing and not at an attractor. Notationally, this
condition requires that

Ni(t41) =Ni(1) (7)
simultaneously holds true for each i fromi=1, 2, ..., k coexisting species. The set of initial
population densities that satisfy this condition can be determined using numerical root-
finding approaches. Alternatively, this condition can be cast in terms of the average growth

rates of a species over a single period:

1
g = isdt =0
8i /0 8i.S (8)

When g, = 0, species i exhibits no net increase or decrease in abundance over a period, and

thus has reached its limit cycle attractor. When this holds for all species considered, they

represent an ecological attractor for the community.

2.4 Identifying singular strategies and evolutionarily stable states
At its ecological attractor, a community consisting of a set of species (characterized

by their traits) is stable with respect to the population dynamics of its members. However,
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such a community may not be stable from an evolutionary perspective. Directional or
disruptive selection may often act on species traits, a possibility not typically considered in
coexistence models. Extending such models by allowing species’ traits to change in
response to selection can result in different dynamics and communities (e.g., Egas et al.
2004, Shoresh et al. 2008, Lankau 2011, Kremer & Klausmeier 2013). Community assembly
processes can generate very similar patterns; species with different trait values may invade
and replace one or more of the original resident species, altering the trait distributions and
diversity of the community. Given sufficient time and trait variation, the end result of either
of these processes is often a set of species, characterized by their traits, that is uninvasible
by any other species. This state is known as an evolutionarily stable state, or ESS.

We can identify ESSs in our system by extending the criteria presented in section
2.3. First, we can define the instantaneous fitness gradient, a quantity encompassing both
the direction and strength of selection experienced by a species i at a particular point it

time, which depends on both its trait z; and its ecological context S:

dgis| oty (T (1) =) ifS=0
=9 2k _ _
9z 7=z 6_2J.Ui (T(t)—z;) ifS= 9)

In both of these equations the term T(t) - z; determines the sign of the fitness gradient, as
all other terms are positive. When T(¢) is greater (less) than z;, there is positive (negative)
selection on z;. Species with faster growth rates (larger y;) and narrower niches (smaller
0?) experience stronger selection. Finally, the fitness gradient is scaled by the amount of

available resource R(t), either Ri: or R" = m/u; depending on the current state.
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Equation (9) provides the instantaneous selection felt by a species with trait z;.
However, we are more interested in determining the net selection experienced by i over
the entire fluctuation period, dg;/dz. This is accomplished by integrating (9) from 0 to 1.

When this integral evaluates to zero,

9_81'_/1 dgis
dz  Jo 0z

2=z (10)
we know that species i has experienced no net selection on its trait z;. If both (8) and (10)
hold for all species given their traits, we have identified a point termed a singular strategy

(Geritz et al. 1998). Furthermore, this singular strategy is also considered to be an ESS if

0°%g;
2
az 7=z

<0
(11)

for each z;in {z1, z2, z3, ..., Zx}. This criteria for identifying an ESS community is local by
definition (as it is restricted to the vicinity of the traits of represented species), yet
communities can sometimes be invaded by mutants or dispersers with traits in non-local
regions of trait space. We can additionally require that g; < 0 for all possible values of z
across the entire trait axis. This ensures that the community we have identified is a globally
uninvasible ESS, a stricter condition than the local ESS criteria (see McGill & Brown 2007
and Kremer & Klausmeier 2013 for more on local ESSs). A global ESS community can be
considered as the endpoint of evolution and diversification along the z trait axis or the

culmination of community assembly.

2.5 Bifurcation analysis of ESS communities
The diversity and specific trait values of the species comprising an ESS community

depend on the parameters of our model (e.g., fluctuation amplitude Tamp, growth and

82



mortality rates, ymax and m, and niche width 62). We can explore the composition of ESS
communities across ranges of parameter space, encompassing variation in one or more of
these parameters, using bifurcation theory. In general, if an ESS community (with traits {z;,
72, 73, ..., Zk}) occurs at a fixed point in parameter space, it indicates that a similar ESS
community exists at a near-by point in parameter space (with traits { z1 + 61, z2 + 02, z3 + 83,
.., Zk + 0i}). In other words, making small changes to our model parameters typically
results in a similar ESS community with slightly different trait values. This is a useful
property, allowing us to track ESS communities across parameter space without having to
work through the diversification of the community through repeated branching or non-
local invasion.

Exceptions to this general pattern arise when a bifurcation occurs. Several kinds of
bifurcation events are possible (see for example Geritz et al. 1999):

1) An ESS community can lose global, but not local, stability resulting in increased

diversity, or (in reverse) a member of the ESS community can develop negative

density, losing viability and reducing diversity (Fig. 4.3 A & C).

