

THESIS

o
59 (0144

This is to certify that the
thesis entitled

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW
MANAGEMENT FOR DESIGN AND MANUFACTURING

presented by
HONG SUK JUNG

has been accepted towards fulfillment
of the requirements for the

M.S. degree in Department of Computer
Science and Engineering

m%’@%

Major Profes: |gnature
Ju.a. 22, 7/0 otf
Date

MSU is an Affirmative ActionVEqual Opportunity Institution

e mAmimrmimm .

D T

LIBRARY

Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 ¢/CIRC/DateDue.p65-p.15

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW MANAGEMENT
FOR DESIGN AND MANUFACTURING

By

Hong Suk Jung

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
Department of Computer Science and Engineering

2004

ABSTRACT

WEB SERVICE-ORIENTED COLLABORATIVE WORKFLOW MANAGEMENT
FOR PRODUCT DESIGN AND MANUFACTURING

By
Hong Suk Jung

The web technology has been allowing the formation of “virtual” organizations to
handle wide range of design and manufacturing process. Many collaborative
systems can coordinate distributed processes among manufacturers, and the
Web service technology can provide more scalable and flexible collaborative
workflow management in such systems. The manufacturing processes of each
collaborative system can be posted as a globally-understandable service by
using Web service technology and used by other systems. The service-oriented
process model provides the fundamental foundation of globally-acceptable
representation and management for distributed processes as services. In this
model, the OWL has been used to represent the process and describe execution
status of process in this model. The Web service-oriented process model has
been successfully deployed in the Manufacturing Integration and Design
Automation System (MIDAS). The authoring environment of MIDAS enables
users to create and advertise the OWL process definitions, and deploy Web
services for those process definitions. The execution environment of MIDAS
enables users to search, select and execute the posted process by using Web

service.

Table of Contents

Table of COMONESoooiieeece et e e e e eneas i
List Of FIQUIES.......couiiiiiiiiiiiecice et vi
Chapter 1 INtrodUCioN............coooiiiiiiiieieeecceeee e 1
Chapter2 Background..............cccciiviiiiiiieieniiniecrsineeeceee s reeeeesneesesnnee s 4
2.1 Requirements for Collaborative Workflow Management System.............. 4
2.2 ProCess GramMmMarcccceeeeviireeeieiiirieeeessinreeeeseseesseeeeeesesssssesesssssseesees 7
2.3 WIMC's Workflow Reference Model..............ccccceveeiiiriieriicccineeeeeeccneeeen, 9
Chapter 3 Web Servicesccocueireiiiiiniieenieeeeeeeeeereee e aa e 14
3.1 Definition of Web service............cccccoeveiiiiiiiiriiiiiieeeeeeeeecccae, 14
3.2 Three Tier MOdelc..uueiiieiiieiieieiteeerreee e s saane e 14
3.3 Characteristics of Web service...........cccccevrvreeiiiiieicieeeeecccreecc e, 16
3.4 Benefits from Web Service.........ccccccereieiiiiciriiiiineiicccceecee e, 17
3.5 Web Service Choreographyccceccceriiiiiiiiiniiiniiciecceee e 19
3.6 Markup Languages for Collaborating Web services................c.ccccuvnnen. 20
Chapter 4 Service-Oriented Process Model..............cccccouieiiiiriiniiiniiinnennen, 22
A1 OWL ettt ettt e rea e e s s e a e e s e s snr e e e s s s asae e e e s e nsaaaa e e s e s s nneanes 22
4.2 Process Definition Model............cccovmiirieeiiiiiiiiie 23
4.2.1 ClaSS SOIVICO..........cccovuereeereeirsrieniiiiieiiiiisssieresssiecsessesessssssessaeesas 25
4.2.2 Class LogicalService and Class AtomicService................................ 29

4.2.3 Class SOrvicECOMPOSHLEccceeeeeveveeveerecreeireeseeerveesessseeessenes 33

4.3 Workflow Management Model............cccccocueriiiiiinniiccieniecre e, 35
4.3.1 CommOon OPErationscceecvueeeeessveesieeeeseeesieeessieeseseesssesessnnans 36
4.3.2 Common Execution States................cccueeveeeveeeseeecrveseeevecsnresevesvenns 37
4.3.3 Asynchronous Collaboration Scenarios......................ceeceueeeeuveenne... 39

4.4 Execution Monitor Model.............ccccoeiiiiiiiiiiiniiiiinee 39

Chapter5 MIDAS Frameworkccocceeiriiiirnriiieniieeeniiees e e seneeeeenee s 42

5.1 Features of MIDAScooiiiiiiittectee et et 44

5.2 MIDAS Archit@Cture.............ccoeeecoiiiiriiieinieecsteececree e e eree e e e 45
5.2.1 Process enactment @Ngine.................cceeeeeeevevvvsvvvviveeeresessesssssssssnsens 46
B5.2.2 COCKPILeveereeeeeiieeeeeeieecte et et esitessstesesseassanesstsessseasssessssaans 48
5.2.3 Process Library and Tool Library....................cevvvrvevevevvennisieseessrnnen 49
5.2.4 Web Service ModuIes..................cueueeeeeeccviveeeeeeieeeeeiseesiieeesessnnens 50

5.3 Web service Server Systemc.ccccciviiiiiiiiniinicceeee 50

5.4 The Service RegGiStrycccccccevviiiiiiiiiiiiiiiiieer e 51

Chapter 6 MIDAS Authoring Environment Using Web service........................ 54

6.1 Creating Process Definitionccccovuiiiiiiiiiiiininiiiie, 55
6.1.1 Process Definition for Atomic Service...................coceerveuvircvueeveuncen. 55
6.1.2 Process Definition for Logical SErvice..................cccccevueeeeeeevevennenne 57

6.2 Deploying Web Service.............cccvvuiiiiiiiiiiniiiniiniicciircecee e 58

6.3 Registering Web Service.............cccouiiuiiiiiiniiiiniiicieeecece e 59

Chapter 7 MIDAS Execution Environment Using Web service....................... 61

7.1 Service DiSCOVENY..........ccccreiiriiniireieceeceeete ettt ettt s et eeas 62

7.2 Negotiation for Collaboration...............cccceceeveniininiiniieieseceececece, 63
7.3 Process Enactment Using Web service...........c..cccceevevvreeiiciiieneeecsenneen. 64
7.3.1 Task assignment using Web Service...................ccccuevvvvveevveveveunenn. 65
7.3.2 Use Web service as public process libraryccceevevuvveeeunn. 68
7.3.3 Tool invoking by Web Service.....................cccceeeevereevsvvessiiereeinnnns 68

7.4 Monitoring Enactment.............ccocciiiiiiiiiiinirecre e 70
APPENDIX A. JAVA Package for SOM.........cccccccvivciiiiiiieinniieeireeessceeecsaeens 72
APPENDIX B. Converting Graph to Process Definition..............ccccccevrvvvrnneen. 80
APPENDIX C. Example of Process Definition..............ccccccevveinicerinnciineeiicnnnen. 83
APPENDIX D. WSDL for Service Registryc..ccocviviriiiiieiceniiiiiiieeineceenenn. 87
APPENDIX E. Example of jws codes and its WSDLSs.........ccccccccvveviiernrneernneen. 93
SUMMANY ...coiiireiiierereeeree et eeseeeerreesae e ser e sb e s b e s sab e s sab e s b e s s ba s s an s e saae e sneeeabassnnes 96
RefBrENCES........ooeeeeeeceee ettt 97

List of Figures

Figure 1 Four Companies in a Die Casting Process............c.ccccceveeeeeeeeeereeernnenn.. 6
Figure 2 Example of top-level process and production................c.cccceevurverernnennnn.. 8
Figure 3 WfMC'’s high-level functionalities for WEMS..............c..cccoevvvecrvenrcnnenee. 11
Figure 4 WEMC reference modelcccccooeeiiriiiiniinieniiceceeeeeeeeeee e 13
Figure 5 Three Tier Model.............coocuiiiiiiiiiiiiiieececcrecce e 15
Figure 6 OWL information modellingcccceevueeieriienieinieciiecceeceecee e, 23
Figure 7 UML notation for class Service..........c.ccccceeririniiiiniieeeiccieeecceeeeeeeen, 25
Figure 8 UML notation for class AtomicService...........cccccvevrrrveircvennvenneennen, 30
Figure 9 UML notation for class LogicalServicec.ccceeererrverrceerniienniennnen, 31
Figure 10 UML notation for ServiceComposite and ComponentService 34
Figure 11 UML notations for execution monitor model.............c.c.ccccoverevuernnnennnen. 38
Figure 12 UML notations for execution monitor model................cccocrivrniiennnnnen. 41
Figure 13 Web service-oriented interoperation between business entities......... 43
Figure 14 MIDAS architeCturesc.cccevvereieiniiiiienceecseee e s 45
Figure 15 Entry of service registry............cccociviiiniiiiiciiiiiniiiieccccieee, 52
Figure 16 Creating definition for atomic serviceccccovviiviiiiiinniinennncne, 56
Figure 17 creating definition for logical service...............ccccceivvniiiiniiiniininnnnn. 57
Figure 18 Deploying Web service on the Intemet...............cccoovriviiiiniiininnnn. 58
Figure 19 Registration of a service and format of entry..............c.cccoeernninnnn 60
Figure 20 Overview of Web service-oriented interoperation in MIDAS............... 61
Figure 21 Overview of service discovery inthe MIDAS...................cceriinnne. 63
Figure 22 Overview of task assignment using Web serviceccccoennene. 66

vi

Figure 23 Detail view of task assignment using Web service............................. 67

Figure 24 Overview of using Web service as process libraryc......... 68
Figure 25 Overview of tool invoking using Web servicecccceeerunecenneen. 69
Figure 26 Detail view of tool invoking using Web service...............ccoeuveevnnnnneen. 70
Figure 27 Overview of monitoring using Web serviceccccerviinnninnnen. 71

vii

CHAPTER 1 INTRODUCTION

The advancement of information technologies, dynamic markets, and changes in
production business have set a new stage for manufacturing practices in the
fiercely competitive industry [Alsop 1998, Baldwin 1995]. To stay competitive,
manufacturers must be able to 1) manage increasing product complexity and
product innovation from market demands, 2) have faster and more flexible
product development cycle, and 3) control globally distributed/outsourced
operations. Collaborative systems for product design and manufacturing have
been introduced so that manufacturing organizations obtain competitiveness by
creating products in less time, at less cost, and with fewer defects. For example,
the Collaborative Product Commerce solution unifies the product life cycle by
enabling the sharing of product knowledge and incumbent manufacturing

applications [Aberdeen 2002].

A variety of collaborative systems to manage manufacturing processes to the
heterogeneous business environment [Bourke 2000] have been proposed.
However, these frameworks mostly focus on system integration in a closely
coupled design and manufacturing environment. Therefore, such systems may
show weakness in terms of scalability and extensibility which a loosely-coupled

component architecture would not.

Recently the term, service-oriented interoperability has been introduced to depict
the behavior of collaborating systems in the loosely-coupled way. The service-
oriented interoperability means that no matter what execution logic has been
used inside each system, no matter what implementation has been used for each
system, each system exists as a self-contained service so that the collaboration
proceeds without any concern about heterogeneous working environment of
each system. The Web service technology is the most recent and most
appropriate web technology to implement such service-oriented interoperability to
collaborating systems. The processes of each collaborative system can be
posted as a globally-understandable service and used by other systems through

Web service.

The service-oriented process model that | am proposing in this thesis is a model
to provide the fundamental foundation that enables a globally-acceptable
management for distributed processes as services. In this model, the OWL,
which is a global ontological markup language, has been used to represent a

process definition and describe execution status of on-going process.

