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Abstract

Digital Organisms in a Virtual Ecosystem

Design and Implementation

By

Zhen Lei

In this thesis, I discuss the design and implementation of Digital Organisms in a

Virtual Ecosystem (DOVE) to study phenotypic plasticity and trait-mediated interactions.

We design and implement software that represent populations of model organisms (i.e.

predators, omnivores, herbivores) -- denoted digital organisms (DO) — that evolve and

interact in a virtual ecosystem (VE) which is a spatial landscape with heterogeneous

resources. DOVE is developed on the SWARM platform using Objective C to fulfill its

core functions.

We adopt three principal inter-related computational tools and approaches (i) agent-

based models (ABM) for emulation of natural complex systems (ii) computational

methods to model the behavior of organisms (e.g. probabilistic rules); and (iii) genetic

algorithms for individual adaptation.

We also conduct some experiments to examine competitive species on an aquatic food

web by using DOVE. From the experiments, we arrive at some important hypotheses

about phenotypic plasticity and trait-mediated interactions.

I present a DOVE user manual and parameter profiles. The profiles describe how to

set up the simulation parameters of food webs and import/export information that helps

with implementation.
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1. Introduction

1.1 Motivation

The study of complex systems is a very new research area that interests scientists and

researchers in diverse disciplines, which include but are. not limited to ecology and

environment (DeAngelis and Gross, 1992, etc.), psychology and cognitive science (R.

Serra, G. Zanarini, 1990, etc.), social simulation (Epstein and Axtell, 1996, etc.), and

industry (Bunn and Larsen, 1997, etc.). A complex system is usually constituted of many

elements that interact. The complexity of the system is proportional to the numbers of the

elements, the number of interactions in the system, and the complexities of the elements

and of the interactions (Bar-Yam, 1997).

Ecological communities are one of the most complex systems that scientists attempt to

understand. Many global patterns or properties of the ecological system are not presented

in parts of the system. Instead, they emerge from the interactions of the elements, e.g.

various resources and organism of different species, of the systems. The complexity in

ecological system further arises from the nonlinear interactions of large numbers of

individuals and species in dynamic environments (Brown 1994). Clearly, an ecological

community is more than the sum of its parts.

In order to better understand the structure and dynamics of ecological communities,

ecologists need tools and conceptualizations to capture the global pattern and properties

of the communities, and thus can make reliable prediction of the ecosystems. From this

perspective, different theoretical approaches of food webs, which define the non-linear



and complex network of many interconnected food chains and feeding relationships, is

critical in modeling and emulating the natural ecology communities.

Traditionally, researchers tried to construct the whole food web in ecological system

by combining static descriptions of direct species-pair interactions, which describe the

relationship between different species and how the densities of species in the species-pair

affect each other, to model more complex communities (e.g., Levine 1976, Bender et a1.

1984, Holt 1987, Yodzis 1988, Leibold 1989). However, this “building blocks” method

neglects a critical property of ecological systems — the existence of phenotypic plasticity

(PP): individual organisms adapt to short-terrn environmental changes by altering their

phenotypes, e.g., traits such as behavior, morphology or life history (Lima 1998, Tollrian

and Harvell 1999). The change of the traits of species in the species-pair can affect the

intensity of the interactions, and potentially the species-pair relationship itself. Moreover,

in a complex ecological community, different species in the food web may affect others

indirectly through intermediate species. An important property of food web originating

from such indirect relationships among species is that the trait changes not only affect

interactions with the predator that they are responding to, but also other species in the

food web. For example, the reduction in prey activity may reduce the prey’s consumption

on a food resource, which not only leads to a decrease in prey growth rate but also an

increase in resource abundance. On the other hand, the change of the prey activity will

also affect the growth rate and the number of the predators, because predators cannot get

enough foods with fewer available preys that response more acutely to the predators.