2) An evolutionary branching point (Geritz et al. 1998) can lead to an increase in

diversity of the ESS community, or (in reverse) two previously unique members of

an ESS community can collide, reducing diversity (Fig. 4.3 B & D).
Although not yet formalized, this bifurcation approach has been used previously to study
the occurrence and stability of evolutionary cases across parameter space, but typically for
only 2-3 species (Meszena, Czibula & Geritz 1997, Geritz et al. 1998, Geritz, van der Meijden

& Metz 1999, Kisdi & Geritz 1999, Litchman, Klausmeier & Yoshiyama 2009, Kremer &
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Klausmeier 2013). Jansen & Mulder (1999) consider higher diversity systems, but suppress
details on species’ trait values and bifurcation processes.

In the current chapter, we use this approach to study communities of considerably
higher diversity (ranging from 1 to 16 distinct species). Well-developed methods from
bifurcation theory, termed continuation methods, can be used to expand bifurcation
diagrams. An added advantage of the bifurcation approach is that allows detection of ESS
cases that might not be reachable through branching processes starting from low diversity

(see for example Geritz et al. 1998).

A. B.

Trait

Bifurcation parameter Bifurcation parameter

C.

trait

Figure 4.3 ESS communities can undergo at least two kinds of bifurcations as
described in the text. A) Loss of global ESS stability occurs as a local maxima of the
invasion profile develops. Initially, it has a negative fitness, shown a dashed line in A) and
by the open circle in C) perched at the peak of a ‘seamount’. However, this maxima
increases in height until a region of positive invasion rate occurs (corresponding to a
transition between states 1 and 2). B) Evolutionary branching occurs when an ESS species
loses local stability, resulting in two new ESS species with similar traits (corresponding to a
transition between states 3 and 4). Plots of the per capita growth rate of a rare invader as a
function of its trait are known as invasion profiles. C) and D) show the invasion profiles
corresponding to states 1 & 2 and 3 & 4 of panels A) and B), respectively.
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2.6 Comments on the advantages of symmetry

Both the environment-dependent growth rate and the periodic forcing functions are
symmetrical (1a, 1b and 2), leading to the expectation that our ESS communities (and trait
distributions) will be symmetrical as well. In particular, we expect (and observe) symmetry
around the mean of our periodic fluctuations. We take advantage of this symmetry
property to reduce the complexity of our calculations. When we solve for an ESS
community, we must identify both a set of traits and initial population densities at the
beginning of each period satisfying (8), (10), and g, < 0 for all possible values of z.
However, if we know the trait values of half of the species (eg, all of the species with z; < 0)
we can infer that the trait values of the remaining species are -z;. This results in an ESS
community with an even number of species. Alternatively, we may have a species with z; =
Tav, leading to an odd numbered ESS community. In this case, we can still infer the trait
values of all of the species above (below) Tav by reflecting their values around Ty (= 0).
When solving for the ESS community at a new value of our bifurcation parameter, instead
of solving for 2k unknowns (k traits and k initial densities) we can solve for either (k/2) + k
or ((k-1)/2 + k) unknowns by invoking the symmetry of this system. An unusual, but
observed, exception can arise that prevents taking advantage of symmetry in this manner.
Symmetry breaking can lead to the creation of pairs of ESS communities that individually
are not symmetric around Ta. However, each member of this pair is itself the reflection of
the other around Tuv, maintaining symmetry at a higher level.
3. Results

In the following sections, we outline the kinds of population dynamics occurring in

our models, the ESS communities (uncovered by methods described in the previous
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section) that emerge across a gradient of fluctuation amplitude (Tamp), and resulting
patterns of diversity and limiting similarity. Throughout, we draw comparisons between
environments forced by triangle and sinusoidal waves, to elucidate how subtle differences

between forcing functions can have surprisingly large effects.

3.1 Illlustrative population dynamics

Complex temporal patterns of abundance occur for communities ranging from one
to many species. A single species may dominate during favorable times but become rare
and give way to the empty state when conditions are unfavorable (Fig. 4.4, A). Two
competing species may exchange periods of dominance, driven by underlying variation in
their growth rates (and R* values) resulting from environmental forcing (Fig. 4.4, B).
Patterns grow more complex for systems of many species, as shown in an example for five
species (Fig. 4.5). Some species (with the highest or lowest trait values) experience only
one period of dominance each cycle, while others (with intermediate trait values) may

dominate multiple times.

