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Abstract

Overlay Topology Optimization and Security Studies

in Peer-to-Peer Systems

BY

Yunhao Liu

Current and future Internet and distributed systems rely on both centralized client-server

model and decentralized peer-to-peer (P2P) model. P2P model is an emerging technology

aiming to effectively utilize and manage increasingly large and globally distributed

information and computing resources, complementing the available client-server services.

In order to truly adopt the P2P model for deploying large-scale Internet applications, and

timely merge this model as an indispensable component in the main stream of distributed

computing technology, we must address several major technical challenges including the

efficiency of overlay networks, cost-effective P2P information search, and privacy and

security protection of peers. This dissertation focuses on addressing two critical issues.

The first issue is topology mismatch problem between P2P overlay networks and the

underlying physical networks in unstructured P2P systems. Addressing topology

mismatch problem can fundamentally improve overall search performance of P2P

systems. We demonstrate the seriousness of the topology mismatch problem, and define

an optimal overlay problem that is proved to be a NP-hard problem. We then develop

several effective schemes and algorithms to alleviate the topology mismatch problem.

Our proposed algorithms are completely distributed, scalable and effective. Simulation

studies show that the total traffic and response time of the queries can be significantly

reduced by these schemes without shrinking the search scope. The second issue is overlay



distributed denial-of-service (DDoS) attack in P2P systems. Most previous security

techniques protect networks from network-layer DDoS attacks, but cannot be applied to

overlay DDoS attacks. We propose a distributed and scalable method, DD-POLICE, to

detect malicious nodes in order to defend P2P systems from overlay flooding-based

DDoS attacks. We show the effectiveness of DD-POLICE by simulation studies and

implementation on Gnutella 0.6 protocols. We believe that widely employing these

proposed approaches will make P2P systems more scalable and robust.
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1 Introduction

Since the emergence of peer-to-peer (P2P) file sharing applications, such as Nap-

ster[12], Gnutella[8], and KaZaA[10], millions of users have started using their home

computers for more than browsing the web and exchanging Emails. Each peer acts as

both a client who requests information and services and a server who produces and/or

provides information and services.

1.1 Research Background

There are mainly three different architectures for P2P systems: centralized, decentral-

ized structured, and decentralized unstructured [55]. In the centralized model, such as

Napster [12], as shown in Figure 1.1, a central index server is used to maintain a directory

of shared files stored on peers so that a peer can search for the whereabouts of a desired

content from the index server, and download the content directly from the peer who has

the content. However, this architecture creates a single point of failure and its centralized

nature of the service also makes systems vulnerable to denial of service attacks. Decen-

tralized P2P systems have the advantages of eliminating reliance on central servers and



providing greater freedom for participating peers to exchange information and services

directly between each other.

Central

Server

/

Response / X

/ /

/ / x

/ / x

/ / Query ‘.

Download
  

Figure 1.1 A centralized P2P network

In decentralized structured models, such as Chord [84], Pastry [71], Tapestry [96], and

CAN [67], the shared data placement and topology characteristics of the network are

tightly controlled based on distributed hash functions. Although these designs are ex-

pected to dramatically improve the search performance, none ofthem has been practically

used due to their high maintenance traffic in delivering messages and updating the map-

ping. Furthermore, it is hard for structured P2P systems to efficiently support partially

matched queries.



My research focuses on decentralized unstructured P2P systems, such as Gnutella [8]

and KaZaA [10]. File placement is random in these systems, which has no correlation

with the network topology [94]. Unstructured P2P systems are most commonly used in

today's Internet. The most popular search mechanism in use is to blindly “flood" a query

to the network among peers (such as in Gnutella) or among super peers (such as in Ka-

ZaA), as shown in Figure 1.2.
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Figure 1.2 A decentralized unstructured P2P network
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A query is broadcasted and rebroadcast until a certain criterion is satisfied. If a peer re-

ceiving the query can provide the requested object, a response message will be sent back

to the source peer along the inverse of the query path. This mechanism ensures that the

queries are “flooded” to as many peers as possible within a short period of time in a P2P

overlay network. A query message will also be dropped if the query message has visited

the peer before.

1.2 Problem Statement and Research Objectives

Unstructured peer-to-peer models are simple to implement and widely used in real sys-

tems. However, there are efficiency and security issues to be addressed.

1.2.1 Search efficiency

Studies in [78] and [73] have shown that P2P traffic contributes the largest portion of

the Internet traffic based on their measurements on some popular P2P systems, such as

FastTrack (including KaZaA and Grokster) [7], Gnutella, and DirectConnect. Measure-

ments in [69] have shown that even given that 95% of any two nodes are less than 7 hops

away and the message time-to-live (TTL=7) is preponderantly used, the flooding-based

routing algorithm generates 330 TB/month in a Gnutella network with only 50,000 nodes.

A large portion of the heavy P2P traffic caused by inefficient overlay topology and the

blind flooding is unnecessary, which makes the unstructured P2P systems being far from

scalable [70]. There are three reasons for this problem. First, the mechanism of a peer

randomly choosing logical neighbors without any knowledge about the underlying physi-

cal topology causes topology mismatching between the P2P logical overlay network and

physical underlying network. Because of the mismatch problem, the same message may

traverse the same physical link multiple times, incurring a large amount of unnecessary



traffic. Second, a query may be flooded to multiple paths that are merged to the same

peer. In this case, only the traffic along one of the paths is necessary. Finally, two

neighboring peers may forward the same query message to each other before they receive

the query message from each other. Thus, the same query message may traverse the same

logical link twice.

Aiming at alleviating the mismatch problem, reducing the unnecessary traffic, and ad-

dressing the limits of existing solutions, we propose four topology optimization based

approaches, including adaptive overlay topology optimization (AOTO), location-aware

topology matching (LTM) scheme, Scalable Bipartite Overlay (SBO), and Two Hop

Away Neighbor Comparison and Selection (THANCS), to make the decentralized

unstructured P2P models more scalable and efficient.

1.2.2 Overlay distributed denial-of—service

The simplicity of the flooding based search mechanism also makes unstructured P2Ps

vulnerable to overlay distributed denial-of-service (DDoS) attacks. In the past years,

DDoS attacks have already become a major threat to the stability of the Internet [22]. The

basic goal of denial of service (D08) is to overwhelm the processing or link capacity of

the target by saturating it with bogus packets. Flooding based overlay DDoS attacks are

DoS attacks performed from multiple compromised peers (agents), who start generating

as many bogus queries as they can toward the victims. One character of P2P overlay

DDoS is that the attack target is not a single site or a user in the Internet, but the whole

P2P systems.

Most previous research on DDoS focused on Network layer attacks, including direct

attacks such as TCP-SYN, ICMP flooding and UDP flooding [22, 77], and reflector at-



tacks such as Smurf attacks [2]. Many attack tools such as Trinoo, Tribe Flood Network,

TFNZK, Stacheldraht, Shaft, mstream [4-6] have been deployed. Existing approaches

mainly fall into three categories: prevention, traceback and identification, and detection

and filtering. Since a P2P system can have millions of insecure users online simultane-

ously, and the IP address of a query source peer is not included in the query or query hit

messages, network layer defense approaches often find it difficult, if not outright impos-

sible, to effectively protect against overlay DDoS attacks. It is therefore a worthwhile en-

deavor to design an overlay level defending mechanism inside P2P applications. In this

research, a detection-based approach, DD-POLICE (Defending P2Ps from Overlay Dis-

tributed-Denial-of-Service), is proposed, to protect P2P systems against overlay DDoS.

1.3 Contributions

The main contributions of this research are as follows.

First, we model the unstructured P2P systems based on our observations and imple-

mentations of Gnutella peers. We then study the relationship between the property of the

overlay and the corresponding message duplications incurred by queries in a given over-

lay, and prove that even with global knowledge, computing an optimal overlay is an NP-

hard problem. We demonstrate that a large portion of the traffic of today’s widely used

peer-to-peer systems is unnecessary.

Second, we proposed several (AOTO, LTM, SBO and THANCS) overlay topology

matching algorithms, and simulated them in both static and dynamic environments. They

are all completely distributed and scalable in that they do not need any global knowledge,

and each peer conducts the algorithm independently. Compared with traffic cost savings,

the overhead incurred by these algorithms is trivial. The other strength of these algo-



rithrns is that they are complementary with other cache based and forwarding based ap-

proaches and can be deployed together.

Third, we show the difficulties of defending overlay DDoS in P2Ps and the reasons

why existing network layer defense approaches are less effective on overlay DDoS at-

tacks. To investigate the characteristics of flooding based overlay DDoS, we modified

LimeWire Gnutella servant with support of Gnutella protocol v0.6 [9] to collect real

Gnutella query traffic trace. We also develop a prototype of an overlay DDoS agent who

may continuously sends out a large amount of queries into the P2P network. We then

propose DD-POLICE, which requires peers to cooperate locally with their neighboring

peers and identify malicious/ compromised DDoS peers effectively. By comprehensive

simulations, we show the serious impact of overlay DDoS attacks on P2P systems, and

the effectiveness of DD-POLICE in dynamic P2P environments. We then implement a

prototype of a DD-POLICE enabled client, and show that DD-POLICE is easy to imple-

ment and effective on defending against overlay DDoS in P2P systems.

We believe this research will make the unstructured peer-to-peer systems more scal-

able, efficient, and secured.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews existing ap-

proaches on improving search performance and defending against DDoS. The simulation

methodology of the work is presented in Chapter 3. Overlay optimization approaches,

including Adaptive Overlay Topology Optimization (AOTO), Location—aware Topology

Matching (LTM), Scalable Bipartite Overlay (SBO), and Two Hop Away Neighbor

Comparison and Selection (THANCS), are described in detail in Chapter 4. Security is-



sue studies and DD-POLICE approach for defending against overlay flooding based

DDoS are presented in Chapter 5. The conclusion and future work of this research is in

Chapter 6.



2 Related Work

In the past years, peer-to-peer systems have been under intensive studies[l7, 19, 22,

24, 26-32, 35, 36, 38, 39, 42-44, 47-57, 63, 67-72, 78, 79, 83-85, 87-90, 92-94, 96, 97]. In

this chapter, we will discuss related previous researches on search efficiency and security

issues.

2.] Improving Search Efficiency ofPZPs

Many efforts have been made to avoid the large voltune of unnecessary traffic incurred

by the flooding-based search in decentralized unstructured P2P systems. In general, three

types of approaches have been proposed to improve search efficiency in unstructured P2P

systems: forwarding-based, cache-based, and overlay optimization. The three different

kinds of approaches can be used together to complement each other.

In forwarding-based approaches, instead of relaying the query messages to all its logi-

cal neighbors except the incoming peer, a peer selects a subset of its neighbors to relay

the query. In Directed BFS proposed in [94], each peer maintains statistic information

based on some metrics, for example, the number of results received from neighbors from

previous queries or the latency of the connection with that neighbor. A peer selects a sub-



set of the neighbors, such as the neighbors that have returned the largest number of results

from previous queries, or the neighbors that have low latency, to send its query. A k-

walker query algorithm is proposed in [55], in which a query is sent to k different walkers

(relay neighbors) from the source peer. For a peer in each walker, it just randomly selects

one neighbor to relay the query. For each walker, the query processing is done sequen-

tially. A hybrid periodical flooding (HPF) approach proposed in [97] improves the search

efficiency by selecting forwarding neighbors based on multiple metrics and addressing

the partial coverage problem to balance the search cost and response time.

The second approach is cache-based including data index caching and content caching.

Centralized P2P systems provide centralized index servers to keep indices of shared files

of all peers. KaZaA utilizes cooperative superpeers, each of which is an index server of a

subset of peers. Some systems distribute the function of keeping indices to all peers [57].

In Local Indices policy [94], each peer maintains an index of files available in the nodes

within given hops of itself. When a peer receives a query, it can process the query on be-

half of all nodes within the given hops of itself. Having observed the locality of queries,

the authors in [56, 82] further proposed that each peer caches query strings and results

that flow through it, which is shown in Figure 2.1. Three different strategies to replicate

data (file content or query responses) on multiple peers have been evaluated in [28]. The

three strategies are different on the ratio of allocations according to the ratio of query

rates. Transparent query caching [65] is proposed to cache query hits at a gateway of an

organization based on an observation of query locality in peers within the gateway. Cach-

ing file contents has also been studied. For example, an ideal cache (infinite capacity and

no expiration) simulator [73] is built for KaZaA P2P traffic to cache file contents, which

10



has shown that caching would have a large effect on a wide-scale P2P system on reducing

traffic volume and bandwidth demands.
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Figure 2.1 A Query result caching scheme

The third approach is based on overlay topology optimization that is closely related

to what we are presenting in this dissertation. End system multicast, Narada, is proposed

in [25], which first constructs a rich connected graph on which to further construct short-

est path spanning trees. Each tree rooted at the corresponding source using well-krrown

routing algorithms. This approach introduces large overhead of forming the graph and

trees in a large scope, and does not consider the dynamic joining and leaving characteris-

tics of peers. The overhead of Narada is proportional to the multicast group size. This

approach is infeasible to large-scale P2P systems. Researchers have also considered to

cluster close peers based on their IP addresses (e.g., [47, 64]). We believe there are two

limitations for this approach. First, the mapping accuracy is not guaranteed by this ap-

ll



proach. Second, this approach may affect the searching scope in P2P networks. Recently,

researchers in [90] have proposed to measure the latency between each peer to multiple

stable Internet servers called “landmarks”. The measured latency is used to determine the

distance between peers. This measurement is conducted in a global P2P domain and

needs the support of additional landmarks. Similarly, this approach also affects the

search scope in P2P systems.

Using an example shown in Figure 2.2, we explain why these existing proximity based

approaches will shrink query search scopes. In Figure 2.2, peers A, B, C, D locate in the

same AS, peers E, F and H, G, K belong to other ASS, respectively . It is safe to assume

that the physical distance between A and B or E and F are much smaller than that of K

and A or C and F, as illustrated in Figure 2.2. Using above discussed approaches, when

peers successfiilly obtain or estimate the distance between each pair of them, and optimi-

zation policy for each node is to connect the closest peers while retaining the original

number of logical neighbors, a connected graph may be broken into three components. As

a result, before optimization, queries can visit all of the peer, while after optimization, all

queries can only visit a small group of live peers in the system, and the search scope of

queries is significantly reduced.

Gia [24] introduced a topology adaptation algorithm to ensure that high capacity nodes

are indeed the ones with high degree and low capacity nodes are within short reach of

high capacity nodes. It addresses a different matching problem in overlay networks, but

does not address the topology mismatch problem between the overlay and physical net-

works.
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After Optimization

Figure 2.2 before optimization, queries can visit all of the peer, while after

optimization, all queries can only visit a small group of live peers

2.2 Defending against Distributed Denial ofService

Many general efforts have been made to defend against DDoS [22, 46, 61, 62]. They

are roughly divided into three categories: prevention, traceback and identification, and

detection and filtering.

The first type is prevention, in which the defense tools monitor or scan the network to

intercept the DDoS before the attacks start. They avoid the malicious peers’ illegal access

to normal machines [15], and install security patches and virus scanners [3, 45, 60]. One

basic goal of these approaches is to prevent DDoS attackers from recruiting a large num-
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ber of agents. Most of these methods are based on knowledge of existing DDoS attacks to

recognize attackers’ behaviors. Although it is of great importance to improve Internet se-

curity, it is hard to believe that preventive approaches could successfully avoid DDoS

attackers recruiting hundreds of agents in a P2P network with millions of peers online at

any given time. We will show that only tens of DDoS agents in a 20,000-peer system

cause serious damage.

The second type is the TraceBack and Identification approach [74, 75, 80, 81, 91],

which is usually employed afier experiencing attacks. Most of them are based on IP

traceback. They try to track the attackers and identify them via the routers’ records or by

sending special traceback packets. However, these approaches are not effective for P2P

overlay DDoS attacks because the query messages and query hit messages do not include

the IP addresses of query source peers. In P2P systems, the anonymity requirement makes

it hard to know who originally issued the queries.

The third type is based on Detection and Filtering. Our proposed DD-POLICE is of

this type. They detect the occurrence of DDoS attacks and respond to it. For example, al-

though IP spoofing is not a necessary component for DDoS attacks, it helps the attackers

hide [59]. Ingress/egress filtering [34] prevents packets with spoofed source IP addresses

from entering or leaving the network. Theoretically, ubiquitous ingress packet filtering

(UIPF) [22] can stop all address-spoofed direct attack packets as well as the attack pack-

ets sent to reflectors. But it is hard for them to be employed in P2P systems with such a

large scale. Route-Based defense is similar to UIPF, and employs some distributed detec-

tion systems and filters attack traffic at some key nodes. Pushback mechanism [40] is a

useful means of detecting the attack packets’ flow and dropping them. In a P2P system, it
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is hard for a peer to trace the source of a query because the values of TTL and hops could

be easily modified by DDoS compromised peers. Thus, it is extremely hard to separate

good traffic and bad traffic. A source-end defense system, such as D-WARD [58] or Re-

verse Firewall, attempts to observe incoming and outgoing flows and connections over

time, aiming at separating the normal links from the attack links to provide good service

to normal clients. However, in a P2P system, since normal traffic and attack traffic may

come from the same logical link because of the flooding search, the source-end system is

not effective in P2P systems.

To our knowledge, the most related work to this research to date is discussed in [30],

where application-layer load balancing techniques are proposed to give clients a fair share

of available resources, so as to alleviate damage of application-layer DoS attacks. It is

basically a survival approach: it does not require servers to distinguish attack queries

form normal queries, but maintain a fair load distribution in the P2P system. However,

this approach could be less effective when the number of DDoS agents is getting large.
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3 Simulation Methodology of Dynamic P2P Envi-

ronments

We evaluate our proposed methods by comprehensive simulations and implementa-

tions. In this chapter, we present our performance metrics and simulation methodology.

