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ABSTRACT
ASSESSING MEDICAL COSTS FROM A LONGITUDINAL MODEL
By

Corina Mihaela Sirbu

The United States spends a larger share of its gross domestic product (GDP) on
health care than any other major industrialized country. Expenditures for health care
represent nearly one-seventh of the Nation's GDP, and they continue to be one of the
fastest growing components of the Federal budget. In 1960, for example, health care
expenditures accounted for about 5 percent of the GDP; by 2000, that figure had grown to
more than 13 percent. Although the rate of growth in health care costs slowed somewhat
in the mid-1990s, it has once again started to rise at a rate that exceeds other sectors of
the economy. Thus, identifying methods to accurate estimate health care costs continues
to be a priority for policymakers and public and private payers.

In medical follow up studies incomplete observation due to censoring would
preclude ascertainment of outcomes in some subjects. Standard assumptions used in
survival analysis do not apply to medical costs because the cumulative cost at the
endpoint of interest will generally be correlated with the cumulative cost at the time of
censoring.

We use a dynamic regression model in which costs are incurred in random
amounts at transition times between and during sojourn in health states. A Markov model

describes the unfolding over time of individual patient event histories, with transition



intensities depending on patient specific demographic and clinical characteristics through
a multiplicative intensity model. A random effects model is used for transition and
sojourn costs. We then estimate the net present value of expenditures incurred over a
finite time horizon. While incorporating explanatory variables, the joint model can
accommodate heteroscedasticity, skewness and censoring in cost and health outcome data
and provides a flexible approach to analyses of health care costs and outcomes.

Our transition model can be viewed as an extension of the simpler two state
model, case in which we obtain and revise already developed techniques for regression
analysis of medical costs with the focus being on estimation in the presence of time
censoring that might result in incomplete costs data on some patients. Using the 2000
Nationwide Inpatient Sample data set of Health Care Utilization Project we focus on
estimating costs for patients admitted in the hospital with acute myocardial infarction
(AMI), a common high-mortality condition whose outcomes are affected by the process
of care.

Our methods provide flexible approaches to estimating medical costs. Estimates
from cost studies are not only needed to determine the economic burden of disease, to
predict the economic consequences of new medical interventions, but also for
comparative purposes such as cost-effectiveness analysis. Other possible extensions of

our methods are in this area.
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INTRODUCTION

Economic evaluations of health care interventions are increasingly important in an
era of constrained health care budgets. As policymakers seek to prioritize heélth care
expenditures, an accurate assessment of costs and health benefits of competing
interventions and treatments is critical in informing resource allocation decisions in
health care. A recent report’ from the Office of the Actuary at the Center for Medicare
and Medicaid Services projects that the national health expenditures would reach $3.4
trillion in 2013, growing at an average annual rate of 7.3 percent during the forecast
period 2002-2013. As a share of gross domestic product (GDP), health care spending is
projected to reach 18.4 percent by 2013, up from its 2002 level of 14.9 percent. This
demands extraordinary restructuring of the organization and financing of U.S health
services.

Over the past decade there has been an explosion of research on methodology for
economi¢ evaluations in health care. With increasing availability of large databases on
patient outcomes and costs, statistical methods for comparing outcomes with costs need
to be developed. The field is young, however, and there are many important and
challenging problems that remain unresolved.

In this dissertation we will address several statistical issues with analysis of
medical cost data. We adopt a longitudinal framework in which costs incurred as the

individual level are random quantities associated with events that occur as an individual’s



health history unfolds over time. A Markov process is used to describe the dynamics of
movement of an individual through different health states. Costs are incurred at transition
times, and in sojourn in health states. Total expenditures over a finite period of time is
then defined as an ‘expected value’ called a net present value (NPV). Because individual
characteristics such as demographics (age, gender, race) and clinical factors (treatments,
comorbidities) can influence NPV, we incorporate covariate effects into our rhodel for
estimation of NPV.

Our longitudinal framework provides a natural setting for estimating medical
costs. We will demonstrate how some recent approaches to analysis of costs®"! can be

subsumed into this framework.

Importance of Cost-Effectiveness Analysis

In addition to evidence of clinical effectiveness of treatments, evidence of their
cost-effectiveness has become an important consideration as policy-makers world-wide
face decisions in allocating resources for health care services. In Australia, the
Pharmaceutical Benefits Advisory Committee makes recommendations, based on
effectiveness and cost-effectiveness evidence, on drug products that should be subsidized
and placed in the Pharmaceutical Benefits Scheme'?. The National Institute of Clinical
Excellence" in the UK makes similar requirements for use of new healthcare
technologies in the National Health Service, and in Ontario, Canada, the Drug Benefits
Plan uses economic data when supporting new additions to its formulary'*. The
Phenomenal penetration of HMOs into the US health care market has heightened

awareness of cost-effectiveness among providers and consumers of healthcare services.



The US Preventive Services Task Force and the Panel of Cost-Effectiveness in Health
and Medicine have urged consideration of cost-effectiveness in addition to clinical

effectiveness to help inform investment of health care dollars'’.

Measures used in cost-effectiveness analysis

Cost-effectiveness analysis (CEA) has been promoted as a useful tool in the effort
to prioritize expenditure on health care programs15 . By quantifying the trade-offs between
resources that need to be deployed and health benefits that accrue from use of alternative
interventions, CEA offers guidance in decision-making by structuring comparisons
between these interventions. A cost-identification analysis is often conducted for
treatments and procedures that are believed to be equivalent in their clinical efficacy. For
example, if two competing programs do not differ on average in their health benefits,
then the one with the lower average cost will be preferred. On the other hand, if the costs
of two programs are judged equivalent, the intervention with the greater health benefit
will be preferred. An intervention that delivers higher benefit at lower cost than its
competitor is said to be dominant. A decision has to be made when one program has both
higher cost and greater benefit than does its competitor. Is there a critical value below
which society would consider the more costly intervention still “cost-effective”? In this
situation, the cost-effectiveness ratio (CER) becomes a useful summary statistic for
ranking competing interventions. It is the ratio of the incremental cost relative to the
incremental benefit. With costs measured in dollars and health benefits measured in their
natural units such as life expectancy, number of lives saved, or preferably quality-

adjusted life years (QALYs), the CER is stated in dollars per unit of effectiveness. In




CEAs conducted with a societal perspective that accounts for all costs of the
interventions, whether borne by the recipient of care, the provider or the insurer, the
critical value of a CER is the upper limit of what society is willing to pay for an
additional unit of health benefit.

Other summary statistics used in CEA are the net health benefit (NHB) or net
health cost (NHC)'®. Suppose the incremental health benefit is monetized usihg a value
for each additional unit of health benefit. This could be the upper limit of the CER as
judged by what society is willing to pay for adopting the competing intervention. The
NHC, expressed in dollars, is the difference between the incremental cost and the
monetized incremental benefit. The net health benefit can be defined in an entirely
analogous manner, and would be expressed in units of effectiveness. Many researchers
have pointed out that the CER has undesirable properties that make its use in decision

making problematic.

Analysis of medical costs

Incomplete data are likely to arise in longitudinal studies, because patient follow
up will not be complete in all subjects. In survival analysis, censoring occurs when the
time to event variable T is not observed in some individuals because a censoring event
occurs first at time U, that is U < T . Most survival analysis models assume T, U
independent, or, when covariates z are present, that conditionally on z, T and U are
independent. This is the usual random censorship model. With accumulating costs this

assumption is untenable. If y(¢) is the accumulated cost up to time ¢, then y(7T') and



y(U) are generally correlated. Therefore analyzing costs by traditional survival analysis
techniques is not possible.

In this dissertation, we first consider the situation in which a single cost variable y
is observed together with covariate information z in a sample of subjects. In our general
framework costs can potentially be accrued over a fixed time period [0, 7 ] with

expenditure terminating at some event time 7 so that complete cost observatién occurs if
a patient is followed through time T~ = min(T,7). Suppose y(t) is a right-continuous
process that represents the cumulative cost up to time ¢ (including time ¢) for a typical
patient in the population under study. If lifetime cost is of interest then T denotes survival

time. Since costs do not accumulate after T, y(z) = y(T') for all ¢t >T . The cumulative

cost y(7) at time 7 is the principal random variable of interest, so inference focuses on

the mean cost, u = E(y(7)) = E( y(T' )). With lifetime medical cost, the cumulative cost
is y(T') and estimating the average E(y(T)) is of interest.

Because of possible censoring at time U, y(T)is not observed if T > U . If this is
the case we observe y(U). A simple sample average of the observed costs in the patient
sample would underestimate the true expected medical cost for the treatment under study.
Also using the average in the sub-sample of patients with complete costs would be
inefficient.

Even if complete costs were available, standard regression techniques for
assessing the influence of covariates on costs can not be directly applied. Cost data are
often very skewed, usually to the right. They also exhibit considerable heterogeneity
across patients. Standard assumptions used in ordinary least squares (OLS) for example

can not be applied. To mitigate the effects of skewness, the log-transformation of costs



might be considered. However, this too has adherents and non-adherents as explained in
Manning (2001)". Even if a transformation were feasible, a retransformation would be
needed to obtain estimates of mean costs (and other statistics) across specified covariate
profiles: retransformation itself presents some methodological challengesls'z'.