A 000, B 000
~001} ~001¢
~0.02; ~002!
z z
~003} ~003!
-0.04¢ —0.040
00 02 04 06 08 10 00 02 04 06 08 10

t t
Figure 4.4. Diverse ecological attractors are possible, depending on species traits,
environmental fluctuations, and competition between species. A) Even a single species
may oscillate between periods of dominance and rarity (z1 = 10, Tamp = 10, imax = 1). B)
Competition and environmental fluctuations can drive exchanges in dominance between
two species. Parameters as in A), but z1 = 6.093, z2= 13.907.
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Figure 4.5 With increasing diversity, population dynamics become more complex. Of
the five competing species shown here, two dominate once each cycle (both in blue), while
the other three each exhibit two distinct periods of dominance (green, yellow, purple).
(Tamp =9.585, z={2.00, 4.83, 10, 15.17, 18.00})
For a given periodic forcing function, we can determine the range of trait values that

produce species with positive average growth rates when rare. In other words, we can

solve for z such that

1
igdt >0
/0 8i0 (12)

This set of z values defines the range of viable species capable of invading and persisting in
an environment. Varying environmental parameters and repeating this calculation defines
a viability region as a function of the environment. Within this region, given a particular
environment, a subset of individually viable species will also be able to coexist. Of these,
there may also exist one or more sets of species that together form an ESS community. In
our model, ESS communities must necessarily be contained within the viability region, as a

species that cannot persist individually will not be able to persist in competition.
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3.2 ESS bifurcation diagrams for sinusoidal & triangle waves

In a constant environment (Tamp = 0) it is impossible for multiple species to coexist;
a species with trait z = Tqy will have the highest growth rate (and lowest R"), allowing it to
exclude all other species and making it evolutionarily stable. As Tamp increases, niche space
due to temporal variation increases, eventually making it possible for multiple species to
coexist and for multi-species ESS communities to occur. In the following sections, we
explore how diversity changes with Tump, given different forcing functions (1a) and (1b)

and maximum growth rates (tmax)-

3.2.1 High pimax /m

First we address the situation where maximum growth rate (#max) is high relative to
the constant, density independent mortality rate (m) that all species experience. High
values of pumax/m allow species to increase in abundance rapidly when environmental
conditions favor their growth, and to achieve higher peak abundances, buffering them
against the mortality they experience when conditions are unfavorable. Consequently, we
expect high pmax /m to favor diverse ESS communities.

As Tamp increases, the range of feasible species and the diversity of ESS does
communities increase (Fig. 4.6). Initially, a single species is evolutionarily stable (Fig. 4.6,
B), but as Tuamp increases this species loses stability through evolutionary branching, rapidly
leading to the evolutionarily stable coexistence of two species, specializing on low (high)
environmental states (Fig. 4.6, C). Further increases in Tamp widen the envelope of feasible
species and drive additional bifurcations of the ESS community leading to increased
diversity (Fig. 4.6). These bifurcations occur predominantly through the loss of global ESS

stability, as species specializing on extreme low (high) states gain the ability to invade the
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system. Past Tamp = 17, multiple ESS communities are possible under identical fluctuations
(Fig. 4.6, D). These alternate evolutionarily stable communities consist of either an even or
odd number of species (depending on the presence or absence of a central species with z =
Tav). The details of the diversification or community assembly process, and the comparative
convergence stability (or domains of attraction) of the alternate ESSs, determine which
community is more likely to occur in a particular environment.

Sinusoidal and triangle wave forcing functions produce very similar ESS bifurcation
diagrams across wide ranges of Tump (Fig. 4.7). As Tamp increases, the diversity of ESS
communities climbs higher and higher for both fluctuation types, through repeated losses
of global stability (Fig. 4.7). Alternate ESS communities are possible for both fluctuations
and prevalent across most values of Tamp. Slight differences do occur in the exact values of
Tamp corresponding to bifurcation events.
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Figure 4.6 A) The diversity of ESS states increases with the amplitude of fluctuations
(Tamp) given a sinusoidal forcing function. The set traits permitting positive average
growth fall within the white region of the plot. Dashed lines show how the minimum and
maximum environmental states change with Tump. Solid lines indicate the traits of species
composing ESS communities, with gray (black) indicating odd (even) communities.
Invasion profiles shown for B) a one species ESS, Tamp = 5, C) a two species ESS, Tamp = 10,
and D) alternate three- and four-species ESSs, Tamp = 18.
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Figure 4.7 ESS bifurcation diagrams for A) sinusoidal and B) triangle wave forcing
functions. Plot features and parameters are the same as in Fig. 4.6. These ESS bifurcations
were tracked to community diversities of 14 and 16 species, in A and B, and continue to
propagate in a similar manner for higher and higher Tamp values.
3.2.2 Low Umax/m