Thus, predators can affect both prey and base resources even without actually killing .

prey (e.g., Wootton 1993, Abrams 1995). Such types of indirect interactions caused by



trait changes are denoted trait-mediated interactions (TMI), because they arise from the

modification of a trait (e.g., behavior, morphology or life history), rather than the density,

of the intermediate species (Abrams et a1. 1996).

Dr. Scott Peacor and other researcher have conducted many field experiments on trait-

mediated interactions, and proved that TMI and its requisite mechanism, phenotypic

plasticity (PP) in traits, are ubiquitous and important in natural systems communities

(Werner and Peacor 2003; Lima 1998, Agrawal 2001; Peacor and Werner 2001).

1.2 Objective

We, including Dr. Scott Peacor, Dr. Rick Riolo, myself, and other collaborators, are

developing a new computational system, denoted “DOVE” which stands for “Digital

Organisms in a Virtual Ecosystem” in order to study ecological communities and in

particular examine the origin and role of phenotypic plasticity and of consequent trait-

mediated interactions. The principal goal of the proposed computational system is to

address the shortcomings of traditional approaches and provide a complementary

approach in the research of ecological communities.

1.3 Organization

Chapter 2 provides an overview of previous research and approaches on complex

systems. Chapter 3 gives an overview of DOVE and introduces three central computation

tools/approaches used in DOVE. Chapter 4 discusses the agent-based modeling in DOVE

and the modeling of organisms and resources. Chapter 5 explains genetic (evolutionary)

algorithms for individual adaptation. Chapter 6 describes how to model the ecosystem



environment of DOVE. In chapter 7, we conduct experiments to examine different

species on aquatic food webs by using DOVE and present the results. Chapter 8

summarizes all the works carried out in this thesis research and suggests future directions

of study.



2. Review of Complex System Theory

DOVE is designed to examine ecological communities as complex systems. In this

chapter, I first introduce complex system theory and review, focusing primarily on the

applications of Agent-Based Modeling (ABM), in this area. As examples, I summarize

current applications of ABM in different disciplines, including my previous research on

agent-based modeling for land use change. I then provide a brief introduction of Genetic

Algorithm (GA), which we is use in DOVE.

2.1 Overview of Complex Systems

Defining complex system is a complex task. There are more than seventy definitions

of complexity (John Horgan, 1995), used in diverse areas. Because it is inspired in

practically all branches of knowledge and is a very new field of study, I will try to

describe complex systems in a general way.

A complex system usually has many components that interact at one level of

organization to create patterns at higher levels of organization. A system in the life,

social, physical or decision sciences are considered a complex system if it has a

significant number of characteristics below (Bar-Yam, Y., 1997):

o Agent-base: the fundamental building blocks of the system are the characteristics

and behaviors of the individual elements (or called agents) in the environment

0 Heterogeneous: agents differ from each other in important characteristics.



0 Dynamic: The behaviors and characteristics of agents may change over time, as

they learn from their experiences, adapt to their environment, or evolve through

the natural selection in reproduction process.

0 Feedback: The agents perceive and response to a dynamic of environment and this

causes feedbacks that usually become the driving force for the changes in their

characteristics/behaviors.

0 Organization: Agents can belong to groups or form hierarchies. The infrastructure

of the diverse agents changes the properties of whole system. These changes are

usually nonlinear, sometimes even chaotic.

o Emergence: The global behavior of the complex system arises from the

interactions of the elements of the system. In this sense, a complex system is more

than the sum of its parts. A complex system has properties not present in its parts.

They emerge from the interactions of the components of the system.

Many man-made and natural systems are complex in this way-from economies,

societies, cultural norms, and traffic jams through ecosystems, immune systems, weather

patterns. The "non-linear" dynamics of these systems are difficult to study using

traditional models. Approaches to study such complex systems, including the DOVE

ecosystem we propose, are usually constituted of many elements that interact.