Extreme form of skewness occurs in cost data when proportion of subjects in the
sample have zero costs. For example if we examine costs of office visits to a doctor or
other health professional in the year 2000, 20% of adults 18 years of age and over did not
make any office visit®? and therefore incurred zero expense. This creates a 2-part
distribution for costs, one part for the sub-population with an expense, and the second
part for those without. These groups differ considerably in their demographic

characteristics and medical history. In a two-part model, one has a model for the

likelihood of expense, for example, a probit or logit model for P(y >0|z), where zis a
vector of covariates, and then a second model for E(g(y)|y>0,z), where gis a

transformation, such as the logarithmic. Debate continues on the proper analysis of the
two-part models and comparisons to other models such as the Heckman model and
sample selection models® %,

Cox regression has been the mainstay for analysis of censored time to event data.
However using this method directly with costs is not possible. As noted earlier, cost at
censoring time and cost at event time are correlated. In this dissertation we maintain the
traditional use of Cox regression for time to event analysis. It is used to model covariate

effects on the transition intensities as patients move from one health state to another. We

then combine this with a linear mixed effects model for costs (incurred at transition times



or sojourn in states) conditional on event times. Finally we derive estimators of NPV

given a covariate profile and develop the asymptotic theory of these estimators.

A transition model for analysis of medical costs: Outline of Dissertation

When an intervention is deployed costs are incurred in random amounts at
random points in time. Typically these costs are associated with health states that a
patient might visit in the course of the intervention, and the different lengths of time spent
in each state. The probabilistic mechanism that governs transition between these states
and the distribution sojourn times in health states vary at the individual level depending
on patient specific demographic and clinical characteristics. This thesis concerns the
development of new statistical methodologies for estimating medical costs with censored
data in both this multiple states setting and the two-state case.

In Chapter 1 we describe the evolution of a patient’s health as the unfolding in
time of a finite state stochastic process. A non-homogeneous Markov

process X ={X (¢):te T} with finite state space E ={l1,2,...,k}, provides a natural
setting to describe the probabilistic mechanisms that govern transitions between states,
where X () is the patient status or health state occupied at time r € 7 =[0,7], and 7< eo.
Transition probabilities are denoted by B, (s.1) and transition intensities by a,; (t). The

state space of X typically consists of several transient states, such as “well”, “recovery”,

“relapse” and one or more absorbing states such as “dead” or “disabled”. Over the follow

up period the typical patient would transit to other health states, X, = X (7)),

X, = X(T,),... atrandom times 7,7, ,... and these transition times and health states



describe the event history of each patient. If observation of X is ceased after some random
time U, independent of X, then we will need to account for censoring accordingly.

The survival model is an example of a two-state process with a single transient
state “alive” and a single absorbing state “dead” with survival time T =T and T,, = o for
n 2 2. The multi-state analog of survival time is the time to absorption in state k given
by, =inf{t >0:X(t)=k}.

Having described the evolution of a patient history by the finite state space non-
homogenéous Markov process X, we now consider two types of costs that might be
incurred in the course of follow up, costs at transition between health states, and costs of

sojourns in a health state. Incorporating costs in the model enlarges the usual o -field used
in the multiple states survival theory, namely #°=0{(T,,X,):0<T, <t AU}, by adding

cost information. Under specified assumptions the martingale theory still obtains and the
compensators remain unchanged.

The estimation of By; (s,t|Z,) from a Cox regression model (multiplicative

intensity model) for the @, (1|Z, ), has been very well developed by Andersen et al

(1993)%. Numerous applications of this method are published regularly in the medical
and epidemiologic literature.

To analyze costs incurred at transition times, we adopt a mixed model approach.

If T,,,T,,,...,T,, denotes the observed sequence of n; transition times in the ith individual
and Y; =(y;, Yi2---Yin ) the associated vector of costs (or transformed costs), then the
random-effects model Y; = X; 8+ Z,v, +u, is the basis for estimation of 4. Here the

covariate matrix X; will include terms for the times T;),T;,.,...,T;, , individual patient



characteristics, and the matrix Z; will include a subset of these factors, most likely
variables for modeling the effect of transition times such as T;;and Tij2 . The unobserved
heterogeneity is the vector v;, inducing dependence among the y; 's and u; is the

residual error. We will derive the NPV for all transition costs in the interval [0, 7], in the

form NPV(Zy) = ). L’ e "¢, (t|Zy) et (1| Zy )Py, (0,1] Zo)dt conditional on the initial
h# j

state X, =i and a specified covariate profile Z;, where r denotes the discount rate. Here

cpyi (¢t | Z,) is the expected cost incurred at time ¢ if the transition h— j occurred and it can

be obtained from the components of E(Y, |X;). Similarly we can define NPV for all

sojourn costs. The mathematical form for NPV depends on the underlying transition
probabilities and intensities.

Following Andersen et al (1993)*° we account for heterogeneity across patients
by semiparametric modeling of the transition intensities of the process through patient-
specific covariates. We estimate transition probabilities using a Cox regression model.
We combine the two parts to form an estimate of the mean present value of all
expenditures and use the inverse-probability of censoring-weighted (IPCW) technique to
account for censored observations. The estimators are obtained conditional on an initial
state and given a covariate profile. By applying the delta-method to functionals that arise
in the estimation of the NPV, we obtain large sample properties of these estimators.

This approach is new and builds upon a similar idea used by Praestgaard (1991)*
to estimate actuarial values in life insurance. In that context the benefit (cost) is fixed and
the stochastic elements are the sojourns in policy states or transitions between policy

states. The ‘cost’ at transitions (called assurances in the life-insurance literature) are fixed



by the terms of the policy. Also the ‘unit cost of sojourn’ (called annuity payments) are
also fixed”’?. In our context these quantities are no longer fixed. With longitudinal data
these costs are observed and vary across patients.

In Chapter 2, we show that our transition model described in Chapter 1 also
captures costs under the simpler two state survival model with a single transition time and
sojourn. In this case several investigators have developed techniques for regréssion
analysis of medical costs with the focus being on estimation in the presence of time
censoring that might result in incomplete cost data on some patients. Our transition model
can be therefore viewed as an extension of this methodology to multiple transition times
and sojourns. If we specialize our multiple transition model methods from Chapter 1 to a
two state model with patients starting in state ‘0’ (alive) and followed until they reach a
terminal state ‘1’ (death) at time T, the total cost for a patient can be interpreted as a
sojourn cost that ends at time T or 7 whichever occurs first or as a transition cost at time
T if the patient dies in the interval of time [0,7].

Current methods for estimation of the population mean cost are both
nonparametric and semi-parametric. The key references are Lin et al (1997, 2000,
2003)***, Bang and Tsiatis (2000)', Strawderman (2000)*2, Willan et al (2002, 2003)*?,
Wooldridge (2002, 2003) ****. Semi-parametric models would assume a special
parametric form for the distribution of cost. For a single cost, Zhou el al (2000)*
primarily uses a log-normal regression model to assess covariate effects on mean costs.
He also discusses approaches to deal with heteroscedasticity, skewness, censoring and

zero costs, all in the context of a parametric model*>*.
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Our approach uses the same inverse-probability of censoring-weighted IPCW)
technique to derive consistent and asymptotically normal estimators of regression
parameters and for the net present values. We discuss parametric methods for estimating
the survivél distribution for censoring time, and therefore the weights in the [PCW
technique, as well as methods of estimation for the survival distribution for event time.

Chapter 3 focuses on applications to real data: We use the inpatient utilization
data from the Nationwide Inpatient Sample (NIS) of Health Care and Utilization Project
(HCUP), a database of all hospital inpatient stays drawn from a stratified sample of
approximately 1,000 community hospitals in the US. For 2000, the NIS contains over 7.4
million discharges from 28 states. Total charge and length of stay (LOS) are the main
healthcare utilization variables for each hospital stay. There is a growing literature on use
of the NIS in health services research that we use for guidance ***’. Following our
experience with analyzing charges and LOS of acute myocardial infarction (AMI)

430 we will focus on patients admitted in the hospital with

patients in the MICH study
AMI that have undergone either no procedures or Coronary Artery Bypass Grafting
(CABG), Cardiac Catheterization (CATH) or Percutaneous Transluminal Coronary
Angioplasty (PTCA) as a primary procedure.

Hospital characteristics, such as quality of service or managerial performance
may impose distinct effects on the costs of treating patients. Rice et al (1997)°', Carey
(2000, 2002) 52.53 and Goldstein (2002)** insist on the usefulness of multilevel methods
in studies where data on cost are collected over multiple sites (hospitals in our data). In

such circumstances it can be expected that hospitals may have an impact on the cost

regardless of treatment the patient receives. The inclusion of hospital as a level in a

11



multilevel analysis will ensure that the clustering effects within hospitals will be
adequately controlled for. Traditional estimation procedures such as OLS, which is used
for example in multiple regression, are inapplicable because of the existence of a non-
zero intra-hospital correlation, resulting from the presence of more than one residual term
in the model.

We use a multilevel modeling technology to estimate costs for patienfs diagnosed
with acute myocardial infarction as they relate to both patient and hospital level
characteristics. Patients transferred to a short-term hospital, as well as other transfers,
including skilled nursing facilities (SNF), intermediate care, home health care have
incomplete total charges and length of stay so they will be treated as censored. In our
working data set 32% of the discharges are censored. Selection probabilities from the
censored sample of event times are estimated using parametric estimators of the
censoring distribution. We then estimate total charges at the median LOS for specific
covariate profiles. Our method accounts for the existence of a non-zero intra-hospital
correlation, censoring and skewness of total charges.