3. 1 Performance Metrics

A well-designed search mechanism should seek to optimize both efficiency and Qual-

ity of Service (QoS). Efficiency focuses on better utilizing resources, such as bandwidth

and processing power, while QoS focuses on user-perceived qualities, such as number of

returned results and average query response time. In unstructured P2P systems, the qual-

ity of a search mechanism generally depends on the number ofpeers being explored (que-

ried), response time, and traffic overhead. If more peers can be queried by a certain

query, it is more likely that the requested object can be found. Here we define four per-

formance metrics: average traffic cost versus search scope, query success rate, average

neighbor distance, and query response time.

Traflic cost is one of the parameters network administrators are seriously concerned

with. Heavy network traffic limits the scalability of P2P networks [70] and is also a rea-
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son why a network administrator may prohibit P2P applications. We define the traffic

cost as network resource used in an information search process of P2P systems, which is

mainly a function of consumed network bandwidth and other related expenses. Specifi—

cally, in this work, we assume all the messages have the same length, so when messages

traverse an overlay connection during the given time period, the traffic cost (C) is given

by: C=M X L, where M is the number of messages that traverse the overlay connection,

and L represents the number of physical links in this overlay connection. Search scope is

defined as the number of peers that queries have reached in an information search proc-

ess. Thus, with the same traffic cost, we aim to maximize the search scope; while with the

same search scope, we aim to minimize the traffic cost.

Average neighbor distance (AD) is used to evaluate the optimization results of a logical

topology. Let ADi be the average delay between the source peer i and all its logical

neighbors. The value AD is defined as the average of all ADis (i.e., all peers in the P2P

network). Minimizing average neighbor distance implies a better matching with the un-

derlying physical network.

Query success rate is often an important metric in evaluating search efficiency and

service quality. It measures the ratio of the queries for which at least one location of the

desired data is found. If we use qw(t) to denote the total number of queries issued by all

the peers during the period from t-l‘h to tth time unit, and we use q,(t) to denote the total

number of queries for which one or more locations of the desired data are found, the

query success rate at any given time t, S(t),is given by:

so) = 51—53)- x 100%

(MI)
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Query success rate in an unstructured P2P system is dependent on many factors, such as

the distribution of sharing contents, peers’ dynamicity, initial values of query messages,

search mechanism, etc. How to improve query success rate is beyond the discussion of

this paper. When a P2P system is under DDoS attack, as we have discussed, delivery of

query and query hit messages may fail due to blocked links and overloaded peers. Conse-

quently, the average query success rate will be decreased.

Response time of a query is one of the parameters concerned by P2P users. We define

response time of a query as the time period from when the query is issued until when the

source peer received a response result from the first responder.

3.2 Simulation Methodology

To evaluate effectiveness of our proposed approaches, we first generate network to-

pologies. Based on generated networks, we simulate P2P flooding search, host join-

ing/leaving behavior, and our proposed optimization operations.

Two types of topologies, physical topology and logical topology, are generated in our

simulations. The physical topology should represent the real topology with Internet char-

acteristics. The logical topology represents the overlay P2P topology built on top of the

physical topology. All P2P nodes are in a subset of nodes in the physical topology. The

communication cost between two logical neighbors is calculated based on the physical

shortest path between this pair of nodes. To simulate the performance of different search

mechanisms in a more realistic environment, the two topologies must accurately reflect

the topological properties of real networks in each layer.

Previous studies have shown that both large scale Internet physical topologies [86] and

P2P overlay topologies [72] follow the small world and power law properties. Power law
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describes the node degree while the small world describes characteristics of path length

and clustering coefficient [21]. The study in [72] found that the topologies generated us-

ing the AS Model have the properties of the small world and power law. BRITE [1] is a

topology generation tool that provides the option to generate topologies based on the AS

Model. Using BRITE, we generate physical topologies with 20,000 to 28,000 nodes. The

logical topologies are generated with the number of peers (nodes) ranging from 2,000 to

8,000. The average number of neighbors of each node is ranging from 4 to 10.

3.2.1 Flooding search simulation

Our simulation is based on observed distributions as follows. Content popularity of a

publisher follows Zipf-like distribution (aka Power Law) [16, 20], where the relative

probability of a request for the ith most popular page is proportional to l/i“, with or typi-

cally taking on some value less than unity. The observed value of the exponent varies

fiom trace to trace. The request distribution does not follow the strict Zipfs law (for

which or=l), but instead does follow a more general Zipf-like distribution. Query word

frequency does not follow a Zipf distribution [41, 89]. User’s query lexicon size does not

follow a Zipf distribution [89] but with a heavy tail. Both the overall traffic and the traffic

from 10% popular nodes are heavy-tailed in terms of the host connectivity, traffic vol-

ume, and average bandwidth of the hosts [78]. Studies in [76] have suggested a log-

—a

quadratic distribution (10 ) for stored file locality and transfer file locality. The

time length that nodes remain available follows a log-quadratic curve [76], which could

be approximated by two Zipf distributions.
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In our simulation, we simulate flooding search used in Gnutella and KaZaA networks

by conducting the Breath First Search (BFS) algorithm from a specific node. A search

operation is simulated by randomly choosing a peer as the sender, and a keyword accord-

ing to Zipf distribution. In our first simulation, more than 1,000,000 search operations are

simulated sequentially.

3.2.2 A dynamic P2P environment

P2P networks are highly dynamic with peers joining and leaving frequently. The ob-

servations in [78] have shown that over 20% of the logical connections in a P2P last one

minute or less, and around 60% of the IP addresses keep active in FastTrack for no more

than 10 minutes each time after they join the system. The measurement reported in [72]

indicated that the median up-time for a node in Gnutella and Napster is 60 minutes. Stud-

ies in [18] have argued that measurement according to host IP addresses underestimates

peer-to-peer host availability and have shown that each host joins and leaves a P2P sys-

tem 6.4 times a day on average, and over 20% of the hosts arrive and depart every day.

Although the numbers they provided are different to some extent, they share the same

point that the peer population is quite transient. We simulate the joining and leaving be-

havior of peers via turning on/off logical peers. In our simulation, every node issues 0.3

queries per minute, which is calculated from the observation data shown in [82], i.e.,

12,805 unique IP addresses issued 1,146,782 queries in 5 hours. When a peer joins, a life-

time in seconds will be assigned to the peer. The lifetime of a peer is defined as the time

period the peer will stay in the system. The lifetime is generated according to the distribu-

tion observed in [72]. The mean of the distribution is chosen to be 10 minutes [78]. The

value of the variance is chosen to be half of the value of the mean. The lifetime will be
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decreased by one after passing each second. A peer will leave in next second when its

lifetime reaches zero. During each second, there are a number of peers leaving the sys-

tem. We then randomly pick up (turn on) the same number of peers from the physical

network to join the overlay.
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4 Overlay Optimization in P2P Systems

The inefficient P2P overlay topology is a major reason for the heavy P2P traffic [69].

In this chapter, we discuss unnecessary query message duplications on both overlay level

and [P level. We define the Optimal Overlay Problem, and prove it is NP hard. We then

discuss our proposed approaches to optimizing the P2P overlays and prove the effective-

ness of these algorithms by simulation studies.

4. 1 Optimal Overlay Problem

In a P2P system, all participating peers form a P2P network over a physical network. A

P2P network is an abstract, logical network called an overlay network. Maintaining and

searching operations of a Gnutella peer are specifically described in [9]. When a new peer

wants to join a P2P network, a bootstrapping node provides the IP addresses of a list of

existing peers in the P2P network. The new peer then tries to connect with some of these

peers. If some attempts succeed, the connected peers will be the new peer's neighbors.

Figure 4.1 illustrates a typical process of bootstrapping a new peer in Gnutella.

Once this peer connects into a P2P network, the new peer will periodically ping the

network connections and obtain the IP addresses of some other peers in the network.

These IP addresses are cached by this new peer. When a peer leaves the P2P network and
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wants to join the P2P network again (no longer the first time), the peer will try to connect

to the peers whose IP addresses have already been cached.
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Figure 4.1 Bootstrapping a new peer in Gnutella

4.1.1 Message Duplications in Overlay Connections

Figure 4.2 shows some examples of P2P overlay topologies where solid lines denote

overlay connections among logical P2P neighbors. Consider the case when node A issues

a query. A solid arrow represents a delivery of the query message along one logical con-

nection. In Gnutella, a peer forwards an incoming query message to all of its directly

connected peers, except the one that delivered the incoming query. Thus, as shown in

Figure 4.2 (a), A’s query is relayed by nodes B and C. Peer B forwards the query to C,

while C also forwards the query to B. In this case, the pair of transmission between B and

C is unnecessary message duplication. We can easily observe that the other three overlays
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shown in Figure 4.2 (b)-(d) have less message duplications, while retaining the same

search scope for this query.

However, we cannot draw the conclusion that the overlays in Figure 4.2 (b)-(d) are bet-

ter than the one in Figure 4.2 (a) because the above discussion only takes traffic cost into

consideration. In fact, compared with Figure 4.2 (a), the overlays in Figure 4.2 (b)-(d)

have less overlay connections, but may cause longer average query response times. For

example, when A issues larger amount of queries and D has most of the desired data, the

query response time in the overlay in Figure 4.2(b) will be much longer than that in other

three overlays.
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Figure 4.2 Examples of P2P overlay topologies
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Generally, as long as cycles exist in search paths, there must be message duplications

in overlay connections. Some peers, such as B and C, are visited by the same query mes-

sage multiple times. If a peer receives a query message with the same Message ID

(GUID) as the one it has received before, the peer will discard the message. Since a peer

is aware of this kind of revisit, we call it a Revisit Known (RK) problem. The price of

reducing RK duplications is the increment of query latency. Our first motivation is to re-

duce message duplications in overlay level and attack RK problems with minimal incre-

ment of query response time, while retaining the same search scope of queries.

4.1.2 Message Duplications in Physical Links and Topology Mismatch Problem

We have discussed message duplications in overlay connections. However, for an overlay

without RK problem, the same message still can traverse the same physical link multiple

times, causing large amount of unnecessary traffic and increasing query response time.

Here is an example. Suppose Figure 4.3 (a) illustrates the underlying physical network of

the overlay shown in Figure 4.2 (b), where A, B, C and D are peering nodes and node Y

is not a peering node. We can see that the query message along the overlay path

A-)B-)C-)D traverses physical link YB twice. Node Y is visited twice.

 
Figure 4.3 Examples of physical topologies
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Since node Y is not a peering node, the message duplication (revisit to Y) cannot be

avoided. We may reduce the duplication between link YB by creating a direct connection

between A and C, and disconnecting the logical link BC, as shown in Figure 4.2 (d), but

new duplications may occur in other links, such as YA.

Figure 4.3 (b) shows another underlying physical network of the overlay shown in Fig-

ure 4.2 (b). For a query message along the overlay path A-)B-)C-)D, D is visited three

times. Node D is a peering node, but in the first two visits, D is visited as a non-peering

node. These first two visits are not known by the P2P application. We call this kind of

revisits as a Revisit Not known (RN) problem. In this case, three physical links have been

traverses twice, as shown in Figure 4.3 (b), a topology mismatch problem occurs.
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It is more effective to solve RN problems than RK problems since RN problems will

not only increase message duplications/traffic cost as RK problems, but also increase

query response time. In Figure 4.3 (b), node D has been visited by the same query mes-

sage twice before it ‘formally’ receives the query as a peering node. If we can replace the

overlay in Figure 4.2 (b) by the one in Figure 4.2 (c) for physical topology in Figure 4.3

(b), there will be no message duplications at all, and the response time from D to A will

be decreased significantly. Our second motivation is to improve search performance by

alleviating RN problems.

In fact, the stochastic peer connection and peers’ randomly joining and leaving a P2P

network can cause large amount of topology mismatch between the P2P logical overlay

network and the physical underlying network. Studies in [69] have shown that only 2 to 5

percent of Gnutella connections link peers within a single autonomous system (AS). But

more than 40 percent of all Gnutella peers are located within the top 10 ASes. This means

that most Gnutella-generated traffic crosses AS borders so as to increase topology mis-

matching costs. Our simulation results in Figure 4.4 show that 744,734 out of 1,000,000

query responses traverse along mismatched paths, in each of which at least one of the

peering nodes is visited as a non-peering node for more than once.

4.1.3 Modeling P2P Networks

We model a P2P network based on the following assumptions. First, an overlay

connection between a pair of peering nodes consists of a number of physical links which

form a shortest path between the pair of end nodes in the physical topology, and Internet

paths are relatively stable [95]. Second, we assume that the same size packets traversing
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the same physical link in a short period of time will have similar delay, as assumed by

many other measurement applications [33, 85].

Graph theoretic terms not defined here can be found in [23]. We model a communica-

tion network by an undirected graph G = (V , E) where the vertex set V represents units

such as hosts and routers, and the edge set E represents physical links connecting pairs of

communicating unit. For instance, G could model the whole or part of the Internet.

Given an undirected graph G=(V , E) modeling an interconnection network, and a sub-

set X ; V(G) of communicating units (peers), we construct a corresponding complete

edge weighted graph D =(V , E), where V(D) = X, and the weight of each uv e E(D) is

equal to the length of a shortest path between peer u and peer v in G. Note that D is a

complete graph, that is, it includes all possible edges, and is referred to as the distance

graph of G.

In the context of our discussion, we start with a physical network G (perhaps represent-

ing the Internet), and then choose a set of communicating peers X. The resulting distance

graph D, constructed as mentioned earlier, is the basis for constructing a P2P overlay

graph H=(V , E), which is done as follows. The vertex set V (H) will be the same as V

(D), and edge set E(H) <_: D(G). The key issue here is how to select E(H). For the remain-

der of the paper, we will consistently refer to the “physical” graph by G, its distance

graph by D, and an overlay graph corresponding to D by H.

From the process of building a P2P network, as we have previously discussed, theo-

retically, E(H) could be any subset of E(D). However, an optimal overlay network should

have the following basic properties. First, the selection of E(H) should make H a con-

nected graph. We define search scope as the number of peers that a query can reach in an
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information search process. Although in real systems, H could consist of several isolated

components, an optimal overlay should include only one component such that a query

can reach all peering nodes if the TTL is large enough.
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Figure 4.5 A super peer behaviour observation experiment

Second, the overly network H should be degree-bounded to balance the load of peers

since an extremely large connection degree (the number of peering neighbors) of a peer

causes heavy loading and query dropping, and an extremely small degree of a peer causes

very long response times. We identify that the upper bound of a peer’s degree for the peer

to not become a query bottleneck is 8, by experiments described as below.

As shown in Figure 4.5, we build an experimental node to receive and forward queries

flooding through the Gnutella network, and an observing node that receives queries from

the experimental node but does not process or issue any queries. Using a modified

LimeWire [11] client with logging functionality, all the queries passing by the experi-
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mental and observing nodes are recorded to two log files. Each of the two nodes was run-

ning on a PC with a 2.4GHz Pentium IV processor and 100M Ethernet interface. This ex-

periment observing a super peer’s behavior lasted 24 hours.

During the experiment, the experimental node, as shown in Figure 4.5, is intentionally

configured as a super peer connecting to tens of peers in the Gnutella network, including

super peers and leaf peers. We tightly control the number of connections to the experi-

mental node, and let this number increase by one every 10 minutes. As the number of

connections increases, more queries are sent to the experimental node. According to the

Gnutella protocol, for each received query, the experimental node will first look up its

local sharing storage index, and then forward the query to all its neighbors including the

observing node but excluding the query incoming peer. The observing node counts the

number of queries forwarded by the experimental node so as to measure the capability of

a peer in processing search queries and observe a super node’s behavior. We show the

result in Figure 4.6, where the experimental node starts dropping query messages when

there are more than 11k queries coming per minute.

There is no close correlation between the number of connections and the amount of in-

coming queries, but through the experiment we find the increase of the number of queries

is trivial when one more leaf node is connected compared with having one more super

peer neighbor. This is because a super peer can send out thousands of queries while a leaf

peer only sends out one query in several minutes. When there are more than 6 to 8 super

peer neighbors, the experimental node sometimes witnesses more than 11k incoming que-

ries per minute. When the peer has more than 12 super peer neighbors, there are always

more than 11k incoming queries per minute.
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Figure 4.6 Query drop rate vs. query density

Note that in our experiment the experimental node is dedicated to this experiment,

while in a real system a peer may have other conventional tasks. Furthermore, normally a

peer’s local index includes many contents; while in our experiment the local index is al-

most empty, which will reduce the time for local look-up operations. Based on these

observations, we bound a peer’s degree by 8, ignoring the connections with leaf peers in

super peer systems since they are not involved in query forwarding processes but only

issuing queries and waiting for responses.

4.1.4 Amount of Message Duplications in Overlay Connections
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There is a tradeoff between traffic cost and query response time [97]. It is meaningless

to purely optimize one metric without considering the other. We need to establish the re-

lationship between message duplications in overlay connections and the number of over-

lay links.

Generally, as long as loops exist in search paths, there must be message duplications in

overlay connections. Some peers are visited by the same query message multiple times. If

a peer receives a query message with the same Message ID (GUID) as the one it has re-

ceived before, the peer will discard the message.

Theorem 1: Let H(V , E) be an overlay graph. An arbitrary query message issued by an

arbitrary peer with a sufficiently large TTL value can result in d = 2(|E(H)| - |V(H)|+l)

duplicate messages in the overlay graph.

Proof: For obvious reasons, we will assume that H is nontrivial and connected, which

implies H will contain at least |V(H)| - 1 edges. The proof is done by induction of E(H).

