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Abstract
Overlay Topology Optimization and Security Studies
in Peer-to-Peer Systems

BY

Yunhao Liu

Current and future Internet and distributed systems rely on both centralized client-server
model and decentralized peer-to-peer (P2P) model. P2P model is an emerging technology
aiming to effectively utilize and manage increasingly large and globally distributed
information and computing resources, complementing the available client-server services.
In order to truly adopt the P2P model for deploying large-scale Internet applications, and
timely merge this model as an indispensable component in the main stream of distributed
computing technology, we must address several major technical challenges including the
efficiency of overlay networks, cost-effective P2P information search, and privacy and
security protection of peers. This dfssertation focuses on addressing two critical issues.
The first issue is topology mismatch problem between P2P overlay networks and the
underlying physical networks in unstructured P2P systems. Addressing topology
mismatch problem can fundamentally improve overall search performance of P2P
systems. We demonstrate the seriousness of the topology mismatch problem, and define
an optimal overlay problem that is proved to be a NP-hard problem. We then develop
several effective schemes and algorithms to alleviate the topology mismatch problem.
Our proposed algorithms are completely distributed, scalable and effective. Simulation
studies show that the total traffic and response time of the queries can be significantly

reduced by these schemes without shrinking the search scope. The second issue is overlay



distributed denial-of-service (DDoS) attack in P2P systems. Most previous security
techniques protect networks from network-layer DDoS attacks, but cannot be applied to
overlay DDoS attacks. We propose a distributed and scalable method, DD-POLICE, to
detect malicious nodes in order to defend P2P systems from overlay flooding-based
DDoS attacks. We show the effectiveness of DD-POLICE by simulation studies and
implementation on Gnutella 0.6 protocols. We believe that widely employing these

proposed approaches will make P2P systems more scalable and robust.
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1 Introduction

Since the emergence of peer-to-peer (P2P) file sharing applications, such as Nap-
ster[12], Gnutella[8], and KaZaA[10], millions of users have started using their home
computers for more than browsing the web and exchanging Emails. Each peer acts as
both a client who requests information and services and a server who produces and/or

provides information and services.

1.1 Research Background

There are mainly three different architectures for P2P systems: centralized, decentral-
ized structured, and decentralized unstructured [55]. In the centralized model, such as
Napster [12], as shown in Figure 1.1, a central index server is used to maintain a directory
of shared files stored on peers so that a peer can search for the whereabouts of a desired
content from the index server, and download the content directly from the peer who has
the content. However, this architecture creates a single point of failure and its centralized
nature of the service also makes systems vulnerable to denial of service attacks. Decen-

tralized P2P systems have the advantages of eliminating reliance on central servers and



providing greater freedom for participating peers to exchange information and services

directly between each other.
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Figure 1.1 A centralized P2P network

In decentralized structured models, such as Chord [84], Pastry [71], Tapestry [96], and
CAN [67], the shared data placement and topology characteristics of the network are
tightly controlled based on distributed hash functions. Although these designs are ex-
pected to dramatically improve the search performance, none of them has been practically
used due to their high maintenance traffic in delivering messages and updating the map-
ping. Furthermore, it is hard for structured P2P systems to efficiently support partially

matched queries.



My research focuses on decentralized unstructured P2P systems, such as Gnutella [8]
and KaZaA [10]. File placement is random in these systems, which has no correlation
with the network topology [94]. Unstructured P2P systems are most commonly used in
today's Internet. The most popular search mechanism in use is to blindly “flood" a query
to the network among peers (such as in Gnutella) or among super peers (such as in Ka-

ZaA), as shown in Figure 1.2.

Query -
'*x Download
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Re | Query
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Query Peer Query Peer
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Figure 1.2 A decentralized unstructured P2P network



A query is broadcasted and rebroadcast until a certain criterion is satisfied. If a peer re-
ceiving the query can provide the requested object, a response message will be sent back
to the source peer along the inverse of the query path. This mechanism ensures that the
queries are “flooded” to as many peers as possible within a short period of time in a P2P
overlay network. A query message will also be dropped if the query message has visited

the peer before.

1.2 Problem Statement and Research Objectives

Unstructured peer-to-peer models are simple to implement and widely used in real sys-

tems. However, there are efficiency and security issues to be addressed.

1.2.1 Search efficiency

Studies in [78] and [73] have shown that P2P traffic contributes the largest portion of
the Internet traffic based on their measurements on some popular P2P systems, such as
FastTrack (including KaZaA and Grokster) [7], Gnutella, and DirectConnect. Measure-
ments in [69] have shown that even given that 95% of any two nodes are less than 7 hops
away and the message time-to-live (TTL=7) is preponderantly used, the flooding-based
routing algorithm generates 330 TB/month in a Gnutella network with only 50,000 nodes.
A large portion of the heavy P2P traffic caused by inefficient overlay topology and the
blind flooding is unnecessary, which makes the unstructured P2P systems being far from
scalable [70]. There are three reasons for this problem. First, the mechanism of a peer
randomly choosing logical neighbors without any knowledge about the underlying physi-
cal topology causes topology mismatching between the P2P logical overlay network and
physical underlying network. Because of the mismatch problem, the same message may

traverse the same physical link multiple times, incurring a large amount of unnecessary



traffic. Second, a query may be flooded to multiple paths that are merged to the same
peer. In this case, only the traffic along one of the paths is necessary. Finally, two
neighboring peers may forward the same query message to each other before they receive
the query message from each other. Thus, the same query message may traverse the same
logical link twice.

Aiming at alleviating the mismatch problem, reducing the unnecessary traffic, and ad-
dressing the limits of existing solutions, we propose four topology optimization based
approaches, including adaptive overlay topology optimization (AOTQO), location-aware
topology matching (LTM) scheme, Scalable Bipartite Overlay (SBO), and Two Hop
Away Neighbor Comparison and Selection (THANCS), to make the decentralized

unstructured P2P models more scalable and efficient.
1.2.2 Overlay distributed denial-of-service

The simplicity of the flooding based search mechanism also makes unstructured P2Ps
vulnerable to overlay distributed denial-of-service (DDoS) attacks. In the past years,
DDoS attacks have already become a major threat to the stability of the Internet [22]. The
basic goal of denial of service (DoS) is to overwhelm the processing or link capacity of
the target by saturating it with bogus packets. Flooding based overlay DDoS attacks are
DoS attacks performed from multiple compromised peers (agents), who start generating
as many bogus queries as they can toward the victims. One character of P2P overlay
DDoS is that the attack target is not a single site or a user in the Internet, but the whole
P2P systems.

Most previous research on DDoS focused on Network layer attacks, including direct

attacks such as TCP-SYN, ICMP flooding and UDP flooding [22, 77], and reflector at-



tacks such as Smurf attacks [2]. Many attack tools such as Trinoo, Tribe Flood Network,
TFN2K, Stacheldraht, Shaft, mstream [4-6] have been deployed. Existing approaches
mainly fall into three categories: prevention, traceback and identification, and detection
and filtering. Since a P2P system can have millions of insecure users online simultane-
ously, and the IP address of a query source peer is not included in the query or query hit
messages, network layer defense approaches often find it difficult, if not outright impos-
sible, to effectively protect against overlay DDoS attacks. It is therefore a worthwhile en-
deavor to design an overlay level defending mechanism inside P2P applications. In this
research, a detection-based approach, DD-POLICE (Defending P2Ps from Overlay Dis-

tributed-Denial-of-Service), is proposed, to protect P2P systems against overlay DDoS.

1.3 Contributions

The main contributions of this research are as follows.

First, we model the unstructured P2P systems based on our observations and imple-
mentations of Gnutella peers. We then study the relationship between the property of the
overlay and the corresponding message duplications incurred by queries in a given over-
lay, and prove that even with global knowledge, computing an optimal overlay is an NP-
hard problem. We demonstrate that a large portion of the traffic of today’s widely used
peer-to-peer systems is unnecessary.

Second, we proposed several (AOTO, LTM, SBO and THANCS) overlay topology
matching algorithms, and simulated them in both static and dynamic environments. They
are all completely distributed and scalable in that they do not need any global knowledge,
and each peer conducts the algorithm independently. Compared with traffic cost savings,

the overhead incurred by these algorithms is trivial. The other strength of these algo-



rithms is that they are complementary with other cache based and forwarding based ap-
proaches and can be deployed together.

Third, we show the difficulties of defending overlay DDoS in P2Ps and the reasons
why existing network layer defense approaches are less effective on overlay DDoS at-
tacks. To investigate the characteristics of flooding based overlay DDoS, we modified
LimeWire Gnutella servant with support of Gnutella protocol v0.6 [9] to collect real
Gnutella query traffic trace. We also develop a prototype of an overlay DDoS agent who
may continuously sends out a large amount of queries into the P2P network. We then
propose DD-POLICE, which requires peers to cooperate locally with their neighboring
peers and identify malicious/ compromised DDoS peers effectively. By comprehensive
simulations, we show the serious impact of overlay DDoS attacks on P2P systems, and
the effectiveness of DD-POLICE in dynamic P2P environments. We then implement a
prototype of a DD-POLICE enabled client, and show that DD-POLICE is easy to imple-
ment and effective on defending against overlay DDoS in P2P systems.

We believe this research will make the unstructured peer-to-peer systems more scal-

able, efficient, and secured.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews existing ap-
proaches on improving search performance and defending against DDoS. The simulation
methodology of the work is presented in Chapter 3. Overlay optimization approaches,
including Adaptive Overlay Topology Optimization (AOTO), Location-aware Topology
Matching (LTM), Scalable Bipartite Overlay (SBO), and Two Hop Away Neighbor

Comparison and Selection (THANCS), are described in detail in Chapter 4. Security is-



sue studies and DD-POLICE approach for defending against overlay flooding based
DDoS are presented in Chapter 5. The conclusion and future work of this research is in

Chapter 6.



2 Related Work

In the past years, peer-to-peer systems have been under intensive studies[17, 19, 22,
24, 26-32, 35, 36, 38, 39, 42-44, 47-57, 63, 67-72, 78, 79, 83-85, 87-90, 92-94, 96, 97]. In
this chapter, we will discuss related previous researches on search efficiency and security

issues.

2.1 Improving Search Efficiency of P2Ps

Many efforts have been made to avoid the large volume of unnecessary traffic incurred
by the flooding-based search in decentralized unstructured P2P systems. In general, three
types of approaches have been proposed to improve search efficiency in unstructured P2P
systems: forwarding-based, cache-based, and overlay optimization. The three different
kinds of approaches can be used together to complement each other.

In forwarding-based approaches, instead of relaying the query messages to all its logi-
cal neighbors except the incoming peer, a peer selects a subset of its neighbors to relay
the query. In Directed BFS proposed in [94], each peer maintains statistic information
based on some metrics, for example, the number of results received from neighbors from

previous queries or the latency of the connection with that neighbor. A peer selects a sub-



set of the neighbors, such as the neighbors that have returned the largest number of results
from previous queries, or the neighbors that have low latency, to send its query. A k-
walker query algorithm is proposed in [55], in which a query is sent to k different walkers
(relay neighbors) from the source peer. For a peer in each walker, it just randomly selects
one neighbor to relay the query. For each walker, the query processing is done sequen-
tially. A hybrid periodical flooding (HPF) approach proposed in [97] improves the search
efficiency by selecting forwarding neighbors based on multiple metrics and addressing
the partial coverage problem to balance the search cost and response time.

