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ABSTRACT

ASSESSING MEDICAL COSTS FROM A LONGITUDINAL MODEL

By

Corina Mihacla Sirbu

The United States spends a larger share of its gross domestic product (GDP) on

health care than any other major industrialized country. Expenditures for health care

represent nearly one-seventh ofthe Nation's GDP, and they continue to be one ofthe

fastest growing components ofthe Federal budget. In 1960, for example, health care

expenditures accounted for about 5 percent ofthe GDP; by 2000, that figure had grown to

more than 13 percent. Although the rate of growth in health care costs slowed somewhat

in the mid-19908, it has once again started to rise at' a rate that exceeds other sectors of

the economy. Thus, identifying methods to accurate estimate health care costs continues

to be a priority for policymakers and public and private payers.

In medical follow up studies incomplete observation due to censoring would

preclude ascertainment of outcomes in some subjects. Standard assumptions used in

survival analysis do not apply to medical costs because the cumulative cost at the

endpoint of interest will generally be correlated with the cumulative cost at the time of

censoring.

We use a dynamic regression model in which costs are incurred in random

amounts at transition times between and during sojourn in health states. A Markov model

describes the unfolding over time of individual patient event histories, with transition



intensities depending on patient specific demographic and clinical characteristics through

a multiplicative intensity model. A random effects model is used for transition and

sojourn costs. We then estimate the net present value of expenditures incurred over a

finite time horizon. While incorporating explanatory variables, the joint model can

accommodate heteroscedasticity, skewness and censoring in cost and health outcome data

and provides a flexible approach to analyses ofhealth care costs and outcomes.

Our transition model can be viewed as an extension ofthe simpler two state

model, case in which we obtain and revise already developed techniques for regression

'
7

analysis ofmedical costs with the focus being on estimation in the presence oftime

censoring that might result in incomplete costs data on some patients. Using the 2000

Nationwide Inpatient Sample data set ofHealth Care Utilization Project we focus on

estimating costs for patients admitted in the hospital with acute myocardial infarction

(AMI), a common high-mortality condition whose outcomes are affected by the process

of care.

Our methods provide flexible approaches to estimating medical costs. Estimates

from cost studies are not only needed to determine the economic burden of disease, to

predict the economic consequences ofnew medical interventions, but also for

comparative purposes such as cost-effectiveness analysis. Other possible extensions of

our methods are in this area.
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INTRODUCTION

Economic evaluations of health care interventions are increasingly important in an

era of constrained health care budgets. As policymakers seek to prioritize health care

expenditures, an accurate assessment of costs and health benefits of competing

interventions and treatments is critical in informing resource allocation decisions in

health care. A recent report1 from the Office of the Actuary at the Center for Medicare

and Medicaid Services projects that the national health expenditures would reach $3.4

trillion in 2013, growing at an average annual rate of 7.3 percent during the forecast

period 2002-2013. As a share of gross domestic product (GDP), health care spending is

projected to reach 18.4 percent by 2013, up from its 2002 level of 14.9 percent. This

demands extraordinary restructuring of the organization and financing of US health

services.

Over the past decade there has been an explosion of research on methodology for

economic evaluations in health care. With increasing availability of large databases on

patient outcomes and costs, statistical methods for comparing outcomes with costs need

to be developed. The field is young, however, and there are many important and

challenging problems that remain unresolved.

In this dissertation we will address several statistical issues with analysis of

medical cost data. We adopt a longitudinal framework in which costs incurred as the

individual level are random quantities associated with events that occur as an individual’s



health history unfolds over time. A Markov process is used to describe the dynamics of

movement of an individual through different health states. Costs are incurred at transition

times, and in sojourn in health states. Total expenditures over a finite period of time is

then defined as an ‘expected value’ called a net present value (NPV). Because individual

characteristics such as demographics (age, gender, race) and clinical factors (treatments,

comorbidities) can influence NPV, we incorporate covariate effects into our model for

estimation of NPV.

Our longitudinal framework provides a natural setting for estimating medical

costs. We will demonstrate how some recent approaches to analysis of costsz'll can be

subsumed into this framework.

Importance of Cost-Effectiveness Analysis

In addition to evidence of clinical effectiveness of treatments, evidence of their

cost-effectiveness has become an important consideration as policy-makers world-wide

face decisions in allocating resources for health care services. In Australia, the

Pharmaceutical Benefits Advisory Committee makes recommendations, based on

effectiveness and cost-effectiveness evidence, on drug products that should be subsidized

and placed in the Pharmaceutical Benefits Scheme”. The National Institute of Clinical

Excellence13 in the UK makes similar requirements for use of new healthcare

technologies in the National Health Service, and in Ontario, Canada, the Drug Benefits

Plan uses economic data when supporting new additions to its formulary”. The

Phenomenal penetration of HMOs into the US health care market has heightened

aWar-eness of cost-effectiveness among providers and consumers of healthcare services.



The US Preventive Services Task Force and the Panel of Cost-Effectiveness in Health

and Medicine have urged consideration of cost-effectiveness in addition to clinical

effectiveness to help inform investment of health care dollars15 .

Measures used in cost-effectiveness analysis

Cost-eflectiveness analysis (CEA) has been promoted as a useful tool in the effort

to prioritize expenditure on health care programs15 . By quantifying the trade-offs between

resources that need to be deployed and health benefits that accrue from use of alternative

interventions, CEA offers guidance in decision-making by structuring comparisons

between these interventions. A cost-identification analysis is often conducted for

treatments and procedures that are believed to be equivalent in their clinical efficacy. For

example, if two competing programs do not differ on average in their health benefits,

then the one with the lower average cost will be preferred. On the other hand, if the costs

of two programs are judged equivalent, the intervention with the greater health benefit

will be preferred. An intervention that delivers higher benefit at lower cost than its

competitor is said to be dominant. A decision has to be made when one program has both

higher cost and greater benefit than does its competitor. Is there a critical value below

which society would consider the more costly intervention still “cost-effective”? In this

situation, the cost-effectiveness ratio (CER) becomes a useful summary statistic for

ranking competing interventions. It is the ratio of the incremental cost relative to the

incremental benefit. With costs measured in dollars and health benefits measured in their

natural units such as life expectancy, number of lives saved, or preferably quality-

adjusted life years (QALYs), the CER is stated in dollars per unit of effectiveness. In

 

 



CEAs conducted with a societal perspective that accounts for all costs of the

interventions, whether borne by the recipient of care, the provider or the insurer, the

critical value of a CER is the upper limit of what society is willing to pay for an

additional unit of health benefit.

Other summary statistics used in CEA are the net health benefit (NHB) or net

health cost (NHC)”’. Suppose the incremental health benefit is monetized using a value

for each additional unit of health benefit. This could be the upper limit of the CER as

judged by what society is willing to pay for adopting the competing intervention. The

NHC, expressed in dollars, is the difference between the incremental cost and the

monetized incremental benefit. The net health benefit can be defined in an entirely

analogous manner, and would be expressed in units of effectiveness. Many researchers

have pointed out that the CER has undesirable properties that make its use in decision

making problematic.

Analysis of medical costs

Incomplete data are likely to arise in longitudinal studies, because patient follow

up will not be complete in all subjects. In survival analysis, censoring occurs when the

time to event variable T is not observed in some individuals because a censoring event

occurs first at time U, that is U < T. Most survival analysis models assume T, U ‘

independent, or, when covariates z are present, that conditionally on 2, T and U are

independent. This is the usual random censorship model. With accumulating costs this

assumption is untenable. If y(t) is the accumulated cost up to time t, then y(T) and



y(U ) are generally correlated. Therefore analyzing costs by traditional survival analysis

techniques is not possible.

In this dissertation, we first consider the situation in which a single cost variable y

is observed together with covariate information 2 in a sample of subjects. In our general

framework costs can potentially be accrued over a fixed time period [0, 2'] with

expenditure terminating at some event time T so that complete cost observatiOn occurs if

a patient is followed through time T’ = rnin(T, 7). Suppose y(t) is a right-continuous

process that represents the cumulative cost up to time t (including time t) for a typical

patient in the population under study. If lifetime cost is of interest then Tdenotes survival

time. Since costs do not accumulate after T, y(t) = y(T) for all t 2 T. The cumulative

cost y(r) at time 2' is the principal random variable of interest, so inference focuses on

the mean cost, ,u = E( y(T)) = E( y(T' )). With lifetime medical cost, the cumulative cost

is y(T) and estimating the average E( y(T)) is of interest.

Because of possible censoring at time U, y(T) is not observed if T > U . If this is

the case we observe y(U). A simple sample average of the observed costs in the patient

sample would underestimate the true expected medical cost for the treatment under study.

Also using the average in the sub—sample of patients with complete costs would be

inefficient.

Even if complete costs were available, standard regression techniques for

assessing the influence of covariates on costs can not be directly applied. Cost data are

often very skewed, usually to the right. They also exhibit considerable heterogeneity

across patients. Standard assumptions used in ordinary least squares (OLS) for example

can not be applied. To mitigate the effects of skewness, the log—transformation of costs



might be considered. However, this too has adherents and non-adherents as explained in

Manning (2001)”. Even if a transformation were feasible, a retransforrnation would be

needed to obtain estimates of mean costs (and other statistics) across specified covariate

profiles: retransforrnation itself presents some methodological challenges18'2'.

Extreme form of skewness occurs in cost data when proportion of subjects in the

sample have zero costs. For example if we examine costs of office visits to a doctor or

other health professional in the year 2000, 20% of adults 18 years of age and over did not

make any office visit22 and therefore incurred zero expense. This creates a 2-part

distribution for costs, one part for the sub-population with an expense, and the second

part for those without. These groups differ considerably in their demographic

characteristics and medical history. In a two-part model, one has a model for the

likelihood of expense, for example, a probit or logit model for P( y > 0 | z) , where z is a

vector of covariates, and then a second model for E(g( y)| y > 0,z), where g is a

transformation, such as the logarithmic. Debate continues on the proper analysis of the

two-part models and comparisons to other models such as the Heckman model and

sample selection modelsB’ 24.

Cox regression has been the mainstay for analysis of censored time to event data.

However using this method directly with costs is not possible. As noted earlier, cost at

censoring time and cost at event time are correlated. In this dissertation we maintain the

traditional use of Cox regression for time to event analysis. It is used to model covariate

effects on the transition intensities as patients move from one health state to another. We

then combine this with a linear mixed effects model for costs (incurred at transition times



or sojourn in states) conditional on event times. Finally we derive estimators of NPV

given a covariate profile and develop the asymptotic theory of these estimators.

A transition model for analysis of medical costs: Outline of Dissertation

When an intervention is deployed costs are incurred in random amounts at

random points in time. Typically these costs are associated with health states that a

patient might visit in the course of the intervention, and the different lengths of time spent

in each state. The probabilistic mechanism that governs transition between these states

and the distribution sojourn times in health states vary at the individual level depending

on patient specific demographic and clinical characteristics. This thesis concerns the

development of new statistical methodologies for estimating medical costs with censored

data in both this multiple states setting and the two-state case.

In Chapter 1 we describe the evolution of a patient’s health as the unfolding in

time of a finite state stochastic process. A non-homogeneous Markov

process X = { X(t) :IE 7'} with finite state space E = {l,2,...,k} , provides a natural

setting to describe the probabilistic mechanisms that govern transitions between states,

where X (t) is the patient status or health state occupied at time t e T = [0,2'], and 1's 00.

Transition probabilities are denoted by PM (s,t) and transition intensities by ah]- (I). The

state space of X typically consists of several transient states, such as “well”, “recovery”,

“relapse” and one or more absorbing states such as “dead” or “disabled”. Over the follow

up period the typical patient would transit to other health states, XI = X (T1),

X2 = X (T2 ),... at random times T1 ,T2 and these transition times and health states



describe the event history of each patient. If observation of X is ceased after some random

time U, independent of X, then we will need to account for censoring accordingly.

The survival model is an example of a two-state process with a single transient

state “alive” and a single absorbing state “dead” with survival time T = T, and T, = 00 for

n 2 2. The multi-state analog of survival time is the time to absorption in state k given

byz'k =inf{t >0:X(t)=k}.

Having described the evolution of a patient history by the finite state space non-

homogeneous Markov process X, we now consider two types of costs that might be

incurred in the course of follow up, costs at transition between health states, and costs of

sojoums in a health state. Incorporating costs in the model enlarges the usual 0' -field used

in the multiple states survival theory, namely ff =a{ (Tn , Xn ) :0 _<. T, S t A U } , by adding

cost information. Under specified assumptions the martingale theory still obtains and the

compensators remain unchanged.

The estimation of PM (s,t | Z0) from a Cox regression model (multiplicative

intensity model) for the a,,,- (t | 20 ), has been very well developed by Andersen et al

(1993)25. Numerous applications of this method are published regularly in the medical

and epidemiologic literature.

To analyze costs incurred at transition times, we adopt a mixed model approach.

If 7}, ,7}2 ,...,7},,_ denotes the observed sequence of n, transition times in the ith individual

and Y, = ( y” , y,2 ym )' the associated vector of costs (or transformed costs), then the

random-effects model Y,- = X,,B + Z,v, +u, is the basis for estimation of ,6. Here the

covariate matrix X, will include terms for the times 7}, ,T,2,...,7},,, , individual patient



characteristics, and the matrix Z,- will include a subset of these factors, most likely

variables for modeling the effect of transition times such as 7},- and Ti]? . The unobserved

heterogeneity is the vector v,, inducing dependence among the ya. '5 and u,- is the

residual error. We will derive the NPV for all transition costs in the interval [0, 21, in the

form NPV(Z0)= Z Ee-"chj(t|ZO)a'hj-(tIZO)P,h(0,t|Zo)dt conditional on the initial

h¢j

state X0 =i and a specified covariate profile Z0, where r denotes the discount rate. Here

ch, (t I Z0 ) is the expected cost incurred at time t if the transition h—-> j occurred and it can

be obtained from the components of E(Y, |X, ) . Similarly we can define NPV for all

sojourn costs. The mathematical form for NPV depends on the underlying transition

probabilities and intensities.

Following Andersen et al (1993)25 we account for heterogeneity across patients

by semiparametric modeling of the transition intensities of the process through patient-

specific covariates. We estimate transition probabilities using a Cox regression model.

We combine the two parts to form an estimate of the mean present value of all

expenditures and use the inverse-probability of censoring-weighted (IPCW) technique to

account for censored observations. The estimators are obtained conditional on an initial

state and given a covariate profile. By applying the delta-method to functionals that arise

in the estimation of the NPV, we obtain large sample properties of these estimators.

This approach is new and builds upon a similar idea used by Praestgaard (1991)26

to estimate actuarial values in life insurance. In that context the benefit (cost) is fixed and

the stochastic elements are the sojoums in policy states or transitions between policy

states. The ‘cost’ at transitions (called assurances in the life-insurance literature) are fixed



by the terms of the policy. Also the ‘unit cost Of sojourn’ (called annuity payments) are

also fixedzng. In our context these quantities are no longer fixed. With longitudinal data

these costs are observed and vary across patients.

In Chapter 2, we Show that our transition model described in Chapter 1 also

captures costs under the simpler two state survival model with a single transition time and

sojourn. In this case several investigators have developed techniques for regression

analysis of medical costs with the focus being on estimation in the presence of time

censoring that might result in incomplete cost data on some patients. Our transition model

can be therefore viewed as an extension of this methodology to multiple transition times

and sojoums. If we specialize our multiple transition model methods from Chapter 1 to a

two state model with patients starting in state ‘0’ (alive) and followed until they reach a

terminal state ‘1’ (death) at time T , the total cost for a patient can be interpreted as a

sojourn cost that ends at time T or 2' whichever occurs first or as a transition cost at time

T if the patient dies in the interval of time [0,2'].

Current methods for estimation of the population mean cost are both

nonparametric and semi-parametric. The key references are Lin et al (1997, 2000,

2003)“'5’3°, Bang and Tsiatis (2000)“, Strawderman (2000)”, Willan et al (2002, 2003W,

Wooldridge (2002, 2003) 33"“. Semi-parametric models would assume a special

parametric form for the distribution of cost. For a single cost, Zhou el al (2000)35

primarily uses a log-normal regression model to assess covariate effects on mean costs.

He also discusses approaches to deal with heteroscedasticity, skewness, censoring and

zero costs, all in the context of a parametric model354'.

10



Our approach uses the same inverse-probability of censoring-weighted (IPCW)

technique to derive consistent and asymptotically normal estimators of regression

parameters and for the net present values. We discuss parametric methods for estimating

the survival distribution for censoring time, and therefore the weights in the IPCW

technique, as well as methods of estimation for the survival distribution for event time.

Chapter 3 focuses on applications to real data: We use the inpatient utilization

data from the Nationwide Inpatient Sample (NIS) of Health Care and Utilization Project

(HCUP), a database of all hospital inpatient stays drawn from a stratified sample of

approximately 1,000 community hospitals in the US. For 2000, the NIS contains over 7.4

million discharges from 28 states. Total charge and length of stay (LOS) are the main

healthcare utilization variables for each hospital stay. There is a growing literature on use

of the NIS in health services research that we use for guidance 4247. Following our

experience with analyzing charges and LOS of acute myocardial infarction (AMI)

48’50, we will focus on patients admitted in the hospital withpatients in the MICH study

AMI that have undergone either no procedures or Coronary Artery Bypass Grafting

(CABG), Cardiac Catheterization (CATH) or Percutaneous Transluminal Coronary

Angioplasty (PTCA) as a primary procedure.

Hospital characteristics, such as quality of service or managerial performance

may impose distinct effects on the costs of treating patients. Rice et al (1997)“, Carey

(2000, 2002) 52’ 53 and Goldstein (2002)54 insist on the usefulness of multilevel methods

in studies where data on cost are collected over multiple sites (hospitals in our data). In

such circumstances it can be expected that hospitals may have an impact on the cost

regardless of treatment the patient receives. The inclusion of hospital as a level in a

11



multilevel analysis will ensure that the clustering effects within hospitals will be

adequately controlled for. Traditional estimation procedures such as OLS, which is used

for example in multiple regression, are inapplicable because of the existence of a non-

zero intra-hospital correlation, resulting from the presence of more than one residual term

in the model.

We use a multilevel modeling technology to estimate costs for patients diagnosed

with acute myocardial infarction as they relate to both patient and hospital level

characteristics. Patients transferred to a short-term hospital, as well as other transfers,

including skilled nursing facilities (SNF), intermediate care, home health care have

incomplete total charges and length of stay so they will be treated as censored. In our

working data set 32% of the discharges are censored. Selection probabilities from the

censored sample of event times are estimated using parametric estimators of the

censoring distribution. We then estimate total charges at the median LOS for specific

covariate profiles. Our method accounts for the existence of a non-zero intra-hospital

correlation, censoring and skewness of total charges.

In the concluding Chapter 4 we outline some extensions of our work particularly

to estimation of summary measures in CEA such as the CER, net health benefit (NHB) or

cost (NHC), net present value (NPV), life-expectancy (LE) and quality-adjusted life years

(QALY)-

12



CHAPTER 1

ESTIMATING MEDICAL COSTS FROM A

TRANSITION MODEL

Economic evaluations of health care interventions are increasingly important in an

era of constrained health care budgets. As policymakers seek to prioritize health care

expenditures, an accurate assessment of costs and health benefits of competing

interventions and treatments is critical in informing resource allocation decisions in

health care.

A multi-state model is defined as a model for a stochastic-process, which at any

time occupies one of a set of discrete states. The states can describe conditions like

healthy, diseased, diseased with complications and dead. When an intervention is

deployed costs are incurred in random amounts at random points in time. Typically these

costs are associated with health states that a patient might visit in the course of the

intervention, and the different lengths of time spent in each state. The probabilistic

mechanism that governs transition between these states and the distribution sojourn times

in health states vary at the individual level depending on patient specific demographic

and clinical characteristics.

13



The main themes of this chapter are arranged as follows. In section 1.1 we

provide a description of patient history as the unfolding in time of a finite state stochastic

process. A non-homogeneous Markov process describes the probabilistic mechanisms

that govern transitions between states. Following Andersen et al (1993)25 we account for

heterogeneity across patients by semiparametric modeling of the transition intensities of

the process through patient-specific covariates. We then describe how costs are

incorporated into this framework. We consider two types of costs, costs while sojouming

in a health state and costs incurred at transitions between health states. Net present values

of all expenditures incurred over a finite time horizon are then defined and have

mathematical forms that depend on the underlying transition probabilities and intensities.

We will write each term of these mathematical forms as sum of independent and

identically distributed variables. Conditional on the initial state i, given the vector Z0 of

basic covariates, we will assess the asymptotic normality of the net present value of all

expenditures associated with the h to j transitions in (0,t] , i.e. the asymptotic distribution

of

n“2 Nfiv‘.”(t i,Z )—NPV‘.”(: i,Z )
h} 0 h} 0

using the Functional Delta Method.

1.1 A Markov model for describing patient health histories

Let (S2,f’,P) a probability space and let {X(t), re ’1'} with T =[0,T].. a non-

homogeneous continuous time Markov process with finite state space E = {1,2,...,k} ,

14



having transition probabilities Phj (s,t) and transition intensities ah}. (I). This Markov

process describes the evolution of one patient’s health history, with X (t) the patient

health state occupied at time t. Typically E consists of several transient states, such as

“well”, “ill”, “recovery”, “relapse”, and one or more absorbing states such as “disabled”

or “dead”. Let a = (ah, ),h, j e {l,2,...,k} be the matrix of these transition intensities,

ark-(t): lim P[X(t+At)=j|X(t) =h]/Ar, j¢h

’ Atio

and ahh = -Z ah,- . Thus, starting from the time of entry into state h, the sojourn times in

jth

the given state h are continuously distributed, with hazard rate function —ahh. Given that

the process jumps out of state h at time t, it jumps into state j at h with probability

ah] /‘ahh -

Let Ah,- (I) = Jgahj(s)ds and AM, =—Z Ah,- . For h #5 j the function Ah]. is called

jath

the integrated intensity function for transitions from state h to state j, whereas A“, is

called the negative integrated intensity function for transitions out of state h. The matrix

A = (Ah, ,h, j E {1, 2,...,k }) is also called the intensity measure of the Markov process X.

Hereafter integrated intensity functions Ah,- ,h, j 6 {1, 2,...,k } are supposed continuous,

unless otherwise mentioned. Let

P(s,t)= H(I+dA) for s<I,s,tE T.

(3.1]

The matrix P(s,t) = (BU-(s,t),hje {l,2,...,k})is the kxk transition matrix of the

Markov process.

15



FIGURE 1.1: Transition diagram for a multi-state Markov model

 

To incorporate heterogeneity between patients we let the transition intensities

depend on a covariate vector z(t) through a Cox regression model

ah,- (I l z(t)) = am (t)exp(fl’z,.,- (2))

with one vector of regression coefficients ,6 = (fl, , ,62 flp) and type-specific covariate

2,, (t) = (zhj, (I), zhj2 (t),. . . , zhjp (t)) computed from the vector z(t) of basic covariates,

consistent with the results of Chapter VII in Andersen et a1”. Technically, 2,1. (t) are

everywhere assumed to be predictable and locally bounded, but precise assumptions will
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be presented later in Section 1.3 of this chapter. Let Arno (t) = Eahj0(s)ds be the

integrated baseline intensity for transitions from state It to state j and Allho = —Z Arno-

jth

Associated with X is a counting process N,y- (t) which denotes the number of direct

transitions from state h to j in the time interval [0, t],

NhJ-(t)=#{sSt:X(s—)=h,X(s)= j} ,hct j.

The cumulative information revealed up to time t is the sigma-algebra .7; generated by

X(0) and {Nhj (s),s S t,h #5 j,h,je E}. Introduce the indicator function

Yh (t) = [X (t-) = h] to denote whether the process is in state h just prior to time t. Then

with respect to the filtration {f7 :1 _>_ 0} : t2 0}, the multivariate counting process

11¢ j,h,jeE},
N = { Nhj , h ¢ j} has random intensity process I lily .

where 2th,. (I) = ah]. (t)Y,, (t). Moreover,

Mk,- (I) = N,, (I)- Er, (um, (u)du, h it j,h,je E

are zero mean local square integrable martingales. These results were first proved by

Jacobsen (1982)55 and are summarized in Theorem 11.6.8, p94, Andersen et al. (1993)”.

Using the continuity ofAhj ,h, je {1,2,...,k} , it can be shown that (th ,Mé,) = O for all

pairs (h, j) and (q, r) with (h, j) ¢ (q, r). Here we denote by (M ,M ') the predictable

covariation process of M and M '. In our absolutely continuous case with transition

intensities ah,- and Ah,- (t) = Law- (s)ds , we say that the multivariate counting process N

has intensity xi = (2h,- ,h :6 j), with 2,, (t) = Y, (0a,,- (t).
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1.1.1 Marked point processes

Over the follow up period the subject transits to other health states, X, , X2 ,...at

random times T, ,T2 and these transition or epoch times {Tn :n 2 0} and health states

{Xn :n 2 0} describe the event history of each patient. Formally, these are defined in

terms Of theforward recurrence time W(t) = inf{s > 0 : X (t + s) at X (1)} , which is the

waiting time from t until the next transition out of the state X (t). Having

set X() = X(0) ,To = 0, W(oo) z 00, we define for all n 2 0:

TM, =Tn +W(T,,) with X“, = X(T,,+,)if Tn+1 <00 and X“, = X" if Tn+1 =oo.

The sojourn at the nth transition is W(T,, ) in state Xn . The survival mode] is an example

of a two-state process with a single transient state “alive” and a single absorbing state

“dead” with survival time T = T, and T, = 00 for n 2 2. The multi-state analog of survival

time is the time to absorption in state k given by 2', = inf{t > 0 : X (t) = k}.

Suppose that R, is a general mark corresponding to T, and we define the marked

point process

N(t,A) =Z[r,, $2.12,, 6 A]

n21

where A is a subset in the range of the R". For our case we could think of

R
n
= (Xn_, ,Xn) with values in R={(h,j) : h,je [5,]: ¢ j}. Our previously described

counting process Nhj (t) can be identified with N(t,A) by taking A = (h, j}. The natural

filtration f; is generated by{N(s,A):OSsSt,ACR}.
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We also have56

£=0{N(s,A):0_<.sSt,ACR}=0'{(T,,,X,,):0$Tn St}.

We can endow R with an appropriate 0 -field and regard A -9 N (t, A) for each t as a

random measure, and t —> N (t, A) as a counting process for each A. { f; ,t 2 0 } is a

right-continuous filtration and £0 = 0'(U f; ) , where if, = 0'( X (0), z).

:20

For a stopping time T with respect to.7-',' ,t 2 O we define

f}={BE foo:Br\[TSt]E f; forall t}

fT_={Bn[T>t]:120, Be .5}

We have f;_= ft, for all Tn_l <t S T, and

.FT"=0'{(T,,,X,():ISkSn},

f}r=0{(Tk,X,):l_<.kSn—1;Tn}.

We have also 1’, (t) = [Xn_, = h] for IE (Tn-l an ]. Then with respect to the filtration

{szt _>.0}the compensator Ah,- (I) of the process Nhj (I) is given by

P[V,, e du,x,, =j|J-‘Tn

P[Vn 2 u | fr“ ]

 A,,(dt) = -' ][X,,_, 2h] on

where V” = T, —Tn_, and u = t —T,,_, is the duration of the current sojourn at time t.

Our Markov assumption gives

Ahj(dt) =[Xn_, =h]P[T,, e [t,t+dr),X,, = j|Tn_,,X,,_,]=[X,,_, =h]a,,j(t)dt,

for IE (Tm,l ,Tn ].

l9



1.1.2 Incorporating censoring

If observation of X is ceased after some random time U, independent of X, we will

need to replace Nh,- (t)by the censored process

N§j(t)=#{sSt/\U:X(s—)=h,X(S)=j}ih¢jand

Yh(t) by Y,f(t)=[X(t—)=h, U 2t].

Then, with respect to an expanded filtration the aforementioned martingale

property still obtains. For the ith patient we observe a basic covariate z,- (t) , an initial

state X,- (0) , the state indicator Y,,‘, (t) = [X,- (t—) = h,U, Z t] and Ni],- (t) , the number of

n

event transition times before I from state h to j. Let Y,f(t) = Zth, (t) the number of

i=1

subjects who were not censored at time t and just before I were in state h

n

and N5, (t) = ENE}, (z).

i=1

In terms of marked-point processes we define the marked point process

N" (t,A) = EU" 5 t A U,R,2 e A] where A is a subset in the range of the R". Our

n21

previously described counting process N,f, (t) can be identified with Nc (t, A) by

takingA = {h,j} . The natural filtration f,“ is ff=a{N‘ (s,A) :03 s S t,A C R}

=0{(T,,,X,,):OST,, SIAU}.

With respect to the filtration {f :t Z 0} the compensator A2,. (I) of the

multivariate counting process N,f, (t) is given by

20



C P[Vn e du,X,, = j,T,,_, 5U lff_,]

hj(dt)= c " [Xnn =h]
P[Vn zu,T,,_, sU|fTHI

 

on IE (Tn_,,Tn ] . Equivalently, the processes ng defined by ME, = N5, - z,- are

martingales.

We assume that the censoring variable, U. is independent of everything else in the

model. Then

P[v,, e du,x,, =j,T,,_l SU If; 1
C _ n-l

P[V,, zu,T,,_, sum-3,4]

 

_ C“Tn—l )P[Vn E du’xn =j|Tn-1’Xn-1]

G(T,,_, )P[Vn 2 u ITn_, , Xn_,]

 [x,,_l =h]=A,,j(dt)

and N,f, (t) has the same compensator as Nhj (t) . Therefore conform to the Definition

III.2.1 in Andersen et al. (1993)25, the right-censoring of the process N generated by U is

independent.

In the sequel we will assume that censoring has been accommodated in this way.

Next we will incorporate costs in the model. the assumption of independence of costs of

everything else in the model is often violated, for example the longer the length of stay in

the hospital, the higher the costs. We will incorporate censoring without assuming

independence.
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1.2 Incorporating costs in the Markov model

As previously mentioned, we consider two types of costs that might be incurred in

the course of follow-up: costs at transition between health states and costs of sojoums in

a particular health state.

Suppose an amount Ch,- (t) is incurred just after time t if a transition h to j takes

place at time t. The present value of expenditures in (0,t] associated with these

transitions is

t —rs

c},}’(t)=j0e c,,(s)d1v,,,(s),

where r is the discount rate. In economic studies expenditures to be incurred in the future

are discounted to present value. A dollar spent now is worth more than a dollar that

would be spent later. The discount rates used for the US have usually been between 3%

and 5% per year, reflecting the rates on savings accounts or certificates of deposit.

Let Z0 be a given fixed vector of basic covariates. The p-dimensional vectors

Zhj0 of type-specific covariates are computed from the vector 20, reflecting that some of

these basic covariates may affect the different transition intensities differently.

Conditional on the initial state, given the vector Z0 of basic covariates with the

corresponding type-specific covariates Zth' the mean of this present value is:

. ’ -rs .

vaé” (t | 1320) = 15(C,§,‘.’(t)|xO = 1,20) = E( Le Chj(s)th,-(s)| x0 =i,zo).

We assume that:
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A1 Ch,- (.) are bounded, non-negative processes over 7 , adapted to { flzte T },

left continuous with right hand limits (so Ch, (.) are bounded, predictable processes).

A2 For te (0,2'] ,

E(Chj (t)| X0 = i, X(t-) = h,iZ0) = E(Chj (t) | X(t—) = h,ZO ) ,

so that at any t > O the expected transition costs do not depend on the initial health state.

It is known that if N is a counting process with intensity process A , M = N — J1

and H is locally bounded and predictable, then M and IHdM are local square integrable

martingales, with E(M ) = E ( IHdM) = 0 (see Proposition 11.4.1. p70, Andersen et al

(1993)”). Then, by assumption A1,

(I) - I -rs -

NPV,, (t | 1.20) = E( [De C,, (sth (s)ds| x0 = 1,20) =

I —rs -

= E( [0e Chj(s)Y,, (nah, (s)dsIXo =l,Z0).

By Fubini’s Theorem:

’ -rs -

NPV,f,”(t|i,ZO)=Le E(Ch,(s)r,,(s)|X(0)=t,zo)a,,,(s)ds.

We can write

E(C,,(s)Y,,(s)| XO =i.Z0) = E(Chj(s)|X0 =i,X(s—) = lz,Zo)P(X(s—) =h| XO =i,ZO).

By assumption A2, NPV,,(jl) (t | i ,20 ) has the form

NPV,f,”(I|i,ZO)= Ee"-‘ch,(s|zo)13,,(0,s|zo)a,,,(s)ds, (1.1)

where ch, (s | Z0) = E(Chj (s)| X(s—) = h,Z0).