To demonstrate the globally-acceptable management for distributed processes
as services, the service-oriented process model has been implemented to the
framework, Manufacturing Integration and Design Automation System (MIDAS).
The MIDAS framework was originally developed to support collaborative design
and manufacturing by integrating design engineering, process engineering and

business plan [Chung 2003]. In the previous version, the MIDAS framework

supported the dynamic nature of manufacturing, such as a run-time process
reconfiguration. However architecture wise, the old version still restricted its
scalability and flexibility like other collaborative workflow management systems.
To overcome such restrictions and get the service-oriented interoperability, the
service-oriented process model has been implemented to the old MIDAS
framework. With the service-oriented interoperability, the new MIDAS framework
can post a manufacturing process as a service, actively locate a posted service,
and integrates collaborative services into an optimized process workflow.
Through such service-oriented operations, a user of MIDAS can get large

scalability and more sophisticated aid on process design and management.

In following chapters | will discuss about background of my study, how the Web
service-oriented interoperability can be realized by modeling a globally-
acceptable process definition and representation of enactment, and how the
MIDAS framework adopts such modeling to achieve the Web service-oriented
interoperability. In chapter 2, the backgrounds of my research are discussed. In
chapter 3, the Web service technology is discussed. The chapter 4 talks about a
service-oriented process model. The chapter 5 summarizes the architecture of
new MIDAS. The chapter 6 explains how the new MIDAS authoring environment
creates a service definition, deploys Web service and register a service. The
chapter 7 displays how the new MIDAS execution environment discovers Web

service and executes the Web service.

CHAPTER2 BACKGROUND

2.1 Requirements for Collaborative Workflow Management System

Much research has been dedicated to design and manufacturing from the
perspective of process management. The reason being that process
management plays a central role in coordination among collaborative companies
[Chung 1998, Lavana 1997, Schey 1987]. | identify the following requirements to
be provided by the collaborative business process management system [Chung

2003]:

1. The engineering process is understood to be tentative and iterative by

nature

2. The process should be easily reconfigured when changes in user
requirements occur or when the results may not conform to the

constraints

3. A distributed data server is required to access data transparently, and to

prevent unauthorized use

4. Companies should be able to execute their own process concurrently with

others during collaboration.

Managing processes in collaborative systems is highly dynamic and poses
problems completely different from conventional workflow management where
flows are static. In [Chung 2003], they call such type of processes an enacted
processes. These involve sub-processes which are designed “on the fly”, by the
participants, as part of the main process that is being executed. These
characteristics pose challenging problems as the scale of the system increases.
The issue not only concerns transaction volume, but also involves a number of
participating organizations, the number of interdependent parts that are being

created, the number of altemative manufacturing processes involved, and so on.

In theory, web technology allows the formation of “virtual” organizations to handle
a wide range of design and manufacturing processes. Companies that take
advantage of each other’s distinct production strengths would benefit the most
[Aberdeen 2000]. Therefore, the whole design and manufacturing process - not
just the pieces — needs to be configured in response to changes in technical
considerations such as features, methods, materials, costs, and other critical
decision parameters. This means planning and executing a process that would

extend across formal organizational boundaries.

" Company A Design

! Requirement [N{i.oocomaccmmammasasnanes ,
Froecceccamessnassccscpsicanannas Part Analysis D Company B |
: Company C :
Selected '

materials :

1

!

1

DesignedTrimDies| | DesignedDies

ThmDies

Dies

e .

y Company D
Finished casting

Trimmed Part

Figure 1 Four Companies in a Die Casting Process

Figure 1 illustrates a scenario where companies collaborate together to make a
die. In this scenario, Company A designs the basic part. Company B performs
some specialized analytical work to confirm that the design will meet the
requirements. Company C is the die maker, which prepares dies for both casting
and trimming. Finally, Company D actually produces and finishes the parts once
the dies are ready. Each step along the way requires that a “checklist” be

satisfied, before the work is started and after it is done. Before the

commencement of work, the vendor can provide useful feedback about the
feasibility of the proposed work. After the work is finished, it is necessary to
confirm that the requirements have been met. It should be noted that there may
be many alternatives for each of these process steps: different technologies,
different vendors, and so on. And at each step, there is a “make or buy” decision,
as well. Also, for the overall process to function smoothly, all the participants
need access to certain critical information (such as design changes). Ideally, they
should be able to provide feedback early in the process conceming the feasibility

and schedule for their part of the work.

2.2 Process Grammar

Process Grammar [Baldwin 1995, Chung 2002] has been proposed to represent
design and manufacturing process and to generate process flow dynamically.
MIDAS framework relies on the Process Grammar to enable “on the fly” sub-
process configuration. In MIDAS, process flow graphs describe the information
flow of a design methodology, and process grammars provide the means for
transforming high-level task into progressively a more detailed set of tasks as

well as selecting a method among many altemnatives for a task.

The process flow graph consists of two types of entities: tasks and data
specifications. A task is a single unit of design activity as defined with the
process flow diagram. Data specifications are design data, where the output

specification produced by a task can be consumed by another task as an input

specification. The flow diagram shows how to compose a task and the input and
output specifications of the task. There are two types of tasks, a logical task and
an atomic task. A logical task can be decomposed into a set of subtasks. An
atomic task is the simplest form of the task, which cannot be decomposed any
further. In the MIDAS, a logical task isn't bound to any executable application at
build-time because a logical task will be decomposed at run-time. However, an
atomic task must be bound by an executable application - typically a
manufacturing tool — at build-time, and is responsible for executing the assigned

tool at the run-time.

EngineSpec

CoolantType

EngineSpec

CoolantType

ElecChar

(@

N

!

v

CrankChar

PistonChar

N

e

Copmame

VAR

StChar

ElecChar

CylindrGeo

(b)

Figure 2 Example of top-level process and production

A production is a substitution that permits the replacement of a logical task with a
flow graph that represents a possible way of performing the task. The concept of
applying productions to logical tasks is somewhat analogous to the idea of
productions in traditional (i.e., non-graph) grammars. If there are several
production rules with the same left side flow graph, it implies that there are
altemative production rules for the logical task. Figure 2 shows an example (A)
top level process flow of “cylinder design” and (B) a production of logical task
“CylinderDsg”. These flow graphs allow designers to visualize process

alternatives.

The process grammar provides an abstraction mechanism so that designers are
not overly burdened with details. It allows a user to represent and manipulate a
small number of abstract, higher-level tasks that can be expanded into detailed,
executable alternatives. This can be especially valuable when engineers from
different disciplines are working together on a project to build up an optimized
distributed workflow to a group requirement. During the execution of a process, if
the expansion of a certain abstract task does not meet the group requirement, a
roll back can occur to an appropriate point and a new production can be applied

to generate altemative process flow dynamically.

2.3 WIfMC’s Workflow Reference Model

As a process management system in product designing and manufacturing,

MIDAS provides both manual and automatic workflow management function

based on rules given by Process Grammar. The Workflow Management Coalition
(WfMC) defines workflow as an automation of procedure where information and
tasks are passed between participants according to the defined set of rules, and
the workflow management system (WfMS) aims to provide procedural
automation of processes by management of the sequence of work activities and
the invocation of human and/or IT applications associated with various activity
steps [WFMC). The MIDAS framework is designed to fulfill the WfMC'’s high-level

requirement for WfMS functionalities.

WMC suggests following high-level functionalities for WfMS [OMG 2000]:

1. The Build-time functions, concemed with defining the workflow process

and its constituent activities

2. The Run-time control functions, concemed with managing the processes
in an operational environment and sequencing a various activities to be

handled as a part of each process

3. The Run-time interaction, concerning with monitoring steps of various

activities between human and IT application tools

Figure 3 illustrates how the above functionalities work. Process design and
definition are prepared at build-time by workflow management system. Then, at

run-time, the workflow management system instantiates process and enacts the

10

process instance under interaction with human user or IT tool/application.
Workflow enactment service is consisted of one or more workflow engines, and is
responsible for run-time process instantiation and control. Sometimes workflow
enactment service may change process definition at run-time. In MIDAS, this

feature is supported sophisticatedly by “on the fly” sub-process configuration.

Process desing Business Process Analysis,
& Definition Modeling and Definition Tool
Build time
_________________________________ .——| Process | —— — ..
. Definition
Run time

I

Workflow Enactment Service

Process Instanciation

& Control
Interaction with = | Applications
Users & Application Tools | & IT tools

Figure 3 WfMC'’s high-level functionalities for WfMS

MIDAS framework also fulfills the facility design scheme in WIMC'’s Workflow
Reference Model. This reference model identifies characteristics, functions and
interface of workflow systems. Figure 4 illustrates WfMC's reference model. The
reference model suggests five different functional facilities, which interact with

the workflow enactment service:

11

Workflow client application contains the work list handler and process

control software that need interaction with the human end-user.

Process definition tool creates process definition and transfers the
process definition to the workflow enactment service or stores it in

separate repository.

Invoked application is a specific tool undertaking a particular activity.
Invoked application would typically be a server-based application with no

user interface in many cases.

Other workflow enactment service is a heterogeneous workflow system
produced by different vendors. The interoperability interface defines a
way for different vendors to pass work items seamlessly between one

another.

Administration and monitoring tool allows one vendor's management
application to work with another’s engine. The administration and
monitoring interface enables several workflow services to share of

common administration and system monitoring functions.

12

ejep

uoneoyddy

ELINNETS
Juswjoeuy

MoIpHoM [¢ >

Y10

soepaju|

Auqeladossiu)

uopeoiddy
PO)OAU|

L

soepslul

«

uoneoydde payoAu|

suoneo)ddy
usIiD MOIPHOM
[o)u0) BuipueH
$S8001d | | IsI7 HOM

t

aoeyajul
uoneodde jusyd

|

801M19S Juawabeueyy MO|PHOM

aoeuaul
Buuoyuow sjoo] Buuojuow
puy
pue uonessiuIwpY

uojjessiuiwpy

]

@oeyajul UOKIUYBP SS800Id

{

joo1
uonuyeq
$S8%01d

Figure 4 WfMC reference model

13

CHAPTER3 WEB SERVICES

Web service is a key technology that enables MIDAS framework to have service-

oriented interoperability. In this chapter, we will discuss Web service in detail.

3.1 Definition of Web service

Even though there are various definitions of Web service have been proposed
and discussed by different point of views, Web service can be introduced as ‘a
content and software process that provide service to customer over Intemet’ in a
broad sense [Sun 2003]. But today’s information industry narrows down its
definition of Web Service to ‘a web-based software application whose definition
can be found on the web as an open standard such as WSDL [W3C 2001], and
its user interact by using XML-based messaging conveyed by Intemet protocol,

such as SOAP [W3C 2002]'.

3.2 Three Tier Model

The three tiers model is often mentioned to explain general structure of Web
Service system and how each tier interacts. Service Provider, Service Requester

and Service Broker are the three tiers.

14

(2) retrieves (1) posts
service info service spec.

> [

Figure 5 Three Tier Model

A service provider implements the web service and definition of its web service.
WSDL is currently the most widely used standardized description language for
Web Service. A service requester, then, uses service provider's web service by
invoking the service in a predefined manner in WSDL. However, at the moment
of invocation, the service requester usually does not have any idea where to get
this WSDL of web service. A service broker is needed to introduce the service
provider's web service and definition of its web service to the service requester.
The service broker exists in a form of public registry, and UDDI is most popular
standard protocol for a Web Service brokering registry. Figure 5 shows the three

tier model and interactions between tiers.

15

3.3 Characteristics of Web service

The information industry is expecting that more than $15.2 billion will be spent on
web service hardware and software by 2007 [McMillan 2003]. With no doubt,
Web Service is standing in the spotlight of information technology industry. Why
are IT developers so exited about Web Service? Here, | briefly summarizes

distinct properties of Web service.

Interoperability:

The most important property of web service is to provide seamless and automatic
connections from one software application to another over the web [Cohen 2002].
By using SOAP, WSDL, and UDDI [UDDI 2001] protocols defining a
standardized way to discover and to call procedures in a web-based application,
the interoperation between applications is possible without regarding location or

implementation of platform.