Basis: |E(H)| = |E(V)| - 1

In this case H is a tree, and therefore there is no loop in the graph to generate dupli-

cated message, and thus the assertion holds, as d = 2(|E(H)| - |V(H)|+1) = 0 .

Hypothesis: Assume the assertion is correct for |E(H)|< k, where k 2 |V(H)|.

Step: We want to show that the assertion is correct when |E(H)| = k. Let H be an arbi-

trary overlay connected graph with |E(H)| = k edges. Since H has more than |V(H)| edges,

then H must contain at least one cycle C. Let uv be an edge of C, and now consider the

graph H’ = H-uv. Since H was assumed to be connected, and uv belongs to a loop, H’ is

also connected. Further, since |E(H’)| < k, then by induction hypothesis, there is an arbi-

trary query message, call it Q, issued by an arbitrary peer with a sufficiently large TTL
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value that results in 2(|E(H’)| - |V(H’)|+l) duplicate messages in the overlay graph H’.

Now ifwe initiate the same query Q in H, sticking to the same message propagation as in

H’, at some point peers u and v, the end vertices of the edge uv, will be informed. These

peers in turn can potentially send messages to each other, generating two unnecessary

messages on the link uv. Therefore, the number of duplications in H for the message

query Q will be 2(|E(H’)| - |V(H’)|+1) +2. Rewriting this expression in terms of E(H) and

V(H), and remembering that V(H) = V(H’), we get 2(|E(H’)| - |V(H’)|+1) +2 = 2(|E(H’)| +

1- |V(H’)|+l) = 2(|E(H)| - [V(H)|+1), and thus the theorem.-

More message duplications in overlay links means more traffic cost. In an overlay

H=(V , E) with p nodes, concerning the traffic cost only, the best case is when H=(V , E)

is a spanning tree reduced from the complete distance graph D=(V , E). In this case, a

query incurs n-l messages in overlay connections to reach all peers. However, the aver-

age query response time will be long compared with a graph with more overlay connec-

tions. Indeed, the number of overlay connections balances the traffic cost and average

query response time. As it is impossible to minimize these two metrics simultaneously,

we seek an optimal overlay when the cardinality ofE is given.

4.1.5 Optimal Overlay Problem

Definition 4.1: Let F=(V , E) be an edge weighted connected graph. Further, let dis(u,

v) represent the distance (that is, the length of a shortest path) between vertex u and v.

The average distance, denoted by AD(F), of graph F is defined as follows:

 

1 .

AD(F) = I V(F) I Z dzs(u,v)

2

unordered pair u,veV(F)
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We now define the Degree-bounded Minimum Average Distance (DMAD) overlay

problem.

Definition 4.2: Let graph G=(V , E) represent a physical network and let graph D = (V

, E) be its distance graph for a set of communicating peers, as defined earlier. Recall that

D is a complete graph. Furthermore, let k be an integer such that 5(G) S k S A(G), where

6(G) and A(G) are the minimum and the maximum degree of G, respectively. A DMAD

overlay graph H: (V, E) is a connected spanning subgraph of D having the following

properties:

(a) A(H) _<_ k

(b) AD (H) is as small as possible, subject to (a).

The DMAD problem is a generalization of the degree-bounded connected subgraph

problem (DBCS) which asks the following question [37]:

Instance: Graph G=(V , E), non—negative integer cl S |V(G)|, positive integer k S

|E(G)l-

Question: Is there a subset E’ g E(G) with |E’| _>. k such that the subgraph G’=(V, E’)

is connected and has no vertex with degree exceeding (1?

Clearly there is a straightforward polynomial transformation from the DBCS problem

to the decision version of the DMAD problem, and thus DMAD problem is NP-hard. I

Knowing that DMAD problem is NP-hard leaves little hope for finding an optimal

overlay network even when we have complete information about the overlay network.

Worse yet, it is practically impossible for a peer to collect global knowledge of the over-

lay topology since the number of online users could be millions and these P2P users are

randomly coming and leaving. However, it is clear that optimizing inefficient overlay to-
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pologies can fundamentally improve P2P search efficiency. Thus, we intend to develop

several overlay optimization algorithms which have the following properties. First, they

must be completely distributed and do not need any global knowledge of the overlay or

the underlying physical topology. Second, the traffic overhead incurred by the algorithms

and computation overhead should be trivial compared with the traffic cost savings. Third,

as the P2P users are randomly coming and leaving, the convergent speed of the algo-

rithms must be fast enough so that it is effective in dynamic environments. Finally, the

search scope is not shrunk by the optimization operations.

4.2 Adaptive Overlay Topology Optimization (AOT0)

If the system can detect and disconnect the slow logical connections and alleviate to-

pology mismatch (RN) problems, the total network traffic could be significantly reduced

without shrinking the search scope of queries. This is the basic principle of our proposed

Adaptive Overlay Topology Optimization [53] (AOTO) to address the topology mis-

match problem. While retaining the desired prevailing unstructured architecture of P2P

systems, the goal of AOTO is to dynamically optimize the logical topology to improve

the overall performance of P2P systems. AOTO includes two steps: Selective Flooding

(SF) and Active Topology (AT). Selective Flooding is to build an overlay multicast tree

among each peer and its immediate logical neighbors, and route messages on the tree to

reduce flooding traffic without shrinking the search coverage range. Thus, some

neighbors become non-flooding neighbors. Active Topology is the second step in AOTO

for each peer to independently make optimization on the overlay topology to alleviate

topology mismatch problem by replacing non-flooding neighbors with closer nodes as

direct logical neighbors.
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4.2.1 Selective Flooding

Instead of flooding to all neighbors, SF uses a more efficient flooding strategy to selec-

tively flood a query on an overlay multicast tree. This tree can be formed using a mini-

mum spanning tree algorithm among each peer and its immediate logical neighbors. In

order to build the minimum spanning tree, a peer has to know the costs to all its logical

neighbors and the costs between any pair of the neighbors. We use network delay be-

tween two nodes as a metric for measuring the cost between nodes. We modify the

LimeWire implementation of Gnutella 0.6 P2P protocol by adding one routing message

type. Each peer probes the costs with its immediate logical neighbors and forms a routing

message type.

The peer then forms a neighbor cost table. Two neighboring peers exchange their

neighbor cost tables so that a peer can obtain the cost between any pair of its logical

neighbors. Thus, a small overlay topology of a source peer and all its logical neighbors is

known to the source peer. Based on obtained neighbor cost tables, a minimum spanning

tree then can be built by simply using an algorithm like PRIM which has a computation

complexity of O(m2). Now the message routing strategy of a peer is to select the peers

that are the direct neighbors in the multicast tree to send its queries. An example is shown

in Figure 4.7. In Figure 4.7(a), the traffic incurred by node S’s flooding of messages to its

direct neighbor E, F, and G is: 4+14+14+15+6+20+20=93.

After SF computing, we can see the forwarding connections are changed as shown in

Figure 4.7(b), and the total traffic cost becomes: 6+4+14=24.
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(a) (b)

Figure 4.7 Selective Flooding

In Figure 4.7(b), node S sends a message only to nodes E and F and expects that node

B will forward the message to node G. Note that in this step, even node S does not flood

its query message to node G any more. S still retains the connections with G and keeps

exchanging the neighbor cost tables. We call node G non-flooding neighbor of node S,

which is the direct neighbor potentially to be replaced in the next step.

4.2.2 Active Topology

The second step of AOTO, AT, reorganizes the overlay topology. Note that each peer

has a neighbor list which is further divided into flooding neighbors and non-flooding

neighbors in SF. Each peer also has the neighbor cost tables of all its neighbors. In this

step, it tries to replace those physically far away neighbors by physically close by

neighbors, thus minimizing the unnecessary traffic caused by topology mismatch.
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An efficient method to identify such a candidate peer to replace a far away neighbor is

critical to the system performance. Many methods may be proposed. In AOTO, a non-

flooding neighbor may be replaced by one of the non-flooding neighbor’s neighbor.

The basic concept of AT is illustrated in Figure 4.8. In this example, node S tries to

probe the distance to one of its non-flooding neighbor G’s neighbors, peer H. If SH is

smaller than SG, connection SG will be disconnected. If SG is smaller than SH, but S

finds that the cost between nodes G and H is even larger than the cost between nodes S

and H, S will keep H as a new neighbor. Since the algorithm is executed in each peer in-

dependently, S cannot let G to remove H from its neighbor list. However, as long as S

keeps both G and H as its logical neighbors, we may expect that node H will become a

non-flooding neighbor to node G after node G’s SF step since node G expects S to for-

ward messages to H to reduce unnecessary traffic. Then G will try to find another peer to

replace H as its neighbor. After knowing that H is no longer a neighbor to G from peri-

odically exchanged cost tables from node G (or from node H), S will cut the connection

SG, although S has already stopped sending query messages to G for a period of time

since the spanning tree was built for S. Obviously if SH is larger than SG and GH, this

connection will not be built and S will keep probing other G’s director neighbors.

It is very important to quickly identify the best candidate from a non-flooding

neighbor’s neighbor list to minimize replacement overhead. The ideal case would be that

we can always choose the candidate with lowest cost to the source at the first time.
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(a) S probes G’s neighbor H (b)SH<SG,replace G by H

 
(c)SH>SG, but SH<GH, S keeps (d)SH>SG and SH>GH, 8 starts

H as a direct neighbor probing next 0’ neighbor

Figure 4.8 Active Topology

In our simulation, we use three different policies to choose the candidate. The naive

policy, which is not based on SF optimization, simply disconnects the source node’s most

expensive neighbor. The source node will probe the costs to some other nodes, and try to

find a less expansive node as a replacement of the disconnected neighbor. The naive pol-

icy cannot guarantee the same search scope as in original topology. The replacement

strategy is also not efficient. The other two policies are based on SF optimization. The

first one is random policy in which the source randomly picks a node from the source’s

non-flooding neighbor’s neighbor list. The source then decides if the selected candidate
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will be selected. The second one is closest policy in which the source will probe the costs

to all of the non-flooding neighbor’s neighbors, and select the closest one.

Let Cij represent the cost from peer i to peer j. The following pseudo code describes

the randomized AT algorithm for a given source peer i.

Pseudo Code of the Randomized AT Algorithm (peer i)

For each j in i's non-flooding neighbors

Replaced = false;

List = all j's neighbors excluding i;

While List is not empty and Replaced = false

randomly remove a peer h from List;

measure Cm;

if Cih < C],- {replace j by h in i's neighbor list;

Replaced = true}

else if Cih < th { add h to i's neighbor list;

Replaced = true};

End While;

End For;

4.2.3 Effectiveness of Select Flooding Procedure

In our first simulation, a 1000 node logical graph with an average 8 edges connections

(average 16 logical neighbors) is used. We define Optimization Rate (OR) as the ratio of

the traffic cost before and after SF operations. Figure 4.9 shows the different OR of each

node after their first step of SF. More than 90% of the nodes will reduce the cost when

using the SF strategy to make their queries reach all logical neighbors. The average opti-

mization rate is around 40-50%. After this first simulation, we wonder what is main fac-

tor that influences the average OR because OR shows the effectiveness of SF and will

decide whether the peer will enter the next step of AT.
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After we tried the same logical graph based on 10 different physical topologies, we ob-

tained consistent results, which are shown in Figure 4.10.

We then simulated AOTO on different logical topologies with different number of

nodes ranging from 50 to 1000. The results in Figure 4.11 show that the density of P2P

nodes does not influence the effectiveness of SF. They all have an average optimization

rate at around 50%.

When we changed the number of edge connections in the logical topology, the optimi-

zation rate changes greatly. Figure 4.12 shows the performance of 20 500-node logical

topologies with different average logical connections ranging from 2 to 40.

The results show that SF is more effective with large number of logical neighbors. For

example, SF can achieve the average optimization rate as high as 87.4% on a logical to-

pology with an average of 30 logical neighbors.
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4.2.4 Effectiveness of Active Topology Procedure

We evaluate the result of optimizing a logical topology by computing Average

Neighbor Distance. After each node computes the optimization rate, the node enters the

procedure of AT. As we discussed, AT is to optimize the logical topology by choosing

closer neighbors, so as to attack the mismatch problem.

There are three different policies in AT to select candidate peers to replace non-

flooding peers identified in SF. We compare the average distances that are normalized to

100 of the three policies, i.e. naive, random and closest, as the optimization steps are in-

creased from 0 to 59. Figure 4.13 shows that the naive policy is least effective. More op-

timization steps can hardly produce lower AD. Both the random and closest policy work

well, and closest is the most effective. However, the computation complexity of closest

policy is O(mn), while that of random policy is only O(n), where m is the average num-

ber of logical neighbors (branching factor) and n is the total number of nodes in a P2P

logical topology. Figure 4.14 plots node-degree’s pdf distribution before and after AT

optimizations. We can see that optimized logical topologies using different policies keep

the similar branching factor property as the original logical topology so that the query

search scope can be guaranteed.

The average number of logical neighbors is a major factor to affect the effectiveness of

SF. But it is not true in AT. We compare the average reductions ofAD on three 500-node

logical topologies with average 6, 12, and 18 edge connections using random policy as

the optimization steps are increased. Results in Figure 4.15 show that the number of logi-

cal neighbors has little impact to the effectiveness of AT.
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In theory, each peer can continuously do SF and AT until no cost improvement is ob-

tained, thus closing to a perfect topology matching. Obviously, this is unnecessary and

creates too much overhead. In practice, after each replacement, the source peer will com-

pute the cost improvement ratio and decide whether it needs to find another candidate

peer to replace another non-flooding neighbor based on a termination threshold, A. The

optimization process will terminate if the improvement ratio is less than A. Thus, the

value of A is a factor to impact the effectiveness of AT. A smaller threshold causes larger

overhead. Figure 4.16 plots the normalized AD on different thresholds as the optimiza-

tion steps are increased. AD is reduced slower for a larger threshold, and a lower thresh-

old leads to a better result.
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4.2.5 Convergent Speed of AOTO

Figures 4.17 and 4.18 show the traffic cost and response time reduction of AOTO re-

spectively. This simulation is done based on a 27,000 nodes physical topology and 8,000

nodes logical topology. In these figures, the curve of ‘cn-neigh’ shows the average traffic

cost caused by a query to cover the search scope in x-axis, where in the system the aver-

age number of logical neighbors is on. We can see that the both the traffic cost and re-

sponse time of AOTO decrease when the algorithm is conducted multiple times, where

the search scope is all 8000 peers. They both reach a threshold after several steps of op-

timization. AOTO may reduce traffic cost by around 65% and shorten the query response

time by about 35% after 10 steps of optimization.
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The tradeoff between query traffic cost and response time has been discussed in [97].

P2P systems with a large number of average connections offer a faster search speed while

increasing traffic. One of the strengths ofAOTO scheme is that it reduces both query traf-

fic cost and response time without decreasing the query success rate.

4.2.6 AOTO in Dynamic Environments

We further evaluate the effectiveness of AOTO in dynamic P2P systems. In this simu-

lation, we assume that peer average lifetime in a P2P system is 10 minutes; 0.3 queries

are issued by each peer per minute; and the frequency for AOTO at every peer to conduct

optimization operations is twice per minute.
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Figure 4.19 Traffic reduction of AOTO in dynamic P2P environment
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Figure 4.19 shows the average traffic cost per query of Gnutella-like P2P systems and

AOTO enabled Gnutella. Note that here the traffic cost includes the overhead needed by

each operation in the optimization steps. We can see that AOTO could significantly re-

duce the traffic cost while retaining the same search scope. In order to keep the same

search scope, AOTO may need a larger initial value of TTL. Figure 4.20 shows that with

reduction of the traffic, the queries’ average response times of AOTO are reduced in a

dynamic environment as well.
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4.3 Location-aware Topology Matching (LTM)

In this section, we introduce our second scheme to address topology mismatch prob-

lem: location-aware topology matching [50] (LTM). In LTM, each peer issues a detector

in a small region so that the peers receiving the detector can record relative delay infor-

mation. Based on the delay information, a receiver can detect and out most of the ineffi-

cient and redundant logical links, and add closer nodes as its direct neighbors. Our simu-

lation studies show that the total traffic and response time of the queries can be signifi-

cantly reduced by LTM without shrinking the search scope. We also show that the over-

head of issuing detectors is trivial compared with the query cost savings. LTM consists of

three main operations: ITLZ detector flooding, low productive connection cutting, and

source peer probing.

4.3.1 TTLZ-detector flooding

Based on Gnutella 0.6 P2P protocol, we design a new message type called TTL2-

detector. In addition to the Gnutella’s unified 23-byte header for all message types, a

TTL2-detector message has a message body in two formats as shown in Table 1. The

short format is used in the source peer, which contains the source peer’s IP address and

the timestamp to flood the detector. The long format is used in a one-hop peer that is a

direct neighbor of the source peer, which includes four fields: Source IP Address, Source

Timestarnp, TTLl IP Address, TTLl Timestamp. The first two fields contain the source

IP address and the source timestamp obtained from the source peer. The last two fields

are the IP address of the source peer’s direct neighbor who forwards the detector, and the

timestamp to forward it. In the message header, the initial TTL value is 2. The payload

type of the detector can be defined as 0x82.
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Table 1: 1TL2-detector message body

 

 

 

      

[ Source IP Address I Source Timestamp ]

Byte offset 0 3 4 7

Source IP Source TTLl IP TTLl

Address Timestamp Address Timestamp

Byte offset 0 3 4 7 8 11 l 12 15

Each peer floods a TTL2-detector periodically. We use d(i, S, v) to denote the TTL2-

detector which has the message ID of i with TTL value of v and is initiated by S. We use

N(S) to denote the set of direct logical neighbors of S, and use N2(S) to denote the set of

peers being two hops away from S. A TTL2-detector can only reach peers in N(S) and

N2(S). We use network delay between two nodes as a metric for measuring the cost be-

tween nodes. The clocks in all peers can be synchronized by current techniques in an ac-

ceptable accuracy]. By using the TTL2-detector message, a peer can compute the cost of

the paths to a source peer. As an example in Figure 4.21(a), when peer P receives a d(i, S,

1), it can calculate the cost of link SP from Source Timestamp and the time P receives the

d(i, S, 1) from S. When P receives a d(i, S, 0), it can calculate the cost of link SFl fi'om

TTLl Timestamp and Source Timestamp, and F[P fi'om TTLl Timestamp and the time P

receives the d(i, S, 0) fiom F1. As we can see in an inefficient overlay topology, the peers

in set N2(S) may receive d(i, S, v) more than once, such as peer P in Figure 4.21. If a peer

receives d(i, S, v) multiple times, it will conduct the operations in the second step of

LTM, low productive connection cutting.