We now turn to the cost of sojoums in a health state. Suppose that the cost in state

h is incurred at the rate B, (u) at time u. The observed rate is zero at time it whenever,

just before u, the patient is not in state it anymore, so [X(u—) = h] = 0. Then the observed

present value of all expenditures in state h, started at time s and ended after the duration

time d is given by

(2) 5+1! _m

c, (s,d)=L e B,(u)Y,(u)du,

where r is the discount rate and Y, (u) = [X(u—) = h].

Conditional on the initial state, given the vector Z0 of basic covariates, the mean

Of this present value is

NPV,”)(s,d|i,zo) = I:(C,‘,2)(s,d)|X0 =i,ZO)=

= fide*"’E(B,(u)Y,(u) | X0 =i,ZO)du.

Conditions similar to A1 and A2 are assumed for B, (.) :

A3 B, (.) are bounded, non-negative real stochastic processes over[0, 2'] ,

adapted to (f;).

A4 E(B, (u) | X0 = i,X(u—) = h,ZO) = E(B, (u) | X(u—) = 12,20) for all

u 6 [0,1].

Denote b, (u l 20) = E(B, (u) | X(u—) = h,ZO). We can write

E(B,(u)Y,(u)|XO = 1,20) =E(B,(u)|X(u-) = h,X0 =i,ZO)P(X(u-)=h | X0 =i,Z0).

By assumption A4:
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5+

S

NPV,”) (s,d | i,ZO) =[ de’mb,(u|zo)13,(0,u IZO)du (1.2)

The right hand side of (1.1) may be interpreted intuitively as follows. Starting at

3:0 in state i, a patient is in state h at time s with probability P,, (0, s | Z0 ). Conditional on

being in state h just prior to s, suppose a transition to state j occurs at s with intensity

a,,- (s | Z0 ) and this transition incurs a cost. Then (1.1) is the NPV for all h—>j transition

costs in [0, t]. Similarly, for the right hand of (1.2) consider the cost of sojourn in state h

in the interval (3, s+ds]. This is b, (s I ZO )ds , conditional on reaching state h at s. To

incur this cost a patient must move from the initial state i to h by time s, with

probability R, (0, s | 20 ). So (1.2) is the NPV of the total sojourn cost in state h in [0, t].

Suppose costs potentially accrue up to a fixed time horizon 2' for sojoums in, and

transitions among the transient states. If k is the only absorbing state costs would cease at

the absorption time 2', = inf{t > 0 : X (t) = k} or 1' whichever is observed first. The net

present value of all expenditures is

NPV(i,ZO) = ZEe"~‘c,,(s|zo)a,,(s|zo)13,(0,s|zo)ds+

h¢j

+ Z Emmizo>a.<o.slzo)ds (1.3)
h

where the dependence on the initial state X0 =i and the covariate profile is shown. The

unconditional version is obtained by averaging over the initial distribution

It,- (0|Zo)= P(X0 = jIZO) which yields

NPV(Z0) = 272,. (0 | 20 )NPV(i,Z0 ).

ieE
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Comments

In the absence of covariates, the quantities (1.1) and (1.2) are ubiquitous in the

insurance and actuarial literature29 where C,,- (t) is an assurance amount paid to the

insured upon transition at time I from the insurance policy state h to state j. Then

Cj,” (t) is the discounted value (at time 0) of all assurance benefits received in [0, t] for

transitions h ——> j and (1.1) is its corresponding actuarial value given X0 = i. Likewise,

B, (t) is the annuity payment rate at time tin policy state h, C,” (t) is the discounted

value (at time 0) of all annuity payments received in [0, t] while the insured is in policy

state h and (1.2) is its associated actuarial value. Usually C,,- (t) and B, (t) are known non-

random functions and one is interested in the total payment function

2hi]. Cf,” (t) +2 h CE) (I) . In this context Praestgaard (1991)26considers the estimation

of (1.1) and (1.2) using a framework very similar to that we have described.

However, because costs are incurred in random amounts at random points in time

during the course of a health care intervention the average expense functions b, (t | z)

and c,, (t | z) are no longer known and need to be estimated from appropriate data along

with the transition probabilities P,j (0,t | Z0) and integrated transition functions

A,”- (t | Z0 ) = Law- (s | Z0 )ds . For easiness of notations we will assume the discount rate

is null, i.e. r = 0 , unless otherwise specified.
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Insights into assumption A1

The assumption A1: C,j (.) are bounded, non-negative processes over?" ,

adapted to { f: :tE T }, left continuous with right hand limits (so C,j (.) are bounded,

predictable processes) is not as naive as it seems. Without it we would have to extend the

observed history at time t to}: , the minimal o-field generated by f; and

0'{C,j (s) : s S t, h ¢ j, h, je E}. With respect to this new a-field one should wonder

whether the compensator A,j (t) of the process N,j (t) can be estimated in the same way

BIC .

Some insights into assumption A1 can be gained by viewing the cost C, as a

mark associated with the transition time T, and describing the underlying process as a

marked point process. Suppose that R, is a general mark corresponding to T, and we

define the marked point process

N(t,A)=Z[T, St,R,e A]

n21

where A is a subset in the range of the R,. For our case we could think of

R, = (X,_, ,X, ,C,) with values in R={(h,j,c) : h,je E, h at j,c >0}. Our previously

described counting process N,,- (t) can be identified with N (t,A) by

takingA = (h, j,(0,oo)} . The natural filtration f; is generated

by{N(s, A) :0 S s S t,A c: R}. We can endow R with an appropriate 0’ -field and regard

A —> N (t, A) for each t as a random measure, and t —> N (t, A) as a counting process for
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each A. Moreover with respect to{f-: ,t 2 0} the compensator A(t,A) of N (I, A) is given

by

'-Trt-l an (u,A)

,ue (0,T, —T,_,]

l-F, (u-,R)

 A(t,A)=A(T,_,,A)+

where F, (u, A) is the conditional distribution F, (u, A) = P[T, -T,_, s u, R, e A | f3.“ ]

and f,“ =0{(T,,R,):1San-1}.For te (T,_,,T,] we have

_ dF,(u,A) dF,(u,R)

dF, (u,R)'1—F, (u-,R)

 dA(t,A)

where u = I —T,_, is the duration of the current sojourn at time t. The first term

dF, (u,A)

can be interpreted as the conditional probability of R, E A given 7:} and

an (u, R)
n-l

dF,(u,R)

l—F,(u—,R
is the conditional hazard rate for the T-T, ,_, = u . The second term

sojourn T, —T,_, given ET“ .

In the case of interest R, = (X,_, , X, ,C, ). Then writing V, = T, —T,_, and

taking A = {h,j,(y,y+dy]} we can express

  

dF (u,A) . ~ . ~

—"——=X_=hPCed v,= ,X,= ,.F PX,= V,=u,.FdF,(u.R) I ,.i ll. yl H J TM] [ 1| TH]

and

dF,(u,R) —[x _, Plvnedulj-‘T,,1

1—F,(u-,R) "“ P[V, 2u|.7:}n_l]

so that on IE (T,_, ,T,] and recalling that u =t—T,_,,
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A(d A) P[C d w x 'f“ IPIV"Edu’X"=j|fT'][X l] (14)t, = ,Ey ,=u, ,=, ~ "' ,_=z. .

1 TH P[V,Zu|.7-}n_,] ‘

 

With respect to the filtration {.7; :t 2 0} the compensator A,j (t) of the process N,j (t) is

given by

P[V, e du,X, =j|.7»',, ]

A,j(dt)= PIV.Zu|7"r,_,l - [X,_,=h] on tE(T,_,,T,]. (1.5) 

Now f3,“ =0“{(T,,X,,Cj):an—l}whereasJ-'Tn_l =U{(Tj,X,-):an—l}.lt is

reasonable to assume that

(T,,X,)is independent of {C}. :an—l} givenf'ml ,

or, at least that

{Cj : j S n—l} is fr", -measurable.

If (T,,X,)is independent of {C}. :an-l} then

P[V, e du,X, = jlf‘rfl]

P[V, _>. u | f}, 1

 

[XII—l =h]:

P[V, e du,X, =j|.7-"Tn_l ,{Cj,an-l}]

P[V, 2M3", ,{Cj,an-l}]
 

n-l = h]:

P[V,e du,X, =j|fT I]
= "_ [XII-I =h]=Ahj(dt)°

P[V, ZquTH]

 

Since a similar conclusion can be found if we suppose {Cj : j S n —l} is .77", -

measurable (i.e. f,“ = ET", ) in any of these two cases (1.5) coincides with the second

term in(1.4). Moreover, our Markov assumption makes

A,j (dt)=[X,_, =h]a,j (t)dt, te (T,_,,T,]. In fact taking A={h,j,(0,oo]} we get
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A,j (dt) = E[A(dt, A) | £_]. Also .75; is the minimal a-field generated by f,

and0{C,j (s)AN,j (s) : s S t, h at j, h,j e E}. The first term in (1.4) is the distribution of

the cost C, conditional on the past in_, , the destination state X, = j and the transition

time], =t.

With A = {h,j,[y,y + dy)} the cost incurred in [t, t +dt) is

[:ledt.A)=C.,(z)ANi,-(t)

and therefore the present value of costs incurred in [O,t]due to transitions of the type

h—>j is

C£})(t) = J36” ny(ds,A).

Ignoring discounting C,1” (t) = J; nyMs, A).

Let ZO a fixed covariate profile. Then using the martingale property of N(t, A),

the conditional expectation of this net present value given X0 = i,20 is

E(ClPltHXo =i,Zo)=E( [36" [”ledaAMXo =i’20)=

=E(J:e’” [:yA(ds,A)|XO =i,Z,,).

Using (1.4), E(C,(,l.)(t)|X0 =i,ZO) becomes

E(ge'” fymc, edyl V, =u,X, =j,f‘,_, ][X,_, = h]a,j(s)ds | X0 =i,ZO)=

= Le-mmfyflq edyl V,. =u,X,, =j,f}n, ][X,_, =h]|XO =i,Zo)a,j(s|Z0)ds,
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With our previous notations, c, (s) = [x,_, = h] E” yP[C, e dy IV, = u, x, = Lin, 1.

Then

E(c}})(t)| X0 =i,ZO)=

[Se-”Em, (s)| X(s—) .—. 12.x0 = r320”), (0,s|zo)a,,. (s | Zo)ds.

By A2, E(J; EyN(ds,A)|X(0)=i) = ge'rscm-(slZO)P,,(0,s|Zo)a,j(s|ZO)ds which

is the same formula as (1.1), where c,, (t) = E(C,j (t)| X(t—) = h).

We will estimate A,,- (t | Z0 ) and P,, (s,t | 20) from a Cox proportional hazards

model for multiple states and c,, (s | Z0) from a random-effects model. Putting

A

everything together we are able to compute NPV,?) (t | i, 20) an estimator of

NPV,?) (I | i ,Z0) and show asymptotic properties for the derived estimator.

1.3 Estimation of transition probabilities

We now turn to the estimation of (1.1) and (1.2), focusing on the former.

Andersen et al (1993)25 pioneered an elegant asymptotic theory for estimators of ,6,

A,, (t | Z0 ) and P,, (s,t | Z0) . For each of n patients in a study we observe processes of the

type described. For the ith patient the basic covariate vector is z, (t) , the initial
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state X, (0) , the state indicator Y,, (t) = [X, (t—) = 12, U, 2 t] and

N,,-(t) =#{sStAU, :X, (s—) = h,X,-(s) = j,},h at j.

Conditionally on {z,,X,-(0):i= l,...,n } assume the processes { X,(t):te T }

are independent and that the Cox regression model 61,,- (t | z(t)) = ath (t)exp(,6'z,j (t))

described in Section 1.1 holds for each individual with the same baseline intensities, i.e.

ah,- (I I z.- (t)) = ahjo (t)exp(fl’zr,-,- (t))

for all i =1,...,n . From now on denote by N,j (t) and Y, (t) respectively, the aggregated

n n

processes ZN,,(I) and ZY,,(I).

i=1 i=1

The following standard notation will be used.

For any h

o Jh(t)=[Yh(I)¢0].l-Jr,(t)=[Y,.(t)=0l=IZYh.~(t)=01=[Y;,.-(t)=0.Vil
i=1

For h¢ j:

o 2,, (z)®"’ = 2,, (t)2;,, (I), if m = 2;

o 2,, (t)®'" = 2,, (t) if m =1 and 2,, (t)®"'=1 if m =0;

o 5,1”)(IHB)=ZY,,(t)z,,-(t)®"'exp(,8'z,,(t)), me{0,1,2};

i=1

0 E,,(t,,6)=S,‘,}’(t.fl)/S,‘,f’(t.fl);

o icy-0.3):Sif’lrfiwsif’(t,A)—E,-or)“;

o 10,29): 2 £V,,(u,fl)dN,,(u) with N, =ZN,,- ;

i=1haej
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o sif’afl):ElY,r(t)z,,-,(t)®'"cxp(,6'2,,(r))], mE{0,l,2};

o e,,-(t,,5)=s,(,;)(t,,B)/s,(,f’(t,fl);

o v,,(t,,6’)=sf,”(t,,l3)/s,(,(.”(t,fl)-e,‘§2

o A,, (t | Z0) = A,,0 (t, B) exp(,3'Z,,-o) where the maximum likelihood estimator

A

,6 is defined as the solution of the equation U (2', ,6) = 0 where

n It

Ult.fl>=Z Z [lzhjm-E,(u,fl)ldN,,-.(u)
i=lh,j=l

hat}

0 20,,6) = Z Ev,- (u,,6)sf,(.)) (u,,6)a,,o(u)du , px p nonrandom matrix does

hatj

not epend on n.

The following assumptions will be adopted throughout this chapter. Although not

all conditions are needed for every result, we state them all to avoid too many technical

distractions in the theorems. We denote by H . II the supremum norm of a vector or a

matrix, e.g. the norm of a vector a = (a,) or a matrix A = (a,,) is H a ll: sup, |a, | and

H A II: sup“- la,- |, respectively. Convergence in probability and weak convergence are

always as it tends to infinity.

Model Assumptions and Conditions:

A5 Conditional on z,(-), U, is independent of X, (.);

A6 (N, (.), Y, (.), z, (t)) ,1 S i S n are independent identically distributed;

For h¢jz
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T

A7 A,,0 (2') = La,” (t)dt < oo;

A8 2 b—y 2(2,=fl) Z]; ‘0’r — v,, (u, ,6)s, (u, ,6)a,,o(u)du is positive definite.

notation

hat j

0

There exist acompact neighborhood 6’ of ,6 , with ,66 6’ (the interior of 6’ ),

and scalar, p-vector and px p matrix functions 5,19), grand 3(2), h ¢ j, defined on

[0,2']x6’ such that for me {0,1,2} and h,jE{1,...,k}, h ¢ j:

A9 sup

(1 ..BHOrlxb’"

                        —S"’"(t 5)— s,‘,’-'”(tfl)I

  

A10 s,}"’(.,.) are continuous functions of Be 6’ uniformly in [6 [0,1] and

bounded on [0, r]x6’; SIG) (., ,6) is bounded away from zero on [0, r] and

0)(I ,5) 82,2)(1 ,6)=—s,,1)(t, ,3) (Asymptotic Regularity Conditions);
8hr)“fl)=afls,,

31,3"

All There exists 6 > 0 such that

n’“2 sup |2,,(t)| Y,,(t)[,6’z,,(t) >-5|2,,(t)|]—P—>0 (Lindeberg Condition)

h¢jJJ

where [a > b] =1 if a > b and zero otherwise;

Conditions A7-A11 are implied in the independent identically distributed case

(i.e. under assumptions A5-A6) by more general conditions as proven by Andersen et al

(1982)57 Theorem 4.1. These conditions are: .

1. 2,,- (.) and Y,, (-) are left continuous processes with right hand limits

processes
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3. Z, is positive definite

4. P(Y,, (t) =1,VIE [0,2]) > 0

5. ' E[sup Y,, (t) | z,,, (t) I2 exp(3'z,,, (t))] <oo where the supremum is over

If!

t E [0, 2'] andBE B(fl) with B(,6’) being some neighborhood of the true parameter ,6 .

Although not absolutely necessary, hereafter 2,, (.) are considered to be bounded

predictable processes.

The form of the partial likelihood is functionally the same as in the case of the

ordinary survival Cox proportional hazards model. Thus the log-partial likelihood

evaluated at time I (see p483, Andersen et al. (1983)”) is:

C(t, B): Z Z EIB'ZM,(t)—logS(o)(t,fl)IdN,J-,(u).

11h}—

hatj

Since 5‘” (t, ,6) is the vector of first partial derivatives of S(0) (t, ,6) with respect to )6 ,

the vector U (I, ,6) of partial derivatives of C (t, B) with respect to ,6 is

n k

U(t,,6) =2 Z [[2, (tn—E, (u,p)]d1v,, (u).

i:1:2=1$1.

The maximum partial likelihood estimator ,3 of ,6 is defined as the solution of

the likelihood equationU (2, ,6) = 0. For h at j we estimate A,,0 (t) by the Nelson-Aalen

estimator

Alisafl)= L—M—deu)
(0) u’B)

35



n n

where N,, =ZN,,, , J, (u) =IY, (u) >0], Y, =ZY,, . We use the convention %=0.

i=1 i=1

Let A,,0 (t, 8) = -Z Am.O (LB) . Thus the matrix of integrated baseline intensities

, jxh

A0 (I) = (A,,O (t),h, je {1..,k}) is estimated by

A0 (£3) = (Ah/0 (t,B),h, jE {l...,k}) .We define for a fixed covariate profile 20, (and

corresponding type-specific covariate 2,0) A,, (t I Z0 ) = A,,0 (t)exp(,3’Z,,-o) , h¢j ,

Ahh(IIZO)=-ZAhj(IIZO)-

jaeh

Central to all our proofs is the derivation of asymptotically equivalent

representations of JR]?— fl) and w/h(A(t I Zo)— A(t I Z0 )) in terms of iid random

variables. By asymptotically equivalence of two quantities is meant convergence in

probability to zero of their difference (and where appropriate, uniformly for t 6 [0,2'] ).

We use the next theorem from Andersen et al (1993)”.

Theorem 1 (Theorem VII.2.l, p497, Andersen et al (1993)”)

Under A5-A11, the probability that the equation U (2', ,6) = 0 has a unique

solution ,3 tends to one and ,3 —’-)——> ,6 as n ——> oo . CI

The next theorem gives the asymptotic normality of ,3 and an estimator of the

asymptotic covariance:
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Theorem 2 (Theorem VII.2.2, p498, Andersen et al (1993)”)

Assume AS-All. Then n1’2(3— ,6) converges in distribution to a zero mean

normal p-dimensional random vector with covariance matrix 2;] and

A A b-v A

n-lIUHB)->-7(1,,5)II—5—-->0.Inparticular22r = n'lI(r,fl)—L>ZT.D

notation  

SUp

tdOJ]

Following the proof of Theorem VII.2.2 of Andersen et al (1993)” we can show

that the (h,j)element, hat j, ofthe kxk matrix J72(A(r|zo)—A(t|zo)) is

asymptotically equivalent to exp(,BZ,,0){ X,(I'j) (t)+ X”) (1)} where

n 3 I I

X},’ (t) = JZw—fl) [(2,-0 —e,., (u.fl>)a,.,o (u)du

xggjo): JTIOS—:—d(")fl),,)"M,,(u)

Here M,,(t)= N,,(t)- £S(O)(u,fl)dA,jo(u) and M,,(t)=2n:M,,(t),where

i=1

M,, (r) = N,,,-,- (t) - [Y,,- (u)exp(fl’z.,.- (u))dA,,-o 00.

Let h,j. (I) = [32,, -e,, (u,,8))a,,0(u)du ( pxl vector).

Then X1823) (t)=JZ(B—fl)’b,., (t).

We expand both XI31) and X$7,) as sums of iid random variables.

J,(u)

WeconsiderXéZ} first. Indeed XéZJU): II: 5,0,,ufl)Hfilw(uu)"
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l

=TJ;W)[s,‘,°’(u fl) sf,°’(ufl)

 

1dM...,-(u)+

dM, (u) M), (u)

(1'1 (ll-:1——))-

+\/1-'[;S,(,O)(u,,3) 71:]: h 380““,5)

For easiness of notations we will denote the three terms of the above sum as T1 , T2 , T3 ,

 whereT,=—jzujgm)[ 0 (0 dM,,(u), T2: —I;(f:)l——"——’(u) and

swam s,,’(u .)]fl T s, (at?)

( )

Jig—J30 Jilu))fi

To reduce the representation of X£2} as sum of iid variables, under the

assumptions A5 - All we prove that the first term, T, converges in probability to O and

the third term, T3 is null. Indeed, if we consider the first term

 

 

 

1

IT‘HTI;h‘“ )[s}°’(ufl) s‘°’(u.dfifiMWHShj

s,,°’(um— fl)S(’O)(—"—-u——
" dM-(u)I<77H; Ju,(u) 3,,,——_),0) a, _

(ufl)
n

5(0)

(u5) 1
s—l—IL1,.(u)dMi,<u)IsupIs,.°’(ufl)—’—Isupl

5(0) IJ;
u<r

US! ShO)(ufl)____Sh} (unfl)
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I 1 n 1

Using Central Limit Theorem for— J (u)dM (u) =—( J (u)dM .,(u)),
J; E h h} \[IT 12:12]; h h}

5(0)

(u fl)
sup | S,” (u, ,6)— I P>0 (by Assumption A9) and sup I 5,0) (u, ,6) |< B < co

uSr uSt

 

(by Assumption A10) it follows that IT, |——P——>0.

The third term, T3 , is null:

(u) i(uu)_

32T£(1-Jh(u—d——__))S(O)(thfl) =:/-—;,Z:,:'E[Yhi(u): O,Vi]s(ofifh__j——fl):

1 " Nu“)
:Tg-§£[Yhi(u):OJVIW—

Shj(

th (u)CXP(.B’zhji (“))dAhjo (u)

s‘9’(u 1?)

=0 
" t

{3 join..- 00 =0m
i=1

Using M,, (u) = Zthi (u) . the second term, T2 can be expanded as sum of iid random

i=1

.Therefore we have showed that

2M, (u)—X,_dM,,(u)

' bl T-—vana es as 2 J—‘EF_,9,“ ,5): n =1 3,9)(11/3,6)

X.(,’,',) (t) \l—IOS(,)J”((——u—-du)fl)M,,(u) is asymptotically equivalent to the sum of iid

dM,,- (u)

random variables: —2 £————
0()

<11 X?)

To Obtain the derivation of TITLE — ,8) , we use Theorems 1 and 2 stated above.

Consider now X,(fj) (t) = «5(3- ,6)'b,, (t) , where

b,,(t)= I;(Z,,o—e,,(u,,6))a,,0(u)duisa pxl vector. We have
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0:..1

\/_(fl- ,5): TEXT,,_lfl) U(2', ,6), where bya, a=b, we mean a, is asymptotically

equivalent to b, . We can write U (2, ,8) as a sum of independent identically distributed

random variables as in the proof of Theorem 2 (see proof of Theorem VII.2.2 p498,

Andersen et al. (1993)”):

1 " '
Til-U(T’fl)=§h§11= £11,, (u)dM,, (u) where 11,, (u) 7.;(z,j,(u)—E,,(u,fl)) are

predictable, locally bounded processes (p496 Andersen et al (1993) 25).

Consequently,

7301,,- (t Ian—A,- «Izod: expw’zhjonxigy (t)+ X31} 0)}:

n k

=exptfl’zhjoll Zr 2 [’11,(uldM,,,(u))’2<t.,6)"‘bh,-(z)+

i=1 h.j=l

hat '

dMh,,-(u)})
,9) (ufl (1.6)

fill——

We use:

EH,- (u)dM,.,-.- (u) = fi-fijtz, (u) -— 5,- (u.fl))dM,,,-,- (u) =

= E-x/iz—(Zhfi (id-eh} (u,fl))dM,,-,- (u)+ LIT/17“” (u,fl)—E,j (u,fl))dM,j, (u).

Since sup -———-s,, (u,,6)|——)0 and s,, (.,.) are uniformly

(u,,B)e[0,r]le ’1

continuous bounded functions on[0,2']le it follows
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that sup lehj(u,fl)—Ehj(u,,6)|—£—>O.

(u./3)E[0.r]x‘21

Therefore £31.;(ehj (u,,6)—Ehj (u,,6))thfi(u)—P_)O and

J:Hm, (u)dM,,j, (u)2j:J.(z,,j,(u)—e,,j(u, myrrh}, (u).Therefore for 12:: j

we have proved the next lemma

Lemma 1

Under the assumptions AS-All, £01,”. (I | ZO ) — Ah]. (I | Z0 ) is asymptotically

equivalent to

n k

exp(fl'Zhj0){Z( Z 13%(zhji(u)-ehj(uvflDdM/y',‘(u))’£(7a,6)-lbhj(t)+

i=1 h,j=l

hat}

" thj, (u)

+JZE£T_£0)(u, 19)} .

If we denote

n k

s;{;,(t,r)=2( Z 13171—721.)-(u)—e,,-(u.fl))dM,,-,-<u)>’2(r,fl)"h,j(z) and
i=1 h,j=l ’1

hat}

,dM (u)
5(2) _ h}!

n.hj(t)" :71-—;§LST_?)(14fl)

then

MAWIzo)—A,.,(z|zo)a§'exp(fl’zhjo){sf,‘2,(t)+s,‘,33,.<r)}.u
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Comments

The k2 components of Sf,” (.) = (5:2,?! (.),h,je {l..,k}) are processes in D[O,2],

the space of real-valued right continuous functions with left-end limits on [0,2']. Equip

D[O,2’] with the supremum norm and the 0' - filed generated by the collection of open

balls, and for product spaces their usual extensions. Regarded as multivariateprocesses

on (D[O,‘r])"2 , we can establish their weak convergence in the Skorohod topology.

However, because the limiting processes have almost surely continuous paths, the

convergence is true in the supremum norm as well.

(2). (t),(h,j)e E} converge weaklyUnder assumptions AS-All, the processes { Sm,”

to a process U5 (I) (see proof of Theorem VII.2.3, p503, Andersen et al (1993)”). The

limiting distribution of the k xk matrix-valued process Sf?) (.) = (5:2,; (.),h, je {l,..k})

is that of a kxk matrix-valued process U; (.) = (05,]. (.),h,jE {l,...,k}), where

U;,,,, = —ZU;,U- and {Ugh}. (.),(h, j)e {l,...,k}} is a continuous Gaussian vector

jzeh

martingale, with

i) Ughj(0)=0,

ii) (Ughj,U;m,> =0 for (h,j)¢ (m,r),(h,j),(m,r)e E

I.

by
(lb-0(a)

111)<U2hj>(t)=0)1?j(1) = £S£9)j(u ,60)J 9
notation

iv) C0v(U;,,j (s),U;,,j- (t)) = a); (SAI)
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The ()1, j )-th element of the limit process Ur(t) of SE,” (t,2) can be expressed as

éébhj (t), where :0 is a p-dimensional normal random variable (its distribution does not

depend on t) with zero mean and covariance matrix 2(2’, ,8)"1 and

bhj (t) = E(Z’VO —e,,j (u,,6’))a',,j0 (u)du is a p-dimensional vector depending on t. The

processes Ufhj and US,”- are asymptotically independent and the limiting distribution of

fi(A,,j(z|zO)—A,j(:|zo),

exp( fl’zhjo )(Ufhj (t ) + ugh, (t)) (1.7)

has mean zero and variance

exp(2fl’z,jo)(w§j (0+th (r)’£(r,,6)" h,j (t)} (1.8)

The covariance matrix of (52,)”. (1,2),S;?,3j (2,2)) can also be computed directly,

using the definitions of 3,?) (u,,B), m = 0,1,2 and the independence of the processes

{X,(-),i =l,...,n} . Then

I: It

It var(s,§{,{j (2,7)) =Var(Z( 2 j: (2,1,. (u) —e,,j (u.fl))dM,,,-,- (u))’>3(r.fl)“ b,.,- (t)) =

i=1 h,j=1

hatj

n k

= b,.,- (t)’2(r.fl)”‘ Var<2< Z [I (2,,- (u) —e,,,- (u,fl)>dM,.,. (u>>’)>:<r.fl)“ b,.,- (r) =

i=1 h.j=l

hatj

n k

=bhj (z)’2(2,,8)'IZVar( Z E(zhji(u)_ehj (usflDthji(u)))’2(7afl)_lbhj (1):

i=1 h.j=1

haej
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z(g’")(0)

fl?
-np(n)"fn(((n)”"2g)dX9(n)"(m——

z(g'"Monk-1:!

p—ij:

 

n)(”s(n)(”s

=(9‘0Sim/(E:(9"0 II)mA=((.2‘1)h’"9112Au031V

(72)’"wpu(n)"WP:13‘“

{aw

'np(n)°-"’.v(g’n)(0frls(gn)Maj:——-(g‘.2):J0uonrugapourpue

(gm)’"s [q_{q3(0)

(9'")(eFWn)A(9'mm):(9"71),(i)5(9"71)({qs+

 

+‘(9'")(03’(9'n) ,[q(0)

(57My?”"’0‘(g")‘_"'

f

[(I)(9' n)(fq:_(g
n)(z')VS:

=(gn)."isw‘ng'Hu/‘m’i'a<g‘n>.{‘;s—(gn),(-",'s<g"we-(gn)(-";s

osn9MKiuenbarse[ourrod

'W”‘11-(9‘1)K.(1)”q“=(I)"’q[-(9’‘1)z,(£7‘1):,_(g‘1)z,(1)’"qu=

=(z)’Vq;_(g‘z)z(np(n)°-’”v((gn)“,Myn)[532+

[aw

+(g‘n)-’:'a(g‘n)({‘gs-(g‘n),({';s(gn)-"'a—(gn)(f';s)jE)m1)z(1)"’qu-

=(1)-"’ql_(g"2)z-

[:21

I=fqi=i

-,(np(n>°~’"v((n)”"zg)dxe(n)-"crz®<(gn>-"’a—(n)-'-’"z)°j)3E3,1571):(z)-"'q=



 

l " I

= ESE?) (u,fl)2a'hj (U)E(;Yhi (U)CXp(fl zhji (u)))du =

 

t l

=nJ‘0 (9)(u’fl)2a’,,j(u)s,(:)(u,,B,)du— nEWL—a,,j(u)du=nw,?j(t).

u.,6’)

Also 52,1]. (2,2) and 522,3]. (t) are asymptotically uncorrelated because the martingales

Mh},- and MM are orthogonal for i i k (by independence over subjects) and for j :1 (by

continuity of the functions I‘M-0(1)) . Indeed

Cov(sf,f,’,j (£27,521)!- (t)) =

= El [Z( Z EVE—(2h)? (u) —ehj (u’flDthji (u))’Z(T,fl)-l bk! (”1'
i=1 h.j=l

Int}

thJ, (u)

[_‘/1=2£____sh°)(ufl)”

_ ,(uu)
=—ZIE{[hZ=l E(zhji(u)— ehj (u fl))thjr (14))2(7 fl) lbhja)HL—:(0)'——h—'_jfl) ]}=

' h¢jj=

_ .-(uu)
=—ZE{[J:(Z,U, (u) eh] (u fl))th,-,(u))'£(r )5) lbhj()llg‘fiy’y—‘E—l}:

,(uu)
-ZE{E[ J: (z,,,(u) e, (u ,6))dM,,.(u»’.2(r fir'bh, (0 (76,17): S.l}=

_ ,(u14)
=—ZE{[ 10(1),: (u) e,,(u 5))thj,(u))'.Z(T fl) ‘bh,-(r)][J;T_,‘”hjuml).

Using d < thi ,Mhfl > (u) =th (u)exp(fl'zhji (u))a,,j (u)du and Fubini Theorem, the

covariance of the two sums becomes
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Cov(sf,',§j (m) 58,110»:

:-ZE{—_—£(0): ,6)(Zhji(u)_ehj (usflDYd <thi’thi >(u))Z(Z',,B)_1th-(t)} =

shj(u,,6

{( ((0,321, (u>exp(flz,,,, <u»(z,,,, (u) e, (u fl)>’1a,,(u)du)
shj(u,,B

-Z(r.fl)“bh,-(t)}=

:_£——s(19)(lufl)( SI(1j1)(u fl)_ehj(u,fl)shp)
(u, fl))2(T,fl)-lbhj([

):0

The last integral is null since, by definition, ehj (t,,6)—- 3,9.) (t, ,B)/sfuo) (t,,6).