Usability:

Service Broker (UDDI) provides a ‘yellow-page type’ business searching.
Industrial categorizations based on standard taxonomies will increase usability of
software components. The consumer of web-based applications can more easily

and quickly discover applications best-matching to this purpose.

Applicability:

16

Development of web services can be an ongoing, iterative process that actively
involves the opinions of the users [Bloomberg 2002]. The developer can
construct the only exposed facade of web services as simple as possible, then
later he can continually re-implement the web services to comply users’

requirement so that web service are as broadly applicable as practical.

Modularity:

Non-fully encapsulated components in a complex system make the system very
hard to replace or upgrade its components. Instead of simply exposing APls,
components wrapped in Web Services expose dynamic service descriptions. If
the underlying API changes, then the service description adjusts by itself, and the
other components of the system can adjust to the changes at runtime [Cohen

2002].

3.4 Benefits from Web Service

The collaborative workflow management framework will get the following benefits

by using Web Service.

o To achieve implementation-neutral interoperability between various

collaborative unit.

In the real manufacturing environment such as supply chain, decision making

for product manufacturing does not rely upon a single unit. Usually it

17

demands multiple planning points such as multiple manufacturing
departments or multiple manufacturing companies. Building a framework for
managing such multiple decision-making entities, each supposed to operate
mostly on their unique platform is not an easy and low-cost job. A Web
service-oriented approach can reduce expenses and time spent on rewriting
existing applications of each of the collaborating units. Web services
interoperate each other only through interfaces capable to translate XML-
based messaging into application’s parameters. This technology provides

ultimate implementation-neutral interoperability to the framework.

To achieve more efficient collaboration by discovering counterparts fast

and agreeing to requirements between collaborating units.

The web service registry and discovery technology such as UDDI,
standardizes the way for web service to be exposed itself to the public.
Through the UDDI or a similar web service searchable-registry, the enterprise
can find its collaborating counterpart in the manufacturing industry, and can
discover the best matching enterprise to its interest in precise and fast
manners. Integration is also made in a fast manner since the discovery of
WSDL or any extended description language (semantic web service)

provides essential information for the web service to be agreed by user.

To achieve more flexible and faster decision-making system to react to

ever changing customer requirements.

18

Even if the framework has successfully interéonnected applications of each of
the collaborating units, sometimes each applications’ configuration may have
to be changed in a hurry to catch up with the altered demands for product
design by customers. For example, modem mass customization is requiring a
generalized manufacturing line to produce various custom-made products.
Designing a process that can flexibly change its configuration up to the
customer’'s demand is very hard on a system whose components are tightly
bound each other. In such systems, one small change on a part throws
ripples throughout the whole system. On the other hand, web service-
oriented approach provides lots of flexibility on changing process
configuration. Since it totally encapsulates its implementation, each
modularized application is able to interoperate in a loosely coupled manner

so that one part's change doesn’t impact elsewhere.

Web Service Choreography

The coordination of collaborating low level service is often mentioned as the next

step in the development of Web service [W3C 2002]. The service choreography

is the activity to define and represent the complex behavior of the set of

collaborating services. The Web Service Choreography Interface (WSCI) 1.0

[WSCI 2002], which is still in progress and being discussed by W3C'’s working

group, suggests the guideline of Web service choreography language. WSCI

divides the behavior of Web service into two activities; Atomic and Complex.

Atomic activities are the basic unit of behavior of a Web service, and Complex

19

activities are the behavior recursively composed of other activities. WSCI
specifies four kinds of choreography for Complex activity; sequential execution,

parallel execution, looping and conditional execution.

3.6 Markup Languages for Collaborating Web services

To support inter-operability of business process, a variety of standards and
languages have been proposed. WSFL [WSFL 2002] is a workflow language that
provides recursive composition of web services. WSFL takes a directed-graph

. model approach to process definition and execution. It also defines a public
interface with which business processes can advertise. Based on WSFL,
BPEL4WS was developed to model workflow management in terms of Web
services choreography and flow modeling [Andrews]. BPEL4WS allows a
composer to aggregate two or more web services into processes which may be
abstract for a high-level business transaction or executable as a compiled
process [Shapiro 2002, Weerawarana 2002]). BPML [Peltz 2003, Shapiro 2002]
specifies web services orchestration and choreography. Orchestration in this
context refers to an executable business process that can interact with both
interal and external Web services, while choreography describes relationship
and process flow among multi parties or multi organizations. Reliable and
large-scale interoperation among trading partners is being attempted by creating
a semantic web for each trading partner’s service whose properties, capabilities,
and interfaces are encoded in an unambiguous, computer-understandable form

[Ding 2002, Fensel 2001, Hendler 2001]

These languages are all capable of providing Web service-oriented
interoperability to the collaborative workflow management system. However, they
do not provide sufficient process abstraction mechanism, with which users are
not overly burdened with details. In addition, they do not separate the execution
details of the process flow definitions. These process flows which the service
providers publish should hide the details of execution parameters and scheduling
of tasks. Such information should be determined at the time of process
enactment. The most notable language that satisfies the above capabilities is the
OWL-S specification, a language for ontology definition, manipulation, and
reasoning [IBM 2003, Paolucci 2003]. OWL-S provides a mechanism to allow
web service autonomy for identifying operational metrics at the design stage and
hence facilitates heterogeneous web services discovery and integration. But,
OWL-S does not model the iterative nature of collaborative product design and
manufacturing process, where if the execution of a certain step of design process
does not meet the design requirement, iterations with other alternatives must

occur, and a new process flow should be generated dynamically.

21

CHAPTER 4 SERVICE-ORIENTED PROCESS MODEL

The Service-Oriented Process Model (SOM) is a key that enables the MIDAS
framework to locate a remote process, and collaborate on distributed process
flow. The ultimate goal of SOM is to provide a standardized way to understand
distributed workflows and their executions among heterogeneous systems. To
realize such goal, SOM specifies a global semantics of process definition and the

way to represent the sequence of process flow enactment.

SOM consists of three sub models: Process Definition Model, Workflow
Management Model, and Execution Monitor Model. Process definition model
specifies how to represent a globally recognizable process definition. Workflow
management model describes how to manage collaborative workflows that occur
between separate WfMSs or within same W{MS. Execution monitor model
specifies the representation of process enactment, which is understandable

globally even by heterogeneous WfMSs.

41 OWL

Process definition model and execution monitor model are written with OWL
(Web Ontology Language), which is a standard language to describe semantics
for Web resources [Paolucci 2003]. OWL has been derived from the RDF
language, which is a language for information modeling. OWL and RDF have a

modeling structure similar to the directed graph. In this modeling structure, a

22

node is named as Classes, and an arrow is named as Property. There are two
kinds of classes: Domain and Range. The property is a directed edge indeed, so
the preceding node is called as domain, and the following node is called as range.
Figure 6 illustrates the example of such graph. As you see in (b), property
productNumber has class Product as its domain and class Integer as its range.

This information modeling has been instantiated in (c).

>

domian range

property

U

(a) OWL's information modeling structure

Product productNumbe@

(b) Example of OWL information modelling

;

<Product rdf:ID="WaterBottle">
<rdfs:label>Water Bottle</rdfs:label>
<productNumber>38267</productNumber>
</Product>

(c) Example of instance of (b)

Figure 6 OWL information modelling

4.2 Process Definition Model

Process definition model defines the semantics for a service provider’s process
flow in the context of a service flow. The service flow is represented as a Service
Composite. Since the process definition model is designed to follow process

modeling logic of process grammar, the process definition model defines a

23

service flow as a combination of Atomic Services and Logical Services. It is
similar to the process grammar which combines Atomic Tasks and Logical Tasks

to make a process.

A Service can include an Input and output Specification and a Pre- and Post-
Condition as its reference marks. MIDAS framework utilized such marks when a
service provider posts his service at the registry, and a service requester selects

a service from the registry.

Service Composite is a placeholder for service provider's process flow. Service
composite consists of a set of component services along with the task
dependencies between component services. The dependencies between
component services are captured by linkTo and linkFrom properties of

component services.

Similar to a logical task, a logical service can have alternative choices of service
composites to be expanded into more complex service flow. The Alternative

Choice encapsulates such choice of service composites inside.

All of ontological concepts above are written in OWL classes, and shown in
following sub sections. All OWL classes defined under the process definition
model also have been implemented as a JAVA package by me. The highlighted

feature of the JAVA package can be found at Appendix A.

24

4.2.1 Class Service

The service is a primary kind of entity in the process definition model. As
mentioned previously, a service has various properties as its referencing markers.
The referencing marks of a service are: the name of service, the input
specification, the output specification, the pre-condition, the post-condition and

description of service.

Since the process definition model has been written with OWL, all above
referencing markers are represented as OWL classes, too. So the following OWL
classes have been proposed: class Spec, class SpeclList, class ConditionList,
class Condition, and class Desc. Figure 7 illustrates the UML notation of class

Service and its referencing makers.

hasPreCondition
ConditonList [<T i Service Desc
(and) 1 5
1 1 hasDesc
hasPostCondition 1 1
(and)
hasOutput hasinput
1.° L W
Condition SpeclList
1
1.*
Spec

Figure 7 UML notation for class Service

25

Class Service uses two properties in order to mark up its conditions. The OWL
property, hasPreCondition has class Service as its domain, and its range is class
ConditionList. The OWL property, hasPostCondition has class Service as its
domain, and its range is class ConditionList. Both of the two properties together
indicate the pre-conditions and post-condition of a service. The OWL definition

of hasPreCondition and hasPostCondition is shown as below.

<!-- Ontology for hasPrecondition -->
<rdf:Property rdf:ID = "hasPreCondition">
<rdfs:domain rdf:resource = "#Service"/>
<rdfs:range rdf:resource = "#ConditionList"/>
</rdf:Property>

<!-- Ontology for hasPostcondition -->
<rdf:Property rdf:ID = "hasPostCondition">
<rdfs:domain rdf:resource = "#Service"/>
<rdfs:range rdf:resource = "# ConditionList />
</rdf:Property>

Class ConditionList is a placeholder for multiple conditions. Class ConditionList
inherits the OWL built-in class collection, so class ConditionList has multiple
instances of class Condition as its items. Condition must be an ontology object
that can be understandable by machine evaluator. This requires a machine
evaluator to have a ontology dictionary for Conditions, but the service-oriented
model doesn’t propose such detail yet. The OWL definition of ConditonList and

Condition is shown as below.

26

<!-- Ontology for ConditonList-->
<owl:Class rdf:ID = "ConditionList">
<rdfs:subClassOf rdf:resource="owl+oil#collection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="owl+oil#ltem"/>
<owl:toClass rdf:resource="#Condition"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!—Ontology for Condition -->
<owl:Class rdf:ID = “Condition"/>

Class Service also uses two properties in order to mark up its input and output.
The OWL property, hasinput has class Service as its domain, and its range is
class SpecList. The OWL property, hasOutput has class Service as its domain,
and its range is class SpecList. Both of two properties together indicate the pre-
conditions and post-condition of a service. The OWL definition of hasinput and

hasOutput is shown as below.

27

<!-- Ontology for hasinput -->

<rdf:Property rdf:ID = "hasinput">
<rdfs:domain rdf:resource="#Service"/>
<rdfs:range rdf:resource="#SpecL.ist"/>

</rdf:Property>

<!-- Ontology for hasOutput -->

<rdf:Property rdf:ID = *hasOutput">
<rdfs:domain rdf.resource="#Service"/>
<rdfs:range rdf:resource#“#SpecList"/>

</rdf:Property>

Same as class ConditionList, SpecList is a placeholder for multiple conditions.
Class ConditionList inherits the OWL built-in class collection, so class
ConditionList has multiple instances of class Condition as its items. The OWL

definition of Spec and SpecList is shown as below.