2.2 Agent-Based Modeling

Agent-based modeling is the modeling approach that has been developed in the

complex systems research community. The term "agent-based modeling"(ABM) refers to

a collection of computational techniques in which individual software agents and their



interactions are explicitly simulated, and emergent properties are observed. In traditional

differential-equation modeling methods, larger-scale properties of a system are the

fundamental elements of the model, e.g. population densities of species, densities of

resources. However, agent-based modeling uses the individual agents/individuals as the

fundamental elements of the model. The goal of agent-based modeling is to design

models that are sufficiently Simple that the mechanisms of emergence can be understood

and yet elaborate enough to show interesting behavior (Mitchell and Newman, 2002).

Because the very complicated behaviors of real-world complex systems emerge from

the relatively simple, local interaction of many different individual components, Agent-

Based Modeling (ABM) is a very appealing approach to emulate the complex system

such as ecological communities. A principal advantage of ABM is the ability to access

the plausibility of the behavior of agents, the way in which the agent interact and the

consequences of that behavior and interaction to the structure and dynamics of the

ecological community.

In agent-based modeling, a software agent is an autonomous, problem-solving

computer program, which carries out goals/tasks and operates in dynamic and open

computational environments. Each agent has a specific goal or function, which it will try

to complete. It interacts with other agents that have possibly conflicting aims. Agents can

be embedded in other agents. From the computer science perspective, a software agent is

a component: an object (Booch, 1994) which might communicate with other components.

Since the tendency in software systems is to develop them in a distributed way, agent

theories are having a great influence on computer science, for example, agent-oriented

programming (Shoham, 1993) and agent-based software engineering (Wooldridge, 1997).



2.3 Applications of Agent-Based Modeling

Agent-based systems are constructed to represent and simulate problem-solving

situations, where collaborative and conflict behaviors can co-occur as they do in real

human and natural environments of our daily life (Murch and Johnson, 1999). Agent

based models have been developed to understand human societies (e.g., Epstein, et al.,

1996), avian evolution (e.g., Axelrod, 1997), the life histories of animals in dynamic

landscapes (DeAngelis, 1992) and the evolution of economic systems (e.g., Holland and

Miller, 1991), to name a few. Agent based modeling approaches have been recently

applied to simulate land use changes (Alexandridis and Pijanowski, 2002; Parker, 2001).

Multi-agent systems are being used to simulate a variety of real-world behavioral

scenarios.

As an example of the Agent-Based Modeling, the land use simulation system “Multi

Agent-based Behavioral Economic Landscape (MABEL)” (Lei and Pijanowski, 2003;

Alexandridis and Lei, 2004) provides a bottom-up approach to allow the analysis of

dynamic and complex features and relations in land transformation observations. The

agents in MABEL represent the real—world landowners who base their behavior and

actions on their perception of maximizing their total marginal utility. Agents

communicate, interact, conflict, and collaborate, to their environment and to each other.

They generate a complex, dynamical system of changes that leads to the land

transformation patterns throughout time. Because of the application of agent-based

modeling, MABEL allows the analysis of dynamic and complex features and relations, as

well as the need for comprehensive relational schematics in land transformation. In

MABEL, agent-based modeling increases the efficiency on assessing a more real-world



observational system, especially in conjunction with land use, environmental issues, and

environmental economics. Through the modeling of read-world entities in comprehensive

attributions and behaviors, agent-based modeling provides a ‘unified’ approach between

living system’s organizational entities in environment and land use, and socio-economic

interpretations, which goes beyond the limitations of the traditional statistical and

econometric assumptions.

2.4 Why Agent-Base Modeling in DOVE

Compared with traditional equation-based modeling, agent-based modeling is a very

appealing approach to emulate the ecological communities and examine the phenotypic

plasticity of our interest. I summarized the advantages of Agent-base modeling in DOVE

below;

First, the principal advantage of agent-based modeling is that it provides a bottom-up

approach to capture the global behavior of ecological communities and examine the

complex dynamic arising from the non-linear relationships among organisms. In DOVE,

the aggregate measures like food web structure and interaction coefficients, are emergent

properties of the system, i.e., the patterns of species densities and interactions. They can

be determined from the “bottom up” through the repeated local interactions over time and

space of the multiple agents (e.g., Epstein & Axtell 1996, DeAngelis & Gross 1992).