The variance of AM, = ‘2 Ahj can be calculated using formula above. Indeed,

jaeh

502;th I ZO)—Ahh (’IZO) z—ZJ;(Ahj(IIZO)-Ahj “'20)“:

jach

'=' —zexp(fl’z,,j0){sf,{,{j (t,r)+ 52.2,),- (t)}.
j¢h

Using definitions of Smn h] (t,T),i = 1,2 and same arguments, the variance of the last sum

is

Var{-Zexpw’Ajax—1,12 Z E—l—(zhfl(u)—e,.,(14./3mm,(u))’z(r.fl>“b,,j(t)+

jath f1":1 ij~l J;

‘1
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=V —Z(Zcxp(flZth){ Z £71.;(zhfi(u)—ehj(u,fl))thfl(u))’}2(r,,6)”‘b,,j(t)+

n i=1 j¢h h .j=-|

Ink}

thj, (u)}

Tnzfi—“”(u13)}:Sh}-

={Zexp(fl'2hj0 )bhj (mm,,6)" { Zexp(fl'Zhj0)bhj (1)} + Zexpafl’zhjomij (z).

I"! jath jaeh

Using these results one also obtains the convergence of

J;(P(s,t | Z0 ) — P(s,t | ZO )) . The Aalen -Johansen-estimator of the transition

probabilities is given by

133,420): 1'](I+dA(‘u|zo)),

(3J1

this estimate being meaningful as long as AA“, (u | 20) 2 —l on (s,t]. Here AU | 20) is

the kxk matrix of elements Ah]. (I | 20) with A“, (t | 20) = — 2 Ah]. (I | 20) . If a transition

1:]:

occurs at time u, then I+ dfMu | z) is the matrix whose (h, j)-th element is

ANhj (u)/Yh (u) if h¢j and equal to 1- 2 Mb]. (u)/ Y,, (u) if h=j. The properties of

jath

f’(s,t) follow from those of A as will see below.

It can be shown that

J5<P(s,z|zo)-P(s,z|zo))=JZ( I] (1+dix(u|zo)— 1'](1+dA(u|zo))

s<u.<.t s<u$t

is asymptotically equivalent to s/Zfifism | Z0 )d(;\ —A)(u)P(u,t | 20).

47



Therefore

50%,:|ZO)—P(s,:Izo))a:'JZ£P(s,u|zo)d(sg”(u)+sf,2’(u))P(u,z|zo) (1.9)

where we define the matrices Sf,” (t) = {5(1)m. (1,7)},1. and 5531(1) ={S‘2’ (1)}M.
n .hj

It follows that

J3<éh<s.tlzo>-81<s.rlzo» 5'

k k ,

43122Liz-g(wIzo>d<sfxb<u>+5221<u>>fih<uet|Zo>+
g=ll¢g

[t

+2 £31: (5,“ I Zo)d(5i3§g (“+52% (u))Pg,, (M | 20)}.(1.10)

g=l

Since 55231; (u) + 5,238, (u) = —(Z 32;, (u) + 5,33, (11)) we have

latg

J;(iih(s”lzo)‘fih(3”'20
)) .=.

k k

= #22 Egg (s,u | zo)d(s,‘,{;, (waif; (u))(P,h (11,: | zo)-Pg,, (11,: | 20)) (1.11)

g=ll¢g

If we replace 521;,(11) and 52:}, (u) by sums of independent identically distributed

variables we will get an independent identically distributed representation

forx/IIUA}, (s,t | ZO)—R,, (s,t | ZO )). Here we use

I: k

d532,, 01):?th J:71—;(zhfl (u)—e,,,- (uflnthfi (u))’2(r,fl)"‘db,,j (z) and

z: ,)=

hatj
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thJ-i (t)

(0) ).Using Theorem VII.2.3, p503, Andersen et al (1993)25 and

(,flI

d853,. (I): J;_2—
[:1 sh!-

(1. 11), the limiting distribution of J—(PPh(s, IIZO)— Ph (5, tIZO )) is given by the next

theorem.

Theorem 3

Under A5 - All, x/ZUA’M (s,t | Zo)- Pm (s,t I 20 )) converges weakly to

Um, (s,t | ZO)+U2ih (s,t I 20), where

U1,,,(st|ZO) IZZFP(s,u|zo)(P,,,(11,:|zo)—Pg,,(u,t|zo))de;}(u) and

g=ll¢g

U,,,,(s,=z|zo) ‘51:er(s,u|Zo)(P,,,(u,t|ZO)—Pgh,(ut|Zo))dU§:,),(u).

g=-ll¢g

The processes Ulih(s,t|ZO), U2ih(s,t|ZO) are independent. :1

Next we calculate the asymptotic covariance function of

n”2 (P(s,t | ZO)—P(s,r | 20)) . Because Sin)(’) and an)(t) are asymptotically

uncorrelated the k2 xk2 covariance matrix of (1.9) is the sum of two terms. From (1.6)

the (i, h)-th element of the first term in (1.9) is

111/2 (3‘19), 2 6XP(,B'ZgIo)£Hg (S,u IZo)dbg1 (10PM (“J i 20):"“2 (B—fl)'a,-h

g,l.g¢l

where bg, (t) = E(ng -eg, (u,,B))a'g,0 (u)du is ap-dimensional vector depending on t,
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and a”, = Z exp(/5"Zg,o)rfig (s,u|ZO)dbg,(u)P,,, (u,I|ZO). Therefore the

g,l.g¢l S

asymptotic covariance of the (i, h)-th and (q, r)—th elements is agh2( ,6,T)_1 aqr. In order

to estimate this covariance we replace 2(fl,r) by n'11(,3,r) and a”, by

gem/‘373,0)ng (s, u|zo)dfig,(u)P,,,(u,z|zo),where

133,0): £12,,0—E,,(u,8)}dzig,o<u).

For the second term in (1.9) the asymptotic covariance has the form

IIP'(u,t | ZO ) ® P(s,u I 20 )C0v(vec(dS(2,,) (u)))P(u,t | ZO)®P'(s,u | 20) . The inner

(u)
covariance matrix is expressible as ZZCXPQflZ810 ){vec Cgl ”V“ Cgl }' 1:50:33 )

l gatl

u

where C81 is a mxm matrix with (g, l)-th element equal to l, (g, g)-th element equal to —1,

and all other elements zero to zero. Combined with the previous expression we get a

compact form for the covariance of the first term in (1.9), namely

ZZexpafl'28,0)! {vecP(s u|Zo)Cg,P(u, IIZO)}

lgatl

_g__dA10(u)

“{vecP(S.u i Zo)Cglp(u’t I Zo)}———3(0) (16 u)

Therefore the asymptotic covariance of 111/2 (P(sJ | 20 ) — P(s,t | Z0 )) is the sum

of this expression and the covariance matrix of terms a;,,2(,8,2')’1 aq,. Chapter VII,

pages 514-515, Andersen et al (1993) gives formulas for estimated covariance of

fih(s,z|zo) and 13,145,420).

50



1.4 Estimation of average transition costs

We are now left with the estimation of ch}- (t | 20) in (1.1). Suppose costs can

potentially be incurred up to earliest of a fixed time 2' orQ , the time to absorption in

state k. If all observation ends at r then we are restricted to transitions and their

associated costs that are observed by 2'. However, allowing for censoring of follow up at

time U, the period of observation actually does not exceedU A TA 2',, . We now introduce

some new notations.

Let ya. be the transition costs in the ith patient at the chronologically ordered

transition timestij, j = l,...,n,- , where n,- = max U: 1,} S U,- A 2' } is the number of observed

transitions. The cost yij is observed provided sq. =1 where sil- = [t,-j S U,- A 2'] , that is, if the

transition time ti]. occurs by time I and is not censored by time Ui. We denote by yithe

n, x1 vector of costs and by X, a ti, x p matrix of covariates. The matrix X. includes

variables that are constant in time, but vary at the patient level, variables that vary with

time but are constant across individuals (e.g., prices of resources), and variables that vary

both between and within patients. For example, the jth row of X will typically contain

time-constant factors such as age at entry, gender, baseline comorbidity, and variables for

[2

modeling time such as: ,.j and interactions between time and time-constant variables.
ij t

We would also include dummies for the transition types h—-) j.

134

Consider a random effects (RE) mode given by

yizxifl+ai1i+ui (1-12)
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where ,8 is an unknown pxl parameter, 1,- the ni x1 vector with all elements equal to l,

a,- an unobserved patient-specific heterogeneity and ti, is the n, x1 vector of idiosyncratic

errors. The composite error in is V, = a, 1,. +ui . where ,6 is an unknown pxl parameter,

1,- the n, x1 vector with all elements equal tol, a,- an unobserved patient-specific

heterogeneity and u, is the n, x1 vector of idiosyncratic errors. The composite error in

(1.12) is v,- = a,- 1,- +u,- . Assume Q,- = E(vivf)is positive definite. Note that the

parameter ,6 in (1.12) is unrelated to the regression parameter in the Cox model for the

transition intensities. In this section our notation conforms to standard usage in RE

models.

RE model Assumptions:

RE] (i) E(u, |x,.,a,.)=o and (ii)E(a,- |x,)=o.

RE2 rank E(X§Q;‘X,)= p.

RE3 E(uiu; | x,,a,. ) = 031,. and 15m,2 Ix, ) = of,

where 0'3 and 0'3 are constants and I,- is the n, X": identity matrix.

Under RE] and RE3, E(v, ) = o and E(viv; ) = o, = 031,. + 03.1,. where J, is the

n,- Xni matrix with all elements equal to 1. Since E (y,- |X,- ) = Xib’ we see that estimates

of Ch]. (I | Z0 ) for specified transitions (11, j) and Z0 are derivable from the estimates of ,6

and specification of the X-matrix.
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In the RE model an estimate of ,6 is obtained by minimizing (with respect to ,6)

the objective function n“12q(yi,X,-) where q(y,.,X,-)=‘/2(y,- —X,-,6)'Q,’l(yi -—X,-,6).

i=1

Condition RE] suffices to ensure E(leflf'vi ) = 0. The feasible generalized least squares

(GLS) estimator of fl is

n n

flee = (ZXIQI‘X. )" (mer‘yn (1.13)

i=1 i=1

where (A2,. = (3'3 I ,- + 651,. is a consistent estimator of (2,- derived from suitable consistent

estimators ‘3 , ‘3 of 0'3 ,0'3 respectively. However, (1.13) is implicitly conditional

upon the availability of the sample {( yi , X,- ): IS i S n }. The cost y”- is observed

conditional on ti}. 5 2'. The number of transitions n,- is also random and depends on the

length of the observational period and censoring time. Our notation implicitly assumes

conditioning on the n,- .

1.4.1 Modification for censoring

As noted earlier, time censoring might lead to incomplete observation of

transition costs. Since yl-j and a portion of the jth row of X, are observed only if Si]- =1,

the estimator in (1.13) needs to be modified to account for this selection. Let 8,- denote the

diagonal matrix with jth entry s and t,- = (til ,...,tini )’. A covariate vector ziis observed1.].

initially which might include some covariates contained in X,- that do not depend on the
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transition times. Consider the observable data {(si ,2, ): 1S 1' S n } and assume that

given 2,- , the censoring time U,- is independent of ( ti , y, , Xi ), that is, censoring is

independent of the transition times and costs. This is a natural assumption with

administrative censoring, in which case the independence is related to the distribution of

entry times of patients in the study.

Since E(sijlzi,yi.X,-)=P[Ui21gj.t <T|zi9Yi9XiJ=Plui Ztij Izi]ij —

provided ti]- S 1', we define weights wl-j = 5,7 /p(t,-j ,zi ) where p(t,z,. ) = P[U,- .>_ t | z, ]. If G

is the survival distribution of the censoring time U,- , then p(tij ,zi ) = G (til. - | 2,. ) on

tl-j S 2' and therefore under the mild assumption that G(z'| 2: ) > 0 with probability 1, we

ensure p(t z,)>0 whenever Sr) =1. Hence E(wij lzi,yi,X,.)=E(wij |z,—)=l if tij Sr
{1' ’

and 0 otherwise.

Let w,- be the diagonal matrix with jth entry wij. Then the applicable modification

of the previously mentioned objective function q(y,. , X,- ) is

m.- .w..X.- ) =‘/2{w}’2 (14)“ (y,- — X.fl>}’{w}’2L:‘ (y,- -X,-b’)}. (1.14)

Here L,- denotes the unique lower triangular matrix with positive diagonal elements such

that Q,- = LiLf. This exists since 52,- is positive definite. Our assumptions ensure the

diagonal matrix E(wi |z,.,y,.,X,-)=I,. provided tin, Sr. Then

Euro. .w..X. )1 = E[E[é(y,-.W,-.X,- ) I y..z.-.X.1]=

=E(‘/2{(LI'(yg-X,-fl)}'E(W,-lzr.yi.X,-)L71(yr-Xifl))=E[q(y.-.X,-)] (1-15)
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Therefore a modification of (1.13) is obtained by minimizing with respect to ,6 the

n

objective function n'12§(yi,wi,X,-). Let X: =wll-I2L71Xi andyi = w}’21.;‘y,. . Our

i=l

estimator of ,8 is given by

B... =(Zi£5(1)“(25(2i.). ' (1.16)

Remark 1.4.1.1

1. Because 9,. and p(t,z,.) are generally unknown, to make (1.16) operational

we need to replace them by consistent estimators. Assume for now that these are known.

2. Use of the transformation (y 1' 1X. ) —> ( y, , Xi) preserves the time ordering of

costs because 5'0- depends only on { yik ,k S j }. This is also true of the rows of i,- if only

covariates ascertained at prior times are involved.

3. Model (1.12) can be generalized to include additional random effects, through a

qxl random vector ai. The model is then yi= Xifl+ Ziai +u, , with Z,- containing a

subset of the covariates in X. . For example Z, =[lr It; Itf] might be used to model the

time dependence at the individual level. Under an obvious modification of A3, the

composite error V; = Ziai “’1' satisfies E(vi IX!) =0 and

E(viv; | X,- ) = Q,- = 0311+ ZiGZf where G = E(aiafl X,- ) . Even if we assume the qxq

matrix G to be constant, there is conditional heteroscedasticity in (21-. However, the same

arguments leading to (1.15) and (1.16) will obtain.
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1.4.2 Consistency and asymptotic normality of 3,,

Since E(Xgii ) = E[X,’-L}1E(wi | X,- ,z,)L71Xi] = E(XEQ;1X,- ) , assumptions

REl, RE2 ensure that (n.1 2 51:51))"1 converges in probability to (E(xgoy‘x, ))'1 by

i=1

the weak law of large numbers (WLLN). Also writing 6, = wyzlevi we get

E(Xfiri ) = E[X;(L; )'1 E(wi | Y1 ,Xi ,2, )levi ] = E(Xgfli'lvi ) = 0 under REl. Hence, by

the WLLN we have consistency of 3w. Also from (1.16)

121/2(a) —fl) = (A3 +0, (1>>(n"”ZX;V.-) (1.17)

i=1

where Aw = E(xgng‘x, ). Application of the central limit theorem gives the normality

A

offl.»

n"2 (8,, —5)—D—>N(0,A;‘BWA;‘) (1.18)

where BW = E[igvivgfg ] . Another form of Bw is derived under additional assumptions

as follows. Now

Bw = 13151333,]: E[x;(L; )‘1 wiL;lv,-v; (L; )‘1 w,L;'x,.]

= 151x;(L;)‘l w,L}‘E[v,v; I may1 w,L;'x,. ], (1.19)

where f is the set (U) ,ti 1X1 911) and recalling that w,- is a function of (Ui ,t, ,z,- ). Since

U. is independent of (ti,yi,X,-)given ziwe getE[viv: If]: E[viv;|X,-,z,.].0ur
1

matrix X includes ti}- ,1 S j S n, , but 2‘. would have variables not in X, . From RE] and

RE3 we get only E[v,- IX, ] =0 and E[v,-vf | X1 ] =fli. Strengthening these to
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EIV) IXM) ] = 0. E[vivg I X,- ,z,- ] =52,- preserves the previous assumptions and gives

BW = E[X:(L,'-)'1wiw,-L:'Xi]. However, without these additional assumptions on v,- we

have to be content with Bw given in (1.19).

1.4.3 Computation of Awand Bw

 

To implement the result (1.18) we will need estimates of Aw and Bw. From the

discussion leading to (1.19) consistent estimators are obtained as

Aw = 114251;)?“ fiw = n'lZi;$i$;Xi . (1.20)

i=1 i=1

Here 9,. = y, — iiflw are the residuals obtained after estimation of ,6. A consistent

estimator of (2,. may be obtained by OLS estimation in the model transformed by w}/2 ,

that is, the model

y? = X273 + V?

where y: = w” 2 3’1 and the other asterisked symbols are similarly defined. Let 30,51‘

denote the OLS estimator from this model and 5,. = W?”2 (y: — x350“) the

corresponding transformed residuals. Consistency of 3015 follows from RE] and the

mild condition that E(XEX, ) has full rank. A general consistent estimator of (2,. is

A n

12,. = 72-12 91.9; . However, under RE3, (2,. has a special structure involving just two

i=1

S7  



. 7 .

unknown vanance components 03 and 0; . We would then estimate these components

n,-1

fromaf +002:(Z:1n1 -p)]ZZvU- and 0'“2=(}:‘/2n (n, —1)— p)12225M13.

k>ji=1j=l i=1j=l

1.4.4 Estimation of G(. | 2)

To completely specify the weights we are left with estimation of p(t,z) which is

given in terms of the censoring distribution G(- | z) . In our observational scheme follow-

up of the ith patient starting in transient state X (0) at time t0 =0 may lead to one of

three distinct scenarios. (1) Observation ends at the jth transition time I”- Sz'in the

absorbing state k. Then U >tij and X (’11)): k. (2) Observation continues beyond 1,.}- but

ends at Twithout the occurrence of another transition or censoring. Then U,- > 2', ti},r1 > 2'

andX (10):: k. (3) Observation continues beyond tij but ends at U before for the next

transition time. Here 1,.]. < U1' <10.+1 A 2' and X1011) ) at k. The likelihood function involving

G(- I z) and its density g(- | 2) can be expressed as

III—110(11)-|21)}“"5‘1{G(ler)}}”51”““1111)”‘1‘11gw lz )1"1"1 “'1‘“’ (1.21)
i=1 120

where 6,-1- = [X ,. (tij ) = k] . If G is known except for an unknown q dimensional parameter

6then maximizing (1.21) yields an estimator 19 of 61 giving an estimatorG(- l 2,3) of
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G (- | z) . Assuming all regularity conditions for maximum likelihood estimation hold, 6

n

is a solution to ZZ {1,-j (6) = 0 where

  

 

i=1j20

(t,- V .

d'1(6): S'JU V6GB jlz)+(1‘—61j)[Ui/\ttj+l>r>tij]
QGQU'IZI)

Gg(t'jlzi)
60(lei)

V . .

+(1—61jlj)“ <Ui <tij+lAAT] 636(U1|zr).

86(Uilzi)

Estimation of G( Iz) changes the weights wij to wij =s,-j /G(t,-j Izi ,6) and

would modify the arguments leading to the asymptotic normality result (1.18). In the

sequel call 60 the true parameter and let (1,]. (6) denote the derivative of dij (6) with

respect to 6. Using standard arguments we get

n“ 2 2d,]. (60 ) —> E(Zri,j (60 )) = 1(90 ) in probability. The q><q matrix J(60) is

i=1j20 jzo

assumed to be positive definite. Also If”2 2 2d,]- (60) = 0,, (1). Then using an

i=1 jZO

expansion of 2241(6) at 60 we obtain

i=1 jzo

121/2(6—60)=—J"l(60)(n‘“222dij (60))+0p(1) (1.22)

i=1 120

The same steps leading to (1.18) gives

n1/2(flw -fl)— (,1“122——50X;XE; )"1014/222—.) (1.23)

11100 '2 llJG(trjlr’

where x: = leXi and v: = lev,. Since G(lei ) > Owith probability 1 and 6 ——> 60in

probability, by application of the uniform WLLN the first term in (1.23) converges in
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I!

probability to AW. Its estimator is AW = 112'1 XX? flux: where w, is diagonal with

i=1

elements rig-j. For the second term in (1.23) we have the expansion

s,j,-xj,-vj

"”222 6,, -<11“ZZ
i=1 j i=1 j {G(I;jr::):16)}

  

2 V1900.)- Iz.,é»n"2(6‘-ao)

where 6 is between 6 and 60. Again, by standard arguments the bracketed expression

# vt

,jux

above converges in probability to D(60)= E(z 'j v”

I {G(tijlzZi,60)}2

2V;G(I,«j Iz, ,60)) apx q

[t,, S z']x,.'jv'jV

matrix. Note that D(60)is the same as E(ZGU,,zil 60)
 V'9G(I, |z,- ,60)).Combining

these results together with (1.22) into (1.23) we obtain

* vi

S-UX

n”2(fl.. -fl)= A401-l/222{G(IIVi] )D(60)J"((90)d,.,.(60)})+o,,(1)
=1 1 I}

 

= 11;} (ii-“2:311, —D(60)J" (60)d, (60H,- })+0, (1)

i=1

n t t

l S..x..v..

where k, =2 U U U , d,(60)the qx(n, +1) matrix of the d,-,- (60) and 1,a

1: G(tij |z,,60)

 

(n,- +1)x1 vector with elements all 1. A direct calculation shows that

n“2(,6 —,6)—)N(O, A;‘BA;‘)

where f3“, =E(1111,’—) D(6O)J"(60 )D(60) Compared 10(1 18) we notice that E(1111;)

is the matrix 8,, in (1.19) when G was assumed known. Thus estimation of G here gives
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an asymptotic covariance that is no larger than if G was assumed known. This is in the

sense that A: (13,, —B,,, )A;l is negative definite.

1.5 Asymptotic distribution of the mean transition cost

From our model (1.20) for all transition costs we obtain estimates of ch,- (I | 20)

for a covariate profile Z0 by specifying the appropriate vector X0 of covariates

corresponding to a column positions in X. Suppose for example in the model for y,-,- the

row vector 11,} of X contains the fixed covariates x, , dummies for transitions types, terms

of modeling the transition times such as t,-j ,I,.,2. and perhaps interactions between these

times and x, . Our special X0 will contain the desired 20, interactions between Z0 , I and

I2 , indicator variables with value 1 for transition type h—) j, and value 0 for all other

transition types. Denoting this covariate profile by tho (I) then ch,- (I | Z0 ) = X,’,,.() (I),B

and from (1.16) we obtain the estimator

6,, (1|ZO)=X,;,0(1)6,,. (1.24)

Although the consistency of 5,, (I | Z0) might seem immediate from (1.16) the

final form of the computable 6,, involves the estimated $2,.and weights w,- , the latter

through the censoring distribution G.

Now recall from (1.1), the expected net present value NPV,,(jl) (I I i ,ZO) =
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“’mlxo =i,Zo) has the form PM)(sIZomMOJIZoMJ-(Slzo) - From
E(C,

( 1.24) and Section 1.3 our estimator is

Nfiv,f,”(r|i,zo) -_- Ee—rséhj(s|Z0)13,,,(0,s-|Z0)dA,,J-(S|ZO) (1.25)

which also leads to the estimate of the first term for the expression for NPV in (1.3).

Remark 1.5.1

1. Our model for all transition costs y ,- uses the entire sample of patients to

estimate simultaneously all ch,- (- | ZO ), h ¢ j. This has the advantage of drawing strength

from other parts of the data set when patients do not have observed transitions of every

type. Its limitation lies in discerning a simple but adequate specification in the model for

the times ’1'} . Based on our previous experience we suggested using terms t,-- ,IUZ- and their

interactions with other covariates in the rows of X, . Although our estimation strategy

does not depend on this specification, as a practical matter a small number of terms

involving t~ is desirable and should be adequate in capturing the dynamics of time. Also

note that the first term in the NPV formula is actually a sum over the transition times

because Ah,- (- I ZO )can jump only at these times. Therefore, unless some smoothing of

Ah]- (- | Z0) is done we will need estimates of the ch,- (- | Zo ) only at the transition times.

2. Since inadequate follow up in some patients might result in incomplete cost

observation, we used inverse probability of censoring weights (IPCW) to obtain

consistent estimates of the regression parameter ,6. Many investigators4‘ 3‘ have applied
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this technique in a standard survival model with a single cost determination for the whole

follow up period.

3. The fixed covariate profile Xth (I) is assumed to be continuous in I. The

asymptotic properties of the estimator ,6 in (1.18) imply that

sup |e‘"(a,,,(r|20)—e,,,(t|zo))|—”—>o.

re[0.r]

Also Chj(1| 20) is assumed to be bounded. We have uniform consistency of 1" , i.e.

sup [13”, (0,t | Z0 ) -— 8,, (0,t | Z0 ) | —P—>O. Based on these results and Theorems 1 and 2,

Ie[0,r]

the net present value estimator is uniformly consistent, that is

sup |Nfiv,f,”(t|i,zo)-NPv,f,"(t|i,zo)|——”—>o.

re[0.r]

This result is proved in Polverejan (2001)“.

Conditional on the initial state i, given the vector ZO of basic covariates, we will

assess the asymptotic normality of the net present value of all expenditures associated

with the h to j transitions in (0,t], i.e. the asymptotic distribution of

721/2 (NPV,? (I | i ,20 ) - NPV,,(jD (I | i ,20 )) using the Functional Delta Method.

Consider the trivariate process 2"" (r) = (2,”) (025") (r),z§"’ (t)), with

components

2:")(1)=‘/;8_n(51j(’lzo)’chj("20)),

261104516111:Ila-11.16.:120»,

z§"’(t)=./Z(A,,, (t|zo)—A,,,. (1120).
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We recall our convergence results from the previous sections.

From (1.17), (1.18) and (1.24) we have

21101)“)_tho(,)e‘"A"(J_ZX (L )"lw,L; V, ) and the weak convergence result

z,‘”’(t)—l’—>e‘”c,,,0(t|zo) where c,,0(r|zo)= X,;,O(t)§, and g, is a multivariate

normal with mean zero and covariance matrix .A;,'B,,,A;,l .

Using (1.7) and Theorem 3 we obtain the weakly convergences

A 0.8.

25"’(t)=JZ(ehts.rIzoi—eh<s.t|zo)> =

k k

=ZZJP, (s u_|Zo)d(5’(11g,(u)+S,(,2;,(u))(B,,(u,t[ZO)-Pgh(u.tI20»

——D—>U,,,, (s,t | Zo)+U2,,, (s,t | 20).

where

Uo.<stlzo>= ZZlegtsu—Izom1utlzo>—P,,.<u(Izo»dU1‘;1<u>
g=ll¢g s

Uzi/1(S’lzo)= 22]: Ii,(s.u-Izo><111<u.rIzo>—P,,.<u.tWWI/121(11)-
g=-ll¢g

and U1”, (s,tlZo), U2,,,(s,I|ZO) are independent; and also

due

23"”(1)=J—(A,,(r|zo)—A,,,(r|zo)= exp(6’z,,,o){sf,‘,’,,(r,r)+sf,2,,’,(r)}

—D—>exp(,6’Zh,-o )(Ufhj (I) "Ll/211; (t)) . 11¢ 1

where

n k

5,9,;(1 r)=-i-Z( Z J:—1—(zr.,-,-(u>-e,,,(u.6))dM,.,-.(u))’Z(r.6)"‘b,,,-(o.
n i=1 ,j=l J;
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thj, (u)

”h! (:t)-T:£——(0)(ufl)

and the (h, j)-th element of the limit process U: (I) of Sf,” (I,2') can be expressed as

égbh, (I), where :0 is a p-dimensional normal random variable (its distribution does not

depend on I) with zero mean and covariance matrix 1‘>.T(z',,6’)'l ,

b,,, (I) = £(Zhj0 —e,,,- (11,,6))a/,,j0 (u)du is a p-dimensional vector depending on I; also

U171) (I) and Ugh,- (I) are independent.

Theorem 4

Under assumptions A1 - A11 and REl-RE3 for a fixed time I and h :15 j :

A,,(t|z,,)—A,,,(t|zo) U,j,(t|zo)

J; iih(oatlzo)"Pih(Oit|Zo) —D_’ UihmZo)

Ehj(t|ZO)_chj(t|ZO) chj0(t|ZO)

where the elements of the covariance matrix 2 are

2(1,1 ) = e11p(26’z,,,0 ){w}, (r) +b;,, (r)z(r,6)"b,,, (1)},

2(2, 2): ZZEP-§(s,u|ZO)(P,,,(u,t|zo)-P,,,(u,r|zo))2-

g=—11=g

eXp(fl2,,01111§,<r)+b;, (u)Z(T fl)"b,,(u))

2(3, 3)=e‘2"x,’,,o(t)A;,‘BWA;‘X,,,O(1),

2(1, 2) = estpw’zh,0 )b;,, (1)2(2, ,6)“ 17,, (r, 6) +

+ertp(26’z,,,o)jo 11;,,,(o u|z0 )(P,,,(u r|zo)— P,,,(u, r|zO ))dw,,(a))
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where

Eh(I):Z:=lZ;g £13,(0,14|20)(P,,(u,t|zo)—P,,,(u,r|20))exp(6’z,,o)db,,(u)),

Z(l,3) =X(2,3) = 0.1:]

Proof:

The expressions above for the diagonal elements of 2 have been previously

proved in (1.8), Section 1.3 and (1.18). We prove that 2(1,3) = £(2,3) = 0 , which

verifies that

2f")(I) and (Z§"’(I),Z§")(I)) are asymptotically independent.

Let us remember that

2(1,3) = covrxg,0(t)A;,‘x;(L;)" w,L',T'v,-,F(I,T.M,-.z,- )1

where

F(I,2',M,-,z,)=

k
l I I—1 thji(u)

—— ~ --, M,- 2, b~t+-—-———.1h; 13,50,411) e,,,(u 611d ,.,(u)} (16) 1,0 Esgf’tw)

hatj

The expression X,7(L,7 )’1 w,L}'v, is a function of all transition times

t,- = (In ,I,2 "”tinr )observed in [0, T] as well of (U,- ,z, ,y, ,X, ). We will impose the

assumption E(v, IX,- ,z, ) = O . The function F(I,T,M,- ,z,) depends on

th =Zth, where

l

thi (I) = Nhji (I) - gym (“)6xp(fl’zhji (“))dAhjo (u)
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depends on a subset of each of t, ,z,,X, and U, . Since w, is a function of (U,- ,t, ,z,)

and U,- is independent of (t,,y,,X,-)given z, we get E[v, If] = E[v, |X,,z,] where

f is the conditioning set (U,- ,t, ,X, ,z, ). Then

E(x;v,M,,,, (I) | f) = x; (L; )’1 w,L;‘E(v, |x, ,z, )M,,,, (1)

and so under the assumption E(v, | X, ,z, ) = O we get 20,3) = 0. Similar considerations

lead to Z(2,3) = O.

The covariance of exp(,B’Z,,,-o )(U:,,, (I) +U;,,, (I)) and

U,,,, (0,1 l ZO ) +U2,,, (0,t | 20) can be calculated using results previously stated in Section

1.3.

Z(1,2)= E(exp(6'Z,,,0)(Uf,,, (I)+U;,,, (I)) (U,,-,, (0,1 I ZO)+U,,,, (0,t | Z0 )))=

k k

=E(exp(6’z,,,o)U,",,, (1)22 £13., (O,u|Z0)(P,,, (u,I|Z0)—Pg,, (11,420))-

g=ll=g

-exp(,6’Zg,0 )deZ (11)) +

k k ,

+E(exp(,6’z,,,o)U;,,, (1)22 jog, (O,u|ZO)(P,,, (u,I|ZO)—Pg,, (11,420)).

g=ll¢g

-exp(6’z,,o )dugfg, (11)) = I + 11.

Using U1",, (I) = gabh, (I) , the first term of the sum can be calculated as

k k

I =E(exp(fllzth)Ufhj (1)22 £113 (0,“ I ZO)(II}1 (u,I I Zo)'Pgh (u,I I 20 ))'

g=ll¢g

-exp(,6’Z,,O )deB (u))=
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k k

=E(exp(6’z,,,o)§3b,,,-(I)ZZ£8,(0.11IZo)(111(u.tIZo)-Pg1(uit|Zo))

g=11=g

-exp(,6”Z,,0 )déabg, (I).

Therefore I: exp(,6'Z,,,O)E(§E,b,,j (I)§6F,,, (I,,6)) where

k k

F,,, (“51:22 £113, (0,u|Zo)(P,,,(u,I|ZO)—Pg,, (11,1|zo))exp(6’z,,o)db,, (11)).

g=ll¢g

Hence,

=6XP(16'Zh,-o )E(b;.j (”gogthj (I, 16)): exp(fl'Z,,j-o)b;,, (1)2(7116Y1F1h (Iofl) -

The second term is:

II:15(e11p(6’z,,,0 )U;,, (1)Z:=,Z 1;, £19,, (0,11 l Z0)(P,,, (11,1 | zo)- P,,, (11,1 | 20 ))-

-exp(,6’z,,o)dU§,’, (11)):

I I '1' t k k

=E(exp(6 2,,0)[06U2,,(u)jo(zg=,z,,gg, (0,11|zo)(P,,,(11,1lzo)-P,,,(u,1|zo)).