<l-- Ontology for specification -->
<owl:Class rdf:ID = "Spec"/>
<!-- Ontology for specification list-->
<owl:Class rdf:ID = "SpecList">
<rdfs:subClassOf rdf:resource="owl+oil#collection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="owl+oil#ltem"/>
<owl:toClass rdf:resource="#Spec"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

28

Class Service may use class Desc as its optional referencing maker. This maker
is not necessary for workflow management system to identify a given service.
Class Desc holds the functional description of a service. Since its description will
be written up in natural language, the machine agent in workflow management
system won't process it. The primary reason to have this maker is to help a
human user understand the functionality of given service. Similar with other
classes, class Desc is linked to class Service by property hasDesc. The OWL

definition of Desc and hasDesc is shown as below.

<!-- Ontology for description -->
<owl:Class rdf:ID = "desc"/>

<!-- Ontology for hasDesc -->

<rdf.Property rdf:ID = "hasDesc">
<rdfs:domain rdf:resource = "#Service"/>
<rdfs:range rdf:resource = "#description"/>

</rdf:Property>

4.2.2 Class LogicalService and Class AtomicService

Class Service has two children classes: class LogicalService and class
AtomicService. As shown in Figure 8 and Figure 9 both of the two classes inherit
all referencing makers of class service. So, both class LogicalService and class
AtomicService have hasPreCondition, hasPostConditon, hasinput, hasOutput,

and hasDesc as common.

hasPreCondition
ConditonList <1 AtomicService Desc
(and) 1 LN
1 1 hasDesc
~ 1
hasPreCondition 1 1
(and) &"@r
hasOutput hasinput %
1. y VA
Condition SpeclList Tool
1
1.°
Spec

Figure 8 UML notation for class AtomicService

However, class AtomicService is distinguished from class LogicalService since it

has additional property hasTool.

<!-- Ontology for hasTool
It's a property between AtomicService and Tool -->

<rdf.Propenty rdf:ID=" hasTool ">
<rdfs:domain rdf:resource="#AtomicService"/>

<rdfs:range rdf.resource="#Tool"/>
</rdf:Property>

30

AlterativeChoices ServiceComposite

N

hasAltemativeChoices
hasPreCondition 1
ConditonList _ |~1 1| _LogicalService Desc
(and) 1 LN
1 1 hasDesc
hasPreCondition 1 1
and
hasOutput (and) hasinput
L L7 VA
Condition SpeclList
1
1.*
Spec

Figure 9 UML notation for class LogicalService

In the other hand, class LogicalService is also distinguished from class
AtomicService since it has additional property hasAlternativeChoices. Property
hasAltemativeChoices allows class LogicalService enlisting alternative choices
for “on the fly” sub-process configuration. As shown as below, the

hasAltemativeChaices has class AlternativeChoices as a range.

31

<!-- Ontology for hasAltemativeChoices
It's a property between LogicalService and AlterativeChoices -->
<rdf:Property rdf:ID="hasAltemativeChoices">
<rdfs:domain rdf:resource="#LogicalService"/>
<rdfs:range rdf:resource="#AltemativeChoices"/>
</rdf:Property>

<l-- Ontology for AltemativeChoices
It encapsules multiple production rules.
It can have the list of Servicecomposites inside. -->
<owl:Class rdf:ID = "AltemativeChoices">
<rdfs:subClassOf rdf:resource="owl+oil#collection"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf.resource="owl+oil#ltem"/>
<owl:toClass rdf:.resource="#ServiceComposite"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Class AlternativeChoices is a placeholder for a collection of altemative choices.

Similar with other collective placeholders such as SpecList or ConditionList,

AlternativeChoices inherits its properties from the OWL built-in class collection.

Class altemativeChoices collects instances of class ServiceComposite. The

details of class ServiceComposite will be discussed at next section.

32

4.2.3 Class ServiceComposite

The process definition model specifies a complex service flow by combining
instances of the class Service together. The process definition model marks up
this complex service flow in class ServiceComposite. Class ServiceComposite is
actually OWL'’s collection class, so class ServiceComposite can merely list the
service consisting a complex service flow. Each of the Services composed of a
complex service flow is marked up by class ComponentService. Class
ComponentService is recognized as a same class as class Service by the
process definition model. Its definition is derived from class Service by using
OWL'’s equivalentTo property, so ComponentService can be directly substituted
by Service instance in the process definition document. The OWL definition of

ComponentService and hasDesc is shown as below.

<!-- Ontology for ComponentService. -->
<daml:Class rdf:|ID="ComponentService">

<daml:equivalentTo rdf:resource="#Service"/>
</daml:Class>

As same as other collective OWL classes, ServiceComposite has multiple
instances of class ComponentService as its items. Figure10 illustrates the UML

notation of class ServiceComposite and componentService.

AltemativeChoices

1.*

ServiceComposite ComponentService (=Service)

1 1

. (and)
linkFrom linkTo

1.-.\/ /1.-.

ComponentService (=Service)

Figure 10 UML notation for ServiceComposite and ComponentService

According to the process modeling logic of Process Grammar, a process flow
can be presented as a graph. Since the process definition model sees a task as
a service, a complex service flow can be represented as a graph as well. In order
to represent the flow information, class ComponetService uses two properties;
linkFrom and linkTo. The OWL definitions of linkFrom and linkTo are shown as

below.

<!-- Ontology for linkFrom -->
<rdf:Property rdf:ID="linkFrom">
<rdfs:domain rdf:resource="#ComponentService"/>
<rdfs:range rdf:resource="#ComponentService "/>
</rdf:Property>

<!-- Ontology for linkTo -->
<rdf:Property rdf:.ID="linkTo">
<rdfs:domain rdf:resource="#ComponentService"/>
<rdfs:range rdf:resource="#ComponentService "/>
</rdf:Property>

The example of service flow-to-OWL conversion is shown in Appendix B.

43 Workflow Management Model

The workflow management model provides a standardized way of managing
workflow between heterogeneous workflow management systems. Since
different vendors of workflow management systems may use different workflow
management schemes, each vendor must make their system comprise a global
standard scheme of workflow management in order to make collaborations
possible. To realize such global standard scheme of workflow management, the
workflow management model specifies what kind of common operations is
needed for workflow management, and what kind of common execution states

should be defined.

The workflow management model also brings possible scenarios that could occur
between heterogeneous workflow management systems during asynchronous
collaboration. The workflow management model does not consider any scenario
for synchronous mode of software collaboration because, in synchronous mode
of collaboration, one software component calling another component will freeze
its system until it gets a response back. Since most of typical feedbacks take
time in workflow management, the synchronous mode of collaboration is not
suitable for collaborative workflow management. For this reason, the workflow
management model proposes only the asynchronous scheme of workflow

management.

4.3.1 Common Operations

The workflow management model stipulates seven standard operations, which
are essential to gear up workflows of heterogeneous workflow management

systems. These operations are described as follows:

Provide input delivers input data to a service.

Invoke enactment brings a cue to start process enactment. It carries out

applying of production or tool execution.

Rollback delivers rollback event to a service.

Enforced rollback delivers aborting event to a service.

36

* Retrieve workflow graph delivers workflow graphs from a service to a
viewer. This operation could be used for delivery of process definition or

process enactment monitoring.

e Retrieve output transports output data from a service to a viewer.

All of above operations are to be implemented as a remote procedure of Web
service and delivered to users of different workflow management system. The
workflow management system does not need to implement all common

operations above. It is up to the functionalities allowed to outsiders by the system.

4.3.2 Common Execution States

The workflow management model also defines the following five basic execution

states:

o Un-initialized indicates that nothing has been initialized in a service.

e Ready shows that input data has been bound to a service, but service

execution is not invoked yet.

e Running points out that the execution of a task has been invoked and keeps

on going.

37

e Finished is the state that execution of a service has been finished. Two

possible sub states are success and fail.

o Exception indicates that unexpected event has occurred during proceeding

state.

Each execution state will advance forward or backward to another state when
operations proceed. Figure11 illustrates the relationship between common
execution states and operations. The provide input tums un-initialized state into
ready state. The ready state then tums into running state by the invoke execution.
When the workflow system finishes the execution of its process, the running state
turns into the finished state. If the system wants to reconfigure its process, the

rollback brings finished state back to ready state.

@——[Un-initialized

enforced

rollback
indui spinoud

0
()
)
Q
<

(b) Process enactment model

Figure 11 UML notations for execution monitor model

4.3.3 Asynchronous Collaboration Scenarios

The workflow management model considers two possible scenarios of
asynchronous mode of software collaboration: Invoke-then-polling and Invoke-
then-listening. These two scenarios have the same mechanism to invoke
enactment. A service requester calls service provider's operations to invoke

enactment. However, they use different mechanisms to feed back.

In the invoke-then-polling scenario, a service provider doesn't inform his finished
state to the service requester. The service requester keeps checking the state
changes at the provider’s side by polling mechanism, but the service provider
doesn’t do anything to feed back. This scenario can be implemented by using
only common operations. To get the most-updated feedback, the service

requester calls the retrieve workflow graph operation periodically.

In the invoke-then-listening scenario, a service provider reports actively his state
changes to the service requester. This scenario needs additional call back
mechanism between the service provider and service requester. Currently SOM
doesn’t define how to implement such call back mechanism. SOM leaves it for

the workflow management systems to negotiate each other on how to call back.

4.4 Execution Monitor Model

Execution monitor model provides globally acceptable standardized view of how

to capture and deliver the process execution to viewers. Users of heterogeneous

39

workflow management systems can monitor a process by capturing traces of
task executions and data binding across the system in terms of the Execution

Monitor Model.

Execution monitor model follows the process enactment logic of Process
Grammar. According to the mathematical model of Process Grammar, the
execution of a logical task means an applying of a production to that logical task.

Attaching a service composite instance to a logical service will capture this action.

The execution state of a component service is captured by the Execution State.
The execution state takes one of the following instances, which is defined by the
workflow management model: Un-initialized, ready, running, finished and

exception.

Input specifications and output specifications are bound by Data during execution
of tasks. Data is an entity that holds the URI of actual data. The input
specification is bound by data instance when a user binds initial data to it or
upstream task produces output data. The output specification is bound by the

data instance when the task finishes its execution and produces results.

Figure12 shows UML notation of OWL classes in execution monitor model.

LogicalService
appliedBy at
.............................. ~
1 R
V1 ,"” :
ServiceComposite ComponentService (=Service) AtomicService
o— 1.-
. 1 1 1
hasExecutionState (and)
hasOutput haslInput
E tionStat ! N ¥
xecutionState SpecList

Data

Y

boundBy

Figure 12 UML notations for execution monitor model

4

CHAPTERS5 MIDAS FRAMEWORK

The MIDAS framework is a collaborative engineering framework that coordinates
various tasks in design and manufacturing with Web service-oriented
interoperability. In previous version, MIDAS had been developed as a
collaborative engineering framework without Web service-oriented
interoperability [Chung 2002, Curbera 2003]. However, with the Web service-
oriented interoperability, the new version of MIDAS gains the ability to provide
the means to (1) locate manufacturers dynamically, (2) select and make
contracts with particular manufacturer in agreement with requirements, (3) create
the collaborative process by incorporating distributed services among
manufacturers, and (4) provide a flexible and interoperable execution

environment for the collaborative process.

The MIDAS framework provides a truly distributed architecture for management
of manufacturing process composition and inter-operation in two aspects; (1) The
process itself and its enactment are described in terms of global semantic
language (OWL). (2) Process integration and execution are achieved by using
the Process Grammar, which is a process modeling and enacting logic which

helps MIDAS to configure manufacturing processes dynamically.

Collaborative process generation in MIDAS proceeds by interactions between

manufacturing companies. For each alterative for sub-process generation, there

42

are manufacturing service providers who can participate interal collaboration or
it can be outsourced for external collaboration. Service providers offer a
manufacturing process as a service with global standard interface, and MIDAS
guides a designer to select an appropriate service provider and his service flow.
Figure13 illustrates how business entities use MIDAS framework to participate
business collaboration. The contractor performs referencing for adequate service
providers. After selecting one service provider, the contractor negotiates with the
service provider, and reaches an agreement on cooperation. Incorporating
subcontractor's process or monitoring the sequence of execution for assigned job
to the subcontractor will be simply done by calling operations of subcontractor’s

Web services.