The second approach is cache-based including data index caching and content caching.
Centralized P2P systems provide centralized index servers to keep indices of shared files
of all peers. KaZaA utilizes cooperative superpeers, each of which is an index server of a
subset of peers. Some systems distribute the function of keeping indices to all peers [57].
In Local Indices policy [94], each peer maintains an index of files available in the nodes
within given hops of itself. When a peer receives a query, it can process the query on be-
half of all nodes within the given hops of itself. Having observed the locality of queries,
the authors in [56, 82] further proposed that each peer caches query strings and results
that flow through it, which is shown in Figure 2.1. Three different strategies to replicate
data (file content or query responses) on multiple peers have been evaluated in [28]. The
three strategies are different on the ratio of allocations according to the ratio of query
rates. Transparent query caching [65] is proposed to cache query hits at a gateway of an
organization based on an observation of query locality in peers within the gateway. Cach-
ing file contents has also been studied. For example, an ideal cache (infinite capacity and

no expiration) simulator [73] is built for KaZaA P2P traffic to cache file contents, which
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has shown that caching would have a large effect on a wide-scale P2P system on reducing

traffic volume and bandwidth demands.
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Figure 2.1 A Query result caching scheme

The third approach is based on overlay topology optimization that is closely related
to what we are presenting in this dissertation. End system multicast, Narada, is proposed
in [25], which first constructs a rich connected graph on which to further construct short-
est path spanning trees. Each tree rooted at the corresponding source using well-known
routing algorithms. This approach introduces large overhead of forming the graph and
trees in a large scope, and does not consider the dynamic joining and leaving characteris-
tics of peers. The overhead of Narada is proportional to the multicast group size. This
approach is infeasible to large-scale P2P systems. Resea_rchers have also considered to
cluster close peers based on their IP addresses (e.g., [47, 64]). We believe there are two

limitations for this approach. First, the mapping accuracy is not guaranteed by this ap-
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proach. Second, this approach may affect the searching scope in P2P networks. Recently,
researchers in [90] have proposed to measure the latency between each peer to multiple
stable Internet servers called “landmarks”. The measured latency is used to determine the
distance between peers. This measurement is conducted in a global P2P domain and
needs the support of additional landmarks. Similarly, this approach also affects the
search scope in P2P systems.

Using an example shown in Figure 2.2, we explain why these existing proximity based
approaches will shrink query search scopes. In Figure 2.2, peers A, B, C, D locate in the
same AS, peers E, F and H, G, K belong to other ASs, respectively . It is safe to assume
that the physical distance between A and B or E and F are much smaller than that of K
and A or C and F, as illustrated in Figure 2.2. Using above discussed approaches, when
peers successfully obtain or estimate the distance between each pair of them, and optimi-
zation policy for each node is to connect the closest peers while retaining the original
number of logical neighbors, a connected graph may be broken into three components. As
a result, before optimization, queries can visit all of the peer, while after optimization, all
queries can only visit a small group of live peers in the system, and the search scope of
queries is significantly reduced.

Gia [24] introduced a topology adaptation algorithm to ensure that high capacity nodes
are indeed the ones with high degree and low capacity nodes are within short reach of
high capacity nodes. It addresses a different matching problem in overlay networks, but
does not address the topology mismatch problem between the overlay and physical net-

works.

12



After Optimization

Figure 2.2 before optimization, queries can visit all of the peer, while after
optimization, all queries can only visit a small group of live peers

2.2 Defending against Distributed Denial of Service

Many general efforts have been made to defend against DDoS [22, 46, 61, 62]. They
are roughly divided into three categories: prevention, traceback and identification, and
detection and filtering.

The first type is prevention, in which the defense tools monitor or scan the network to
intercept the DDoS before the attacks start. They avoid the malicious peers’ illegal access
to normal machines [15], and install security patches and virus scanners [3, 45, 60]. One

basic goal of these approaches is to prevent DDoS attackers from recruiting a large num-
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ber of agents. Most of these methods are based on knowledge of existing DDoS attacks to
recognize attackers’ behaviors. Although it is of great importance to improve Internet se-
curity, it is hard to believe that preventive approaches could successfully avoid DDoS
attackers recruiting hundreds of agents in a P2P network with millions of peers online at
any given time. We will show that only tens of DDoS agents in a 20,000-peer system
cause serious damage.

The second type is the TraceBack and Identification approach [74, 75, 80, 81, 91],
which is usually employed after experiencing attacks. Most of them are based on IP
traceback. They try to track the attackers and identify them via the routers’ records or by
sending special traceback packets. However, these approaches are not effective for P2P
overlay DDoS attacks because the query messages and query hit messages do not include
the IP addresses of query source peers. In P2P systems, the anonymity requirement makes
it hard to know who originally issued the queries.

The third type is based on Detection and Filtering. Our proposed DD-POLICE is of
this type. They detect the occurrence of DDoS attacks and respond to it. For example, al-
though IP spoofing is not a necessary component for DDoS attacks, it helps the attackers
hide [59]. Ingress/egress filtering [34] prevents packets with spoofed source IP addresses
from entering or leaving the network. Theoretically, ubiquitous ingress packet filtering
(UIPF) [22] can stop all address-spoofed direct attack packets as well as the attack pack-
ets sent to reflectors. But it is hard for them to be employed in P2P systems with such a
large scale. Route-Based defense is similar to UIPF, and employs some distributed detec-
tion systems and filters attack traffic at some key nodes. Pushback mechanism [40] is a

useful means of detecting the attack packets’ flow and dropping them. In a P2P system, it
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is hard for a peer to trace the source of a query because the values of TTL and hops could
be easily modified by DDoS compromised peers. Thus, it is extremely hard to separate
good traffic and bad traffic. A source-end defense system, such as D-WARD [58] or Re-
verse Firewall, attempts to observe incoming and outgoing flows and connections over
time, aiming at separating the normal links from the attack links to provide good service
to normal clients. However, in a P2P system, since normal traffic and attack traffic may
come from the same logical link because of the flooding search, the source-end system is
not effective in P2P systems.

To our knowledge, the most related work to this research to date is discussed in [30],
where application-layer load balancing techniques are proposed to give clients a fair share
of available resources, so as to alleviate damage of application-layer DoS attacks. It is
basically a survival approach: it does not require servers to distinguish attack queries
form normal queries, but maintain a fair load distribution in the P2P system. However,

this approach could be less effective when the number of DDoS agents is getting large.
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3 Simulation Methodology of Dynamic P2P Envi-
ronments
We evaluate our proposed methods by comprehensive simulations and implementa-

tions. In this chapter, we present our performance metrics and simulation methodology.

3.1 Performance Metrics

A well-designed search mechanism should seek to optimize both efficiency and Qual-
ity of Service (QoS). Efficiency focuses on better utilizing resources, such as bandwidth
and processing power, while QoS focuses on user-perceived qualities, such as number of
returned results and average query response time. In unstructured P2P systems, the qual-
ity of a search mechanism generally depends on the number of peers being explored (que-
ried), response time, and traffic overhead. If more peers can be queried by a certain
query, it is more likely that the requested object can be found. Here we define four per-
formance metrics: average traffic cost versus search scope, query success rate, average
neighbor distance, and query response time.

Traffic cost is one of the parameters network administrators are seriously concerned

with. Heavy network traffic limits the scalability of P2P networks [70] and is also a rea-
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son why a network administrator may prohibit P2P applications. We define the traffic
cost as network resource used in an information search process of P2P systems, which is
mainly a function of consumed network bandwidth and other related expenses. Specifi-
cally, in this work, we assume all the messages have the same length, so when messages
traverse an overlay connection during the given time period, the traffic cost (C) is given
by: C=M x L, where M is the number of messages that traverse the overlay connection,
and L represents the number of physical links in this overlay connection. Search scope is
defined as the number of peers that queries have reached in an information search proc-
ess. Thus, with the same traffic cost, we aim to maximize the search scope; while with the
same search scope, we aim to minimize the traffic cost.

Average neighbor distance (AD) is used to evaluate the optimization results of a logical
topology. Let ADi be the average delay between the source peer i and all its logical
neighbors. The value AD is defined as the average of all ADis (i.e., all peers in the P2P
network). Minimizing average neighbor distance implies a better matching with the un-
derlying physical network.

Query success rate is often an important metric in evaluating search efficiency and
service quality. It measures the ratio of the queries for which at least one location of the
desired data is found. If we use qu(t) to denote the total number of queries issued by all

1™ to t™ time unit, and we use gs(t) to denote the total

the peers during the period from t-
number of queries for which one or more locations of the desired data are found, the

query success rate at any given time t, S(t),is given by:

s =29 «100%
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Query success rate in an unstructured P2P system is dependent on many factors, such as
the distribution of sharing contents, peers’ dynamicity, initial values of query messages,
search mechanism, etc. How to improve query success rate is beyond the discussion of
this paper. When a P2P system is under DDoS attack, as we have discussed, delivery of
query and query hit messages may fail due to blocked links and overloaded peers. Conse-
quently, the average query success rate will be decreased.

Response time of a query is one of the parameters concerned by P2P users. We define
response time of a query as the time period from when the query is issued until when the

source peer received a response result from the first responder.

3.2 Simulation Methodology

To evaluate effectiveness of our proposed approaches, we first generate network to-
pologies. Based on generated networks, we simulate P2P flooding search, host join-
ing/leaving behavior, and our proposed optimization operations.

Two types of topologies, physical topology and logical topology, are generated in our
simulations. The physical topology should represent the real topology with Internet char-
acteristics. The logical topology represents the overlay P2P topology built on top of the
physical topology. All P2P nodes are in a subset of nodes in the physical topology. The
communication cost between two logical neighbors is calculated based on the physical
shortest path between this pair of nodes. To simulate the performance of different search
mechanisms in a more realistic environment, the two topologies must accurately reflect
the topological properties of real networks in each layer.

Previous studies have shown that both large scale Internet physical topologies [86] and

P2P overlay topologies [72] follow the small world and power law properties. Power law
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describes the node degree while the small world describes characteristics of path length
and clustering coefficient [21]. The study in [72] found that the topologies generated us-
ing the AS Model have the properties of the small world and power law. BRITE [1] is a
topology generation tool that provides the option to generate topologies based on the AS
Model. Using BRITE, we generate physical topologies with 20,000 to 28,000 nodes. The
logical topologies are generated with the number of peers (nodes) ranging from 2,000 to

8,000. The average number of neighbors of each node is ranging from 4 to 10.

3.2.1 Flooding search simulation

Our simulation is based on observed distributions as follows. Content popularity of a
publisher follows Zipf-like distribution (aka Power Law) [16, 20], where the relative
probability of a request for the ith most popular page is proportional to 1/i%, with a typi-
cally taking on some value less than unity. The observed value of the exponent varies
from trace to trace. The request distribution does not follow the strict Zipf's law (for
which a=1), but instead does follow a more general Zipf-like distribution. Query word
frequency does not follow a Zipf distribution [41, 89]. User’s query lexicon size does not
follow a Zipf distribution [89] but with a heavy tail. Both the overall traffic and the traffic
from 10% popular nodes are heavy-tailed in terms of the host connectivity, traffic vol-

ume, and average bandwidth of the hosts [78]. Studies in [76] have suggested a log-

2
-a
quadratic distribution (10 ) for stored file locality and transfer file locality. The
time length that nodes remain available follows a log-quadratic curve [76], which could

be approximated by two Zipf distributions.