In the concluding Chapter 4 we outline some extensions of our work particularly
to estimation of summary measures in CEA such as the CER, net health benefit (NHB) or
cost (NHC), net present value (NPV), life-expectancy (LE) and quality-adjusted life years

(QALY).
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CHAPTER 1

ESTIMATING MEDICAL COSTS FROM A

TRANSITION MODEL

Economic evaluations of health care interventions are increasingly important in an
era of constrained health care budgets. As policymakers seek to prioritize health care
expenditures, an accurate assessment of costs and health benefits of competing
interventions and treatments is critical in informing resource allocation decisions in
health care.

A multi-state model is defined as a model for a stochastic-process, which at any
time occupies one of a set of discrete states. The states can describe conditions like
healthy, diseased, diseased with complications and dead. When an intervention is
deployed costs are incurred in random amounts at random points in time. Typically these
costs are associated with health states that a patient might visit in the course of the
intervention, and the different lengths of time spent in each state. The probabilistic
mechanism that governs transition between these states and the distribution sojourn times
in health states vary at the individual level depending on patient specific demographic

and clinical characteristics.

13



The main themes of this chapter are arranged as follows. In section 1.1 we
provide a description of patient history as the unfolding in time of a finite state stochastic
process. A non-homogeneous Markov process describes the probabilistic mechanisms
that govern transitions between states. Following Andersen et al (1993)* we account for
heterogeneity across patients by semiparametric modeling of the transition intensities of
the process through patient-specific covariates. We then describe how costs are
incorporated into this framework. We consider two types of costs, costs while sojourning
in a health state and costs incurred at transitions between health states. Net present values
of all expenditures incurred over a finite time horizon are then defined and have
mathematical forms that depend on the underlying transition probabilities and intensities.
We will write each term of these mathematical forms as sum of independent and

identically distributed variables. Conditional on the initial state i, given the vector Z of

basic covariates, we will assess the asymptotic normality of the net present value of all

expenditures associated with the k to j transitions in (0,¢], i.e. the asymptotic distribution

of
n' NPV, (110, 2) - NPV (], 20))

using the Functional Delta Method.

1.1 A Markov model for describing patient health histories

Let (R, F,P) aprobability space and let { X (z), te T} with T =[0,7],, a non-

homogeneous continuous time Markov process with finite state space E ={1,2,...,k},

14



having transition probabilities B,j (s,t) and transition intensities Q; (1). This Markov

process describes the evolution of one patient’s health history, with X (¢) the patient

health state occupied at time ¢. Typically E consists of several transient states, such as

“well”, “illI”, “recovery”, “relapse”, and one or more absorbing states such as “disabled”

or “dead”. Let & = (a;),h, j€ {1,2,...,k} be the matrix of these transition intensities,

o, (1)=lmP[X (t+At) = j]X(t)=h]/At, Jj#h
Y arlo

andq,, = —Z @, - Thus, starting from the time of entry into state h, the sojourn times in
Jj*h

the given state h are continuously distributed, with hazard rate function —¢,, . Given that

the process jumps out of state & at time ¢, it jumps into state j # h with probability
ahj /"‘ahh .

Let 4, (1) = [ ), (s)ds and 4, ==Y Ay, . For h# j the function A, is called
Jj#h

the integrated intensity function for transitions from state h to state j, whereas A, is
called the negative integrated intensity function for transitions out of state h. The matrix
A=(Ay,h, je{l,2,...k}) is also called the intensity measure of the Markov process X.
Hereafter integrated intensity functions Ay;,h, j€ {1,2,...,k } are supposed continuous,

unless otherwise mentioned. Let

P(s,t)= ] (I+dA) for s<t,s,1€ T .
(s1]

The matrix P(s,?) = (P,,j(s,t).h,je {1,2,...,k})is the k xk transition matrix of the

Markov process.
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FIGURE 1.1: Transition diagram for a multi-state Markov model
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To incorporate heterogeneity between patients we let the transition intensities

depend on a covariate vector z(¢) through a Cox regression model

ay; (1| 2(1)) = a0 (1) exp( Bz, (1))
with one vector of regression coefficients f=(8,,5,,... ,Bp) and type-specific covariate
Zy )= (z,,j1 (1), Znj2 (t),...,z,,jp (1)) computed from the vector z(t) of basic covariates,
consistent with the results of Chapter VII in Andersen et al®. Technically, z y (1) are

everywhere assumed to be predictable and locally bounded, but precise assumptions will
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be presented later in Section 1.3 of this chapter. Let A, (1) = J;ahjo(s)ds be the

integrated baseline intensity for transitions from state 4 to state j and A, = —Z Ayjo-
Jj#h

Associated with X is a counting process N, (#) which denotes the number of direct

transitions from state A4 to j in the time interval [0, 7],

Ny () =#{s<t:X(s-)=h,X(s)=j},h#j.
The cumulative information revealed up to time ¢ is the sigma-algebra J#, generated by
X(0) and {N,;(s),s<t,h# j,h, je E}. Introduce the indicator function
Y, (1) =[X (t-) = h] to denote whether the process is in state h just prior to time ¢. Then
with respect to the filtration {_#, :1 20} : ¢ 2 0}, the multivariate counting process
N = {N,,j,h # j} has random intensity process {zlhj,h # j,h, je E},

where /I,,j (1) = o (1)Y,, (1) . Moreover,

My 1) =Ny ()= [ Y,y @)du, h# j.h, j€E

are zero mean local square integrable martingales. These results were first proved by

Jacobsen (1982)5 5 and are summarized in Theorem I1.6.8, p94, Andersen ez al. (1993)25 .

Using the continuity of A;;,h, j€ {1,2,...,k}, it can be shown that (M ;.M ) =0 for all

pairs (h, j) and (g, r) with (h, j)# (q. r). Here we denote by (M ,M") the predictable

covariation process of M and M. In our absolutely continuous case with transition

intensities ay, and A,,j (1) = j;a,,i (s)ds , we say that the multivariate counting process N

has intensity A =(4,;,h# j), with 4, (1) =Y, (1)a; (2).
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1.1.1 Marked point processes

Over the follow up period the subject transits to other health states, X, X,,...at
random times 7,,T,,... and these transition or epoch times {7, :n 20} and health states
{ X, :n 20} describe the event history of each patient. Formally, these are defined in
terms of the forward recurrence time W (t)=inf{s >0:X (t+s)# X (1)}, which is the
waiting time from ¢ until the next transition out of the state X (¢) . Having
set Xy = X (0),T, =0, W (o) =0, we define for all n 2 0:

T, =T,+W(T,) with X, = X(T,,)if T,

n+l <° and Xn+l =Xn if n+l =2

The sojourn at the nth transition is W(T,, ) in state X, . The survival model is an example

of a two-state process with a single transient state “alive” and a single absorbing state

“dead” with survival time T =T, and T, = oo for n > 2. The multi-state analog of survival
time is the time to absorption in state k given by 7z, =inf{t>0:X (¢) =k}.
Suppose that R, is a general mark corresponding to 7, and we define the marked

point process

N(t,A)=) [T, <t,R, € A]

n2l1

where A is a subset in the range of the R, . For our case we could think of
R, =(X,_;,X,) with values in R={(h, j):h, je E,h# j}. Our previously described
counting process N,,j (t) can be identified with N(z,A) by taking A={h, j}. The natural

filtration %, is generated by{N(s,A):0<s<t,ACR}.

18



We also have™
F =0{N(s,A):0<s<t,ACR}=0{(T,,X,):0<T, <t}.
We can endow R with an appropriate o -field and regard A — N (¢, A) foreachtasa

random measure, and ¢t — N (¢, A) as a counting process foreach A. { #,,t20}isa

right-continuous filtration and #_ = a‘(U #,), where #,=0(X(0),2).

120

For a stopping time T with respect to %, ,t 20 we define

Fr={Be F:BN[T <tle F forall t}

Fr_={BN[T>1]:t20, Be A}
Wehave 7_=/7 forall T, <t<T, and

f'rn=a'{(Tk,Xk):lSkSn},

Fro=0{(T, X ):1<sk<n-LT.}.
We have also Y, (1) =[X,_, =h] for te (T,_,,T,]. Then with respect to the filtration
{#;:120}the compensator A, (¢) of the process N,;(r) is given by

PlV,edu,X,=j|F 1]
Ay (dr)= > [X,, =h] on
P[Vn2u|an_‘]

where V, =T, —T,_, and u =1-T,_, is the duration of the current sojourn at time 1.

Our Markov assumption gives

Ayi(an)=[X, =hIPIT, €lt,t+dt), X, = j|T, . X, 1=[X,., =hla,()dr,

for te (T,_,,T,].
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1.1.2 Incorporating censoring

If observation of X is ceased after some random time U, independent of X, we will

need to replace N, (1) by the censored process
N,fj(t)=#{sStAU:X(s—)=h,X(s)=j},h¢jand
Y, (t) by Y, (1)=[X(t-)=h,U 21].

Then, with respect to an expanded filtration the aforementioned martingale

property still obtains. For the ith patient we observe a basic covariate z;(¢), an initial

state X; (0), the state indicator Y,; (1) =[X; (=) =h,U,; 21] and N,fﬁ (1), the number of

n
event transition times before ¢ from state h to j.Let ¥, (¢)= ZY,,‘, (t) the number of

i=l

subjects who were not censored at time ¢ and just before ¢ were in state h
n

and Nj; (£) =" Np (1).
i=l

In terms of marked-point processes we define the marked point process

N (1,A) =Z[T,l <tAU,R, € A] where A is a subset in the range of the R, . Our

n2l1

previously described counting process Ny; (¢) can be identified with N(z,A) by
taking A = {h, j}. The natural filtration A is A =0{N°(s,A):0<s<t,ACR}
=0{(T,,X,):0<T, <tAU}.