Semantic Registry

: Potential
i subcontractors
§ '_‘
Selected

subcontractor

. J% <
Contract initiator

Figure 13 Web service-oriented interoperation
between business entities

negotiates and incorporates process ﬂow

5.1 Features of MIDAS

Even though MIDAS does support all requirements required by collaborative
workflow management system, MIDAS is distinguished from other workflow

management system by the following distinct features:

o Separation of process specification from the execution environment.
Syntactic structures, such as dependency among tasks and input output
requirement, together with altematives are specified using the process
grammar. Execution details and constraints are encoded as a part of
execution environment. By separating specifications from execution, MIDAS

handles process run-time process reconfiguration.

¢ At the execution environment, a task execution can be accomplished by a
Web service. A Web service can be located within same organization or at
an external organization where its workflow management system could be
totally heterogeneous. A Web service can provide either of a process

enactment service, simple process library function or tool invoking function.

e MIDAS guides the user to select appropriate sub-process. Sub-process can
be obtained from the user's personal library or outsourced from a public
library, such as a process library Web service. All processes are provided
along with attributes including pre-conditions and post-conditions. Using the

pre- and post- conditions a user may reconfigure a process if an already

configured one does not provide the desired output. Through such
reconfiguration steps, the framework generates an optimal process

configuration within a given set of constraints.

5.2 MIDAS Architecture

MIDAS Platform N

Web Service
Deploying
Module

N
N
N\ / Implements
N\ Semantic | web service
service | !
S/ regist
\ i Web Service
£ § \ for B

Service Provider B

Web Service /
EL | calingModule | / |
requirements &~ /

Process |oglc engine

Web Service
Deploying

Module \l
5%, 5
7 H |
2 83
3
Cockpit 23 provides
% 0;@ >y % 3 new process
3@ f—“‘_
user / / ! retrieves g
\ //, : - requirements
/ Web Service Service Provider A

/ | for A
L —

Figure 14 MIDAS architectures

The MIDAS framework consists of four major components: Process enactment
engine, Cockpit, Process Library/Tool Library and Web service Modules. As
mentioned at chapter 2, the components of the MIDAS framework are designed

to fulfill the WfMC's workflow reference model. As a result, the MIDAS process

enactment engine implements the workflow enactment service of WfMC's
reference model. The MIDAS Process library/tool implements the invoked
applications of the reference model. WfMC's process definition tools function
area is implemented as part of cockpit in MIDAS. WfMC’s Administration and
monitoring tools function area is implemented as a part of MIDAS cockpit and a
part of MIDAS process enactment engine. Figure14 illustrates high-level

architecture of MIDAS framework.

5.2.1 Process enactment engine

A process enactment engine’s purpose is primarily to create, manage and enact
a process instance. The process enactment engine can load up a process
definition from two different kinds of sources: a user’s private repository and the
public accessible process library. The process enactment engine instantiates the
process after it loads up the definition. The instance of a process, then, is

managed and executed by the process enactment engine.

In previous version of MIDAS framework [Qin 2002], the process enactment
engine accessed the process definition directly without any common interface.
Such access without a common interface restricted the interoperability of the
process enactment engine when the enactment engine needs to import a
process definition from a different vendor’s system. In the Web service-oriented
version of the MIDAS framework, this restriction has been overcome by
accessing a process definition source through a Web service-oriented common

interface. In the new version, the process enactment engine has gained an ability

46

to import OWL process representation via Web service and to parse its OWL

representation.

Atomic task

Invoking manufacturing tools by the process enactment engine also can be done
either directly without any common interface or through a Web service-oriented
common interface. In the case of direct invoking, the process enactment engine
relies on a separate Tool serverto execute and retrieve results. In the case of
indirect invoking through common interface, the process enactment engine

needs help from the Web service module instead of the tool server.

The logic of process enactment came from the Process Grammar’s “on the fly”
process configuration. The process enactment engine generates a new process
flow by adding one of possible alternative sub-processes onto a logical task. If
needed, the process enactment engine rollbacks execution and reconfigures the
sub-process. In manual mode of process execution, the process enactment
engine doesn’t involve making a decision on the process enactment. All of the
decisions come from a human user through the Cockpit. However, in automatic
mode of the process execution, the machine agent in the enactment engine

decides what to do for sub-process configuration and reconfiguration.

The process enactment engine is implemented as a JAVA RMI server. One
organization should have at least one process enactment engine. If the

organization wants to release a burden of a monolithic enactment engine,

47

multiple engines can run on the multiple JAVA RMI servers. In this case, multiple
RMI servers should be linked and synchronized by a MIDAS distributed server
infrastructure. The MIDAS distributed server infrastructure is consists of a Yellow

page server and other RMI servers running enactment engines.

The process enactment engine is also responsible for checking the permissions
needed when users access and execute resources belonged to the process
instance. Full-scale of access control functionalities come from a separate
access control system. The process enactment engine relies on the access
control system to check the user’s permission. Discussion about access control
system is beyond this thesis’s scope, but extensive discussion about MIDAS

access control scheme can be found in [Zhang 2003].

5.2.2 Cockpit

A cockpit is a communication interface connecting a user to the process
enactment engine. It couples a user and an engine by transmitting the user’s
decision on the process creation and enactment to the process enactment
engine. The cockpit also provides graphical information about the process

definition and enactment to the user.

The cockpit interacts with the human user in following situations: Creating
process definition, Displaying and maintaining process information archive, and

Displaying enactment sequence of a process. When a user defines a process,

the cockpit provides a graphical authoring environment. A user can actually draw

a graph of a process flow, and the cockpit has an ability to document it in OWL.

The cockpit has been implemented as a downloadable JAVA applet. Since the
cockpit should connect to the JAVA RMI server, which runs MIDAS process

enactment engine, the cockpit is a JAVA RMI client as well.

5.2.3 Process Library and Tool Library

Process library

The process library is kind of repository that holds and distributes process flow
definitions. The MIDAS framework uses two kinds of process libraries: the JAVA
RMI server-based library and the Web service-based library. The JAVA RMI
server-based library is implemented without a common interface. The access to
the library must be done only via JAVA RMI client. On the other hand, the Web
service-based library is to be used for collaborative workflow management
among heterogeneous systems. As you expect, the Web service-based library
provides a globally acceptable common interface. Furthermore, the process
definition will be distributed in an OWL document in order to achieve

interoperability.

Tool Library
The tool library provides manufacturing tools. The MIDAS framework considers
two kinds of tools: the JAVA RMI server-based tool and the Web service-based

tool. As mentioned previously, the MIDAS framework includes the tool server.

49

The JAVA RMI server-based tool is executed from the tool server when a user
invokes the execution of an atomic service. The Web service-based tool is a
public accessible application, which has a globally accessible common interface.
Similar with the case of process library, the Web service-based tool can be

utilized by different vendor's workflow management system.

5.2.4 Web Service Modules

Web service modules provide facilities such as browsing service semantics, and
calling a Web service to enact process. MIDAS web service modules are
composed of Web Service Discovering Module, Service Registering Module,
Web Service Deploying Module, and Web Service Calling Module. The
functionalities of these modules are implemented by using JAVA AXIS API
(version 1.1) [AXIS 2003], xerces XML processing API [Xerces2] and SOM API
(Appendix A). The detail functionalities of each module will be discussed at

chapter 6 and 7.

5.3 Web service Server System

The MIDAS framework uses the Tomcat-AXIS server system [AXIS 2003] to
realize the Web service working environment. The Tomcat-AXIS system is
constructed by gearing up the Tomcat Web application server with AXIS JAVA
API. AXIS API provides SOAP messaging functionality and Web service
deploying/ invoking/ running environment, and Tomcat server posts such

functionalities at the Intemet.

Tomcat-AXIS system provides the unique method of Web service deployment
that other systems cannot provide. Unlike other Web service systems that
support only pre-compiling deployment scheme, the Tomcat-AXIS system
supports both the pre and post-compiling deployment scheme for Web service.
Under pre-compiling scheme, the implementation of the Web service must be
pre-compiled by a user before it is loaded into the server. Under post-compiling
scheme, the server will compile the implementation of Web service right before it

is invoked. The user does not need to load up pre-compiled code.

The MIDAS framework deploys its Web service under the post-compiling scheme.
The implementation of the Web service will be prepared in JAVA code and
named with a jws extension, then, the deployment will be completed by importing

the jws file into the specialized folder under the Tomcat-AXIS system.

5.4 The Service Registry

The service registry takes a very important place over MIDAS framework
because it is one of facilities realizing Web service-oriented interoperability of a
workflow management system. However, the service registry itself is a separate
independent system, which is not a part of the workflow management system.
The service registry exists in between collaborating workflow management
systems to facilitate interoperation between collaborating workflow management

systems by matchmaking them quickly.

51

It is important for the service registry to tell the service seekers which Web
service can provide which service. For this, the service providers enroll their
services with a description at the service registry, and the service registry lets out

the simplified description of a service to the service seeker.

The service registry supports three basic functionalities: Service enroliment,
service disenrollment and browsing enrolled service. These functionalities are
implemented as remote procedures having a Web service common interface.

The WSDL document for such remote procedure can be found at the Appendix D.

Entry

Essential semantics
ename of service
stype of service
*URL of service
spre-condition
*post-condition
sinput

*output

| Process
Link to OWL (——1— | definitions

(OWL)
Link to WSDL q V

__’ WSDL

Figure 15 Entry of service registry

To reduce the registry size and improve efficiency of searching, entries includes
only the minimum size of descriptions. The minimum size of a description

includes the following information: name of service, type of service, URL of

52

service, input and output data specifications, and the pre- and post-conditions of

service (figure 15).

The service seeker may need to reference the full description of service for the
future use. The full description of service is given by separate document, and the
link to this document is provided to the service seeker as well. The WSDL

document is also provided for the service seeker's Web service calling module.

Entry of service registry is written in generic XML. Following box shows an
example of an entry enrolling the LogicalService created for the logical task
shown in figure 2(a). The entry form includes all minimum descriptions for a

service and links to the OWL document and the WSDL document.

<entry>
<entrylD> 00001 </entrylD>
<serviceType> logicalService</serviceType>
<serviceName> CylinderDsg</serviceName>
<precondition> NotKnowCylinderDsg</precondition>
<postcondition> NotKnowCylinderDsg</postconditon>
<inputSpec> EngineSpec</inputSpec>
<inputSpec> CoolantType</inputSpec>
<outputSpec> ElecChar</outputSpec>
<outputSpec> CylindarGeo</outputSpec>
<wsdl_binding>http://midas/wsdl/CylindarDsg.wsdl</wsdl_binding>
<owl_binding>http://midas/wsdl/services.daml</owl_binding>
</entry>

CHAPTER6 MIDAS AUTHORING ENVIRONMENT USING WEB SERVICE

The primary goal of the MIDAS authoring environment is to provide a process
flow authoring facility to a user. A user can create a process definition by
authoring logical tasks and atomic tasks, then, combining those tasks into a
process flow along with the data specification. In the MIDAS authoring
environment, the process definition will be written in OWL as the process
definition model delscribes. Once a process definition has been created, the

process definition is stored into the private repository or public library.

The cockpit is the major component that is responsible for the authoring process.
The MIDAS cockpit provides a user a sophisticated authoring tool with a
graphical interface, which enables a user to create a process flow graph and

converts the process flow graph into a process definition document.

The MIDAS authoring environment has an ability to deploy and publish a Web
service to support the Web service-oriented interoperability. The MIDAS Web
service registering module and Web Service deploying module together realize a
Web service-oriented interoperability. The Web Service deploying module
generates an implementation of a Web service based on the process definition. If
the authoring environment needs to advertise its Web services, the Web service

registering module registers Web services to the public Service registry.

