
fl
i
n
t

“
t
1
1
1
%
s
t
i
r
-
‘
3
3
?
“

-
4
u
l

-
I
:

-
a
h

.
.
.

1
.

-
~

.
V

‘
A

a
n
»
.

n
—
u
fi
"

1 .

THESIS

:94

5W0?”

This is to certify that the

thesis entitled

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW

MANAGEMENT FOR DESIGN AND MANUFACTURING

presented by

HONG SUK JUNG

has been accepted towards fulfillment

of the requirements for the

MS. degree in Department of Computer

Science and EngineerinL

@M@%

Major ProfesUignature

“111, L 127/00 ’4

Date

MSU is an Affirmative Action/Equal Opportunity Institution

-
-
A
_
.
-
.
.
—

_
.
-
.
-
.
-

LlBRAFiY l

MIChIQan State

University

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

 6/01 cJCIFlC/DatoDuo.p65-p.15

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW MANAGEMENT

FOR DESIGN AND MANUFACTURING

By

Hong Suk Jung

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2004

ABSTRACT

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW MANAGEMENT

FOR PRODUCT DESIGN AND MANUFACTURING

By

Hong Suk Jung

The web technology has been allowing the formation of “virtual” organizations to

handle wide range of design and manufacturing process. Many collaborative

systems can coordinate distributed processes among manufacturers, and the

Web service technology can provide more scalable and flexible collaborative

workflow management in such systems. The manufacturing processes of each

collaborative system can be posted as a globally-understandable service by

using Web service technology and used by other systems. The service-oriented

process model provides the fundamental foundation of globally-acceptable

representation and management for distributed processes as services. In this

model, the OWL has been used to represent the process and describe execution

status of process in this model. The Web service-oriented process model has

been successfully deployed in the Manufacturing Integration and Design

Automation System (MIDAS). The authoring environment of MIDAS enables

users to create and advertise the OWL process definitions, and deploy Web

services for those process definitions. The execution environment of MIDAS

enables users to search, select and execute the posted process by using Web

service.

Table of Contents

Table of Contents ... iii

List of Figures ... vi

Chapter 1 Introduction .. 1

Chapter 2 Background ... 4

2.1 Requirements for Collaborative Workflow Management System 4

2.2 Process Grammar .. 7

2.3 WfMC’s Workflow Reference Model ... 9

Chapter 3 Web Services .. 14

3.1 Definition of Web service .. 14

3.2 Three Tier Model .. 14

3.3 Characteristics of Web service ... 16

3.4 Benefits from Web Service ... 17

3.5 Web Service Choreography ... 19

3.6 Markup Languages for Collaborating Web services 20

Chapter 4 Service-Oriented Process Model ... 22

4.1 OWL ... 22

4.2 Process Definition Model .. 23

4.2.1 Class Service.. 25

4.2.2 Class LogicaIService and Class AtomicService................................ 29

4.2.3 Class ServiceComposite .. 33

4.3 Workflow Management Model .. 35

4.3.1 Common Operations .. 36

4.3.2 Common Execution States ... 37

4.3.3 Asynchronous Collaboration Scenarios.. 39

4.4 Execution Monitor Model .. 39

Chapter 5 MIDAS Framework .. 42

5.1 Features of MIDAS ... 44

5.2 MIDAS Architecture .. 45

5.2.1 Process enactment engine ... 46

5.2.2 Cockpit ... 48

5.2.3 Process Library and Tool Library.. 49

5.2.4 Web Service Modules... 50

5.3 Web service Server System ... 50

5.4 The Service Registry .. 51

Chapter 6 MIDAS Authoring Environment Using Web service 54

6.1 Creating Process Definition .. 55

6.1.1 Process Definition for Atomic Service... 55

6.1.2 Process Definition for Logical Service .. 57

6.2 Deploying Web service ... 58

6.3 Registering Web service ... 59

Chapter 7 MIDAS Execution Environment Using Web service 61

7.1 Service Discovery ... 62

7.2 Negotiation for Collaboration .. 63

7.3 Process Enactment Using Web service .. 64

7.3.1 Task assignment using Web service .. 65

7.3.2 Use Web service as public process library 68

7.3.3 Tool invoking by Web service ... 68

7.4 Monitoring Enactment... 70

APPENDIX A. JAVA Package for SOM .. 72

APPENDIX B. Converting Graph to Process Definition 80

APPENDIX C. Example of Process Definition .. 83

APPENDIX D. WSDL for Service Registry ... 87

APPENDIX E. Example of jws codes and its WSDLs... 93

Summary .. 96

References ... 97

List of Figures

Figure 1 Four Companies in a Die Casting Process... 6

Figure 2 Example of top-level process and production ... 8

Figure 3 WfMC's high-level functionalities for WfMS .. 11

Figure 4 WfMC reference model .. 13

Figure 5 Three Tier Model .. 15

Figure 6 OWL information modelling .. 23

Figure 7 UML notation for class Service ... 25

Figure 8 UML notation for class AtomicService .. 30

Figure 9 UML notation for class LogicalService ... 31

Figure 10 UML notation for ServiceComposite and ComponentService 34

Figure 11 UML notations for execution monitor model 38

Figure 12 UML notations for execution monitor model 41

Figure 13 Web service-oriented interoperation between business entities 43

Figure 14 MIDAS architectures .. 45

Figure 15 Entry of service registry .. 52

Figure 16 Creating definition for atomic service ... 56

Figure 17 creating definition for logical service... 57

Figure 18 Deploying Web service on the Internet... 58

Figure 19 Registration of a service and format of entry 60

Figure 20 Overview of Web service-oriented interoperation in MIDAS 61

Figure 21 Overview of service discovery in the MIDAS 63

Figure 22 Overview of task assignment using Web service 66

VI

Figure 23 Detail view of task assignment using Web service 67

Figure 24 Overview of using Web service as process library 68

Figure 25 Overview of tool invoking using Web service 69

Figure 26 Detail view of tool invoking using Web service 70

Figure 27 Overview of monitoring using Web service .. 71

VII

CHAPTER 1 INTRODUCTION

The advancement of information technologies, dynamic markets, and changes in

production business have set a new stage for manufacturing practices in the

fiercely competitive industry [Alsop 1998, Baldwin 1995]. To stay competitive,

manufacturers must be able to 1) manage increasing product complexity and

product innovation from market demands, 2) have faster and more flexible

product development cycle, and 3) control globally distributed/outsourced

operations. Collaborative systems for product design and manufacturing have

been introduced so that manufacturing organizations obtain competitiveness by

creating products in less time, at less cost, and with fewer defects. For example,

the Collaborative Product Commerce solution unifies the product life cycle by

enabling the sharing of product knowledge and incumbent manufacturing

applications [Aberdeen 2002].

A variety of collaborative systems to manage manufacturing processes to the

heterogeneous business environment [Bourke 2000] have been proposed.

However, these frameworks mostly focus on system integration in a closely

coupled design and manufacturing environment. Therefore, such systems may

show weakness in terms of scalability and extensibility which a loosely-coupled

component architecture would not.

Recently the term, service-oriented interoperability has been introduced to depict

the behavior of collaborating systems in the loosely-coupled way. The service-

oriented interoperability means that no matter what execution logic has been

used inside each system, no matter what implementation has been used for each

system, each system exists as a self-contained service so that the collaboration

proceeds without any concern about heterogeneous working environment of

each system. The Web service technology is the most recent and most

appropriate web technology to implement such service-oriented interoperability to

collaborating systems. The processes of each collaborative system can be

posted as a globally-understandable service and used by other systems through

Web service.

The service-oriented process model that I am proposing in this thesis is a model

to provide the fundamental foundation that enables a globally-acceptable

management for distributed processes as services. In this model, the OWL,

which is a global ontological markup language, has been used to represent a

process definition and describe execution status of on-going process.

To demonstrate the globally-acceptable management for distributed processes

as services, the service-oriented process model has been implemented to the

framework, Manufacturing Integration and Design Automation System (MIDAS).

The MIDAS framework was originally developed to support collaborative design

and manufacturing by integrating design engineering, process engineering and

business plan [Chung 2003]. In the previous version, the MIDAS framework

supported the dynamic nature of manufacturing, such as a run-time process

reconfiguration. However architecture wise, the old version still restricted its

scalability and flexibility like other collaborative workflow management systems.

To overcome such restrictions and get the service-oriented interoperability, the

service-oriented process model has been implemented to the old MIDAS

framework. With the service-oriented interoperability, the new MIDAS framework

can post a manufacturing process as a service, actively locate a posted service,

and integrates collaborative services into an optimized process workflow.

Through such service-oriented operations, a user of MIDAS can get large

scalability and more sophisticated aid on process design and management.

In following chapters 1 will discuss about background of my study, how the Web

service-oriented interoperability can be realized by modeling a globally-

acceptable process definition and representation of enactment, and how the

MIDAS framework adopts such modeling to achieve the Web service-oriented

interoperability. In chapter 2, the backgrounds of my research are discussed. In

chapter 3, the Web service technology is discussed. The chapter 4 talks about a

service-oriented process model. The chapter 5 summarizes the architecture of

new MIDAS. The chapter 6 explains how the new MIDAS authoring environment

creates a service definition, deploys Web service and register a service. The

chapter 7 displays how the new MIDAS execution environment discovers Web

service and executes the Web service.

CHAPTER 2 BACKGROUND

2.1 Requirements for Collaborative Workflow Management System

Much research has been dedicated to design and manufacturing from the

perspective of process management. The reason being that process

management plays a central role in coordination among collaborative companies

[Chung 1998, Lavana 1997, Schey 1987]. I identify the following requirements to

be provided by the collaborative business process management system [Chung

2003k

1. The engineering process is understood to be tentative and iterative by

nature

2. The process should be easily reconfigured when changes in user

requirements occur or when the results may not conform to the

constraints

3. A distributed data server is required to access data transparently, and to

prevent unauthorized use

4. Companies should be able to execute their own process concurrently with

others during collaboration.

Managing processes in collaborative systems is highly dynamic and poses

problems completely different from conventional workflow management where

flows are static. ln [Chung 2003], they call such type of processes an enacted

processes. These involve sub-processes which are designed “on the fly”, by the

participants, as part of the main process that is being executed. These

characteristics pose challenging problems as the scale of the system increases.

The issue not only concerns transaction volume, but also involves a number of

participating organizations, the number of interdependent parts that are being

created, the number of alternative manufacturing processes involved, and so on.

In theory, web technology allows the formation of “virtual” organizations to handle

a wide range of design and manufacturing processes. Companies that take

advantage of each other’s distinct production strengths would benefit the most

[Aberdeen 2000]. Therefore, the whole design and manufacturing process - not

just the pieces — needs to be configured in response to changes in technical

considerations such as features, methods, materials, costs, and other critical

decision parameters. This means planning and executing a process that would

extend across formal organizational boundaries.

fa.-..flfl..-.---BHBB---B-.Bfl-‘

: Company A Design 1

: Requirement

Part Analysis

Company B

Selected

materials

Company D

Finished casting

Trimmed Part

Processmg

I Finished Product I

Figure 1 Four Companies in a Die Casting Process

Figure 1 illustrates a scenario where companies collaborate together to make a

die. In this scenario, Company A designs the basic part. Company B performs

some specialized analytical work to confirm that the design will meet the

requirements. Company C is the die maker, which prepares dies for both casting

and trimming. Finally, Company D actually produces and finishes the parts once

the dies are ready. Each step along the way requires that a “checklist” be

satisfied, before the work is started and after it is done. Before the

commencement of work, the vendor can provide useful feedback about the

feasibility of the proposed work. After the work is finished, it is necessary to

confirm that the requirements have been met. It should be noted that there may

be many alternatives for each of these process steps: different technologies,

different vendors, and so on. And at each step, there is a “make or buy” decision,

as well. Also, for the overall process to function smoothly, all the participants

need access to certain critical information (such as design changes). Ideally, they

should be able to provide feedback early in the process concerning the feasibility

and schedule for their part of the work.