Through the ABM approach, we can access the plausibility of the behavior of agents, the

way in which the agent interact and the consequents of that behavior and interaction.

Second, agent-based system is code-efficient and easier to build and run (Bar-Yam,

1997), In an agent-based model, such as DOVE and MABEL, the heart of the code is the



agent behavioral methods, and we write these only once; the behavioral module is the

same for each agent. Thus, a relatively short program at compile-time is actually a very

large program at runtime if we have a large number of agents interacting. Moreover,

running such a model is simply instantiating an agent population, letting the agents

interacts, and monitoring what happens. There is no need to appeal to representative

agents. In this sense, executing the model is all that is necessary in order to solve it.

Third, agent-based modeling offers an additional level of validation (Mitchell and

Newman, 2002). Both agent-based modeling and equation-based modeling can be

validated at the system level, by comparing model output with real system behavior. In

addition, ABM can be validated at the individual level, since the behaviors encoded for

each agent can be compared with local observations on the actual behavior of the domain

individuals. This advantage ofABM allows us to validate the functionalities in DOVE by

simply turning on/off some parameters and then comparing the simulation results.

Forth, ABM supports more direct experimentation at individual level (Murch and

Johnson, 1999). We can play some “what-if” experiments by turning on/off the parameters

of organisms. Such capability provides the flexibility we need for extensive simulations

on phenotypic plasticity.

2.5 Genetic Algorithms

A goal of DOVE is to allow the phenotypic plasticity of organisms “emerge” through

interactions at the individual level with the environment. To achieve this, we use genetic

algorithm to allow behaviors, and hence phenotypic plasticity, to evolve.
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John Holland at University of Michigan formally introduced genetic algorithms in the

19705 (Holland, 1975). Genetic algorithms belong to the class of stochastic search

methods. Whereas most stochastic search methods operate on a single solution to the

problem at hand, genetic algorithms operate on a population of solutions (Goldberg,

1989)

To use a genetic algorithm, a solution to a specific problem should be represented as a

genome (or chromosome), which emulates the biological genome with a finite set of

character strings or binary values (in DOVE we use double types of numeric values). The

genetic algorithm then creates a population of solutions and applies genetic operators

such as mutation and crossover to evolve the solutions in order to find the best one(s).

In the genetic algorithm, each individual must represent a complete solution as a

genome (or chromosome) to the problem one is trying to optimize. The representations

for the individual genomes in the genetic algorithm include strings of bits, arrays, trees,

lists, or any other object. For a certain representation of genome, we must define

corresponding genetic operators (initialization, mutation, crossover, comparison).

Two of the most common genetic algorithm implementations are 'simple' and 'steady

state'. In the simple genetic algorithm, the entire population is replaced each generation;

while in the 'steady state' genetic algorithms, only a few individuals are replaced each

'generation'. This type of replacement is often referred to as overlapping populations. In

Dove, we choose a more natural and flexible approach of the simple genetic algorithm by

allowing users to define the maximal age, which can be a very large numeric value, for

each species.

11



Genetic algorithms use various selection criteria so that it picks the best individuals for

mating (and subsequent crossover). The objective function determines how 'good' each

individual is. If you use a selection method that picks only the best individual, then the

population will quickly converge to that individual. So the selector should be biased

toward better individuals, but should also pick some that aren't quite as good (but

hopefully have some good genetic material in them). In DOVE, we have no prior

knowledge about the global level behavioral preference before we run the program. Thus,

we choose to emulate the natural and implicit fitness mechanisms by setting up the

interaction rules between organisms and the requirements for reproduction. We

hypothesize that our implicit fitness mechanisms will favor those who can respond

promptly to the changes (e.g. predation risk level) in the environment.