Web service registration is only necessary when inter-organizational
collaboration proceeds, because the MIDAS framework assumes that every
participant within one organization know one another very well so that they don't
need to advertise any Web service or task. However, during the collaboration
between different organizations, they can hardly get to each other and both
organizations need a rendezvous point to meet one another. So in this case, the
MIDAS authoring environment registers Web services as a process flow or a tool

at the Service Registry.

6.1 Creating Process Definition

The MIDAS authoring environment brings up two creation pattemns of process
definition in association with Web service; Creating a process definition for an
atomic service and Creating a process definition for logical service and its service
composites. These separate patterns regard two different kinds of Web services;
A Web service invoking a manufacturing tool and other kinds of Web service,

which aims either of process assignment or process flow library.

6.1.1 Process Definition for Atomic Service

As mentioned at chapter 2, an atomic task (atomic service in terms of the
service-oriented model) is responsible for invoking a tool application, so the first
step should be creating an atomic task in the cockpit. Through the cockpit, a user
creates an atomic task by adding input data and output data specifications. After

that, the atomic task must be bound by an actual tool application. Once the

atomic task has been prepared, the cockpit writes out the OWL document into
the temporary storage. The example of OWL file can be found in Appendix C,

and figure 16 illustrates all above process.

Cockpit

. [|
(2) User adds input B Manufacturing
and output data. <::—| tool
L |

(3) User assigns

tool to atomic task.
User Web service
owL / |
process (5) Deploying module
definition

creates Web service.
(1) User creates (4) Cockpit converts
atomic task. atomic task to OWL.

Figure 16 Creating definition for atomic service

Tool applications are typically a server-based software component. However, the
MIDAS framework can invoke non server-based tool applications as well. As
discussed in chapter 4, the process definition itself does not specify how an
atomic service invokes a manufacturing tool. The process definition simply
identifies the tool bound to an atomic service. The invoking mechanism of an
actual tool totally depends on the Web service enactment design of each

workflow management system.

56

6.1.2 Process Definition for Logical Service

In addition to an atomic service, a logical service performs an important role in
Web service-oriented collaborative workflow management. A logical service is to
be assigned for process enactment, or is to serve a public process library
function. Either case, a logical service is designed to serve one or more service
composites to the requester. So, the process definition should be placed where

the Web service can reach and get the definitions.

Cockpit

OWL % Deploying module

rocess _
(;)eﬁnition creates Web service.

User §

(1) User creates graph. (2) Cockpit converts
graph to OWL

Figure 17 creating definition for logical service

The process definition for atomic service is rather simple since it specifies only a
single tool application, but, for a logical service, it is not that simple, as it must
specify service composites and its components. The cockpit helps users

complete this complicated job fast. As shown in figure 17, a user combines tasks

to make a process flow graph at the first step. Before being combined into a
process graph, the user must prepare all of the tasks. Once the process flow
graph is ready, the cockpit writes out a process definition in OWL and stores it at

the repository. The example of the OWL file can be found in Appendix C.

6.2 Deploying Web service

In MIDAS framework, the deployment of a Web service is accomplished by co-
work of the Web service deploying module and Tomcat-AXIS server system. The
Web service deploy module prepares the Web service implementation, and the
Tomcat-AXIS server actually compiles the implementation and deploys it as
public-accessible Web service on the Internet. Figure 18 illustrates such co-work

for Web service creation and deployment.

(4) compiles Web

\g::l :yelr:glce service implementation.
Module @ q
Web service

s o [e oo
(pzo'::sss definition | _Web
definition | Imple- (6) generates WSDL.
%’/\ owL mentation % |

> | process

definition WSDL
(2) generates Tomcat-AXIS
Web service implementation. server system

Figure 18 Deploying Web service on the Intemet

58

The Web service deploy module performs three steps to prepare a Web service
deployment; (1) Reads a process definition, (2) generates the implementation of
Web service from the definition, (3) Copy the implementation of Web service at
the specialized folder of the AXIS. Throughout step 1 and 2, the Web service
deploy module uses the OWL parser to extract semantic information of process
from the OWL document. Based on the semantic information, the Web service
deploy module generates a jws file automatically. At step 3, the Web service

deploy module copies the jws file at the specialized folder of the AXIS.

From the specialized folder of the AXIS, the jws file will be compiled by the AXIS
compile engine and deployed as a Web service. When the jws file is compiled,
the AXIS engine also generates WSDL document automatically. The example of

the jws file and its WSDL document can be found in Appendix E.

6.3 Registering Web service

The MIDAS framework requires the service providers register their services at
the public registry, and then, the service requester discovers it through the public
registry. As mentioned previously, this happens only when inter-organizations
collaborate. Intra-organizational collaboration doesn’t require such registering

and discovery.

As discussed in chapter 5, the remote procedure that enrolls the service has
been implemented as part of the service registry. The Web service registering

module interacts with that remote procedure of service registry to enroll its

59

service. By the remote procedure call, a new entry is registered in the registry.

Figure 19 illustrates this enrolling process.

Service Registry

OWL
process
definition (4) enrolls service.

remote
procedure

INTERNET

D)

cfrfoc?f’i (2) Parameterizes
efinitio service description (3) calls
procedure
entry
Web service
Registering Module

Figure 19 Registration of a service and format of entry

CHAPTER 7 MIDAS EXECUTION ENVIRONMENT USING WEB SERVICE

MIDAS makes a distinction between process definition details and execution
details. As mentioned in chapter 6, the authoring environment presets process
flow details. In the other hand, execution details are not preset and often change

at runtime as the workflow is generated through the process enactment.

D/

© -- negotiation _ ®
Company A Company B Company A Company B
1. Company A discovers company B's 2. Company A and B initiate
Web service. negotiation.

© _...gcaling_____ - O -..menitering ___, - =
Company A Company B Company A Company B
3. After compromising, company A calls 4. During the execution, company A will

B's Web service. monitor the execution via Web service.

Figure 20 Overview of Web service-oriented interoperation in MIDAS

The execution environment enables user to discover a service, negotiate with a

service before execution, execute the service, and monitor the execution of a

61

service (Figure 20). In this chapter, the author will discuss how the MIDAS

execution environment builds up such execution detail at runtime.

7.1 Service Discovery

To discover a service that fulfills the service seeker’s requirement, a service
registry compares the semantic information registered at the entry with the
parameters sent from the service seeker. Figure 21 shows how a service seeker
discovers a service, which meets the service seeker’s requirements. The service
registry has a remote procedure that retums any services matching with the
user's query. The service seeker calls this remote procedure with a
parameterized query. The parameterized queries include the type of service,
input and output specifications and the pre- and post-conditions. As described in
chapter 5, the entry form also contains the type of service, input and output
specifications and the pre- and post-conditions as referencing markers. The
parameterized queries are compared to these referencing markers of a
registered service at each entry, and all of matching entries are retumed back to

the service seeker.

62

Web service \ Service Registry
Discovering

remote
procedure
Q (3) finds matches.
entry

Figure 21 Overview of service discovery in the MIDAS

Module (2) calls
(1) imports procedure
parameters
from engine INTERNET

I:__\J> parameters| [

(4) retrieve
matches.

L
entry <, '
(5) exports matches
to the engine.

[7]

A service seeker may need the full scale of an OWL document to make a more
sophisticated decision on selecting the best service among returned matches. A
service seeker can refer to the full scale of an OWL document since entries

retrieved from the registry include a link to the OWL document.

7.2 Negotiation for Collaboration

Discovery of a service provider does not necessarily involve perfect
customization of the services to a requester's demands. Uncertainties are always
bound to arise when a service requester encounters a service. Negotiation
therefore helps a service requester meet the most ideal service by going through

an iterative process to customize the service.

The negotiation proceeds through direct contact between a service requester and
a service provider. MIDAS has a module for sending email notification to a
specific participant, but unfortunately MIDAS does not support more than that

currently.

Negotiation can be used for different purpose as well. In company-to-company
collaboration on a process, there are always lots of things that must be
configured together before collaboration begins. Such things could be the price of
the product, deadline of the project or permission to access a certain resource.
These jobs cannot be supported by other MIDAS facilities except the negotiation
facility, but currently MIDAS doesn’t have any sophisticated negotiation tool. |

leave this job for future work.

7.3 Process Enactment Using Web service

In order to reflect dynamic nature of process management, MIDAS supports for
an iterative process enactment using Web service. The Apply and the Roll Back
are events invoked by a user or a machine agent during the execution of a
process in the execution environment of the MIDAS framework. The iterative
process enactment is defined as an iterative combination of Apply and Roll Back

at run time.

The MIDAS process enactment consists of four steps: (1) Load up top-level
process and initialize it. (2) Execute each task within top-level process. If you

meet a logical task, expand it with sub-process. If you meet an atomic task,

64

invoke a tool and get the result (3) Execute tasks in an expanded process. (4)

Check if expanded process meets constraints, and if not, rollback and reapply.

The process enactment engine is responsible for control in the above steps, but
the process enactment engine itself does not have functionality to communicate

with the Web service. The Web service calling module helps this process.

The MIDAS execution environment allows three enactment patterns using a Web
service. (1) A logical task can be assigned to other user via Web service. (2)
Someone’s process definition can be retrieved through a Web service, and the
service requester enacts imported process. In this case, the Web service works
like a simple public process library. (3) Tool can be invoked via Web service. All
those enactment pattems except (2) are asynchronous as discussed in chapter

4,

7.3.1 Task assignment using Web service

When the process enactment engine meets a logical task at the time of enacting
the process, it should decide weather it enacts this logical task by itself or
delegate its execution to the other user. Thé terminology of MIDAS framework
defines the former case as Apply, and later case as Assignment. The MIDAS
framework utilizes Web service to make the assignment of a logical task across

the heterogeneous system from different vendors.

Since the engine itself does not have Web service interoperability, it leans on the
Web service calling module to interact with the Web service. The logical service
discovered through the service discovery stage will be invoked by the Web
service calling module across the Internet. The enactment engine is responsible
for providing input data if it is necessary. The Web service got call from the
service provider initiates the enactment. After the service provider completes its
process enactment, the service requester’s engine retrieves the enactment

results and updates its process flow.

Service Requester Logical Service Provider
(1) Engine (2) WS caller (3) Web service invokes
uses Web service invokes Web enactment.
caller to assign service
logical task. INTERNET
Web service

calling module

: Web service

enactment

®)

(6) Engine . .
updates process (4) Service provide
- flow graph. completes
Enactment engine enactment

retums result.

Web service

Figure 22 Overview of task assignment using Web service

Figure 23 shows details of Service requester-Web service interaction. The
MIDAS implements the invoke-then-listening asynchronous scenario for this
interaction. A logical service provider must make his Web service implementing

at least following 4 operations to realize the invoke-then-listening task

assignment: providelnput(), invokeEnactment(), getGragh() and getOutput().

The providelnput() delivers input data to the service and turns the un-initialized

state of the service into the ready state. The invokeEnactment() makes the

service begin to work on enactment. The service requester waits for a call back

after calling this operation, and the call back will return to the service requester

when the service completes its job. Once the call back arrives, the service

requester retrieves a process flow graph and output data by calling getGraph()

and getOutput().
1. Provide | \ \ Logical Service Provider
. input » providelnput() >
¥ \ \
2. Invoke oi Enactment
enactment invokeEnactment() > begins.
3 Enactment
E ends.
=
«Q
3. Retrieves * getGraph() ? graph
graph and outputs | o;t -
* getOutput() P
Service Requester | |

Figure 23 Detail view of task assignment using Web service

67

7.3.2 Use Web service as public process library

When a logical service is utilized as a public process library, it simply retums the
definition of process flow, which is stored at the service-side repository. Then, the
definition will be loaded up as a top-level process or used to expand a logical
task (figure 24). Because the retum of feedback to the service requester will be
immediate, the asynchronous Web service calling isn’t necessary in this case.

The getGraph() will be used to retrieve a process definition from the service.