2.2 Process Grammar

Process Grammar [Baldwin 1995, Chung 2002] has been proposed to represent

design and manufacturing process and to generate process flow dynamically.

MIDAS framework relies on the Process Grammar to enable “on the fly” sub-

process configuration. In MIDAS, process flow graphs describe the information

flow of a design methodology, and process grammars provide the means for

transforming high-level task into progressively a more detailed set of tasks as

well as selecting a method among many alternatives for a task.

The process flow graph consists of two types of entities: tasks and data

specifications. A task is a single unit of design activity as defined with the

process flow diagram. Data specifications are design data, where the output

specification produced by a task can be consumed by another task as an input

specification. The flow diagram shows how to compose a task and the input and

output specifications of the task. There are two types of tasks, a logical task and

an atomic task. A logical task can be decomposed into a set of subtasks. An

atomic task is the simplest form of the task, which cannot be decomposed any

further. In the MIDAS, a logical task isn’t bound to any executable application at

build-time because a logical task will be decomposed at run-time. However, an

atomic task must be bound by an executable application - typically a

manufacturing tool — at build-time, and is responsible for executing the assigned

tool at the run-time.

EnglneSpec CoolantType

EnglneSpec CoolantType

CylinderDsg

ElecChar CyllnderGeo

(a)

Figure 2 Example of top-level process and production

A production is a substitution that permits the replacement of a logical task with a

flow graph that represents a possible way of performing the task. The concept of

applying productions to logical tasks is somewhat analogous to the idea of

productions in traditional (i.e., non-graph) grammars. If there are several

production rules with the same left side flow graph, it implies that there are

alternative production rules for the logical task. Figure 2 shows an example (A)

top level process flow of “cylinder design” and (B) a production of logical task

“CylinderDsg”. These flow graphs allow designers to visualize process

alternatives.

The process grammar provides an abstraction mechanism so that designers are

not overly burdened with details. It allows a user to represent and manipulate a

small number of abstract, higher-level tasks that can be expanded into detailed,

executable alternatives. This can be especially valuable when engineers from

different disciplines are working together on a project to build up an optimized

distributed workflow to a group requirement. During the execution of a process, if

the expansion of a certain abstract task does not meet the group requirement, a

roll back can occur to an appropriate point and a new production can be applied

to generate alternative process flow dynamically.

2.3 WfMC’s Workflow Reference Model

As a process management system in product designing and manufacturing,

MIDAS provides both manual and automatic workflow management function

based on rules given by Process Grammar. The Workflow Management Coalition

(WfMC) defines workflow as an automation of procedure where information and

tasks are passed between participants according to the defined set of rules, and

the workflow management system (WfMS) aims to provide procedural

automation of processes by management of the sequence of work activities and

the invocation of human and/or IT applications associated with various activity

steps [WFMC]. The MIDAS framework is designed to fulfill the WfMC’s high-level

requirement for WfMS functionalities.

WfMC suggests following high-level functionalities for WfMS [OMG 2000]:

1. The Build-time functions, concerned with defining the workflow process

and its constituent activities

2. The Run-time control functions, concerned with managing the processes

in an operational environment and sequencing a various activities to be

handled as a part of each process

3. The Run-time interaction, concerning with monitoring steps of various

activities between human and IT application tools

Figure 3 illustrates how the above functionalities work. Process design and

definition are prepared at build-time by workflow management system. Then, at

run-time, the workflow management system instantiates process and enacts the

10

process instance under interaction with human user or IT tool/application.

Workflow enactment service is consisted of one or more workflow engines, and is

responsible for run-time process instantiation and control. Sometimes workflow

enactment service may change process definition at run-time. In MIDAS, this

feature is supported sophisticatedly by “on the fly" sub-process configuration.

Process desing Business Process Analysis,

& Definition Modeling and Definition Tool

Build time

_____________________ ._._._._._._._._ Process

Definition

Run time

1;

Process Instanciation

Workflow Enactment Service

& Control

Interaction with —' Applications

Users & Application Tools ‘— & IT tools

Figure 3 WfMC’s high-level functionalities for WfMS

MIDAS framework also fulfills the facility design scheme in WfMC’s Workflow

Reference Model. This reference model identifies characteristics, functions and

interface of workflow systems. Figure 4 illustrates WfMC’s reference model. The

reference model suggests five different functional facilities, which interact with

the workflow enactment service:

11

Workflow client application contains the work list handler and process

control software that need interaction with the human end-user.

Process definition tool creates process definition and transfers the

process definition to the workflow enactment service or stores it in

separate repository.

Invoked application is a specific tool undertaking a particular activity.

Invoked application would typically be a server-based application with no

user interface in many cases.

Other workflow enactment service is a heterogeneous workflow system

produced by different vendors. The interoperability interface defines a

way for different vendors to pass work items seamlessly between one

another.

Administration and monitoring tool allows one vendor’s management

application to work with another’s engine. The administration and

monitoring interface enables several workflow services to share of

common administration and system monitoring functions.

12

13

Figure 4 WfMC reference model

P
r
o
c
e
s
s

D
e
f
i
n
i
t
i
o
n

T
o
o
l

1

P
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n
i
n
t
e
r
f
a
c
e

1
l

.
,

.
A
d
m
i
n
i
s
t
r
a
t
i
o
n

0
t
h

A
d
m
i
n
i
s
t
r
a
t
i
o
n

a
n
d

I
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y

e
r

A
n
d

4
7

W
o
r
k
f
l
o
w
M
a
n
a
g
e
m
e
n
t
S
e
r
v
i
c
e

;
'

a
)

W
o
r
k
fl
o
w

M
o
n
i
t
o
r
i
n
g
T
o
o
l
s

m
o
n
i
t
o
r
i
n
g

I
n
t
e
r
f
a
c
e

E
n
a
c
t
m
e
n
t

L

i
n
t
e
r
f
a
c
e

S
e
r
v
i
c
e

C
l
i
e
n
t
a
p
p
l
i
c
a
t
i
o
n

I

i
n
t
e
r
f
a
c
e

I
n
v
o
k
e
d
a
p
p
l
i
c
a
t
i
o
n

I
i
n
t
e
r
f
a
c
e

W
o
r
k

L
i
s
t

P
r
o
c
e
s
s

1

H
a
n
d
l
i
n
g

C
o
n
t
r
o
l

I
n
v
o
k
e
d

W
O
I
‘
k
fl
O
W
C
l
i
e
n
t

—
_
"

A
p
p
l
i
c
a
t
i
o
n

;
1
‘

A
n
g
i
a
C
t
a
a
t
i
o
n

A
p
p
l
i
c
a
t
i
o
n
s

CHAPTER 3 WEB SERVICES

Web service is a key technology that enables MIDAS framework to have service-

oriented interoperability. In this chapter, we will discuss Web service in detail.

3.1 Definition of Web service

Even though there are various definitions of Web service have been proposed

and discussed by different point of views, Web service can be introduced as ‘a

content and software process that provide service to customer over lntemet’ in a

broad sense [Sun 2003]. But today’s information industry narrows down its

definition of Web Service to ‘a web-based software application whose definition

can be found on the web as an open standard such as WSDL [W3C 2001], and

its user interact by using XML-based messaging conveyed by lntemet protocol,

such as SOAP [W3C 2002]’.

3.2 Three Tier Model

The three tiers model is often mentioned to explain general structure of Web

Service system and how each tier interacts. Service Provider, Service Requester

and Service Broker are the three tiers.

14

(2) retrieves (1) posts

service WW service spec.

< >ifi
requests service 3332:;

and feed back

Service

Requester

Figure 5 Three Tier Model

A service provider implements the web service and definition of its web service.

WSDL is currently the most widely used standardized description language for

Web Service. A service requester, then, uses service provider’s web service by

invoking the service in a predefined manner in WSDL. However, at the moment

of invocation, the service requester usually does not have any idea where to get

this WSDL of web service. A service broker is needed to introduce the service

provider’s web service and definition of its web service to the service requester.

The service broker exists in a form of public registry, and UDDI is most popular

standard protocol for a Web Service brokering registry. Figure 5 shows the three

tier model and interactions between tiers.

15

3.3 Characteristics of Web service

The information industry is expecting that more than $15.2 billion will be spent on

web service hardware and software by 2007 [McMillan 2003]. With no doubt,

Web Service is standing in the spotlight of information technology industry. Why

are IT developers so exited about Web Service? Here, I briefly summarizes

distinct properties of Web service.

Interoperability:

The most important property of web service is to provide seamless and automatic

connections from one software application to another over the web [Cohen 2002].

By using SOAP, WSDL, and UDDI [UDDI 2001] protocols defining a

standardized way to discover and to call procedures in a web-based application,

the interoperation between applications is possible without regarding location or

implementation of platform.

Usability:

Service Broker (UDDI) provides a ‘yellow-page type’ business searching.

Industrial categorizations based on standard taxonomies will increase usability of

software components. The consumer of web-based applications can more easily

and quickly discover applications best-matching to this purpose.

Applicability:

16

Development of web services can be an ongoing, iterative process that actively

involves the opinions of the users [Bloomberg 2002]. The developer can

construct the only exposed facade of web services as simple as possible, then

later he can continually re-implement the web services to comply users’

requirement so that web service are as broadly applicable as practical.

Modularity:

Non-fully encapsulated components in a complex system make the system very

hard to replace or upgrade its components. Instead of simply exposing APIs,

components wrapped in Web Services expose dynamic service descriptions. If

the underlying APl changes, then the service description adjusts by itself, and the

other components of the system can adjust to the changes at runtime [Cohen

2002}

3.4 Benefits from Web Service

The collaborative workflow management framework will get the following benefits

by using Web Service.

0 To achieve implementation-neutral interoperability between various

collaborative unit.

In the real manufacturing environment such as supply chain, decision making

for product manufacturing does not rely upon a single unit. Usually it

17

demands multiple planning points such as multiple manufacturing

departments or multiple manufacturing companies. Building a framework for

managing such multiple decision-making entities, each supposed to operate

mostly on their unique platform is not an easy and low-cost job. A Web

service-oriented approach can reduce expenses and time spent on rewriting

existing applications of each of the collaborating units. Web services

interoperate each other only through interfaces capable to translate XML-

based messaging into application’s parameters. This technology provides

ultimate implementation-neutral interoperability to the framework.

To achieve more efficient collaboration by discovering counterparts fast

and agreeing to requirements between collaborating units.

The web service registry and discovery technology such as UDDI,

standardizes the way for web service to be exposed itself to the public.

Through the UDDI or a similar web service searchabIe-registry, the enterprise

can find its collaborating counterpart in the manufacturing industry, and can

discover the best matching enterprise to its interest in precise and fast

manners. Integration is also made in a fast manner since the discovery of

WSDL or any extended description language (semantic web service)

provides essential information for the web service to be agreed by user.

To achieve more flexible and faster decision-making system to react to

ever changing customer requirements.

18

Even if the framework has successfully interconnected applications of each of

the collaborating units, sometimes each applications’ configuration may have

to be changed in a hurry to catch up with the altered demands for product

design by customers. For example, modern mass customization is requiring a

generalized manufacturing line to produce various custom-made products.

Designing a process that can flexibly change its configuration up to the

customer’s demand is very hard on a system whose components are tightly

bound each other. In such systems, one small change on a part throws

ripples throughout the whole system. On the other hand, web service-

oriented approach provides lots of flexibility on changing process

configuration. Since it totally encapsulates its implementation, each

modularized application is able to interoperate in a loosely coupled manner

so that one part’s change doesn’t impact elsewhere.