With respect to the filtration {.#:1 20} the compensator Ay (7) of the

multivariate counting process Nj; (¢) is given by
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) PlV,€du,X, =jT, <U|F ]
Ay (dr) = ey (Xam =h]
PV, 2u,T,  SU|F ]

on t€ (T, ,,T,]. Equivalently, the processes M; defined by M;; = N;; — A} are

martingales.
We assume that the censoring variable, U, is independent of everything else in the

model. Then

PIV,edu,X, = j.T, <U|F 1
Zj(dt)z ! l CI Lo [Xn—l=h]=
PV, 2u,T,, SU|Ff ]

_G(T,)PIV,€du,X, = j|T, X, ]
G(Tn—l )P[Vn 2u ITn—l ’ Xn—l ]

(X, =h]=A,;(dt)

and N ,fj (¢) has the same compensator as N hj (1) . Therefore conform to the Definition

I11.2.1 in Andersen et al. (1993)%, the right-censoring of the process N generated by U is
independent.

In the sequel we will assume that censoring has been accommodated in this way.
Next we will incorporate costs in the model, the assumption of independence of costs of
everything else in the model is often violated, for example the longer the length of stay in
the hospital, the higher the costs. We will incorporate censoring without assuming

independence.
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1.2 Incorporating costs in the Markov model

As previously mentioned, we consider two types of costs that might be incurred in
the course of follow-up: costs at transition between health states and costs of sojourns in
a particular health state.

Suppose an amount C,; (¢) is incurred just after time ¢ if a transition 4 to j takes
place at time . The present value of expenditures in (0,¢] associated with these
transitions is

(1 -
i (1) = Ee " Cy ()N, (s),

where r is the discount rate. In economic studies expenditures to be incurred in the future
are discounted to present value. A dollar spent now is worth more than a dollar that
would be spent later. The discount rates used for the US have usually been between 3%
and 5% per year, reflecting the rates on savings accounts or certificates of deposit.

Let Z, be a given fixed vector of basic covariates. The p-dimensional vectors
Z,;, of type-specific covariates are computed from the vector Z, reflecting that some of

these basic covariates may affect the different transition intensities differently.

Conditional on the initial state, given the vector Z, of basic covariates with the

corresponding type-specific covariates Z,;, ., the mean of this present value is:

T _ry .
NPV, (1]i,2y) = E(C}) (1)| Xo =i, Zy) = E(joe Cy (8)dN,,; ()| Xo =i.Zp).

We assume that:

22



Al C);(.) are bounded, non-negative processes over 7 , adapted to { #,:1€ T },
left continuous with right hand limits (so C i () are bounded, predictable processes).

A2 For 1€ (0,7],

E(Cy(D)| Xo=i,X(1—)= h,.ZO) =E(Cy ()| X(-)=h,Z,),
so that at any ¢ > 0 the expected transition costs do not depend on the initial health state.

It is known that if N is a counting process with intensity process A, M =N — I/I
and H is locally bounded and predictable, then M and I HdM are local square integrable

martingales, with E(M )=E ( IHdM ) =0 (see Proposition I1.4.1, p70, Andersen et al
(1993)). Then, by assumption Al,
NPV (1]0.Z0) = E([ 7" Cyy (5) Ay (5)ds| Xo =i, Z0) =
= E([ e7"Cyy (9)Y, (5)a; (s)ds| X =1.Z,).
By Fubini’s Theorem:
NPV, (1]i.Zy) = [;e"’E(Chj(s)Yh(s)|X(0)=i,Zo)a,,j(s)ds.
We can write

E(Cy; ()Y, (5)| Xo =i.Zy) = E(Cy; (5)| Xo =i, X (s=) = h,Zg)P(X (s=) = h| Xy =i,Zp).

By assumption A2, NPV,fj” (t]i,Zy)has the form

NPVD (ti,2) = [ 7" cy; (s12Z0)P4 (0,51 Zg)ay (s)ds, (L.1)

where c,; (s]Zy) = E(Cy; (s)| X (s=) = h,Zp).



We now turn to the cost of sojourns in a health state. Suppose that the cost in state

h is incurred at the rate B, (u) at time u. The observed rate is zero at time u whenever,
just before u, the patient is not in state 4 anymore, so [X (u-)= h] =0. Then the observed

present value of all expenditures in state A, started at time s and ended after the duration

time d is given by
+d
CP(s,d)= [ & ™ By ()Y, (w)du,

where r is the discount rate and ¥, (1) =[ X (u-) = h].

Conditional on the initial state, given the vector Z, of basic covariates, the mean
of this present value is

NPV (s,d |i,Zy) = E(CP (s,d)| Xy =i,Zy) =

= [ E(B, (W)Y, ()] Xo =1,2y)du

Conditions similar to A1 and A2 are assumed for B, (.) :

A3 B, (.) are bounded, non-negative real stochastic processes over[0,7],
adapted to (7).

A4 EB,(u)| Xy=i,X(u-)=h,Z))=E(B,(u)| X(u-)=h,Z,) forall
uel0,7].

Denote b, (u|Z,)=E(B,(u)| X(u-)=h,Z,). We can write

E(B,(w)Y, ()| Xy =i,Zo) = E(B, (u)| X (u=)=h, X, =i,Zy)P(X (u=) = h| X, =i,Z,).

By assumption A4:
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S+
s

NPV,fz)(s,d|i,Zo)=I de'mbh(u|Zo)Eh(0,u|Zo)du (1.2)
The right hand side of (1.1) may be interpreted intuitively as follows. Starting at
s=0 in state i, a patient is in state h at time s with probability P, (0,s| Z,) . Conditional on
being in state A just prior to s, suppose a transition to state j occurs at s with intensity
a, (s | Z,,) and this transition incurs a cost. Then (1.1) is the NPV for all h—; transition
costs in [0, ¢]. Similarly, for the right hand of (1.2) consider the cost of sojourn in state h
in the interval (s, s+ds]. This is b, (s| Z,)ds, conditional on reaching state h at s. To

incur this cost a patient must move from the initial state i to 4 by time s, with

probability P, (0,s|Z,). So (1.2) is the NPV of the total sojourn cost in state h in [0, 7].

Suppose costs potentially accrue up to a fixed time horizon 7z for sojourns in, and
transitions among the transient states. If k is the only absorbing state costs would cease at

the absorption time 7, =inf{z >0:X (+) =k} or 7 whichever is observed first. The net

present value of all expenditures is

NPV(i,Z0)= Y [ €7 ¢, (s 20) @, (51 29) By (0,5] Zo)ds +
h# j

+ 2 [ e, (5126) By (0,51 Z)ds (1.3)
h

where the dependence on the initial state X, =i and the covariate profile is shown. The
unconditional version is obtained by averaging over the initial distribution
7;(0|Zy)=P(X, = j|Z,) which yields

NPV (Z,) =) 7,(0|Zy)NPV (i, Z,).
€E
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Comments

In the absence of covariates, the quantities (1.1) and (1.2) are ubiquitous in the

insurance and actuarial literature?® where Chj (t) is an assurance amount paid to the
insured upon transition at time ¢ from the insurance policy state  to state j. Then
C i(ul) (2) is the discounted value (at time 0) of all assurance benefits received in [0, #] for

transitions & — j and (1.1) is its corresponding actuarial value given X, =i. Likewise,

B, (1) is the annuity payment rate at time ¢ in policy state h, C,‘,z) (2)1is the discounted

value (at time 0) of all annuity payments received in [0, #] while the insured is in policy

state h and (1.2) is its associated actuarial value. Usually C hj (¢) and By, (¢) are known non-
random functions and one is interested in the total payment function

Z he C ,(ul) 1)+ Z N C,(,z) (2) . In this context Praestgaard (1991)2600nsiders the estimation

of (1.1) and (1.2) using a framework very similar to that we have described.
However, because costs are incurred in random amounts at random points in time

during the course of a health care intervention the average expense functions b, (1|z)
and cy; (t|z) are no longer known and need to be estimated from appropriate data along

with the transition probabilities B,; (0,7|Z,) and integrated transition functions

Ay (t]Z5)= gahj (s|Z,)ds . For easiness of notations we will assume the discount rate

is null, i.e. » =0, unless otherwise specified.
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Insights into assumption A1

The assumption A1: C,; () are bounded, non-negative processes over 7 ,
adapted to { #,:t€ T }, left continuous with right hand limits (so C}; (.) are bounded,
predictable processes) is not as naive as it seems. Without it we would have to extend the
observed history at time 7 to f; , the minimal o -field generated by .7, and

0{Cy;(s):s<t,h# j, h, je E}. With respect to this new o -field one should wonder

whether the compensator A hj (z) of the process N hj (t) can be estimated in the same way
etc.