4.3.2 Low productive connection cutting

 

' Current implementation of NTP version 4.1.1 in public domain can reach the synchronization accuracy

down to 7.5 milliseconds [14]. Another approach is to use distance to measure the communication cost,

such as the number of hops weighted by individual channel bandwidth.
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There are three cases for any peer P who receives (1 (i, S, v) multiple times.

F1 P
 

s (a) 3

F1 F2 F1 F2

 
(b) (C)

Figure 4.21 Peer P receives d(l, S, v) multiple times In LTM

Case 1: P receives both d(i, S, l) and d(i, S, 0) as shown in Figure 4.21(a). In this case,

d(i, S, 1) comes from path SP, while d(i, S, 0) comes from SFlP. The costs of SP, SF],

and HP can be calculated from the timestamps recorded in d(i, S, 0) and d(i, S, 1). If SP

or F[P has the largest cost among the three connections, P will cut the respective connec-

tion. If SF 1 has the largest cost, P will do nothing. Note that LTM is fully distributed and

all peers do the same LTM operations. In the case of SF] having the largest cost, F1 will

disconnect this connection.

Case 2: P receives multiple d(i, S, 0)s from different paths as shown in Figure 4.21(b).

In LTM, P randomly takes two of the paths, such as SFiP and SFZP in Figure 4.21(b), to

process at each time. Other paths, if any, will be handled in the next round of optimiza-

tion. Thus, one important factor to affect the performance of LTM is the frequency for
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each peer to issue TTL2-detector messages. We will investigate the optimal LTM fre-

quency, and we expect it is determined by the average peer lifetime and query frequency.

Peer P can calculate the costs of SF], SF;, RP and F2P. If PF] or PF2 has the largest cost,

P will disconnect it. If SF] or SF; has the largest cost, P will do nothing. As we have dis-

cussed above, SF] or SFZ having the largest cost will be cut by one of the other three

nodes.

Case 3: P receives one d(i, S, 1) and multiple d(i, S, 0)s as shown in Figure 4.21(c). In

this case, P will process the path receiving d(i, S, 1) and one path randomly selected from

the multiple paths of d(i, S, 0)s forming a scenario of Case I .

4.3.3 Source peer probing

For a peer P who receives only one (1 (i, S, 0) during a certain time period (e.g., 10 sec-

onds), and PE (N2(S)-N(S)), it will try to obtain the cost of PS by checking its out list

first. If S is not in the list, P will probe the distance to S (see Figure 4.22). After obtaining

the cost of PS, P will compare this cost with the costs of SF] and PF]. If PS has the larg-

est cost, P will not keep this connection. Otherwise, this connection will be created. In the

Internet, the cost of SP and the cost of PS may not be the same. We use the cost of PS to

estimate the cost of SP.

 

Figure 4.22 Source peer probing
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4.3.4 Traffic Overhead ofLTM

The simplicity of blind flooding makes it very popular in practice. This mechanism re-

lays a query message to all its logical neighbors, except the incoming peer. For each

query, each peer records the neighbors that relay the query to it. Therefore, in the worst

case, the same query message can be sent on each link at most twice. For an overlay net-

work with n peers, we use cn to denote the average number of neighbors, and use cc to

denote the average cost of the logical links. The total traffic caused by a query is less than

or equal to n cn cc. In a typical P2P system, the value of n (more than millions) is much

greater than cn (less than tens) [78]. So we can view both on and ce as constant numbers.

Thus, in the flooding-based search, the traffic incurred by one query from an arbitrary

peer in a P2P network is O(n). As observed in [82], each peer issues 0.3 queries per min-

ute in average. Thus, the per minute traffic incurred by a P2P network with n peers is

O(n2).

Recall that each d(i, S, v) has a TTL value of 2 in a source peer. So the traffic for one

time LTM optimization in all peers is at most 2n c,,2 0,. If each peer conducts LTM k

times per minute, the total traffic is 2kn en2 ce. We find the best value for k is 2 or 3.

Thus, the per minute traffic overhead incurred by LTM to the P2P network is O(n). Com-

pared with the query traffic savings, the traffic overhead from LTM is trivial, which will

be quantitatively shown later.

One question is why we don’t use TTLj-detector with a TTL ofj>2 in a source peer so

that cycles with more than 4 links can be detected and broken. There are two reasons for

not doing so. First, ifj>2, the traffic caused by detector flooding will be increased signifi-

cantly. Second, if the most expensive connection in a cycle is cut and its cost is not sub-
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stantially larger than the costs of other links in the cycle, a query initiated from any of the

two end peers in the broken cycle will need to traverse a path much more expensive than

the cost on the cut connection to reach another end peer.

4.3.5 Effectiveness of LTM in Static Environment

In our first simulation, we study the effectiveness of LTM in a static P2P environment

where the peers do not join and leave frequently. This will show that without changing

the overlay topology, how many LTM optimization steps are required to reach a better

topology matching.

The first goal ofLTM scheme is to reduce traffic cost as much as possible while retain-

ing the same search scope. Figure 4.23 compares the traffic cost incurred by the original

Gnutella-like system and by the system after one-step LTM optimization. One-step

means every peer makes LTM optimization only once. Since this simulation is based on a

static P2P environment, we do not include traffic cost incurred by LTM operations. In

Figure 4.23, the curve of ‘cn-neigh’ shows the average traffic cost caused by a query to

cover the search scope in x-axis, where in the system the average number of logical

neighbors is c... The dashed curves represent performance results without using LTM,

while solid curves represent the results with LTM optimizations. Figure 4.23 shows that

to cover the same search scope, one-step LTM reduces the traffic cost significantly, and

the reduction rate increases as the search scope increases.

In other words, with a given traffic cost, LTM will increases its search scope. Figure

4.24 shows that the traffic cost decreases when LTM is conducted multiple times, where

the search scope is all 8000 peers.

56



A
v
e
r
a
g
e

t
r
a
f
fi
c
c
o
s
t
p
e
r
q
u
e
r
y

(
1
0
5
)

A
v
e
r
a
g
e

t
r
a
f
fi
c
c
o
s
t
p
e
r
q
u
e
r
y
(
1
0
5
)

100

90

80

60

50

40

20

10

 

70-

30»

_ 

4-neigh

4-neigh (LTM)

6-neigh

6-neigh (LTM)

8-neigh

8-neigh (LTM)

10-neigh

10-neigh (LTM)i
i
i
i
i
é
i
i

 
 

’34 1X 1 ' 1 Y 1 1 L 1

0 1 000 2000 3000 4000 5000 6000 7000 8000

Search scope (nodes)

Figure 4.23 Traffic cost vs. search scope

 

  

—<>— 4neigh

—O— 6neigh .

—e- 8neigh

—>ie—— 10 neigh _

 
 

1 I I

2 4 6 8 10

LTM optimization (steps)

)
—

Figure 4.24 Traffic reduction vs. optimization step

57



 

—-— 4 neigh

—><- 6neigh

--+- 8 neigh J

+ 10 neigh
A
v
e
r
a
g
e
n
e
i
g
h
b
o
r
d
i
s
t
a
n
c
e
(
%
)

     
300 1 2 3 4 5 6 7 8 9

LTM optimization (steps)

Figure 4.25 Average neighbor distance vs. optimization step

We can see that the traffic cost reduction reaches to a threshold after the second or

third step LTM optimization. LTM can be convergent as fast as in 2-3 steps.

Average neighbor distance reflects effectiveness of LTM on topology match problem.

Figure 4.25 shows the average neighbor distance versus LTM optimization steps. Com-

pared with the original Gnutella-like network without LTM scheme (0 optimization

steps), one-step LTM optimization reduces AD by about 55%, and more steps of LTM

may cut AD to around 65%.

The simulation results in Figure 4.26 and Figure 4.27 show that LTM can effectively

shorten the query response time and search latency by about 62% and 55% respectively.

LTM scheme reduces both query traffic cost and response time without decreasing the

query success rate.
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Our other simulation results, which are not presented due to the page limitation, also

show that different densities of logical peers or physical nodes will not impact the effec-

tiveness of LTM. The average traffic cost is only proportional to the average number of

neighbors and average cost logical links, which is consistent with previous analysis.

4.3.6 LTM in Dynamic Environment

We further evaluate the effectiveness of LTM in dynamic P2P systems and explore the

best frequency for each peer to conduct LTM. We first discuss the performance impact of

the will-cut list and the cut list. The average number of logical neighbors we use is 6.
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From our simulation results in dynamic environments, we found that with the same

search scope the query success rate in dynamic environments is decreased by about 5%

compared with the static environment, as shown in Figure 4.28 (compare curves of static

Gnutella-like and dynamic Gnutella-like). One extreme case is when the search scope is

100%, which means that each query can reach all peers and we guarantee the query result

is available in at least one of the peers. The search success rate is expected to be 100% in

this case, but it is only 95%. The reason of the 5% loss in query success rate is that the

query responses cannot be returned due to peers’ dynamic leaving behavior. We call this

phenomena response loss problem.

If we don’t use the will-cut list in LTM, a connection will be out immediately when it

is found to be a slow connection, which will cause a very serious response loss problem

60



because many responses may not be returned due to the cut connections. The curve of

LTM without W-C in Figure 4.28 shows that the query success rate is significantly de-

creased by 30-40% without using the will-cut list. The LTM is conducted once every

minute in this simulation. Retaining query success rate is the reason we design the will-

cut list, each of which can hold 20 connections in our simulation. The up to 20 slow con-

nections will not be used to forward queries, but only used to return query results. The

lifetime of the connections in a will-cut list determines the query success rate. In Figure

4.28, a curve of LTM with W-C-n means the lifetime of a will-cut connection is n sec-

onds. We can see that the query success rate can be retained if the connections can be

kept in the will-cut list for 50 seconds.
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Another thing which deserves some words is the design of cut list. If we don’t use the

cut list, a connection that has just been cut may be established again. Thus the LTM op-

timization rate will be limited. Figure 4.29 compares the overhead incurred by LTM with

and without the use of the cut list. The fluctuations of the curves represent the dynamic

nature of the network as time goes. The curve of LTM-k means each peer conducts LTM

for k times per minute. We can see that the use of the cut list reduces traffic overhead by

about 50% compared with the case without using the cut list.

We use the will-cut list and the cut list in this part of simulation. Compared with a

Gnutella-like system, Figure 4.30 and Figure 4.31 show the effectiveness of LTM on re-

ducing average traffic cost and query response time.
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Figure 4.31 Response time vs. LTM frequency
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Since LTM adds some traffic overhead due to the TTL2 detector flooding, there exists

an optimal frequency for each peer to conduct LTM independently. We simulate LTM in

different frequencies ranging from 1/4 to 4 times every minute. We consider a frequency

to be optimal if the next higher frequency does not increase the optimization by more

than 3% compared with the current frequency. Results in Figure 4.30 and Figure 4.31

show that under the assumption that peer average lifetime in a P2P system is 10 minutes,

and 0.3 queries are issued by each peer per minute, the optimal frequency for every peer

to conduct LTM is twice per minute. With this frequency, about 75% reduction on traffic

cost and 65% reduction on response time can be achieved.

As we have mentioned, different values of peer average lifetime and query frequency

have been presented by previous studies [18, 72, 78, 82]. We further tune the two pa-

rameters (average lifetime and query frequency) in our simulation.
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Figure 4.32 shows that LTM can be conducted less frequently if peer average life-

time is longer. Figure 4.33 shows that LTM should be conducted more frequently ifmore

queries are issued. Both figures show that a larger average number of neighbors require a

higher LTM frequency.

4.3.7 Combining LTM and Query Index Caching

We compare the traffic cost and response time in a Gnutella-like system without any

optimization, with query index caching only, with one-step LTM optimization only, and

with one-step LTM optimization plus query index caching.

Results in Figure 4.34 and Figure 4.35 show that by combining LTM and query index

caching the traffic cost is reduced by about 10 times without shrinking the search scope,

and the average query response time is reduced by about 7 times.
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4.4 Scalable Bipartite Overlay (SBO)

We have presented AOTO and LTM. Since AOTO only work with peers’ one hop

away neighbor, its convergent speed is relative slow. Thus, its effectiveness is degraded

in highly dynamic systems. LTM has a faster speed compared with AOTO, but it needs to

synchronize all the peering nodes. In this chapter, we introduce SBO, which employs an

efficient strategy for distributing optimization tasks in peers with different colors. In

SBO, each joining peer is assigned a color so that all peers are divided into two groups of

white or red colors, respectively. White peers probe neighbor distances and reports the

information to the red neighbors and red peers compute efficient forwarding paths. A

white peer that is not on forwarding paths of a red peer tries to find a more efficient red

peer to replace this neighbor. The topology construction and optimization of SBO consist

of four phases: bootstrapping a new peer, neighbor distance probing and reporting, for-

warding connections computing, and direct neighbor replacement.

4.4.1 Design of SBO

In the first phase of SBO, each joining peer is randomly assigned a color so that all

peers are divided into two groups with white or red colors, respectively. Each peer is only

connected with peers in a different color. In the second phase, each white peer probes its

distances with all its red neighbors and reports the information to the red neighbors. In

the third phase, each red peer computes efficient forwarding paths so that the same search

scope can be retained without the need to flood a query to all neighbors. In the fourth

phase, a white peer who is not on the forwarding path tries to find a more efficient red

peer to replace its current neighbor.
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Figure 4.36 Bootstrapping a new peer

Phase 1: bootstrapping a new peer.

When a new peer is joining the P2P system, it will randomly take an initial color: red

or white. A peer should keep its color until it leaves, and again randomly select a color

when it rejoins the system. Thus, each peer has a color associated with it, and all peers are

separated into two groups, red and white. In SBO, a bootstrap host will provide the join-

ing peer a list of active peers with color information. The new joining peer then tries to

create connections to the different color peers in the list. Figure 4.36 illustrates a new

peer’s joining process. In such a way, all the peers form a bipartite overlay, in which a red

peer will only have white peers as its direct neighbors, and vice versa.

Once a peer has joined the P2P system, it will periodically ping the network connec-

tions and obtain the IP addresses of other peers in the network, which will be used to

make new connections for the peer’s rejoining or in the case that the peer loses some of
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the connections with its neighbors due to the neighbors’ departure or failure, or the faults

in the underlying networks

.Phase 2: neighbor distance probing and reporting by white peers

We modify the LimeWire implementation of Gnutella 0.6 P2P protocol by adding one

routing message type for a peer to probe the cost with its neighbors. Each white peer

probes the costs with its immediate logical neighbors and forms a neighbor cost table, and

sends this table to all its neighbors who are all red peers. The impact of the frequency of

the white peers’ probing and cost table reporting operation will be discussed in more de-

tail later.

Since each red peer, P, receives the cost table from its white neighbors about its all red

neighbors, the red peer P has the information to obtain the overlay topology including P

itself, N(P), and N2(P), as illustrated in Figure 4.37 (a). Note that in SBO the overlay

forms a bipartite topology, so there is no connections between any pairs ofpeers in N2(P).

Thus, we only require all the white peers to probe the costs to their neighbors and send

out the cost tables. There is no need for the red peers to probe the distance.

 

 
Figure 4.37 A red peer P has topology of (P+N(P) + N2(P)), and computes the MST
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Figure 4.38 A red peer computes the efficient forwarding paths

Phase 3: forwarding connections computing by red peers

Based on obtained neighbor cost tables, a minimum spanning tree (MST) can be built

by each red peer, such as P in Figure 4.37 (b). Since a red peer builds a MST in a two-hop

diameter, a white peer does not

need to build a MST. The thick lines in the MST are selected as forwarding connections

(FC), while the rest lines are non-forwarding connections (NFC). Queries are only for-

warded along FCs. For example, in Figure 4.37(b), P will send/forward queries to A, B

and F, but not E. Peer P also informs E that E is a non-forwarding neighbor. This infor-

mation will be used by E in Phase 4, i.e., direct neighbor replacement.

Figure 4.38(a) illustrates how the query message from P is flooded along the connec-

tions based on Figure 4.37(a). We can see many message duplications, i.e. RK problem.

The total traffic cost incurred by the query is: 3+6+5+5+12+3+5+6+9+9+15+11+

11=100. After FC computing in Figure 4.37(b), the traffic cost incurred by this query be-

comes: 3+6+5+3+5+6+15=43 as shown in Figure 4.38(d).

Although FC computing can reduce a lot of traffic while retaining the same search

scope, as we described earlier, the price is to scarify query response time, or the query
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latency. For instance, P issues a query, and E has the desired data. The response time in

Figure 4.38(a) is 2 X 12 = 24. After FC computing, the response time becomes 2 X (3 + 6

+ 5) =28. Based on this observation, we will further improve our FC selecting algorithm

later in this section.