Web Service Choreography

The coordination of collaborating low level service is often mentioned as the next

step in the development of Web service [W3C 2002]. The service choreography

is the activity to define and represent the complex behavior of the set of

collaborating services. The Web Service Choreography Interface (WSCI) 1.0

[WSCI 2002], which is still in progress and being discussed by WSC’s working

group, suggests the guideline of Web service choreography language. WSCI

divides the behavior of Web service into two activities; Atomic and Complex.

Atomic activities are the basic unit of behavior of a Web service, and Complex

19

activities are the behavior recursively composed of other activities. WSCI

specifies four kinds of choreography for Complex activity; sequential execution,

parallel execution, looping and conditional execution.

3.6 Markup Languages for Collaborating Web services

To support inter-operability of business process, a variety of standards and

languages have been proposed. WSFL [WSFL 2002] is a workflow language that

provides recursive composition of web services. WSFL takes a directed-graph

. model approach to process definition and execution. It also defines a public

interface with which business processes can advertise. Based on WSFL,

BPEL4WS was developed to model workflow management in terms of Web

services choreography and flow modeling [Andrews]. BPEL4WS allows a

composer to aggregate two or more web services into processes which may be

abstract for a high-level business transaction or executable as a compiled

process [Shapiro 2002, Weerawarana 2002]. BPML [Peltz 2003, Shapiro 2002]

specifies web services orchestration and choreography. Orchestration in this

context refers to an executable business process that can interact with both

internal and external Web services, while choreography describes relationship

and process flow among multi parties or multi organizations. Reliable and

large-scale interoperation among trading partners is being attempted by creating

a semantic web for each trading partner's service whose properties, capabilities,

and interfaces are encoded in an unambiguous, computer-understandable form

[Ding 2002, Fensel 2001, Hendler 2001]

20

These languages are all capable of providing Web service-oriented

interoperability to the collaborative workflow management system. However, they

do not provide sufficient process abstraction mechanism, with which users are

not overly burdened with details. In addition, they do not separate the execution

details of the process flow definitions. These process flows which the service

providers publish should hide the details of execution parameters and scheduling

of tasks. Such information should be determined at the time of process

enactment. The most notable language that satisfies the above capabilities is the

OWL-S specification, a language for ontology definition, manipulation, and

reasoning [IBM 2003, Paolucci 2003]. OWL-S provides a mechanism to allow

web service autonomy for identifying operational metrics at the design stage and

hence facilitates heterogeneous web services discovery and integration. But,

OWL-S does not model the iterative nature of collaborative product design and

manufacturing process, where if the execution of a certain step of design process

does not meet the design requirement, iterations with other alternatives must

occur, and a new process flow should be generated dynamically.

21

CHAPTER 4 SERVICE-ORIENTED PROCESS MODEL

The Service-Oriented Process Model (SOM) is a key that enables the MIDAS

framework to locate a remote process, and collaborate on distributed process

flow. The ultimate goal of SOM is to provide a standardized way to understand

distributed workflows and their executions among heterogeneous systems. To

realize such goal, SOM specifies a global semantics of process definition and the

way to represent the sequence of process flow enactment.

SOM consists of three sub models: Process Definition Model, Workflow

Management Model, and Execution Monitor Model. Process definition model

specifies how to represent a globally recognizable process definition. Workflow

management model describes how to manage collaborative workflows that occur

between separate WfMSs or within same WfMS. Execution monitor model

specifies the representation of process enactment, which is understandable

globally even by heterogeneous WfMSs.

4.1 OWL

Process definition model and execution monitor model are written with OWL

(Web Ontology Language), which is a standard language to describe semantics

for Web resources [Paolucci 2003]. OWL has been derived from the RDF

language, which is a language for information modeling. OWL and RDF have a

modeling structure similar to the directed graph. In this modeling structure, a

22

node is named as Classes, and an arrow is named as Property. There are two

kinds of classes: Domain and Range. The property is a directed edge indeed, so

the preceding node is called as domain, and the following node is called as range.

Figure 6 illustrates the example of such graph. As you see in (b), property

productNumber has class Product as its domain and class Integer as its range.

This information modeling has been instantiated in (c).

(a) OWL’s information modeling structure

Product productNumbe@

(b) Example of OWL information modelling

<Product rdf:lD="WaterBottle">

<rdfs:label>Water Bottle<lrdfszlabel>

<productNumber>38267<lproductNumber>

<lProduct>

(c) Example of instance of (b)

Figure 6 OWL information modelling

4.2 Process Definition Model

Process definition model defines the semantics for a service provider’s process

flow in the context of a service flow. The service flow is represented as a Service

Composite. Since the process definition model is designed to follow process

modeling logic of process grammar, the process definition model defines a

23

service flow as a combination of Atomic Services and Logical Services. It is

similar to the process grammar which combines Atomic Tasks and Logical Tasks

to make a process.

A Service can include an Input and output Specification and a Pre- and Post-

Condition as its reference marks. MIDAS framework utilized such marks when a

service provider posts his service at the registry, and a service requester selects

a service from the registry.

Service Composite is a placeholder for service provider's process flow. Service

composite consists of a set of component services along with the task

dependencies between component services. The dependencies between

component services are captured by linkTo and IinkFrom properties of

component services.

Similar to a logical task, a logical service can have alternative choices of service

composites to be expanded into more complex service flow. The Alternative

Choice encapsulates such choice of service composites inside.

All of ontological concepts above are written in OWL classes, and shown in

following sub sections. AII OWL classes defined under the process definition

model also have been implemented as a JAVA package by me. The highlighted

feature of the JAVA package can be found at Appendix A.

24

4.2.1 Class Service

The service is a primary kind of entity in the process definition model. As

mentioned previously, a service has various properties as its referencing markers.

The referencing marks of a service are: the name of service, the input

specification, the output specification, the pre-condition, the post-condition and

description of service.

Since the process definition model has been written with OWL, all above

referencing markers are represented as OWL classes, too. So the following OWL

classes have been proposed: class Spec, class SpecList, class ConditionList,

class Condition, and class Desc. Figure 7 illustrates the UML notation of class

Service and its referencing makers.

hasPreCondition

ConditonList £1 1 Service Desc

(and) i ‘>
1 1 hasDesc

hasPostCondition 1 1

(and)

hasOutput haslnput

1.." 1W \ 1

Condition SpecList

1

1 ..*

Spec

Figure 7 UML notation for class Service

25

Class Service uses two properties in order to mark up its conditions. The OWL

property, hasPreCondition has class Service as its domain, and its range is class

ConditionList. The OWL property, hasPostCondition has class Service as its

domain, and its range is class ConditionList. Both of the two properties together

indicate the pre-conditions and post-condition of a service. The OWL definition

of hasPreCondition and hasPostCondition is shown as below.

<!-- Ontology for hasPrecondition -->

<rdf:Property rdleD = "hasPreCondition">

<rdfszdomain rdf:resource = "#Service"/>

<rdfs:range rdf:resource = "#ConditionList"/>

</rdf:Property>

<!-- Ontology for hasPostcondition —->

<rdf:Property rdleD = "hasPostCondition">

<rdfs:domain rdf:resource = "#Service"/>

<rdfs:range rdf:resource = "# ConditionList "/>

</rdf:Property>
Class ConditionList is a placeholder for multiple conditions. Class ConditionList

inherits the OWL built-in class collection, so class ConditionList has multiple

instances of class Condition as its items. Condition must be an ontology object

that can be understandable by machine evaluator. This requires a machine

evaluator to have a ontology dictionary for Conditions, but the service-oriented

model doesn’t propose such detail yet. The OWL definition of ConditonList and

Condition is shown as below.

26

<!-- Ontology for ConditonList-->

<owl:C|ass rdleD = "ConditionList">

<rdfs:subClassOf rdf:resource="owl+oil#collection"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="owl+oil#ltem"/>

<owl:toClass rdf:resource="#Condition"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!—Ontology for Condition -->

<owl:C|ass rdf:lD = “Condition”/>
Class Service also uses two properties in order to mark up its input and output.

The OWL property, haslnput has class Service as its domain, and its range is

class SpecList. The OWL property, hasOutput has class Service as its domain,

and its range is class SpecList. Both of two properties together indicate the pre-

conditions and post-condition of a service. The OWL definition of haslnput and

hasOutput is shown as below.

27

<!-- Ontology for haslnput -->

<rdf:Property rdfrlD = “haslnput">

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="#SpecList"/>

</rdf:Property>

<!-- Ontology for hasOutput -->

<rdf:Property rdleD = “hasOutput">

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resources-"#SpecList“/>

</rdf:Property>
Same as class ConditionList, SpecList is a placeholder for multiple conditions.

Class ConditionList inherits the OWL built-in class collection, so class

ConditionList has multiple instances of class Condition as its items. The OWL

definition of Spec and SpecList is shown as below.

<I-- Ontology for specification -->

<owl:C|ass rdleD = “Spec"/>

<!-- Ontology for specification list-->

<owl:C|ass rdleD = "SpecList“>

<rdfs:subClassOf rdf:resource="owl+oil#collection"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="owl+oil#ltem"/>

<owl:toClass rdf:resource="#Spec"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:CIass>
28

Class Service may use class Desc as its optional referencing maker. This maker

is not necessary for workflow management system to identify a given service.

Class Desc holds the functional description of a service. Since its description will

be written up in natural language, the machine agent in workflow management

system won’t process it. The primary reason to have this maker is to help a

human user understand the functionality of given service. Similar with other

classes, class Desc is linked to class Service by property hasDesc. The OWL

definition of Desc and hasDesc is shown as below.

<!-- Ontology for description -->

<owl:C|ass rdf:lD = "desc"/>

<!-- Ontology for hasDesc -->

<rdf:Property rdleD = ”hasDesc">

<rdfs:domain rdf:resource = "#Service"/>

<rdfs:range rdf:resource = "#description"/>

</rdf:Property>

4.2.2 Class LogicalService and Class AtomicService

Class Service has two children classes: class LogicalService and class

AtomicService. As shown in Figure 8 and Figure 9 both of the two classes inherit

all referencing makers of class service. So, both class LogicalService and class

AtomicService have hasPreCondition, hasPostConditon, haslnput, hasOutput,

and hasDesc as common.

hasPreCondition

ConditonList <‘I AtomicService Desc

(and) 1 k

1 1 hasDesc

< 1
hasPreCondition

(and) '5‘):

hasOutput haslnput °0/

1--* 1v v

Condition SpecList Tool

1

1 ..‘

Spec

Figure 8 UML notation for class AtomicService

However, class AtomicService is distinguished from class LogicalService since it

has additional property hasTool.

<I-- Ontology for hasTool

It's a property between AtomicService and Tool -->

<rdf:Property rdf:lD=" hasTool ">

<rdfs:domain rdf:resource="#AtomicService"/>

<rdfs:range rdf:resource="#Tool"/>

</rdf:Property>

3O

ServiceComposite

AItemativeChoices

1 A

hasAltemativeChoices

hasPreCondition 1

ConditonList 1 Lj’gaIService

(and) 1 k

hasDesc

hasPreCondition 1 1

(and)

hasOutput haslnput

‘-- Ni Iii

Condition SpecList

1

1..*

Spec

Figure 9 UML notation for class LogicalService

In the other hand, class LogicalService is also distinguished from class

AtomicService since it has additional property hasAltemativeChoices. Property

hasAltemativeChoices allows class LogicalService enlisting alternative choices

for “on the fly" sub-process configuration. As shown as below, the

hasAltemativeChoices has class AItemativeChoices as a range.