19



In our simulation, we simulate flooding search used in Gnutella and KaZaA networks
by conducting the Breath First Search (BFS) algorithm from a specific node. A search
operation is simulated by randomly choosing a peer as the sender, and a keyword accord-
ing to Zipf distribution. In our first simulation, more than 1,000,000 search operations are

simulated sequentially.

3.2.2 A dynamic P2P environment

P2P networks are highly dynamic with peers joining and leaving frequently. The ob-
servations in [78] have shown that over 20% of the logical connections in a P2P last one
minute or less, and around 60% of the IP addresses keep active in FastTrack for no more
than 10 minutes each time after they join the system. The measurement reported in [72]
indicated that the median up-time for a node in Gnutella and Napster is 60 minutes. Stud-
ies in [18] have argued that measurement according to host IP addresses underestimates
peer-to-peer host availability and have shown that each host joins and leaves a P2P sys-
tem 6.4 times a day on average, and over 20% of the hosts arrive and depart every day.
Although the numbers they provided are different to some extent, they share the same
point that the peer population is quite transient. We simulate the joining and leaving be-
havior of peers via turning on/off logical peers. In our simulation, every node issues 0.3
queries per minute, which is calculated from the observation data shown in [82], i.e.,
12,805 unique IP addresses issued 1,146,782 queries in 5 hours. When a peer joins, a life-
time in seconds will be assigned to the peer. The lifetime of a peer is defined as the time
period the peer will stay in the system. The lifetime is generated according to the distribu-
tion observed in [72]. The mean of the distribution is chosen to be 10 minutes [78]. The

value of the variance is chosen to be half of the value of the mean. The lifetime will be
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decreased by one after passing each second. A peer will leave in next second when its
lifetime reaches zero. During each second, there are a number of peers leaving the sys-
tem. We then randomly pick up (turn on) the same number of peers from the physical

network to join the overlay.
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4 Overlay Optimization in P2P Systems

The inefficient P2P overlay topology is a major reason for the heavy P2P traffic [69].
In this chapter, we discuss unnecessary query message duplications on both overlay level
and IP level. We define the Optimal Overlay Problem, and prove it is NP hard. We then
discuss our proposed approaches to optimizing the P2P overlays and prove the effective-

ness of these algorithms by simulation studies.

4.1 Optimal Overlay Problem

In a P2P system, all participating peers form a P2P network over a physical network. A
P2P network is an abstract, logical network called an overlay network. Maintaining and
searching operations of a Gnutella peer are specifically described in [9]. When a new peer
wants to join a P2P network, a bootstrapping node provides the IP addresses of a list of
existing peers in the P2P network. The new peer then tries to connect with some of these
peers. If some attempts succeed, the connected peers will be the new peer's neighbors.
Figure 4.1 illustrates a typical process of bootstrapping a new peer in Gnutella.

Once this peer connects into a P2P network, the new peer will periodically ping the
network connections and obtain the IP addresses of some other peers in the network.

These IP addresses are cached by this new peer. When a peer leaves the P2P network and
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wants to join the P2P network again (no longer the first time), the peer will try to connect

to the peers whose IP addresses have already been cached.
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Figure 4.1 Bootstrapping a new peer in Gnutella

4.1.1 Message Duplications in Overlay C

Figure 4.2 shows some examples of P2P overlay topologies where solid lines denote
overlay connections among logical P2P neighbors. Consider the case when node A issues
a query. A solid arrow represents a delivery of the query message along one logical con-
nection. In Gnutella, a peer forwards an incoming query message to all of its directly
connected peers, except the one that delivered the incoming query. Thus, as shown in
Figure 4.2 (a), A’s query is relayed by nodes B and C. Peer B forwards the query to C,
while C also forwards the query to B. In this case, the pair of transmission between B and

C is unnecessary message duplication. We can easily observe that the other three overlays
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shown in Figure 4.2 (b)-(d) have less message duplications, while retaining the same
search scope for this query.

However, we cannot draw the conclusion that the overlays in Figure 4.2 (b)-(d) are bet-
ter than the one in Figure 4.2 (a) because the above discussion only takes traffic cost into
consideration. In fact, compared with Figure 4.2 (a), the overlays in Figure 4.2 (b)-(d)
have less overlay connections, but may cause longer average query response times. For
example, when A issues larger amount of queries and D has most of the desired data, the
query response time in the overlay in Figure 4.2(b) will be much longer than that in other

three overlays.
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Figure 4.2 Examples of P2P overlay topologies
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Generally, as long as cycles exist in search paths, there must be message duplications
in overlay connections. Some peers, such as B and C, are visited by the same query mes-
sage multiple times. If a peer receives a query message with the same Message ID
(GUID) as the one it has received before, the peer will discard the message. Since a peer
is aware of this kind of revisit, we call it a Revisit Known (RK) problem. The price of
reducing RK duplications is the increment of query latency. Our first motivation is to re-
duce message duplications in overlay level and attack RK problems with minimal incre-

ment of query response time, while retaining the same search scope of queries.

4.1.2 Message Duplications in Physical Links and Topology Mismatch Problem

We have discussed message duplications in overlay connections. However, for an overlay
without RK problem, the same message still can traverse the same physical link multiple
times, causing large amount of unnecessary traffic and increasing query response time.
Here is an example. Suppose Figure 4.3 (a) illustrates the underlying physical network of
the overlay shown in Figure 4.2 (b), where A, B, C and D are peering nodes and node Y
is not a peering node. We can see that the query message along the overlay path

A->B->C->D traverses physical link YB twice. Node Y is visited twice.

Figure 4.3 Examples of physical topologies
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Since node Y is not a peering node, the message duplication (revisit to Y) cannot be
avoided. We may reduce the duplication between link YB by creating a direct connection
between A and C, and disconnecting the logical link BC, as shown in Figure 4.2 (d), but
new duplications may occur in other links, such as YA.

Figure 4.3 (b) shows another underlying physical network of the overlay shown in Fig-
ure 4.2 (b). For a query message along the overlay path A>B->C->D, D is visited three
times. Node D is a peering node, but in the first two visits, D is visited as a non-peering
node. These first two visits are not known by the P2P application. We call this kind of
revisits as a Revisit Not known (RN) problem. In this case, three physical links have been

traverses twice, as shown in Figure 4.3 (b), a topology mismatch problem occurs.
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Figure 4.4 Percentage of query responses along mismatched paths
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It is more effective to solve RN problems than RK problems since RN problems will
not only increase message duplications/traffic cost as RK problems, but also increase
query response time. In Figure 4.3 (b), node D has been visited by the same query mes-
sage twice before it ‘formally’ receives the query as a peering node. If we can replace the
overlay in Figure 4.2 (b) by the one in Figure 4.2 (c) for physical topology in Figure 4.3
(b), there will be no message duplications at all, and the response time from D to A will
be decreased significantly. Our second motivation is to improve search performance by
alleviating RN problems.

In fact, the stochastic peer connection and peers’ randomly joining and leaving a P2P
network can cause large amount of topology mismatch between the P2P logical overlay
network and the physical underlying network. Studies in [69] have shown that only 2 to 5
percent of Gnutella connections link peers within a single autonomous system (AS). But
more than 40 percent of all Gnutella peers are located within the top 10 ASes. This means
that most Gnutella-generated traffic crosses AS borders so as to increase topology mis-
matching costs. Our simulation results in Figure 4.4 show that 744,734 out of 1,000,000
query responses traverse along mismatched paths, in each of which at least one of the

peering nodes is visited as a non-peering node for more than once.

4.1.3 Modeling P2P Networks

We model a P2P network based on the following assumptions. First, an overlay
connection between a pair of peering nodes consists of a number of physical links which
form a shortest path between the pair of end nodes in the physical topology, and Internet

paths are relatively stable [95]. Second, we assume that the same size packets traversing

27



the same physical link in a short period of time will have similar delay, as assumed by
many other measurement applications [33, 85].

Graph theoretic terms not defined here can be found in [23]. We model a communica-
tion network by an undirected graph G = (V , E) where the vertex set V represents units
such as hosts and routers, and the edge set E represents physical links connecting pairs of
communicating unit. For instance, G could model the whole or part of the Internet.

Given an undirected graph G=(V , E) modeling an interconnection network, and a sub-
set X < V(G) of communicating units (peers), we construct a corresponding complete
edge weighted graph D =(V , E), where V(D) = X, and the weight of each uv € E(D) is
equal to the length of a shortest path between peer u and peer v in G. Note that D is a
complete graph, that is, it includes all possible edges, and is referred to as the distance
graph of G.

In the context of our discussion, we start with a physical network G (perhaps represent-
ing the Internet), and then choose a set of communicating peers X. The resulting distance
graph D, constructed as mentioned earlier, is the basis for constructing a P2P overlay
graph H=(V , E), which is done as follows. The vertex set V (H) will be the same as V
(D), and edge set E(H) < D(G). The key issue here is how to select E(H). For the remain-
der of the paper, we will consistently refer to the “physical” graph by G, its distance
graph by D, and an overlay graph corresponding to D by H.

From the process of building a P2P network, as we have previously discussed, theo-
retically, E(H) could be any subset of E(D). However, an optimal overlay network should
have the following basic properties. First, the selection of E(H) should make H a con-

nected graph. We define search scope as the number of peers that a query can reach in an
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information search process. Although in real systems, H could consist of several isolated
components, an optimal overlay should include only one component such that a query

can reach all peering nodes if the TTL is large enough.
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Figure 4.5 A super peer behaviour observation experiment

Second, the overly network H should be degree-bounded to balance the load of peers
since an extremely large connection degree (the number of peering neighbors) of a peer
causes heavy loading and query dropping, and an extremely small degree of a peer causes
very long response times. We identify that the upper bound of a peer’s degree for the peer
to not become a query bottleneck is 8, by experiments described as below.

As shown in Figure 4.5, we build an experimental node to receive and forward queries
flooding through the Gnutella network, and an observing node that receives queries from
the experimental node but does not process or issue any queries. Using a modified

LimeWire [11] client with logging functionality, all the queries passing by the experi-
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mental and observing nodes are recorded to two log files. Each of the two nodes was run-
ning on a PC with a 2.4GHz Pentium IV processor and 100M Ethernet interface. This ex-
periment observing a super peer’s behavior lasted 24 hours.

During the experiment, the experimental node, as shown in Figure 4.5, is intentionally
configured as a super peer connecting to tens of peers in the Gnutella network, including
super peers and leaf peers. We tightly control the number of connections to the experi-
mental node, and let this number increase by one every 10 minutes. As the number of
connections increases, more queries are sent to the experimental node. According to the
Gnutella protocol, for each received query, the experimental node will first look up its
local sharing storage index, and then forward the query to all its neighbors including the
observing node but excluding the query incoming peer. The observing node counts the
number of queries forwarded by the experimental node so as to measure the capability of
a peer in processing search queries and observe a super node’s behavior. We show the
result in Figure 4.6, where the experimental node starts dropping query messages when
there are more than 11k queries coming per minute.