.exp(137110 )dug‘; (11)) =

Using <U§,,,U;m,> =0 for (h,j) ¢ (m,r),(h,j),(m,r)e E‘ (so the processes

{Ugh}. (.),(h,j)e E‘} are independent) and

.1
by 1 ah'O (u)

U - I = (02- ’ = j
< 2h} >( ) hj( )notatiml J0 51(5)) (urflo) u

we calculate

I * t

11= E(eXpw Zhjo)£d021,(u)IOP.-1(O.uIZO)(P,,,(11.1|zo)-P,,,,(11,1|zo)).

-e11p(,6’z,,,O mug), (11)) =
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=E(CXP(2.5’Zhjo)I;Bh (01“ I ZOXPjh (11,1 I ZO)_Phh (“1’ I Z0 ))d <U§Z~ > (14))

=exp(2,3'Z,,J-0)J;Hh (0,u|Z0)(P,,, (11,1|zo)-P,,,,(11,1|zo))dw,?,(11)).

Putting I and II together,

20, 2) = e11p(,6’z,,,O )b;,, (1)2(1, ,6)“ F,,, (1, 6) +

+eXP(218’Zhjo)I;Pih (0,11- I 20 )(Pjh (“1‘ I Zo)- P11h(u1’ I Zo))dw;?j(u))-

Fix the time I and consider the functional

(0, IE‘ —> JR. ¢,(Z)122123)= £31(5)Zz(5)dz3(5)1

where E‘ is a subset of D[0,'1']3 such that (p, is well defined. Notice we can write

NPV,f,”(1|1°,zo) as

(0, (21,22,33 ) = (0, (e’r'Chj (1201311 (0.-l 20%/11.,- (-| 20)).

If 6), has an extension to D[O,r]3 that is Hadamard differentiable in (z, ,z2,z3) then,

under some extra-conditions, we can apply the Functional Delta Method.

Lemma 2

Let E'. ={(x,y,z)€ D[0,2']3 : EldzlS C}, where 0<C<oo. Forafixed time

IE (0,r] we define (0, :E’ —)R by (0, (21,22,23)= Ez,(s)zz(s)dz3(s).
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Let (z, , 22 .23)be a fixed point of E‘ such that El d(z,z2 ) I < 00. Then (a, can be

extended to the space D[0, 2']3 so as to be Hadamard differentiable at (z, .22 . z3 ) , with

derivative

1 I I

(1601(2). 22 9 Z3)(Z|122 123 ) : £212de3 + 10212de3 + LZIZ2dZ3 9 (126)

where the integral with respect to Z3 is defined by the integration by parts formula if Z3

is not of finite variation.

For technical reasons the following extra-assumption is considered: ch, (. | Z0) is

of finite variation over [0,2']. We write Eldch, (s | 20 )l < oo . Lemma 2 is proved in

Polverejan (2001)48and more details on regularity conditions can be found in Gill

(1989)58 and Praestgaard (199l)26.

Theorem 5

Under the assumptions Al - All and RE] - RE3 for a fixed time I:

11“2 (NPV,;"(r|i,zo)-NPv,f,"(1|1,zo)) =

= "112“,! ((3-,ch (1201111 (0.1201111)- (-|Zo))-€01 (.,-11,, (,|Z0),P,,, (O,.|Z0),A,,, (.|20))1

LCM): (e-r'chj (-IZo >131. (01- I Z0 )1Ahj ('IZO))'(e-r.chj0 (-IZo ).U,-1, (01- I Zo)1U;j ('I 20)) =

= £1-11c,,0(s|zo)P,,,(o,s|zo)dA,,,(s|zo)+ £e‘”c,,,(s|ZOW11(0,s|Zo)dA1,-(S|Zo)+

+ fie‘1‘c1)(SIZo)lih (o,s|Z0)dU;,(s|zO)= p(,)
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where 11;, (I) = e11p(6’z,,,0 )(Ufh, (1)+U;,,, (1)), U,,, (1) = U,,,,(1)+U2,,,(1) and

ch10 (I | Z0) = X,',,O(I)§, .121

Proof:

The mapping (a, :E‘ —> 1111 is defined by (a, (z,,1,,z3 ) = £1, (1)12 (”613(1),

where E‘ ={(z,,zz,z3)e 010,113 : @1113 I5 C} and C=A,,,(r|ZO)+l<oo. Let

21(5): e"‘c,,, (s | Z0 ), 22 (s) = P,,, (0,51 Zo),z3(s) = A,, (s | ZO ). All 21,22 .23 E D[0,z'].

Therefore (z, ,22 ,Z3 )6 E‘. We have that E|d(z,zz )l < 0°.

The previous Lemma implies that (I), can be extended to D[O,Z']3 so as to be

Hadamard differentiable at (z, , 2213), with derivative

(“01 (31 1Z2123)-(Zi ’22 123): Igzrzzdé + Ezlzzdz3 + Ezlzzdzg, .

where the integral with respect to Z3 is defined by the integration by parts formula if Z3

is not of finite variation. Denote by (of. the extension of 0, to D[0,2']3.

Define 21(3) = ('15,, (s | 20 ), 2, (s) = P,,,(o,s| 20), 23(1) = 11,,(1 | 20), sE [0,1].

We have (21,22 ,23 )E D[0,z']3 for every n and

P(Edlz3|<C)=P(EdIA,,O(s,6)|< C)=P(A,,,(r|Zo)<C)—->l as n—)00

because Ah, (1|Z0)—P->A,,, (1| ZO)< C. Thus (21,22,23)€ E‘ with probability tending

to one.

We have
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"“2 (21(‘)-Zi('))—D_"Zi (') =e-r.chj0('IZO)’

,11/2(22(.)_ Z2 (-))—D—>22 (') = U111 (01‘ I 20 )1

n“2 (23(-)-z3(-))—2—>z3(-) :11}, (120).

The processes Z1 ,Z2 ,Z3 are Gaussian and hence have versions that are almost

surely continuous. Let C[O,r] the set of continuous functions on [0,1]. The subset

C[0,‘1']3 C D[0,2']3 is separable, so (Z1 ,Z2 ,Z3) has separable support.

Because P(o,.|zo)=n(r+dA(.|zo)) and P(o,.|20)=['[(1+dA(.|zo)),

(0..) (0.-l

the matrices P(O,. | Z0 ), P(O,. | Z0) are functionals of A(. | Z0 ), A(. | Z0 ) , respectively.

Also by Theorem 4,

Ahj(’IZo)‘Ahj(’IZo) U;j(t|ZO)

‘5 Pih(OrtIZO)-Bh(0’tIZO) ‘2") Uih(‘IZo)

e'"(a,,, (IIZo)-c,,, (1|zO )) e'"c,,,0(t|zo)

Therefore by Functional Delta Method,

"1,2(¢1(21122 123)’¢1 (21122 133))‘—D"d¢1E. (31122129121122 123 ) = P(’) defined in

the theorem statement.

Theorem 6 (Variance of P(I))

Under the assumptions in Theorem 5, the variance of

P(I)= £e‘""c,,,0(s|Z0)Eh(0,s|Z0)¢4,,,(s|Zo)+ £e_”c,,,(s|Z0)(/,,,(O,s|ZO)dA,,,(s|Z0)+

I "1":
111 .

+106 Cry-(s!Zo)31(0.slzo)du,,(s|zo)is

72



Var(P(I)) = T,,,, (1)A;‘B,,A;.‘T,’,,, (1) +T,,,, (1)’2(1,6)‘l T2,, (1) +

2 “1110“)
1

s1?) (flu)

+exp(2,B’Z,,,0)(2EB, +21562 + E1e'"c,,,—(t IZo)1”11(0.t|Zo)}

' —rs I
where T,,,,(1)= [0e X,,,0(s)P,,(o,s|20)11A,,,(s|zo),

TZhj (I) = exp(6'Z,,,0) Le-rschj (5 I 20 )IPih (015 I 20 )dbhj (S) +F,,, (S)dAhjo(S I 20 )I 1

I T —

EB] = “PUB ZthLe "Chj (’ I 20 )dAI1j0(t)'

dAhjo(S)' -rs

(Joe ch,- (SIZO)R§(013IZO)IP,11 (31420-3111 (SJIZON (0)

sh,- (13.11)

)

and 532 = Ee-nchjUIZo )dAthU)'(Le-rschj(SIZO)Hih (Sit)dAhj0(S))-

Proof:

The form of the variance can further be elaborated with the following notation.

Let

F,,, (1) = ZZexp(fl'Zg,O)£P,g (0,11|zo )(I),(11,1|zo)—P,,, (11,1 | zo))db,,, (11)

g=ll¢g

V,,, (1) = ZZexp(fl1zg,o)j; P, (0,11|zo )(P,,, (11,1 | zo)-P,,, (11,1 | 20 ))dUgg, (11).

g=lI¢g

While F,,, (I) is a non-random p-dimensional vector, V,,, (I) is an example of an Ito

process. Here U; (.) = (U;,,, (.),h, jE {l,...,k}) is a kxk matrix-valued process, where

Ugh, = —2 Ugh, and {U;,,, (.),(h,j)€ {1..,k}} is a continuous Gaussian vector

jack
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martingale, properties of this process are described in Section 1.3. It follows that V,,, is

Gaussian and by Fubini’s theorem E (V,,, ) = 0.

Let us consider the three terms of P(I):

P<t>= fie"‘cso<slZO>P1(0.sIzo>dA11-<slzo>+

+ Era-"ch, (s I 20 )U,,, (0,5 I 20 )dAh, (5 I Z0 ) +

+ Eta-"ch, (s | 20 )1), (0,1 | zo)dU,',', (5 | 20) = [+11 + 111.

Since the first term gee-”chm (5 | Z0 )8, (0,5 I Z0 )dAh, (5 | 20) is uncorrelated with the

other two we calculate its variance separately. Indeed

Var(!) =v111(J,:e"-‘e,,,0(s|z0 )1), (0,5|Zo)dA,,,(sIZO )) =

=Var(E_,, £e'”X,’,,0(s)Bh(0,s|Z0)dA,,,(sIZO))

For easiness of notation let Tlhj (I) = I: e‘”X,:,-0 (5)13, (0,5 I ZO )dAh, (s | ZO ).

Then Var(I) = Var(§,T,,,, (I)) = T1,, (I)Var(§l )T,’,,, (I) = T”,- (I)A;1BWA',;‘T,’,,, (I)

The second and third term are correlated and we look at them together

Var(Il+III) =Var( fie"1“c,,,(s|zo )U,,, (0,5|Z0)dA,,,-(s|ZO)+

+ Ee—rsch, (s | 20 )P,,, (0,.1 | 20 )dU,j, (s | 20 )).

Some algebraic calculations lead to

I —rs

Var(II + [11) = Var( Joe ch,(s|ZO)(U1,,,(O,5|Z0)+U2,,,(0,5]Zo))dA,,,(5|Zo)+

' -rs
, ,..

“' Le Chj (S I 20 )3), (0.5 | Zo)exp(fl Zh,0)dU,,, (s | 20)) =
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=Var(exp(512,0 ) [Jo-111,612,, gar“, (rm/1,0 (s I 20 ) +

+exp(6’z,,0)£621,312,, )V,,,(5)dA,,,0(5|Z0)+

+exp(,6'Z,,,0) E64301) (5 I ZO)P1'h (013 I ZO)dU;/11 (S I ZO)+

+CXP(16’Zth I Lie—”C111 (5 I 20 )Pih (015 I 20 )gadbhj (5)) =

= Var(exp(fl’Z,,,O )gg J: emchj (5 I 20 )I 13,, (0. S I Zr) )dbhj (S) “I“ F111 (3)5114th (S I 20 )I +

+CXP(,B’Zhjo) £5,501)“ (5 I 20 ){ Pih (015 I Zo )dU2hj (5 I 20 ) +V111 (3)5“th (3 I 20 )}-

The last two terms are independent, and therefore

Var(II + III):

Var(exp(6’z,,,0)gg, I; e"‘c,,,(s|zo){P,,, (0,1|zo)db,,,(s)+1«‘,,,(s)dA,,,o(s|20)}+

+Var(exp(,6"Z,,,0 ) £6'”C,,, (s | 20 ){ 8,, (O, 5 | Z0 )dUgh, (s | Z0 ) +V,,, (s)dA,,,O (5 | Z0 )}).

The first variance does not pose a challenge:

Var(exp(6’z,,,o)§;, flame, (leO){P,,, (0,5|Zo)db,,,(5)+F,-,,(s)dA,,,0(s | 20)) =

= Var(13721,(t»= 12,,- (t)’2(r,fl)" 12,, (1),

where T2,, (I) = exp(,6"Z,,,o) Eeqsch, (5 I 20 ){P,-,, (0,5 | Z0 )dbh, (s) +F,,, (5)dA,,,o (5 | Z0)}.

The second term

1(1) =exp(6’z,,,o) Ee—“ch, (5| zone, (0,.1 | zo)dU;,,, (5| Z0)+V,,,(5)dA,,,0(s|ZO)})(1.27)
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is an Ito process (here the dependence on i, h, j and Z0 has been suppressed) and it

follows that J (I) is Gaussian. The first term in (1.27) is the integral of a deterministic

function with respect to a Brownian motion, and hence the mean is zero. The same result

applies to the second term, as seen by Fubini’s theorem.

Also since C11) (.) are bounded, non-negative processes over?’ and 13,, (0,5 | 20) are

probabilities (<1),P{exp(6'Z,,,0) J:( £6” |c,,,(5|Z0)1'3,,(0,5|Z0)ds)2 <oo} = 1.

For the second term we need to check that

PICXP(fl’Zhjo) [II Jge-rschj (S I ZO)V1‘h (S)dAth(S I 20) I< °°I =1-

This follows directly under the assumptions A7: A,,,0 (r) = I:am (t)dI < co and

A10: 5,37") (.,.) are uniformly continuous bounded functions of (I, 6)e [0,1])(6’ and

boundedness of Ch, (.) . If we apply Ito’s formula for the function f (I, J (I)) = J 2 (I) then

.12 (I) has also a stochastic differential form

1 . dA- ( )

12(1)=2j0'1(s)dJ(s)+ [01e"1e,,,(s|zo)1=;,,(o,s|zo)}27,%9i.

5,, (6,5)

Split £J(s)dJ(5)=

= £J(s){e-”c,,, (5|Z0)Bh (0,5|Z0)}dU;,,, (5)+ £J(S){e-rschj(SIZo)V111(S)I‘tho(S)1

and note that the expectation of the first term is zero. Hence to evaluate E(J 2 (2')) we

need examine the second term in the expression above. Inserting J (s)into the second

term gives
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EJ(I){e'"chj- (1 | 20 )v,,, (1)}da,,0(1)=

E(Ee”‘chj(5|ZO)P,-h (O,s|Z0)dU;,,,(s))-e'"c,,, (1|Z0)V,,, (I)dA,,,O(I)+

KI (e"‘c1,<sizo>h1<sida,,,(s))-e-~e,, (1|zo)v,,, (1)11A,,,0(t)=3, +32.

We have for s <I,

H1).(Sit)=E{V-1, (S)V1,(t)}=

=ZZexp<26Rzgro>1§-(0mIzoxniwIZo>-P11<1111|Zo>>°
g=-ll=g

Myo(u)
'(Bh (“’SIZO)—Pgh (u,S|Zo))m

and therefore we get

—rI ‘ —r.1‘
E82 = Ee ch, (1 | zo)dA,,,O(1).(joe 6,, (5| ZO)H,,, (s,r)dA,,,o(s)).

Finally evaluate EB, by noting that the processes U'2' 11) , U; g, are independent for all (g, l)

at (h, j). We get a single term

E3] = eXIX/3,2160)Lre-"ChjuIZO)dAth(I)'

1 -11 (3)
(Joe ch,(5|Z0)B,3(0,5|Z0){P,,,(5,I|Zo)-P,,,,(5,I|20)}534—;))

u

Therefore

Var(II + III) = T2,, (I)'2§(‘z',6)'1 T2,, (I) +

1 -n ‘ (I)
+exp(26Z,,,o) ZEBI+2EBZ+JZ{e c,,,(I|ZO)P,,,(O,I|ZO)}2 3:34—3311)

The proof of the theorem is now complete.
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CHAPTER 2

ESTIMATING MEAN COST FOR

THE TWO-STATE CASE

With the rapid escalation of costs of medical treatment, interest in accurately

determining the cost of medical care has increased. Estimates from cost studies are

needed to determine the economic burden of disease, to predict the economic

consequences of new medical interventions, and for comparative purposes such as cost-

effectiveness analyses.

Health care studies are typically designed with a period of recruitment in which

patients enter the study, and an additional period of follow up in which health outcomes

are recorded. At study termination however, some patients would have not reached their

end-point of interest which leads to right censoring of their time-to-event response. The

medical cost associated with the follow up period in these patients is also right censored

in the sense that the total cost at the time of censoring is less than the cost that would

have accrued if their follow up continued until their end—point was reached. Due to this

analogy with censoring and event times, it is tempting to use standard techniques from

survival analysis for the analysis of medical costs. The survival analysis approach to costs

seems also appealing because of its simplicity, its nonparametric nature and its apparent
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robustness in the presence of censoring. However, although the approach is apparently

free from distributional assumptions, it is not entirely assumption-free. Some of the

assumptions that underlie such analyses, for example, the independence of event and

censoring times, are not tenable with censored costs4‘ 30‘ 59. Generally, cost at the time of

censoring and cost at the event time are correlated. A simple sample average of the

observed costs in the patient sample would underestimate the true expected medical cost

for the treatment under study, and using the average in the sub-sample of patients with

complete costs would be inefficient.

The current methods for estimation of the population mean cost are both

nonparametric and semi-parametric. Key references are Lin et al (1997, 2000, 2003)4'5'30,

Bang & Tsiatis (2000)“, Strawderman (2000)”, Willan eI 111(2002, 2003)21 3, Huang &

Louis (1998)“), Arijas & Haara (1984)56 and Wooldridge (2003)”.

2.1 Introduction and Background

Suppose costs can potentially be accrued over a fixed time period [0, 2'] with

expenditure terminating at some event time T so that complete cost observation occurs if

a patient is followed through time T' = min(T,z'). Suppose y(I) is a right-continuous

process that represents the cumulative cost up to time I (including time I) for a typical

patient in the population under study. If lifetime cost is of interest then T denotes survival

time. Since costs do not accumulate after T, y(I) = y(T) for all I 2 T. The cumulative

cost y(z') at time 2' is the principle random variable of interest, so inference will focus
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on the mean cost, ,u = E ( y(T)) = E( y(T' )). With lifetime medical cost, the cumulative

cost is y(T) and estimating the average E( y(T)) is of interest.

Censoring at time U might preclude observation of T‘. Let X = rnin(T,U ) ,

6: [T S U], X. = min(T*,U) and 0“ = [T‘ S U], where [A] denotes the indicator

function of the displayed event A. The observed cost y = y(T') is uncensored if, and

only if 0" = 1, and the event occurring at Tis observed if, and only if 5 =1. We assume

{(7}. ,U, , y, = y, (T: )); i =1,...,n} are independent identically distributed copies of

(T’ ,U , y), with the observed data given by

(X; = rnin(T,-2U, ),6,‘ = [T," s U, ],y, , i = l,...,n}.

We assume U is independent of (y(- ), T). Then PM" =1| y,T] = G(T" ) , where

G(I) = P[U 2 I] . For i =1,...,n the variables corresponding to the ith subject are indexed

by the subscript i. Hereafter, unless otherwise specified, the distributions of the event

time T and censoring time U are considered continuous.

In estimating E ( y(T‘ )) the available data could be minimal, in the sense that only

{X,f ,6: , y,- , i =1,...,n} is recorded. However when patients are followed overtime, we

may have costs observed in multiple intervals, that is the cost history is available.

Lin et al (1997)30 proposed two different estimators of 11 = E ( y(T)) , for these

two cases. Both estimators are proved to be consistent and asymptotically normal under

certain conditions. Suppose that the interval [0,1') is divided into G intervals
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[0,7) = U[a,_1 ,a,) with 0 = a0 < a1 < < 116 = 1' . If we use intervals closed at the left,

I:

so that the gth interval is [a,,_l ,ag ), to be consistent with Lin et al (1997, 2000) and

Willan 1111110002, 2003)“ 3" the survivor function is defined as 5(1) = P(T 21) .

Keeping with the more classical definition, S (I) = P(T > I) , we would need to partition

(0,2'] as L_J(a,__l ,a, ]. Become S continuous, we need not be concerned with this

s

distinction. In both methods, either with minimal cost data or using cost histories, the

Kaplan-Meier estimator of S is estimated based on {(X, , 6, ), i =1,..., 11}.

Lin’s first estimator refers to the case where we observe the cumulative cost at

time X,- and at each of the observation points a,_1 S X,. Let Ay,g = y,(ag )— y,- (a,_,) be

the incremental cost for the ith patient in interval [a a, ). Since the ith patient may be
3-1’

censored during the gth interval we define

~ y1(a,)—y,(a,,_,) if X,>a,

.Vi " ,

g Y1(X1)-yr(ag-1) 1f ag_,SX,-<a,,

as the cost incurred over the interval [a,,_l ,ag ). Observe that Ayn, ¢ Ay,g only if the ith

patient is censored during the interval [a,_1 ,ag ).

Lin’s first estimator of a = E(y(z')) is

G

#11 = 2501,, )r:,_] (2.1)

g=l

n

ZIXi 2 ag—l IAyig

where E,,_l = ‘=1 , g =1,...,G , and S (I) is the Kaplan-Meier estimator

Z[X, 2ag_,]

i=1
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of S (I). Equation (2.1) arises from the identity

G G

a = E(m» = 5120102, )— 101,.l )) = 250111, )— 11128-.) IT 2 ag_1)S(ag-i)
g=l 3:1

and assumes no cost at time 0. If there is cost at time 0 then it should be added to the

expression of (2.1).

Lin’s second estimator is appropriate when we do not have cost histories, so only

the accumulated cost at time X,- is observed. If we suppose T S 1' as, this estimator is

based on the identity

G

11 = E(y(T" )) = E(y(T)[T s 1]) = ZIE(>1(T)Iag.1S T < 011(5(ag-1)'5(01»1
g=l

consistent with the definition of S as S (I) = P(T 2 I).

This suggests:

‘,-1(§(a,_,)—s‘(a, )) (2.2)M
0

#L2 =

II
—8

2111,, _<_ X, <11, ,6, =11), (1,)

-l
where A“ = i” averages the observed final costs for all 

21a,_, 3 X, < 11,,6, =1]

'=l

patients observed to die in the gth interval. The observed costs of patients who are

censored before 2' are not involved in any calculations so they need not be recorded

when using this estimator. For G=1, i.e. 0 = 110 < al = z' , and T S 2' as, (2.2) becomes

11

251' yr' (71' )

[‘12 = (1 _ §(z-))_1_1_____

it:
i=1
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Bang and Tsiatis (2000)31 proposed a basic unbiased. weighted estimator for the

mean cost that they call the weighted complete-case estimator. It is applicable only when

for each patient 1' we observe the cumulative cost y,- (T, ). They assume all times 7} to be

bounded by 2' , so X,- = X,‘ and 6,- = 6: for all i =1,...,n . The estimated mean cost is

fiar = 2Wm (7}) ' (2.3)

i=1

with w, = 6, / G(T, ) , where G(-) is the survival distribution function for censoring time

G(I) = P(U 2 I) . The heuristic argument leading to this estimator is as follows. A patient

who is observed to die at time X, = 7} has a probability G(I)) of not being censored.

Hence we can think of this patient as representing, on average, G(T} )'1 individuals who

might have been censored. They propose to estimate G(T} ) using GU} ) , where C?

denotes the Kaplan-Meier estimator of the G based on the data {(X, , 6:):1' =1,...,n} ,

_ n

where6, =1-15, . Formally, if Nc(u)=Z[X, 311,15, =0] then

i=1

 G(r)=1'<1(1-A;‘,'($) ) (2.4)

for any IS X”): max{ X,- :i=1,...,n} . In (2.3) w, is then 6,160,).

They show that [IBT is unbiased, consistent and asymptotically normal and the variance

can be estimated by:

 

6.0.- 4111?, dNC<u>
V ,u V2"-5-: 60,-) 3125—5—20“(y u)- mm
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1 " 6,-y,[T-Zu]
l

n§(u) H G(I)
I

where V(y,u) =

Lin (2000)4 considers a regression setup )2,- = z, ,6 + 8,- , where z, is a 1x p vector

of covariates. He estimates ,8 using a weighted least-squares method and proposes two

different estimators, for the cases of minimal cost data and interval cost data. When no

n n

covariates are present, his estimator reduces to (Z w, y, )/(2 w, ) , where the weights

i=1 i=1

are w, = 6: / G(Yf) for all i =1,...,n . For minimal cost data these weights are estimated

by vi», = 6: / (§(T,m ), where C3 is an appropriate estimator of G and the mean estimated

cost is

, n 63.0.“) n 6.’

fl =( J—A‘L—J—W '7—'.—) (2.5)

"3 E. G(T.) §G<Tn

For the interval cost data consider a model

yig = ziflg + 51g (2-6)

for each of the 0 intervals, where y,,, denotes the cost incurred over the time interval

[ag_, ,ag ), ,6, , g =1,...,G are pxl vectors of unknown regression parameters, and the

error terms 8,, are assumed to be independent among different subjects but allowed to be

correlated within the same subject. The initial cost is supposed to be null. Two different

censoring types might arise:

A. Time censoring: 6; =[7T S U, ] = 0 if T," > U,, and

B. Cost censoring: 6,; =[7}; SU,]=0 if T,; >U,.
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t

where 7”,, =7,- AagH.

By summing both sides of (2.6) over g we obtain y, = 2,,6’ + u, , where

l

G . G G

y, =Zyig ’ fl=zflg ’ "i :zuig‘
gzl 8:] =

Lin’s estimator is then

(2.7) 

    
A G n I'gyig)

#L4 = ;(20

I: l G(l;;))

We compare (2.3) and (2.5). If T < r as. then X,- = X: and 6,- = 6: . Assuming no

ties in the data set and C3 derived as in (2.4), we have

:w, =li12/G(X,)=—Z§, /G(T,)=1-S(T(,,,) (2.8)

i=1 i=1 nI=l

:
I
H

where T,,,, is the largest uncensored observation. To justify (2.8) we

defineS(I)=l—I(1- y(())), whereN(u)= Z[X, <14, 6,. =1], Y(I)=Z[X, 21] from

MS! I=l i=1

 

where we deduce/330) = _§(,-) Ag?)
 . Also if no ties among failure and censoring

 

times, S(I-)C§(I—)=n"Y(I). Ifnot ties among failure times . = A9,“) .

nG(I—) nG(I-)

= S(I—) AN“) 2 -AS(I) , and the equality (2.8) follows. If, in addition,

nG(1—) Y(t)

  

therefore

§(T,,,, ) = 0 then (2.3) and (2.5) coincide.

85



2.2 Applying general transition model methods

to the 2-state model

We will prove that our transition model described in Chapter 1 also captures costs

under the simpler two state survival model with a single transition time and sojourn. In

this case, as described in Section 2.1, several investigators have developed techniques for

regression analysis of medical costs with the focus being on estimation in the presence of

time censoring that might result in incomplete costs data on some patients. Our transition

model can be therefore viewed as an extension of this methodology to multiple transition

times and sojoums. We still use the same inverse-probability of censoring-weighted

(IPCW) technique to derive consistent and asymptotically normal estimators of

regression parameters and for the net present values.

Let us specialize our multiple transition model methods from Chapter 1 to a two

state model with patients starting in state ‘0’ (alive) and followed until they reach a

terminal state ‘1’ (death) at time T. The total cost for a patient i can be interpreted as a

sojourn cost that ends at time T or 2' whichever occurs first or as a transition cost at time

T if the patient dies in the interval of time [0,2']. While in the first case we will be able to

estimate E[ y(T‘ )] , in the second case we estimate E[ y(T)[T S 7]). Throughout this

chapter we assume that both S and G, the survival distributions for time and censoring

time are continuous, unless otherwise specified. Suppose z,- is a baseline covariate vector,

containing time-constant factors such as age at entry, gender, baseline comorbidity. The

covariate vector 2,- will be used for the estimation of weights w,- = s,- / G(T, — | z, ). We
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also introduce the vector x,- which typically contains time-constant factors, including 2,,

variables for modeling time such as - .2 and interactions between time and time-
I’ l

constant variables. Let Z0 be a fixed profile covariate. Since we only have two states, we

will denote the net present value NPV,,(ll) (I | Z0) as NPV“) (I | Z0) and

NPV“) (Z0) = NPV,,(11) (r | Z0 ). Throughout the rest of this chapter we assumeithe

discount rate r = 0.

2.2.1 Mean cost in the minimal cost data case

NPV for transition costs

Since the only transition is O —> 1 , the NPV for transition costs at time I, is

NPV“’(I|ZO)= gcoflslZ0)POO(O,s|Z0)a0,(s|ZO)ds, (2.9)

where col (3 l Z0) = E(Cm (s) | X(s—) = O,Z0) and

P00(Oat|Zo)'-'P(7i >I|Z0)=S(I|Z0).

The quantity C0, (I) was described in Chapter 1, and represents the amount

incurred just after time I if the patient dies at time I. Note that we use now

50) = P(T > I) consistent with our notations in Chapter 1. Since —dS(I | Z0 ) =

= S(I— | Z0 )am (I I ZO ) , (2.9) reduces to

NPV“)(ZO)=—Ec0,(s|Zo)dS(t|Z0) (2.10)
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In the two-state model a cost y, = y(T,) is incurred in the transition from the

initial state “0” at time I =0 to state “1” at time 7}, provided that 7,- S r. The probability

of still being in the initial state just prior to time I is P[T 2 I] = S (I-) , and the

(conditional) probability of transition to state “1” in (I,I +dI) is dA(I) = a(I)dI , where

a(I)is the hazard function. This differs slightly from the set up described in section 2.1,

where costs are incurred through time T A 2' (and not at time T). Naturally, while in Lin’s

set—up (Section 2.1) the censoring indicator for cost is 6: = [7? S U,- ] , in our set-up y, is

observed provided 3, =1 wheres, = [7} SU, A 2'], that is, if the transition time 7,- occurs

by time 7 and is not censored by time U,. Assuming U, is independent of ( y,, 7,)

conditional on 2,- we get

P(Si =1| ynTIaZ.)=P(T.- sUi ATI Yi’Ti’zi)=[Ii ST]G(E’|11)-

In a regression set-up, let y, be the transition costs in the ith patient at the

transition time 7}. Consider now a regression model

y,- =x,-,B+£, (2.11)

where x,- is a 1x p vector of covariates as described at the beginning of the section. Our

model (2.11) differs from Lin’s model (2000)4 by the fact that we include in (2.11) time-

varying covariates. This is critical as we shall see later. We assume:

A1: E(e,|T,,z,)=0,1§(1~,2|'r,,z,)=a,i2 (2.12)

A2: rank E(xgx, ) = p (2.13)

Since E(s, |z,,y,-,x,)=P[U, 27,],- Srlz,,y,,x,]=P[U, 2T,- |z,-]

providedT, S 2', we define weights w, = s,- / G(T, — | z,) where G is the survival
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distribution of the censoring time U, . We assume that G(r | 2,) > 0 with probability 1, to

ensure w, > 0 whenever s,=1. Hence E(w, |z,-,y,-,x,)=[7} S 2']. Now

( -, w. , x.) = %10—2W-( . - x )2 , and minimizing the objective function
q y! I l 6‘ I yl I

n

qu(y, , w,- , x,) with respect to [3 yields the estimator

11 1:1

3,, = (Zw,x;x, )'1 (211,11;y,) (2.14)

121 i=1

We estimate cm (I | Z0) by x0 (I)3W, where 110 (t) denotes the covariate profile at

time I in this model containing I,I2 and Z0 , and (2.10) by

NPV“’<ZO>=/31'. Erratum—$0120».

Remark 2.2.1.1

1. If covariates depending on time are not included in the regression model (2.11),

(2.14) yields the same estimator as Lin (2000)4, except for a slight difference in weights

as noted above.

2. If no covariates are present, the regression model (2.11) has only one intercept

I!