In general, as the amplitude of fluctuations increases, the proportion of each period
during which T(t) falls between two values (say, T; and Ty) grows smaller. Any given
species with trait z has a finite range of T(t) values favoring its growth. Together, these
observations suggest that as Tump increases, the duration of each species’ temporal niche
must necessarily decrease. When pmax/m is high, as in the previous section, the effect of this
phenomenon is imperceptible. However, when umax/m is low, species are less able to take
advantage of the brief periods that favor them. Additionally, the gains they do make during
favorable intervals are offset by the longer period of mortality they experience. Ultimately,
this has the effect of limiting the ranges of species traits and Taump values allowing solitary
species to persist, as well as constraining the diversity and structure of ESS communities.
The nature of these limits will depend both on the balance between niche width, maximum

growth rate and mortality, and also on the kind of fluctuation we impose. ESS bifurcation

diagrams for pmax = 0.02 allow us to explore these effects (Fig. 4.8).
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The diversity of ESS communities again increases with increasing Tamp following
bifurcation patterns very similar to those observed in Fig. 4.7, for both sinusoidal and
triangle wave fluctuations (e.g., Fig. 4.9 A). As Tump increases further, the envelope of
viability (white region defining the set of traits with positive average growth rates)
collapses for both fluctuations, but in very different ways (Fig. 4.8). Under sinusoidal
forcing, odd-numbered ESS communities disappear around Tamp = 60. By Tamp = 64, species
with intermediate trait values cannot persist even without competition (Fig. 4.9 B). The
diversity of ESS communities subsequently declines as species with intermediate z's
become unviable. The resulting ESS communities are characterized by species specializing
on increasingly extreme trait values.

In contrast to this gradual decline in diversity, when environmental fluctuations are
driven by the triangle wave ESS communities collapse abruptly and at a much lower Tamp
(Fig. 4.8, B). These differences are driven by the different environmental densities implied
by sinusoidal and triangle waves. Over the course of one period, the derivative of the
triangle wave remains constant in magnitude, while the magnitude of the derivative of the
sinusoidal wave peaks at Ty and declines at either extreme. This results a uniform
distribution of environmental states given a triangle wave, and a bimodal distribution
given a sinusoidal wave, despite equivalent T4y and Tamp (Fig. 4.1). The bimodality arising
from the sinusoidal wave allows species with extreme trait values to remain viable much
longer than those with intermediate traits. Under the uniform distribution created by the
triangle wave, no such refuge exists, and species lose viability almost simultaneously,

whatever their trait value.

91



Trait optima

0 50 20 40 80 100
Tamp

Figure 4.8 At low n = 0.02, ESS community diversity first increases, then decreases
with Tamp. The collapse of diversity occurs gradually in the A) sinusoidal case, but very
abruptly in the case of the B) triangle wave. As before, the envelope of viability is shown in
white, solid lines show the traits of ESS community members, and even (odd) numbered
communities are shown in gray (black).
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Figure 4.9 Detailed views of the ESS bifurcation diagram for the sinusoidal forcing
function with pmex = 0.02. A) Initial patterns of diversification are largely unchanged from
Umax =1 (see Fig. 4.6 A). B) At higher Tump, only even numbered ESS communities remain,
including alternate ESS cases shown in different colors. Species with intermediate trait
values begin to individually lose viability by Tump * 64, leading to the collapse of ESS tracks
as they intercept the envelope of viability. Interestingly, a pair of asymmetric ESS
communities occurs (shown in red) around Tamp = 63, where either the central dashed or
corresponding solid tracks are present, but not both (see section 2.6).

3.3 Accumulation of diversity and limiting similarity
A wealth of classic research and theoretical results focus on the concepts of

competitive exclusion and limiting similarity, the idea that there are limits to how similar
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two species can be and yet coexist. Because evolutionarily stable communities must also
be ecologically stable (ie, species must coexist), we expect (and observe) patterns of
limiting similarity between the ESS species in our results. Ultimately, the number of species
that can coexist ecologically and robustly in a given environment depends both on limits to
how similar species can be and the size or dimensionality of the environment. In this
section, we explore patterns of diversity and limiting similarity emerging from ESS
communities as they develop across a range of Tamp.

For sinusoidal fluctuations, at high pimax, diversity increases roughly linearly with
Tamp- The number of species present in an ESS community is then roughly proportional to
the size of the temporal niche (driven by Tump) divided by the characteristic spacing
between the most similar species (which converges on ~6 in diverse communities and
should be sensitive to 02) (Fig. 4.10, A & C). We can approximate the actual level of
diversity uncovered through the preceding ESS bifurcation analyses by quantifying the size
of the viability region as a function of Tump (i€, the range of traits allowing positive mean
growth), as shown by the dashed line in Fig. 4.10 (A and B). For a lower value of pimax, as
before we observe initial increases in diversity. The diversity of the ESS communities
peaks, then declines, as species with intermediate traits are lost. Whether increasing or
decreasing, diversity levels are still roughly proportional to the width of the viability region
(Fig. 4.10 B).