31

<!-- Ontology for hasAltemativeChoices

It’s a property between LogicalService and AItemativeChoices -->

<rdf:Property rdf:lD="hasAltemativeChoices">

<rdfs:domain rdf:resource="#LogicalService"/>

<rdfs:range rdf:resource="#AltemativeChoices"/>

</rdf:Property>

<!-- Ontology for AItemativeChoices

It encapsules multiple production rules.

It can have the list of Servicecomposites inside. -->

<owl:C|ass rdf:lD = "AltemativeChoices">

<rdfs:subClassOf rdf:resource="owl+oil#col|ection"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="owl+oil#ltem"/>

<owl:toClass rdf:resource="#ServiceComposite"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>
Class AItemativeChoices is a placeholder for a collection of alternative choices.

Similar with other collective placeholders such as SpecList or ConditionList,

AItemativeChoices inherits its properties from the OWL built-in class collection.

Class altemativeChoices collects instances of class ServiceComposite. The

details of class ServiceComposite will be discussed at next section.

32

4.2.3 Class ServiceComposite

The process definition model specifies a complex service flow by combining

instances of the class Service together. The process definition model marks up

this complex service flow in class ServiceComposite. Class ServiceComposite is

actually OWL’s collection class, so class ServiceComposite can merely list the

service consisting a complex service flow. Each of the Services composed of a

complex service flow is marked up by class ComponentService. Class

ComponentService is recognized as a same class as class Service by the

process definition model. Its definition is derived from class Service by using

OWL’s equivalentTo property, so ComponentService can be directly substituted

by Service instance in the process definition document. The OWL definition of

ComponentService and hasDesc is shown as below.

<!-- Ontology for ComponentService. -->

<dam|zClass rdf:|D="ComponentService">

<damlzequivalentTo rdf:resource="#Service"/>

</daml:Class>

As same as other collective OWL classes, ServiceComposite has multiple

instances of class ComponentService as its items. Figure10 illustrates the UML

notation of class ServiceComposite and componentService.

AItemativeChoices

1.."

SenriceComposite ComponentService (=Service)

1 1

and

IinkFrom () IinkTo

1 . .. \/ / 1 . ..

ComponentService (=Service)

Figure 10 UML notation for ServiceComposite and ComponentService

According to the process modeling logic of Process Grammar, a process flow

can be presented as a graph. Since the process definition model sees a task as

a service, a complex service flow can be represented as a graph as well. In order

to represent the flow information, class ComponetService uses two properties;

IinkFrom and IinkTo. The OWL definitions of IinkFrom and IinkTo are shown as

below.

<!-- Ontology for IinkFrom -->

<rdf:Property rdf:lD="linkFrom">

<rdfs:domain rdf:resource="#ComponentService"/>

<rdfs:range rdf:resource="#ComponentService "/>

<lrdf:Property>

<!-- Ontology for IinkTo -->

<rdf:Property rdf:lD="linkTo">

<rdfs:domain rdf:resource="#ComponentService"/>

<rdfs:range rdf:resource="#ComponentService "/>

<lrdf:Property>
The example of service flow-to-OWL conversion is shown in Appendix B.

4.3 Workflow Management Model

The workflow management model provides a standardized way of managing

workflow between heterogeneous workflow management systems. Since

different vendors of workflow management systems may use different workflow

management schemes, each vendor must make their system comprise a global

standard scheme of workflow management in order to make collaborations

possible. To realize such global standard scheme of workflow management, the

workflow management model specifies what kind of common operations is

needed for workflow management, and what kind of common execution states

should be defined.

35

The workflow management model also brings possible scenarios that could occur

between heterogeneous workflow management systems during asynchronous

collaboration. The workflow management model does not consider any scenario

for synchronous mode of software collaboration because, in synchronous mode

of collaboration, one software component calling another component will freeze

its system until it gets a response back. Since most of typical feedbacks take

time in workflow management, the synchronous mode of collaboration is not

suitable for collaborative workflow management. For this reason, the workflow

management model proposes only the asynchronous scheme of workflow

management.

4.3.1 Common Operations

The workflow management model stipulates seven standard operations, which

are essential to gear up workflows of heterogeneous workflow management

systems. These operations are described as follows:

Provide input delivers input data to, a service.

Invoke enactment brings a cue to start process enactment. It carries out

applying of production or tool execution.

Rollback delivers rollback event to a service.

Enforced rollback delivers aborting event to a service.

36

. Retrieve workflow graph delivers workflow graphs from a service to a

viewer. This operation could be used for delivery of process definition or

process enactment monitoring.

. Retrieve outputtransports output data from a service to a viewer.

All of above operations are to be implemented as a remote procedure of Web

service and delivered to users of different workflow management system. The

workflow management system does not need to implement all common

operations above. It is up to the functionalities allowed to outsiders by the system.

4.3.2 Common Execution States

The workflow management model also defines the following five basic execution

states:

. Un-initialized indicates that nothing has been initialized in a service.

. Ready shows that input data has been bound to a service, but service

execution is not invoked yet.

. Running points out that the execution of a task has been invoked and keeps

on going.

37

0 Finished is the state that execution of a service has been finished. Two

possible sub states are success and fail.

0 Exception indicates that unexpected event has occurred during proceeding

state.

Each execution state will advance forward or backward to another state when

operations proceed. Figure11 illustrates the relationship between common

execution states and operations. The provide inputtums un-initialized state into

ready state. The ready state then turns into running state by the invoke execution.

When the workflow system finishes the execution of its process, the running state

turns into the finished state. If the system wants to reconfigure its process, the

rollback brings finished state back to ready state.

©——{ Un-initialized

9,

'o 2
mx 5;
o O

h m (D

fig 5'

a) 2 E,

(Ready

T rollback

, [rte/naiitye

" .execuron

(Fm'Shed J \ [Proceeding]

I \ I

(b) Process enactment model

Figure 11 UML notations for execution monitor model

38

4.3.3 Asynchronous Collaboration Scenarios

The workflow management model considers two possible scenarios of

asynchronous mode of software collaboration: lnvoke-then-polling and Invoke-

then-listening. These two scenarios have the same mechanism to invoke

enactment. A service requester calls service provider’s operations to invoke

enactment. However, they use different mechanisms to feed back.

In the invoke-then-polling scenario, a service provider doesn’t inform his finished

state to the service requester. The service requester keeps checking the state

changes at the provider’s side by polling mechanism, but the service provider

doesn’t do anything to feed back. This scenario can be implemented by using

only common operations. To get the most-updated feedback, the service

requester calls the retrieve workflow graph operation periodically.

In the invoke-then-listening scenario, a service provider reports actively his state

changes to the service requester. This scenario needs additional call back

mechanism between the service provider and service requester. Currently SOM

doesn’t define how to implement such call back mechanism. SOM leaves it for

the workflow management systems to negotiate each other on how to call back.

4.4 Execution Monitor Model

Execution monitor model provides globally acceptable standardized view of how

to capture and deliver the process execution to viewers. Users of heterogeneous

39

workflow management systems can monitor a process by capturing traces of

task executions and data binding across the system in terms of the Execution

Monitor Model.

Execution monitor model follows the process enactment logic of Process

Grammar. According to the mathematical model of Process Grammar, the

execution of a logical task means an applying of a production to that logical task.

Attaching a service composite instance to a logical service will capture this action.

The execution state of a component service is captured by the Execution State.

The execution state takes one of the following instances, which is defined by the

workflow management model: Un-initialized, ready, running, finished and

exception.

Input specifications and output specifications are bound by Data during execution

of tasks. Data is an entity that holds the URI of actual data. The input

specification is bound by data instance when a user binds initial data to it or

upstream task produces output data. The output specification is bound by the

data instance when the task finishes its execution and produces results.

Figure12 shows UML notation of OWL classes in execution monitor model.

40

Lo icalService

appliedBy 9

"""""""""""""""","I

1 ,."' E

\(1 ‘x'x I

ServiceComposite ComponentService (=Service) AtomicService

. 1 1 1

hasExecutronState (and)

hasOutput haslnput

E t' St t 1 1V V1xecuron ae SpecList

1

1..*

Spec Data

1 1

>

boundBy

Figure 12 UML notations for execution monitor model

41

CHAPTER 5 MIDAS FRAMEWORK

The MIDAS framework is a collaborative engineering framework that coordinates

various tasks in design and manufacturing with Web service-oriented

interoperability. In previous version, MIDAS had been developed as a

collaborative engineering framework without Web service-oriented

interoperability [Chung 2002, Curbera 2003]. However, with the Web service-

oriented interoperability, the new version of MIDAS gains the ability to provide

the means to (1) locate manufacturers dynamically, (2) select and make

contracts with particular manufacturer in agreement with requirements, (3) create

the collaborative process by incorporating distributed services among

manufacturers, and (4) provide a flexible and interoperable execution

environment for the collaborative process.

The MIDAS framework provides a truly distributed architecture for management

of manufacturing process composition and inter-operation in two aspects; (1) The

process itself and its enactment are described in terms of global semantic

language (OWL). (2) Process integration and execution are achieved by using

the Process Grammar, which is a process modeling and enacting logic which

helps MIDAS to configure manufacturing processes dynamically.

Collaborative process generation in MIDAS proceeds by interactions between

manufacturing companies. For each alternative for sub-process generation, there

42

are manufacturing service providers who can participate internal collaboration or

it can be outsourced for external collaboration. Service providers offer a

manufacturing process as a service with global standard interface, and MIDAS

guides a designer to select an appropriate service provider and his service flow.

Figure13 illustrates how business entities use MIDAS framework to participate

business collaboration. The contractor performs referencing for adequate service

providers. After selecting one service provider, the contractor negotiates with the

service provider, and reaches an agreement on cooperation. Incorporating

subcontractor’s process or monitoring the sequence of execution for assigned job

to the subcontractor will be simply done by calling operations of subcontractor’s

Web services.

Semantic Registry

 ' Potential

subcontractors

Selected

V P

negotiates and incorporates process flow subcontractor

Contract initiator

Figure 13 Web service-oriented interoperation

between business entities

5.1 Features of MIDAS

Even though MIDAS does support all requirements required by collaborative

workflow management system, MIDAS is distinguished from other workflow

management system by the following distinct features:

0 Separation of process specification from the execution environment.

Syntactic structures, such as dependency among tasks and input output

requirement, together with alternatives are specified using the process

grammar. Execution details and constraints are encoded as a part of

execution environment. By separating specifications from execution, MIDAS

handles process run-time process reconfiguration.

0 At the execution environment, a task execution can be accomplished by a

Web service. A Web service can be located within same organization or at

an external organization where its workflow management system could be

totally heterogeneous. A Web service can provide either of a process

enactment service, simple process library function or tool invoking function.

0 MIDAS guides the user to select appropriate sub-process. Sub-process can

be obtained from the user’s personal library or outsourced from a public

library, such as a process library Web service. All processes are provided

along with attributes including pre-conditions and post-conditions. Using the

pre- and post- conditions a user may reconfigure a process if an already

configured one does not provide the desired output. Through such

reconfiguration steps, the framework generates an optimal process

configuration within a given set of constraints.

5.2 MIDAS Architecture

MIDAS Platform

Web Service

Deploying

Tool librar Module

I
i

\

Process library

Implements

web service

fi"""’ 7 7 \

Web Service

for B ’
, L #

Service Provider B

{—1 W fl

(:3 Q workflows. Web Service

“"—"" Calling Module

#2

>

‘ . Web Service
requrrements ,, De lo in

srocess logic engine p y g
47 Module

9 o‘

090,}?04'9/ Q2. -

- qu‘ol,

5]
GE

‘79 049 95‘s Cockpit \ 3% provides
ebof‘?