(and p=l ). If all costs are observed before I , this intercept is estimated by 57 = n"1 2 y, .

i=1

From (2.14) we get ,8”, = (2w, )’I (Z w,y,) and so

i=1 i=1

[1.. —f’—>(1—S(r»“‘E(y.-[T.- s 11).
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Nf’V“) ——’;—) E(y, [7, S 1]) . Hence if T S 2' as. the natural estimator of NPV”) is

simply y. In practice the costs of some subjects would be censored. Then it is natural to

estimate (2.10) by

fiwr =-J:5m(t)d§(t) (2.15)

where S (I) is the Kaplan-Meier estimator of S (I) based on the data

{ (X, ,6, ): i =1,...,n } and 60, (I) is an appropriate estimator of co, (I) which we will

awn

Y(t)

dN(s)i

define later. Note that ds‘(1)=-§(1-)d21(1)= -S(1—) sthe  and 11(1): JZYU

usual Nelson—Aalen estimator of the integrated hazard function (Andersen et al (1993)”).

Since costs are realized only at times 7, we estimate 60, (I) at time I = 7, by 37(7, ), the

average costs observed at 7,. Substitution in (2.15) gives

Z-6.y(T.-) —Y(—S,,’,))1T.- <11 (2.16)

Some simplification is possible if we assume there are no ties in the data set

between event times and censoring times as well as among event times. Let G denote the

Kaplan-Meier estimator of the G based on the data{ (X, ,6,- ) : i =1,...,n} , where 6, =1— 6,-

as defined in (2.4). Since the processes N and N1 do not have jumps in common,

SKI-KARE) = n’1Y(I). Also if there are no ties among the event times 37(T, ) = y, (7,)

the observed cost in the ith subject. Hence (2.16) reduces to

* ,='1n5%flfllrg 217um. n 2,007“. 1] < )
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(T)
Observe that (2.17) can be also written as flW-rz"-"n"1 26, g-T—T') [T S 2'] since does not

(=1 1

jumps at those times T, for which 6, =1, so . i = .

G(T-) G(-
1

.Relation (2.17) produces

.
:
i

.
S
h

-)

the same estimator as described by Bang and Tsiatis (2000)“. If there are ties among the

event times and If < < I; S 2' are the distinct event times observed in [0,2 ]', then

70; ) = 5;, the mean of the observed costs at time I}. This simplifies further the

. . ..1 .,J " :1:- . . . . :1-

aforementroned estrmator to n 2 ),.d, /G(I, ) where (1, rs the multrplrcrty of I,.

j'r;Sr

If some event and censoring times are tied in the data set in (O, I),

S(I—)G(I-) will not equal n"lY(I), see Van der Vaart (1998)“. In fact

_AN_(_u) AN__(__u) AN__°__(u))= -1
50—)Gu—)= H(I Y()—"‘U“")"fi“()) >H(1——Y——,,) Ya)

u<I

where N0 = N + NC which means that [1W7 , > fiwrz- Since our concern is with S (I) and

G(I) for I E [0, 2') we will show (under some assumptions) that

sup | n'lY(I) - S(I-)G(I-) |—> O in probability.

I<T

Proof:

By the Glivenko-Cantelli theorem for iid random variables,

sup | n’lY(I) - H(I—) |——> O in probability, provided H(2'-) > 0, where H(I) = S(I)G(I).

(<7

Under this same condition the Kaplan—Meier estimators S and G are uniformly
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consistent on [0,2']. Hence the assertion follows from the inequality

|n'1Y(I)—S(I—)G(I—)|S |n'1Y(I)—H(I—)| +|§(1-)—S(1—)|+|G(z—)—G(1-)|.n

Remark 2.2.1.2

We estimate Cor (s | Z0) from a weighted regression model using weights

w, = s, /G(1, — | z, ). There are several avenues for estimating the survival distribution for

censoring time, G, we summarize some ideas in the following table:

Table 2.1 Estimating the survival distribution for censoring time

Model Comments

 

1- Nonparametric Use G , the Kaplan-Meier estimator based on the data

{(X,,6—,):i=1,...,n} , where6, =1—6, . Then the weights can be

estimated as

w,- = s, /G(T,) or w, = s,§(T, —)/nY(T, ).

2. Semi-parametric Estimate G(T, — | z,) from a Cox proportional hazards model

3. Parametric Assume G has a parametric form G(I,6) = P[U > I | 0] . We

assume that the functional form of G is known except for an

unknown q-dimensional parameter 0.

 

In model 1 choosing to estimate G(I) = P[U > I] by G” (I) for all I S 2' , where G* is the

Kaplan—Meier estimator from the data {( Xf ,1 — 6:):1' =1..,n} will not produce changes
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in the formula for the weights since G” (I) = G(I) for all IS 2'. We will come back to the

problem of estimating the weights later on in this chapter.

NPV for sojourn costs

The NPV for sojourn costs in state O=’Alive’ is

NPV‘2’(ZO)= £b0(I|ZO)P00(O,I—|Z0)dt.

The quantity bO (I | Z0) is the expected mean rate of expenditure at time I while

sojourning in state O=’Alive’. In practice it will not be observable unless discrete

information is available. Instead we will only know the total cost of the sojourn. Since a

sojourn ends at a transition time or at 2' , the total cost is observed if censoring has not

occurred before time T" = min(T,r) . The set-up now is the same as described in Chapter

2.1 in the introduction and background section. The observed cost y = y(T‘) is

uncensored if, and only if 6' = [T‘ S U] = l , and the event occurring at Tis observed if,

and only if 6 = 1. In this case the weights are w: = 6: /G(1}‘ — | 2,) and assuming that the

censoring time is conditionally independent of survival time and cost we get

E(WIIan,12,-)=1-

The NPV of interest is

51200 | zo)5(1— | zo)111 = ES(I—|ZO)dm(I | 20),

where m(I | Z0) = L: b0 (u | Z0 )du . By an integration-by-parts we get

NPV(Z0) = E(m(T‘ ) | 20) . From a standard Cox model we obtain an estimator

S(I|Zo)ofS(I|ZO).
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Consider a regression model of the observed costs y, on time 7,. , noting that

only observations for which 6,-m =1 will be used. In addition to the observed (fixed time)

covariates 2, our model would include terms for modeling T,~~ , for example

We use a model

y.- =X.-.6+£.~ (2.18)

analogous to (2.11) and the same scheme to obtain the estimator

,3“, = (Zwfifx, )'1 (z wfx,y,) of )6 as in (2.14). All of this is exactly the same except

1:1 1:1

for the new weights w: . Now let x0 (I) denote the covariate profile at time I in this

model and derive the estimator of m(I | 20) as 111(1 | Z0) = ,8; £220 (u)du , where the dot

denotes differentiation with respect to time. This gives our NPV estimator as

NI3V(ZO) = 3;, Esa— | 20hr, (1)111 .

Remark 2.2.1.3

Suppose now that we include neither time or covariates in the regression model

(2.18). The net present value is 'Cb(I)S(I-)dt = ES(I—)dm(t) where S is the survival

distribution of T, b(I) is the expected mean rate of expenditure at time I while sojourning

in state 0 and m(I) = £b(s)ds. By an integration-by-parts we get

ES(I—)dm(t) = I;m(I)dS(I) + S(2—)m(2'). Here we have assumed that m(O) = 0, if
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this is not the case an initial cost should be added to the final computation of NPV. The

estimation of m(I) , I < 2' and m(r) should be done differently in the following cases:

a) patient dies before 2' , i.e. T < 2' and

b) patient does not die and is not censored before 2' , i.e. T 2 2', U 2 2 .

Our goal is to estimate E(y(T* )) = E(y(T)[T < 2]) + E(y(T)[T 2 2]), When

viewed as a transition model we are only able to estimate the first part. If we look at the

problem as a sojourn model we are able to estimate E( y(T’ )) . Indeed,

E(y(T‘ )) = E( j: E(y(T‘)|T‘ =1)(—ds“(t))) since 2‘ s r, where s‘ is the survival

distribution for T‘. On the set I S 2', note that {I S T‘ } = {I S T} and S(I—) = S‘(I—).

Also S‘ (I) = P[T~~ > I] = O for any I 2 z'and S‘ has a discontinuity point atI'.

Let us denote m" (1) = E(y(T')|T' =1). Then

E(y<T*)>= fim‘ox—dflr»: VLF-ml.(I)(—dS(I))+m'(2')(S‘(2'—)—S‘(2'))

= [J'm‘ux—dso»+S(r-)m"(r)

Also m"(z)= E(y(T“)|T‘ =I)=E(y(T)|T=I)=m(I) for all 1<1 and

m*(r)=E(y(2')|T*=2)=E(y(2')|T2‘r).

Therefore

E(y(T‘» = jg-m(t)(-dS(t))+S(r-)E(y(r) I T 2 T) (2.19)

Naturally for the estimation of the first term of the expression we use the

weighted mean of all observations with X,7 < r and 6," =1 . For the estimation of the

second term we use all observations with {Xf = 2,6: =1} = {X, 2 2'}. If there are no
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observations such that X,* = 2,6: =1 then the estimation of the second term is not

possible. Assuming that this is not the case here, we estimate the expression (2.19) as

E(y(T"» =(1—s‘(1—>>/3'.. +S(r—)E(y(r)|T2 1) (2.20)

Z w,y,-

where S (I) is the Kaplan-Meier estimate of S, flw = “___—Xi” and

w,

{i:X,<2}

ZWEI.-
{i:,X=

2w.“
{i:,X=2'}

E( y(2') | T 2 r): where w: = 6: / G(T,‘ -) and G denote the Kaplan-Meier

estimator of the G based on the data {(X,,6,) :i =1,...,n} .

However assuming no ties among event and censoring times that are strictly smaller

than 2' , and no ties among event times strictly smaller than 2' ,

* 6" A It A at A

Z w.= Z . '. = Z n(S(T.- —)—S(T.-»=n(1-S(r—)),

{i:X,'<r} {i:X,‘<r}G(7i ) {I:X,'<r}

 

  

Z w,___ 113:? M13671?) =n,(,_)

{1:X,.=T} T 1_ T G __

( Y(r)—) (T )

and 2w: =n(l—S(2'-))+nS(T—)=n. (2.21)

Expression (2.20) reduces to

A

E(y(T‘» =(1—§(r—»/31. + SIT—woofI T 2 1) =
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Z w;y, 2 W130

 

: (1—§(T-)) {i:X, <r} ‘ + $(T—) {i:X, =r} .. :

2 WI 2 WI

{i:X,°<r} {i:X,'=r}

Z Wiyi Z w,y, Z w;y, Z WI‘yI‘

. (I:X.’<1} ~ (1:X.'=1} {1’91} {131:}

=(1-S(r-))-—*-.——-+S(r-) U = = . -
n(1-S(2'-)) nS(2—) I: Z w,-

{I'Sn}

Therefore if times and covariates are not included in (2.18) we can estimate the net

2 W:yi

present value by Jig—"L:— which is exactly (2.5), i.e. Lin’s estimator (2000)4.

WI

{I'Sn}

2.2.2 Mean cost in the interval cost data case

Suppose that the interval [0, r] is divided into G intervals with

0 = a0 < a1 < < a0 = 2' . Let T, U denote the survival time and censoring time

respectively. Let S(I) = P(T > I) be the survival function for T. Patients are followed

through time 2 , where r indicates the end of the study, i.e. all observation is ceased at r .

Consider costs incurred in interval Ig = [a a, ). If death or censoring preceded
g-l ’

ag_l then the cost in the gth interval is either 0 or unknown. We observe a non-zero cost

in the gth interval for the ith patient in two possible situations:

(1) If the patient is observed throughout I3 = [a 0,, ) , then
8-1 ’

X, = min(1, ,U, ) 2 ag. Let y,,, be the associated cost at time ag.
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(2) If the patient dies in I, =[a 11,), then a < X,- <ag and
g-l I g—l '-

l l
6- = [1, S U- ] = 1. In this case the cost y,,, can be regard as a transition cost at

time X, .

We will regard (I) as a sojourn cost and (2) as a transition cost. Let

6,; =[X, 2a,], 6,: =[a,,_1 S X, <ag ,6,- =1] be the censoring indicators fOr cases (1)

and (2) respectively. For the interval 1,, , the sojourn cost is observed if and only if

6,: =1. If 6,; = 0 , but ~6,2,! =1 then the transition cost y,,, is observed.

Using similar methods to Section 2.2.1, taking together all sojourn costs y,,, , when

n

2‘2; yig

i=l

___—n .

a

Z511
i=1

6,: =1, the average sojourn cost in the gth interval is estimated by 130 (a, ) =

Therefore the NPV for sojourn costs is

i. _ ,.. )60(I)S(I)dt =13,,(a, )s‘(a,) (2.22)

With transition cost in interval 1,, , we have P(6,‘; = 1H,) =[ag_1 S 7} < a, ]G(T,- ).

Takin to ether all transition costs when 6‘1 =1, the avera e transition cost in the th
g g 1g 8 8

  

n 6‘1 II 6‘1

interval is estimated 50,, =(Zyg, .. '8 )/(Z ,. '3 ).Therefore the NPV for

i=1 G(X,) i=1 G(X,)

transition costs is

L )EO,(s)dS(s)=Eo,g (§(a,_,)—§(a, )) (2.23)

8'1 ,a,
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Therefore for each interval 1, = [ag_, ,ag ). g =1,...,G , using (2.22) and (2.23),

we have estimated the mean cost given by

gylg

26:18

___511, >+1< y. ’—>/(
,=, 215,; :2. gG(X) .2311?)

 )](S(a,._.>— S(a, ))}(2.24)

Throughout we have assumed that both S and G are continuous and

S(I) = P(T > I) , G(I) = P(U > I). If this was not the case here, then keeping all previous

notations we must use left-hand limits S (I—) and G(I—) throughout. Alternatively we

could define S(I) = P(T 2 I) and G(I) = P(U 2 I) , i.e. left continuous versions of the

previously defined (right-continuous) survival distributions. When S and G are

continuous this distinction is unnecessary, however when it comes to estimation, and S

and G denote Kaplan-Meier estimates we need to make the distinction. If there is an

initial cost at time 0 then it needs to be added to the final mean cost expression, however

for now, as previously specified, we assume initial cost to be null. To ensure all weights

are defined properly we assume G(r) > 0.

Using general properties of the Kaplan-Meier estimator S (I) of S (I) = P(T > I),

AN(I)

AS (I) = -S (I—) Y , and under the assumptions of no ties among failure times we

I

 

. —6AT-

have AS (T,- ) = $57-64. If we assume there are no ties among failure and censoring

time then S (I—)G(I—) = Y (I)/ n. Both assumptions hold under the case that both S and G

are continuous. Then
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Z . 6:; zilag-lsl,<ag,15, 11:":6, §(T.-)Ia, ,_7; <a,]_

i=1 G(X. -) i=1 G(T.--) ,-. m.)

="_:I(S(T ") S(T.))[a,,_1—T <a l=n(S(a,-)——§(a,—))(2.25)

Also

:55; {gm 2a,]=Y(a,)=n§(a,—)G(a,—) ' (2.26)

Using (2.25) and (2.26) in the two terms of (2.24),

 

i ZléIZYig G 21:6igyt's G n A

(-‘——=)S(ag -)= ( . " . )5‘g(a -)= y.- /nG(a -).

g=l :6}; 112:1 "S(ag ")0(fig ") 321;”g g g

i=1

G n (id

-——)/( S S - _g2:,l<2:,y,..—G—j—(X_) NEE—(47%_———)1< (12,.l —-) (12,»—

allows simplification of the mean cost:

  

G n l 1.,-601 G n 6i I n 6i Ifl=2{%Z(G(x(Styx i'gyg )}_ Z{',l:2_c—11ng }=Z{{12. 8ng

g=l I=l 'X—)+ G(ag _) g=l I=l G(Xig g=-l n I=l G(T‘g _'})

where 6,, =6,‘;,+15,‘; =[X, 2a,]+[a,,_,SX, <a,,6,. =1],

X}, =min(X,- ,a,)=min(X,. .,n ) and T,, the same as 111 (27).

This is the same as Lin’s estimator (2000)4 (2.7) for the interval case data. Indeed note

that
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5,-g:[7} AagSU,]=[X,-Zag]+[Xi<ag,5,-=1]=

=[X,-Zag]+[ag_l_X <ag ,5 =1]+[X,-<ag_1, 5:1]=

=51: +[Xi<ag_1, 5:1].

Also under the no ties assumptions above and using the last equality in (2.21), with the

,. 6.“ n T: SU.
role of Ti played byTig’ Z-.—-§—=Z[—.i—_—]=n forall g=1,...,G.

[=1 G(Xig -) i=1 G(ng —)

Therefore, the mean cost is

  

15 " 5,; 10 n [X,<dg_1,§, I] _

§§G(Xlg)y'g n§§0A(XI;)ylg+ng; G(X,;) lg

  

n- yz A ‘71——

g=l (=1 G(Xig) g g=l i=1 G(Xig) i=1 G(Xig)

:
H
I
H

which is exactly (2.7).

2.3 Asymptotic normality of the mean cost

We are interested in calculating the variance of the estimate

5601(IIZ0)(-dS(t |Zo)) of the mean for transition costs, Eco, (t | Z0 )(—dS(t | Z0 )).

There are various possibilities for estimating S (t | Z0 ). In Chapter 1, we have already

developed estimation methods, proved asymptotic properties and calculated the

asymptotic variance of the estimators of E601 (t | Z0 )(-dS (t | Z0 )) when S (t | 20) is
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estimated from a Cox proportional hazards model and c01(t | Z0) is estimated from a

regression model.

If the assumption of proportional hazards is not satisfied we may consider

estimating the survival function for time using a stratified Kaplan-Meier estimate. We

will ignore covariates in the estimation ofS (t) . Let S (t) be the Kaplan Meier estimate

of S (I) and suppose E(s) = 801 (s I Z0) is estimated from the regression model (2.11).

Then 12(20) = — Eé(s)dS (t) . For ease of notations we assume that 7} S 2' for all patients

in the data set. Then Si = [7} S Ui A 2'] = [7} S U,- ] = 5,. This assumption is implicit in

Bang and Tstiatis (2000)“.

Consider the regression model (2.11):

V. = xi ,6 + 5i

where x,- is a 1x p vector of covariates with first component 1 so that the first component

of fl corresponds to an intercept. Under model assumptions A1 and A2, see (2.12),

(2.13), a consistent estimator for ,6 is given in (2.14)

flw=(ZW,-XIX,-)(2mnyi)

 where W, = ).Therefore fiw—fl=(ZW,X£x1)(:lele8

Condition A1 can be weakened to A’l: E(xié} ) = O, E(E,2 Ix,- ) = 03. In fact

under A'l and A2, the IPW estimator is always consistent. Indeed

n

def

1: WiXIxi —P—-) E(xIxi), since E(wixIxi ) = E(E(wi [xi )xfx'. ) = E(XIXi) = A , and
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lZWIXIEI—HO since 50% IxivynT'): P(UI >T— IXI,yI,TI-)/G(T~ -)=1 and under

1, E(waIEI ) = E(E(waI8I |xI , yI )) = E(xIEIE(wI |xI , yI )) = E(XIEI ) = 0.

We need A1 and A2 for the consistency of the (unweighted) estimator

= (Z (SI-XIXI- )'1 (Z 5InyI ). We have

i=1 i=1

Ml? —=/2’) (—Zw.-,x.)"<J;Zw.x.e.>—(A"+o (1))(—‘/1;ZW,XI8,-)

1-1

By the ordinary CLT, —l—ZwaI£I —>N(O,B), where B: E(wI2 XIXIé'I-z ). Using A1,

n .

the form of B can be reduced further. Since E(wI2 |xI, yIJI):

P(UI >7I|xI,yI,7I)/GZ(TI--)=l/G(T. —) itfollowsthatB= E(wIxIxI-IE)=

E(E(wI2 IxI , yI ,TI )foxIeI?) = E((l/G(TI —))xIxI£I-2) = E((l/G(TI —))xIxIE(£I2 lxI )) =

xx!

0'2E(——-—). Therefore

G(T--)

J;([31. —fl)—1—>N(0.A"BA" ),

whereA= E(xIxI=)andB a§E(———x‘x"——.)
G(TI —)

Then 50) = x0 (03w and for a fixed 2, flow) —c(t)) = x0 (1W;(3w - 13)) . It

follows that:

\/—(C(t)— c(t))= x0(z)A“(J—l_-zwaI’eI)+oII (1) (2.27)

Wewilldenote v0(t)= x0(t)E(xx) so J—(é(t)——c(t))=v0(t)(—InZwaIeI)+oII (1)
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We now turn to the estimation of the survival function S (I) = P(T > I). Let

S (t) denote the Kaplan-Meier estimator of based on the data { (XI , 5I ) : i =1,..., n }. Note

that d§(t) : —I§(t_)d/i(t) :
“SA(t—)d)1/V:t)
 ,where N(t)=Z:__I[7I SL5.- =1],

J(s)dN(s)

Y(s)

is the usual Nelson-Aalen estimator of theY(t)=Z;I[XI 2t]and [19):];

integrated hazard function (Andersen et al (1993)”), where J (s) = [Y (s) > 0]. We will

assume both S(t) and G(t) = P(U > t) are continuous and 5(7) > 0.

Notations:

7Z’(I) = P(X 21) = H(t) = S(I)G(t)

 0'2 (I) = £610!) du

7r(u)

Model Assumptions (Andersen et al (1993), pl9025):

ABGKl: For each 56 [0,1], nEi—ES-i-a(s)ds—-P—>0’2(s) as n-—)oo

s

  ABGKZ: For all 8>0, nfiiififlf“? |> €]a(s)ds———>0 as n—)oo

ABGKS: fiE(1-J(s))a(s)ds—P)0 as n—>°°

Under conditions ABGK1-3, following steps in theorems IV.1.1,

IV.1.2(Andersen et al (1993), p190”) and our proofs in Chapter 1, Section 1.3,

dM(s)_ 1”_ingi“)

s/Z(A(z)-A(t)) is asymptotically equwalem‘o f£_7[(s) z(s) ’

where M(t)=iMI(t), MI(t)=NI(t)— I;Ifl(t)dA(s).Therefore

i=1
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Then JZ(A(:)— Am) is 
 

EdMI-(s) = 6,.[XI St]_ IIIYI.(s)d,«i(s)ILet c720): JgdA(s)I

”(s) ”(XI) 72(s) 0m)

asymptotically equivalent to

6,,[X <t] YI(s)dA(s) 1 6,,[X _t]_

fZ—-—JI———=-Z<-'——- 02(XIAt».

n ,-_. H(X) z(s) n ”(XI)

Using S (t) = exp(—A(t)) and the delta method we conclude that J;(-S (t) — S (t))

is asymptotically equivalent to —S (t)(\/;(;i(t) — A(t))). Therefore

flsm—S(z)>=——S()2§{6‘ [X‘Jl-azwmoi (2.28)
J; -17r.-(X)

(1..

where we use notation (1,, = bII to imply asymptotic equivalence. Using (2.27) and (2.28)

we obtain

/ n )

...sm—[Wm—Z6"”-————=-<'—’] ~62(X,Az)}

[mm-so» I; =1 MX- >
. I, (2.29)

J;(C01(I)"Cm(l)) V0(‘)_\/1’—IZMX

  
\ 1

Under the assumptions Al-A2 and ABGK1-3 we have, by the ordinary CLT:

[Jam-S(I)) I
—D—+ N(O , (t)).

Mam (1)-cm (t)) 2 22”

where the elements of the asymptotic variance are

62(0520) o

22x2(t): O V0(I)UZE(C;X
 

)git))vo(
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The components of 2 2x2 (t) are derived as follows. The first diagonal component is

6 X _t

S2 (t)Varr{-‘—[—(X—)]— 02(XIAI)}.Using the independence of UI and TI,

6. X5 6, X, _
E(’—[.,-’—t-])=E(E(_[___t]|];))=

7r‘(X,-) 7! (X)

62(2)): 9]) = E(—1—'—[T' 5’1):02(')’
S(Tr)7r(T.-) '

 =E(

§i[Xi -1102 “I: —I]0_2(

0,(X A'I))=E(E(
T _.

7r.~(X) ”(X0 At)| ))-E(-—-——

[T—t] 2 __ 2
=E(———S(TI) 0' (TIA r))- £a(u)0' (u)du,and

E(o4(X, Ar» = E(o4(XI )[XI sr])+o“(r)P(XI >r)=

= £04(u)(-d7r(u))+0'4(t)7r(1)= £fl(u)202(u)d02(u)=2 £02(u)a(u)du

The first diagonal component is:

_ _ §i[XiSI]_ 2 _ 2 (Sr-[Xi5’]_ 2 2 _
Z“(t)-—Var( S(t) ”(XI) 6 (XI/\I)))—S (t)E(( ”(XI) 6 (XI/xi» )_

6,.[XI St]_26I[XI_<t] 02
4

”2(XI) ”(Xr) c7.-(X At)+0(X,-At)) (2.30)=52(t)E(

Therefore Z110) = S 2 (1)0'2 (t) . This result can be also be derived using the martingale

 

representation of Jn(A(r)—A(r)). Also 2,2(t)=E((i7[r-:%S—)fl- 0' (X, At))WIXI£I)=

6‘I[XISt] 2
= —- XiA —E(E(( 7r(X.-) 0'( t))G(;,)xxI’EleI, y,))_
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[T,- St]
= E((l—T-‘i—S—t-lna2 (TI At))xI£I ) = E(E((———0'2 (T- At))xI£I Ix, )) =

”(T) ”(Tr) '

[7; St] 2 I . .

= E((——(—77)——0' (TI AI))XI-E(€I- |xI )) = 0 Since by assumption A1, E(EI- |xI ) = 0 . The

7" i

second diagonal component is 2:22 (I) = Var(vO (t)waI£I ) = v0 (t)0’£2E(fl‘i—)v0 (t),.

G(T. -)

Next we use Funtional Delta Method and a similar version of Lemma 2 in Chapter

1 to prove the asymptotic normality of mean cost.

Consider the functional

cozE" —>Ii. ¢(x.y)(t)= fix<s>dy<s),

where E* is a subset of D[0,T]2 ,E‘ ={(x,y)6 D[O,z']2 : EldylS C}, where 0< C<oo.

Let (x0, yo) be a fixed point of E' such that £|d(x0)|<oo . Then w, can be extended

to the space D[0, 1']2 so as to be Hadamard differentiable at (x0 , yo ) , with derivative

d¢<x,y>(h.k)<r>= fix<s>dk<s>+ JI‘Ihtswyis) (2.31)

where the integral with respect to k is defined by the integration by parts formula if k is

not of finite variation.

Identifying x(t)with C(t) , and y(I) with S(t) , since c(t),S(t)e D[O,z'],

El dS I: l— S (2') < C =1 and under the extra assumption

EAl: C(t) is of finite variation on [0,1],

by (2.31) and functional delta method stated in the Appendix,
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JZt Eatot-ds‘tni- Kant—(150)»:

=,/;(¢(5,—§)(r)—¢(c,-S)(r))——->D d¢(cr_S)(ZI’ZZ)(T)

Ex

where 21 (I) = a0 mg, a3 (2) = v0 (t)o§E(E’:—T‘T))vo (0'. v0 (t)=xo (r)E(X’X)“.

22 (t) = —S(I)U(t), U(t) is a gaussian martingale independent of i, which is a standard

normal random variable. Also E(U (t)) = 0 and E(U2 (t)) = 0'2 (t).

Using (2.31) we get

JR {Grant—(ISM)— £c(t)(-d5(t))} —D—> fiandzztm Ell(s)d5(s).

To compute Var( Ec(s)de(s))=E(( L’c(s)dzz(s))2 )=

:E(( Ec(s)d(—S(5)U(s))2) we just simplify the integrand

L’c<s>U<s>S<s)dA<s>+ [grim-sown): [It/(smash Ectsx—Stswvts).

where X(t) = fc(s)5(s)dA(s). By an integration by parts for the second term

Edam-sown» = —j0'(c(s)5(s)-Z(s))dt/(s) .Since U(t) is a zero-mean

gaussian martingale, with < U (t) >2 0'2 (t), we get immediately

Var( ch(s)d22 (5)) = E(c(s)S(s) - fe(u)S(u)dA(u))2d0'2 (s) .The second

term j: Zl (s)dS (s) has variance (an (s)dS (5))2 and the cross product has mean zero,

since U (I) and f are independent. Hence we have proved the next theorem:
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Theorem 1

Under the assumptions Al-AZ, EA] and ABGK1-3 we have

s/Zt flew—£0»— [0' cox—c150»)A

N(0.{ E(c(s)S(s)-K(s))2d02(s)))+( [O'aotsmsmf no (2.32)

Remark 2.3.1

1. Suppose costs are not considered random, but fixed. Take C(t) = 1.

Them/Kt E5(t)(-d§(t))- Ec(t)(—dS(1))) = —~/Z(§(t)—S<t». The asymptotic

variance in the above theorem has only the first term,

z(t) = [mound/m) = S(I)—S(I) and so,

E(c(s)S(s) — A(s))2d02 (s))) = 52 (no2 (r) . This verifies the well known result,

s/Ztfitrl—Stt» —P—> N(0,52(r)aztr».

2. Let cost be fixed and set C(t) = e’" . Then Ee'" (—dS(t)) = £e'”S(t)dA(t)

is the actuarial value discussed in Andersen et al (1993), Page 28425. Then (2.32) captures

the results stated on page 284, namely

v/Z(£e"‘§(t)d/i(z)— £6"’S(I)dA(t)) L)

N(0,{ [Io-”sur- fe""S(u)dA(u))2d0'2(s)}).
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3. If no fixed or time-varying covariates are included then the cost C(t) is

" 5.-
2 G(T.) yi

constant on t and can be estimated as 6(t) = ,6}, = i=1" ' for all IS 2'. Then

i=1 G(Tr)

,1? = 30(1— 5 (7)) and from (2.32) the estimated asymptotic variance

is 8025‘? (7)62 (r)+(l-§(r))2 var(,30 ).

2.3.1 Regression model for log-cost

Suppose all costs in our data set are not null and consider the regression model

with log cost as dependent variable:

log(y,- ) = x‘. fl+ 6,- (2.33)

where we keep all our previous notations. In this section, we consider the case of an error

term with unknown distribution under homoscedasticity. More precisely we assume:

A3: 8,- are i.i.d. with 8,. :vim (the function s(-) allows for

heteroscedasticity conditional on x and ‘a' is a vector of unknown parameters)

A4: V, is independent of x,- and has zero mean and unit variance.

A5: rank E(xfxi ) = p

A6: E(egx) <00
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Our focus is the estimation of C(t) = c010 IZO) as in the previous section. In view

of (2.33) we identify C(t) with E(yi Ixo (t)) = e"°(')‘6E(e£ ) , where x0 (I) is a fixed

covariate profile generated from 20. Following Ai and Norton (2000)2°estimation of

C(t) is accomplished by estimating fl in (2.33) and the smearing factor a = E(es ) .

Define o(t,fl,a)=e‘°"’fla and identify co) with (0(I,,B,a). Then é(t)=¢(z,B,a)

and £1 = 12:1?" and ,3 is an estimator of ,6 which will be obtained later. Here

n '—

é,- =log(y,)—x,fl. Then J;(E(t)—c(t))=\/;z-(ex°(’)3&-ex°mfla).

By Taylor expansion, retaining only the first order terms, we get:

s/Ztém-cm)=s/Z(¢(t,fl‘.a)—¢(t,fl.a)) ~

a(o(tfl 0) MOI3 a)“;
=f<——-—as (B—fl)+———a -a))

=~/?t'(c<z)xo(t)(3-fl)+e"°"’fl(a-a»=

-_-c(t)x0(t)\/;(,8-,6)+ex°('wx/;(&-a). (2.34)

Consider first the estimation of ,6 in (2.33). We follow exactly the same steps as

in the previous section 2.3 using 77,- = log( Yr) instead of y, . Then

A n n (S

,5 = (Z wixgx, )'1 (Z wixfni ), where w,- = E(IT_)' Therefore

s/Ztfl- fl)= (-wax,’x.-)(TZW,x;e,-) (2.35)

From A5, 1: wixgxi —P> E(wx’x) = E(x'x) = A. From A3/A4, E(wixgsi ) =

n .
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= E(E(w,x;e, |x,. , y, )) = E(xgs,E(w,. |x, , y, )) = E(xfe, ) =—_ E(xgv, ,/s(x,. ,a)) =

= E(xf,/s(x,- ,a)E(vi |xi )) = 0.