Phase 4: direct neighbor replacement by white peers

This operation is only conducted by white peers. The goal of neighbor replacement is

to alleviate the topology mismatching problem, or RN problems. As we have explained,

solving RN problem is essential since it will not only reduce message duplications and

traffic cost, but also shorten the response times.

After computing a MST among the peers within two hops, a red peer P is able to send

its queries to all the peers within two hops. Some white peers become non-forwarding

neighbors, such as E in Figure 4.37. In this case, for peer E, P is no longer its neighbor. In

the phase of direct neighbor replacement, a non-forwarding neighbor, B, will try to find

another red peer being two hops away from P to replace P as its new neighbor.

Peer P will send the neighbor cost tables it collected from A, B and F to the non-

forwarding neighbor B so that E has enough information to find another neighbor to form

a more efficient topology. Having received the cost tables, E can obtain the overlay to-

pology among P and the peers N(P) and N2(P). In the design of SBO, B will probe the

round trip times (RTTs) to all the red peers in N2(P) and sort the red peers according to

their RTTs. Peer E then selects the one with the smallest RTT, e.g., peer D in Figure

4.39(a). There are three cases for peer E who finds D as its nearest red peer.

Case 1: The delay of ED is smaller than that of EP. The connection of ED will be cre-

ated, and D becomes E’s direct logical neighbor. The connection EP will be put into E’s
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will-cut list that is a list of connections to be cut later. A connection in a will-cut list will

be disconnected when it has been in the list for a certain period of time. A peer will not

send or forward any queries to the connections in its will-cut list.

The reason for E not to disconnect EP immediately is that some query responses might

be sent back along the overlay path EP for some earlier queries. Disconnecting non-

forwarding connections, such as EP, immediately may cause serious response loss prob-

lem. Figure 4.39(b) is the topology after E connects with D, and disconnects with P after

a timeout period.

Case 2: The delay of ED is larger than that of EP, but is smaller than the larger one of

PF and FD. For example, if ED=13 in Figure 4.39(c), 12 < ED < 15. hi this case, E will

create the connection of ED and treat D as its direct neighbor. Peer B will not put connec-

tion EP into its will-cut list until it sends its neighbor cost table to D so that D still thinks

the connection of EP exists. Note that the algorithm is completely distributed. Thus, when

red peer D conducts the FC computing, F will become D’s none-forwarding neighbor.

The white peer F will conduct the same operations as what peer E has done, and may try

to find a better red peer to replace node D as its neighbor.

Case 3: If ED has the largest delay among EP, PF and FD, peer B will pick the second

nearest peer in N2(P), such as C in Figure 4.39(d), and repeat the above process until it

finds a better node to replace P as its neighbor, or until it has tried all the peers in N2(P).

The first three operations are relatively straightforward, so we do not provide the de-

tailed pseudo code, and the pseudo code of direct neighbor replacement operation is as

below.
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Figure 4.39 An example of neighbor replacement

For a white peer i

For each peer j in white peer i's non-forwarding neighbor list

Replaced = false;

List=al| the two hope away red neighbors of j, N2(j);

Peer i pings all the peers in List;

Add peers’ R'lT information to List;

While List is not empty and Replaced = false

remove the peer h with smallest R'l'r from List;

if RTT,,, < RTT,-,- {replacej by h in i's neighbor list;
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Putj into will-cut list;

Replaced = true;}

else

Common_list=al| common neighbors of peerj and h;

While Common_list is not empty and Replace=false

Randomly remove a peer k from Common_list;

R'lTk=max{R'lTk,, RTTkh};

if RTT,-h < R'l'l'.<

{add h to i's neighbor list;

remove j from i's neighbor list right after

i finds out jk or kh is disconnected;

Replaced = true;};

End While;

End While;

End For;

4.4.2 Further Improvements

Previous studies have shown that queries and queried data have significant locality [76,

89]. A small number of peers issue a large portion of the queries and the 5% of the files

accounts for 50% of all transfers. Peers’ behaviors are different in the query frequency

and response frequency. We define a query-heavy peer who issues queries frequently, and

a response-heavy peer who often responds queries. We have discussed in the previous

section that reducing RK duplication may lead to increase query response time. To avoid

disconnecting a path from/to a query/response heavy peer, we further improve SBO by
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keeping some single direction connections (SDC). Below we define Query-heavy peer

and Response-heavy peer.

Query-heavy peer. If the number of queries that a peer have issued or forwarded is 5

times more than the average number of queries in last minute (the number of 5 times is

selected based on our simulation), it is defined as a query-heavy peer. In our simulation,

with an average number of neighbors being 6, initial TTL=7, average peer lifetime of 10

minutes, and query frequency of 0.3 queries issued per peer per minute, we measured that

the average number of queries processed (issued and forwarded) by each peer is about 15

to 25 per second. Thus, a peer is identified as a query-heavy peer if it processed more

than 75 queries per second.

Response-heavy peer. In Gnutella protocol v0.6, Query Hit (response) messages are

sent along the same path that carried the incoming query message. In our simulation, a

peer delivers or forwards 3 responses per minute in average. In SBO, a peer processed

more than 20 responses in last minute is defined as a response-heavy peer (The number of

20 responses is selected based on our simulation). 7

Single Direction Connections (SDC). Every peer in SBO will monitor its own status.

If a peer finds itself a query/response-heavy peer, it will report its status to all its

neighbors. Thus, when a red peer computes PCs to form the forwarding paths, a white

neighbor who is not a forwarding peer may be a query- or response-heavy peer. The con-

nection between the red peer and the white peer will be set as a SDC. For example, if peer

E in Figure 4.39(b) is a response-heavy peer, instead of setting PE as a non-forwarding

connection, it will set PE as a SDC: P-)E, where P will send/forward query messages to

E while B will not send/forward any query messages to P. In this case, B will still do its
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neighbor replacement operation. The SDC: P-)E will be disabled when E is no longer a

response-heavy peer. If E is a query-heavy peer, connection PE will be set as SDC: E-)P,

where B will send/forward query messages to P while P will not send/forward any query

messages to E.

4.4.3 Traffic Overhead of SBO Optimizations

One optimization step of SBO includes all white peers’ neighbor distance prob-

ing/reporting and neighbor replacement. In the worst case, each white peer, P, needs to

probe every peer in N2(P). It is reasonable to assume that the traffic overhead of peer A

probing peer B is equal to a query message traversing the connection AB twice. If each

peer conducts SBO optimization operation k times per minute, the total traffic overhead

per minute is:

kc” ce (3 + 2c") 11

2

Our simulation results will show that the optimal value for k is less than 1, so the per

 

kx(-:—x(2cnce +cnce + 2cfce)) =

minute traffic overhead incurred by SBO to the P2P network is O(n). Compared with the

query traffic savings, the traffic overhead from SBO Optimization is relatively trivial.

4.4.4 Property analysis of SBO operations

We are going to prove that SBO operations will not increase the number of compo-

nents of a graph.

Theorem: Given a bipartite graph G = (V, E), the SBO optimization operations will

not increase the G’s component number.
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Proof: We prove by contradiction. Suppose our claim is false. Then, there exists at

least one component C, where C is a subgraph of G, which could be disconnected by the

SBO operations. Suppose C is disconnected into two parts, X and Y, after SBO opera-

tions, as shown in Figure 4.40.

Before the SB0 optimization, there must be one or more edges between X and Y since

C is connected. Let M denotes the set of the edges between X and Y. Among all these

edges in M, we choose the shortest one, quM. Here we assume there are no exact equal

length edges in the system, so uv is the only shortest edge in M.

Since G is a bipartite graph, peer u and v must have different colors. Without loss of

generality, we can assume it is red and v is white. C is disconnected alter SBO operations

means that none of the edges in M, including uv, is selected as u’s forwarding path.

 

 
Figure 4.40 Proof of the property of 830 operations
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We know that the red peer it employs a MST algorithm, such as kruskal algorithm, in

PC computing operation. Because v is u’s one hope neighbor, v must be included in u’s

MST. In kruskal algorithm, edges are sorted from shortest to longest. The edge uv is not

selected by MST means that there is already another path P (qu P) between u and v, and

the length of each edge in P is shorter than uv. As P is between X and Y, at least one of

the edges in P, say edge 6, belongs to M. Thus, we have e < uv, which is a contradiction

to our choice that uv is the shortest edge in M. I

4.4.5 Effectiveness of SBO in Static Environments

We study the effectiveness of SBO in a static P2P environment firstly. This will show

that without changing the overlay topology, how many SBO optimization steps are re-

quired to reach a better topology matching. Here one step we mean each red peer collects

the neighbor cost tables from its neighboring white peers, and computes the efficient for-

warding connections, and its neighbors finish neighbor replacement operations, if needed.

Note that in the design of SBO, if the reported information from all neighbors includ-

ing neighbor status and cost-tables are not changed, the red peer will not compute FCs.

Consequently the neighboring white peers will not do the neighbor replacement opera-

tions.

We generate 500,000 queries, and simulate flooding search for different topologies

with average neighbor number as 4, 6, 8 and 10 after each SBO optimization step, and

show the results in Figures 4.41 and 4.42.
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Figure 4.41 shows that the traffic cost decreases when optimization operations of SBO

are conducted multiple times, where the search scope is all 7,000 peers. To cover the

same search scope, SBO reduces the traffic cost significantly in first two optimization

steps. We can see that the traffic cost reduction reaches to a threshold after eight to ten

steps of SBO optimization. The simulation results in Figure 4.42 show that SBO can ef-

fectively shorten the query response time by about 60% in first 10 Optimization steps.

SBO reduces both query traffic cost and response time without decreasing the query suc-

cess rate.

Our other simulation results, which are not presented due to the page limitation, also

show that different densities of logical peers or physical nodes will not impact the effec-

tiveness of SBO. The average traffic cost is only proportional to the average number of

neighbors and average cost of logical links, which is consistent with previous analysis.

4.4.6 Frequency of SBO Optimizations

In SBO, there are two ways for a white peer to decide when to conduct neighbor prob-

ing and reporting, namely periodic and event-driven. In periodic approach, each white

peer conducts neighbor distance probing at every certain period of time, q. After probing

the distances to all the neighbors, a white peer sends the cost table to its neighboring red

peers. In event-driven approach, a white peer produces and sends an updated cost table to

its neighboring red peers only if there is a change on its logical connections with its

neighbors, such as on a neighbor’s leaving or on a peer’s joining as its new neighbor.
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The value q is a critical factor for the performance of periodic approach. We have in-

vestigated the impact of different values of q ranging from 205 to 6005. Figures 4.43 and

4.44 show the results on some representative samples of q at 30s, 605, 903, and 1205, re-

spectively, where x-axis indicates the time elapsed since the first probing or event oc-

curred. A small q leads to a fast convergent speed. However, if q is too small, e.g. q=30,

peers will conduct the optimization operations too ofien, making the overhead keep grow-

ing when the reduction of the traffic cost and response time have already reached a

threshold.

The value of q should be able to adaptive to the average peer lifetime in order to

achieve optimal performance. Figures 4.43 and 4.44 also show that the periodic approach

with q=90s outperforms even-driven approach on traffic reduction.
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As we have mentioned, different values of average peer lifetime have been presented

by previous studies [17, 72]. We further tune the average peer lifetime in our simulation.

Figure 4.45 shows that SBO optimization operations can be conducted less frequently if

average peer lifetime is longer.

From our simulation results, we find that if the average peer lifetime is longer than 37

minutes, the event-driven policy will outperform periodic policy.

In a super peer P2P system, such as KaZaA, flooding based search is only employed

among super peers. The mechanism to select super peers makes the super peers more sta-

ble than leaf peers. Thus, an event-driven policy is highly recommended when SBO is

implemented among super peers.

4.4.7 SBO with SDC and Index Caching

We have discussed the design of SDC to further improve SBO. In this part, we evalu-

ate SDC based on SBO and a strategy of combining SBO with response index caching

scheme. We compare the traffic cost with SDC enabled SBO optimization plus response

index caching in Figures 4.46 and 4.47. The design of SDC can further improve average

response time of SBO by about 25% with very trivial traffic cost increment. Also com-

pared with SBO, by combining SDC enabled SBO with response index caching the traffic

cost is reduced by about 50% without shrinking the search scope, and the average query

response time is reduced by about 42%.
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4.5 Two Hop Away Neighbor Comparison and Selection (THANCS)

Two Hop Away Neighbor Comparison and Selection (THANCS) scheme effectively

attacks the topology mismatch problem and optimizes the overlay topology to approach

the optimal solution. In THANCS, each peer probes the distances with its immediate

logical neighbors and piggybacks all its neighbors’ distance information with selected

query messages. Thus, peers may have two hop away neighbors’ information without

much extra overhead to optimize the topology to approach an optimal overlay. THANCS

consists of two main components: piggybacking neighbor cost on queries, and neighbor

comparison and selection.

4.5.1 Piggyback Neighbor Distance on Queries

We use network delay between two peers as a metric for measuring the distance be-

tween the peers. In THANCS, each peer probes the distances with its immediate logical

neighbors and stores the information in its local storage. Peers in Gnutella have a limited

number of neighbors, 4 to 6 on average, so the overhead of this operation is trivial for

each peer. Since Internet paths are relatively stable [95], to keep the neighbor information

up to date, a peer only needs to probe the distance to its new neighbor and modify the

neighbor distance information when any of its neighbors is leaving.

Table 2: Piggy Message body

 

Neighbor IP Address Neighbor Distance

   
 

Byte offset 0 3 4 5

For each peer to keep the distance information of its neighbors, we add one special

query message type, Piggy Massage. A piggy message has a message body in the format

as shown in Table 2. It includes two fields: Neighbor’s IP Address and Neighbor’s Dis-
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tance. Since a piggy message will be piggybacked by a query message, it does not need

the Gnutella’s unified 23-byte header.

A peer constructs a piggy message for each of its neighbors. The idea here is to send

the piggy message of one neighbor to all the other neighbors. In order not to increase the

number of messages, THANCS is designed to piggyback a piggy message on a query

message.

 

  

 

Normal Query 0

Message

3 Piggy Piggy

“19.535135— _ _ _ _Me_ssige_>0

\

\

. \

Plggy ~t

Message

Figure 4.48 Forwarding piggy messages

For example, peer P in Figure 4.48 constructs a piggy message for its neighbor Q,

which contains Q’s IP address and the distance of PQ. When P receives a query from Q,

this piggy message will be piggybacked by the query message that will be forwarded to

all the other neighbors of peer P. The payload type of a query message piggybacking a

piggy message can be defined as 0x82 to distinguish it from a normal query message

(0x80). The payload length of such a query message will be increased by 6. After receiv-

ing such a query message, each of the other neighbors will detach the piggy message

from the query message, record the distance information of P to Q, and further process

the query and forward the query message if necessary. The piggybacked piggy message

86



will not be forwarded, but it is possible for this query message to piggyback another

piggy message.

However, peer P may receive queries from Q very frequently. It is obviously not nec-

essary for all query messages from Q to piggyback the piggy message. One critical issue

to be examined here is which incoming queries should piggyback the piggy message. Al-

though a piggy message is only 6-byte long, a large amount of duplicated piggy messages

still inserts a lot of unnecessary traffic into the network. In this study we present two

policies for this selection: pure probability-based (PPB) policy and new neighbor trig-

 
 
 

 

gered (NNT) policy.

N —>

O a normal query message

A
i ----->

i I a Piggy message
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Figure 4.49 New neighbor triggered ploicy

The PPB policy is simply providing a pre-defined probability, a, for a query to decide

to piggyback a piggy message. That means in each peer, the probability for a query to

piggyback a piggy message is or. A smaller or means there will be fewer queries piggy-

backing piggy messages. Note that in this design, it is not to say that once a query starts

to piggyback a piggy message, the piggy message will be forwarded with the query mes-
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sage until the query message is dropped. Instead, each piggy message will be piggy-

backed for only one single hop. The piggy message will be detached from the query mes-

sage from the previous peer. With the probability or, this query message may piggyback

another piggy message in the current peer. The major advantage of this policy is its sim-

plicity.

In the NNT policy, query messages will not piggyback piggy massages until a peer

finds a neighbor who just joined the P2P network. As shown in Figure 4.49, all peers

monitor new neighbors’ coming. For example, when a peer P gets a new neighbor N, P

does the following two operations. First, peer P probes the distance with N and constructs

a piggy message. Peer P lets the first query message coming from N piggyback this piggy

message. This query message with piggybacked piggy message will be forwarded to all

P’s existing logical neighbors except peer N. Second, the first incoming query from each

of P’s existing neighbors afier peer N’s coming will piggyback a corresponding piggy

message (with the distance to this neighbor) when it is forwarded to N. However, the

query message will not piggyback a piggy message when it is forwarded to the other ex-

isting neighbors, as illustrated in Figure 4.49. Another option is to let the first query mes-

sage from P’s previous neighbors piggyback all the piggy messages (except the one for

the new neighbor) to the new neighbor, N. Compared with the PPB policy, NNT policy is

relatively complicated while it has smaller traffic overhead.

We will further discuss the selection of the probability for this policy, and the selection

of these two policies in detail later.
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S will know the distance between each peer in N(S) and any of the peers in N2(S) that

are connected with the peer in N(S). This information will be used in the second compo-

nent, neighbor comparison and selection.

4.5.2 Neighbor Comparison and Selection

The behavior of THNACS peers in this neighbor comparison and selection component

is demonstrated through an example in Figure 4.50. An arbitrary peer, S, probes the dis-

tance to all the known un-probed N2(S) peers. The distance of SP is known to S. When

peer S receives a piggy message from peer P with the distance of PQ, there will be two

cases.