Similar results hold for the triangle wave fluctuations (Fig. 4.11). Diversity increases
monotonically across a large range of Tamp given high pmax, but peaks and declines abruptly
with low pmax. These trends are again quite neatly proportional to the width of the viability

region. A characteristic separation develops between species adjacent to each other in trait
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space, saturating at a comparable level. These relationships do exhibit more scatter near

the peak and collapse of diversity.
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Figure 4.10 Derived patterns from ESS bifurcation diagrams given sinusoidal
fluctuations. A) and B) provide diversity trends for different pmax, with ESS community
diversity indicated by black bars and the size of the viability region (scaled by 1/3.5)
shown as the dashed gray line. C) and D) plot the mean distance between the traits of
adjacent species in the ESS communities as a function of Tump, with gray (black) lines
representing odd (even) numbered communities, for different pmax.
3.4 General patterns & theory

Some general patterns emerge from the construction of these bifurcation diagrams,
considering the roles of ymax (relative to m) and Tump (relative to ¢2). In particular, we draw
now on our results showing that the width of the viability region provides a readily
computable and reasonably accurate estimate of the diversity of ESS communities (see

previous section). Conceptually, these ideas are laid out in Fig. 4.12. This figure recognizes

two significant axes governing model results. The first encompasses variation in Tymp, our
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Figure 4.11 Same as Fig. 4.10 but for triangle wave fluctuations. Diversity trends are
shown in A) and B) for different ymax, while C) and D) again contain the trait difference

between adjacent ESS species.

bifurcation parameter throughout the preceding work (which could be re-scaled by o2).
The second, ymax (relative to m), influences the point where diversity collapses in
combination with Tump, as we have shown. Each of our bifurcation diagrams (Fig. 4.7 and
4.8) represent detailed slices through this parameter space, at pimax = 0.02 and pmax = 1,
across a range of Tamp values.

We have constructed analogs of this conceptual figure using the width of the
viability region as a proxy for the diversity of ESS communities. This approach allowed us
to explore a wider range of Tump and pmax values than is feasible using the full bifurcation
analysis approach, given its complexity. Results are shown for both the sinusoidal and
triangle wave forcing functions in Fig. 4.13 A and B. In general, diversity increases with

Tamp, to some maximum level set by the balance of pmax /m. At this point, diversity declines
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Figure 4.12. This figure provides a conceptual overview of the most important axes
of parameter variation for our system. On the x-axis we have a comparison between the
amplitude of fluctuations, Tamp, and the width of species’ environmental tolerances (62). On
the y-axis we have a comparison of species’ maximum growth rate and mortality rate (Umax
/m). In general, we expect (for most smooth, continuous fluctuations) that as Tamp/0?
increases, the diversity of an ESS community will increase approximately linearly. At some
point, the increase in diversity will cease, as the environment begins to change so rapidly
and over such an extreme range of values relative to sigma, that species cannot persist. The
point at which diversity begins to collapse should be sensitive to the balance between
maximum growth rate and mortality.
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Figure 4.13. The size of the viability region (a proxy for ESS community diversity)
increases with Tamp, (as shading goes from dark to light) but is limited by the balance
between maximum growth rate and mortality (#max). A) Sinusoidal and B) triangle wave
fluctuations yield different patterns; in particular, the abrupt collapse of diversity with
triangle wave fluctuations is clearly discernable.
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until no species remain. The form of this decline (gradual or abrupt) is influenced by
differences in the distribution of environmental states imposed by different forcing

functions.

4. Discussion & Conclusions
4.1 General patterns of diversity/coexistence

We have shown that temporal variation in species growth rates can produce diverse
communities of coexisting species, each specializing on different environmental states
occurring at different times over a period (Fig. 4.7 and 4.8). Furthermore, evolutionarily
stable coexistence is possible.

As the amplitude of environmental fluctuations increases, more temporal niche
space becomes available, allowing additional species to coexist and adding to the diversity
of the community. However, increasing the range of temporal niches (environmental
states) necessarily decreases the quality of these niches. As fluctuation amplitude grows
too large, each environmental state persists for increasingly brief periods of time, limiting
the growth and performance of species. Eventually, this leads to a decline in the diversity of
evolutionarily stable communities, at a point that depends on the balance between
maximum growth rate and mortality rate (Fig. 4.8 and 4.13).