Service Process library using Web service

Requester
(1) Engine uses
Web service caller

to import process. INTERNET

Web service
calling module

% § (4) Web service

Web service

| =

| SE—————

(3) Web service reads
process definition and
returns

calling module
hands over

- process definition
Enactment engine to the engine.

Figure 24 Overview of using Web service as process library

7.3.3 Tool invoking by Web service

The tool invoking through a Web service proceeds in the similar way that task
assignment through Web service does (Figure 25). The Web service calling

module is also involved to help the enactment engine in this case. The

enactment engine is responsible for providing input data if it is necessary. The
enactment engine calls the Web service to initiate tool. After the tool completes
its process enactment, the service requester's engine retrieves output data from

the service and updates its process flow.

Service Requester Atomic Service Provider
(1) Engine (2) WS caller (3) Web service invokes
uses Web service invokes Web tool.
caller to assign service
atomic task. INTERNET
Web service Web service
calling module <:_I
tool

(5) Web service
returns result.

(6) Engine .
updates process (4) Tool provides
flow graph. output

Enactment engine

Figure 25 Overview of tool invoking using Web service

A atomic service provider must make his Web service implementing at least
following 3 operations to realize the invoke-then-listening task assignment:
providelnput(), invokeEnactment(), and getOutput(). As seen in the figure 26,
the interaction between atomic service and the service requester is almost similar

except the absence of getGraph().

—\ \ Atomic Service Provider
1. provide inputs '

input * providelnput() > @
N\

: tool
2. invokes « invokeEnactment() > E;ecytlon
enactment egins.
3 Execution
& ends.
=3
«Q

)

3. retrieves o outputs i
outputs getOutput()

Service Requester

Figure 26 Detail view of tool invoking using Web service

7.4 Monitoring Enactment

During the process enactment is going on across the heterogeneous systems,
users may want to monitor its execution status. Since the process being
configured could possibly be a complex and large graph, visualizing the process
being executed is not simple job. Furthermore, such visualization must be inter-
understandable across heterogeneous workflow management systems. The
MIDAS framework realizes the global visualization of collaborative enactment by
adapting monitor model of SOM. An OWL document using terms defined by

monitor model of SOM is capturing execution status of process graph.

As seen in Figure 27, once the enactment begins at the service provider side, the

enactment engine at the provider's side begins to updates its graph with new

70

execution results. Whenever the graph is updated, the engine also updates the
OWL document that captures the shape of process flow and execution status of

each task composing the service provider's process.

Logical Service Provider

. Enactment
notify __....... seeeea.l, | begins.

L]
....

— .
* getGraph() > graph [,

.“'%'-‘ﬁ-o.{i&''.......'lnt
A ‘ o
 getGraph() graph i" |

Enactment
ends.

Service Requester

Figure 27 Overview of monitoring using Web service

The getGraph() operation retums this OWL document to the service requester.
The service provider is responsible for notifying his process updates to the
service requester, and the service requester call getGraph() operation to retrieve
the OWL document whenever he gets the notification. The service requester’s
enactment engine makes the cockpit visualizing the graph after parsing its

information.

n

APPENDIX A. JAVA Package for SOM

All following java sources are the highlighted feature of JAVA package for SOM.
This JAVA package is provided as “services.jar".

Only the declaration of constructer and public method are shown here. Every
details have been omitted.

service.java

package services;

// Imports
import java.io.Serializable;

import java.util.Vector;

public class service implements Serializable {

// Fields

public String name;

public String owner;

public Vector preconditionList;
public Vector postconditionList;
public Vector inputList;

public Vector outputList;

public String URL;

public String semanticURL;

72

// Constructors
public service(String name) { ... }

public service() { ... }

// Methods

public void addPreCondition(condition cond) { ... }
public void addPostCondition(condition cond) { ... }
public void addinputList(Spec input) { ... }

public void addoutputList(Spec input) { ... }

public boolean equals(service Service) { ... }

atomicservice.java

package services;

public class atomicservice extends service {

/I Constructors

public atomicservice(String name) { ... }

}

73

logicalservice.java

package services;

// Imports

import java.util.Vector;

public class logicalservice extends service {

// Fields
public Vector scList;

public servicecomposite appliedSC;

// Constructors

public logicalservice(String name) { ... }

// Methods

public void addServicecomposite(servicecomposite sc) { ... }

74

Spec.java

package services;

// Imports

import java.io.Serializable;

public class Spec implements Serializable {

// Fields

public String name;

public String data;

/| Constructors

public Spec(String name) { ... }

75

condition.java

package services;

// Imports

import java.io.Serializable;

public class condition implements Serializable {

// Fields

public String name;

/| Constructors

public condition(String name) { ... }

}

76

servicecomposite.java

package services;

// Imports
import java.io.Serializable;

import java.util.Vector;

public class servicecomposite implements Serializable {

// Fields

public String name;
public String type;
public String status;

public Vector CSlist;

// Constructors
public servicecomposite() { ... }

public servicecomposite(String name) { ... }

componentservice.java

package services;

// Imports

import java.io.Serializable;
public class componentservice implements Serializable {

// Fields

public String linkFrom;

public String linkTo;

public String status;

public servicecomposite appliedBy;
public service Service,

public String name;

public String type;

// Constructors
public componentservice() { ... }
public componentservice(service Service) { ... }

public componentservice(service Service, String linkFrom, String linkTo) { ... }

78

// Constructors
public componentservice() { ... }
public componentservice(service Service) { ... }

public componentservice(service Service, String linkFrom, String linkTo) { ... }

// Methods
public void setStatus(String ststus) { ... }
public void setLinkFrom(String linkFrom) { ... }

public void setLinkTo(String linkTo) { ... }

79

APPENDIX B. Converting Graph to Process Definition
In this example, the service flow illustrated in (a) can be represented by an OWL
markup in (b). As you see in (b), the LogicalService or AtomicService must be
defined ahead of ComponentServices. According to the definition, class Service
and ComponentService are equivalent, so the ID of LogicalService or

AtomicService can be referred from ComponentService tag.

Logical_A

Logical_B

a
b
c

(a) a service flow

| <service:LogicalService rdf:ID="Logical_A">
<service:hasinput>
<service:SpeclList rdf:parseType="collection”>
<service:Spec rdf.resource="#a"/>
</service:SpecList>

</service:hasinput>

80

<service:hasOutput>
<service:SpecL.ist rdf:parseType="collection”>
<service:Spec rdf.resource="#b"/>
</service:SpecList>
</service:hasOutput>
</service:LogicalService>
<service:LogicalService rdf:ID="Logical_B">
<service:haslnput>
<service:SpecList rdf:parseType="collection”>
<service:Spec rdf:resource="#b"/>
</service:SpecList>
</service:hasinput>
<service:hasOutput>
<service:SpecList rdf:parseType="collection™>
<service:Spec rdf:resource="#c"/>
</service.SpecL.ist>
</service:hasOutput>
</service:LogicalService>
<service:ServiceComposite rdf:parseType="collection">
<service:ComponentService rdf:ID="Logical_A">
<service:linkFrom/>
<service:linkTo>

<service: ComponentService rdf:resource="#Logical_B"/>

81

</service:linkTo>
</service:ComponentService>
<service:ComponentService rdf:ID="Logical_B">
<service:linkFrom>
<service:LogicalService rdf:resource="#Logical_A"/>
</service:linkFrom>
<service:linkTo/>
</service:ComponentService>

</service:ServiceComposite>

(b) OWL markup for the service flow

82

APPENDIX C. Example of Process Definition

<?xml version='1.0' encoding='ISO-8859-1'?>
<IDOCTYPE uridef{
<IENTITY rdf “http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<IENTITY rdfs “http://www.w3.0rg/2000/01/rdf-schema">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">
<IENTITY daml "http://www.daml.org/2001/03/daml+oil">
<IENTITY service "MIDASserviceModel.daml"> 1>
<rdf:RDF
xmins:rdf= "&rdf;#"
xmins:rdfs= “&rdfs;#"
xmins:xsd = "&xsd;#"
xmins:daml = "&daml;#"
xmins:service = "&service;#"
xmins = "&DEFAULT;#"

>

<!-- definition of Specipications -->
<service:Spec rdf:ID="EngineSpec"/>
<service:Spec rdf:ID="WiringSpec"/>

<service:Spec rdf:ID="ControllerSpec"/>

<!-- definition of LogicalService -->
<!I-- definition of “ControllerDsg" -->
<service:LogicalService rdf:ID="ControllerDsg">
<service:haslnput>
<service:Spec rdf:resource="#EngineSpec"/>
</service:haslnput>
<service:hasOutput>
<service:Spec rdf:resource="#WiringSpec"/>
<service:Spec rdf:resource="#ControllerSpec"/>
</service:hasOutput>
<service:hasAltemativeChoices>
<service:AltemativeChoice rdf:parseType="collection">
<service:ServiceComposite
rdf:resource="def_CntProd2.owl#CntProd2"/>
</service:AltermativeChoice>
</service:hasAltemativeChoices>

</service:LogicalService>

<!-- definition of AtomicService -->

<!-- definition of "TimeMPLXModel" -->

<service:AtomicService rdf:ID="TimeMPLXModel">
<service:hasinput>

<service:Spec rdf:resource="#modelSpec"/>

</service:hasInput>
<service:hasOutput>

<service:Spec rdf.resource="#MPSpec"/>
</service:hasOutput>

</service:AtomicService>

<!-- definition of AtomicService -->
<l-- definition of "MicroProcess" -->
<service:AtomicService rdf:ID="MicroProcess">
<service:haslnput>
<service:Spec rdf:resource="#modelSpec"/>
</service:haslinput>
<service:hasOutput>
<service:Spec rdf:resource="#MPSpec"/>
</service:hasOutput>

</service:AtomicService>

<!-- definition of AtomicService -->

<!-- definition of "Intrument” -->

<service:AtomicService rdf:ID="Intrument">
<service:haslnput>

<service:Spec rdf:resource="#MPSpec"/>

</service:hasinput>
<service:hasOutput>
<service:Spec rdf:resource="#ControllerSpec"/>
<service:Spec rdf:resource="#WiringSpec"/>
</service:hasOutput>

</service:AtomicService>

</rdf:RDF>

APPENDIX D. WSDL for Service Registry

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions .
targetNamespace="http://localhost:8080/axis/services/SR"
xmins="http://schemas.xmlsoap.org/wsdl/"
xmins:apachesoap="http://xml.apache.org/xml-soap"
xmins:impl="http://localhost:8080/axis/services/SR"
xmins:intf="http://localhost:8080/axis/services/SR"
xmins:soapenc="http://schemas.xmlisoap.org/soap/encoding/*
xmins:tns1="http://sr* xmins:wsdl="http://schemas.xmisoap.org/wsdl/"
xmins:wsdisoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"><wsdl:.types><schema
targetNamespace="http://localhost:8080/axis/services/SR"
xmins="http://www.w3.0rg/2001/XMLSchema"><import
namespace="http://schemas.xmlsoap.org/soap/encoding/*/><complexType
name="ArrayOf_xsd_string"><complexContent><restriction
base="soapenc:Array"><attribute ref="soapenc:arrayType"

wsdl:array Type="xsd:string[]"/></restriction></complexContent></complex
Type></schema><schema targetNamespace="http://xml.apache.org/xml-
soap" xmins="http://www.w3.0rg/2001/XMLSchema"><import
namespace="http://schemas.xmlsoap.org/soap/encoding/'/><complexType
name="Vector'><sequence><element maxOccurs="unbounded"
minOccurs="0" name="item"
type="xsd:anyType"/></sequence></complexType></schema><schema
targetNamespace="http://sr"
xmins="http://www.w3.0rg/2001/XMLSchema"><import
namespace="http://schemas.xmisoap.org/soap/encoding/'/><complexType
name="entry"><sequence><element name="name" nillable="true"
type="xsd:string"/><element name="serviceURL" nillable="true"
type="xsd:string"/><element name="owlURL" nillable="true"
type="xsd:string"/><element name="inputs" nillable="true"
type="apachesoap:Vector'/><element name="outputs" nillable="true"
type="apachesoap:Vector'/><element name="inputStr* nillable="true"
type="xsd:string"/><element name="outputStr" nillable="true"
type="xsd:string"/><element name="owner" nillable="true"
type="xsd:string"/><element name="type" nillable="true"
type="xsd:string"/><element name="processURL" nillable="true"
type="xsd:string"/></sequence></complexType></schema></wsdl:types>