  

probr/ng//——--—~...Q

/ //—\\

, / \

S / l P \

O I, ; Q
\

\\N(Sl/ "2(3)

Figure 4.50 Probing two hop away neighbors

Case 1 : Peer Q is also a direct neighbor of peer S, i.e. QE (N(S) (N2(S)). In this case,

peer S will compare the cost of SQ, SP, and PQ. If SQ or SP is the longest in these three

connections, S will put the longest connection into its will-cut list that is a list of connec-

tions to be out later, e. g. 50 second later. If PQ is the longest, peer S will do nothing be-

cause the system is fully distributed and peer P or Q will disconnect PQ shortly. A peer

89



will not send or forward queries to connections in its will-cut list, but these connections

have not been cut in order for query responses to be delivered to the source peer along the

inverse search path.

Case 2: Q is a two-hop away neighbor of S, but not a direct logical neighbor of S, i.e.

Q E (N2(S) -N2(S)). Peer S will first check whether it had probed peer Q before or used to

have peer Q as a direct neighbor by looking up S’s distance-cache that is designed to keep

a list of peers that have been probed by peer S. If peer S used to probe the distance to peer

Q, S will do nothing with peer Q and start probing other peers in N2(S). Otherwise, peer

S will probe the distance to peer Q, and store the probing result in the distance-cache.

Having the distance of SQ, peer S compares SQ, SP, and PQ. If SQ is the longest, peer S

will not keep the connection with peer Q. If SP is the longest, S will keep the connection

with peer Q and put SP into the will-cut list. If PQ is the longest in the three connections,

S will keep the connection with both P and Q, expecting that peer P or Q will disconnect

PQ later.

The first component, piggyback neighbor distance on queries, is relatively straightfor-

ward. The selection of PPB or NNT policy will be further discussed in Section 6. Thus,

we do not provide the detailed pseudo code for this part here. The pseudo code of

neighbor comparison and selection component for a given source peer i is as below. Let

Dij represent the distance from peer i to j.

Pseudo code of neighbor comparison and selection:

for each he N2(i) in j’s direct neighbors,

flhENU)

{check 0”,;
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if (D, > Dy.) 0 (D, > 0],)

{put connection ih into i's will-cut list; }

else if (Dij > Dih) 0(1),; > By.)

{put connection ij into i’s will-cut list; }

end if

else

if (Dm is not in i’s distance-cache)

Probe Din;

if (D,,, < D.) U (Du, < DJ»)

{keep the connection with peer h and include h as a direct logical

neighbor of i;

if (Dy- > Dill) n (Dij > D112)

{put connection ij into i’s will-cut list; }

}

end if

end if

end if

end for

4.5.3 Effectiveness Analysis of THANCS

To the best of our knowledge, the work in [69] is the first to mention the topology

mismatch problem in Gnutella like P2P systems and comprehensively discuss the impor-

tance of a “proper fitting” overlay topology. The authors also provided an example to il-

lustrate this problem, as shown in Figure 4.51. In this figure, solid lines represent the un-
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derlying infrastructure that connects the eight hosts in a Gnutella-like P2P system, and

dotted lines denote the overlay connections.

In an inefficient overlay shown in Figure 4.51(a), a message from node A involves six

communications over the physical link D-E. This inefficient overlay can be optimized by

THANCS. For example, when peer A receives peer E’s piggy message indicating the cost

of D-E, A will create overlay connection A-D and disconnect connection A-E shortly.

After one or two steps of THANCS optimization, the overlay shown in Figure 4.51(a)

will be optimized as the overlay shown in Figure 4.51(b), in which a message from node

A involves only one communication over the physical link D-E.

 

 

 

 
- /
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\

\\
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Figure 4.51 THANCS can effectively optimize a mismatched overlay topology to a

better mapping overlay. (a) With inefficient mapping, a broadcast message issued

by node A travels physical link D-E six times. (b) After THANCS optimization, with

a better mapping, the same message traverses D-E link only once.

4.5.4 Effectiveness of THANCS in Static Environments

92



We first study the effectiveness of THANCS in a static, so that we may contrast the ef-

fectiveness of THANCS optimization with an optimal overlay algorithm. We have

proven that the DMAD problem is NP-hard, so this simulation is conducted based on a

small size overlay topology. Specifically, in this simulation, 128 out of 27,000 nodes are

randomly selected as peering nodes. We then generate 100,000 queries, and simulate

flooding search for different overlay topologies including a Gnutella-like overlay, a

THANCS optimized overlay, and an optimal overlay that is obtained by a brute force al-

gorithm. Here we have two assumptions. First, we assume that the underlying physical

layer uses shortest path routing with delay as the metric. Second, we assume the average

number of neighboring peers is 4, or there are totally 256 overlay connections in the 128-

peer topology. We run the simulation 20 times with different random choices of peers and

report the average results of 20 runs.
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Our simulation results show that in an optimal overlay, no response comes back along

mismatched paths. In Figure 4.52 we show the percentage of query responses along mis-

matched paths of three schemes. Recall that 70% of the queries are back along mis-

matched paths in Gnutella like P2Ps. An optimal overlay effectively replaces all the mis-

matched paths as shown in Figure 4.52. THANCS is proven an effective approach Opti-

mizing up to 58% out of the 70% mismatched paths. As a result, system performance is

improved significantly. Figure 4.53 shows that the traffic cost, c, decreases by up to 75%

when optimization operations of THANCS are conducted. In Figure 4.54 we show that

THANCS can effectively shorten the query response time by about 60%.

We also show the search efficiency on the optimal overlay in these two figures. Al-

though there is no bound indicating how well THANCS could do, the simulation results

show the overall performance of THANCS is close to the optimal solution in a static en-

vironment.

4.5.5 THANCS in Dynamic Environments

Previous simulations are based on a static P2P environment on top of a small size over-

lay and we have mentioned that the difficulties of solving topology mismatch problem are

that peers are randomly coming and leaving, and real P2P systems have a huge number of

online users. We further evaluate the performance of THANCS in a dynamic environ-

ment with a large number of peers. We first discuss how to select a better policy from

PPB and NNT. We then evaluate the effectiveness ofTHANCS by varying the size of the

P2P system and the average number of connections in the overlay network.
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THANCS is a completely distributed approach, so each single peer determines its own

operations independently without any help from a central server. One key issue for peers

is which query message should be piggybacked with a piggy message.

We have discussed two options, PPB and NNT. We evaluate these two policies here. In

this part of the simulation, we select 5,000 nodes from the 27,000 nodes physical topol-

ogy as overlay peers and simulate flooding based search for 50,000 queries, which means

around 30 minutes in a real P2P environment. Figure 4.55 plots the performance of

THANCS on solving the topology mismatch problem when using NNT policy and PPB

policy. The curve of ‘PPB-a’ shows the performance of PPB, where the probability of an

incoming query to piggyback a piggy message is (2%. Figure 4.56 plots the traffic over-

head ofthese two policies.
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Figure 4.56 Traffic cost overhead of THANCS with NNT or PPB policies

The most attractive advantage of PPB policy is its simplicity. In PPB policy, each peer

blindly selects some of the queries using a straightforward rule to piggyback piggy mes-

sages without monitoring logical neighbors’ coming or leaving. Indeed, the overhead of

PPB is not intolerable, although it is high as shown in Figure 15. In this simulation, the

mismatching reduction of PPB-1.0 is close to NNT policy, but PPB-1.0 has the largest

traffic overhead. This overhead in the simulated environment, however, is only equivalent

to the traffic of a couple of queries per minute, accounting for less than 2% of the traffic

savings by THANCS. The NNT policy can further reduce optimization traffic overhead,

but it is a bit more complicated compared with PPB policy. Simulation results in Figures

4.55 and 4.56 show that NNT outperforms PPB in the sense that it has a higher optimiza-

tion rate and a smaller traffic overhead. Thus, we adopt NNT policy. The traffic overhead

ofNNT is less than 0.3% of the traffic savings.
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To better evaluate the performance ofTHANCS in dynamic environments, we vary the

size of the Gnutella-like overlay networks from 2,000 to 8,000. We simulated the search

process on each of the overlays for 30 minutes, and repeat this simulation with different

random seeds for 20 times. We plot the average results with and without the THANCS

optimization scheme. Here we use two metrics, traffic cost reduction rate (Rc(*)) and re-

sponse time reduction rate (Rt(*)). Re C“) is defined by:

C(Gnutella — like) — C(THNACS)
 RC(*) = x100%

C(Gnutella — like)

where C(Gnutella-like) represents the traffic cost incurred by searching all the peers using

the given mechanism (*), such as blind flooding, in a Gnutella-like overlay. C(THANCS)

represents the traffic cost incurred in THANCS enabled P2P networks.

Rt (*) is given by:

T(Gnutella — like) - T(THNACS)

 

R, (*) = x100%

T(Gnutella — like)

where T(Gnutella-like) denotes the average response time of queries in Gnutella-like

overlays, and T(THANCS) is that of THANCS enabled systems. In this simulation, we

study the performance of THANCS based on the blind flooding mechanism, and we will

demonstrate the effectiveness of THANCS on other existing advanced search strategies

shortly. The variance of data in different simulation runs is very small, so we do not show

the confidence intervals in the figures. Figures 4.57 and 4.58 show that the performance

ofTHANCS is not strongly dependent on the size ofthe network.
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Figure 4.58 Average response time reduction of THANCS in different size overlays

ranging from 2,000 to 8,000 nodes

99



With THANCS enabled, Rc (flooding) is up to approximately 75%, which means that

the total network traffic incurred by blind flooding search will be decreased by 75%

without shrinking the search scope. At the same time, average query response time is also

decreased by approximately 60%. We also tried THANCS in physical topologies based

on real AS-level Internet topologies [13] and the results proved consistent with those of

generated topologies.

We demonstrate the effectiveness of THANCS by varying the average number of logi-

cal neighbors from 4 to 6, and plot the results in Figures 4.59 and 4.60. As shown in Fig-

ure 4.59, Re (flooding) is higher than 75% when peers have 4 neighbors, and it grows

slightly when average connection number is increased. Figure 4.60 shows that the reduc-

tion in response time drops slightly when peers have more edges, but still at a level of
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with different average number of neighbors ranging from 4 to 6

4.5.6 Effectiveness with other advanced search strategies

We have run simulations under the blind flooding search mechanism based on the fol-

lowing observations. First, although many advanced search mechanisms are proposed,

flooding based search is still the most popular search mechanism widely used in today’s

real systems. Second, topology optimization based approaches are orthogonal with other

existing search mechanisms, such as forwarding based or cache based optimization.

THANCS could be combined with other types of advanced search strategies and further

improve search efficiency of P2P systems. Therefore, the effectiveness of THANCS on

flooding based search can also reflect the effectiveness of THANCS on other search

mechanisms.
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Figure 4.61 Traffic cost and average response time reduction on Random Walk

and Index Cache schemes when employing THANCS

In our simulation, we have designed and built some schemes that combine THANCS

with two popular advanced search mechanisms, Random Walk, and Index Caching. We

first simulate search under a simple random walk scheme, as introduced in [55]. For each

query we issue 30 walkers. We then combine THANCS with Index Caching, in which

query responses are cached in passing peers along the returning path [82]. Each peer

keeps a local cache and a response index cache. The size of a response index cache is lim-

ited to 200 items.

We can see in Figure 4.61 that THANCS can further improve search efficiency when it

is employed with these advanced approaches. In Figure 4.61, we show Rc (Random

Walk), Rt (Random Walk), Rc (Index Cache), and Rt (Index Cache). As expected,

THANCS reduces traffic cost and response time of the Index caching scheme by ap-
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proximately 80% and 39% respectively, and reduces both traffic cost and response time

of the Random Walk by more than 55%.

4.6 Discussion

Without assuming any knowledge of the underlying physical topology, the conven-

tional P2P mechanisms are designed to randomly choose logical neighbors, which cause

serious topology mismatch problems between the P2P overlay network and the underly-

ing physical network.

To alleviate the mismatch problem and reduce the unnecessary traffic and response

time, four schemes are introduced in this chapter: Adaptive Overlay Topology Optimiza-

tion (AOTO), Location-aware Topology Matching (LTM), Scalable Bipartite Overlay

(SBO), and Two Hop Away Neighbor Comparison and Selection (THANCS).
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Figure 4.62 Traffic cost reduction of AOTO, LTM, SBO and THANCS
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Figure 4.63 Response time reduction of AOTO, LTM, SBO and THANCS

All of them achieve the above goals without bringing any noticeable extra overheads.

Moreover, these techniques are scalable because the P2P overlay networks are con—

structed in a fully distributed manner where global knowledge of the network is not nec-

essary.

We compare the performance of these four approaches in dynamic P2P environments

in Figures 4.62 and 4.63. In this simulation, the size of overlay topology is 5,000, the av-

erage neighbor number is 6, and the physical topology has 27,000 nodes.

From the figures we can see that, although AOTO is the simplest one, its convergent

speed is the slowest, so its overall performance in dynamic environments is not as good

as the other three approaches. The convergent speed of LTM is the fastest, but it needs

the support ofNTP [14] to synchronize the peering nodes. Since THANCS has very simi-
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lar performance with LTM, but does not need to synchronize peers. SBO, incurring only

half overhead of AOTO, reduces the traffic cost the most. Comparing THANCS and SBO,

SBO has less overhead and THANCS has lower response time, which is because

THANCS converges faster than SBO. Thus THANCS performs better in a more dynamic

environment. When the peers are frequently coming and leaving the system, such as a

non-super peer Gnutella-like system, we prefer THANCS. In a more stable system, such

as the super peer layers in KaZaA, using SBO is a good choice.
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5 Defending P2Ps from Overlay Flooding-based

DDoS

Our belief that unstructured P2P systems, such as Gnutella- and KaZaA-like networks,

are vulnerable to overlay DDoS attacks is based on following observations.

First, the flooding based search mechanism makes overlay DDoS in P2Ps simple in de-

sign and operation without requiring any special resources. Malicious nodes may attack

the system by simply walking in and sending out a huge number of useless search que-

ries. The message volume will be quickly propagated so that the resources in the P2P sys-

tem can be exhausted by a small number ofDDoS attack machines.

Second, the anonymity design of P2P helps the malicious nodes easily hide behind

other peers. For example, the forwarding peers do not know the original sender of each

query and the query response is only delivered to the neighbor along the inverse path of

the search path. Attempting to disconnect all the peers who send out a large number of

queries is dangerous in that “good” peers could be forwarding queries for “bad” peers.

We show a simple example in Figure 5.1. Instead of flooding the same queries to all its

neighbors, a “bad” peer issues different queries to its neighboring peers in order to make

DDoS attacks more damaging to the system. We can see in Figure 5.1 that the query traf-
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fic in some connections between “good” peers is much higher than that in the connections

between a “bad” peer and a “good” peer.

1,000  

 

   

 

2,000

 

 

 

E] “bad” Peer

. “good” Peer

1,000 1,000 queries/ minute
——>

Figure 5.1 Although peer q sends out 5,000 queries per minute, it is a “good” peer

Finally, the nature of free downloading in P2P systems makes peers easily recruited as

DDoS agent (slave) peers by downloading files with special packets attached.

It is challenging to handle overlay DDoS in P2P systems because of the extreme diffi-

culty in separating attack query traffic from legitimate traffic, while it is relatively easy to

perform DDoS in P2P without being detected. Note that the victim of P2P overlay DDoS

is not a single peer but the P2P system itself.

In this chapter, I introduce a detection based approach, DD-POLICE (Defending P2Ps

from Overlay Distn'buted—Denial-of-Service), to protect P2P systems against overlay

DDoS. In DD-POLICE, peers monitor the traffic from and to each of their neighbors. If a
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peer receives a very large ntunber of queries from one of its neighbors, it will mark this

neighbor as a suspicious DDoS peer. This peer will exchange query volume information

with the suspicious peer‘s neighbors so that it can figure out the number of queries origi-

nally issued by the suspicious peer. Based on this number, this peer makes a final deci-

sion on whether the suspicious neighbor is a DDoS peer and should be disconnected.

5.1 Definition ofa “good” Peer and a “bad” Peer

In our model, the definition of a “good” peer is twofold. First, we assume they have the

same processing capacity, and they will forward as many incoming queries as they are

capable of. Second, a “good” peer will not issue more than 100 queries per minute. Actu-

ally, some observations in [82] show that one peer issues less than 1 query per minute on

average. We also have done some experiments in our lab, and no peer ever created more

than 40 queries per minute. The assumption that a “good” peer does not issue more than

100 queries per minute makes sense as it is hard for a human user to generate more than

one query every second.

We further model a “bad” peer’s behavior pattern as it will do everything else as a

“good” peer except that it generates and issues a large number of queries during every

time unit, and sometimes even issues as many queries as it is able to automatically gener-

ate. Here we assume the overlay DDoS compromised peers will still forward queries be-

cause of the following observations: (1) simply not forwarding messages will not do

much damage to the system because of the nature of query flooding, and (2) it is easy to

enhance the protocol to detect peers refusing to forward any incoming queries and re-

move them.
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We quantitatively define a “good” peer and a “bad” peer as follows. We use Q,h(t) to

denote the number of queries sent out (issued plus forwarded) from peer i to peer h during

the time period from (t-l)th to t‘h time unit. We assume that a peer j has k neighboring

peers, m1, m2. . .mk.

Definition 5.]: Peer j’s General Indicator at time t is defined as:

g(j, t) =f2 Q;..<t> — (k — 1) 2 Q...,-(t))
m=m1 m=m1

9

where q is the threshold in distinguishing a “good” peer and a “bad” peer. We set

q=100 based on the above discussion that a “good” peer does not issue more than 100

queries per minute.

Definition 5.2: Peer j’s Single Indicator measured by its neighboring peer i at time t is

defined as s(j,t,i), where

so. 2: i) = 23%“) - Z Q..,-(t))
m=ml

m¢i

Definition 5.3: For any peer j at any time t, for any peer i other than j, if g(j, t)>l or 30,

t, i)>l, peer j is a “bad” peer; otherwise, peer j is a “good” peer.