While the bifurcation patterns generated by this system are complex, several
consistent patterns emerge that transcend the arcane details of these bifurcation diagrams.
In particular, the ESS communities exhibit consistent patterns of limiting similarity
(characterized by the distance between adjacent species in trait space) from low to high

diversity communities, and for multiple forcing functions (Fig. 4.10 and 4.11). This result is
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consistent with our expectation that evolutionarily stable communities must obey the same
principles governing ecologically stable communities.

We are also able to approximate the diversity present in ESS communities for a
given fluctuation amplitude, which we show is proportional to the range of environmental
states over which any species with any trait can grow (the width of the viability region)
(Fig. 4.10 and 4.11). The exact value of this proportionality should be intimately related to
the niche width of species 02, which itself governs the degree of similarity possible between
species in ESS communities. These results suggest that depending on the focus a particular
study, estimates of community diversity could be made without invoking the complexities

and analytical challenges of exactly determining ESS communities in specific environments.

4.2 Prevalence of alternative ESS communities

One of the intriguing theoretical results from this study suggests that the possibility
of alternate ESS communities occurs over broad ranges of parameter space (Fig. 4.6-4.8).
These alternate community states are analogous to the much-discussed phenomenon of
alternate stable states explored theoretically and empirically over many decades (Beisner
et al. 2003). While alternate ESS communities typically differ little in their diversity levels
in our results, their constituent species display different trait values. These alternate
possibilities also imply that the outcome of community assembly or evolutionary
diversification in a given environment will depend on initial conditions and transient
dynamics. Which ESS community arises will also depend on the convergence stability of
each community, an important property considered as part of adaptive dynamics analyses
(Geritz et al. 1998). Convergence stability becomes difficult to assess for highly diverse

communities and non-equilibrium models, and is not addressed by our current results.
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One informal numerical strategy that we employed to aid in initially identifying and
tracking ESS communities involves simulating the eco-evolutionary dynamics of a set of k
species, given some initial abundances and trait values. When trait values are allowed to
change in response to (10), the net fitness gradient they experience over a period, their
traits ideally converge gradually on an ESS community. When multiple ESS communities
are possible, the particular ESS identified by this approach depends on the initial
conditions we selected. It was often the case that one of a set of ESS communities was far
more likely to occur across a range of initial conditions, suggesting that it had a much larger

basin of attraction than the alternatives (CTK, personal observation).

4.3 Choice of forcing function drives diversity patterns

An important part of our analyses was exploring the consequences of different kinds
of forcing functions. The vast majority of previous studies invoking periodic environmental
forcing employ a sinusoidal function. Such functions are mathematically convenient as they
are continuous, smooth and naturally periodic. Many environmental variables from
temperate locations also exhibit fluctuations that are reasonably described by sine waves
(such as temperature, and solar radiation). However, as shown by our results, the choice of
forcing function can have dramatic effects on patterns of coexistence and ESS community
structure. Sinusoidal fluctuations support (low diversity) communities across much wider
ranges of fluctuation amplitude than triangle waves (Fig. 4.8). This phenomenon is due to
the bimodal distribution of environmental states produced by the sine wave, which
bolsters the viability of species with extreme trait values. Declines in diversity with
increasing amplitude occur much more abruptly when environmental forcing follows a

triangle wave (Fig. 4.8, 4.10 B and 4.11 B). The uniform distribution of environmental
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states favors (or disfavors) all species equally; when these states become rare enough that
one species loses viability, all other species face the same situation.

When trying to predict the consequences of environmental change, such as an
increase in temperature variation driven by climate change, on community structure, using
an inappropriate forcing function that inaccurately captures the real distribution of
environmental states could lead to dramatic errors. The default assumption of many
existing studies (sinusoidal forcing) carries underappreciated and important
consequences. Considering the distributions of environmental states implied by different
forcing functions (see Fig. 4.1) offers an opportunity to link studies of deterministic
fluctuations to those exploring temporal variation that is stochastic (which usually sample
environmental states from probability distributions). Stochastic time series drawn from a
distribution can quite often be matched by the appropriate choice of periodic function,
matching the mean, range, and distribution of environmental states. The key remaining
difference is that deterministic forcing functions specify a particular sequence of
environmental states (autocorrelation structure), which may differ from stochastic

variation.