Hence71_-Zw,x,'8,———0p (1) . Then (2.35) yields

n

JZ(,8— fl): A(—jzzuzmgeno (1) - (2.36)

@151

Next, consider the estimation of a byc’i . Then

fi(&-a)=71—;Z;1(e -eHIE;(8 E(e ))

Use

65" -e£' = 65" (eft‘gt - 1) = 85" (exp((77,- - xifi’) — (77,. —x,fi)) —1) = e" exp(—x, (xi—,6) —1)

to obtain 71:2;(e5t —e£i )=_(;11'Z;1€€' xi )J;(,3—,6)+0p (1). By A6 we get

fill“: “65" )2‘E(95X)\/'_1(B-fl)+op(l) (2.37)

n

Using formulas (2.34), (2.36) and (2.37) we obtain

s/Ztém-ctt»=c<r>xo(t)JZ(B—fl>+e*°"’flJZ(a-a) =

=c(t)x0(t)(A"(J—Zwixfiihop (1))+

Jig,

+exo(t)fl(_E(e£x)(A-l(_jizw‘xlgl)+‘/_Z (e E(e ))+o (1)))+0p (1)):

.-_(c(t)xo(t)-e"°(')flE(e£x))A {-‘/l_—:w,;x.,:/-l-_;c}+e"o“>fi{2(e -E(e£‘))}+op(1).
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If we denote 291(t)=(c(t)x0(t)—ex°(')flE(e£x))A_l and 192(t)=e"°"’5 then

JZ(5(t)—c(t))=29l(t){—wae+192(t){%2(e£‘-E(e£‘))}+0p(l).

n i=1

If s(x,a) = a (i.e. the error term does not depend on x , so the error term is

homoscedastic) as in Duan (1983)19 then following the same steps as in the previous

 

. 6I[XI St] 2 I E. 5.

section 212 (t)=E[(————0 (X,- At)){l91(t)W,-X,-€,- +192 (t)(€' —E(e ‘ ))}]=
z(Xi)

_ [ZSt]_ 2 I

_E[( ”(m a (T, Az))z9,(t)x,.E(s, |x,)]+

+E[([i—t]0207 A1))19(I)(€£‘“E(€E‘))l=0

since by A3/A4, E(E, Ix,- ) = E(vi J; | x,- ) = E(vi s/E) = 0 and

E(eg‘ —E(e£" )lxi)= E(ev’fé Ix,)—E(e€" )= E(evt‘fa)—E(e€‘ )=O.

The second diagonal component of 22x20) is

222 (t) = 29] (t)Var(w,-x;£,- )191’0) + 1922 (I)Var(e£“ )+ 2E[§1(t)wix;€il92 (I)(e€‘ - E(eE‘ D] =

x'x

=o§t9,(t)E(G ‘T'_

i

 ))19,’(r)+of, 1922(t)+ 219, (t)1-:[x;e, (e5: —E(e€" ))]l92 (I)

wherea —-Var(e' ). Obviously the first diagonal component of 222(t) remains

unchanged and the proof is now identical to the proof in the previous section.
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2.4 Parametric estimation of the survival distribution

for censoring time

2.4.1 Minimal cost data

Suppose costs can potentially be accrued over a fixed time period [0, T] with

expenditure terminating at some event time T so that complete cost observation occurs if

a patient is followed through time T' = rnin(T,!) . Further accumulation of medical cost

is not possible since there is no cost after death. Censoring at time U might preclude

observation ofT’ . Let X = min(T,U ) ,5 = [T S U], where [A] denoted the indicator

function of the displayed event A. The observed cost y is uncensored if, and only if

6* =1, where 6’ = [T‘ S U], and the event occurring at Tis observed if, and only if

5 = 1.

Suppose that we have a random sample of size n. The variables corresponding to

the ith subject are indexed by the subscript i. Let {(X,.* ,6: ) : l S i S n} denote the random

sample with X,‘ = min(T,‘,U,. ).

Consider a linear model for the cost y,- observed at T: in the ith subject given by

y,- = xifl + 8,. where x,- is a vector of pxl covariates, 6,. is an unobserved error term. In

estimation of ,6 we use the data {( y, ,xi ),i = l,...,n} . However since cost will be
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incomplete ifé’: = 0, we use the weighted sample {(yi ,x, ,wi ),i =1,...,n}

*

where w,- = i Formally ,8 is obtained by minimizing (with respect to ,6 ).‘ .

 

1'

min 2 w, ( y, —x,3)2 (2.38)

i=1

The objective function (2.38) weights each observation by the inverseprobability

n n

of being uncensored. This gives ,6,, = (Z wixgx, )‘1 (Z wixfy, ). We also assume

i=1i=1

censoring to be non-informative in the sense that given fixed time covariates, U is

independent of cost and event times. Note that under this assumption E( w, Ix, ,Ti ) =

P(d,‘ =1|x,,T,)/G(T,"—) =1, where G(t) = P(U >2).

The weights w, are unspecified since G is unknown, however in order to be able

to use A, we need to have a suitable estimator for G. So far we have suggested its

estimation from a Cox proportional hazards model or non-parametric model. Assume that

the distribution, G, of the censoring time U, has a parametric form. We assume that the

functional form of G is known except for an unknown q—dimensional parametera Then

P[é“ =1| y,T]= G(T‘ —,6), where G(t,6) = P[U > t | 6] . Let g(.,6) andfbe the

density functions of U and Trespectively, and let S (t) = P(T > t) be the survival

function of the event time T.

The estimation of 6 will be accomplished via maximum likelihood. In order to

write down the appropriate likelihood, we must be precise about what is actually

observed.
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1. Observation scheme I.

We only observe X = min(T,U) andé‘ = [T S U]. This is the usual random

censorship model. The contribution of a single observation, (Xi ,6,.) to the likelihood is

then

((6) = thT. ,6)f(T,)}‘5‘ {S(U.>g<U.- .6)}"5‘

Then keeping only terms involving 6 , the relevant part of the log-likelihood for

estimation of (9 is then

w.-(6)=6, (I—mw (2.39)

G(Trfl) g(U.-.0)

n

Then (9 can be estimated as a solution to 2110(9) = 0.

i=1

2. Observation scheme [1.

Suppose observation does not go past time 1' (a fixed time). If T is observed, then

necessarily T S T and, of course T S U . If on the other hand U is observed, we must

have just the opposite: U S 2' and T > U . It is also possible that neither Tnor U are

observed, in which case T >7 and U > r. The likelihood would now consist of three

parts:

(1) {G(T)f(T)}§[T<r]

(2) {S(U)g(U)}(I—6)tU<r)

(3) thr)S(r>}‘T->-"UZ”

The contribution of a single observation to the likelihood is then

I.- (6) = {G(T, .6)f(T,- )}‘i‘T‘mmw, )g(U, ,6)}(1'6‘Wiql{G(r,6)S(r)}[TZT'U2”
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The relevant part of the log-likelihood for estimation of 6is now

(1/(6) = [T < T]5W+[U <r](l—§)W+[T 2 r,U 271w

G(T,6) g(U,6) G(r,6)

(2.40)

Combining the first and third terms,

[T < r]6———VBG(T’6) +[T 2 r U 2 r]————VQG(T’6) =

G(T,6) G(z',6)

z—VfiGflT’6){[T<r1[r* <U]+[T22’][U .>_T‘]=6‘———V90(,T’6).
G(T ,6) G(T ,6)

Therefore (2.40) can be re-written using (X * ,6‘) as:

t. V,,c;(r“,e)+(1 a )V9g(U,6)
6 =6

W ) G(T ,6) g(U,6)

(2.41)

We will focus on estimation of 6under the observation scheme H.

Estimation of 0

Suppose (9 is a compact set in R" and assume that .60 is the unique solution of

the problem

gag Q0 (6) = rr'ieaét E(l(6)) (2.42)

Under general conditions, the sample analogue of the expression (2.42),

Q" (6) = 1211(6) which we denote by 6, is consistent and asymptotically normal , see

i=1

Newey, McFadden (1994), Theorems 2.5 & 3.362 and Wooldridge (2002, 2003)” 3“.

Hereafter 60 is the true underlined parameter and all convergences are under 60.
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Based upon (2.41), an estimator 6 of 60 is obtained as a solution to

Zw, (6) = 0. Now expand 2w,- (6) at the true parameter 60 to get

0 = Zw, (é) =ZW; (60H Zvaw, (6")(é—90) (2.43)

where6 lies between 6 and 60 and Var/I, denotes the qxq matrix of the derivative (with

respect to m of VI,- (6). Then under standard assumptions

n“ ngw, (6)—Lemmy, (6)]. From (2.43) we get

Jam—9,, = 1"(60)(—‘/I=Z(1/,(60))+op(1) (2.44)

'1 r'

where J (60 ) = —E(V0l//,. (6O )). To verify that (2.44) would give the asymptotic

distribution of 6 we will now check that E (til, (6)) = 0. Examine each term in (2.41):

VQG(T‘,6)+ 1_6.)V9g(U,6)
E 6 =56[W )1 1 T,6) g(U,6)

]=

——V"G(T’6) [T A 2' s U]] + E[——V”g(U’6)=5

[ G(T',6) g(U,6)

[TAT>U]]

V,G(T*,e)

G(T ,6)

The first term is E[ [TATSU]]=

———V"G(T’0) [T 3 INT 5 U]]+ Ely—999%TS Tl” 5 U“:
= E

[ G(T,6) G(T,6)

= E[v9(;(r,e)[r s r]]+V9G(r,6)S(T) =

= —V,, EG(u,6)dS(u)+VoG(2',6)S(z'). (2.45)

The second term is
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v g(U,6) v g(U,6)
E———9 T U =E——9 =[ g(U,6) [ xr> ]] [ g(U.6) S(U)[T>U]]

= 47,, ES(u)dG(u,6). (2.46)

Combining (2.45) and (2.46) we will get

E{l//(6)} = 47,, £G(u,6)dS(u)+VBG(T,6)S(T)—V6 ES(u)dG(u,6) =

= —V9 G(u,e)5(u)|; +VgG(r,6)S(z') = 0.

An application of the Central Limit Theorem to (2.44) gives

5(6—60)L>N(0,J“‘ (60)).

where J" (60 )E(w(60 )r/(e0 ))J‘1 (60) = J"‘(6O)J(60)J‘1(60) = J“1 ((90 ). We can

replace 60 by the consistent estimator6, and use [9,. = P[U, Z 7? IT,- 1 = G(Ti‘,6) for the

unknown p,- = P[Ui 2 7? |7}] . For this adjusted estimator we have

A n -l n

_ A I A I

flwp— Zwixixi Z ixiyi

i=1 i=1

which is a two-step estimator, first step would be estimating6 , and then estimating ,6 in

(2.38) after we have replaced w,- = (5': /P[U,- 2 7}!“ thl by vi»,- = 6: /G(T;,6). In other

n

words the two-step estimator solves the problem min2 w,- (y, — x,- fl)2 .

i=1

Therefore

Ugiwage] (2.47)

n
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Following closely Chapter 12.4 of Wooldridge (2001)“, we expand the second

term on the right hand side of the equation above to get

6"X8,

” 5 " 5TIE-2‘51 Argi _Z_,____x;,£_[nz____’_‘_€__VHG(T é)]J—(é_ 90)

P n P.- r-1(G(T 19))2

 

where 6 is between 6 and 60. Again use the standard arguments to claim

  

* ~

" 57'x’e pE[ 5:qu

i=1 (G(T; 96))

(VGT,6 . VGT‘fla ’=2 9( ))—-> (G(Trflo))2( 9(on]

x'e

G(Ti 1 60)

Denote this limit by D(60 ), a KXq matrix.

Combining these results we have the established the expansion

 

" 5 5 _
_Lz i"‘£‘-_-__Z{——”—D(t90)1‘(60)u/,(60)l+o,,(1)

 

 

 
 

J; i=1 Pi n i=1 Pi

Let kl. = 6' fie}: 5'X'E' .nThe

G(T) ’60 ) Pi

5*V G(T, 6 x178,-

G(T},6O) G(T},60) V,G(z' 60) G(r,60)

Taking the expectation yields,

 

I V G(T,6) I VQG(7960) I

E - 6 k- =E T-<2'-‘9——i—°—x-£.+T-ZT———xi,-.
(W1(0) 1) [[1 ] G(TI,60) (1 [1 ] G(T’Ho)

V Tile ,

Observe that is the same as D’(60)=E ( 66“ 0))xiei .

G(T; 960)
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Then the asymptotic variance Vof Jr_z(,6wp — ,6) is

v= (E(x:x. )" )E(k,- —D<60)J" wow, (60))(k, -D(60)J" (60w,- (90)) (E(xIx. )")

=(Etx:x,)">{E(k,k;)+D(60)J“(601501,- (Bow/{(60014 (60)D’(60>(E(x:x,)“)

—D(60)J"‘ (60mm.-(60)k:)-E(k,w,-’(60))J“ (60)D’(60)}.

Notice that E( (11,- (60 )t/,’(t90 )) = 1(6)) which makes the second term above

D(6O)J" (60)D’(60).

So the variance V is

v: <E<x§x.- )“ >lE(k,k:>—D<60)J" <60)D’(6o)}(E(x:x, )“ ).

Under the assumption E(el- |x,-)=0, D’(90)=E (Vqu; ’60 )) x;

G(T} .90)

 ei]=0 and

V=(E(Xixi )'1)E(kik;)(E(xfx, )'1 ). In general the asymptotic variance of $265” -,6)

is smaller when we use an estimate 6 for 60 in the expression of Bwp as in (2.47).

2.4.2 Interval cost data

Suppose that the interval [0,1) is divided into G intervals [0,1')=U[ag_l ,ag) as

e

in Lin (2000), and Willan et al (2002, 2003)“ with 0 = a0 < al < ...< a6 = 2' . For the

interval cost data first define Ti; = 7} A a and 5,; = [Tl-g S U,], also denote
8
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T,’ = 7,2; = T,- A “a = 7, A 2'. For the ith patient we denote y,g the cost in gth interval at

time 7}; . We will have two different censoring types

A. Time censoring: 5: =[7}* SU,]=0 if T: > U,, and

B. Cost censoring: 5,; =[7}; _<_U,-]=0 if 7",; >U,.

Consider the model

yig = xigfl+ “i

for all g =1,...,G or y,- = X,,B+u, where

yil “it xil

y,- = - ,u. = - and X, = - .Here y,, u,- are le and X,- is GXp.

in “to xiG

The following are assumed to be true:

AGl E(x,’u, ) =0

AGZ rank E(x,’x, ) = p

The IPW-POLS estimator of ,6 (pxl vector) in the model above is given by

n A n

=(ZX,x,)‘(XZ3,) (2.48)

[1: i=1

where y, =S,P,’ly,, and 8,, in, are similarly defined. Here S,- is the diagonal matrix

with elements 5,; = [7}; S U,- ] , g =1,...,G in the main diagonal (will allow costs to be

zero in some intervals), and P- is the diagonal matrix with elements, , l [9,8 in the main
1

diagonal, where p,,, = P[U, Z T,; IT,- ]. Under the assumptions above we have

P[(si; zllxig’yig’ji]:P[Ui27i; I72]:pig'
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Assume the distribution of the censoring time U,- has a parametric form,

P[U, > t] = p(t,6) , where the function p is known except for the unknown q-

dimensional parameter 6. Then p,g = pa}; -,6). Now replace 6 by a consistent

estimator6, and use 13,, = p(T}; —,6) in (2.48) for the unknown p,g . For this adjusted

estimator we have

3 G 57' . .

J—(fl.p- ,3):t—ZZ—‘8’8)_,(,,1J_ZZ_,,%&,_) (2.49)
is1':lg:l pig n i=1 g=l

Estimation of 0

The observable data on the censoring times is restricted to X,f = rnin(T," ,U,) and

5," = [Ti S U,- ]. Here a0 5 2' is the upper limit of observation. For a patient 1',

{X,- : 1’}={T, 2 T,U, 2 r} . This event has probability S(r)p(r,6) , assuming both S and

p are continuous. Now consider our adopted panel framework in which the observed X,f

falls into some interval [a,,_, ,a8 ), g =1,...,G. The part of the likelihood of ( X," ,5,‘)

that is relevant for estimation of 6 has the form { p(X,‘ ,6)}‘5‘. {g (X,i ,6)}1’5‘. where

g(t,6) is a density for U,. We will assume that p(aG ,6) > 0 and that 6 -—> g(-,6)

fulfills all regularity conditions needed for maximum likelihood estimation of 6.

Note that Xfe [a ag) and 5," =1 is equivalent to [U,- >T71;][ag_1ST; <ag ]
g-l’

(77;):1, whereas X:E [a a8 )and 5," =0 is equivalent to[ag SU, ST};]
is Is 8-1 ’

=(1-6,1,)1, (U,)=1,where Ig(t)=[a <t<a ]. To include the interval t>aG,
g-l—
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define the indicator 10 (t) = [r 2 a0 ] . Then the derivative with respect to 6of the

aforementioned log-likelihood can be written

1410,,T)——g—++(1- 6,2,,)1(U)—9—-'—-+g2: 8 8' p jg, g(U,~,9)

G

+1/GI, T- U, Vgp(T.,¢9) d,,(6).( )G.(,A )—W6) 1:;

A n G A

The estimator 6 is a solution to 22d, (6) =0. Consistency of 6 follows from

i=1 g=l

the standard regularity conditions on the functions 6 —-) g(-,6) and 6 —) p(-,6) for

maximum likelihood estimation of 6. In the sequel we will call 60 the true parameter.

I: 0

Note that d,, (60) is a qxl vector. Using a Taylor expansion of 2 2d,, (6) at 60

i=1 g=l

yields

A n G

J;(6-60)=-(%sz,g (6))(71:2th,(0,)),
i=1 g=l =1 g=l

where 6 is between 6 and the true 60. Also, 6,,, (6) is the derivative of d,, (6) with

respect to 6. Note that d,,, (6) is a qu matrix. Now use the standard arguments to claim

G

ld,,,(6)—)E(Zd' ,(60)) in probability, and71.;22d,,(60)=0,,(1).

g=l i=1g=lII
5
M
0

a
l
t
-
—

The last claim is simply a consequence of the central limit theorem.

G , G G

Now E(Zd,, (6O )) = —E((Zd,, (60 ))(Zd,2 (60 ))) = 1(6O ). Hence we have

=1 g=l g=l
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n 0

I660): (1(6o))"(—22.226,-“(60))” (1)

n G é},x,-,u,-,
We can expand the sum Z2—7— to get

i=1 g=l pig

L " st _

n i=1 g=l firg

n G 6‘1. x! u! I "

—ZZ-——, , 8-(n-l-ZZ—(VmT,;.6»)JZ(6—6o)
‘fginlgl pig tlgl(p(rg’6))

where 6 is between 6 and 60. Again use the standard arguments to claim

*

1 n G aigxig u, I

n§2(p(r,;,g» V9 TE 3103812602» V” , °

 

in probability. Denote this limit by D(6O ), a qu matrix. Note that D(60) is also the

ui I

same as E(Z—(ngT,2,60)) ).

g==T1p(ig’ 6O

Combining these results we have the established the expansion

6‘

n G 6. . .

“i___gg=n'mzZ{m—D(90)J-l(60)dig
(60)}+0p (1):

1g i=1 g=l pig

0
P
)
l
:

”2 Z{X;S,PflP,-_lui - 0(60 )J-1 (60 )di (60 )jG}+ 0P (1) ’

where d,(60) =[d,1(60),...,d,G(60)] is a qu matrix, and jG is a 6x1 vector of 1’s.

Now apply the central limit theorem to show that it converges in distribution to a G-

variate normal, mean vector zero and variance matrix V.
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G

The assumption AGl: E(Xi'u, ) = 0 means that E(Z x,, u,-, ) = 0. If

g=l

E(x,,u,., ) = O or, more strongly, E(u,, |x,-, ) = O for all g, assumption AGl holds.

Without additional assumptions on 14,, we can not conclude that D(6o) = 0. Suppose we

impose E(u,, lx,,,72-)=O for all g=l,...,G.Then

*

G 5,,x,,u,-, * I G
E(Z (Vgp(7;gs60)))=ZE(uig lxig’Ti)

g=l

x.g<Vap<T.-; 606 :0

good; .606 (P(T; ’90 ))2

  

Computing V

G 5‘ xigu,

Let k,- = xgs,P,"P,"u, = Z-lgT-i. Then the aforementioned variance Vis

g=1p(7ig ’60)

I

v: E(k, —-D(60)J" (6,,)d, (60)j0)(k, -D(60)J" (60)d,(60)jG) =

=E(k,k,7 ) + D(60 )J‘1 (60 )E(d, (6,, )jGj’Gdgwo ))J'1 (60 )D’(60 ) -

-D(60)J" (60)E(d, (60)j6k;)—E(k,j’Gd,f(6o))J“ (60)D’(6o)

Notice that E(d, (60 )jGj’Gd; (6,, )) = 1(6)) which makes the second term above

D(6O)J" (6O )D’(60 ).

G G 5." xf u.

Now consider E(d, (60 )ij§ ) = E((Zd, (60))(Z-ij-fi». We will prove

g=l g=1p ig ’ 0

. . G xiguig " I

that this would reduce to D(60 ) = E(Z——-,,——(V9p(T,-, ,60 )) ) so that Vcan be

g=l p jg s 0

expressed as E(k,k,7)— D(60 )J’1 (60 )D'(6o ), a similar formula to case 0:1.
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Recall that

 
 

T, .. V .,6

d,,(60)= 62,1,(T) V2“ ' 6’0)+(1—§,,)I,(U,-) 68(U' 0)+

V ,6

+(1/G)IG,, (T, AU,)—6—p—(:—'Q,

p(T’HO)

25:,x,,u,

and let k, ——.To prove the equality

p(T[8960)

G 6 6w 6V (T56),
61126,,(6o))<Z—£—Tg-—£-))=E(Z 9” g x,,u,,)

g=l g=1p 1g ’60) g=l pT(ig ’ 60)

 

we first prove that for any h =1,...,G we have

ihxihuih__)_ E(V6P(Tihrgo) X,

E(( 6.16))

,2: ,, ° 12172;.60) 1602.60)

 

ihuih)'

We prove the equality above for h=1. If h>1 the proof is the same. So,

 

" (T ,6) 6,‘,x’ u
A: E(( di (6 ))____ilxiluil___): _E({ [g (T) Vflp 0 i1 i1 })+

gz=l g 0 [9(711690){Z=1§; ”(190) P(T11,60)

V6g(Ui ’60) 6lxiluil

g(Ui’60) P(T[19 60)

 

+E(Z(1—6.; )1, w.)

g=l

(2', 6 )x u

+E( (l/G)I , (T, U,) V91” 0 1 "1 "1 .

gz=1 G 1p(2'60) p(t-1.90)

 

Dropping orthogonal terms,

V T,6 x . V T,6 x,u,-
A: E({6i111(T) 9P(T 0)6111u11 +2 jg g( j) 0P(T 0)611 1 l }+

p(1’60) p(nlrgo) gZZ p(T ’60) p(T[1960)
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:1- V 8(U' ,6)6I“Ix u
+E 1’6 I U,- 0 i 0 i] 11 i1

(1,22; .,1,( ) ,(,,iflo) “15,609”

V017” 90)511x11“i1 })

p(T, 60) p(T,1,90)

 

 

EH”; “(1127]

The first term of the sum above is

 

V p(T ,M)“X 11 P(T 9 )I

E(6.IT.- ‘9 ° ‘1‘“): E<1T<U11(T)—"—-—'——9—x.u..,):11( ) pT-( 60) p(TmBo) 11920 60) 1 1

=E(11(T.) V9p(l’ 60) x’

pT( ) xi]uil)

,-, 6'0

The second term is:

T,6 x; u,-
E(Zé‘ilé‘iglg(T) V9p( t 0) 1‘ 1 _

gzz P(Tiflo) P(Tuflo)

 

=E(Z[T;' SU,]18 (7;)V9p(7;’60) xiluil _

g22 1701490) P(aiflo)

 

xfu. xfu.

=E< I (T.)V p(T..6 )——"—i—)=E<tr>T.-.>.a 1V p(T..6 )——"—"—).

3222 g 9 0 P(alflo) l a 0 p(a,,60)
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CHAPTER 3

ESTIMATING HOSPITAL COST FOR AMI

PATIENTS IN THE NIS 2000

3.1 Description of the data set and background

The Nationwide Inpatient Sample (N18)

The Nationwide Inpatient Sample (NIS) is the largest all-payer inpatient care

database that is publicly available in the United States, containing data from 5 to 8

million hospital stays from about 1000 hospitals sampled to approximate a 20-percent

stratified sample of US. community hospitals. It is part of the Healthcare Cost and

Utilization Project (HCUP), sponsored by the Agency for Healthcare Research and

Quality (AHRQ, formerly known as the Agency for Health Care Policy and Research).

Currently data is available for a 13-year time period, from 1988 to 2000, allowing

analysis of trends over time. Researchers and policymakers use the NIS data to identify,

track, and analyze national trends in health care utilization, access, charges, quality, and

outcomes.

NIS is the only national hospital database with charge information on all patients,

regardless of payer, including persons covered by Medicare, Medicaid, private insurance,
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and the uninsured. NIS's large sample size enables analyses of rare conditions, such as

congenital anomalies, uncommon treatments, such as organ transplantation, and special

patient populations, such as children.

Inpatient stay records in the NIS include clinical and resource use information

typically available from discharge abstracts. Hospital and discharge weights are provided

for producing national estimates. The NIS can be linked to hospital-level data from the

American Hospital Association's Annual Survey of Hospitals and county-level data from

the Bureau of Health Professions' Area Resource File, except in those states that do not

allow the release of hospital identifiers. Beginning in 1998, the NIS differs from previous

NIS releases: some data elements were dropped, some were added, for some data

elements the coding was changed, and the sampling and weighting strategy was revised

to improve the representativeness of the data.

There is a growing literature on use of the NIS in health services research that we

4247‘ 64. For 2000, the NIS contains over 7.4 million discharges fromwill use for guidance

28 states. Sixty strata are defined by a combination of region (Northeast, South, Midwest

and West), location (urban, rural), ownership'(public, private), teaching status, and bed

size (small, median, large). The first stage samples approximately 20% of hospitals

within each stratum. Then all discharges from the sampled hospitals are included in the

database. Patient demographics in the NIS include: age at admission, gender and race.

Total charge and length of stay (LOS) are the main healthcare utilization variables

in the N18 for each hospital stay. Discharge status identifies whether it was routine, or

resulted in death, or the patient was disposed to other care facilities. The NIS database

contains a number of variables describing the hospital stay. Up to 15 diagnoses and 15
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procedures are coded based on the International Classification of Diseases, 9‘h Revision,

Clinical Modification (ICD-9-CM). They can be used to select samples of hospital

discharges for specific diagnoses and procedures. A broader categorization of ICD codes

may be used for this selection based on HCUP’s Clinical Classification Software (CCS),

or by diagnosis-related groups (DRG) that combine information on patient age, sex,

diagnoses and procedures accounting for relationships among them and to inpatient

resource use.

The main limitation of the NIS is its inability to track individual patients. Each

record in the N18 is a separate hospital discharge, and thus we cannot identify multiple

admissions by the same individual within a year (or across years). Also, the NIS does not

include all preoperative and postoperative treatments rendered in an outpatient setting,

although services in ambulatory surgery centers may be included. We will use the NIS to

examine length of stay and hospital charges associated with admissions for heart disease.

In particular we concentrate on treatments undergone for acute myocardial infarction

(AMI).

Coronary heart disease and treatment procedures

The heart is a muscle that works 24 hours a day. To perform well, it needs a

constant supply of oxygen and nutrients, which is delivered to the myocardium (heart

muscle tissue) by the blood through the coronary arteries. The blood flow to the heart can

be reduced by a process called atherosclerosis, in which plaques of fatty substances build

up inside the walls of blood vessels. The plaques attract blood components, which stick to

the inside surface of the vessel walls. Atherosclerosis can affect any blood vessels and
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causes them to narrow their lumina and harden their walls. This process develops over

many years and can begin early, even in childhood.

Coronary heart disease (CHD) is the most common form of heart disease, the

leading cause of death for Americans. About 12.6 million Americans suffer from CHD,

which often results in a heart attack. About 1.1 million Americans suffer a heart attack

each year, and about 515,000 of these heart attacks are fatal65 that is about 2,600 every

day; one person every 33 seconds. It takes more lives than cancer-in fact, more than

cancer, accidents, and the next five leading causes of death in the United States

combined“.

In CHD, atherosclerosis affects the coronary arteries. The fatty buildup, or plaque,

can break open and lead to the formation of a blood clot. The clot covers the site of the

rupture, also reducing blood flow. Eventually, the clot becomes firm. The process of fatty

buildup, plaque rupture, and clot formation recurs, progressively narrowing the arteries.

Ever less blood reaches the heart muscle, and thus fewer quantities of oxygen and

nutrients reach the myocardium, leading to ischemia (oxygen starvation of the heart),

clinically translated into chest pain. Depending on the degree of pain, the level of

physical activity that pain occurs at, and the degree of coronary obstruction, coronary

artery diseases can be classified into asymptomatic or mild angina, angina class II-IV or

unstable angina, acute myocardial infarction, ischemia after Coronary Artery Bypass

Graft (CABG)67.

Following previous analyses of charges and LOS of AMI patients in the MICH

48-50

study , we will focus on patients admitted in the hospital with AMI, a common high-

mortality condition whose outcomes are affected by the process of care. We only focus
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on patients that underwent as their primary procedure Coronary Artery Bypass Grafting

(CABG), Cardiac Catheterization (CATH) or Percutaneous Transluminal Coronary

Angioplasty (PTCA) or patients with AMI who underwent no procedures at all.

Cardiac catheterization

In cardiac catheterization (abbreviated “CATH"), a diagnostic procedure in which

a very small catheter (hollow tube) is advanced from a blood vessel in the groin through

the aorta into the heart. Once the catheter is in place, several diagnostic techniques may

be used. The tip of the catheter can be placed into various parts of the heart to measure

the pressure within the chambers. The catheter can be advanced into the coronary arteries

and a dye injected into the arteries (coronary angiography or arteriography). With the use

of fluoroscopy (a special type of X-ray), the physician can tell where any blockages in the

coronary arteries are located as the dye moves through the arteries.

Percutaneous transluminal coronary angioplasty

Percutaneous transluminal coronary angioplasty, also known as PTCA, is an

established, effective therapy for some patients with coronary artery disease. PTCA is

used to dilate (widen) narrowed arteries. A doctor inserts and advances a catheter with a

deflated balloon at its tip into the narrowed part of an artery. Then the balloon is inflated,

compressing the plaque and enlarging the inner diameter of the blood vessel so blood can

flow more easily. Then the balloon is deflated and the catheter removed. PTCA is a less

traumatic and less expensive alternative to bypass surgery for some patients with

coronary artery disease. In about 40 percent of patients who've had PTCA, the dilated

segment of the artery narrows again within six months after the procedure. They may

require either another PTCA or coronary artery bypass surgery“.
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Improvements in technologies for PTCA include use of stents and more-recently

drug-eluting stents (DESs). A stent is a surgical stainless steel coil that is inserted into the

blocked artery via a catheter. The stent serves as a scaffold, supporting the artery walls,

and reducing the risk of the artery re—closing (restenosis) over time. Bare-metal stenting

after angioplasty has more durable effects than angioplasty alone, but researchers are still

seeking ways to reduce restenosis, which occurs about 20% of the time in the'clinical

setting. The most promising method to lower restenosis rates appears to be using drug-

eluting stents (DESs). Some researchers are hailing DESs as one of the greatest

interventional advances in the past decade. But others warn that while DESs appear to

offer benefit over bare-metal stents, the hype may be outrunning the science. In his article

‘Drug-Eluting Stents Show Promise’, Mitka (2004)69 presents the beneficial effects of

DESs, but also talks about hospital concerns that reimbursements for such devices may

be too low, leading to financial losses for these institutions. NIS database precedes the

widespread use of stents and therefore the analyses that we describe would refer to

PTCA.

Coronary artery bypass graft

Also known as “bypass surgery” or CABG, coronary artery bypass graft operation

uses a piece of vein taken from the leg, or of an artery taken from the chest or wrist. This

piece is attached to the heart artery above and below the narrowed area, thus making a

bypass around the blockage. Sometimes, more than one bypass is needed. Bypass surgery

may be needed due to various reasons, such as an angioplasty that did not sufficiently

widen the blood vessel, or blockages that cannot be reached by, or are too long or hard

for, angioplasty. In certain cases, bypass surgery may be preferred to angioplasty. For
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instance, it may be used for persons who have both CHD and diabetes. A bypass also can

close after a period of time. This happens in about 10 percent of bypass surgeries, usually

after 10 or more years.

Variations in hospital costs/charges

As suppliers of the most expensive type of health service, hospitals have been

particularly vulnerable to the pressures of competition. The health economics literature

contains a number of recent studies on hospital costs. A common technique that has been

proven to be well-suited to examining the effects of provider institutions on patient costs

in a managed care environment is multilevel modeling. This framework is used to

analyze data that fall naturally into hierarchical structures consisting of multiple ‘micro’

units nested within ‘macro’ units. Multilevel models analyze variability arising at distinct

levels within data by extending the more traditional statistical techniques and introducing

a degree of realism often absent from single-level models such as multiple regressions. A

good description of why charges may differ between facilities is presented in Health

Care Data Report, 2000 (PHC 5320) from Department of Health and Family Services,

Division of Health Care Financing, Bureau of Health Information”.