(3) g new process /

f (D U)

user I l retrieves >

requirements

/—.\

(.____._,'——-> Web Sewice Service Provider A

/’ ‘ for A s

L,,_ “.‘J L—i/

Figure 14 MIDAS architectures

The MIDAS framework consists of four major components: Process enactment

engine, Cockpit, Process Library/Tool Library and Web service Modules. As

mentioned at chapter 2, the components of the MIDAS framework are designed

to fulfill the WfMC's workflow reference model. As a result, the MIDAS process

enactment engine implements the workflow enactment service of WfMC’s

reference model. The MIDAS Process library/tool implements the invoked

applications of the reference model. WfMC’s process definition tools function

area is implemented as part of cockpit in MIDAS. WfMC’s Administration and

monitoring tools function area is implemented as a part of MIDAS cockpit and a

part of MIDAS process enactment engine. Figure14 illustrates high-level

architecture of MIDAS framework.

5.2.1 Process enactment engine

A process enactment engine’s purpose is primarily to create, manage and enact

a process instance. The process enactment engine can load up a process

definition from two different kinds of sources: a user’s private repository and the

public accessible process library. The process enactment engine instantiates the

process after it loads up the definition. The instance of a process, then, is

managed and executed by the process enactment engine.

In previous version of MIDAS framework [Qin 2002], the process enactment

engine accessed the process definition directly without any common interface.

Such access without a common interface restricted the interoperability of the

process enactment engine when the enactment engine needs to import a

process definition from a different vendor’s system. In the Web service-oriented

version of the MIDAS framework, this restriction has been overcome by

accessing a process definition source through a Web service-oriented common

interface. In the new version, the process enactment engine has gained an ability

to import OWL process representation via Web service and to parse its OWL

representation.

Atomic task

Invoking manufacturing tools by the process enactment engine also can be done

either directly without any common interface or through a Web service-oriented

common interface. In the case of direct invoking, the process enactment engine

relies on a separate Tool server to execute and retrieve results. In the case of

indirect invoking through common interface, the process enactment engine

needs help from the Web service module instead of the tool server.

The logic of process enactment came from the Process Grammar’s “on the fly”

process configuration. The process enactment engine generates a new process

flow by adding one of possible alternative sub-processes onto a logical task. If

needed, the process enactment engine rollbacks execution and reconfigures the

sub-process. In manual mode of process execution, the process enactment

engine doesn’t involve making a decision on the process enactment. All of the

decisions come from a human user through the Cockpit. However, in automatic

mode of the process execution, the machine agent in the enactment engine

decides what to do for sub-process configuration and reconfiguration.

The process enactment engine is implemented as a JAVA RMI server. One

organization should have at least one process enactment engine. If the

organization wants to release a burden of a monolithic enactment engine,

47

multiple engines can run on the multiple JAVA RMI servers. In this case, multiple

RMI servers should be linked and synchronized by a MIDAS distributed server

infrastructure. The MIDAS distributed server infrastructure is consists of a Yellow

page server and other RMI servers running enactment engines.

The process enactment engine is also responsible for checking the permissions

needed when users access and execute resources belonged to the process

instance. Full-scale of access control functionalities come from a separate

access control system. The process enactment engine relies on the access

control system to check the user’s permission. Discussion about access control

system is beyond this thesis’s scope, but extensive discussion about MIDAS

access control scheme can be found in [Zhang 2003].

5.2.2 Cockpit

A cockpit is a communication interface connecting a user to the process

enactment engine. It couples a user and an engine by transmitting the user’s

decision on the process creation and enactment to the process enactment

engine. The cockpit also provides graphical information about the process

definition and enactment to the user.

The cockpit interacts with the human user in following situations: Creating

process definition, Displaying and maintaining process information archive, and

Displaying enactment sequence of a process. When a user defines a process,

the cockpit provides a graphical authoring environment. A user can actually draw

a graph of a process flow, and the cockpit has an ability to document it in OWL.

The cockpit has been implemented as a downloadable JAVA applet. Since the

cockpit should connect to the JAVA RMI server, which runs MIDAS process

enactment engine, the cockpit is a JAVA RMI client as well.

5.2.3 Process Library and Tool Library

Process library

The process library is kind of repository that holds and distributes process flow

definitions. The MIDAS framework uses two kinds of process libraries: the JAVA

RMI server-based library and the Web service-based library. The JAVA RMI

server-based library is implemented without a common interface. The access to

the library must be done only via JAVA RMI client. On the other hand, the Web

service-based library is to be used for collaborative workflow management

among heterogeneous systems. As you expect, the Web service-based library

provides a globally acceptable common interface. Furthermore, the process

definition will be distributed in an OWL document in order to achieve

interoperability.

Tool Library

The tool library provides manufacturing tools. The MIDAS framework considers

two kinds of tools: the JAVA RMI server-based tool and the Web service-based

tool. As mentioned previously, the MIDAS framework includes the tool server.

49

The JAVA RMI server-based tool is executed from the tool server when a user

invokes the execution of an atomic service. The Web service-based tool is a

public accessible application, which has a globally accessible common interface.

Similar with the case of process library, the Web service-based tool can be

utilized by different vendor’s workflow management system.

5.2.4 Web Service Modules

Web service modules provide facilities such as browsing service semantics, and

calling a Web service to enact process. MIDAS web service modules are

composed of Web Service Discovering Module, Service Registering Module,

Web Service Deploying Module, and Web Service Calling Module. The

functionalities of these modules are implemented by using JAVA AXIS API

(version 1.1) [AXIS 2003], xerces XML processing API [Xerces2] and SOM API

(Appendix A). The detail functionalities of each module will be discussed at

chapter 6 and 7.

5.3 Web service Server System

The MIDAS framework uses the Tomcat-AXIS server system [AXIS 2003] to

realize the Web service working environment. The Tomcat-AXIS system is

constructed by gearing up the Tomcat Web application server with AXIS JAVA

API. AXIS API provides SOAP messaging functionality and Web service

deploying/ invoking/ running environment, and Tomcat server posts such

functionalities at the lntemet.

50

Tomcat-AXIS system provides the unique method of Web service deployment

that other systems cannot provide. Unlike other Web service systems that

support only pre-compiling deployment scheme, the Tomcat-AXIS system

supports both the pre and post-compiling deployment scheme for Web service.

Under pre-compiling scheme, the implementation of the Web service must be

pre-compiled by a user before it is loaded into the server. Under post-compiling

scheme, the server will compile the implementation of Web service right before it

is invoked. The user does not need to load up pre-compiled code.

The MIDAS framework deploys its Web service under the post-compiling scheme.

The implementation of the Web service will be prepared in JAVA code and

named with a jws extension, then, the deployment will be completed by importing

the jws file into the specialized folder under the Tomcat-AXIS system.

5.4 The Service Registry

The service registry takes a very important place over MIDAS framework

because it is one of facilities realizing Web service-oriented interoperability of a

workflow management system. However, the service registry itself is a separate

independent system, which is not a part of the workflow management system.

The service registry exists in between collaborating workflow management

systems to facilitate interoperation between collaborating workflow management

systems by matchmaking them quickly.

51

It is important for the service registry to tell the service seekers which Web

service can provide which service. For this, the service providers enroll their

services with a description at the service registry, and the service registry lets out

the simplified description of a service to the service seeker.

The service registry supports three basic functionalities: Service enrollment,

service disenrollment and browsing enrolled service. These functionalities are

implemented as remote procedures having a Web service common interface.

The WSDL document for such remote procedure can be found at the Appendix D.

Entry

Essential semantics

~name of service

otype of service

-URL of service

-pre- condition

opost-oondition

dnput

ooutput

 ‘ Process

Link to OWL O——> definitions
(OWL)

Link to WSDL C? y

\ WSDL

Figure 15 Entry of service registry

To reduce the registry size and improve efficiency of searching, entries includes

only the minimum size of descriptions. The minimum size of a description

includes the following information: name of service, type of service, URL of

52

sen/ice, input and output data specifications, and the pre- and post-conditions of

service (figure 15).

The service seeker may need to reference the full description of service for the

future use. The full description of service is given by separate document, and the

link to this document is provided to the service seeker as well. The WSDL

document is also provided for the service seeker’s Web service calling module.

Entry of service registry is written in generic XML. Following box shows an

example of an entry enrolling the LogicalService created for the logical task

shown in figure 2(a). The entry form includes all minimum descriptions for a

service and links to the OWL document and the WSDL document.

<entry>

<entrle> 00001 <lentrle>

<serviceType> logicalService<lserviceType>

<serviceName> CylinderDsg<lserviceName>

<precondition> NotKnowCylinderDsg<lprecondition>

<postcondition> NotKnowCylinderDsg<lpostconditon>

<inputSpec> EngineSpec<linputSpec>

<inputSpec> CoolantType<linputSpec>

<outputSpec> ElecChar<loutputSpec>

<outputSpec> CylindarGeo<loutputSpec>

<wsdl_binding>httpzllmidaslwstCylindarDsg.wsdl</wsdl_binding>

<owl_binding>http:l/midas/wsdl/services.daml<lowl_binding>

<lentry>

53

CHAPTER 6 MIDAS AUTHORING ENVIRONMENT USING WEB SERVICE

The primary goal of the MIDAS authoring environment is to provide a process

flow authoring facility to a user. A user can create a process definition by

authoring logical tasks and atomic tasks, then, combining those tasks into a

process flow along with the data specification. In the MIDAS authoring

environment, the process definition will be written in OWL as the process

definition model describes. Once a process definition has been created, the

process definition is stored into the private repository or public library.

The cockpit is the major component that is responsible for the authoring process.

The MIDAS cockpit provides a user a sophisticated authoring tool with a

graphical interface, which enables a user to create a process flow graph and

converts the process flow graph into a process definition document.

The MIDAS authoring environment has an ability to deploy and publish a Web

service to support the Web service-oriented interoperability. The MIDAS Web

service registering module and Web Service deploying module together realize a

Web service-oriented interoperability. The Web Service deploying module

generates an implementation of a Web service based on the process definition. If

the authoring environment needs to advertise its Web services, the Web service

registering module registers Web services to the public Service registry.

Web service registration is only necessary when inter-organizational

collaboration proceeds, because the MIDAS framework assumes that every

participant within one organization know one another very well so that they don’t

need to advertise any Web service or task. However, during the collaboration

between different organizations, they can hardly get to each other and both

organizations need a rendezvous point to meet one another. So in this case, the

MIDAS authoring environment registers Web services as a process flow or a tool

at the Service Registry.

6.1 Creating Process Definition

The MIDAS authoring environment brings up two creation patterns of process

definition in association with Web service; Creating a process definition for an

atomic service and Creating a process definition for logical service and its service

composites. These separate patterns regard two different kinds of Web services;

A Web service invoking a manufacturing tool and other kinds of Web service,

which aims either of process assignment or process flow library.

6.1.1 Process Definition for Atomic Service

As mentioned at chapter 2, an atomic task (atomic service in terms of the

service-oriented model) is responsible for invoking a tool application, so the first

step should be creating an atomic task in the cockpit. Through the cockpit, a user

creates an atomic task by adding input data and output data specifications. After

that, the atomic task must be bound by an actual tool application. Once the

55

atomic task has been prepared, the cockpit writes out the OWL document into

the temporary storage. The example of OWL file can be found in Appendix C,

and figure 16 illustrates all above process.

Cockpit

(2) User adds input J Manufacturin

and output data. - C—I tool 9

— (3) User assigns

tool to atomic task.

Web service

OWL

%Deploying module
process

.

definition creates Web servrce.

(1) User creates (4) Cockpit converts

atomic task. atomic task to OWL.