Some insights into assumption A1 can be gained by viewing the cost C, as a
mark associated with the transition time 7, and describing the underlying process as a
marked point process. Suppose that R, is a general mark corresponding to 7, and we

define the marked point process

N(t,A)=) [T, <t,R, € Al

n21
where A is a subset in the range of the R, . For our case we could think of
R, =(X X, ,C,) with values in R={(h, j,c):h, jJEE, h# j,c>O0}. Our previously

n-1°

described counting process N, (t) can be identified with N(z,A) by

taking A = {h, j,(0,%)}. The natural filtration f; is generated
by{N(s,A):0<s<t,AcR}. We can endow R with an appropriate o -field and regard

A— N(z,A) for each t as a random measure, and ¢t — N (¢, A) as a counting process for
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each A. Moreover with respect to{f:.t 20} the compensator f\(t,A) of N(z,A) is given

by

-T,.. dF,(u,A)

—2 2 ue(0,T,-T,.
1- F, (u-,R) (0., =Tyt

A, ) =AT, 4+ [

where F, (u, A) is the conditional distribution F, (u,A)=P[T,-T,_, <u,R, € A| f:T,,_, ]

and 7 =0{(T;.R;):1< j<n-1}.For t€ (T,,,T,] wehave

dF,(u,A) dF,(u,R)
dF,(u,R) 1-F,(u—,R)

dA(1,A) =

where u =t-T,_, is the duration of the current sojourn at time ¢. The first term

dF, (u,A)

can be interpreted as the conditional probability of R, € A given . and
dF, (u,R) "l

dF, (u,R)
1-F, (u-,R

T -T is the conditional hazard rate for the

w —T,_, =u.The second term

sojourn T,, —T,_, given .7:}"_l .
In the case of interest R, =(X,_,,X,,C,). Then writing V, =T, -T, _, and

taking A={h, j,(y,y+dy]}we can express

dF, (u,A) _ _ ) . o

an(u,R)__[Xn-l =h)P[C,e dy|V, =u,X, = j,Fr 1P[X,=j|V,=u,Fp ]
and

_dF,@R) o PV, Edul Ty )

I-F,w=R) " PV, 2u|F ]

sothaton te (7,_,,T,] and recalling that u =¢-T, _,,
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A(d A)=P[C,ed | =u,X =j j' ] [ ‘ - Jl ~T l][ =h] (1.4)
1, n € Vn u,xXx, , = = Xn- 1]. 4
Y J T P[Vn >_ulf};_1] l

With respect to the filtration {.#,:# 2 0}the compensator A wi (1) of the process N p (1) 18

given by

PIV,cdu,X,=j|F ]
=rX, ,=h]  on te(T,,.T,]. (1.5)
PV, 2u| ;. ]

Ay (dr) =

Now f}n_l =a{(Tj,Xj,Cj):an—l}whereasz"_l =a{(Tj,Xj):an—l}.It is

reasonable to assume that

(T,,X,)is independent of {Cj :j<n-1} given]-}"_l ,

or, at least that

{C;:j<n-1}is .7:}"_1 -measurable.
If (T,, X, )is independent of {Cj :j<n-1} then

PV, €du,X,=j|F 1]
T x| =h]=
PV, 2u|F; ]

PV, edu,X, =j| %, {C;.jsn-1}]
PV, 2u| F_ {C;j<n-1}]

[X,,..l =h]=

PlV,€du,X,=j|F ]
= =X, =h1= Ay (dD).
PV, 2u| 7 ]

Since a similar conclusion can be found if we suppose {C;:j<n -1} is .FTH -

measurable (i.e. '7:T,. L= .7:} . ) in any of these two cases (1.5) coincides with the second

term in(1.4). Moreover, our Markov assumption makes

Ay, (d)=[X,_, = h]ahj (t)de, te (T,_,,T,]. Infact taking A={h, j,(0,o0]} we get
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Ay (dt)=E[A(dt,A)| F,_]. Also .7-:, is the minimal o -field generated by F,
and o {C},; (s)AN,;(s):s<t, h# j, h, j € E}. The first term in (1.4) is the distribution of
the cost C, conditional on the past .73}" _, » the destination state X, = j and the transition

time7, =t.

With A={h, j,[y,y+dy)} the cost incurred in [¢, ¢ +dI) is
[ N (@, 4)= Gy (08N, (1)
and therefore the present value of costs incurred in [0,¢]due to transitions of the type
h—j is
CiP (1) = J;e"’ j:"yN(ds,A) .
Ignoring discounting C,(,}) (1) = J; _[;vyN(ds, A).
Let Z, a fixed covariate profile. Then using the martingale property of N(t,4),

the conditional expectation of this net present value given X, =i,Z; is
E(CY (1) Xy =1,Z0)=E( [ e [ yN(ds, 4)| X, =1,Z,) =
=E(I(;e'” [ yAw@s, 4)| Xy =1,2,).
Using (1.4), E(C}(1)| Xy =i,Z,) becomes
E(j:e"‘ jo‘”yp[c,, edy|V, =u,X, = j,Fr 1X, =hlay(s)ds| X, =i,Z)=

=j;e"’E(J':yP[c,, edy|V, =u, X, = j,Fp WX, =h1| Xo =i,Z4) (5] Zg)ds.
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With our previous notations, C,, (s)=[X,_, =h] E)’P[Cn edy|V,=u,X, = j,]-’rn_l ].
Then
E(C,) ()| Xy =i,Zy)=

J;e"-"E(c,,j(sn X (s=)=h,Xo =i,Zy) P, (0,5]|Zg)a; (s Z,)ds.

By A2, E([ [“yN@s,A)|X(0)=i) = [ "¢, (5] Z5) B, (0,51 Zy)y; (5| Zg)ds which

is the same formula as (1.1), where ¢, (1) = E(C,, ™) X@-)=h).
We will estimate A;;(1|Z,)and B, (s,t|Z,) from a Cox proportional hazards

model for multiple states and c;, (s|Z,) from a random-effects model. Putting

A
everything together we are able to compute NPVh(j” (t|i,Z,) an estimator of

NPVh(j') (t|i,Zy) and show asymptotic properties for the derived estimator.

1.3 Estimation of transition probabilities

We now turn to the estimation of (1.1) and (1.2), focusing on the former.
Andersen et al (1993)* pioneered an elegant asymptotic theory for estimators of /3,

Ay (t|Zy)and B (s,1| Z,) . For each of n patients in a study we observe processes of the

type described. For the ith patient the basic covariate vector is z; (¢) , the initial
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state X; (0), the state indicator Y,; (1) =[X,;(t=)=h, U; 2¢t] and
N,,j,-(t)=#{sStAU,- X (s-)=hX;(s)=j,},h=].
Conditionally on { z;, X, (0):i=1,...,n } assume the processes { X;(t):te T }
are independent and that the Cox regression model a, (r|z() = Qo (r)exp( ,H'z,,j (1))
described in Section 1.1 holds for each individual with the same baseline intensities, i.e.
@y (t]2; (1)) = @y (1) exp(B2,; (1))

forall i=1,...,n. From now on denote by N, (r)and Y, (¢) respectively, the aggregated

n n
processes ZNhji (1) and ZY,". (1).

i=1 i=1
The following standard notation will be used.

For any h

o J,(1)=[Y,(1)#0], 1-J,(1)=[Y, (1) =0]=[D_ ¥, (1) = 0] =[¥; (1) = 0,Vi]

i=l

For h# j:
o 2, (D" =2, ()2} (1), if m=2;

o 2,;(1)®" =2,;(¢) if m=1and z,; (1)®*"=1if m=0;
o 8,7 (1.8)= Y, ()2, (1)°" exp(Bz,; (1), me{0,1,2};
i=]

o Ey@.B)=S,1.p)NS) t.B);

o V,(t.B)=57.B)S,) .8 -Eyt,)%;

o 1,8)=Y [[Viyw,B)dNy () with Ny =Y Ny ;
i=l

h# j
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o sy (1.8) = E[Y, ()2, ()" exp(B'zy;, (1)), me(0,1,2};
o et,B)=5,@.B)s)1.8);
o v t.B) =57 (t.B)s) (0. B) ey

o A,,j (t|Zy) = A,,jo (z, ﬁ )exp( ,B’Z,,jo) where the maximum likelihood estimator

A

B is defined as the solution of the equation U (7, f) =0 where

n k
ULB=Y Y [z W)~ Ey (u, HdNy; (w)
i=1 h, j=I
h#j

o X(1,B8)= z _‘;th (u,ﬂ)sf,f) u, B)jo(u)du, px p nonrandom matrix does
h# j

not epend on n.
The following assumptions will be adopted throughout this chapter. Although not

all conditions are needed for every result, we state them all to avoid too many technical

distractions in the theorems. We denote by " . || the supremum norm of a vector or a
matrix, e.g. the norm of a vector a =(q;) or a matrix A =(a;) is ||a||=sup; | ; | and
| A ||=sup; j | a;; |, respectively. Convergence in probability and weak convergence are

always as n tends to infinity.