New technology - The equipment facilities use to provide services differs in age,

sophistication, and utilization. Facilities with the latest technology may have higher

charges than those with older, less sophisticated equipment.

Stafi‘ing costs - Salary scales may differ regionally and are typically higher in

urban than rural areas. Furthermore, competition for nurses and other skilled personnel

may result in higher staffing costs and, therefore, higher charges.
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Intensity ofcare - Facilities differ in the severity of illness of patients (i.e., some

facilities care for more severely ill patients than others). Patients within the same

diagnosis or procedure classification may need very different levels of service and staff.

Efi‘iciency ofoperation - Facilities vary in the utilization and efficiency of services

they provide. Infrequently used services may cost more per patient than services that are

used more frequently.

Difi‘erences in coding - Facilities vary in their coding systems and personnel, and

in the number of billing codes they put on a billing form. The use of additional

appropriate codes may result in a patient being assigned to a diagnosis or procedure

classification with greater reimbursement or may otherwise justify higher charges.

Facilities with better-trained personnel or more sophisticated coding software are more

likely to place these additional codes on their billing forms and, therefore, may have

higher charges than facilities with less expertise.

Discounts - Facilities negotiate and offer volume discounts to Health Maintenance

Organizations (HMOs), Preferred Provider Organizations (PPOs), and other large-volume

purchasers of health care services. The number of these organizations has grown

considerably in recent years. Full charges are paid for only a very small proportion of

patients.

Percentage ofgovernment pay — Government payers generally reimburse

facilities at rates below their full charges, similar to the discounts offered to commercial

payers. Therefore, facilities with a large percentage of patients whose charges are paid

either by government programs or discounted commercial payers may report large gaps
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between what they bill and what they actually receive. This may result in higher charges,

including those for non-discounted patients.

Facility price structures - Some facilities spread the cost of services and

equipment over all patients. Others bill the full cost of a service to those patients actually

using the service. Furthermore, facilities may provide some services at a loss while

allowing other facility operations to subsidize the losses. Any of these practices can result

in significantly different charges for a given diagnosis or procedure classification.

Range ofservices provided - Facilities differ in the range of services they provide

to patients. Some may provide the full range of services required for diagnosis and

treatment during the stay. Others may stabilize patients and then transfer them to another

facility for more specialized or rehabilitative care.

Data-related issues - Facilities differ in the number of cases served, the case-mix

and illness severity of patients, and the comparability of patients within a given diagnosis

or procedure classification. For example, a single case can greatly affect a facility’s

average charge if the facility reported only a few cases.

Capital expenses - Facilities differ in the amount of debt and depreciation they

must cover in their rate structure. A facility with a heavy debt load, a new building, or a

major renovation to amortize may have higher charges than a facility not facing such

expenses. Furthermore, facilities may choose to lease or purchase equipment or facilities.

The choices made about financing of capital projects may affect charges in different

ways.

Rice et al (1997)“, Carey (2000, 2002) 52' 53 and Goldstein (2002)54 insist on the

usefulness of multilevel methods in studies where data on cost are collected over multiple
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sites (hospitals in our data). This chapter takes a multilevel modeling approach to

estimate costs in patients hospitalized for AMI. Patients nested within hospitals form a

natural hierarchical structure suited to analysis that models each level simultaneously.

The existence of a non-zero intra-hospital correlation, resulting from the presence of

more than one residual term in the model, means that traditional estimation procedures

such as OLS, which is used for example in multiple regression, are inapplicable.

Application of OLS techniques leads in this case to incorrect inferences, although when

the intra-class correlations are small we can expect reasonably good agreement between

estimates from the multilevel and the simpler OLS approaches. One can also go one step

further and extend our model to include higher levels such as hospitals nested in states.

Correlates of total charges available in the data set

Possible correlates of total charges available in the data set are: procedure, gender,

age, number of procedures, hospital characteristics (location, teaching status, bed size,

region), length of stay (LOS), Charlson Comorbidity Index (CCI).

Procedure: Clinical Classifications Software (CCS), developed by the Agency

for Healthcare Research and Quality (AHRQ), is a tool for clustering patient diagnoses

and procedures into a manageable number of clinically meaningful categories. CCS is

used for grouping conditions and procedures without having to wade through thousands

of codes. This "clinical grouper" makes it easier to quickly understand patterns of

diagnoses and procedures so that health plans, policymakers, and researchers can analyze

costs, utilization, and outcomes associated with particular illnesses and procedures.
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CCS collapses diagnosis and procedure codes from the International Classification of

Diseases, 9th Revision, Clinical Modification (ICD-9-CM), which contains over 12,000

diagnosis codes and 3,500 procedure codes. Without CCS, the large number of ICD-9-

CM codes poses difficulties in statistical analysis and reporting.

CCS consists of two related classification systems, single level and multi-level,

which are designed to meet different needs. The multi-level CCS groups single—level

CCS categories into broader body systems or condition categories (e.g., "Diseases of the

Circulatory System," "Mental Disorders," and "Injury"). Multi-level CCS is most useful

when evaluating larger aggregations of conditions and procedures or exploring them in

greater detail. Single-level CCS is most useful for ranking of diagnoses and procedures.

The single-level diagnosis CCS aggregates illnesses and conditions into 259 mutually

exclusive categories. We consider discharges that have either CABG (CCS=44), CATH

(CCS=47), PTCA (CCS=45) or no procedure (CCS=.) as a primary procedure.

Demographics Variables: We use gender and age of the patient. Patient age is

recorded as age in years at admission. Other demographic variables in the NIS are race

and household income by zip code, but they are not uniformly recorded for all states.

Number of procedures (NPR): NPR counts the number of ICD-9-CM

procedures coded on the discharge record. The principal procedure is included in this

count. A value of 0 means that the patient underwent no procedures on record, a value of

1 means that only the primary procedure is recorded, secondary procedures are left blank,

etc. A maximum of 15 procedures have been retained on a NIS inpatient record. States

140



that provide fewer than 15 procedures have had the procedure vector padded with blank

values. For example, if a state supplied 5 procedures, PR6 through PR15 are blank (" ")

on all records from that state. States that provide more than 15 procedures may have

information truncated. All states have provided at least 6 procedures.

CCI (Charlson Comorbidity Index“) is used to assess comorbidity. CO is a

weighted sum of the presence of 15 specified medical conditions at admission. There are

two ICD-9-CM adaptations, Deyo (1992)72 and Dartmouth-Manitoba, Romano et al

(1993)73 of the Charlson comorbidity index, as well as other various searches for

improved clinical comorbidity indices74'76. We use the Dartmouth-Manitoba version of

the index. The conditions and associated weights (shown in parentheses) are:

CHF = 'Congestive Heart Failure' (1)

PVD = 'Peripheral Vascular Disease' (1)

CVD = 'Cerebrovascular Disease' (1)

DEM = 'Dementia' (1)

COPD = 'Chronic Obstructive Pulmonary Disease' (1)

ULCD = rUlcer Disease' (1)

MLIVD = 'Mild Liver Disease' (1)

DIAB = 'Diabetes without Complication' (l)

HEPL = 'Hemiplegia' (2)

REND = 'Renal Disease' (2)

DIABCC = 'Diabetes with Complications' (2)

MALIG = 'Any Malignancy' (2)
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SLIVD = 'Moderate or Severe Liver Disease' (3)

CANCER = 'Metastatic Solid Tumor' (6)

AIDS = 'AIDS’ (6)

NIS_STRATUM is a four-digit stratum identifier used to post-stratify hospitals

for the calculation of universe and frame weights. The hospital's census region,

ownership/control, location/teaching, and bed size were obtained from the American

Hospital Association (AHA) Annual Survey of Hospitals.

Region: States were grouped in 4 regions

Northeast (CT, MA, ME, NY, NJ, MA)

Midwest (IA, IL, KS, MO, WI)

South (FL, GA, KY, MD, NC, SC, TN, TX, VA, WV)

West (AZ, CA, CO, HI, OR, UT, WA)

Location] Teaching: A metropolitan statistical area is considered urban, and a

non-metro statistical area is rural. Teaching hospitals have an AMA-approved residency

program, are a member of the Council of Teaching Hospitals (COTH) or have a ratio of

full-time equivalent interns and residents to beds of .25 or higher. All hospital in the rural

area were classified as non-teaching.

Bedsize categorizes the number of short-term acute beds in a hospital into ‘small’,

‘medium’, ‘large’. A hospital's bed size category depends upon region, location and

teaching status. For example, urban teaching hospitals in the Northeast were classified as

having ‘large’ bed size if the number of hospital beds exceeds 425. In the western region

for the same location/teaching status, the ‘large’ bed size category is defined if the count
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exceeds 325. This categorization was created to have approximately 1/3 of hospitals in

each bed size category in a given region, location, teaching status combination.

Ownership/control includes categories for government nonfederal (public),

private not-for-profit (voluntary) and private investor-owned (proprietary). However

when the sample size was sufficiently large, hospitals were stratified as public

(Ownershipzl), voluntary (Ownership=2) and proprietary (Ownership=3). This

stratification was used for southern rural, southern urban non-teaching, and western urban

non-teaching hospitals. For smaller strata — the midwest and western rural hospitals —a

collapsed stratification of public versus private was used, with the voluntary and

proprietary hospitals combined to form a single ‘private’ category (Ownership=4). For all

other combinations of region, location and teaching status, no stratification based on

control was advisable given the number of hospitals in these cells (Ownership=0).

Although the CONTROL variable was used to define the strata, AI-IRQ collapsed some

categories. In consequence, because of the overlapping categories, this variable will not

be used further.

Total Charges

Total charges in NIS data are the amount the hospital charged or billed for the

entire hospital stay. They do not necessarily reflect reimbursements or costs. Charge data

were present for 98 percent of all discharges. Charges are generally higher than costs.

Generally, total charges (TOTCHG) do not include professional fees and non-covered

charges. If the source provides total charges with professional fees, then the professional

fees are removed from the charge during HCUP processing. In a small number of cases,
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professional fees were not be removed from total charges because the data source did not

provide the necessary information. Two states, MA and W1, will be excluded from the

working data set (see exclusion criterion #8 in the next section), because they may have

included professional fees. Emergency department charges incurred prior to admission to

the hospital may be included in total charges.

3.2 Creating a working subset data set

From the NIS 2000 Core file of 7.4 million discharges we extracted all records

with a primary diagnosis of AMI. This is based on DXCCS 1:100 or ICD9-CM codes

410.xx and it yields n=157,263 discharges. All discharges fall within Major Diagnostic

Code MDC=5 (Circulatory System). There are 165 possible primary procedures for these

discharges. Table 3.1 shows the distribution of primary procedures among discharges,

excluding procedures that are present in <1% of discharges. We will consider only

121,264 discharges that have either no procedure, Coronary Artery Bypass Grafting

(CABG), diagnostic cardiac catheterization or coronary artheriography (CATH) or

Percutanerous Transluminal Coronary Angioplasty (PTCA) as their primary procedure.
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Guided by several published analyses from the NIS, the following exclusion

criteria will be applied (all n’s are out of the 121264 patients):

1. We exclude admissions for AMI that were not the first episode of care for a newly

diagnosed AMI (ICD9-CM code: 410.x1), or if the location of the infarction was

unspecified (410.x0)64 (n=983).

We exclude discharges in hospitals that performed S 5 cases since these cases are

most likely coding errors” 43' 47 (n: 256).

We exclude patients <18 years or >85 years at admission. The pathophysiology of

disease in patients <18 years is likely to be different than for adults (n=22). Also

patients >85 years are less likely to be treated aggressively than younger

patients” 47' 6“ (n=1 1,238).

Because of concerns that patients with diagnosis code ‘AMI’ may have included

‘rule out’ AMIs, all discharges of < 2 days are excluded (n=l6,682).

Patients with LOS >60 days are eliminated because they are probably long term

care patients 52 (n=57).

Newborn admission types are also excluded (n=7).

For hospital costs within the US health-care system one common approach is to

assign a cost to each hospitalization based on the basis of its associated

Diagnostic-Related Group”. In order to make sure that we only have patients with

AMI in the working data set, we exclude patients with the following DRG in

effect on discharge date (DRG=104, 105, 113, 119,124, 125,144, 145, 468,

477,478,479,483) (n=l,6l 1).
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10.

11.

12.

Excluding states: States MA and W1 may have included physician fees in the total

hospital charges. Some hospitals in TX did not report total charges until July

2000. Because identification of these hospitals was not available, we exclude all

discharges from TX, MA, WI (n=20,560).

One hospital in Arizona is also excluded because 44.3% of its total charges data is

coded C=inconsistent (either excessively low or high) (n=149).

One can not link information from the discharging and receiving hospitals.

Therefore, if we want to capture LOS and total hospital charge for AMI

admissions, then we must restrict to ED admissions and all routine referrals from

physicians, clinics, and HMOs (n=23,244).

We drop records missing an essential field such as patient age, gender, length of

stay, total charges, DRG, admission source or discharge status (n=10,511).

We also eliminate patients who left the hospital against medical advice since we

do not know whether they received subsequent care (n=703).

The exclusion criteria above are not of course mutual exclusive, a discharge may

be excluded for more than one reason. After all exclusions we are left with n=58,469

discharges.

Censoring

The variable DISPUNIFORM indicates the discharge status assigned to each

record. We have already excluded missing, invalid records and patients who left the

hospital against medical advice. DISPUNIFORM=1 (routine) or DISPUNIFORM=20
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(died in hospital) cover a complete hospital episode. In these two cases we will regard

TOTCHG and LOS as completely observed. Patients transferred to a short-term hospital,

transfers to skilled nursing facilities (SNF), intermediate care, home health care have

incomplete TOTCHG and LOS. They will be treated as censored. Of the 58,469

discharges in our working data set 18,753 (32%) of the discharges are censored. Figure

3.1 summarizes the process of creating our data set from the initial 157,263 discharges

for AMI.

Characteristics of the patients

Table 3.2 shows the characteristics of the patients. As already mentioned we only

consider discharges that have either CABG (CCS code: 44; N=7,369, 12.6%), CATH

(CCS code: 47; N=14,264, 24.4%), PTCA (CCS code: 45; N=l7,901, 30.6%) or no

procedure (CCS code: N=18,935, 32.4%) as a primary procedure. There are N:

35,977 (61.5%) males and mean age is 65.72 (STD=12.7). Since the higher the number of

procedures, the higher the cost, we categorized patients in 3 possible groups: no

procedure (N=18,935, 32.4%), 1-4 procedures (16,489, 28.2%), 5 or more procedures

(23,045, 39.4%). We will form two comorbidity groups based on CCI score: 0 (no

comorbidities, N=23294, 39.8%) and 1 or more (at least one comorbidity). The biggest

percent of discharges in the data set comes from the South region (43.1%), followed by

Midwest (19.9%), Northeast (19.6%) and West (17.4%). The hospitals are categorized as:

rural (13.5%), urban/teaching (42.1%), urban/non-teaching. Hospitals are grouped as:

Small (8.9%), Medium (25.5%) or Large.
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3.3 Estimation methods

We will follow methods similar to those described in Chapter 2. Total hospital

charge (TOTCHG) and length of stay (LOS) are two primary outcome variables. We

identify the average total charge over a specified duration 2' with the net present value.

Given a covariate profile 20 and ignoring discounting the average cost restricted to 2' is

,u(r) = — Eco, (s | ZO )dS (t | Z0) . We first describe a multilevel model to estimate

cOl (t | Z0 ) , including a method for estimating weights. Then we will describe methods to

estimate the LOS distribution. Combining these two estimation steps we arrive at an

estimate of ,u( 2') .

ESTIMATING c01(t | 20)

A traditional approach for estimating patient costs involves ordinary least squares

(OLS) models containing a response variable at the individual level and correlates at both

individual and higher levels of analysis. This disregards correlations structures in the data

emanating from common influences operating within groups. As argued in the previous

section, hospital characteristics, such as quality of service, managerial performance or

treatment patterns administered by physicians may impose distinct effects on the costs of

treating patientssz‘ 53.

The working data set consists of 58,469 discharges for AMI patients. Of these,

39,716 are uncensored for total charge and LOS. There are 617 hospitals with discharges

between 6 to 1181 per hospital. Because charge data is skewed we consider a log-
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transformation to mitigate the effects of skewness of TOTCHG. Figure 3.2 shows the

histogram of log-transformed charges in all 58,469 discharges.

3.3.1 Unconditional means model

A one-way random effects model is fitted first. We express the outcome,

Yij = log(TOTCHG) associated with the i'h discharge in the 1"” hospital, as a linear

combination of a grand error mean flo , a series of deviations from the grand mean uoj

and a random error 80-:

Model 1: Y9. = .60 +“oj + 51.].

where no] ~ iid N (0,030), 8,-1- ~ iid N(0,0?) and uoj , 6,). are assumed independent.

We exclude censored observations from this model by using weights 6, , where 6,-

is the censoring indicator. Note that since “0," and 81-]- are assumed independent, we have

Var(Yij ) = Var(flo + “o; + EU- ) = 030 + of , and for two different discharges i :2 i’ within

the same hospital Cov(Y,.j , 11.3.): of.

Using estimates of the variance components, the intra-class correlation

2
0' . . .

p = ———“—°—— is estimated to be 3954 = .533 .The most variation occurs at the

30 +03 .3954+.3466

 

hospital level and the value of ,0 suggests that there is considerable clustering effect

within hospitals, invalidating the traditional OLS results.
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3.3.2 Including effects of hospital level (level 2) correlates

The unconditional means model, Model 1, provides a baseline against which we

can compare more complex models. We include hospital characteristics which are level 2

variables: Region, Location, Bedsize. These categorical variables have more than 2

levels. For example, region has 4 categories (Northeast, Midwest, South, West). To keep

our notation simple we use one name for each categorical variable indicating the region,

location and bed size of each hospital. The model is:

Model 2: Y,-j = .50; + 8,-1- and

1601' = :50 + flOlRegionj + ,602 LocationI- + [303 Bedsizej + “0}

where no] ~ iid N(0,030), 6,]- ~ iid N(0,0?) and uoj , 8,-1- are assumed independent.

Substituting the level 2 equation into the level 1 equation yields:

Y}!- = [ 160 + [S'mRegionj + flozLocationj + ,603 Bedsize]. ]+ [uoj + 81-1.].

The terms in the first bracket represent the fixed part, while the terms in the second

bracket represent the random part. The residual (error) variance within hospital 0'? ,

remains almost unchanged (going from .3466 to .3465). However the variance

component representing variance between hospitals, 0'30 , is much lower (going from

.3954 to .1682). Therefore the three variables, Region, Location, Bedsize explain a large

portion of the hospital-to-hospital variation in log total charges. About

.3954 -.1682

.3954

 = .57 of the explainable variation in hospital log total charges is explained

by the three variables. We can estimate once again the intra-class correlation as
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.1682

.l682+.3465

 = .33 which remains high.

3.3.3 Including effects of discharge level (level 1) correlates

We illustrate the effect of including discharge level correlates by initially

examining a model with only level 1 correlates, excluding level 2 correlates. After

reviewing the necessary steps for including level 1 correlates, we fit a combined model.

Suppose first that all correlates: Procedure, LOS, Age, Female, CCI, NPR are fixed

effects. Since NPR, the number of procedures, is in strict dependence with Procedure (for

example a patient who receives a procedure, CABG, PTCA or CATH will have NPRZ 1,

a patient who has no'procedures will have NPR=O), we use the cross-term

NPR*Procedure to assure a unique interpretability of the coefficients in the model. Based

on residual analyses we also decide to include LOSSQ = LOS2 and Agesq=Age2 in the

model.

Then the model can be written as:

K

Model 3a: ijj=floj+Zflkx(kw~1-£U , flojzflo+u0j

k=1

where uoj ~ iid N(0,030), 8,]. ~ iid N (0.03) and uoj, 8,}- are assumed independent.

The covariates xm include LOS, LOSSQ, Age, Agesq all as continuous variables; and

indicator variables for procedure type (CABG, PTCA, CATH), Gender (female), CCI (0),

NPR (14), and two dummies for CABG*NPR (CABG, 1-4 procedures) and PTCA*NPR
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(PTCA, 1-4 procedures). As expected these fixed effects variables at the discharge level

considerably reduce the within hospital error variance, of , going from .3466 in Model 1

to.0965.

Since LOS is a very strong correlate of the outcome and the variance of Y,j varies

with LOS as seen in Figure 3.3, we consider having a random coefficient for LOS. This

will allow for the relationship between LOS and patient total charges to vary across

hospitals. The model can be written as:

K

M0d613b3 Y6=fl01+511L056+25txtm+56 .
k=1

1501' :30 +u0j'fllj :51 “hp

j]~ lidN(02a22x2)9 gij ~iid N(O,U§) and (uoj’ulj)’ El] massumed
“o

where

ul j

2

duo 0:401

2

] is chosen by

0.1401 Jul

independent. Our unstructured covariance matrix 2 =[

considering the AIC, BIC criteria. Model 3b becomes

K
I . a o a o

Yij = ,60 + Z ,6,, x( k )U + “01 + u1 jLOSU + 81-]- . Within a hospital, the variance of Y,j rs

k=l

Var(Yij ) = Var(uo j + u, jLos,j + 6,]- ) = 030 + 20,0,Los,j + 031L053. + 03. The estimated

covariance parameter estimates are 0'30 = .1958, 0'31 = .00052, 0301 = —.00449. Also

a",2 = .09352. We compare the two models above, Model 3a and Model 3b. When fitting

this models we find that the change in -2LL when using REML method to estimate

parameters is ~728.6. An approximate test of the null hypothesis that this change is 0 is
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obtained when we compare the difference in -2LL’s to a 2’2 distribution with 2 degrees

of freedom. The p-value is <.0001. Therefore we will keep random slopes for LOS.

Should LOSSQ, along with LOS, be included as random effects at the hospital

level? If we do so, there is an additional variance component that comes from the LOSSQ

qu

term. The error term is ul j . Figure 3.3 suggests that LOSSQ is not needed. Fitting a

ugl-

2

0140 0.1401 01102

general covariance matrix X = Hum 031 03412 results in an estimate 0'32 =0, i.e.

2

0.1402 0'an 0.142

the estimate is on the boundary of the parameter space. Another reason for this is seen in

Var(1’}j) = Var(uoj + uU-LOSU- + uZJ-LOSU2 + 8,-1- ) =

_ 2 + 2 2 2 4 2 2 3
— “0 oulLOS,j + o'uzLOS,j + oE + 20'umLOS,-j + ZoumLOS,j + ZomLOS,j

which has a 4th-order term in LOS. If 0'32 2 0 so are 01.02 and can.

3.3.4 Including both effects of discharge level (level 1)

and hospital level (level 2) correlates

Having considered models with either just 1 level correlates or level 2 correlates,

we can now consider models which contain variables of both types. Consider the

following model:
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K

MOde‘ 4: Yij = 501‘ + 511L056 +Zflkx(k)ij +81,- .
k=1

where ’50]. = :60 + flOIRegionj + ,602 Locationj + ,603 Bedsizej + uoj .

.31; = .51 +flnRegionJ. +,612Locationj +fl13Bedsizej +u1j.

u - 0'2 0'

Here [ 0’} iidN(02,22x2) where z: “0 “20‘ , 5,]. ~ iid N(o,o§)and

"U 01101 Jul

(“01’“11') , 8,] are assumed independent. Combining the two equations above yields the

single two level equation model:

3 3 K

Yij = .60 +h2fl0hzhj +hzfllhzhj *LOSij +I‘Zflixunj +(“0j +uleOSij +5.3)

=1 :1
=1

where 21 j = Regionj , 22]- : Location]- , 231- = Bedsize}.

In addition to the cross-terms required by the model: Region*LOS,

Location*LOS, Bedsize*LOS, and NPR*Procedure, significant cross-terms

procedure*LOS, Procedure*LOSSQ, NPR*LOS, CCI*LOS, CCI*LOSSQ are included

in the model. Within a hospital, the conditional variance of Y,,- is

Var(Y-- ) = 030 + 20'u01L05,-j + 031L055? + of and the covariance between two different

patients: Cov(Y,-j ,Y,j ) = CoVar(uoj + uU-LOS,-j + 8,-1- ,uoj' + uU-LOS,j + 8,]- ) =

= 30 + of, Los,.jLos,j + 0,0, (L05,j + 1.05,]. ) .

These elements form higher level block matrices Vj represented as

Vj = ZQQZ’+ Q1 , where Z contains the jth hospital values for the known design matrix of

explanatory variables for the random portion of the model, etc. The covariance parameter

estimates are 030 = .1189, of, = .000202, 0,0, = —.00137 and the estimated level one
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variance is ,2 = .08866. This can be compared with the level one variance obtained from

the null model, Model 1, or total within hospital variance, .3466. The ratio

.3466 - .08866

.3466

 = .74 represents the proportion of within hospital variance that is

explained by correlates (comorbidity, procedure, demographic variables). The between

hospital covariance is 0.

3.3.5 Inverse probability weighting

Before estimating c01 (t | 20) for specific covariate profiles, we need to account

for the uncensored observations in the analysis. As discussed, previously in Chapter 2, we

will weight each observation by w,- = 6,- [7,- S 1']/ G(T,- ) , where 6,- is the censoring

indicator and G(-) is the survival function for the censoring distribution.

To be consistent with our notations above we will use j for hospital and i for

discharges, although we are well aware that these are not the standard notations when one

would consider hospital as the primary units and discharges within hospitals as subunits.

Consider the Random-Effects model

yj=Xjfl+Zjaj+uj (3.1)

where the dimensions of y, and u, are n, x1, ,6 is pxl, X]. is n]. Xp, Z, is n}. Xq

and a, is qxl , where p is the number of fixed effects, q is the number of random effects
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and n,- is the number of discharges in the jth hospital. We assume the usual conditions of

a Random-Effects model”

E(u, |X,-,Z,-,aj)=0, E(aj|X,.,Z,-)=0.

Let vj = Z,a,- + u ,- be the composite error. Under these assumptions E(vj ) = 0

and Var(vj)= 2,02; +Rj, where Var(a'j): E(aja; |X,-,Z,.)=G and

Var(u, ) = E(uju; IX,- ,Z,- ,a, ) = R,.. The form of G is specified by the TYPE option in

the RANDOM statement, while the form of Rj is specified through the TYPE option in

the REPEATED statement. To estimate ,8 we use generalized least squares (GLS)

estimation, so an estimate 6 of ,6 that minimizes the expression

E(y, —X,.6)’V,."(y,. —X,.6) is given by

j

6: (2X’.,V"X)“(Zx’.,v"y,

Weighting observations

Let W,- = diag{ w, ,i =1,...n, } denote a diagonal matrix of weights w,-,. for

discharges within the jth hospital. Weighting observations is more than simply

transforming model (3.1) by W)”. If we do so, and write the transformed model as

y,=)?,,6+Zja,-+iij (3.2)

(where y, = th/z y,- and the other quantities are similarly defined), then it is easily seen

that GLS applied to (3.2) does not change our estimator ,6 , indeed if
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17, =Var(W,1/2v, )=w,‘/3(z,oz, +R,.)W,‘/2 then

'I"-l" -l 'I"-l~ _ I —l -l I -l

(ZXJVJ' X1) (ZXJVJ y,)-(ZX,V, X1) (ZXIVI y,).
1 1 J 1

Consider first the standard linear regression model y, =x,,6+u,- (where we now

return to standard subscript ‘i’ for subject). By weighting the observations by w,- , we

actually estimate ,6 by minimizingz w,- ( y,- — x,-,6)2 . This gives

Ill
6 = (Z w,x,'x,-)_1(Z w,x,.'y,-) and Var(,B) = (E(w,x,-'x, ))—l E(w,2u,-2x,'x,- )(E(w.x-'x- ))—1.

In the general RE model (3.1), by weighting we mean transforming y, —+ y, ,

Z, ——> 2,, X, —> X, , but preserving the original variance form V, = Z,GZ, +R,.

Then 6 is obtained by minimizing E(y, — X,,B')’W,”217,"'W,'’2 (y, - X,,B). Now

J

consider 17, = Z,GZ, +R,.

1. If G = 0, then W,“217,"W}/2 = Wj’zR,W,!/2. In effect therefore, the original

R, is replaced by W,7”2R,-W,-“2 to get

6 = (Z X}W)’2R;‘W}’2X. 1“ (Z X;W}/2R;‘W}”y. >-
J' 1'

This is the practice adopted in SAS PROC MDED (Chapter 18, Version 8.2 p633). If in

- _ 2 "_ I —1 I

part1cularR,—0'£I then fl—(ZX,W, X,) (ZX,W, y,).

l J

2. If G i 0 , then the form of V371 = (2,02, + R, )'l is more complicated. Indeed

157



r7,‘ =R,"[1— z, (0“ +2R'IZ) 2’.,R,‘]. Then

w,’217,.“w,l’2=-W,“2R,“[1—z',(o"+2,R,"Z',)“Z,R,T‘]W,"2=

This shows that the effect of weighting is to change R,- to W,'“2R,W,'“2.

The final form of the GLS estimator of ,6 under weighting is then

6: (2X,v,"X,. )(2X,v,“y,. (3.3)

where V, =W,‘“2V,W,'“2 and the variance of )6 is

~

~

Var(6)= (2X,V,"'X, )(2X,.,13 {3,17, ,1X,)(ZX,17,71X,)"',

where 13, are the residuals y, — X,,6 . This can be obtained using the EMPIRICAL

option in the PROC MIXED statement. This estimator has been described in White

(1980)”, Liang and Zeger (1986)”, and Diggle, Liang, and Zeger (1994)80 and is

commonly referred to as the "sandwich" estimator. We need to specify this in accordance

with our methods described in Chapter 2 of the thesis. For this option to take effect we

must include the RANDOM or REPEATED statements.

If R,- :03], then

vi-I =w}’2v‘;lw}’2 =w}’ (W2202’-W“2 +631>“W}” 421-02} WW?“

and (3.3) gives 6: (Z X, (2,02,. +03W,“ )'1 X, )‘1 (Z X, (2,.oz, +03W,“ )'1 y,. ) .

1' 1'
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3.4 Results of estimation

In this section we will concentrate on obtaining estimates of median LOS and

total charges at median LOS, at specified covariate profiles. For example, we vary the

type of procedure, hospital region and the number of comorbidities, but we keep fixed

age (= 65), gender (= male), hospital location (= rural), hospital bed size (= medium) and

the number of procedures between 1 and 4, if there is a primary procedure. All analyses

were carried out using SAS. Various estimation methods for G and S, the survival

distribution functions for censoring time, U and LOS (= T), are discussed in Chapter 2,

Remark 2.2.1.2. Here, we choose parametric methods for estimating both G and S.

Estimation of G

Given a smaller number of covariates z ( procedure, Charlson Comorbidity Index,

region and number of procedures) an estimate of G(t | z) may be obtained from a

parametric model log(U ) = 26, + 0',,€ , where ,6,, and 0,, are parameters and e is an

unknown error with a specified parametric distribution. PROC LIFEREG is used for the

estimation of ,6,, . Various choices for the distribution of 8 were considered. Based on

the AIC we chose the log-normal and gamma distributions.

Graphs of the Kaplan-Meier estimates of the cumulative hazard versus the

regression model estimates of the cumulative hazard from both log-normal and gamma

models are shown in Figure 3.4. The plotted pairs of points for the gamma regression

model initially fall on the referent line and then fall mostly above the referent line. Based

on this plots we decide that the log-normal distribution provides a better fit to the data.
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log(t) - 26,, )

u

The estimated weights are w, :6,- /G(T,- Iz,) where G(t | z) =1—<I>( 

where <1) is the cumulative distribution function for the normal diStribution.

Estimation of c01 (t | Z0)

To estimate c0l (t | 20), we use the weighted regression model described in the

previous section. Parameter estimates derived using PROC MIXED are summarized in

Table 3.4. Although coefficient estimates for continuous variables must be interpreted

with care, all estimates seem to be in the right direction. For example, charges increase

with the complexity of the cardiac procedure, with CABG having the highest charge

followed by PTCA and diagnostic CATH. Patients who underwent none of these

procedures had the lowest cost. For a given covariate profile Z0, which contains t and t2 ,

50, (I | 20) = eitp(zo6“)exp(I/2(rir3o + 26,0,t+63,z2 +63 )).