There is no close correlation between the number of connections and the amount of in-
coming queries, but through the experiment we find the increase of the number of queries
is trivial when one more leaf node is connected compared with having one more super
peer neighbor. This is because a super peer can send out thousands of queries while a leaf
peer only sends out one query in several minutes. When there are more than 6 to 8 super
peer neighbors, the experimental node sometimes witnesses more than 11k incoming que-
ries per minute. When the peer has more than 12 super peer neighbors, there are always

more than 11k incoming queries per minute.
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Figure 4.6 Query drop rate vs. query density

Note that in our experiment the experimental node is dedicated to this experiment,
while in a real system a peer may have other conventional tasks. Furthermore, normally a
peer’s local index includes many contents; while in our experiment the local index is al-
most empty, which will reduce the time for local look-up operations. Based on these
observations, we bound a peer’s degree by 8, ignoring the connections with leaf peers in
super peer systems since they are not involved in query forwarding processes but only

issuing queries and waiting for responses.

4.1.4 Amount of Message Duplications in Overlay Connections
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There is a tradeoff between traffic cost and query response time [97]. It is meaningless
to purely optimize one metric without considering the other. We need to establish the re-
lationship between message duplications in overlay connections and the number of over-
lay links.

Generally, as long as loops exist in search paths, there must be message duplications in
overlay connections. Some peers are visited by the same query message multiple times. If
a peer receives a query message with the same Message ID (GUID) as the one it has re-
ceived before, the peer will discard the message.

Theorem 1: Let H(V , E) be an overlay graph. An arbitrary query message issued by an
arbitrary peer with a sufficiently large TTL value can result in d = 2([E(H)| - [V(H)|+1)
duplicate messages in the overlay graph.

Proof: For obvious reasons, we will assume that H is nontrivial and connected, which
implies H will contain at least |V(H)| - 1 edges. The proof is done by induction of E(H).

Basis: [E(H)| = [E(V)| -1

In this case H is a tree, and therefore there is no loop in the graph to generate dupli-
cated message, and thus the assertion holds, as d = 2([E(H)| - [V(H)|+1) =0.

Hypothesis: Assume the assertion is correct for [E(H)|< k, where k > [V(H)|.

Step: We want to show that the assertion is correct when |E(H)| = k. Let H be an arbi-
trary overlay connected graph with [E(H)| = k edges. Since H has more than |[V(H)| edges,
then H must contain at least one cycle C. Let uv be an edge of C, and now consider the
graph H’ = H-uv. Since H was assumed to be connected, and uv belongs to a loop, H’ is
also connected. Further, since [E(H’)| < k, then by induction hypothesis, there is an arbi-

trary query message, call it Q, issued by an arbitrary peer with a sufficiently large TTL
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value that results in 2([E(H’)| - [V(H’)|+1) duplicate messages in the overlay graph H’.
Now if we initiate the same query Q in H, sticking to the same message propagation as in
H’, at some point peers u and v, the end vertices of the edge uv, will be informed. These
peers in turn can potentially send messages to each other, generating two unnecessary
messages on the link uv. Therefore, the number of duplications in H for the message
query Q will be 2(|E(H’)| - [V(H’)|+1) +2. Rewriting this expression in terms of E(H) and
V(H), and remembering that V(H) = V(H’), we get 2(|[E(H’)| - [V(H*)|+1) +2 = 2(|[E(H")| +
1- [VH)|+1) = 2([E(H)| - [V(H)[+1), and thus the theorem.m

More message duplications in overlay links means more traffic cost. In an overlay
H=(V , E) with p nodes, concerning the traffic cost only, the best case is when H=(V , E)
is a spanning tree reduced from the complete distance graph D=(V , E). In this case, a
query incurs n-1 messages in overlay connections to reach all peers. However, the aver-
age query response time will be long compared with a graph with more overlay connec-
tions. Indeed, the number of overlay connections balances the traffic cost and average
query response time. As it is impossible to minimize these two metrics simultaneously,

we seek an optimal overlay when the cardinality of E is given.

4.1.5 Optimal Overlay Problem

Definition 4.1: Let F=(V , E) be an edge weighted connected graph. Further, let dis(u,
v) represent the distance (that is, the length of a shortest path) between vertex u and v.

The average distance, denoted by AD(F), of graph F is defined as follows:

1 :
AD(F) = V)] Z dis(u,v)

2

unordered pair u,veV (F)
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We now define the Degree-bounded Minimum Average Distance (DMAD) overlay
problem.

Definition 4.2: Let graph G=(V , E) represent a physical network and let graph D = (V
, E) be its distance graph for a set of communicating peers, as defined earlier. Recall that
D is a complete graph. Furthermore, let k be an integer such that 3(G) < k < A(G), where
8(G) and A(G) are the minimum and the maximum degree of G, respectively. A DMAD
overlay graph H= (V, E) is a connected spanning subgraph of D having the following
properties:

(@ AH) <k

(b) AD (H) is as small as possible, subject to (a).

The DMAD problem is a generalization of the degree-bounded connected subgraph
problem (DBCS) which asks the following question [37]:

Instance: Graph G=(V , E), non-negative integer d < |[V(G)|, positive integer k <
[E(G)|.

Question: Is there a subset E’ < E(G) with |E’| 2 k such that the subgraph G’=(V, E’)
is connected and has no vertex with degree exceeding d?

Clearly there is a straightforward polynomial transformation from the DBCS problem
to the decision version of the DMAD problem, and thus DMAD problem is NP-hard. m

Knowing that DMAD problem is NP-hard leaves little hope for finding an optimal
overlay network even when we have complete information about the overlay network.
Worse yet, it is practically impossible for a peer to collect global knowledge of the over-
lay topology since the number of online users could be millions and these P2P users are

randomly coming and leaving. However, it is clear that optimizing inefficient overlay to-
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pologies can fundamentally improve P2P search efficiency. Thus, we intend to develop
several overlay optimization algorithms which have the following properties. First, they
must be completely distributed and do not need any global knowledge of the overlay or
the underlying physical topology. Second, the traffic overhead incurred by the algorithms
and computation overhead should be trivial compared with the traffic cost savings. Third,
as the P2P users are randomly coming and leaving, the convergent speed of the algo-
rithms must be fast enough so that it is effective in dynamic environments. Finally, the

search scope is not shrunk by the optimization operations.

4.2 Adaptive Overlay Topology Optimization (AOTO)

If the system can detect and disconnect the slow logical connections and alleviate to-
pology mismatch (RN) problems, the total network traffic could be significantly reduced
without shrinking the search scope of queries. This is the basic principle of our proposed
Adaptive Overlay Topology Optimization [53] (AOTO) to address the topology mis-
match problem. While retaining the desired prevailing unstructured architecture of P2P
systems, the goal of AOTO is to dynamically optimize the logical topology to improve
the overall performance of P2P systems. AOTO includes two steps: Selective Flooding
(SF) and Active Topology (AT). Selective Flooding is to build an overlay multicast tree
among each peer and its immediate logical neighbors, and route messages on the tree to
reduce flooding traffic without shrinking the search coverage range. Thus, some
neighbors become non-flooding neighbors. Active Topology is the second step in AOTO
for each peer to independently make optimization on the overlay topology to alleviate
topology mismatch problem by replacing non-flooding neighbors with closer nodes as

direct logical neighbors.
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4.2.1 Selective Flooding

Instead of flooding to all neighbors, SF uses a more efficient flooding strategy to selec-
tively flood a query on an overlay multicast tree. This tree can be formed using a mini-
mum spanning tree algorithm among each peer and its immediate logical neighbors. In
order to build the minimum spanning tree, a peer has to know the costs to all its logical
neighbors and the costs between any pair of the neighbors. We use network delay be-
tween two nodes as a metric for measuring the cost between nodes. We modify the
Limewire implementation of Gnutella 0.6 P2P protocol by adding one routing message
type. Each peer probes the costs with its immediate logical neighbors and forms a routing
message type.

The peer then forms a neighbor cost table. Two neighboring peers exchange their
neighbor cost tables so that a peer can obtain the cost between any pair of its logical
neighbors. Thus, a small overlay topology of a source peer and all its logical neighbors is
known to the source peer. Based on obtained neighbor cost tables, a minimum spanning
tree then can be built by simply using an algorithm like PRIM which has a computation
complexity of O(m?). Now the message routing strategy of a peer is to select the peers
that are the direct neighbors in the multicast tree to send its queries. An example is shown
in Figure 4.7. In Figure 4.7(a), the traffic incurred by node S’s flooding of messages to its
direct neighbor E, F, and G is: 4+14+14+15+6+20+20=93.

After SF computing, we can see the forwarding connections are changed as shown in

Figure 4.7(b), and the total traffic cost becomes: 6+4+14=24.
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(a) (b)

Figure 4.7 Selective Flooding

In Figure 4.7(b), node S sends a message only to nodes E and F and expects that node
E will forward the message to node G. Note that in this step, even node S does not flood
its query message to node G any more. S still retains the connections with G and keeps
exchanging the neighbor cost tables. We call node G non-flooding neighbor of node S,

which is the direct neighbor potentially to be replaced in the next step.

4.2.2 Active Topology

The second step of AOTO, AT, reorganizes the overlay topology. Note that each peer
has a neighbor list which is further divided into flooding neighbors and non-flooding
neighbors in SF. Each peer also has the neighbor cost tables of all its neighbors. In this
step, it tries to replace those physically far away neighbors by physically close by

neighbors, thus minimizing the unnecessary traffic caused by topology mismatch.
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An efficient method to identify such a candidate peer to replace a far away neighbor is
critical to the system performance. Many methods may be proposed. In AOTO, a non-
flooding neighbor may be replaced by one of the non-flooding neighbor’s neighbor.

The basic concept of AT is illustrated in Figure 4.8. In this example, node S tries to
probe the distance to one of its non-flooding neighbor G’s neighbors, peer H. If SH is
smaller than SG, connection SG will be disconnected. If SG is smaller than SH, but S
finds that the cost between nodes G and H is even larger than the cost between nodes S
and H, S will keep H as a new neighbor. Since the algorithm is executed in each peer in-
dependently, S cannot let G to remove H from its neighbor list. However, as long as S
keeps both G and H as its logical neighbors, we may expect that node H will become a
non-flooding neighbor to node G after node G’s SF step since node G expects S to for-
ward messages to H to reduce unnecessary traffic. Then G will try to find another peer to
replace H as its neighbor. After knowing that H is no longer a neighbor to G from peri-
odically exchanged cost tables from node G (or from node H), S will cut the connection
SG, although S has already stopped sending query messages to G for a period of time
since the spanning tree was built for S. Obviously if SH is larger than SG and GH, this
connection will not be built and S will keep probing other G’s director neighbors.

It is very important to quickly identify the best candidate from a non-flooding
neighbor’s neighbor list to minimize replacement overhead. The ideal case would be that

we can always choose the candidate with lowest cost to the source at the first time.
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(a) S probes G’s neighbor H (b)SH<SG,replace G by H

(c)SH>SG, but SH<GH, S keeps (d)SH>SG and SH>GH, S starts
H as a direct neighbor probing next G’ neighbor
Figure 4.8 Active Topology

In our simulation, we use three different policies to choose the candidate. The naive
policy, which is not based on SF optimization, simply disconnects the source node’s most
expensive neighbor. The source node will probe the costs to some other nodes, and try to
find a less expansive node as a replacement of the disconnected neighbor. The naive pol-
icy cannot guarantee the same search scope as in original topology. The replacement
strategy is also not efficient. The other two policies are based on SF optimization. The
first one is random policy in which the source randomly picks a node from the source’s

non-flooding neighbor’s neighbor list. The source then decides if the selected candidate
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will be selected. The second one is closest policy in which the source will probe the costs
to all of the non-flooding neighbor’s neighbors, and select the closest one.