4.4 Limitations of current results — theoretically

Our results answer several interesting questions and advance the work of Abrams et
al. (2013) on the evolution of a temporal storage effect; we consider a continuous range of
environments and highly diverse communities. However, there are several significant
limitations to our work. Employing the SSD approximation (for computational reasons)
required us to assume that the period of fluctuations is large relative to the rates of

processes such as growth, death, and competitive exclusion. This assumption is reasonable
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for many, but certainly not all systems. The form of evolutionary analysis that we used
requires a separation of evolutionary and ecological processes. However, sufficiently rapid
evolution can alter coexistence predictions. When species competing for a fluctuating
resource can adapt quickly to changing environmental conditions, temporal niche
partitioning collapses (Kremer & Klausmeier 2013). We expect that rapid evolution would
have a similar affect on coexistence in the current model, something that can be addressed
in future work. Other analyses and intriguing extensions of the current model are possible.
Many species are capable of dormancy, forming resting stages allowing them to
dramatically reduce their mortality rates during bad times. Combining a structured
population model with the model we present would allow us to study the effects of
dormancy. Additional analyses even of the current results are possible, including a rigorous
investigation of the convergence stability of ESS communities (including alternate ESS

communities).

4.5 Limitations of current results - empirically

The current model is loosely motivated by our earlier work investigating the
thermal adaptation of marine phytoplankton to variable ocean temperatures (Thomas et al.
2012). Phytoplankton growth rates exhibit unimodal responses to temperature, and
different species achieve their maximum growth rates at different temperatures. These
aspects of the real system are consistent with our work here (where our environmental
variable becomes temperature). However, there are several important differences between
these systems. First, in our present model we assume growth rates decline symmetrically
away from a species’ optimum environmental state, whereas real thermal tolerance curves

are typically left skewed. This asymmetry would propagate, leading to asymmetric viability
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regions and ESS bifurcations. The width of empirical thermal tolerance curves are also
substantially wider than those generated by assuming a o2 of 8, meaning that empirical
systems likely exist at the lower values of Tamp/0? (Thomas et al. 2012, Boyd et al. 2013,
Thomas et al. in prep). In this region, temperature fluctuations on the order of annual
ocean temperature variation support only a few species at best. However, this kind of
model is appropriate for many ectothermic organisms facing temperature fluctuations, and
may be suitable for other kinds of environmental fluctuations and organisms. Empirically,
temperature variation supports the coexistence of competing microbes (Descamps-Julien &
Gonzalez 2005, Jiang & Morin 2007). The diversity of marine foraminifera peaks at
intermediate latitudes where temporal variation is highest, consistent with the habitats our
model would predict to produce maximal diversity given the coexistence mechanism we

study (Rutherford et al. 1999).

4.6 Multiple evolving traits

In the real world, the fitness of organisms is a product of many factors and likely
dozens or hundreds of traits. Our results speak to the possible outcomes of selection on a
single trait when that trait represents the most important determinant of fitness.
Theoretical frameworks exist for studying the stability and simultaneous evolution and of
two or more traits, a process typically governed not just by direct selection on each trait
independently, but also contingent on the covariance between traits and tradeoffs in their
ability to evolve (Leimar 2009). A natural next step for this work, again referring to the
dynamics of thermal adaptation of phytoplankton, would be to consider the simultaneous
evolution of both the optimum environmental state and the range of environmental states

supporting growth (0?). Such a model would allow species to adjust both the
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environmental state that they specialize on and the degree to which they specialize at all.
Ackermann & Doebli (2004) addressed a similar question, studying competition between
species for a continuous range of resources; species evolved broad niches unless there was
a cost to being a generalist. Empirically, different species and functional groups of
phytoplankton exhibit variation in both their optima and niche width, suggesting that both
are subject to selection in the wild (Thomas, Kremer, & Litchman, in prep).

While considering multiple evolving traits would lead to different predictions in
terms of the traits and exact level of diversity of ESS communities, we expect that again
several fundamental relationships will hold. Species diversity will remain less than or equal
to what it could be without evolution (see exploration of generalist-specialist coexistence
in Egas et al. 2004), and species that are too similar will not coexist or be present in ESS
communities. Adding more trait dimensions allows species to differ in more ways, but
sufficient similarity in even one dimension is enough to reduce the robustness and stability

of coexistence (Meszéna et al. 2006).

4.7 Concluding remarks

Our results contribute to the limited number of studies exploring evolution and
coexistence in temporally varying environments. We show that species specializing on
different environmental states can coexist in a continuous, periodically varying
environment, producing highly diverse and evolutionarily stable communities. We find that
alternate ESS communities are not only possible, but also common across a range of
conditions, challenging our ability to uniquely predict trait distributions in different
habitats. The capacity of temporal variation to support diversity is not without limits,

however. The diversity of ESS communities is tied closely to the amplitude of
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environmental fluctuations and inescapable patterns of limiting similarity between
coexisting species. We also demonstrate that the selection of a continuous, periodic
function driving environmental variation has important and underappreciated
consequences for diversity patterns across a range of fluctuation amplitudes. Moving
forward, more studies investigating eco-evolutionary dynamics in temporally varying
habitats are needed, examining different kinds of fluctuations, forging links between
deterministic and stochastic variation, and exploring models with asymmetry or multiple
evolving traits. Such work will shed light on the form and function of communities

structured by competition and selection in an ever-changing world.