Figure 5.2 gives an example, in which peer j has three neighbors, i.e. k=3. At time t,

peer j issues qo queries and receives q1, q2, q3 queries from its three neighbors, respec-

tively. From [9] we know that a query message will be dropped if the query message has

visited the peer before. Thus, when peer j receives q; and q3 queries from the other two

neighbors, it may or may not send all q0+q2+q3 queries to its neighboring peer i, depend-

ing on the number of duplicated query messages from the other two neighbors. For sim-
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plicity, here we assume there are no query message duplications in peer j, and all the in-

coming queries are sent out. This assumption is acceptable because qo+q2+q3 is an upper

bound of the number of queries sent from peer j to i. Therefore, both g(j, t) and s(j ,t ,i)

are less than or equal to qo /q. If a peer’s general indicator or single indicator is much lar-

ger than 1, we will have great confidence to disconnect it as a “bad” peer.
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Figure 5.2 Query traffic analysis

To make this clear, let us compute the two indicators at peer i for peer j in Figure 5.2,
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8030 = -—1-—((610 +612 +61,~.)+(q0 +61. +612)+(q0 +61. +61.)
100x3

-(3-1)(q. +612 +q3))= 610/100

l

706

In this example g(j,t)=s(j, t ,i)=q0/ 100, where qo is the number of queries issued by peer

S(J',t,i) = ((q0 +612 +q.)-(q2 +q3)) = q. /100.

j per minute. Note that the assumption that all of peerj’s incoming queries should be for-

warded is not always true. But at least we are sure that g(j, t) and s(j, t, i) could reflect

qo/q.

5.2 An Implementation ofan Overlay DDoSAgent

To investigate the impact of Overlay DDoS attack in P2P systems, we conduct a pre-

liminary experiment in the following steps.

5.2.1 Query Trace Collection

We build a traffic-monitoring node to collect queries flooding through the Gnutella

network. Using a modified LimeWire [11] client with logging functionality, all the que-

ries passing by the monitoring node are recorded to a log file. The monitoring node is in-

tentionally configured as a supemode connecting to ten peers in the Gnutella network,

which makes the experimental traffic-monitoring node a “hot spot”. Under this configura-

tion, a large enough number of queries could be collected within a short time period.

The monitoring node was running on a PC with 2.4GHz Pentium IV processor and

100M Ethernet interface. Our experiment to collect query trace lasted 24 hours. We col-

lected 13, 705, 339 queries with the size of 112 MB.

5.2.2 An Implementation of an Overlay DDoS Agent
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Figure 5.3 Experiment of implementing a 0008 agent peer. Peer A is a “bad”

peer, which may send out a large volume of queries continusly; Peer B is a

normal “good” peer, which forwards out as many of the received queries as it

is capable of; Peer C is our query traffic observer, which counts all the queries

fonivarded by B, and does not issue or forward any query

To better study the characteristics of a DDoS agent, a LimeWire client is modified and

an experiment is conducted as illustrated in Figure 5 .3. We modified the command line

version of LimeWire 2.0.2 by adding a new querying thread to the original source code in

peer A. The querying thread reads queries from the log file collected by the monitoring

node and issues these queries, and forwards queries coming from the Gnutella network to

its neighbors based on the pre-configured time interval. Thus, peer A may work like an

overlay DDoS agent, a “bad” peer. Peer B is a “good” peer who never issues any queries

and only attempts to forward the queries coming from A. Peer C is a query traffic ob-

server who counts the number of queries forwarded by peer B. Peer C never issues or for-

wards any queries. The three peers’ network bandwidths are 10M. The machines are all

PCs of Dell Optiplex GX300 with P3 733 MHZ CPU and 256M memory.

In the experiment, peer A keeps sending queries to peer B at a speed ranging from

1,000 queries per minute to as fast as it could. Indeed, eventually we find Peer A is capa-

ble of reading the log file and sending out queries to peer B at a rate of around 29,000

messages per minute. According to Gnutella protocol, for each received query, peer B
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will first look up its local sharing storage index, and then forward the query to peer C.

Peer C counts the number of queries forwarded by peer B to C so as to measure the capa-

bility of a peer in processing search queries and the impact of query flood based DoS on a

single Gnutella peer.

We present the experimental results in Figure 5.4. When the number of queries sent out

from peer A to B is approaching 15,000 per minute, peer B started discarding queries. In

fact, if peer A sends queries to B as fast as it is capable of, 47% of the queries are

dropped by peer B. Note that in our experiment both A and B are dedicated to this ex-

periment, while in a real system a normal peer may have other conventional tasks. Fur-

thermore, normally a peer’s local index includes many contents; while in our experiment

the local index is almost empty, which will reduce time for local look up. Based on these

observations, we assume on average a “bad” peer is capable of sending 20,000 queries

per minute, and a “good” peer is capable of processing 10,000 queries per minute in the

rest of the paper.

5.3 Design ofDD-POLICE

The basic idea of DD-POLICE is that all peers are involved in policing their direct

neighbors’ query behavior by cooperating with each neighbor’s r-hope away neighbors,

and identify the possible “bad” peers for disconnection. For simplicity of the discussion,

we first introduce DD-POLICE-r with r=1, in which a peer will collaborate with all tar-

get peer’s direct neighbors to identify “bad” peers. Later we will discuss why it is neces-

sary to employ DD-POLICE-r with r>1. By default, our discussion will focus on DD-

POLICE-l .
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Figure 5.4 Queries sent out vs. processed

DD-POLICE will be employed in decentralized unstructured P2P systems in a fully

distributed fashion. It consists of three steps: neighbor list exchanging, neighbor query

traffic monitoring, and bad peer recognizing.

114



 

   
  

   

‘ .4 " ’\

   
Neighbor list exchange

5 \
Locgical connections

Figure 5.5 Neighbor List Exchanging

5.3.1 Neighbor List Exchanging

In the design of DD-POLICB, each peer maintains a neighbor list including all its logi-

cal neighboring peers. Two neighboring peers exchange their neighbor lists periodically,

as illustrated in Figure 5.5.

One issue here is the frequency at which peers exchange their neighbor lists. P2P net-

works are highly dynamic with peers’ joining and leaving randomly. The measurement in

[72] indicated that the median up-time for a peer in Gnutella and Napster is 60 minutes. If

we assume that a peer’s average lifetime is 60 minutes and the exchange frequency is

once every 2 minutes, roughly speaking, the probability we miss one or more neighboring

peers on detecting query heavy peers in the third step (bad node recognizing) is around

3% (2/60). However, simply increase the frequency of exchanging neighbor lists to in-

crease accuracy will cause more overhead to the system. One alternative solution is to

make the information exchange event-driven, in which a peer informs all its neighbors

whenever its neighboring peer is leaving or a new peer is joining as its neighbor. This so-

lution is favorable to relatively stable networks, but will cause some peers to be very busy

during some period of time if the network is highly dynamic. Clearly there is a tradeoff
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between overhead and accuracy in the frequency selection. DD-POLICE employs a fixed

frequency policy, where a peer sends its neighbor lists to all its neighbors periodically.

Our simulation results show that exchanging neighbor list every 2 minutes is a good

choice.

 
Figure 5.6 An example of a Buddy Group BGi-j={A,B,C,D}

Another issue deserves some words here is what if a host lies to its neighbor. In our de-

sign, when peers exchange their neighbor lists, they will confirm the correctness of the

lists with the corresponding peers. A malicious peer could lie about who are its

neighbors. If a peer finds out that the claim of a pair of neighboring peers are not consis-

tent, it will disconnect with the one which is its neighbor, and send out a message to both

peers indicating the reason of disconnection. In such a way, the good peer in this pair

could start to pay more attention to the other peer. If it gets many such messages, the

good peer will disconnect with the neighbor.

We define peer j’s r hope Buddy Group (BGr—j) as the set of peer j’s neighbors. BGl-j

is as illustrated in Figure 5.6. Depending on how many logical neighbors each peer has, a
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peer could belong to multiple different BGs. At the same time, each BG has multiple

members. A joining peer creates its BG membership after its first neighbor list exchang-

ing operation. A peer will ping members within the same BG periodically to make sure

that other members in the BG are online.

5.3.2 Neighbor Query Traffic Monitoring

Previous studies have shown that queries and desired data have significant locality [76,

89]. A small number of peers issue a large portion of the queries and 5% of files accounts

for 50% of all transfers. Peers’ behaviors are different in the query frequency and re-

sponse frequency. Although we do not expect all the peers have exactly the same query

pattern, the system expect such fairness: each peer contributes some computation, docu-

ment, and bandwidth resources, and consumes some search and download services. In

other words, any peer issuing extremely huge number of queries is not allowed.

In the step of Neighbor Query Traffic Monitoring, two lists are designed in a peer for

each of its logical neighbors, Out_query(i) and In_query(i), to record the number of que-

ries per minute from and to the neighboring peer i. In our implemented prototype of DD-

POLICE-l, a client updates Out_query(i) and In_query(i) every 2 seconds. At any pass-

ing minute, if a neighbor’s Out_query is greater than a pre-defined threshold, it will be

marked as a suspicious DDoS compromised peer.

5.3.3 Bad peer recognition

Based on Gnutella 0.6 protocol, we design a new message type called

Neighbor_Traffic, which has a message body as shown in Table 3.
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Table 3: Neighbor Traffic message body

 

       

Source Suspect Source # of Outgoing # of Incoming

IP Address IP Address timestamp queries queries

Byte 0 3 4 6 7 9 10 ll

offset

When a peer identifies one of its neighbors as a suspicious peer because the neighbor

sends out a large amount of queries, this peer will start working with other members in

the neighbor’s Buddy Group by sending Neighbor_Traffic messages to them. A

Neighbor_Traffic message includes five fields: Source IP Address, Suspect IP Address,

Source timestamp, # of Outgoing queries, # of Incoming queries. The first three fields

contain the source [P address of the current peer, the IP address of the suspicious

neighbor, and the time the source sends out the message. The last two fields are the num-

ber of queries sent out from the source peer to the suspicious peer, and the number of

queries that came from the suspicious peer to the source in the past one minute, i.e.

Out_query(suspicious peer) and In_query(suspicious peer). The payload type of this mes-

sage can be defined as 0x83. On receiving a Neighbor_Traffic message, a peer in the BG

will check whether it has sent a Neighbor_Traffic message to other members in this BG

in past 5 seconds. If not, it will send such a message to other members.

Let us look at the example in Figure 5.6. Suppose we define the warning threshold as

500 queries per minute, meaning if peer j sends more than 500 queries to peer A in the

past minute, A will mark peer j as a suspicious peer. For example, at time t, peer A marks

peer j as a ‘suspect’ and then sends a Neighbor_Traffic message to each of other mem-

bers in BGl-j (B, C and D). Since some of members in BGl-j (A, B, C and D) may find

peer j suspicious at the same time period, and start to send Neighbor_Traffic messages to

other members, peer A needs to check whether peer B, C or D has sent a
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Neighbor_Traffic message in past 5 seconds. On receiving all the Neighbor_Traffic mes-

sages from B, C and D, or waiting for another 5 seconds, peer A starts to calculate the

General Indicator g(j, t) and the Single Indicator s(j, t, A). If any of the two indicators is

greater than a predefined value, peer A will affirm peer j as a DDoS compromised peer

and disconnect with it.

Two key issues should be examined in this step. First, how valid are these two indica-

tors? We have discussed that ideally both of them should reflect qo, the number of queries

issued by the suspicious peer j. However, it is very hard to expect the General Indicator

g(j, t) and Single Indicator s(j, t, A) to accurately reflect qo. There are three reasons for

this: (1) peers are not synchronized, so the data collected by BG members cannot exactly

be in the same time period, (2) each peer may receive some duplicated query messages

such that the number of incoming queries could be larger than the number of forwarding

queries, and (3) peers are frequently coming and leaving, and their average lifetime could

be as short as 30 minutes in some systems. As a result, the peer who is calculating g(j, t)

and s(j, t, i) may fail to receive every BG member’s Neighbor_Traffic message. Nonethe-

less, our simulation studies and Gnutella DD-POLICE enabled prototype experiments

show that the accuracy of g(j, t) and s(j, t, i) in representing qo is good enough to be used

in DD-POLICE, and the misrecognition rate is acceptable low.

The second issue is that of what criteria can convince peer A that peer j is a DDoS

compromised peer with very high probability. One choice is to simply make use of defi-

nition 5.3, which implies that if one of g(j, t) and s(j, t, i) is greater than a threshold, s (in

theory, s could be 1), peer A can classify the suspicious peer as a “bad” peer and discon-

nect with it. However, in real systems, we must carefully choose the threshold. The trade-
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off is that the damage of the Overlay DDoS on the system will be controlled by DD-

POLICE for low threshold, but some “good” peers may be miscounted as “bad” peers,

while a high threshold will lead to “good” peers spending a long time before disconnect-

ing with “bad” peers.

5.3.4 An example of DD-POLICE

Let us look at the example shown in Figure 5.7 to see how DD-POLICE works.

 

 

 

 

 
Figure 5.7 An example of DD-POLlCE

In Figure 5.7, peer j has three neighbors, h, r, and m, who form a Buddy Group, BGl-j.

Meanwhile, peer j is also involved in three Buddy Groups, which are BGl-h, BGl-r and

BGl-m. Suppose peer j is a DDoS compromised peer, and starts issuing a large amount

of queries at time t. When any ofpeer j ’s neighbors, such as h, realizes that peer j has sent

out too many queries, it will exchange query volume information (Neighbor_Traffic mes-
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sages) with the members in BGl-j. If peer r and m are “good” peers, they will inform

peer h that they did not send a large amount of queries to peer j. Thus h can figure out

that a large amount of queries have been issued by peer j, and may disconnect with peer j

immediately.

The question is if suspicious peer j reports a correct number of queries that it sent out

to others. Since peer j issues a large amount of queries, one or all of its neighbors may

forward a large amount of queries out too. Thus, they could also be questioned by their

neighbors. For example, peer m could be suspected by members of BGl-m because peer

m is forwarding a large amount of queries for peer j. Peer j belongs to BGl-m. There are

three choices for peer j in delivering Neighbor_Traffic messages to other members in

BGl-m: (1) to cheat, (2) not to cheat, or (3) refuse to report. If peer j does not cheat,

members in BGl-m will figure out that m is a “good” peer since the majority of outgoing

queries from m are the forwarded queries from j instead of initial queries issued by m.

We know In will work within BGl-j and disconnect from peer j. There are two cases if

peer j chooses to cheat.

Case I, peer j reports a larger number than the number of queries it really sent to peer

m. In this case, members in BGl-m will have higher intention to treat peer m as a “good”

peer. Peer m will disconnect fi'om peer j without any confusion, and so do the other two

members in BGl —j. Thus, this is definitely not a meaningful cheating for peer j.

Case 2, peer j reports a smaller number than that the number of queries it really sent to

peer m. For example, peerj sent 5,000 queries to peer m in the past minute, but it reports

in BGl-m that it has only sent to m 100 queries. As a result, peer m could be treated as a

“bad” peer and be disconnected by the other neighbors in BGl-m. However, this choice

121



has no benefit to peer j either. On the one hand, making peer m be wrongly disconnected

as a “bad” peer will lead to peer j’s attack queries being blocked, while peer j’s goal is to

attack the P2P system instead of a single peer m. If all of peer j’s neighbors (h, r and m)

are disconnected by their neighbors, queries issued by peer j will be isolated among these

three peers only, which eliminates the impact of peer j’s attack and is not what peer j

wants to achieve. On the other hand, in DD-POLICE, this cheating will not mislead peer

m’s decision making. Peer m will work with members in BGl-j, and is able to identify

peer j as the “bad” peer without being confused by peer j’s cheating.

The third choice for peer j is not to report the number of queries it sent to m, which is

the same situation as in Case 2 since, in the design of DD-POLICE, if a peer has not re-

ceived a Neighbor_Traffic message from peer j within a predefined time period, it just

assumes that peer j sent 0 query to peer m.

In other words, cheating or not reporting will do nothing good for peer j, and could

only degrade the effects of its attacks. Therefore, we assume that peer j will not cheat in

delivering the Neighbor_Traffic messages.

5.3.5 DD-POLICE-r

As we have discussed, the overlay DDoS attack can be launched by hundreds of peers

simultaneously. If each agent works independently, then DD-POLICE-l is enough to

handle. However, two or more connected compromised agents will give DD-POLICE-l

great challenges to identify “bad” peers, especially when all of them lie on the exchanged

neighbor list and traffic volume. Therefore, our BG concept is not limited by one-hop

neighbors only. Instead, in DD-POLICE-r, each peer’s r-hop away neighbors are organ-

ized to exchange information and to defend against DDoS together. Consequently, peers
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working with BGr when r >1 will incur more traffic overhead, but will make DD-

POLICE more powerful. Fortunately, it is not trivial for a DDoS malicious peer to ex-

actly know who are the recruited agents. Thus, making multiple malicious peers con-

nected is much more complicated and difficult than launching DDoS itself. However, we

still aim to make the DD-POLICE more powerful and effective into dealing with any

possible difficult situations brought by attackers.

Indeed, when peers working with more BG members, more operations are proposed in

our research. For example, peers may vote for disconnection with a suspicious peer. They

may also share some existing information. That is, if a peer identifies that a specific peer

is a “bad” peer, it can send this information to warn other BG members. Since the main

purpose of this paper is to propose the concept of Buddy Group and introduce DD-

POLICE to defend P2Ps, we will not go through too many details on the designs for de-

fending collaborated malicious peers. In our simulations, we also assume that only few of

compromised peers have the ability to work together.