Let C;; represent the cost from peer i to peer j. The following pseudo code describes
the randomized AT algorithm for a given source peer i.

Pseudo Code of the Randomized AT Algorithm (peer i)
For eachj in i's non-flooding neighbors

Replaced = false;

List = all j's neighbors excluding i;

While List is not empty and Replaced = false
randomly remove a peer h from List;
measure Cjy;
if Cin < Cjj {replace j by h in i's neighbor list;

Replaced = true}
else if C;, < Cj, { add h to 1's neighbor list;
Replaced = true};
End While;
End For;

4.2.3 Effectiveness of Select Flooding Procedure

In our first simulation, a 1000 node logical graph with an average 8 edges connections
(average 16 logical neighbors) is used. We define Optimization Rate (OR) as the ratio of
the traffic cost before and after SF operations. Figure 4.9 shows the different OR of each
node after their first step of SF. More than 90% of the nodes will reduce the cost when
using the SF strategy to make their queries reach all logical neighbors. The average opti-
mization rate is around 40-50%. After this first simulation, we wonder what is main fac-
tor that influences the average OR because OR shows the effectiveness of SF and will

decide whether the peer will enter the next step of AT.
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After we tried the same logical graph based on 10 different physical topologies, we ob-
tained consistent results, which are shown in Figure 4.10.

We then simulated AOTO on different logical topologies with different number of
nodes ranging from 50 to 1000. The results in Figure 4.11 show that the density of P2P
nodes does not influence the effectiveness of SF. They all have an average optimization
rate at around 50%.

When we changed the number of edge connections in the logical topology, the optimi-
zation rate changes greatly. Figure 4.12 shows the performance of 20 500-node logical
topologies with different average logical connections ranging from 2 to 40.

The results show that SF is more effective with large number of logical neighbors. For
example, SF can achieve the average optimization rate as high as 87.4% on a logical to-

pology with an average of 30 logical neighbors.
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4.2.4 Effectiveness of Active Topology Procedure

We evaluate the result of optimizing a logical topology by computing Average
Neighbor Distance. After each node computes the optimization rate, the node enters the
procedure of AT. As we discussed, AT is to optimize the logical topology by choosing
closer neighbors, so as to attack the mismatch problem.

There are three different policies in AT to select candidate peers to replace non-
flooding peers identified in SF. We compare the average distances that are normalized to
100 of the three policies, i.e. naive, random and closest, as the optimization steps are in-
creased from O to 59. Figure 4.13 shows that the naive policy is least effective. More op-
timization steps can hardly produce lower AD. Both the random and closest policy work
well, and closest is the most effective. However, the computation complexity of closest
policy is O(mn), while that of random policy is only O(n), where m is the average num-
ber of logical neighbors (branching factor) and n is the total number of nodes in a P2P
logical topology. Figure 4.14 plots node-degree’s pdf distribution before and after AT
optimizations. We can see that optimized logical topologies using different policies keep
the similar branching factor property as the original logical topology so that the query
search scope can be guaranteed.

The average number of logical neighbors is a major factor to affect the effectiveness of
SF. But it is not true in AT. We compare the average reductions of AD on three 500-node
logical topologies with average 6, 12, and 18 edge connections using random policy as
the optimization steps are increased. Results in Figure 4.15 show that the number of logi-

cal neighbors has little impact to the effectiveness of AT.
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In theory, each peer can continuously do SF and AT until no cost improvement is ob-
tained, thus closing to a perfect topology matching. Obviously, this is unnecessary and
creates too much overhead. In practice, after each replacement, the source peer will com-
pute the cost improvement ratio and decide whether it needs to find another candidate
peer to replace another non-flooding neighbor based on a termination threshold, A. The
optimization process will terminate if the improvement ratio is less than A. Thus, the
value of A is a factor to impact the effectiveness of AT. A smaller threshold causes larger
overhead. Figure 4.16 plots the normalized AD on different thresholds as the optimiza-
tion steps are increased. AD is reduced slower for a larger threshold, and a lower thresh-

old leads to a better result.
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Figure 4.17 Traffic reduction vs. optimization step in AOTO
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4.2.5 Convergent Speed of AOTO

Figures 4.17 and 4.18 show the traffic cost and response time reduction of AOTO re-
spectively. This simulation is done based on a 27,000 nodes physical topology and 8,000
nodes logical topology. In these figures, the curve of ‘c,-neigh’ shows the average traffic
cost caused by a query to cover the search scope in x-axis, where in the system the aver-
age number of logical neighbors is ¢,. We can see that the both the traffic cost and re-
sponse time of AOTO decrease when the algorithm is conducted multiple times, where
the search scope is all 8000 peers. They both reach a threshold after several steps of op-
timization. AOTO may reduce traffic cost by around 65% and shorten the query response

time by about 35% after 10 steps of optimization.
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The tradeoff between query traffic cost and response time has been discussed in [97].
P2P systems with a large number of average connections offer a faster search speed while
increasing traffic. One of the strengths of AOTO scheme is that it reduces both query traf-

fic cost and response time without decreasing the query success rate.
4.2.6 AOTO in Dynamic Environments

We further evaluate the effectiveness of AOTO in dynamic P2P systems. In this simu-
lation, we assume that peer average lifetime in a P2P system is 10 minutes; 0.3 queries

are issued by each peer per minute; and the frequency for AOTO at every peer to conduct

optimization operations is twice per minute.
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Figure 4.19 Traffic reduction of AOTO in dynamic P2P environment
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Figure 4.19 shows the average traffic cost per query of Gnutella-like P2P systems and
AOTO enabled Gnutella. Note that here the traffic cost includes the overhead needed by
each operation in the optimization steps. We can see that AOTO could significantly re-
duce the traffic cost while retaining the same search scope. In order to keep the same
search scope, AOTO may need a larger initial value of TTL. Figure 4.20 shows that with
reduction of the traffic, the queries’ average response times of AOTO are reduced in a

dynamic environment as well.
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4.3 Location-aware Topology Matching (LTM)

In this section, we introduce our second scheme to address topology mismatch prob-
lem: location-aware topology matching [50] (LTM). In LTM, each peer issues a detector
in a small region so that the peers receiving the detector can record relative delay infor-
mation. Based on the delay information, a receiver can detect and cut most of the ineffi-
cient and redundant logical links, and add closer nodes as its direct neighbors. Our simu-
lation studies show that the total traffic and response time of the queries can be signifi-
cantly reduced by LTM without shrinking the search scope. We also show that the over-
head of issuing detectors is trivial compared with the query cost savings. LTM consists of
three main operations: T7L2 detector flooding, low productive connection cutting, and

source peer probing.

4.3.1 TTL2-detector flooding

Based on Gnutella 0.6 P2P protocol, we design a new message type called TTL2-
detector. In addition to the Gnutella’s unified 23-byte header for all message types, a
TTL2-detector message has a message body in two formats as shown in Table 1. The
short format is used in the source peer, which contains the source peer’s IP address and
the timestamp to flood the detector. The long format is used in a one-hop peer that is a
direct neighbor of the source peer, which includes four fields: Source IP Address, Source
Timestamp, TTL1 IP Address, TTL1 Timestamp. The first two fields contain the source
IP address and the source timestamp obtained from the source peer. The last two fields
are the IP address of the source peer’s direct neighbor who forwards the detector, and the
timestamp to forward it. In the message header, the initial TTL value is 2. The payload

type of the detector can be defined as 0x82.
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Table 1: TTL2-detector message body

| Source IP Address | Source Timestamp |
Byte offset 0 3 4 7
Source IP Source TTL1 IP TTL1
Address Timestamp Address Timestamp
Byte offset 0 3 4 7 8 11 12 15

Each peer floods a TTL2-detector periodically. We use d(i, S, v) to denote the TTL2-
detector which has the message ID of i with TTL value of v and is initiated by S. We use
N(S) to denote the set of direct logical neighbors of S, and use N?(S) to denote the set of
peers being two hops away from S. A TTL2-detector can only reach peers in N(S) and
N%(S). We use network delay between two nodes as a metric for measuring the cost be-
tween nodes. The clocks in all peers can be synchronized by current techniques in an ac-
ceptable accuracy'. By using the TTL2-detector message, a peer can compute the cost of
the paths to a source peer. As an example in Figure 4.21(a), when peer P receives a d(i, S,
1), it can calculate the cost of link SP from Source Timestamp and the time P receives the
d@, S, 1) from S. When P receives a d(i, S, 0), it can calculate the cost of link SF1 from
TTL1 Timestamp and Source Timestamp, and F,P from TTL1 Timestamp and the time P
receives the d(i, S, 0) from F,. As we can see in an inefficient overlay topology, the peers
in set NX(S) may receive d(i, S, v) more than once, such as peer P in Figure 4.21. If a peer
receives d(i, S, v) multiple times, it will conduct the operations in the second step of

LTM, low productive connection cutting.

4.3.2 Low productive connection cutting

! Current implementation of NTP version 4.1.1 in public domain can reach the synchronization accuracy
down to 7.5 milliseconds [14]. Another approach is to use distance to measure the communication cost,
such as the number of hops weighted by individual channel bandwidth.
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There are three cases for any peer P who receives d (i, S, v) multiple times.

Fi P

Fi Fa2 Fi F2

(b) (c)

Figure 4.21 Peer P receives d(i, S, v) multiple times in LTM

Case 1: P receives both d(i, S, 1) and d(i, S, 0) as shown in Figure 4.21(a). In this case,

d@, S, 1) comes from path SP, while d(i, S, 0) comes from SF,P. The costs of SP, SF,

and F,P can be calculated from the timestamps recorded in d(i, S, 0) and d(i, S, 1). If SP

or F|P has the largest cost among the three connections, P will cut the respective connec-

tion. If SF, has the largest cost, P will do nothing. Note that LTM is fully distributed and

all peers do the same LTM operations. In the case of SF, having the largest cost, F; will

disconnect this connection.

Case 2: P receives multiple d(i, S, 0)s from different paths as shown in Figure 4.21(b).

In LTM, P randomly takes two of the paths, such as SF,P and SF,P in Figure 4.21(b), to
process at each time. Other paths, if any, will be handled in the next round of optimiza-

tion. Thus, one important factor to affect the performance of LTM is the frequency for
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each peer to issue TTL2-detector messages. We will investigate the optimal LTM fre-
quency, and we expect it is determined by the average peer lifetime and query frequency.
Peer P can calculate the costs of SF,, SF,, F|P and F,P. If PF, or PF; has the largest cost,
P will disconnect it. If SF, or SF; has the largest cost, P will do nothing. As we have dis-
cussed above, SF, or SF; having the largest cost will be cut by one of the other three
nodes.

Case 3: P receives one d(i, S, 1) and multiple d(i, S, 0)s as shown in Figure 4.21(c). In
this case, P will process the path receiving d(i, S, 1) and one path randomly selected from

the multiple paths of d(i, S, 0)s forming a scenario of Case /.

4.3.3 Source peer probing

For a peer P who receives only one d (i, S, 0) during a certain time period (e.g., 10 sec-
onds), and P€ (N*(S)-N(S)), it will try to obtain the cost of PS by checking its cut list
first. If S is not in the list, P will probe the distance to S (see Figure 4.22). After obtaining
the cost of PS, P will compare this cost with the costs of SF; and PF,. If PS has the larg-
est cost, P will not keep this connection. Otherwise, this connection will be created. In the
Internet, the cost of SP and the cost of PS may not be the same. We use the cost of PS to

estimate the cost of SP.