5. Supplement A: Successional State Dynamics for continuously forced systems

The Successional State Dynamics (SSD) approach was first developed by Klausmeier
(2010) and has subsequently been applied to a number of ecological models subject to
piecewise periodic forcing (Klausmeier & Litchman 2012, Kremer & Klausmeier 2013). In
the current work, we apply the SSD approach for the first time to a continuously forced
periodic model. Here we provide additional details on this method and comment briefly on
its application to continuous models.

At the heart of the SSD approach is the realization that as period length 7 increases,
given a periodically changing environment and fixed biological rates, several dynamical
properties of the system become easily predictable. In particular, the system tends to exist
at one of a finite number of discrete states at any fixed point in time. This is described in
the main text, and time series for the finite T model given increasingly long periods are

show in Fig. 4.A.1 below. Any given species tends to exist in one of two conditions; either it
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is rare (n; = 0) and increasing or decreasing in abundance (g, # 0), or it is dominant (n; =
Rior) and at its equilibrium density (g, = 0). If we additionally let T — oo, several
simplifications arise. We can shift from modeling the dynamics of population density n to
tracking N = log(n)/ t (see appendix of Klausmeier 2010). In the limit T — oo, N becomes 0
when a species is dominant (as log(n) — log(Rw:)) and negative when it is rare (as log(n) —
-00). We can also rescale our time variable by period length 7, modifying the forcing
functions (1a) and (1b) such that 7 = 1. Collectively, this implies that we can model the

population dynamics of species i as

dN; B {O when dominant
dt

g; when rare (A1)

Transitions between states of dominance occur as described in the main text, and between
states where a species is dominant and the empty state as detailed in section 6, Supplement
B. Ultimately, for sufficiently long periods, a plot of log(n) - log(R::) from the finite period
model begins to agree extremely well with the corresponding dynamics for N; returned by

the model obtained from the SSD approximation with similar parameters (Fig. 4.A.2).
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Figure 4.A.1. As period length T increases, the time series of population density for
two competing species are increasingly characterized by periods of dominance by one
species (whose abundance is relatively constant) and sharp transitions between
dominance. Traits z1 = 6.093 and z2 = 13.91, u=1, Tamp = 10.
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Figure 4.A.2. A) The transformed dynamics of the continuous periodic model for
finite period length 7 = 1000 correspond closely to B) the values obtained from the SSD
approximation. Traits z1 = 6.093 and z2 = 13.91, u= 1, Tamp = 10.
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6. Supplement B: Environmental timings for sinusoidal and triangle waves.
6.1 Sinusoidal wave
For T(t) = Tav + Tamp 2 1 sin(t), we have up to 4 possible critical timings, where R* =

Riot. These consist of

, - .
. Tyw—27+0 /log Rrut’.l;max

1
27 S Tamp

8=
_.l_

Tam p

/ Rior 1t
__]Sin_l [Ta"_z+6 lOg mtmmax]

amp

" wtz+oy/log le,%
b S T
\ (B.1)

Of these, at most two will correspond to transitions where R* is increasing above Rt To

determine which case we are in, we must consider dR*/dt > 0, as follows:

* 4 Tum
ART _ A% Tamp. o (2mr) (T — 2)
dt  o*pu(T,z) (B.2)

The sign of (B.2) depends on the product cos(2mt)(T - z) as all other terms are positive. So,

we can evaluate

cos (2mt) (T (t) —z)
1=t (B.3)

for each permissible t.. When (B.3) > 0, then the corresponding t. provides the timing of a
state change from dominance of the current species with trait z to the empty state. This
would, of course, only occur if the current species were dominant prior the transition

(which, due to competition, is not a guarantee).
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6.2 Triangle wave
Given that T(t) is a triangle wave, four possible critical values t. exist where R*(t) =

Riot, for all combinations of + in the following expression:

Z+TamPiTaviG logw

m
t, =

Hamp (B.4)
Of these, we are only interested in cases where 0 < t. < 1 and where dR"/dt > 0, as these
correspond to situations where R" is increasing above R::. We can solve for (and simplify)
dR’/dt, obtaining:

dR* _ SmTa]np (T—Z)
it o2u(T,?) (B.5)

The sign of (B.5) depends only on the term (T - z) as all other terms are positive. So, we can

evaluate

1=t (B.6)
for each permissible t.. When (B.6) > 0, then the corresponding t. provides the timing of a

state change from dominance of the current species with trait z to the empty state.
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