Model Assumptions and Conditions:

AS Conditional on z; (), U, is independent of X;(.);
A6 (N;(.),Y;(.),z;(1)),1<i < n are independent identically distributed;

For h# j:
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T
AT Ayo(0)= [ ayo()di <o,

> (0)
A8 z, = X(1,B)= Z .Ev"/ (u, ,B)sh (u, B)ay,o (1)du is positive definite.

noltation
h#j

o]
There exist a compact neighborhood & of £, with f€ & (the interior of 5 ),

and scalar, p-vector and p X p matrix functions s(o), sVand s(z), h # j, defined on
p pxXp B * Shj hj J

[0,7]x & such that for me {0,1,2} and h, je{l,....k}, h# j:

A9 sup
(r.BEl0rxBIN

: —Sy B -s0 ﬂ)\

Al10 s,‘u'."’ (.,.) are continuous functions of € & uniformly in 7€ [0,7] and

bounded on [0,7]x &5 ; s,(,o’ (..B) is bounded away from zero on [0,7] and

l)(t ,6’)- 01, 8),s fuz)(t ,6’)— 5 l)(t B) (Asymptotic Regularity Conditions);

—_—
op" ﬂ
A1l There exists ¢ > 0 such that

n"? sup | Z4; (1) | Yy (D[ B'24 (8) > =6 | 2 (1)]1—£—0 (Lindeberg Condition)
h#j.izt

where [a>b]=1 if a>b and zero otherwise;

Conditions A7-A11 are implied in the independent identically distributed case
(i.e. under assumptions AS-A6) by more general conditions as proven by Andersen et al
(1982)5'7 Theorem 4.1. These conditions are: ‘

1. zhﬁ(-) and Y,,j (+) are left continuous processes with right hand limits

processes

2. Ayo(0)= [ @y (n)dr <oo
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3. X, is positive definite
4. P(Y,(1)=1,vte[0,7])>0

5. Elsup¥y (1)]z,, (1) & c:xp(,6~"z,,j1 (1))] <o where the supremum is over
1.p

1€ [0,7] and Be B(S)with B(S)being some neighborhood of the true parameter £.

Although not absolutely necessary, hereafter z,; (.) are considered to be bounded

predictable processes.
The form of the partial likelihood is functionally the same as in the case of the
ordinary survival Cox proportional hazards model. Thus the log-partial likelihood

evaluated at time ¢ (see p483, Andersen et al. ( 1983)25) is:

n k
C.p)=2 3, [[Fr0)-108SY 1.5 [Ny .
W

Since S '(u” (¢, B) is the vector of first partial derivatives of S,(UQ’ (z, B) with respect to 5,

the vector U (¢, B) of partial derivatives of C(z,£) with respect to g is

n k
U@pB)= th [ [ 24 ) - By @, 8) ] dVy; .
h# j

The maximum partial likelihood estimator ,5 of A is defined as the solution of

the likelihood equationU (7, 8) =0. For h# j we estimate Ay (1) by the Nelson-Aalen

estimator
A
Ao (t,B) = LWN;U( u),
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n n
where N, = ZN"J"' Iy (u)= [Yh (u)> 0] Y = ZY;,.- . We use the convention %: 0.

i=1 i=1

Let ;‘nho t.B)= —Z A,U-o (t, ) . Thus the matrix of integrated baseline intensities
jzh

A1) = (A,,jo (t),h, je {lk}) is estimated by
A1, B)= (A;,jo t,B).h, je {lk}) .We define for a fixed covariate profile Z,, (and
corresponding type-specific covariate Z,,) Ahj (t|Zy) = ;&,,jo () exp( ,B'Z,,jo) yh#],

Ahh(tlZO)’:—zAhj(tIZO)‘

j#h
Central to all our proofs is the derivation of asymptotically equivalent
representations of Jn( B - /) and Jn (At |Zy)-A(1]|Z,)) in terms of iid random

variables. By asymptotically equivalence of two quantities is meant convergence in

probability to zero of their difference (and where appropriate, uniformly for ¢ € [0,7]).

We use the next theorem from Andersen et al (1993)%.

Theorem 1 (Theorem VIL.2.1, p497, Andersen et al (1993)%)

Under A5-A11, the probability that the equation U (7, ) =0 has a unique

solution £ tends to one and BL) [ as n—>e.0

The next theorem gives the asymptotic normality of B and an estimator of the

asymptotic covariance:
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Theorem 2 (Theorem VIIL.2.2, p498, Andersen et al (1993)%)

Assume A5-A11. Then n'/? ( B — f) converges in distribution to a zero mean

normal p-dimensional random vector with covariance matrix Z;' and

A - b-v -
n"'I(t,ﬂ)—Z(t,ﬂ)"—P——w.Inpanicu]ar>:, = n'I(r,f) 52, .0

notation

sup
1€(0,7)

Following the proof of Theorem VII.2.2 of Andersen et al (1993)25 we can show

that the (h, j)element, h# j, of the k xk matrix J;(A(I|ZO)—A(IIZO)) is

asymptotically equivalent to exp(S’ Z,0)f X.(,','J)(t)+ X(n)(t)} where
A ’ 74
Xl(;:j) ()= ‘/;(ﬂ—ﬂ) ,[)(Zhjo — €y (“’ﬁ))ahjo (u)du

n )
X\ (1) = J—j'o o (“ﬂ) M, (u).

Here M,; (1)= N, ()= [ Si” (4. B)dAyq (u) and M, (1)=) M, (1), where
i=1

My ()= Ny, ()= [ Y () exp(B2,; ()Mo ().
Let by, (1) = [ (Zyy0 - e}, (. BN @0 (w)du ( px1 vector).
Then X7 (1) =\n(B-B)'b; (1).

We expand both X l(,','j’ and X ;:J) as sums of iid random variables.

We con51derX§;'U) first. Indeed Xé','u) ()= s/_ﬂ—l-‘)—dM,,j( )=

S (. B)
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1
()
J'f’ ’ [S,‘,"’( B) O w.p)

] M;,j(“)'*‘

th] (u) hj (u)

S Faw 9 w.p) o S e 5.8

For easiness of notations we will denote the three terms of the above sum asT, T, T,

dM,; (u)

fﬁ . B)

where T, = ), T, = and

fj;.r,,( )[s“”( 9 s,,°’( 1M

h] (u)

T = J_[,(l IO el T

To reduce the representation of X ;ZJ) as sum of iid variables, under the

assumptions AS - A11 we prove that the first term, T; converges in probability to 0 and

the third term, T; is null. Indeed, if we consider the first term

1
I |= dM,; (u)| <
1T =1 (—J; Jp(u )[S(O)(u 2 S;,O)( /3)] w ()]

S(O)
: IJ; s(‘,’)(u,ﬂ) :‘ L |
<L {7, My (W<
Jn Sy @) 59w, B) j
n
83 (w, B) 1
|£Jh(u)th, (u)[sup]s;,” (u, f) = ————| sup| SOwh)
ust ust S;J)) (u,ﬂ)i—’_——
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1 1 &
Using Central Limit Theorem for— | J, (u)dM,. (u) = —( J, ()M .. (u)),
\/'—1'[; h hj \/; ;J: h hj

(0)
(u,p)
suplsho’(u B)- A | —2-0 (by Assumption A9) and sup|sh°)(u B)l<B<oo

ust n ust

(by Assumption A10) it follows that | T, | —-—0.
The third term, T, is null:

M ,; (u) M ;i (u)
I = J—.g(l T (u)) (0)1 8) \/‘ZL[Y"'(") 0,Vi] (0)] ﬂ)

1 & N ;i (u)
=—J—;-:;j;m,<u) OVJ—(;,)’—

shj u’ ﬂ)
Yh,' (u)exp(ﬂ'zhj,‘ (u))dAhjo (u)

=0
sy (4, )

- [ Y (w)=0,¥i]
i=]

Using M, (u) = Zthi (u) . the second term, T, can be expanded as sum of iid random
i=l

dM . (u dM . (u
variables as T, = L‘ 0) () Z .g O)h"( ) . Therefore we have showed that
Vi 250w f) n 505D w.p)

Xﬁ:} ()= J—Io (0) (u)ﬂ) M,,j (u) is asymptotically equivalent to the sum of iid

dM,;; (u
random variables: Z E O)hj )
=1 (u, ,3)

To obtain the derivation of vVn ( B - ), we use Theorems 1 and 2 stated above.

Consider now Xl‘,','j) ()= s/;(,ﬁ— ﬂ)’b,u- (1), where

b,,j )= L;(Z,,jo — € (u,ﬂ))ahjo(u)du isa pxl1 vector. We have
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a.e. l

a a.e.
Jn(B-8) = TZ(:‘,,B)”’U(T,,B), where by a, = b, we mean a, is asymptotically
n

equivalent to b,. We can write U (7, £) as a sum of independent identically distributed

random variables as in the proof of Theorem 2 (see proof of Theorem VII.2.2 p498,

Andersen et al. (1993)%):

A

predictable, locally bounded processes (p496 Andersen ez al (1993) %).

Consequently,

Jn (A (11 Z0) — A4 (112) = exp(B'Zy0) (XL (1) + X (1)) =

n k

=exp(BZyo) DY [ Hy (@)aM, ) Z(7, Y by (1) +
i=l h,j=I
h# j

1 & thj,' (u)
+— —_—
Jn Eﬂs,‘.,‘-”(u,ﬂ)}

We use:

L'thi (u)thji (u) = _[;%(zhji (u)'Ehj (u,ﬂ))thj,- (u)=
n

-[ %(z,,,-,- ()= (e, BVAM ;) + [ 7‘;(«:,,,- (u, B) - Ey; (u, BYYM ,;, (u).