Figure 4.22 Source peer probing
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4.3.4 Traffic Overhead of LTM

The simplicity of blind flooding makes it very popular in practice. This mechanism re-
lays a query message to all its logical neighbors, except the incoming peer. For each
query, each peer records the neighbors that relay the query to it. Therefore, in the worst
case, the same query message can be sent on each link at most twice. For an overlay net-
work with n peers, we use c, to denote the average number of neighbors, and use c. to
denote the average cost of the logical links. The total traffic caused by a query is less than
or equal to n c, c.. In a typical P2P system, the value of n (more than millions) is much
greater than c, (less than tens) [78]. So we can view both ¢, and c. as constant numbers.
Thus, in the flooding-based search, the traffic incurred by one query from an arbitrary
peer in a P2P network is O(n). As observed in [82], each peer issues 0.3 queries per min-
ute in average. Thus, the per minute traffic incurred by a P2P network with n peers is
o(r).

Recall that each d(i, S, v) has a TTL value of 2 in a source peer. So the traffic for one
time LTM optimization in all peers is at most 2n ca? ce. If each peer conducts LTM k
times per minute, the total traffic is 2kn cn? .. We find the best value for k is 2 or 3.
Thus, the per minute traffic overhead incurred by LTM to the P2P network is O(n). Com-
pared with the query traffic savings, the traffic overhead from LTM is trivial, which will
be quantitatively shown later.

One question is why we don’t use TTLj-detector with a TTL of j>2 in a source peer so
that cycles with more than 4 links can be detected and broken. There are two reasons for
not doing so. First, if />2, the traffic caused by detector flooding will be increased signifi-

cantly. Second, if the most expensive connection in a cycle is cut and its cost is not sub-
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stantially larger than the costs of other links in the cycle, a query initiated from any of the
two end peers in the broken cycle will need to traverse a path much more expensive than

the cost on the cut connection to reach another end peer.

4.3.5 Effectiveness of LTM in Static Environment

In our first simulation, we study the effectiveness of LTM in a static P2P environment
where the peers do not join and leave frequently. This will show that without changing
the overlay topology, how many LTM optimization steps are required to reach a better
topology matching.

The first goal of LTM scheme is to reduce traffic cost as much as possible while retain-
ing the same search scope. Figure 4.23 compares the traffic cost incurred by the original
Gnutella-like system and by the system after one-step LTM optimization. One-step
means every peer makes LTM optimization only once. Since this simulation is based on a
static P2P environment, we do not include traffic cost incurred by LTM operations. In
Figure 4.23, the curve of ‘cp-neigh’ shows the average traffic cost caused by a query to
cover the search scope in x-axis, where in the system the average number of logical
neighbors is c,. The dashed curves represent performance results without using LTM,
while solid curves represent the results with LTM optimizations. Figure 4.23 shows that
to cover the same search scope, one-step LTM reduces the traffic cost significantly, and
the reduction rate increases as the search scope increases.

In other words, with a given traffic cost, LTM will increases its search scope. Figure
4.24 shows that the traffic cost decreases when LTM is conducted multiple times, where

the search scope is all 8000 peers.
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We can see that the traffic cost reduction reaches to a threshold after the second or
third step LTM optimization. LTM can be convergent as fast as in 2-3 steps.

Average neighbor distance reflects effectiveness of LTM on topology match problem.
Figure 4.25 shows the average neighbor distance versus LTM optimization steps. Com-
pared with the original Gnutella-like network without LTM scheme (0 optimization
steps), one-step LTM optimization reduces AD by about 55%, and more steps of LTM
may cut AD to around 65%.

The simulation results in Figure 4.26 and Figure 4.27 show that LTM can effectively
shorten the query response time and search latency by about 62% and 55% respectively.

LTM scheme reduces both query traffic cost and response time without decreasing the

query success rate.
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Our other simulation results, which are not presented due to the page limitation, also
show that different densities of logical peers or physical nodes will not impact the effec-
tiveness of LTM. The average traffic cost is only proportional to the average number of

neighbors and average cost logical links, which is consistent with previous analysis.

4.3.6 LTM in Dynamic Environment

We further evaluate the effectiveness of LTM in dynamic P2P systems and explore the
best frequency for each peer to conduct LTM. We first discuss the performance impact of

the will-cut list and the cut list. The average number of logical neighbors we use is 6.
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Figure 4.26 Average response time vs. optimization step
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From our simulation results in dynamic environments, we found that with the same
search scope the query success rate in dynamic environments is decreased by about 5%
compared with the static environment, as shown in Figure 4.28 (compare curves of static
Gnutella-like and dynamic Gnutella-like). One extreme case is when the search scope is
100%, which means that each query can reach all peers and we guarantee the query result
is available in at least one of the peers. The search success rate is expected to be 100% in
this case, but it is only 95%. The reason of the 5% loss in query success rate is that the
query responses cannot be returned due to peers’ dynamic leaving behavior. We call this
phenomena response loss problem.

If we don’t use the will-cut list in LTM, a connection will be cut immediately when it

is found to be a slow connection, which will cause a very serious response loss problem

60



because many responses may not be returned due to the cut connections. The curve of
LTM without W-C in Figure 4.28 shows that the query success rate is significantly de-
creased by 30-40% without using the will-cut list. The LTM is conducted once every
minute in this simulation. Retaining query success rate is the reason we design the will-
cut list, each of which can hold 20 connections in our simulation. The up to 20 slow con-
nections will not be used to forward queries, but only used to return query results. The
lifetime of the connections in a will-cut list determines the query success rate. In Figure
4.28, a curve of LTM with W-C-n means the lifetime of a will-cut connection is n sec-
onds. We can see that the query success rate can be retained if the connections can be

kept in the will-cut list for 50 seconds.
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Another thing which deserves some words is the design of cut list. If we don’t use the
cut list, a connection that has just been cut may be established again. Thus the LTM op-
timization rate will be limited. Figure 4.29 compares the overhead incurred by LTM with
and without the use of the cut list. The fluctuations of the curves represent the dynamic
nature of the network as time goes. The curve of LTM-k means each peer conducts LTM
for k times per minute. We can see that the use of the cut list reduces traffic overhead by
about 50% compared with the case without using the cut list.

We use the will-cut list and the cut list in this part of simulation. Compared with a
Gnutella-like system, Figure 4.30 and Figure 4.31 show the effectiveness of LTM on re-

ducing average traffic cost and query response time.
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Since LTM adds some traffic overhead due to the TTL2 detector flooding, there exists
an optimal frequency for each peer to conduct LTM independently. We simulate LTM in
different frequencies ranging from 1/4 to 4 times every minute. We consider a frequency
to be optimal if the next higher frequency does not increase the optimization by more
than 3% compared with the current frequency. Results in Figure 4.30 and Figure 4.31
show that under the assumption that peer average lifetime in a P2P system is 10 minutes,
and 0.3 queries are issued by each peer per minute, the optimal frequency for every peer
to conduct LTM is twice per minute. With this frequency, about 75% reduction on traffic
cost and 65% reduction on response time can be achieved.

As we have mentioned, different values of peer average lifetime and query frequency
have been presented by previous studies [18, 72, 78, 82]. We further tune the two pa-

rameters (average lifetime and query frequency) in our simulation.
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Figure 4.32 Optimal LTM frequency vs. average peer lifetime
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Figure 4.32 shows that LTM can be conducted less frequently if peer average life-
time is longer. Figure 4.33 shows that LTM should be conducted more frequently if more
queries are issued. Both figures show that a larger average number of neighbors require a

higher LTM frequency.

4.3.7 Combining LTM and Query Index Caching

We compare the traffic cost and response time in a Gnutella-like system without any
optimization, with query index caching only, with one-step LTM optimization only, and
with one-step LTM optimization plus query index caching.

Results in Figure 4.34 and Figure 4.35 show that by combining LTM and query index
caching the traffic cost is reduced by about 10 times without shrinking the search scope,

and the average query response time is reduced by about 7 times.
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4.4 Scalable Bipartite Overlay (§BO)

We have presented AOTO and LTM. Since AOTO only work with peers’ one hop
away neighbor, its convergent speed is relative slow. Thus, its effectiveness is degraded
in highly dynamic systems. LTM has a faster speed compared with AOTO, but it needs to
synchronize all the peering nodes. In this chapter, we introduce SBO, which employs an
efficient strategy for distributing optimization tasks in peers with different colors. In
SBO, each joining peer is assigned a color so that all peers are divided into two groups of
white or red colors, respectively. White peers probe neighbor distances and reports the
information to the red neighbors and red peers compute efficient forwarding paths. A
white peer that is not on forwarding paths of a red peer tries to find a more efficient red
peer to replace this neighbor. The topology construction and optimization of SBO consist
of four phases: bootstrapping a new peer, neighbor distance probing and reporting, for-

warding connections computing, and direct neighbor replacement.

4.4.1 Design of SBO

In the first phase of SBO, each joining peer is randomly assigned a color so that all
peers are divided into two groups with white or red colors, respectively. Each peer is only
connected with peers in a different color. In the second phase, each white peer probes its
distances with all its red neighbors and reports the information to the red neighbors. In
the third phase, each red peer computes efficient forwarding paths so that the same search
scope can be retained without the need to flood a query to all neighbors. In the fourth
phase, a white peer who is not on the forwarding path tries to find a more efficient red

peer to replace its current neighbor.
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Figure 4.36 Bootstrapping a new peer

Phase 1: bootstrapping a new peer.

When a new peer is joining the P2P system, it will randomly take an initial color: red
or white. A peer should keep its color until it leaves, and again randomly select a color
when it rejoins the system. Thus, each peer has a color associated with it, and all peers are
separated into two groups, red and white. In SBO, a bootstrap host will provide the join-
ing peer a list of active peers with color information. The new joining peer then tries to
create connections to the different color peers in the list. Figure 4.36 illustrates a new
peer’s joining process. In such a way, all the peers form a bipartite overlay, in which a red
peer will only have white peers as its direct neighbors, and vice versa.

Once a peer has joined the P2P system, it will periodically ping the network connec-
tions and obtain the IP addresses of other peers in the network, which will be used to

make new connections for the peer’s rejoining or in the case that the peer loses some of
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the connections with its neighbors due to the neighbors’ departure or failure, or the faults
in the underlying networks

.Phase 2: neighbor distance probing and reporting by white peers

We modify the Limewire implementation of Gnutella 0.6 P2P protocol by adding one
routing message type for a peer to probe the cost with its neighbors. Each white peer
probes the costs with its immediate logical neighbors and forms a neighbor cost table, and
sends this table to all its neighbors who are all red peers. The impact of the frequency of
the white peers’ probing and cost table reporting operation will be discussed in more de-
tail later.

Since each red peer, P, receives the cost table from its white neighbors about its all red
neighbors, the red peer P has the information to obtain the overlay topology including P
itself, N(P), and N?(P), as illustrated in Figure 4.37 (a). Note that in SBO the overlay
forms a bipartite topology, so there is no connections between any pairs of peers in N%(P).
Thus, we only require all the white peers to probe the costs to their neighbors and send

out the cost tables. There is no need for the red peers to probe the distance.