Figure 16 Creating definition for atomic service

Tool applications are typically a server-based software component. However, the

MIDAS framework can invoke non server-based tool applications as well. As

discussed in chapter 4, the process definition itself does not specify how an

atomic service invokes a manufacturing tool. The process definition simply

identifies the tool bound to an atomic service. The invoking mechanism of an

actual tool totally depends on the Web service enactment design of each

workflow management system.

56

6.1.2 Process Definition for Logical Service

In addition to an atomic service, a logical service performs an important role in

Web service-oriented collaborative workflow management. A logical service is to

be assigned for process enactment, or is to serve a public process library

function. Either case, a logical service is designed to serve one or more service

composites to the requester. So, the process definition should be placed where

the Web service can reach and get the definitions.

Cockpit

%Deploying module

creates Web service.

OWL

process

definition

(1) User creates graph. (2) Cockpit converts

graph to OWL

Figure 17 creating definition for logical service

The process definition for atomic senrice is rather simple since it specifies only a

single tool application, but, for a logical service, it is not that simple, as it must

specify service composites and its components. The cockpit helps users

complete this complicated job fast. As shown in figure 17, a user combines tasks

to make a process flow graph at the first step. Before being combined into a

process graph, the user must prepare all of the tasks. Once the process flow

graph is ready, the cockpit writes out a process definition in OWL and stores it at

the repository. The example of the OWL file can be found in Appendix C.

6.2 Deploying Web service

In MIDAS framework, the deployment of a Web service is accomplished by co-

work of the Web service deploying module and Tomcat-AXIS server system. The

Web service deploy module prepares the Web service implementation, and the

Tomcat-AXIS server actually compiles the implementation and deploys it as

public-accessible Web service on the lntemet. Figure 18 illustrates such co-work

for Web service creation and deployment.

(4) compiles Web

3:33.29.“ service implementation.

Module 1; E i-Q

(31:35:: fibdig'iiii.
(330:3: definition service

definition lmple- (6) generates WSDL.

%. .322. :>

definition WSDL

(2) generates Tomcat-AXIS

Web service implementation. server system

Figure 18 Deploying Web service on the lntemet

58

The Web service deploy module performs three steps to prepare a Web service

deployment; (1) Reads a process definition, (2) generates the implementation of

Web service from the definition, (3) Copy the implementation of Web service at

the specialized folder of the AXIS. Throughout step 1 and 2, the Web service

deploy module uses the OWL parser to extract semantic information of process

from the OWL document. Based on the semantic information, the Web service

deploy module generates a jws file automatically. At step 3, the Web service

deploy module copies the jws file at the specialized folder of the AXIS.

From the specialized folder of the AXIS, the jws file will be compiled by the AXIS

compile engine and deployed as a Web service. When the jws file is compiled,

the AXIS engine also generates WSDL document automatically. The example of

the jws file and its WSDL document can be found in Appendix E.

6.3 Registering Web service

The MIDAS framework requires the service providers register their services at

the public registry, and then, the service requester discovers it through the public

registry. As mentioned previously, this happens only when inter-organizations

collaborate. lntra-organizational collaboration doesn’t require such registering

and discovery.

As discussed in chapter 5, the remote procedure that enrolls the service has

been implemented as part of the service registry. The Web service registering

module interacts with that remote procedure of service registry to enroll its

59

service. By the remote procedure call, a new entry is registered in the registry.

Figure 19 illustrates this enrolling process.

Service Registry

OWL

process

definition

 (4) enrolls service.

K INTERNETX remote

(1) reads parametertfl I ~ procedure

£2235; (2) Parameterizes

service description (3) calls

procedure

entry

Web service

Registering Module

Figure 19 Registration of a service and format of entry

CHAPTER 7 MIDAS EXECUTION ENVIRONMENT USING WEB SERVICE

MIDAS makes a distinction between process definition details and execution

details. As mentioned in chapter 6, the authoring environment presets process

flow details. In the other hand, execution details are not preset and often change

at runtime as the workflow is generated through the process enactment.

B/

.Qagetialiqu-.. Q

Company A Company B Company A Company B

1- Company A discovers company 8’5 2. Company A and B initiate

Web service. negotiation.

""991".qu "measure-.. ©

Company A Company B Company A Company B

3. After compromising, company A cells 4. During the execution, company A will

B 8 Web SBWICG- monitor the execution via Web service.

Figure 20 Overview of Web service-oriented interoperation in MIDAS

The execution environment enables user to discover a service, negotiate with a

service before execution, execute the service, and monitor the execution of a

61

service (Figure 20). In this chapter, the author will discuss how the MIDAS

execution environment builds up such execution detail at runtime.

7.1 Service Discovery

To discover a service that fulfills the service seeker’s requirement, a service

registry compares the semantic information registered at the entry with the

parameters sent from the service seeker. Figure 21 shows how a service seeker

discovers a service, which meets the service seeker’s requirements. The service

registry has a remote procedure that returns any services matching with the

user’s query. The service seeker calls this remote procedure with a

parameterized query. The parameterized queries include the type of service,

input and output specifications and the pre- and post-conditions. As described in

chapter 5, the entry form also contains the type of service, input and output

specifications and the pre- and post-conditions as referencing markers. The

parameterized queries are compared to these referencing markers of a

registered service at each entry, and all of matching entries are returned back to

the service seeker.

62

Web service \
Servrce Registry

Discovering

remote

procedure

@finds matches.

entry

Figure 21 Overview of service discovery in the MIDAS

Module (2) calls

(1) imports procedure

parameters

from engine INTERNET

 :C> parametersJ r

(4) retrieve

matches.

 i
entry I

(5) exports matches

to the engine.

A service seeker may need the full scale of an OWL document to make a more

sophisticated decision on selecting the best service among returned matches. A

service seeker can refer to the full scale of an OWL document since entries

retrieved from the registry include a link to the OWL document.

7.2 Negotiation for Collaboration

Discovery of a service provider does not necessarily involve perfect

customization of the services to a requester’s demands. Uncertainties are always

bound to arise when a service requester encounters a service. Negotiation

therefore helps a service requester meet the most ideal service by going through

an iterative process to customize the service.

The negotiation proceeds through direct contact between a service requester and

a service provider. MIDAS has a module for sending email notification to a

specific participant, but unfortunately MIDAS does not support more than that

currently.

Negotiation can be used for different purpose as well. In company-to-company

collaboration on a process, there are always lots of things that must be

configured together before collaboration begins. Such things could be the price of

the product, deadline of the project or permission to access a certain resource.

These jobs cannot be supported by other MIDAS facilities except the negotiation

facility, but currently MIDAS doesn’t have any sophisticated negotiation tool. I

leave this job for future work.

7.3 Process Enactment Using Web service

In order to reflect dynamic nature of process management, MIDAS supports for

an iterative process enactment using Web service. The Apply and the Roll Back

are events invoked by a user or a machine agent during the execution of a

process in the execution environment of the MIDAS framework. The iterative

process enactment is defined as an iterative combination of Apply and Roll Back

at run time.

The MIDAS process enactment consists of four steps: (1) Load up top-level

process and initialize it. (2) Execute each task within top-level process. If you

meet a logical task, expand it with sub-process. If you meet an atomic task,

64

invoke a tool and get the result (3) Execute tasks in an expanded process. (4)

Check if expanded process meets constraints, and if not, rollback and reapply.

The process enactment engine is responsible for control in the above steps, but

the process enactment engine itself does not have functionality to communicate

with the Web service. The Web service calling module helps this process.

The MIDAS execution environment allows three enactment patterns using a Web

service. (1) A logical task can be assigned to other user via Web service. (2)

Someone’s process definition can be retrieved through a Web service, and the

service requester enacts imported process. In this case, the Web service works

like a simple public process library. (3) Tool can be invoked via Web service. All

those enactment patterns except (2) are asynchronous as discussed in chapter

4.

7.3.1 Task assignment using Web service

When the process enactment engine meets a logical task at the time of enacting

the process, it should decide weather it enacts this logical task by itself or

delegate its execution to the other user. The terminology of MIDAS framework

defines the former case as Apply, and later case as Assignment. The MIDAS

framework utilizes Web service to make the assignment of a logical task across

the heterogeneous system from different vendors.

Since the engine itself does not have Web service interoperability, it leans on the

Web service calling module to interact with the Web service. The logical service

discovered through the service discovery stage will be invoked by the Web

service calling module across the lntemet. The enactment engine is responsible

for providing input data if it is necessary. The Web service got call from the

service provider initiates the enactment. After the service provider completes its

process enactment, the service requester’s engine retrieves the enactment

results and updates its process flow.

Service Requester Logical Service Provider

(1) Engine (2) WS caller (3) Web service invokes

uses Web service invokes Web enactment.

caller to assign service

logical task. . l 'NTERNET

Web SGWICB I Web service

I‘ d Is < If

ca ling mo u enactment

(5) Web service

returns result.

(6) Engine
' .

updates process (4) Servrce prowdei

. flow graph.
completes

Enactment engine
enactment

Figure 22 Overview of task assignment using Web service

Figure 23 shows details of Service requester-Web service interaction. The

MIDAS implements the invoke-then-listening asynchronous scenario for this

interaction. A logical service provider must make his Web service implementing

at least following 4 operations to realize the invoke-then-listening task

66

assignment: providelnput(), invokeEnactment(), getGragh() and getOutput().

The providelnput() delivers input data to the service and turns the un-initialized

state of the service into the ready state. The invokeEnactment() makes the

service begin to work on enactment. The service requester waits for a call back

after calling this operation, and the call back will return to the service requester

when the service completes its job. Once the call back arrives, the service

requester retrieves a process flow graph and output data by calling getGraph()

and getOutput().

\
1. Provide N

input \ - providelnput() >

I \ \

Logical Service Provider

inputs ”X

Service Requester I

2. Invoke . Enactment
o k .enactment invo eEnactment() > begins. “

5 Enactment ,. ..

g. canned ends. f

(a
_

v

)

3. Retrieves ' getGraph() R graph

graph and outputs I out uts

- getOutput() p

Figure 23 Detail view of task assignment using Web service

67

7.3.2 Use Web service as public process library

When a logical service is utilized as a public process library, it simply returns the

definition of process flow, which is stored at the service-side repository. Then, the

definition will be loaded up as a top-level process or used to expand a logical

task (figure 24). Because the return of feedback to the service requester will be

immediate, the asynchronous Web service calling isn’t necessary in this case.

The getGraph() will be used to retrieve a process definition from the service.

Service Process library using Web service

Requester

(1) Engine uses

Web service caller

to import process. INTERNET

Web service I Web service

calling module < J — ~.

W E (4) Web service .t(
:
0

' |
calling modu e (3) Web service reads

hands over

_ . .

process definition process definition and

Enactment engine to the engine. returns

Figure 24 Overview of using Web service as process library

7.3.3 Tool invoking by Web service

The tool invoking through a Web service proceeds in the similar way that task

assignment through Web service does (Figure 25). The Web service calling

module is also involved to help the enactment engine in this case. The

enactment engine is responsible for providing input data if it is necessary. The

enactment engine calls the Web service to initiate tool. After the tool completes

its process enactment, the service requester's engine retrieves output data from

the service and updates its process flow.

Service Requester Atomic Service Provider

(1) Engine (2) WS cauer (3) Web SBNICC IDVOkBS

uses Web service invokes Web t°°'- A

caller to assign service

atomic task. 'NTERNET

Web service r Web service

calling module < 1 tool

(5) Web service

returns result.

(6) Engine .

updates process (4) TOOI PTOVIdGS

fl h. OUtPUi

Enactment engine ow grap

Figure 25 Overview of tool invoking using Web service

A atomic service provider must make his Web service implementing at least

following 3 operations to realize the invoke-then-listening task assignment:

providelnput(), invokeEnactment(), and getOutput(). As seen in the figure 26,

the interaction between atomic service and the service requester is almost similar

except the absence of getGraph().