: S,(,;")(u,ﬂ) (m) P .
Since sup —— 5 (u,)|——0 and Sy (-,-) are uniformly
(u.B)[0,7]x2 n

continuous bounded functions on[0,7]x2 it follows
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n k l
J;U(r,ﬂ)=§ Zl L’H,,j,. (u)dM ,;; (u) where H,,j,.(u)=-ﬁ(z,,ﬁ (u)— E,; (u,B)) are

(1.6)



that  sup |e,(u,B)-E) (u, )| ——0.
(u.fXk[0,7]x2

Therefore E%(% (u,,B)—Ehj (u,ﬂ))thji(u)_i_m and

Z [ Hyi wyam,, (u) = Z L’—l—(z,,j,- (u) - ey; (4, B))AM,;; (u) . Therefore for h # j
Jn

i=1

we have proved the next lemma

Lemma 1
Under the assumptions A5-A11, \/r—z(/i,,j (t|Zy) - Ay (2] Zy ) is asymptotically

equivalent to

n k
exp(,B'Zhjo ){z( Z E%(zhﬁ (u) =€ (usﬂ))thj,' (u))'Z(z',ﬂ)"l b}.j n+

i=l h,j=1
h#j
Z": J; dM,,],(u)
i1 sy (u, ﬂ)

If we denote

n k
SiaT)=2 (Y J: Z/l:(z,.ﬁ (u) - ey (u, B))dM ,; (w))'E(7, B)"' by, (¢) and
i=l :;;71 n

« dM (1)
§2 (1) = hji
i ()= x/—z'[’s;uo)(u B’

then

Jn(Ay (11 Z9) - 44 (1 Zo) = exp(BZ,o (S, (10453 (1)) .0
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Comments

The k? components of $2(.) = (S,(,zh)J (),h, je {lk}) are processes in D[0,7],

the space of real-valued right continuous functions with left-end limits on [0,7]. Equip
D[0,7] with the supremum norm and the o — filed generated by the collection of open
balls, and for product spaces their usual extensions. Regarded as multivariate processes
on (D[O,‘r])"2 , we can establish their weak convergence in the Skorohod topology.

However, because the limiting processes have almost surely continuous paths, the

convergence is true in the supremum norm as well.

Under assumptions AS-A11, the processes {S ,(,2,31 (t),(h, j)€ E} converge weakly

to a process U, (1) (see proof of Theorem VII.2.3, p503, Andersen et al (1993)%). The

limiting distribution of the k xk matrix-valued process S (.) = (S,(,Zh)j ()h, je {lk})

is that of a k x k matrix-valued process U’ (.) = (U;,,j ()h,je {lk}) , where

Uz == U3, and {U;,U- (.).(h, j)e {lk}} is a continuous Gaussian vector
Jjzh

martingale, with

i) U3, (0)=0,
ii) (U3 .Uz, ) =0 for (h, ) # (m,r),(h, j).(m,r)€ E

. by ah'o(u)
ii) <U2hj>(t) = w’?i (I)nm:ion -Eszq)J(u Bo)
j ,

iv) Cov(Usy; (5),Usy; (1)) = @y (s AT)
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The (h, j)-th element of the limit process Uj (r) of S{" (z,7) can be expressed as

ob, . (t), where is a p-dimensional normal random variable (its distribution does not
0™ hj 0 |y

depend on t) with zero mean and covariance matrix X(7, ) and
b,,j (t)= J;;(Z,,jo —€; (u,,B))af,,jo (u)du is a p-dimensional vector depending on t. The

processes U, »j and U, »j are asymptotically independent and the limiting distribution of
Nn(A,(t1Z,)- A, (1] Z,).
exp(B'Z,,0) Uy, (1) + U3y, (1)) (1.7)

has mean zero and variance

exp(28'Zy,0 @y (1) +b,,; (1)'Z(7,8) ' by, (1))} (1.8)

The covariance matrix of (S,(,{,)U (¢,7), S,‘lzh)j (2,7)) can also be computed directly,

using the definitions of s‘j'.") (u,B),m=0,1,2 and the independence of the processes

{X;(),i=1,..,n}. Then

n k
nvar(Sgh (1,7)=Var(}. (Y, J;' (2 () =€ (u, B))AM ;)Y E(7, B) ' by, (1)) =
i=l h,j=1
h# j

n k
=b, (1) Z(z,8) Var(Q (D, [)' (2 () — ey, (u, B))AM () )E(7, B) ' by, (1) =
i=l h,j=1
h# j

n k
=b,, (1) (7, )" Y Var( Y L’ (23 () — ey (u, B))AM ,; (w))) Z(7, B) ' by, (1) =

i=l h,j=1
h# j
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n k r ,

=by, (VZ(@. )Y X EC[ (24 (w) = e (u, BNV, (w)exp( B2y (u)) tyyo (w)du
i=1 h, j=1
h# j

-Z(7, ) 'y (1) =

= by, V(B (T [ (7 . B) -y . Bsty” (w, B) =53y (w, By (. B) +

h# j

+en? (u, B)sy) (u, )0 (u)du)E(z, B) by, (1) =

=nb,,; (1) (7, B) ' E(7, BYE(r, B) ' by, (1) = nb,,; (¢) Z(z, ) ' b, (1) .
For the last equality we use

51(1,2)(“,,3)—9;1,'(u’ﬂ)s(!y(u,ﬂ) s“)(u Bey; (u, ,B)+e 2 (u, ﬁ)s(o’(u B)=

hj

s (1)’
(. 8) wB)
=siy () f'f»( 5% WA wh G f’m wB)

+sh,”(u B)si” (. B)

0)2
sy, B)

s (w, B) = vy (u, B)s; (u, B)

and the definition of X(7,8)= Z j;v,u (u, ,B)sl(uo) (u,ﬂ)afhjo(u)du .
h#j

am,;; (u)

i) &
Also nvar(S(Z) (1,7))= Var(ZL (0):] ;))‘Zl:va'(ﬁsw)(u B)
i= = hj ’

‘Z (L 0)(u >4 <M,; \My;; >(u))=

———E,; (w)exp(B'z,; (u)ay,; (u)du =
i=1 Shj u 18



1 “ ’
= [ G I Wby (=

1
="E_(0) zah,(u)sho)(u B)du = n_E (0) ,U(u)du na),,](t)
Sy (4, P) u,f

Also S”,’, (¢,7) and S, (2 (t) are asymptotically uncorrelated because the martingales
M,;and M, are orthogonal for i # k (by independence over subjects) and for Jj#l (by
continuity of the functions Ayio (1)) Indeed

(t,7),53) (1) =

)
Cov(S nhj

n,hj

=E{[§ ,,Z L’ = (215, ()= €5, (4, MMy, () 27, )by (1)

h#j
FElpes
%Zl [%_ [ @4 ) ey, BNy, ) 2(2, 8y (O [ (0)”’; “ ﬂ))]}—
=—ZE{[ [} @y )€y, (, BYYM ()7, B) by (DI (0)"’; ( ,9))”
=%§E{E[£(zhj,~(u)—ehj (u, B))dM ; (u))'Z(z, B)"' by, (1) {;-;—;%%HS, 1}=
=—ZE{[ [ (24 (0) e (u, BYYAM W)Y E(7. B by (1L [ (0)”’; ( ﬂ))n.

Using d <M;,M; >(u)=Y), (u)exp(ﬂ’zhji (u))@,; (u)du and Fubini Theorem, the

covariance of the two sums becomes
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Cov(Syh; (1,7),8%) (1) =

=—Z JZ (0) (zhji(u)‘ehj(uvﬂ)))'d<th,~,thi>(u))2(1',ﬂ)—]bhj(t)}=

Sp ( u,f

{(J; (o) [ZYh.(u)eXP(ﬂz,,,, ())(zy; ()~ ey (4, B)) 1, (u)du)-

’

Z(7,8)'by (1)} =

=_,[; (o,( 5 ;(,,”(u B)—ey;(u, ,B)sf,o’(u B)E(z,B) ‘bhj(;)=0,

The last integral is null since, by definition, e, (, ) —shjl)(t ﬂ)/s(o) .B).

The variance of A,;, = -Z Ay; can be calculated using formula above. Indeed,
Jj#h

Nn (A, (1] Z) - Ay (1] Zy) =_Z‘/'_1(Ahj (t1Zy)- Ay, (t|Zo)a'=e'

jzh

= =D exp(B'Z, (S, (1,T) + S,‘,z,,’j ).
Jj#h

Using definitions of S'')

nki (1:7),1=1,2 and same arguments, the variance of the last sum

is

n k
Var{- ZCXP(ﬂZ,,,o)[ >0 L’ = (2, 4) =€y, (4, B)dM (W)Y 27, BY 'b, (1) +

Jj#h " i=l h,j=1
hzj

1 & ngh,,(u)
——]}=

+_
\/— =1 S;:) (u ﬂ)
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=Var(—= Z(Zexp(ﬂ Zio) Z L %(2,.,-,- (1) - ey (u, B))AM ;W)Y VE(7, B) ' by, (1) +

i=l j#h h,j=1
h#j

aM ,; (u)

il

Spj (u, ﬂ) )

={) exp(8'Z;;o)by, QI DD exp(S'Z;;0)by; (1)} + 2.exp(28'Zy;, )w;fj OF

Jj#h Jj#h Jj*h

Using these results one also obtains the convergence of
Jn (P(s,t|1Zy)-P(s,t| Zy)). The Aalen -Johansen-estimator of the transition
probabilities is given by

P(s.t1Zy) =] (A+dA(u|Z,)),
(s.1]

this estimate being meaningful as long as A/i,,,, (u|Zy)=-1o0n (s,t]. Here ;\(t |Zy) is

the kxk matrix of elements Ay, (1| Zy) with Ay, (¢]Z) ==Y Ay (1] Z,) . If a transition
Jj*h

occurs at time u, then 1+ d.&(u |z) is the matrix whose (h, j)-th element is

AN, (u)!Y, (u) if h#j and equal to 1= )" AN, ()/Y, (u) if h=j. The properties of
Jj#=h

f’(s,t) follow from those of A as will see below.