Figure 4.37 A red peer P has topology of (P+N(P) + N2(P)), and computes the MST

69



Figure 4.38 A red peer computes the efficient forwarding paths

Phase 3: forwarding connections computing by red peers

Based on obtained neighbor cost tables, a minimum spanning tree (MST) can be built
by each red peer, such as P in Figure 4.37 (b). Since a red peer builds a MST in a two-hop
diameter, a white peer does not
need to build a MST. The thick lines in the MST are selected as forwarding connections
(FC), while the rest lines are non-forwarding connections (NFC). Queries are only for-
warded along FCs. For example, in Figure 4.37(b), P will send/forward queries to A, B
and F, but not E. Peer P also informs E that E is a non-forwarding neighbor. This infor-
mation will be used by E in Phase 4, i.e., direct neighbor replacement.

Figure 4.38(a) illustrates how the query message from P is flooded along the connec-
tions based on Figure 4.37(a). We can see many message duplications, i.e. RK problem.
The total traffic cost incurred by the query is: 3+6+5+5+12+3+5+6+9+9+15+11+
11=100. After FC computing in Figure 4.37(b), the traffic cost incurred by this query be-
comes: 3+6+5+3+5+6+15=43 as shown in Figure 4.38(d).

Although FC computing can reduce a lot of traffic while retaining the same search

scope, as we described earlier, the price is to scarify query response time, or the query
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latency. For instance, P issues a query, and E has the desired data. The response time in
Figure 4.38(a) is 2 x 12 = 24. After FC computing, the response time becomes 2 x (3 + 6
+ 5) =28. Based on this observation, we will further improve our FC selecting algorithm
later in this section.

Phase 4: direct neighbor replacement by white peers

This operation is only conducted by white peers. The goal of neighbor replacement is
to alleviate the topology mismatching problem, or RN problems. As we have explained,
solving RN problem is essential since it will not only reduce message duplications and
traffic cost, but also shorten the response times.

After computing a MST among the peers within two hops, a red peer P is able to send
its queries to all the peers within two hops. Some white peers become non-forwarding
neighbors, such as E in Figure 4.37. In this case, for peer E, P is no longer its neighbor. In
the phase of direct neighbor replacement, a non-forwarding neighbor, E, will try to find
another red peer being two hops away from P to replace P as its new neighbor.

Peer P will send the neighbor cost tables it collected from A, B and F to the non-
forwarding neighbor E so that E has enough information to find another neighbor to form
a more efficient topology. Having received the cost tables, E can obtain the overlay to-
pology among P and the peers N(P) and N*(P). In the design of SBO, E will probe the
round trip times (RTTs) to all the red peers in N*(P) and sort the red peers according to
their RTTs. Peer E then selects the one with the smallest RTT, e.g., peer D in Figure
4.39(a). There are three cases for peer E who finds D as its nearest red peer.

Case I: The delay of ED is smaller than that of EP. The connection of ED will be cre-

ated, and D becomes E’s direct logical neighbor. The connection EP will be put into E’s
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will-cut list that is a list of connections to be cut later. A connection in a will-cut list will
be disconnected when it has been in the list for a certain period of time. A peer will not
send or forward any queries to the connections in its will-cut list.

The reason for E not to disconnect EP immediately is that some query responses might
be sent back along the overlay path EP for some earlier queries. Disconnecting non-
forwarding connections, such as EP, immediately may cause serious response loss prob-
lem. Figure 4.39(b) is the topology after E connects with D, and disconnects with P after
a timeout period.

Case 2: The delay of ED is larger than that of EP, but is smaller than the larger one of
PF and FD. For example, if ED=13 in Figure 4.39(c), 12 < ED < 15. In this case, E will
create the connection of ED and treat D as its direct neighbor. Peer E will not put connec-
tion EP into its will-cut list until it sends its neighbor cost table to D so that D still thinks
the connection of EP exists. Note that the algorithm is completely distributed. Thus, when
red peer D conducts the FC computing, F will become D’s none-forwarding neighbor.
The white peer F will conduct the same operations as what peer E has done, and may try
to find a better red peer to replace node D as its neighbor.

Case 3: If ED has the largest delay among EP, PF and FD, peer E will pick the second
nearest peer in N?(P), such as C in Figure 4.39(d), and repeat the above process until it
finds a better node to replace P as its neighbor, or until it has tried all the peers in N*(P).

The first three operations are relatively straightforward, so we do not provide the de-
tailed pseudo code, and the pseudo code of direct neighbor replacement operation is as

below.
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Figure 4.39 An example of neighbor replacement

For a white peeri
For each peer j in white peer i's non-forwarding neighbor list
Replaced = false;
List=all the two hope away red neighbors of j, N*(j);
Peer i pings all the peers in List;
Add peers’ RTT information to List;
While List is not empty and Replaced = false
remove the peer h with smallest RTT from List;

if RTT), < RTT; {replace j by h in i's neighbor list;
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Put j into will-cut list;
Replaced = true;}
else
Common_list=all common neighbors of peer j and h;
While Common_list is not empty and Replace=false
Randomly remove a peer k from Common_list;
RTTy=max{RTTy, RTTk.};
if RTT;, < RTT
{add h to i's neighbor list;
remove j from i's neighbor list right after
i finds out jk or kh is disconnected;
Replaced = true;};

End While;

End While;

End For;

4.4.2 Further Improvements

Previous studies have shown that queries and queried data have significant locality [76,
89]. A small number of peers issue a large portion of the queries and the 5% of the files
accounts for 50% of all transfers. Peers’ behaviors are different in the query frequency
and response frequency. We define a query-heavy peer who issues queries frequently, and
a response-heavy peer who often responds queries. We have discussed in the previous
section that reducing RK duplication may lead to increase query response time. To avoid

disconnecting a path from/to a query/response heavy peer, we further improve SBO by

74



keeping some single direction connections (SDC). Below we define Query-heavy peer
and Response-heavy peer.

Query-heavy peer. If the number of queries that a peer have issued or forwarded is 5
times more than the average number of queries in last minute (the number of 5 times is
selected based on our simulation), it is defined as a query-heavy peer. In our simulation,
with an average number of neighbors being 6, initial TTL=7, average peer lifetime of 10
minutes, and query frequency of 0.3 queries issued per peer per minute, we measured that
the average number of queries processed (issued and forwarded) by each peer is about 15
to 25 per second. Thus, a peer is identified as a query-heavy peer if it processed more
than 75 queries per second.

Response-heavy peer. In Gnutella protocol v0.6, Query Hit (response) messages are
sent along the same path that carried the incoming query message. In our simulation, a
peer delivers or forwards 3 responses per minute in average. In SBO, a peer processed
more than 20 responses in last minute is defined as a response-heavy peer (The number of
20 responses is selected based on our simulation).

Single Direction Connections (SDC). Every peer in SBO will monitor its own status.
If a peer finds itself a query/response-heavy peer, it will report its status to all its
neighbors. Thus, when a red peer computes FCs to form the forwarding paths, a white
neighbor who is not a forwarding peer may be a query- or response-heavy peer. The con-
nection between the red peer and the white peer will be set as a SDC. For example, if peer
E in Figure 4.39(b) is a response-heavy peer, instead of setting PE as a non-forwarding
connection, it will set PE as a SDC: P->E, where P will send/forward query messages to

E while E will not send/forward any query messages to P. In this case, E will still do its

75



neighbor replacement operation. The SDC: P->E will be disabled when E is no longer a
response-heavy peer. If E is a query-heavy peer, connection PE will be set as SDC: E->P,
where E will send/forward query messages to P while P will not send/forward any query

messages to E.

4.4.3 Traffic Overhead of SBO Optimizations

One optimization step of SBO includes all white peers’ neighbor distance prob-
ing/reporting and neighbor replacement. In the worst case, each white peer, P, needs to
probe every peer in N*(P). It is reasonable to assume that the traffic overhead of peer A
probing peer B is equal to a query message traversing the connection AB twice. If each
peer conducts SBO optimization operation k times per minute, the total traffic overhead

per minute is:

kc,c,(3+2c,) ,
2

Our simulation results will show that the optimal value for k is less than 1, so the per

kx(—’-21—><(2cnce +c,c, + 2cfce ) =

minute traffic overhead incurred by SBO to the P2P network is O(n). Compared with the
query traffic savings, the traffic overhead from SBO optimization is relatively trivial.
4.4.4 Property analysis of SBO operations

We are going to prove that SBO operations will not increase the number of compo-
nents of a graph.
Theorem: Given a bipartite graph G = (V, E), the SBO optimization operations will

not increase the G’s component number.
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Proof: We prove by contradiction. Suppose our claim is false. Then, there exists at
least one component C, where C is a subgraph of G, which could be disconnected by the
SBO operations. Suppose C is disconnected into two parts, X and Y, after SBO opera-
tions, as shown in Figure 4.40.

Before the SBO optimization, there must be one or more edges between X and Y since
C is connected. Let M denotes the set of the edges between X and Y. Among all these
edges in M, we choose the shortest one, uvE€M. Here we assume there are no exact equal
length edges in the system, so uv is the only shortest edge in M.

Since G is a bipartite graph, peer u and v must have different colors. Without loss of
generality, we can assume u is red and v is white. C is disconnected after SBO operations

means that none of the edges in M, including uv, is selected as u’s forwarding path.

|

Path P

Figure 4.40 Proof of the property of SBO operations



We know that the red peer u employs a MST algorithm, such as kruskal algorithm, in
FC computing operation. Because v is #’s one hope neighbor, v must be included in «’s
MST. In kruskal algorithm, edges are sorted from shortest to longest. The edge uv is not
selected by MST means that there is already another path P (uv#P) between u and v, and

the length of each edge in P is shorter than uv. As P is between X and Y, at least one of

the edges in P, say edge €, belongs to M. Thus, we have € < uv, which is a contradiction

to our choice that uv is the shortest edge in M. m

4.4.5 Effectiveness of SBO in Static Environments

We study the effectiveness of SBO in a static P2P environment firstly. This will show
that without changing the overlay topology, how many SBO optimization steps are re-
quired to reach a better topology matching. Here one step we mean each red peer collects
the neighbor cost tables from its neighboring white peers, and computes the efficient for-
warding connections, and its neighbors finish neighbor replacement operations, if needed.

Note that in the design of SBO, if the reported information from all neighbors includ-
ing neighbor status and cost-tables are not changed, the red peer will not compute FCs.
Consequently the neighboring white peers will not do the neighbor replacement opera-
tions.

We generate 500,000 queries, and simulate flooding search for different topologies
with average neighbor number as 4, 6, 8 and 10 after each SBO optimization step, and

show the results in Figures 4.41 and 4.42.
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Figure 4.41 shows that the traffic cost decreases when optimization operations of SBO
are conducted multiple times, where the search scope is all 7,000 peers. To cover the
same search scope, SBO reduces the traffic cost significantly in first two optimization
steps. We can see that the traffic cost reduction reaches to a threshold after eight to ten
steps of SBO optimization. The simulation results in Figure 4.42 show that SBO can ef-
fectively shorten the query response time by about 60% in first 10 optimization steps.
SBO reduces both query traffic cost and response time without decreasing the query suc-
cess rate.

Our other simulation results, which are not presented due to the page limitation, also
show that different densities of logical peers or physical nodes will not impact the effec-
tiveness of SBO. The average traffic cost is only proportional to the average number of

neighbors and average cost of logical links, which is consistent with previous analysis.