69

x \ Atomic Service Provider

1 . provrde inputs I
input - providelnput() > 5%]

E \ \ tool

2- invokes - invokeEnactment()> Egecutlon

enactment
egins.

nExecutio

t?

ends.

B
u
i
i
i
e
M

3. retrieves , outputs'
outputs getOutput()

Service Requester

Figure 26 Detail view of tool invoking using Web service

7.4 Monitoring Enactment

During the process enactment is going on across the heterogeneous systems,

users may want to monitor its execution status. Since the process being

configured could possibly be a complex and large graph, visualizing the process

being executed is not simple job. Furthermore, such visualization must be inter-

understandable across heterogeneous workflow management systems. The

MIDAS framework realizes the global visualization of collaborative enactment by

adapting monitor model of SOM. An OWL document using terms defined by

monitor model of SOM is capturing execution status of process graph.

As seen in Figure 27, once the enactment begins at the service provider side, the

enactment engine at the provider’s side begins to updates its graph with new

70

execution results. Whenever the graph is updated, the engine also updates the

OWL document that captures the shape of process flow and execution status of

each task composing the service provider’s process.

Logical Service Provider

Enactment

' getGraph() > graph l‘........

cow...a
gfig§...

.. ...-.....
."laace

‘.. ‘ e .0‘ y

- getGraph()

 Cockpit

N Enactment

ends.

 Service Requester

Figure 27 Overview of monitoring using Web service

The getGraph() operation retums this OWL document to the service requester.

The service provider is responsible for notifying his process updates to the

service requester, and the service requester call getGraph() operation to retrieve

the OWL document whenever he gets the notification. The service requester's

enactment engine makes the cockpit visualizing the graph after parsing its

information.

71

APPENDIX A. JAVA Package for SOM

All following java sources are the highlighted feature of JAVA package for SOM.

This JAVA package is provided as “services.jar”.

Only the declaration of constructer and public method are shown here. Every

details have been omitted.

service.java

package services;

// Imports

import java.io.Serializable;

import java.util.Vector;

public class service implements Serializable {

// Fields

public String name;

public String owner;

public Vector preconditionList;

public Vector postconditionList;

public Vector inputList;

public Vector outputList;

public String URL;

public String semanticURL;

72

// Constructors

public service(String name) { }

public service() { }

// Methods

public void addPreCondition(condition cond) { }

public void addPostCondition(condition cond) { }

public void addinputList(Spec input) { }

public void addoutputList(Spec input) { }

public boolean equals(service Service) { }

atomicservice.java

package services;

public class atomicservice extends service {

// Constructors

public atomicservice(String name) { }

73

Iogicalservice.java

package services;

// Imports

import java.util.Vector;

public class logicalservice extends service {

// Fields

public Vector scList;

public servicecomposite appliedSC;

// Constructors

public logicalservice(String name) { }

// Methods

public void addServicecomposite(servicecomposite sc) { }

74

Spec.java

package services;

// Imports

import java.io.Serializable;

public class Spec implements Serializable {

// Fields

public String name;

public String data;

// Constructors

public Spec(String name) { }

75

condition.java

package services;

ll Imports

import java.io.Serializable;

public class condition implements Serializable {

// Fields

public String name;

// Constructors

public condition(String name) { }

}

76

servicecompositejava

package services;

/I Imports

import java.io.Serializable;

import java.util.Vector;

public class servicecomposite implements Serializable {

// Fields

public String name;

public String type;

public String status;

public Vector CSIist;

// Constructors

public servicecomposite() { }

public servicecomposite(String name) { }

componentservicejava

package services;

// Imports

import java.io.Serializable;

public class componentservice implements Serializable {

// Fields

public String IinkFrom;

public String IinkTo;

public String status;

public servicecomposite appliedBy;

public service Service;

public String name;

public String type;

// Constructors

public componentservice() { }

public componentservice(service Service) { }

public componentservice(service Service, String IinkFrom, String IinkTo) { }

78

// Constructors

public componentservice() { }

public componentservice(service Service) { }

public componentservice(service Service, String IinkFrom, String IinkTo) { }

// Methods

public void setStatus(String ststus) { }

public void setLinkFrom(String IinkFrom) { }

public void setLinkTo(String IinkTo) { }

79

APPENDIX B. Converting Graph to Process Definition

In this example, the service flow illustrated in (a) can be represented by an OWL

markup in (b). As you see in (b), the LogicalService or AtomicService must be

defined ahead of ComponentServices. According to the definition, class Service

and ComponentService are equivalent, so the ID of LogicalService or

AtomicService can be referred from ComponentService tag.

Logical_A

b

Logical_B

c

(a) a service flow

<service:LogicalService rdf:lD=”Logical_A”>

<servicezhaslnput>

<service:SpecList rdf:parseType=”collection”>

<service:Spec rdf:resource="#a"/>

</service:SpecList>

</service:haslnput>

80

<servicezhasOutput>

<service:SpecList rdf:parseType=”collection”>

<service:Spec rdf:resource="#b"l>

<lservice:SpecList>

</service:hasOutput>

</service:LogicalService>

<service:LogicalService rdf:lD=”Logical_B”>

<servicezhaslnput>

<service:SpecList rdf:parseType=”collection”>

<service:Spec rdf:resource="#b"/>

<lservice:SpecList>

</service:haslnput>

<servicezhasOutput>

<service:SpecList rdf:parseType=”collection”>

<service:Spec rdf:resource="#c"/>

<lservice:SpecList>

<lservicezhasOutput>

<lservicezLogicalService>

<service:ServiceComposite rdf:parseType="collection">

<service:ComponentService rdf:lD="Logical_A">

<service:linkFrom/>

<service:linkTo>

<service: ComponentService rdf:resource="#LogicaI__B"/>

81

</service:linkTo>

</senrice:ComponentService>

<service:ComponentService rdf:lD="Logical_B">

<service:linkFrom>

<service:LogicalService rdf:resource="#Logical_A"/>

</service:linkFrom>

<service:linkTo/>

</service:ComponentService>

</service:ServiceComposite>

(b) OWL markup for the service flow

82

APPENDIX C. Example of Process Definition

<?xml version='1.0' encoding='lSO-8859-1'?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/O1/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001lXMLSchema">

<!ENTITY daml "http://www.daml.orgl2001/03/daml+oil">

<!ENTITY service "MIDASserviceModeI.daml">]>

<rdf:RDF

xmlns:rdf: "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlnszxsd= "&xsd;#"

xmlnszdaml = "&daml;#"

xmlnszservice = "&service;#"

xmlns = "&DEFAULT;#"

<!-- definition of Specipications -->

<service:Spec rdf:lD="EngineSpec"/>

<service:Spec rdf:lD="WiringSpec"/>

<service:Spec rdf:ID="ControllerSpec"/>

<!-- definition of LogicalService -->

<!-- definition of "ControllerDsg" -->

<service:LogicalService rdf:lD="ControllerDsg">

<service:haslnput>

<service:Spec rdf:resource="#EngineSpec"/>

</service:haslnput>

<service:hasOutput>

<service:Spec rdf:resource="#WiringSpec"/>

<service:Spec rdf:resource="#ControlIerSpec"/>

<lservice:hasOutput>

<service:hasAltemativeChoices>

<servicezAltemativeChoice rdf:parseType="collection">

<service:ServiceComposite

rdf:resource="def_CntProd2.owl#CntProd2"/>

<lservice:AltemativeChoice>

<lservice:hasAltemativeChoices>

</service:LogicalService>

<!-- definition of AtomicService -->

<!-- definition of "TimeMPLXModel" -->

<servicezAtomicService rdf:ID="TimeMPLXModel">

<service:haslnput>

<service:Spec rdf:resource="#modelSpec"/>

<lservice:haslnput>

<service:hasOutput>

<service:Spec rdf:resource="#MPSpec"/>

</service:hasOutput>

<lservicezAtomicService>

<!-- definition of AtomicService -->

<!-- definition of "MicroProcess" -->

<service:AtomicService rdf:lD="MicroProcess">

<service:haslnput>

<service:Spec rdf:resource="#modelSpec"/>

<lservice:haslnput>

<service:hasOutput>

<service:Spec rdf:resource="#MPSpec"/>

</service:hasOutput>

</service:AtomicService>

<I-- definition of AtomicService -->

<!-- definition of "lntrument" -->

<service:AtomicService rdf:lD="lntrument">

<service:haslnput>

<service:Spec rdf:resource="#MPSpec"/>

<lservice:haslnput>

<service:hasOutput>

<service:Spec rdf:resource="#ControllerSpec"/>

<service:Spec rdf:resource="#WiringSpec"/>

<lservice:hasOutput>

<lservicezAtomicService>

</rdf:RDF>

86

APPENDIX D. WSDL for Service Registry

<?xml version="1.0" encoding="UTF—8"?>

<wsdlzdefinitions .

targetNamespace="http://localhost:8080/axis/services/SR"

xmlns="http://schemas.xmlsoap.org/wst"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http:l/localhost:8080/axis/services/SR"

xmlns:intf="http://localhost:8080/axis/services/SR"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encodingl"

xmlns:tns1="http://sr" xmlns:wsdl="http://schemas.xmlsoap.orglwst"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wstsoap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><wsdl:types><schema

targetNamespace="http://Iocalhost:8080/axis/services/SR"

xmlns="http://www.w3.orgl2001lXMLSchema"><import

namespace=“http://schemas.xmlsoap.org/soap/encoding/"/><complexType

name="ArrayOf_xsd_string"><complexContent><restriction

base=“soapenc:Array"><attribute ref="soapenc:arrayType"

wsdl:arrayType="xsd:string[]"/></restriction></complexContent></complex

Type><lschema><schema targetNamespace="http://xmI.apache.org/xml-

soap" xmlns="http://www.w3.org/2001lXMLSchema"><import

namespace="http://schemas.xmlsoap.org/soap/encoding/"l><complexType

name="Vector"><sequence><element maxOccurs="unbounded"

minOccurs="0” name="item"

type="xsd:anyType"/></sequence></complexType></schema><schema

targetNamespace="http://sr'

xmlns="http://www.w3.org/2001/XMLSchema"><import

namespace="http://schemas.xmlsoap.org/soap/encoding/"/><complexType

name="entry"><sequence><element name="name" nillable="true"

type="xsd:string"/><element name="serviceURL" nillable="true"

type="xsd:string"/><element name="owlURL" nillable="true"

type="xsd:string"/><element name=“inputs” nillable="true"

type="apachesoap:Vector"/><element name="outputs" nillable="true"

type="apachesoap:Vector"l><element name="inputStr" nillable="true"

type="xsd:string”/><element name="outputStr" nillable="true"

type="xsd:string"/><element name="owner" nillable="true"

type="xsd:string"/><element name="type" nillable="true"

type="xsd:string"/><element name="processURL" nillable="true"