Estimation of S (t | Z0)

Similar to estimating G, we estimate S (t | Z0) using PROC LIFEREG in SAS.

from a parametric model for uncensored observation (i.e. 6,- =1), log(T) = X,6, + 0,6 ,

where e is a vector of errors. The log—logistic and gamma distributions exhibit the

lowest AIC. Graphs of the Kaplan-Meier estimates of the cumulative hazard versus the

regression model estimates of the cumulative hazard from both log-logistic and gamma

models are shown in Figure 3.5.
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Based on these graphs, the AIC criterion and previous experiences with the

 

analysis of LOS49’ 50 we use the log-logistic distribution. Estimates of dS (t | 20) are

obtained as d§(t | 20 ) = . BMW) 2 dt, where w = (log(t) — 206,. )/6,.

0,. (1+ exp( w))

Finally, cost estimates at any time t for fixed time covariate profile ZO are

obtained as £60, (u | Z0 )dS(ii | 20) =

u” exp(-206. I6.)

6, (1+ uvé’ exp(-206, I6, ))2

 

= LCXIXZO (“)3)CXP(V2(&30 + 251401“ + (33,142 + 6'? ))

where we denote Z0 (u) = (Zo,u,u2) . The expression of £50, (u | Z0 )dS(u | Z0) can be

viewed as a function ,0, (6,6,6, ,6,) where 6' = (6'30 ,6,,“ 631,652) . For a fixed t,

using the Delta Method we compute the variance of the mean cost. Estimates of median

LOS, and total charges at median LOS, together with confidence intervals, for specified

covariate profiles as well as graphic representations are presented in Table 3.4, and

Figures 3.6, and 3.7.

Discussion

We have applied methods discussed in Chapter 2 of this thesis to estimate mean

charges for hospital stays of specified duration for patients hospitalized for AMI. Our

method accounts for the existence of a non-zero intra-hospital correlation, censoring and

skewness of total charges.

Estimates derived in our model are quantitatively similar to those reported in

other studies of health care utilization in patients undergoing CABG surgery or PTCA.
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Although 2000 costs might seem more relevant for comparison purposes, costs inflated to

2000 may not fully reflect current costs because the efficiency of intervention procedures

and cardiac surgery services probably has increased during the last years; Weintraub

(1995)81 argues that costs may best be used for comparison between procedures. Also,

direct comparisons with our estimates is not possible because of different patient

demographic and clinical characteristics, use of charges as a proxy for costs and different

time periods.

We now discuss results of previous studies. Three randomized clinical trials have

evaluated the relative costs of angioplasty versus bypass surgery”. These studies

included all costs to the patient, including hospitalization, procedures, medications and

follow-up care. The Bypass Angioplasty Revascularization Investigation (BARI) Study

of Economics and Quality of Life (SEQOL) (n =1829 patients) was collected over a

three-year period from August 1988 to August 1991. Using BARI data, Hlatky et al

(1997)83 report that the mean initial hospital cost of angioplasty was 65% of that of

CABG, while same percent in our data is 67%. The Randomised Intervention Treatment

of Angina (RITA) trial (UK) reported that an angioplasty had only 52 percent of the cost

of a bypass operation following the initial procedure“. The Emory Angioplasty Versus

Surgery (EAST) trial found the same percent to be 63%“.

Using data from Michigan Inter-institutional Collaborative Heart Study (MICH),

collected on 360 patients who underwent cardiac procedures in two large urban medical

centers in eastern Michigan during January 1994 through April 1995, Polverejan et al

(2003)49 report mean charges of 23,545$ and 26,213 (inflated 2000 costs: 26,080$,

28,435$) for patients who underwent CABG with 1 or 2 comorbidities respectively. From
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a large national sample of Medicare patients who underwent CABG surgery in 1990,

Cowper et al (1997)85 report a mean hospital cost of 26,9768 (inflated to 2000 dollars:

33,202$) for patients with AMI undergoing bypass surgery.

We observe higher length of stay in NE then in any other region. Similar findings

from Centers for Disease Control and Prevention, National Center for Health

“'88 are reported: in most years, the average length of stay in the Northeast wasStatistics

significantly longer than the average stays in the other three regions.

NIS data has both strengths and limitations. Because NIS data represent hospital

discharges and not individual persons, the main limitation is that there exists the

possibility that these discharges will show up as complete cases in the data set as another

record. However, restricting our admissions to ER admissions and all routine referrals

would decrease this chance considerably. This issue is impossible to resolve completely

because of the inability in the NIS to track individual patients. Another limitation of the

data set is that it lacks clinical detail (e.g., stage of disease, vital statistics) and laboratory

and pharmacy data. The main strength of the NIS is that it is the largest collection of all-

payer, uniform, state based inpatient data.
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TABLE 3.1 Primary procedures

Primary procedure“

 

CCS code: Description N PERCENT

.: No PR code 44,003 28.0

44: Coronary artery bypass graft (CABG) 15,290 9.7

45: Percutaneous coronary angioplasty (PTCA) 3,7249 23.7

47: Diagnostic cardiac catheterization, coronary 24,722 15.7

artheriography (CATH)

48: Insertion, revision, replacement, removal of 2,026 1.3

cardiac pacemaker or cardioverter/defibrillator

49: Other O.R. heart procedures 2,908 1.8

63: Other non-OR. therapeutic cardiovascular 1,714 1.1

procedures

193: Diagnostic ultrasound of heart (echocardiogram) 2,549 1.6

216: Respiratory intubation and mechanical 5,562 3.5

ventilation

222: Blood transfusion 1,826 1.2

231: Other therapeutic procedures 6,350 4.0

 

*All AMI admissions (N=157,263). Only primary procedures that are present in

more than 1% of discharges are shown
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Figure 3.1 Creating a working data set
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TABLE 3.2 Descriptive statistics (N=58469)

 

N=58,469 N=39,7l6

(all discharges in the working (only discharges with

data set) complete TOTCHG)

Variable Subgroup Frequency Percent Frequency Percent

Procedure CABG 7.369 12.6 4,586 1 1.6

PTCA 17,901 30.6 16,540 41.7

CATH 14,264 24.4 9,420 23.7

No procedure 18,935 32.4 9,170 23.1

Gender Male 35,977 61.5 25,466 64.1

Female 22,492 38.5 14,250 35.9

NPR (number of None 18.935 32.4 9,170 23.1

procedures) 1 - 4 16,489 28.2 11,915 30.0

2 5 23.045 39.4 18.631 46.9

CCI 0 23,294 39.8 17.505 44.1

1+ 35.175 60.2 22.211 55.9

Region Northeast 1 1,458 19.6 6,432 16.2

Midwest 11,628 19.9 8,441 21.3

South 25,219 43.1 17,344 43.7

West 10,164 17.4 7,499 18.9

Location Rural 7,900 13.5 4,210 10.6

Urban Teaching 25,981 44.4 16,358 41.2

Urban Non-Teaching 24,588 42.1 19,148 48.2

Bedsize Small 5,174 8.9 2,743 6.9

Medium 14,904 25.5 8,992 22.6

Large 38,391 65.7 27,981 70.5

Mean = 5.44 Mean = 5.06

, 25‘h Percentile = 3 25lh Percentile=3

LOS 2 2 Continuous Median = 4 STD = 4.1 Median ___ 4 STD = 3.4

751h Percentile = 7 75‘h Percentile =6

Mean = 65.73 Mean = 64.03

. 25m Percentile = 56 25‘h Percentile =54

18 S AGE S 85 Contlnuous Median = 67 STD = 12.7 Median = 65 STD = 12.8

75"1 Percentile = 76 75Ih Percentile =75
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Figure 3.2 . Histogram of Log (TOTCHG)
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Figure 3.3 Graph of Log (TOTCHG) versus LOS
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Figure 3.4 Estimation of G: Graphs of the Kaplan-Meier estimates of the cumulative

hazard versus the regression model estimates of the cumulative hazard from both

log-normal and gamma models
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TABLE 3.3 Parameter estimates in multilevel regression

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect Groups Estimate StdErr tValue P-value

Intercept _ 8.400 0.0790 106.36 <.0001

Procedure CABG 2.022 0.0553 36.56 <.0001

PTCA 1.620 0.0424 38.21 <.0001

CATH 1.031 0.0419 24.59 <.0001

LOS _ 0.206 0.0060 34.18 <.0001

LOSsq _ -0.004 0.0003 -1405 <.0001

CCI No comorbidities -0.059 0.0126 -4.68 <.0001

Male _ 0.022 0.0044 4.96 <.0001

AGE _ 0.005 0.0016 2.90 0.0037

Agesq _ 0.000 0.0000 -4.18 <.0001

Number of procedures 0 or Z 5 procedures 0.395 0.0317 12.47 <.0001

Procedure*NPR CABG , Z Sprocedures -0.316 0.0571 -5.53 <.0001

PTCA , Z Sprocedures -0.292 0.0432 -6.75 <.0001

Region Northeast -0.256 0.0405 -6.33 <.0001

Midwest -0.363 0.0346 -1050 <.0001

South 0172 0.0424 -4.06 <.0001

Location Rural -0.107 0.0358 -2.97 0.0031

Bedsize Small -0.126 0.0092 43.71 <.0001

Medium 0.097 0.0067 -1451 <.0001

LOS*Procedure CABG .0074 0.0059 -12.61 <.0001

PTCA 0.003 0.0004 9.30 <.0001

CATH 0.003 0.0003 9.61 <.0001

LOSsq*Procedure CABG 0.002 0.0003 7.85 <.0001

PTCA 0.141 0.0347 -4.06 <.0001

CATH 0203 0.0310 -6.53 <.0001

LOS*NPR 0 or Z 5 procedures -0.010 0.0022 -4.55 <.0001

LOS*CCI No comorbidities 0.013 0.0032 4.03 <.0001

LOSsq*CCI No comorbidities 0.000 0.0001 -3.53 0.0004

LOS*Region Northeast -0.008 0.0040 -1.98 0.0472

Midwest -0.007 0.0031 -2.37 0.0179

South 0.012 0.0030 4.07 <.0001
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Effect Groups Estimate StdErr tValue P-value

LOS*Location Rural -0.001 0.0036 -0.28 0.7803

LOS*Bedsize Small 0.001 0.0040 0.32 0.7481

Medium 0.002 0.0029 0.70 0.4839

Covariance

Parameters Subject Estimate StdErr ZValue P-value

UN(1,l) HOSPID 0.1235 0.00837 14.75 <.0001

UN(2,1) HOSPID -0.0024 0.00049 4.93 <.0001

UN(2,2) HOSPID ' 0.0004 0.00004 9.57 <.0001

Residual 0.1384 0.00100 139.03 <.0001
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Figure 3.5 Estimation of S: Graphs of the Kaplan-Meier estimates of the cumulative

hazard versus the regression model estimates of the cumulative hazard from both

log-logistic and gamma models
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Table 3.4 Estimates of total charges at median LOS by procedure types,

comorbidity levels (0, 1+) and regions“.

 

 

 

 

CABG NE $33,705.24 (i $4,931.65) CATH $12,247.12 (i $1,554.89)

(LOS=9.45) (LOS=5.22)

MW $33,192.80 (i $3,997.98) $12,111.16 (i $1,214.83)

(LOS=7.71) (LOS=4.26)

s $34,098.87 (i $3,924.04) $12,507.77 (i $1,173.06)

(LOS=7.87) (Los=4.35)

,3. w $44,882.55 (i $5,757.71) $16,278.16 (i $1,786.27)

:23 (1.03:7.41) (LOS=4. 10)

g PTCA NE $20,657” (,3 $164669) NONE $7,214.51 (i $896.86)

é (LOS=4.13) (LOS=5-36)

MW $20,703.55 (i $2,075.27) $6,973.11 (:1: $672.76)

(LOS=3.37) (LOS=4.37)

5 $21,386.47 (i $2,020.57) $7,205.49 (i $641.46)

(LOS=3.44) (LOS=4.46)

w $27,796.50 (i $3,071.51) $9,339.37 (i $982.97)

(LOS=3.24) (LOS=4.20)

CABG NE $36,544.54 (1r $5,350.00) CATH $13,356.57 (i $1,687.48)

(LOS=11.78) (LOS=6.51)

MW $35,770.72 (i $4,332.80) $13,124.59 (i $1,316.81)

(LOS=9.61) (LOS=5.31)

s $36,682.38 (i $4,245.21) $13,532.62 (1 $1,267.17)

g» (LOS=9.82) (LOS=5.42)

LE w $48,570.85 (i $6,267.93) $17,668.42 (:t $1,943.16)

§ (LOS=9.24) (LOS=5.11)

g PTCA NE $22,232.91 (i $2,858.71) NONE $8,071.18 (2‘. $994.88)

g (1.05:5. 15) (LOS=6.68)

2 MW $22,202.56 (i $2,260.66) $7,721.79 (3: $740.39)

(LOS=4.20) (LOS=5.45)

5 $22,923.91 (i $2,199.08) $7,965.56 (i $702.93)

(LOS=4.29) (LOS=5.56)

w $29,858.35 (1' $3,349.71) $10,360.54 (i $1,086.92)

(LOS=4.04) (LOS=5.24)

 

*for fixed covariate profile: age=65. gendemmale. hospital location = rural, hospital bed size = medium. and 1-4

procedures (if there is a primary procedure)
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Figure 3.6 Estimates of total charges at median LOS - no comorbidities*
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Figure 3.7 Estimates of total charges at median LOS - at least one comorbidity“
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

Evidence of rising health care expenditures is widespread. The resurgence in

health care spending is fueled by fundamental forces that will prove difficult to resist”.

One analyst has predicted that if current trends continue, health care will consume 25

percent of the GDP by the year 203090. The enormous investment in biomedical research

will probably accelerate the rate of technological development in medicine, with effects

on overall expenses”. Also the proportion of the population 65 years of age or older and

the proportion over 80 will increase by 33 percent and 14 percent, respectively, between

2000 and 20209'. No matter how healthy elderly persons are in the future, as compared

with earlier generations, their sheer numbers are almost certain to result in increased

expenditures for health care”. Yet another important influence will be increasing national

prosperity. The more income people have, the more of it they tend to spend on health

care. One of the strongest predictors of the proportion of the GDP that Western nations

spend on health care is the GDP itself”. Therefore, substantial increases in health care

spending over the next 5 to 10 years are virtually inevitable.

The United States spends 3.4 percent more on health care as a percentage of the

GDP than any other Western country”, but there is no conclusive evidence that health

outcomes are better in the United States than in other industrialized nations” 93' 9".
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Because of concerns on the availability of resources to pay for different health

care interventions, medical technologies and treatments, CEA has evolved to become an

important discipline in the pursuit of maximizing health benefits from a specified

expenditure, or in finding the lowest-cost strategy for a specified health effect.

Although several advances have been made over the past decade, complexities in

analyses of health care cost and outcomes still pose many methodological challenges.

Guided by other research in this field 2'9’ I" '5' 30' 33' 34'48'49’ 52'53’ 59'60’95'103, in this thesis

we have addressed several statistical issues in the analysis of medical cost data.

The objective of Chapter 1 was to demonstrate how costs could be incorporated

into a longitudinal model in which a patient’s event history unfolds as sojoums in health

states and as transitions between health states. Using a Markov model the counting

process methodology was used to estimate the transition probabilities and integrated

transition intensities with patient heterogeneity modeled through Cox regression on the

underlying transition intensities. There are extensive uses of this model in biomedical

applications. Incorporating costs into this framework is new, although the basic idea of

calculating present value is ubiquitous in the insurance and finance literature where costs

are manifest as fixed amounts paid at random times, and as fixed payment streams over

random durations. However, the fundamental difference in our context is the need to

estimate both the transition costs and the sojourn costs. Our approach uses a mixed

random effects model to estimate costs conditional on time, and then the dynamics of

time through transition probabilities and integrated intensities. In this way we obtain

estimates of net present for expenditures incurred over a finite time horizon. The

asymptotic distribution of these estimates is shown to depend on three stochastic
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components: the regression parameter in the random effects model for costs, the

regression parameter in the Cox regression model for transition intensities and the

estimator of the baseline integrated intensity.

In Chapter 2, we showed that our transition model described in Chapter 1 captures

costs under the simpler two state survival model with a single transition time and sojourn.

We discuss parametric methods for estimating the survival distribution for censoring

time, and therefore the weights in the IPCW technique, as well as methods of estimation

for the survival distribution for event time.

In Chapter 3 we provided an application of our method using length of stay

(LOS) and inpatient costs for patients hospitalized for AMI from the Nationwide

Inpatient Sample 2000 (N13 2000) of Healthcare Cost and Utilization Project. Our

analysis addresses a number of characteristics of these utilization data including

censoring of costs, skewness in cost distributions, heterogeneity in LOS and costs across

patients. Our method is based on a hierarchical model in which patients are nested within

hospitals.

Future work

To obtain cost-effectiveness measures such the cost-effectiveness ratio (CER) and

net health cost (NHC) for competing health care interventions or treatments, we need

both accurate estimates of costs and health benefits. In this thesis we have addressed

several issues on estimating costs. The three basic measures of health outcomes are

survival probability, life-expectancy (LE) and quality adjusted survival years (QALY).
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To assess the health benefit of an intervention relative to another, we may also use any

clinically meaningful measure such as improvement in life expectancy, deaths averted, or

number of toxic side effects prevented. For example, in our multi-state description, life

expectancy translates to the average time from the time origin until death or some other

absorbing state is reached. Since the goal of any health care intervention is much broader

than simply treating the disease condition or preventing death, the use of quality-adjusted

life years (QALYs) to quantify health outcomes has been advocated15 . QALYs also

provide a common-metric to gauge health benefit across disease types. For example, a

decision maker facing resource allocation can compare the cost-effectiveness of coronary

artery bypass surgery versus a percutaneous coronary intervention, and the cost-

effectiveness of different lipid lowering therapies for the prevention of cardiovascular

disease, and the cost-effectiveness of different regimens of screening women for their

susceptibility to breast cancer.

For each unit of time spent in a health state, a quality weight is the relative value

placed on that health state against the state of perfect health. Perfect health has a quality

weight of one, while death, or states judged equivalent to death, get a quality weight of

zero. All other health states receive a quality weight between zero and one. Having

determined quality-weights for various health states, QALYs adjusts the length of life for

the quality of life during those years. With multiple health states, each state is associated

with its sojourn. For example, suppose we have estimated a total life-expectancy of 30

years, which consists of 10 years in a state with quality-weight 0.5, 10 years in a health

state with quality weight 0.65, and 10 years in perfect health. This results in an expected

21.5 QALYs (=10x.5+10x.65+10x1). It is worth noting that the two main elements in
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calculating QALYs, time spent in each health state and its associated utility, can vary

across patients. Accounting for the random variation is an important task in any CEA.

Suppose the state space E is labeled with ‘k’ being an absorbing state and the

remaining states being transient. For example, in cancer treatment studies104 transient

states are relapse and remission and death is an absorbing state. Survival time is then the

time to absorption defined by 2',, = inf{t > 0: X (t) = k} , with survival distribution

conditional on the initial state,

S,,,(t) = P[rk >t| X0 =i] =1—Rk(0,t).

If r<oo is the pre-specifled time horizon of the analysis, we define life-expectancy (LE)

restricted to rand discounted at a constant rate r by

LE = Ee'”S,,, (t)dt,

conditional of the initial state. The total sojourn in state h in [0,1] is Ee""Y,, (t)dt with

expectation Ee'" ,-,,(0,t)dt , the sum of which over all states h i k is LE.

Let q(h,t) denote the quality weight for the health state h = X (t)occupied at time

t, with the state ‘dead’ having quality weight equal to zero. The total quality adjusted

time in {0,1} is 2,6,, Ee’"q(h,t)Y,,(t)dt , and its expectation conditional on X0 =i

defines expected quality adjusted life years, QALY(i) =Z,6,, £6‘"g(h.t)P,-,, (0,t)dt. If

q(h,t) = q(h) are constant in time then QALY(i) becomes ZheEqM) Ee'" ,-,, (0,t)dt,

which is the sum over states of the discounted average time spent in each state weighted
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by its quality. This is the standard definition for QALY‘OS. Finally, an unconditional

version of QALY = 2,6572, (0) QALY(i), where 72,. (0) = P(X(0) = i).

In the simplest multi-state model with two states, 0=alive (transient) and l=dead

(absorbing), the only transition is 0-—>1 which has hazard 0’00 = —a0, , and the initial

distribution is degenerate, 7:0(0) =1. Also, the survival distribution is S (t) = P[Tl > t],

2', being the survival time. Without discounting (r =0), LE reduces to restricted mean

survival, E(r, A T) = ES(t)dt . This entity is often used in economic evaluations when

survival time is the principal endpoint. Finally, if we write q(t) = q(0,t) we get

QALY= £e_"q(t)S(t)dt.

In comparing two competing health care interventions, a test intervention versus a

standard, the cost-effectiveness ratio (CER) is the ratio of the incremental cost relative to

the incremental benefit. In the patient population for which these interventions are

intended, let 6,, and 6,,, denote respectively, the cost and effectiveness of the test

intervention, and, 11,, and psebe the corresponding measures for the standard

intervention. Then the CER is the parameter 6 = (,d,, - #3. )/( 6,,, — ,d,, ), and having

established a maximum value of the CER (90 , a value society is willing to pay to gain one

unit of effectiveness by adopting the test intervention, the net health cost is given by

NHC( 60 )= (Iutc _ Ilse) — 60 (lute -Iuse) ' we equate ”to and ruse by _ £601 (5 l 20 )dS“ l 20) ’

where ZO =1 for the new intervention and Z0 = 0 for placebo. We may define

effectiveness, 6,,, and ,use, in terms of the restricted mean survival as ES (t | Z0)dt . Then
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NHC(6’O)=£CO,(3|ZO =0)dS(t|Z0 =O)—Ec01(s|Zo =1)dS(t|ZO =1)-

—60E(S(t|ZO =l)—S(t|Z0 =O))dt.

The methods developed in Chapters 1 and 2 can be applied to the estimation of

QALY and NHC. Because our models incorporate covariates, their practical importance

lies in the fact that both QALY and NHC can be estimated along specified covariate

profiles. However, this requires data on patient health histories and costs over time. With

the increased focus being given to controlling health care expenditures, such longitudinal

data sets are likely to be compiled from administrative databases, large scale

chronological and epidemiological studies. Many recent clinical trials have included

economic sub-studies. For example the Antiarrhythmics Versus Implantable

Defibrillators (AVID)1°° and Canadian Implantable Defibrillator Study (CIDS)'°7 trials

yielded useful information on both the clinical effectiveness of the implantable

defibrillator as well as its cost—effectiveness. Many researchers have examined issues of

statistical power and sample size assessments for cost-effectiveness studiesw'lm’m'mg" 13.

They show that the requirements on sample size demonstrating cost-effectiveness can be

many times larger than that needed to establish effectiveness alone. Therefore the

investigators face the ethical dilemma of continuing trial and enlarging them for

economic evaluation studies. It is here where our regression techniques could be most

informative. Indeed, Simon Thompson recently editorialized in Statistical Methodsfor

Medical Research1 '4, ‘the challenge for the future will be development of regression

models for costs and cost-effectiveness that can assess the impact of patient

characteristics and cost elements that drive total costs’. Determining in which subgroups
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of patients an intervention is more cost effective from health care utilization studies and

clinical trials would be an active field of research in the coming years.
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APPENDIX

MATHEMATICAL BACKGROUND

Concepts of stochastic processes, stochastic integration, functional delta method

and results on Ito integration, all used in this thesis, will be briefly reviewed in this

appendix. This appendix uses results from Andersen et al (1993)”, Gill (1989)”,

Harrison (1985)‘ '5, Oskendal (1995)l '6 and Polverejan (2001)“.

Stochastic processes

Let (Q,f,P) be a probability space. A filtration ( f,’ ,t E T ) is an increasing

right-continuous family of sub- 0' algebras off . A stochastic process X is just a time-

index collection of random variables {X (t) : t E T}. The process X is called adapted to

the filtration f, if X (t) is f; -measurable for each I. We write X 0,61) for the realized

value of X(t) at the point we 9.

The process X is called cadlag if its sample paths { X 0,61) : t E T }, for almost all

a) , are right-continuous with left-hand limits. The set of cadlag functions is denoted by

D( ’I' ), the Skorohod space of weak convergence theory.

For two stochastic processes X and Y, JXdY denotes the stochastic process

t—) £X(s)dY(s) defined for each a) andtsuch that £|X(s)||dY(s)|<oo. Here Yis

184





assumed a cadlag process with paths of locally bounded variation, i.e. LI dY(s) | < 0° for

all t6 T , for almost all (66 S2 . We call such a process Y a finite variation process, and

I

the process t —> [0| dY(s)| is called its total variation process.

To a cadlag process X, we associate its left-continuous modification X ’ , defined

by X' (t) = X(t—) and its jump process defined by AX(t) = X (t) — X (t—).

Martingale, predictable processes, compensators

A martingale is a cadlag adapted process M which is integrable, i.e.

E(| M (t) |) < 0° for all 16 T and satisfies the martingale property E(M (t) | f; ) = M (s)

for all 5 St . The process is called sub(super)-martingale if the equality is replaced by

E(M (t) | .7, ) 2 M (s) (E(M (t) | f; ) S M (s) respectively). A martingale is called

square integrable if sup E(M (t)2 ) < 00. A local martingale is a process M such that an

teT

increasing sequence of stopping times T,, exists, P(T" 2 t) —>1 as n —-> 0° for all 16 T,

such that the stopped process [T,, > 0]M T" are martingales for each n (here

X T (t) = X (T A t) ). A local square integrable martingale is a process M as above such

that the localizing sequence can be chosen making [T,, > 0]M T" a square integrable

martingale.

A class of processes complementary to martingales is the class of predictable

processes. A stochastic process H is called predictable if, as a function of (t,a))e TxQ ,
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it is measurable with respect to the 0' — algebra on T x (2 generated by the left-

continuous adapted processes. Any left-continuous adapted process is predictable.

There is an important orthogonality between martingales and finite variation

predictable processes. This is due to the fact that if a process is at the same time both a

local martingale and a predictable finite variation process, then it is trivial or constant

process. Suppose that X is a cadlag adapted process. We say that X is the compensator

ofX if X is a predictable, cadlag, and finite variation process such that X — X is a local

martingale, zero at time 0. If a compensator exists it is unique, by Doob-Meyer

decomposition theorem. A semi-martingale is the sum of a local martingale and a cadlag

adapted finite variation process. All (local) sub-martingales and super-martingales have

compensators. In particular, non-decreasing, non—negative locally integrable cadlag

processes have compensators, because such processes are sub-martingales.

Suppose M, N are local square integrable martingales. The square of a local

square integrable martingale is a local sub-martingale and also has a non-decreasing

compensator denoted by < M >. Also the product, MN = i {(M + N)2 — (M — N)2 } , is

the difference of two local sub-martingales, therefore it has a compensator denoted by

(M , N). By definition, < M > and (M , N) are the unique finite variation cadlag

predictable process such that, M2 — < M > and MN - (M , N) are local martingales, zero

at time 0. The process < M > is called the predictable variation process ofM, and

(M , N) the predictable covariation process ofM and N.
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Theorem (see Theorem H.3.1, Andersen et a1 (1993)”)

Suppose M is a finite variation local square integrable martingale, H is a

predictable process, and [H 2d < M > is just locally finite (automatically true of H is

locally bounded). Then IHdM is a local square integrable martingale, and

< J'HdM >= IH2d<M >.

The predictable process H is locally bounded if it is left continuous and also if it is

right-continuous.

Formulas for predictable and optional covariation processes of stochastic integrals

follow the same form. We have < deM, jKdN >= jHKd < M , N >.

Fubini-type Theorem

Let (s,u) —> H(s,u) , (s,u)e (TXT ) be a bounded, Bxfi measurable

function, where 2? is the set of Borelians on T . Let # be a finite measure on the space

(T,B). Then for every te T , A6 3:

Li £H(s,u)dM (u)],u(ds) = l:[ LH(s,u)d,u(ds)]dM (u) for almost all we 52.

For more general versions of this theorem and their proofs see Protter (1990)l 17.

Functional Delta-Method

A concept of differentiability that allows generalization of the usual Delta Method

is the one of Hadamard or compact differentiability. Let B1 and 32 two normed vector

spaces.
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The functional (6: Bl ——> 82 is compactly or Hadamard differentiable at a point

66 B1 if and only if a continuous linear map d6): Bl ——> 82 exists, such that for all real

sequences a,, -—> co and all convergent sequences h,, —> he Bl ,

a,, ((6(6+a;'h,, )-67(6l)) —-> d(6(6).h as n —> oo.

Here d6)(6) is called the derivative of (0 at the point 19.

Next we define the concept of weak convergence in normed vector spaces. Let

(8,“ . ll) be a normed vector space endowed with a 0' - algebra? , such that

23' g 23 g 23", where 23' and 6' are the 0' — algebras generated by the open balls and

the open sets of B, respectively. Thus B" is the Borel 0'— algebra; when B is separable

E” = 9".

Let X,, be a sequence of random elements of (B, E) and let X be another random

element of that space. We say X,, converges weakly (or in distribution) to X and we

write X,, —D—>X if and only if E(f(X,, ))-—D—>Ef(X) for all bounded, norm-

continuous, E -measurable f : B —> R.

Theorem (see Theorem 3, Gill (1989)”)

Suppose (6: Bl —> 82 is compactly or Hadamard differentiable at a point ,ue B]

and both it and its derivative are measurable with respect to the 0' — algebras 231 and $2

(each nested between the open ball and Borel 0' — algebras). Suppose X,, is a sequence

of elements of B1 such that Z,, = J;(X,, - ,u) —P—> Z in B1 , where the distribution of Z
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is concentrated on a separable subset of B1 . Suppose addition: 82 x 82 —> B2 is

measurable. Then

(1) [Jim ~6),JZ(¢(X, )—6<6))-d¢<u).JZ<X, -.U)l —”—-> (2.0) in

B1 ><B2 and consequently

(2) J6(¢0(X,)-¢(#))-d(6(fl)a/II(X, —.U)—P—>0 and

(3) 750601.. 1—600) —-’3—+ 66002.

Measurability of d(p: Bl —> 32 can often be shown to follow from measurability

of (6 (see Lemmas 4.4.3 and 4.4.4, Van der Vaart (1988)“).

The following is a useful lemma. In many applications the mapping (6 is only a

priori defined on certain members of B1 and one could set about choosing a particular

extension to all of Bl such that the hypotheses of the Functional Delta Method are

satisfied in each particular application.

Lemma (see Lemma 1, Gill (1989)”)

Consider xe E C B1 and (6: Bl —> 32. Suppose there exists a continuous linear

map d(p(x) : B1 —> B2 such that for all 1,, —9 0 (t,, e R) and h,, -—> he Bl such that

x,, = x+t,,h,, E E for all n, we have:

r;‘ ((6(x+ 1,71,, )—¢(x)) 4 d(6(x).h as n —> oo.

Then (6 can be extended to B1 in such a way that it is differentiable at x , with

derivative d(6(x). The derivative is unique if the closed linear span of possible limit

points h equals 3,.
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Suppose we endow D[0,z'] with I] . IL. , the supremum norm , and (D[0,7'])P with

the maximum-supremum norm (i.e. for xe (D[0,r])p, || x||= max(|| xl ll,o ,..|] xp “w)).

Under this norm (D[0,T])” is Banach, but not separable. However under the Skorohod

topology, these spaces are Banach and separable. In these spaces if the limiting process

has continuous sample paths then weak convergence in the sense of the Skorohod metric

and in the sense of the supremum norm are exactly equivalent. Otherwise, supremum

norm convergence is stronger.

Results on Ito integration

Let (Q,f,P) be a probability space with a filtration ( f, ,tE T), where .76

contains all null sets of f . A continuous k-dimensional vector martingale

M = (M (t),te T), T =[0,2'),1'E R is called Gaussian if:

i) < M > is a continuous deterministic k xk positive semidefinite matrix valued

function on T , with positive definite increments, zero at time 0.

ii) M (t) — M (s) has a multivariate normal distribution with zero mean and

covariance matrix V(t)—V(s) and is independent of (M (u),u S s) for all 0 S s St in

T .

Let 71/2 be the set of all adapted processes X on ((52.17,P), (f, ,te T ))

satisfying E( I; X2 (s) < M (ds) >) < oo for all t6 T and let M be a continuous Gaussian

martingale on this space. For any fixed t, one can define the Ito integral I, (X ) = EXdM

for X6 712.
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Properties of the Ito integral:

Let X,YE 7f: andlet 055<u<t, s,u,tET.Then

i) j'XdM =jXr1M+ (XdM for 21.3. a);
1' .S' ll

.. l I r

11)],(cX+Y)dM =chdM+ ijM fora.a. (6;

iii) J” XdM is f, -measurable:

iv) If X(t,a)) = X(t) only depends on I (so X(t) is deterministic) then

I, (X) = J; XdM is normally distributed, with mean 0 and variance EX: (5) < M (ds) >.
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