4.4.6 Frequency of SBO Optimizations

In SBO, there are two ways for a white peer to decide when to conduct neighbor prob-
ing and reporting, namely periodic and event-driven. In periodic approach, each white
peer conducts neighbor distance probing at every certain period of time, q. After probing
the distances to all the neighbors, a white peer sends the cost table to its neighboring red
peers. In event-driven approach, a white peer produces and sends an updated cost table to
its neighboring red peers only if there is a change on its logical connections with its

neighbors, such as on a neighbor’s leaving or on a peer’s joining as its new neighbor.
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The value q is a critical factor for the performance of periodic approach. We have in-
vestigated the impact of different values of q ranging from 20s to 600s. Figures 4.43 and
4.44 show the results on some representative samples of q at 30s, 60s, 90s, and 120s, re-
spectively, where x-axis indicates the time elapsed since the first probing or event oc-
curred. A small q leads to a fast convergent speed. However, if q is too small, e.g. g=30,
peers will conduct the optimization operations too often, making the overhead keep grow-
ing when the reduction of the traffic cost and response time have already reached a
threshold.

The value of q should be able to adaptive to the average peer lifetime in order to
achieve optimal performance. Figures 4.43 and 4.44 also show that the periodic approach

with g=90s outperforms even-driven approach on traffic reduction.
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Figure 4.45 Optimal SBO optimization time interval

82



As we have mentioned, different values of average peer lifetime have been presented
by previous studies [17, 72]. We further tune the average peer lifetime in our simulation.
Figure 4.45 shows that SBO optimization operations can be conducted less frequently if
average peer lifetime is longer.

From our simulation results, we find that if the average peer lifetime is longer than 37
minutes, the event-driven policy will outperform periodic policy.

In a super peer P2P system, such as KaZaA, flooding based search is only employed
among super peers. The mechanism to select super peers makes the super peers more sta-
ble than leaf peers. Thus, an event-driven policy is highly recommended when SBO is

implemented among super peers.

4.4.7 SBO with SDC and Index Caching

We have discussed the design of SDC to further improve SBO. In this part, we evalu-
ate SDC based on SBO and a strategy of combining SBO with response index caching
scheme. We compare the traffic cost with SDC enabled SBO optimization plus response
index caching in Figures 4.46 and 4.47. The design of SDC can further improve average
response time of SBO by about 25% with very trivial traffic cost increment. Also com-
pared with SBO, by combining SDC enabled SBO with response index caching the traffic
cost is reduced by about 50% without shrinking the search scope, and the average query

response time is reduced by about 42%.
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4.5 Two Hop Away Neighbor Comparison and Selection (THANCS)

Two Hop Away Neighbor Comparison and Selection (THANCS) scheme effectively
attacks the topology mismatch problem and optimizes the overlay topology to approach
the optimal solution. In THANCS, each peer probes the distances with its immediate
logical neighbors and piggybacks all its neighbors’ distance information with selected
query messages. Thus, peers may have two hop away neighbors’ information without
much extra overhead to optimize the topology to approach an optimal overlay. THANCS
consists of two main components: piggybacking neighbor cost on queries, and neighbor

comparison and selection.

4.5.1 Piggyback Neighbor Distance on Queries

We use network delay between two peers as a metric for measuring the distance be-
tween the peers. In THANCS, each peer probes the distances with its immediate logical
neighbors and stores the information in its local storage. Peers in Gnutella have a limited
number of neighbors, 4 to 6 on average, so the overhead of this operation is trivial for
each peer. Since Internet paths are relatively stable [95], to keep the neighbor information
up to date, a peer only needs to probe the distance to its new neighbor and modify the

neighbor distance information when any of its neighbors is leaving.

Table 2: Piggy Message body

Neighbor IP Address Neighbor Distance

Byte offset 0 3 4 5
For each peer to keep the distance information of its neighbors, we add one special

query message type, Piggy Massage. A piggy message has a message body in the format

as shown in Table 2. It includes two fields: Neighbor’s IP Address and Neighbor’s Dis-
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tance. Since a piggy message will be piggybacked by a query message, it does not need
the Gnutella’s unified 23-byte header.

A peer constructs a piggy message for each of its neighbors. The idea here is to send
the piggy message of one neighbor to all the other neighbors. In order not to increase the
number of messages, THANCS is designed to piggyback a piggy message on a query

message.

Normal Query
Message

S Piggy Piggy
Message Message
Oalessge g o O
~

~
LN
Piggy "
Message

Figure 4.48 Forwarding piggy messages

For example, peer P in Figure 4.48 constructs a piggy message for its neighbor Q,
which contains Q’s IP address and the distance of PQ. When P receives a query from Q,
this piggy message will be piggybacked by the query message that will be forwarded to
all the other neighbors of peer P. The payload type of a query message piggybacking a
piggy message can be defined as 0x82 to distinguish it from a normal query message
(0x80). The payload length of such a query message will be increased by 6. After receiv-
ing such a query message, each of the other neighbors will detach the piggy message
from the query message, record the distance information of P to Q, and further process

the query and forward the query message if necessary. The piggybacked piggy message
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will not be forwarded, but it is possible for this query message to piggyback another
piggy message.

However, peer P may receive queries from Q very frequently. It is obviously not nec-
essary for all query messages from Q to piggyback the piggy message. One critical issue
to be examined here is which incoming queries should piggyback the piggy message. Al-
though a piggy message is only 6-byte long, a large amount of duplicated piggy messages
still inserts a lot of unnecessary traffic into the network. In this study we present two

policies for this selection: pure probability-based (PPB) policy and new neighbor trig-

gered (NNT) policy.

N —
> a normal query message
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Figure 4.49 New neighbor triggered ploicy

The PPB policy is simply providing a pre-defined probability, o, for a query to decide
to piggyback a piggy message. That means in each peer, the probability for a query to
piggyback a piggy message is a. A smaller a means there will be fewer queries piggy-
backing piggy messages. Note that in this design, it is not to say that once a query starts

to piggyback a piggy message, the piggy message will be forwarded with the query mes-
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sage until the query message is dropped. Instead, each piggy message will be piggy-
backed for only one single hop. The piggy message will be detached from the query mes-
sage from the previous peer. With the probability «, this query message may piggyback
another piggy message in the current peer. The major advantage of this policy is its sim-
plicity.

In the NNT policy, query messages will not piggyback piggy massages until a peer
finds a neighbor who just joined the P2P network. As shown in Figure 4.49, all peers
monitor new neighbors’ coming. For example, when a peer P gets a new neighbor N, P
does the following two operations. First, peer P probes the distance with N and constructs
a piggy message. Peer P lets the first query message coming from N piggyback this piggy
message. This query message with piggybacked piggy message will be forwarded to all
P’s existing logical neighbors except peer N. Second, the first incoming query from each
of P’s existing neighbors after peer N’s coming will piggyback a corresponding piggy
message (with the distance to this neighbor) when it is forwarded to N. However, the
query message will not piggyback a piggy message when it is forwarded to the other ex-
isting neighbors, as illustrated in Figure 4.49. Another option is to let the first query mes-
sage from P’s previous neighbors piggyback all the piggy messages (except the one for
the new neighbor) to the new neighbor, N. Compared with the PPB policy, NNT policy is
relatively complicated while it has smaller traffic overhead.

We will further discuss the selection of the probability for this policy, and the selection

of these two policies in detail later.
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S will know the distance between each peer in N(S) and any of the peers in N?(S) that
are connected with the peer in N(S). This information will be used in the second compo-

nent, neighbor comparison and selection.

4.5.2 Neighbor Comparison and Selection

The behavior of THNACS peers in this neighbor comparison and selection component
is demonstrated through an example in Figure 4.50. An arbitrary peer, S, probes the dis-
tance to all the known un-probed N%(S) peers. The distance of SP is known to S. When
peer S receives a piggy message from peer P with the distance of PQ, there will be two

Cascs.

probing - - - — = S

Figure 4.50 Probing two hop away neighbors

Case I: Peer Q is also a direct neighbor of peer S, i.e. Q€ (N(S) MN2(S)). In this case,
peer S will compare the cost of SQ, SP, and PQ. If SQ or SP is the longest in these three
connections, S will put the longest connection into its will-cut list that is a list of connec-
tions to be cut later, e.g. 50 second later. If PQ is the longest, peer S will do nothing be-

cause the system is fully distributed and peer P or Q will disconnect PQ shortly. A peer
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will not send or forward queries to connections in its will-cut list, but these connections
have not been cut in order for query responses to be delivered to the source peer along the
inverse search path.

Case 2: Q is a two-hop away neighbor of S; but not a direct logical neighbor of S, i.e.
Qe (N*(S) -N%(S)). Peer S will first check whether it had probed peer Q before or used to
have peer Q as a direct neighbor by looking up S’s distance-cache that is designed to keep
a list of peers that have been probed by peer S. If peer S used to probe the distance to peer
Q, S will do nothing with peer Q and start probing other peers in N2(S). Otherwise, peer
S will probe the distance to peer Q, and store the probing result in the distance-cache.
Having the distance of SQ, peer S compares SQ, SP, and PQ. If SQ is the longest, peer S
will not keep the connection with peer Q. If SP is the longest, S will keep the connection
with peer Q and put SP into the will-cut list. If PQ is the longest in the three connections,
S will keep the connection with both P and Q, expecting that peer P or Q will disconnect
PQ later.

The first component, piggyback neighbor distance on queries, is relatively straightfor-
ward. The selection of PPB or NNT policy will be further discussed in Section 6. Thus,
we do not provide the detailed pseudo code for this part here. The pseudo code of
neighbor comparison and selection component for a given source peer i is as below. Let
Dij represent the distance from peer i to j.

Pseudo code of neighbor comparison and selection:

for each heN?(J) in j's direct neighbors,
if heN()

{check Dj;
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i (D, >D,)N(D, >D,)
{put connection ih into i's will-cut list; }

elseif (D, >D,)N (D, >D,)

{put connection jj into i's will-cut list; }
end if
else
if (Di is not in /’s distance-cache)

Probe Djy;
if (Dih < Dy) U (Dih < Djh)

{keep the connection with peer h and include h as a direct logical

neighbor of /;
if (D, >D,)N(D,>D,)

{put connection jj into i's will-cut list; }

b

end if
end if
end if

end for
4.5.3 Effectiveness Analysis of THANCS

To the best of our knowledge, the work in [69] is the first to mention the topology
mismatch problem in Gnutella like P2P systems and comprehensively discuss the impor-
tance of a “proper fitting” overlay topology. The authors also provided an example to il-

lustrate this problem, as shown in Figure 4.51. In this figure, solid lines represent the un-
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derlying infrastructure that connects the eight hosts in a Gnutella-like P2P system, and
dotted lines denote the overlay connections.

In an inefficient overlay shown in Figure 4.51(a), a message from node A involves six
communications over the physical link D-E. This inefficient overlay can be optimized by
THANCS. For example, when peer A receives peer E’s piggy message indicating the cost
of D-E, A will create overlay connection A-D and disconnect connection A-E shortly.
After one or two steps of THANCS optimization, the overlay shown in Figure 4.51(a)
will be optimized as the overlay shown in Figure 4.51(b), in which a message from node

A involves only one communication over the physical link D-E.

Figure 4.51 THANCS can effectively optimize a mismatched overlay topology to a

better mapping overlay. (a) Wit