type="xsd:string"/></sequence><lcomplexType></schema></wsdl:types>

87

<wsdl:message name="getServiceResponse">

<wsdl:part name="getServiceRetum" type="xsd:string"/>

<lwsdl:message>

<wsdl:message name="registerServiceResponse1">

<wsdl:part name="registerServiceRetum" type="xsd:string"/>

<lwsdl:message>

<wsdl:message name="registerServiceRequest“>

<wsdl:part name="Entry" type="tns1:entry"/>

<lwsdl:message>

<wsdl:message name="getServiceRequest1">

<wsdl:part name=“inputs” type="impl:ArrayOf_xsd_string"/>

<wsdl:part name="outputs" type="impl:ArrayOf_xsd_string"/>

<wsdl:part name="preCond" type="impl:ArrayOf_xsd_string"/>

<wsdl:part name="posrCond" type="impl:ArrayOf_xsd_string"/>

<lwsdl:message>

<wsdl:message name="registerServiceRequestI ">

<wsdl:part name="entryStr" type="xsd:string"l>

<lwsdl:message>

<wsdl:message name="mainRequest">

<wsdl:part name="args" type="impl:ArrayOf_xsd_string"/>

<lwsdl:message>

<wsdl:message name="registerServiceResponse">

<wsdl:part name="registerServiceRetum" type="xsd:string"/>

<lwsdl:message>

<wsdl:message name="getServiceResponse1">

<wsdl:part name="getServiceRetum" type="impl:ArrayOf_xsd_string"/>

<lwsdl:message>

<wsdl:message name="mainResponse">

<lwsdl:message>

<wsdl:message name="getServiceRequest">

<wsdl:part name="name" type="xsd:string"/>

<lwsdl:message>

<wsdl:portType name="SRWS“>

<wsdl:operation name="main" parameterOrder="args">

<wsdl:input message="implzmainRequest' name="mainRequest"/>

<wsdl:output message="implzmainResponse"

name="mainResponse"/>

<lwsdl:operation>

<wsdl:operation name="getService" parameterOrder="name">

<wsdl:input message="implzgetServiceRequest"

name="getServiceRequest"/>

<wsdl:output message="implzgetServiceResponse"

name="getServiceResponse"/>

<lwsdl:operation>

<wsdl:operation name="getService" parameterOrder=“inputs outputs

preCond posrCond">

<wsdl:input message="impl:getServiceRequest1"

name="getServiceRequest1 “l>

<wsdl:output message="implzgetServiceResponse1"

i name="getServiceResponse1"/>

I <lwsdl:operation>

<wsdl:operation name="registerService" parameterOrder="Entry">

<wsdl:input message="impl:registerServiceReques "

name="registerServiceRequest"/>

<wsdl:output message="impl:registerServiceResponse"

name="registerServiceResponse"/>

<lwsdl:operation>

<wsdl:operation name=”registerService" parameterOrder="entryStr">

<wsdl:input message="impl:registerServiceRequest1"

name="registerServiceRequest1 "/>

<wsdl:output message="impl:registerServiceResponse1"

name="registerServiceResponse1 "/>

<lwsdl:operation>

</wsdl:portType>

89

<wsdlzbinding name="SRSoapBinding" type="impl:SRWS">

<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.orglsoap/http"/>

<wsdl:operation name="main">

<wsdlsoapzoperation soapAction=""/>

<wsdl:input name="mainRequest">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.orglsoap/encodingl"

namespace="httpzllsr" use="encoded"/>

</wsdl:input>

<wsdl:output name=“mainResponse">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encodingl"

namespace="http://localhost:8080/axislservices/SR" use="encoded"/>

<lwsdl:output>

<lwsdl:operation>

<wsdl:operation name="getService">

<wsdlsoapzoperation soapAction=""/>

<wsdl:input name="getServiceRequest”>

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="httpzllsr" use="encoded"/>

</wsdl:input>

<wsdl:output name="getServiceResponse">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace=“http://localhost:8080/axis/services/SR" use="encoded"/>

<lwsdl:output>

<lwsdl:operation>

<wsdl:operation name="getService">

<wsdlsoapzoperation soapAction=""/>

<wsdl:input name="getServiceRequest1">

<wsdlsoap:bodv

encodingStyle="http://schemas.xmlsoap.org/soap/encodingl"

namespace=“http://sr" use="encoded"/>

<lwsdl:input>

<wsdl:output name="getServiceResponse1">

<wsdlsoap:body ‘

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://localhost:8080/axis/services/SR" use="encoded"/>

<lwsdl:output>

<lwsdl:operation>

<wsdl:operation name="registerService">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="registerServiceRequest">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.orglsoap/encoding/"

namespace="httpzllsr" use="encoded"/>

<lwsdl:input>

<wsdl:output name="registerServiceResponse">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encodingl"

namespace="http://localhostz8080/axis/services/SR" use="encoded"/>

<lwsdl:output>

<lwsdl:operation>

<wsdl:operation name="registerService">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="registerServiceRequest1">

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soaplencodingl"

namespace=“httpzllsr” use="encoded“/>

<lwsdl:input>

<wsdl:output name="registerServiceResponse1">

91

<wsdlsoap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encodingl"

namespace="http://localhost:8080/axis/services/SR" use=“encoded"l>

<lwsdl:output>

<lwsdl:operation>

</wsdl:binding>

<wsdlzservice name="SRWSService">

<wsdl:port binding=”impl:SRSoapBinding" name="SR">

<wsdlsoapzaddress location="http://localhost:8080/axis/serviceslSR"/>

</wsdl:port>

</wsdl:service>

<lwsdl:definitions>

APPENDIX E. Example of jws codes and its WSDLs

import java.io.*;

import java.util.Vector;

public class CylinderDsg {

String path = "C:\\Documents and Settings\\Hong Suk Jung\\My

Documents\\Company_A\\ CylinderDsg";

public String providelnput (String input1, String input2) throws Exception {

OutputStream to;

to = new FileOutputStream(path + "\\lnput1.txt");

byte b1[] = input1.getBytes();

fo.write(b1);

fo.close();

return "Delivery was successfully";

public String [] getOutput() {

WI

lnputStream fi;

fi = new FilelnputStream(path + "\\Outputs.txt");

byte b[] = new byte[fi.available ()];

fi.read(b);

String contents = new String(b);

fi.close();

String outputs[] = {contents};

return outputs;

}

catch (FileNotFoundException ex) {

return new String [] {"Output data has not been ready."};

}

catch (lOException ex) {

return null;

public String invokeEnacting() throws Exception {

OutputStream to;

String temp = "MakeCalendar has been invoked";

to = new FileOutputStream(path + "\\Invoked.txt");

byte b1[] = temp.getBytes();

fo.write(b1);

fo.close();

return "Enactment has been invoked";

public String getGraph() throws Exception {

lnputStream fi = new FilelnputStream(path + "\\Graph.txt");

byte b[] = new byte[fi.available()];

fi.read(b);

String contents = new String(b);

fi.close();

I’GTUITI contents;

SUMMARY

Web service can give valuable benefits to the collaborative workflow

management systems; a barrier-less interoperability among heterogeneous

system, high modularity, and portability. The manufacturing processes of each

collaborative system can be posted as a globally-understandable service by

using Web service technology and used by other systems. To make different

systems to understand each other’s process, the service-oriented process model

has been proposed. The service-oriented process model provides the

fundamental foundation of globally-acceptable management model for distributed

process as service. In this model, the OWL, which is a standardized language for

Web ontology, has been used to represent the process and describe execution

status of process in this model. The Web service-oriented process model has

been successfully deployed in the MIDAS framework. The authoring environment

of MIDAS enables users to create and advertise the OWL process definition and

deploys Web service generated based on the OWL definition. The execution

environment of MIDAS enables users to search, select and use the posted

service. The MIDAS has three execution styles using Web service: invoking tool

application via Web service, assigning a logical task via Web service, and using

Web service as public production library.

BIBIJOGRAPHY

AberdeenGroup. Beating the Competition with Collaborative Product Commerce,

Jun 2000, AberdeenGroup, Inc.

Alsop, S. The Dawn of E-Service. Fortune, Nov 9, 1998, pp. 243-244

Baldwin, R. and Chung, MJ. Design Methodology Management: A Formal

Approach, IEEE Computer, February 1995, pp. 54-63

Bloomberg, Jason. Web services and a New Approach to Software Development.

Rational Software. 2002.

http://www.therationaledge.com/content/apr_02/f_webServices_jb.jsp

Chung, MJ., and Kwon, P. A Web-based Framework for Design and

Manufacturing a Mechanical System. DETC, Atlanta, Georgia. Sep. 1998.

Chung, MJ., Kwon, P. and Pentland, B. Design and Manufacturing Process

Management in a Supply Chain Environment (2003) Scalable Enterprise

Systems Research, edited by Vittal Prabhu and Sounder Kumara, Chapter 2; pp.

33-64, Kluwer Academic Publishers,Boston, MA. 2003

Chung, MJ., Kwon, P. and Pentland, B. Making Process Visible: A Grammartical

Approach to Managing Design Processes. (2002) ASME Transaction, Journal of

Mechanical Design. vol. 124, 364-374

Cohen, Frank. Understanding Web service interoperability. IBM. 2002.

http://www-1 06.ibm.com/developenrvorks/webservicesllibrary/ws-inter.html

97

Ding, Y., Fensel, D., Klein, M, and Omelayenko, B., "The semantic web: yet

another hip?" Data & Knowledge Engineering, Vol. 41, No. 2, pp. 205-228, 2002.

Fensel, D., Horrocks, l., Harmelen, F., McGuinness, D. L., and Patel-Schneider,

P. F., "The semantic web - oil: an ontology infrastructure for the semantic web",

IEEE Intelligent Systems & Their Applications, Vol. 16, No. 2, pp. pp. 38-45, 2001.

Hendler, J., "The Semantic Web - Agents and the Semantic Web," IEEE

Intelligent Systems & Their Applications. Vol. 16, No. 2, pp. 30-37, 2001.

IBM, "Using Service-Oriented Architecture and Component-Based Development

to Build Web Service Applications", Rational Whitepaper, 2003.

Lavana, H., Khetawat, A., Brglez, F., and Kozminskl, K., "Executable Workflows:

A Paradigm or Collaborative Design on the lntemet", Proceedings of the 34th

ACM/IEEE Design Automation Conference, June 1997.

McMillan, R., “IDC: Web Service to Enable $4.38 Hardware Market by 2007”,

Computerworld, 23 May 2003

Paolucci, M, Srinivasan, N., Sycara, K., Solanki, M, Lassila, O., McGuinness, D.,

Denker, G., Martin, D., Parsia, B., Sirin, E., Payne, T., Mcllraith, S., Hobbs, J.,

Sabou, M, and McDermott, D., "OWL-S", http://www.daml.org/services/owl-

s/1 .O/owl-s.pdf

Peltz, 0., "Web Services Orchestration and Choreography", IEEE Computer

(October), pp. 46-52, 2003.

98

Qin, Y. (2002). Manufacturing Infrastructure and Design Automation System

(MIDAS) with XML representation. Computer Science and Engineering. East

Lansing, Michigan State University.

Schey, J. A., (1987), Introduction to Manufacturing Processes, 2nd edition,

McGraw-Hill, New York, NY.

Shapiro, R., "A Comparison of XPDL, BPML, and BPEL4WS."

xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

Sun Microsystems, Inc. (2002) Web Services Made Easier.

UDDI.Org. UDDI specification version 2.04

httpzlluddi.org/pubs/ProgrammersAPl-V2.04-Published-20020719.hthark Klein,

Abramham Berstein. Searching for services on semantic web using process

Ontologies. lntemational semantic web working symposium, 2001

W3C Web Service Choreography Working Group Charter. 2002

W30 Web service descript group. Web Services Description Requirements (W3C

Working Draft 28 October 2002) http://www.w3.orngR/ws-desc-reqsl

W3C. Web Service Description Language(WSDL) 1.1

Weerawarana, S. and Francisco, 0., "Business Process with BPEL4WS:

Understanding BPEL4WS, Part1", httpzllwww-

106.ibm.com/developerworks/webservices/Iibrary/ws-bpelcol 1/

WSCI. http://www.w3.orngR/2002/NOTE-wsci-20020808/

99

XercesZ Java Parser 2.6.2. http://xml.apache.org/xerces2-j/index.htm|

100

Wrap-aw”-
unuyeuu.» equiv... 1'\-h‘-'lhav ..