It can be shown that

n(P(s,t]Zg) - P(s,1| Zy)) =n( [] A+dA(u|Zo)- [ (A+dA(u]Zy))

s<ust s<ust

is asymptotically equivalent to Jn J;' P(s,u|Z, Yd(A - A)u)P(u,t |Z,).
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Therefore
Jr_z(l‘)(s,z|zo)-P(s,:|zo))a'=e'JZj:P(s,u1zo)d(si,”(u)+sf,2’(u))P(u,z|zo) (1.9)

where we define the matrices S'" (1) = {S*")

@), and 8 (1) ={S (DY, -

n.hj

It follows that
A a.e.
Vn(By,(5,1]Zy)= Py (5,1]Zy)) =

k k.
= V(Y Y [ Py (s.u| Zo)d (S, () + S0, () By (.| Z0) +

g=ll+g

k
+Z£F;g (5,u|Z)d (S, () + Sy () Py (u,1] Zy)}.(1.10)
g=l

Since SV (u)+S'¥

n.gg n.88 (u)=—(ZS,(,2,, (u)+S'Y (u)) we have

n.gl
l2g

~ a.e.
Vn(B, (5,t1Z0)~ By (5,11 Zy)) =

k k
=YY L'eg(s,u|zo)d(5;f;, () + S (W) By, (4,1 Zg) = Py, (u,2| Zy)) (1.11)

.8l
g=ll#g

If we replace ‘") (u) and Sff), (u) by sums of independent identically distributed

n,gl
variables we will get an independent identically distributed representation

forv/n(B, (s.1|Zy) - P, (s.1| Zy)). Here we use

n k
sy =Y [ —jf(zhji<u)—e,y (u, BYYIM,; (u))'E(z, BY " db, (1) and
i= J=
h#j
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th],( )

o) Using Theorem VII.2.3, p503, Andersen et al (1993)25 and
t

ds{ (1) = J-Z

i=l Sh
(1.11), the limiting distribution of \/r—z( P, (s,1|Zy)- P, (s,t| Zy)) is given by the next

theorem.

Theorem 3
Under AS - Al1, \/r-z-(f;,, (s,t|Zy) - Py (s,1| Zy)) converges weakly to

Ulih(sv’|Zo)+U2i;,(5J|ZO), where

Uy (5] Z5) = \/—ZZI' L (5.1] Zo)(By (u,1| Zg) = Py (u,1] Z9))dUSS) (u) and

g=li*g

Uzlh(s IIZO) ‘\/_ZZJ.( (s*u|zo)(l)1h(ust|20) (u ’lZO )dUZgI(u)

g=ll=g

The processes U,;, (s, Zy), Uy (s,1| Z,) are independent. o

Next we calculate the asymptotic covariance function of

n'’? (f’(.s~,t|Zo)—P(s,t|Zo )) . Because S:,,)(t) and S(z,,)(t) are asymptotically

uncorrelated the k% x k2 covariance matrix of (1.9) is the sum of two terms. From (1.6)

the (i, h)-th element of the first term in (1.9) is

n'>(B-BY ) exP(ﬁ,Zglo).[:Eg(s’“Izo)dbgl(u)Plh(“,I|Zo)=’l”2(,3_ﬂ)'aih

gl.g#l

where bg, )= £(Zg,o —€, (u,ﬂ))ag,o (u)du is a p-dimensional vector depending on ¢,
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and a,, = Z exp(ﬂ'Zglo)Eﬁg(s,uIZO)dbg, (u) Py, (u,t| Zy) . Therefore the
g.l.g#l

asymptotic covariance of the (i, h)-th and (g, r)-th elements is a},Z(f, 7)! a,, . In order

to estimate this covariance we replace X(f,7) by n"I(,B,z') and a;, by

Zexp(ﬂ Zyo) [ By (51| Zg)db y () By (1| Z4 ), where

Bg, (1)= L:{Zg/o -E, (uaB)}dﬁglo(u)-

For the second term in (1.9) the asymptotic covariance has the form

J:P'(u,t | Zy)®P(s,u|Z, )Cov(vec(dS(z,,) (w)P(u,t|Z,)®P’(s,u|Zy) . The inner

u)
covariance matrix is expressible as ZZexp(Zﬂ ZglO){veCCgl Hvec Cgl} J"_(O)gi‘;?( ) )
1 g=#l u

where C, is a mxm matrix with (g, /)-th element equal to 1, (g, g)-th element equal to -1,

and all other elements zero to zero. Combined with the previous expression we get a

compact form for the covariance of the first term in (1.9), namely

> Y exp(28° zg,o)J‘ {vecP(s,u| Zy)CyP(u,1] Zy)}-
1 g#l

glO (u)

{vecP(s,u|Z)CoP(u,t| Zp)Y ——— (0, Bom)

Therefore the asymptotic covariance of n'’? (f’(s,t | Zy)—P(s,t]| Z,)) is the sum

of this expression and the covariance matrix of terms a},2(5,7)"" a,, . Chapter VII,

pages 514-515, Andersen et al (1993) gives formulas for estimated covariance of

P, (5.11Z,) and P, (5.1]Z,).
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1.4 Estimation of average transition costs

We are now left with the estimation of Chj (t|Zy) in (1.1). Suppose costs can
potentially be incurred up to earliest of a fixed time 7 or7,, the time to absorption in
state k. If all observation ends at 7 then we are restricted to transitions and their
associated costs that are observed by 7. However, allowing for censoring of follow up at
time U, the period of observation actually does not exceedU A 7 A 7, . We now introduce

some new notations.

Let y,; be the transition costs in the ith patient at the chronologically ordered

transition times?;, j=1,...,n;, where n;=max{j: 1; <U; A7 } is the number of observed

transitions. The cost Yij is observed provided Sij =1 where S;j = [t,j <U; an7], thatis, if the
transition time #; occurs by time 7 and is not censored by timeU;. We denote by y, the
n; X1 vector of costs and by X; a n; X p matrix of covariates. The matrix X; includes

variables that are constant in time, but vary at the patient level, variables that vary with
time but are constant across individuals (e.g., prices of resources), and variables that vary
both between and within patients. For example, the jth row of X; will typically contain
time-constant factors such as age at entry, gender, baseline comorbidity, and variables for

t2 and interactions between time and time-constant variables.

modeling time such asz; ,1;;

We would also include dummies for the transition types h— j.
Consider a random effects (RE) model** given by

y, =X;f+a;1; +u; (1.12)
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where Sis an unknown px1 parameter, 1;the n, X1 vector with all elements equal to 1,
a;an unobserved patient-specific heterogeneity and u;is the n; X1 vector of idiosyncratic
errors. The composite error in isv; =q;1; +u;. where Sis an unknown px1 parameter,
1,the n; x1 vector with all elements equal tol, g;an unobserved patient-specific
heterogeneity and u, is the n; X1 vector of idiosyncratic errors. The composite error in
(1.12) is v; =a;1; +u;. Assume Q, = E(v,v])is positive definite. Note that the

parameter fin (1.12) is unrelated to the regression parameter in the Cox model for the
transition intensities. In this section our notation conforms to standard usage in RE

models.

RE model Assumptions:

RE1 (i) E(u, |X;,q;)=0 and (i) E(q; | X,) =0.
RE2 rank E(X/Q;'X,)=p.
RE3 E(uu;|X;,q)=021, andE(a? |X,) =07,

where 62 and o are constants and I, is the n, xn;identity matrix.

Under RE1 and RE3, E(v;)=0and E(v,v))=Q, =021, +02J, where J; is the
n; xn; matrix with all elements equal to 1. Since E(y; | X;) = X8 we see that estimates
of Chj (1| Z,) for specified transitions (h, j) and Z,, are derivable from the estimates of B

and specification of the X-matrix.
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In the RE model an estimate of fis obtained by minimizing (with respect to )

n
the objective function n'IZq(y,-,Xi) where g(y;,X;)="(y, - X;8)Q; (v, - X, ).

i=1
Condition RE1 suffices to ensure E(X;Q;'v;) = 0. The feasible generalized least squares

(GLS) estimator of fis

Bre = QX107 X)) O XiQly,) (1.13)
i=1

i=l
where ﬁi = 6'3 I+ 0“'3J ; 1s a consistent estimator of £2; derived from suitable consistent
estimators &3 ,o"f of auz ,af respectively. However, (1.13) is implicitly conditional
upon the availability of the sample {(y,,X;): 1<i<n }. The cost y;; is observed
conditional on #; <7. The number of transitions »;is also random and depends on the

length of the observational period and censoring time. Our notation implicitly assumes

conditioning on the n; .

1.4.1 Modification for censoring

As noted earlier, time censoring might lead to incomplete observation of

transition costs. Since y;; and a portion of the jth row of X; are observed only if s; =1,
the estimator in (1.13) needs to be modified to account for this selection. Let s; denote the
diagonal matrix with jthentry s; and t; =(z;;,....t;, )’ . A covariate vector z,is observed

initially which might include some covariates contained in X; that do not depend on the
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transition times. Consider the observable data {(s;,z;): 1<i<n } and assume that
givenz,, the censoring time U, is independent of (¢t;,y,, X, ), that is, censoring is

independent of the transition times and costs. This is a natural assumption with
administrative censoring, in which case the independence is related to the distribution of
entry times of patients in the study.
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