87

<wsdl:message name="getServiceResponse">
<wsdl:part name="getServiceRetum" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="registerServiceResponse1">
<wsdl:part name="registerServiceRetum" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="registerServiceRequest">
<wsdl:part name="Entry" type="tns1:entry"/>
</wsdl:message>
<wsdl:message name="getServiceRequest1">
<wsdl:part name="inputs" type="impl:ArrayOf_xsd_string"/>
<wsdl:part name="outputs" type="impl:ArrayOf_xsd_string"/>
<wsdl:part name="preCond" type="impl:ArrayOf_xsd_string"/>
<wsdl:part name="posrCond" type="impl:ArrayOf_xsd_string"/>
</wsdl:message>
<wsdl:message name="registerServiceRequest1">
<wsdl:part name="entryStr" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="mainRequest">
<wsdl:part name="args" type="impl:ArrayOf_xsd_string"/>
</wsdl:message>
<wsdl:message name="registerServiceResponse">
<wsdl:part name="registerServiceRetum" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="getServiceResponse1">
<wsdl:part name="getServiceRetum" type="impl:ArrayOf_xsd_string"/>
</wsdl:message>
<wsdl:message name="mainResponse">
</wsdl:message>
<wsdl:message name="getServiceRequest">
<wsdl:part name="name" type="xsd:string"/>
</wsdl:message>

<wsdl:portType name="SRWS">
<wsdl.operation name="main" parameterOrder="args">
<wsdlinput message="impl:mainRequest" name="mainRequest"/>
<wsdl:output message="impl:mainResponse"
name="mainResponse"/>
</wsdl.operation>
<wsdl:operation name="getService" parameterOrder="name">
<wsdl:iinput message="impl:getServiceRequest"
name="getServiceRequest"/>
<wsdl:output message="impl.getServiceResponse"
name="getServiceResponse"/>
</wsdl:operation>
<wsdl:operation name="getService" parameterOrder="inputs outputs
preCond posrCond">
<wsdl:input message="impl:getServiceRequest1"
name="getServiceRequest1"/>
<wsdl:output message="impl.getServiceResponse1"
name="getServiceResponse1"/>
| </wsdl:operation>
<wsdl.operation name="registerService" parameterOrder="Entry">
<wsdl:input message="impl:registerServiceRequest"
name="registerServiceRequest"/>
<wsdl:output message="impl:registerServiceResponse"
name="registerServiceResponse"/>
</wsdl.operation>
<wsdl:operation name="registerService" parameterOrder="entryStr">
<wsdl:input message="impl:registerServiceRequest1"
name="registerServiceRequest1"/>
<wsdl:output message="impl:registerServiceResponse1"
name="registerServiceResponse1"/>
</wsdl:operation>
</wsdl:portType>

89

<wsdl:binding name="SRSoapBinding" type="impl:SRWS">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmisoap.org/soap/http"/>
<wsdl:operation name="main">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="mainRequest">
<wsdisoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/*
namespace="http://sr* use="encoded"/>
</wsdl:iinput>
<wsdl:output name="mainResponse">
<wsdIsoap:body
encodingStyle="http://schemas.xmlisoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/services/SR" use="encoded"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getService">
<wsdisoap:operation soapAction=""/>
<wsdl:input name="getServiceRequest">
<wsdisoap:body
- encodingStyle="http://schemas.xmlsoap.org/soap/encoding/*
namespace="http://sr" use="encoded"/>
</wsdl:input>
<wsdl:output name="getServiceResponse">
<wsdisoap:body
| encodingStyle="http://schemas.xmlisoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/services/SR" use="encoded"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getService">
<wsdlIsoap:operation soapAction=""/>

<wsdl:input name="getServiceRequest1">
<wsdlsoap:body

encodingStyle="http://schemas.xmisoap.org/soap/encoding/"
namespace="http://sr" use="encoded"/>
</wsdl:input>
<wsdl:output name="getServiceResponse1">
<wsdlsoap:body '
encodingStyle="http://schemas.xmlIsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/services/SR" use="encoded"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="registerService">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="registerServiceRequest">
<wsdIsoap:body
encodingStyle="http://schemas.xmisoap.org/soap/encoding/"
namespace="http://sr" use="encoded"/>
</wsdl:input>
<wsdl:output name="registerServiceResponse">
<wsdisoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://localhost:8080/axis/services/SR" use="encoded"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="registerService">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="registerServiceRequest1">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://sr" use="encoded"/>
</wsdl:input>
<wsdl:output name="registerServiceResponse1">

91

<wsdlsoap:body
encodingStyle="http://schemas.xmlisoap.org/soap/encoding/*
namespace="http://localhost:8080/axis/services/SR" use="encoded"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="SRWSService">
<wsdl:port binding="impl:SRSoapBinding" name="SR">
<wsdisoap:address location="http://localhost:8080/axis/services/SR"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

APPENDIX E. Example of jws codes and its WSDLs

import java.io.*;

import java.util.Vector;

public class CylinderDsg {
String path = "C:\\Documents and Settings\\Hong Suk Jung\\My

Documents\\Company_A\\ CylinderDsg";

public String providelnput (String input1, String input2) throws Exception {
OutputStream fo;
fo = new FileOutputStream(path + "\Input1.txt");
byte b1[] = input1.getBytes();
fo.write(b1);

fo.close();

retumn "Delivery was successfully.";

public String [] getOutput() {
try {
InputStream fi;
fi = new FilelnputStream(path + "\\Outputs.txt");
byte b[] = new byte[fi.available ()];
fi.read(b);
String contents = new String(b);
fi.close();
String outputs[] = {contents};
retum outputs;
}
catch (FileNotFoundException ex) {
retum new String [] {"Output data has not been ready."};
}
catch (IOException ex) {

return null;

public String invokeEnacting() throws Exception {
OutputStream fo;

String temp = "MakeCalendar has been invoked.";
fo = new FileOutputStream(path + "\Invoked.txt");
byte b1[] = temp.getBytes();

fo.write(b1);

fo.close();

retum "Enactment has been invoked.";

public String getGraph() throws Exception {
InputStream fi = new FilelnputStream(path + "\Graph.txt");
byte b[] = new bytel[fi.available()];
fi.read(b);
String contents = new String(b);
fi.close();

returmn contents;

SUMMARY

Web service can give valuable benefits to the collaborative workflow
management systems; a barrier-less interoperability among heterogeneous
system, high modularity, and portability. The manufacturing processes of each
collaborative system can be posted as a globally-understandable service by
using Web service technology and used by other systems. To make different
systems to understand each other’s process, the service-oriented process model
has been proposed. The service-oriented process model provides the
fundamental foundation of globally-acceptable management model for distributed
process as service. In this model, the OWL, which is a standardized language for
Web ontology, has been used to represent the process and describe execution
status of process in this model. The Web service-oriented process model has
been successfully deployed in the MIDAS framework. The authoring environment
of MIDAS enables users to create and advertise the OWL process definition and
deploys Web service generated based on the OWL definition. The execution
environment of MIDAS enables users to search, select and use the posted
service. The MIDAS has three execution styles using Web service: invoking tool
application via Web service, assigning a logical task via Web service, and using

Web service as public production library.

BIBLIOGRAPHY

AberdeenGroup. Beating the Competition with Collaborative Product Commerce,
Jun 2000, AberdeenGroup, Inc.

Alsop, S. The Dawn of E-Service. Fortune, Nov 9, 1998, pp. 243-244

Baldwin, R. and Chung, M.J. Design Methodology Management: A Formal
Approach, IEEE Computer, February 1995, pp. 54-63

Bloomberg, Jason. Web services and a New Approach to Software Development.
Rational Software. 2002.
http://www.therationaledge.com/content/apr_02/f_webServices_jb.jsp

Chung, M.J., and Kwon, P. A Web-based Framework for Design and
Manufacturing a Mechanical System. DETC, Atlanta, Georgia. Sep. 1998.

Chung, M.J., Kwon, P. and Pentland, B. Design and Manufacturing Process
Management in a Supply Chain Environment (2003) Scalable Enterprise
Systems Research, edited by Vittal Prabhu and Sounder Kumara, Chapter 2; pp.
33-64, Kluwer Academic Publishers,Boston, MA. 2003

Chung, M.J., Kwon, P. and Pentland, B. Making Process Visible: A Grammatrtical
Approach to Managing Design Processes. (2002) ASME Transaction, Joumnal of
Mechanical Design. vol. 124, 364-374

Cohen, Frank. Understanding Web service interoperability. IBM. 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-inter.html

97

Ding, Y., Fensel, D., Klein, M., and Omelayenko, B., "The semantic web: yet
another hip?" Data & Knowledge Engineering, Vol. 41, No. 2, pp. 205-228, 2002.

Fensel, D., Horrocks, I., Harmelen, F., McGuinness, D. L., and Patel-Schneider,
P. F., "The semantic web - oil: an ontology infrastructure for the semantic web",
IEEE Intelligent Systems & Their Applications, Vol. 16, No. 2, pp. pp. 38-45, 2001.

Hendler, J., "The Semantic Web - Agents and the Semantic Web," IEEE
Intelligent Systems & Their Applications. Vol. 16, No. 2, pp. 30-37, 2001.

IBM, "Using Service-Oriented Architecture and Component-Based Development
to Build Web Service Applications", Rational Whitepaper, 2003.

Lavana, H., Khetawat, A., Brglez, F., and Kozminski, K., "Executable Workflows:
A Paradigm or Collaborative Design on the Intermnet", Proceedings of the 34th
ACM/IEEE Design Automation Conference, June 1997.

McMillan, R., “IDC: Web Service to Enable $4.3B Hardware Market by 2007,
Computerworld, 23 May 2003

Paolucci, M., Srinivasan, N., Sycara, K., Solanki, M., Lassila, O., McGuinness, D.,
Denker, G., Martin, D., Parsia, B., Sirin, E., Payne, T., Mcllraith, S., Hobbs, J.,
Sabou, M., and McDermott, D., "OWL-S", http://www.daml.org/services/owl-
s/1.0/owl-s.pdf

Peltz, C., "Web Services Orchestration and Choreography", IEEE Computer
(October), pp. 46-52, 2003.

98

Qin, Y. (2002). Manufacturing Infrastructure and Design Automation System
(MIDAS) with XML representation. Computer Science and Engineering. East
Lansing, Michigan State University.

Schey, J. A., (1987), Introduction to Manufacturing Processes, 2nd edition,
McGraw-Hill, New York, NY.

Shapiro, R., "A Comparison of XPDL, BPML, and BPEL4WS."
xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

Sun Microsystems, Inc. (2002) Web Services Made Easier.

UDDI.Org. UDDI specification version 2.04
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-200207 19.htmMark Klein,
Abramham Berstein. Searching for services on semantic web using process
Ontologies. Intemational semantic web working symposium, 2001

W3C Web Service Choreography Working Group Charter. 2002

W3C Web service descript group. Web Services Description Requirements (W3C
Working Draft 28 October 2002) http://www.w3.org/TR/ws-desc-regs/

W3C. Web Service Description Language(WSDL) 1.1

Weerawarana, S. and Francisco, C., "Business Process with BPEL4WS:
Understanding BPEL4WS, Part1", http://www-
106.ibm.com/developerworks/webservices/library/ws-bpelcol1/

WSCI. http://www.w3.0rg/TR/2002/NOTE-wsci-20020808/

Xerces2 Java Parser 2.6.2. http://xml.apache.org/xerces2-j/index.html

100

e
(VAMONVIET
3 1293

02504 40«