5.4 Performance Metrics

To evaluate the effectiveness of DD-POLICE on defending overlay DDoS attacks in

P2Ps, in addition to traffic cost, query success rate and query response time, we define

damage rate and damage recovery time as our main performance metrics as well.

Damage rate reflects the service degradation degree when a P2P is under overlay

DDoS attacks. In the following definition, S(t) denotes query success rate of the P2P sys-

tem when there does not exist any DDoS compromised peers, and S’(t) denotes the query

success rate when the system is under DDoS attack.

Definition 5.1 Damage rate, D(t), is given by:
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= 5(0'5'“) x100% D(t)

Damage recovery time is used to evaluate the effectiveness of DD-POLICE in dynamic

P2P environment. We define damage recovery time as the time period from when the sys-

tem damage rate D(t) is equal or greater than 20% until when the damage is equal or less

than 15%. If the damage recovery time is short, this means the DD-POLICE is effective.

We model a malicious node such that it generates as many queries as it is capable of

[30]. Measured by our implemented DDoS agent prototype, a “bad” peer could generate

more than 20,000 distinct queries per minute. We assign bandwidth to each link based on

the observations in [72], which show that 78% of the participating peers have down-

stream bottleneck bandwidths of at least lOOKbps, and 22% of the participating peers

have upstream bottleneck bandwidths of lOOKbps or less. In our simulation, the number

of attack queries sent by a compromised peer per minute, Qd, is given by:

Qd=min{20,000, the capacity of the link}.

5.5 Simulation Results

We present our simulation results in this section. Our simulation results on different

overlay networks of 20,000 peers on top of 50,000-node Internet-like physical networks

are consistent. We representatively show one set of the results.

5.5.] Consequences of overlay DDoS attack in P2Ps

We first quantitatively evaluate how serious the consequences of overlay DDoS attacks

are on a P2P network. We generate 1,000,000 queries and track the delivery and response

of each query message under a flooding based search mechanism. In each of the simula-
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tions, k random peers, where k is ranging from 1 to 200, are selected as DDoS compro-

mised peers and each of them keeps sending out attack queries at the maximum rate they

are capable of. Meanwhile, normal peers issue queries too. We study the impact of the

overlay DDoS attack on a dynamic P2P environment.

Figure 5.8 shows the effect on network traffic. We see that ten to twenty (<0.l %)

compromised peers will double the total traffic. When there exists around 100 compro-

mised peers, representing only 0.5% of the network, the total search traffic increases to

10 times that of the original traffic. The huge amount of search traffic is already a main

limit on the scalability of existing popular P2P systems.

P2P network size = 20.000 peers
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Figure 5.9 and 5.10 show that the service quality of the system is also greatly degraded

by DDoS attacks in terms of response time and normalized success rate. We can see that

100 comprised peers will increase the average response time of queries by 2.4 times, and

up to 89.7% of queries could fail to receive query responses. These results indicate that,

in a real-world P2P system that usually has about 2 millions peers online at any time, less

than one thousand DDoS compromised peers could stress the system greatly while ten

thousand overlay DDoS agents could overwhelm the whole system.

P2P network size = 20,000 peers
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P2P network size = 20,000 peers
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Figure 5.10 Success rate

5.5.2 Effectiveness of DD-POLICE

We have discussed that the frequency of neighbor list exchanging is one of the key is-

sues to be examined. We have simulated and evaluated two policies: (1) periodic policy:

to exchange neighbor lists every 3 minutes, where s ranges from 1 to 10; and (2) event

driven policy: a peer reports its neighbor list whenever a new neighbor is joining or an

existing neighbor is leaving.

As we observed from our simulation results, there is no big difference on the overall

performance by using the first policy as long as s is no more than 2 minutes, while the

second police incurs much higher traffic overhead compared with the first policy because
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the P2P network is very dynamic. But if we further increase 5, such as to 4 or 5 minutes,

the possibility of DD-POLICE misjudging “good” peer and “bad” peers will be greatly

increased because of the inaccurate neighbor lists. Therefore, in other simulations and the

DD_POLICE implementation prototype, we use periodic policy in which peers report

their neighbor lists every 2 minutes.

Another key issue to examine is when a peer should make the decision to disconnect a

suspicious neighbor as a “bad” peer.

The decision is based on two calculated indicators g(j, t) and s(j, t, i). In DD-POLICE,

we define CT as a cut threshold. If the value of g(j, t) or s(j, t, i) computed by peer i is

greater than CT, peer i will disconnect from peer j. CT is 1 in definition 5.3. However, we

have mentioned that g(j, t) and s(j, t, i) are based on some assumptions which may affect

the accuracy of the estimation, and the dynamic changing of the overlay topology also

makes the choice of CT a challenging endeavor. The dilemma is that a smaller value of

CT may mislead the peers to wrongly disconnect some “good” peers, while a larger value

of CT could allow some “bad” peers to avoid disconnection. In order to select an Optimal

value of CT, we study the impact of different values of CT using three kinds of errors:

false negative is the number of “good” peers that are wrongly disconnected, false positive

is the number of “bad” peers that are not identified and not disconnected, and false judg-

ment is the sum of the above two.

Another consideration in the choice of CT is the convergent speed of the algorithm.

Decentralized P2Ps are fully distributed systems. When some peers recognize a “bad”

peer, the only thing these peers can do is to disconnect with the “bad” peer. No mecha-

nism can prevent the DDoS Agent from joining the system
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P2P network size = 20,000 peers
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Figure 5.11 Effectiveness of DD-POLICE in Dynamic P2P environments

again and launching another round of attacks. We desire our approach to identify “bad”

peers in a very short period of time in a dynamic P2P environment. The metric of damage

recovery time is used to evaluate the performance of DD-POLICE for this consideration.

We strive for short damage recovery time.

Figures 5.11-5.13 show the impact of CT on the performance of DD-POLICE when

there are 100 DDoS agents in a 20,000-peer system. DD-POLICE-n means DD-POLICE

scheme with CT=n. Figure 5.11 shows that DD-POLICE with CT=3 reduces the damage

of attack faster than DD-POLICE with CT=7. However, the damage rate of CT=3 scheme

cannot be reduced as low as that of CT=7 scheme. The reason is that, compared with

CT=7 scheme, more “good” peers are misjudged as “bad” peers and disconnected by
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their neighbors in CT=3 scheme, causing a lower success rate. However, CT cannot be

too large. Figure 5 .11 shows that with CT=10, DD-POLICE converges very slowly and

the stabilized damage rate is much higher than that in CT=3 and CT=7.

We further show the three kinds of errors in Figure 5.12 and damage recovery time in

Figure 5.13. We can see that in Figure 5.12, as CT increases, the false negative decreases,

while the false positive increases. That means when we set a larger cut threshold, fewer

“good” peers will be misjudged as “bad” peers and more “bad” peers will be misjudged

as “good” peers. The false judgment is optimal when CT is within 5 to 7 in Figure 5.12.

Figure 5.13 shows that as CT increases, DD-POLICE needs a longer time to identify a

peer as a “bad” one. Thus, the damage recovery time is longer. Comprehensively consid-

ering the performance of DD-POLICE, we choose CT=5 or 6.

P2P network size = 20.000 peers
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5.5.3 DD-POLICE in Dynamic P2P Environments

Adding DD-POLICE into the peers in the dynamic simulation environment, we repeat the

described experiment with the same 1,000,000 queries. Basic setup of DD-POLICE in-

cludes exchanging neighbor lists every 2 minutes and CT=5. Figures 5.8-5.10 show that

DD-POLICE effectively reduces the damage of overlay DDoS and is very scalable.

Compared with the case of “no DDoS attack”, DD-POLICE achieves a comparable aver-

age response time and success rate with slightly higher average traffic cost.
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5.6 Implementation ofDD-POLICE

To further investigate the feasibility of DD-POLICE in practical P2P systems, we im-

plement a prototype of DD—POLICE based on Gnutella protocol v0.6. Figure 5.14 illus-

trates our basic modification on a LimeWire client with Gnutella protocol v0.6 to imple-

ment DD-POLICE. The Connection Statistical

 

Connection Statistical Module 

   
LimeWire

Client

Neighbor List Exchanging Module

 

 

  
 

 

 

   
 

Figure 5.14 Prototype of a DD-POLICE enabled client

Module records the number of queries sent to the neighbors through the connections,

and the number of queries received from the neighbors through the same connections.

The Neighbor List Exchanging Module keeps exchanging the neighbor lists with

neighboring peers every two minutes so that each node has a list of its neighbors’

neighbors.

When a DD-POLICE enabled client finds that a suspicious neighbor is sending queries

with very high rate, it will start working with all the neighbors of the suspicious peer. It

picks up IP addresses from the neighbor list of the suspicious peer, and sets up temporary

connections with these neighbors. Through the temporary connections, Neighbor_Traffic

messages will be exchanged. In order to accurately collect the number of queries sent to
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the suspicious node from those neighbors, the temporary connections between DD-

POLICE enabled clients in our prototype have higher priority than other connections.

. '1 Gnutella .
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Figure 5.15 A simple experiment of DD-POLICE

We then conduct our experiments in a setup shown in Figure 5.15, where peer A is the

“bad” peer who keeps sending out queries to peers Q and 0. Peers 0, P Q are all DD-

POLICE enabled peers. The basic setups of DD-POLICE include that the timeout for

Query_traffic message collection is 5 seconds, cut threshold is CT=5, neighbor lists ex-

change is every 2 minutes, and a peer is defined as a suspicious peer on receiving more

than 500 queries in the past minute.

At the beginning of each experiment, peer A works as a “good” peer. It issues less than

tens of queries per minute on average. After a certain period of time, peer A randomly

picks up 30,000 queries from the query trace we collected, and starts sending the queries

out at a rate of 6,000 per minute to each of peer O and peer Q. We repeat the same ex-

periment 10 times. Each time, peers O and Q can successfully disconnect with peer A
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within less than 15 seconds from when peer A starts ‘launching’ the attack, as shown in

Figure 5.16.

Although the experimental setup is relatively simple, we can see that DD-POLICE is

easy to implement and is effective in dealing with overlay DDoS attacks. Widely deploy-

ing DD-POLICE will help P2P systems defend against oVerlay DDoS attacks.
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Figure 5.16 Experimental Results of DD-POLICE implementation. Both peer Q

and peer 0 may successfully disconnect with the malicious peer A within 15

seconds from when peer A starts flooding a large volume of queries to them

5. 7 Discussion

Unstructured P2P systems are most commonly used in practice, but are vulnerable to

overlay DDoS attacks. Most previous techniques protect networks fi'om network-layer

DDoS attacks and cannot be applied to overlay DDoS attacks. Overlay flooding-based

DDoS attacks can be more damaging in that a small number of messages are inherently

propagated to consume a large amount ofbandwidth and computation resources.
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In this chapter, we propose a distributed and scalable method, DD-POLICE, to detect

malicious nodes in order to defend P2P systems from the DDoS attacks. Our study of

DD-POLICE is admittedly in its early stages and there are several issues that need to be

discussed and studied in the future. For example, we need to explore a mechanism in DD-

POLICE to share previous information. P2Ps are fully distributed systems, and our DD-

POLICE only helps individual peers identify “bad” peers while the other peers do not

learn this information. The “bad” peers may create connections with others and launch

attacks. However, to share this information in P2P is extremely challenging because there

is no dedicated central server, and it is hard to know whether a peer is telling the truth or

not. Further, most agents are not the DDoS attackers, and the system should not block

them forever. Even if all these problems are solved, to dynamically distribute the infor-

mation is not trivial in that large amount of traffic will be incurred.

Another issue is the working mode of DD-POLICE-r. Clearly DD-POLICE-l is simple

but only works against isolated malicious hosts. Employing DD-POLICE-r with r>l

means more overhead. We are going to explore a mechanism to determine the scope of

using DD-POLICE in different depth of peers’ neighbors.

Other future work includes employing and measuring DD-POLICE in larger scale sys-

tems, such as in PlanetLab[66].
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6 Conclusion and Future Work

The peer-to-peer model has recently gained significant attention due to its high poten-

tial of sharing various resources among a large number of networked users, where each

peer acts as both a resource provider and a consumer. Unstructured P2P systems are most

commonly used in practice, but are not scalable and secured.

6.1 Summary

An attractive feature of P2P overlay networks is that peers do not need to directly in-

teract with the underlying physical network. This provides many new opportunities for

user level development and applications. However, the mechanism for a peer to randomly

choose logical neighbors without any knowledge about the physical topology causes a

serious topology mismatch between P2P overlay networks and the physical network. Be-

cause of the mismatching problem, a pair of logical neighbors can be far away from each

other, causing a message to traverse the same physical link multiple times, and wasting

huge amount of network bandwidths in the process. Our experimental results show that

about 70% of the paths suffer from the topology mismatching problems. The performance

gain of any improved file searching schemes is seriously hindered by this topology mis-

matching problem. The mismatching problem and flooding-based search in unstructured
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P2P systems cause heavy network traffic that contributes the largest portion of overall

internet traffic.

In this dissertation, we have proposed several approaches to solve overlay topology

mismatch problems in P2P systems. They are scalable and completely distributed in the

sense that they do not require global knowledge of the whole overlay network when each

node is optimizing the organization of its logical neighbors. For example, in Adaptive

Overlay Topology Optimization (AOTO), every single peer builds an overlay multicast

tree between itself (source node) and the peers within a certain diameter from the source

peer, and then optimizes the neighbor connections that are not on the tree, while retaining

the search scope. Our simulations show that AOTO can significant improve the perform-

ance of P2P systems.

To improve the convergence speed of AOTO, we propose a location-aware topology

matching (LTM) scheme [2]. In LTM, each peer issues a detector in a small region so that

the peers receiving the detector can record relative delay information. Based on the delay

information, a receiver can detect and out most of the inefficient and redundant logical

links, as well as add closer nodes as its direct neighbors. Our simulation studies show that

the total traffic and response time of the queries can be significantly reduced by LTM

without shrinking the search scope. Our study shows that only one tenth of the original

traffic cost is necessary to cover the same number of peers, and the average response time

is reduced by approximately 80%.

To further remove traffic overhead, we propose a scalable bipartite overlay (SBO)[3].

The SBO which employs an efficient strategy for distributing optimization tasks in peers

with different colors. In SBO, each joining peer is assigned a color so that all peers are
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divided into two groups of white or red colors, respectively. Each peer is only connected

with peers in its opposite color. Each white peer probes neighbor distances and reports

the information to the red neighbors. Each red peer computes efficient forwarding paths.

A white peer that is not on forwarding paths of a red peer then tries to find a more effi-

cient red peer to replace this red neighbor. Our evaluations show that SBO achieves ap-

proximately 85% reduction on traffic cost and more than 55% reduction on query re-

sponse time.

In above mentioned three approaches, LTM has the fastest convergent speed, which is

important in a highly dynamic P2P environment. However, LTM needs NTP support,

which means extra overhead. To retain the fast convergent speed of LTM without the

need of synchronizing peering nodes, we design THANCS. In THANCS, each peer

probes the distances with its immediate logical neighbors and piggybacks all its

neighbors’ distance information with selected query messages. Thus, peers may have two

hop away neighbors’ information without much extra overhead to optimize the topology

to approach an optimal overlay. With THANCS enabled, total network traffic incurred by

blind flooding search will be decreased by 75% without shrinking the search scope. At

the same time, average query response time is also decreased by approximately 60-65%.

To effectively protect against overlay DDoS attacks, we propose a detection based ap-

proach, DD-POLICE. In DD-POLICE, peers monitor the traffic to and from each of their

neighbors. If a peer receives a very large number of queries from one of its neighbors, it

will mark this neighbor as a suspicious DDoS peer. This peer will then exchange query

volume information with the suspicious peer’s neighbors so that it can figure out the

number of queries originally issued by the suspicious peer. Based on this number, this
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peer makes a final decision on whether the suspicious neighbor is a DDoS peer and

should be disconnected. Through comprehensive simulations, we demonstrate the serious

impact of overlay DDoS attacks on P2P systems, and the effectiveness of DD-POLICE in

dynamic P2P environments. We then implement a prototype of a DD-POLICE enabled

client, and show that DD-POLICE is easy to use and effective on defending against over-

lay DDoS in P2P systems.

6.2 Future Work

Future work will lead into three directions.

Firstly, pervasive computing and sensor networking will inevitably play an important

role in the near future. They share some similar distributed natures with P2P systems,

such as self-organization, broadcasting, and non-fix infrastructure. It is very natural to

connect my current research in P2P systems to pervasive computing and sensor network-

ing. There are many interesting problems in these realms with regards to efficiency, scal-

ability, reliability and security.

Secondly, I will continue my research on optimizing overlay topologies of P2P systems.

Existing approaches are all heuristic and we intend to design an offline topology optimi-

zation algorithm. It might be very hard to have an optimal topology matching algorithm,

but it can be a sub-optimal algorithm so that it can be a benchmark to evaluate all of the

proposed topology optimization techniques. In addition, we will evaluate and employ ex-

isting orthogonal optimization approaches and combine them into a new practical proto-

col, then implement it PlanetLab environment.

Finally, we plan to extend current research on network security of P2P systems. Be-

sides defending against overlay DDoS, further protocols under different P2P systems will
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be proposed on two critical issues: data integrity and communication anonymity. Data

integrity in P2P systems is important in the sense that peers can cache files downloaded

from other peers for potential sharing source to some other peers, so that the same files

can be provided by multiple peers. Mutual anonymity is defined as being when neither

the initiator nor the responder can identify each other, and no other peers can identify the

two communication parties with certainty. We intend to design new protocols aimed at

achieving mutual anonymity, data integrity and efficiency in P2P systems.
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