The genetic algorithm is very simple, yet it performs well on many different types of

problems. In particular, genetic algorithms work very well on mixed (continuous and

discrete), combinatorial problems. Genetic Algorithms have been applied in molecular

structure optimization (D. M. Deaven and K. M. Ho, 1995), Medicine (B. Sahiner, H: P.

Chan, 1996), and Automated Design Methodology (E. D. Goodman, K. Sec, 2002) etc.

Genetic algorithms are less susceptible to get 'stuck' at local optima than gradient search

methods. However, Genetic algorithms tend to be computationally expensive.

12



3. Digital Organisms in a Virtual Ecosystem

3.1 Goals and Principles

In order to study phenotypic plasticity and trait-mediated interactions in ecological

communities, we propose to develop a new agent-based computational system - DOVE.

Because of the nature of ecological communities, we adopt agent-based modeling in

the design of the DOVE system. The principal idea behind DOVE is to create populations

ofmodel organisms (i.e. predators, omnivores, herbivores) as intelligent software agents -

- denoted digital organisms (DO) - that evolve and interact in a Virtual ecosystem (VE)

which is a spatial landscape with heterogeneous resources.

With the flexibility and capabilities provided by computational simulation in DOVE,

we can construct population of organisms in the different scenarios to examine the role of

phenotypic plasticity and trait-mediated interactions at different levels of complexity in

extensive environments. For example, we can build simple or complex food web

structures with various species to compare the impacts of phenotypic plasticity on the

same species under different environments. Moreover, we can turn on/off the properties

of population, i.e. evolutionary capability, individual variation, or change the

environmental parameters like the number of habitats, to examine what the roles of these

properties and how they are related in determining the behaviors/characteristic of

organisms in the long term. In addition, DOVE also provides us a way to compare the

global behavior of the system caused by phenotypic plasticity with those that obeys

assumptions made in traditional equation-based models. Thus, DOVE is an effective tool

to study the dynamic of the ecological communities at different complex levels. The

13



flexibility of DOVE allows the researchers to control species properties, population

combination, food web structure, and environmental factors.

In DOVE, various organisms/agents differ in their behaviors as a function of their

perception of their “states”. These states include the state of the environment (e.g. density

of predators in local vicinity or in the global ecosystem) and their internal state (e.g.

hunger level). For a certain combination of internal and external states, an individual

organism can take an action, such as feeding, sitting or switching habitat, with a

particular probability. An organism’s behavior is described by the probability to take

particular actions under a certain situation. These probabilities serve as the gene that

evolves.

We model agents/digital organisms based on the behaviors of natural organisms. As

organisms in a natural ecological community, the digital organisms that fit well with the

changes in environment are less likely to be killed and more likely to reproduce. For

example, consumers that are less active when predators are present, and more active

when predators are absent, will have less possibility to be captured by predator and be

more likely to get enough foods for growth, since activities normally make organisms

more recognizable and vulnerable to predators. Thus, they can accumulate sufficient

resources to reproduce and pass on their genes, which eventually evolve the fitness

towards the environment.

We have designed DOVE such that phenotypic plasticity and trait-mediated

interactions are emergent properties arising from local interactions and evolutionary

selection for individuals that maximize fitness in sexual reproduction. Afier individual

organisms acquire enough resources to reproduce, they can reproduce sexually and create

14



offspring, who inherit the behaviors from parents. Because the organisms that fit well

with the environment have a better chance to survive and reproduce, the population of

new offspring will inherit and evolve the behaviors that optimize fitness in the dynamic

virtual ecosystem gradually. On the other hand, the variation among individuals and their

behaviors in the sexual reproduction, plus the possible mutation in the gene

recombination, also ensure that the evolution of organisms will not get 'stuck' at short-

term optima.

In order to achieve our goals, we adopt the three inter-related computational tools and

approaches used in general complex systems approaches (Chapter 2) in the design of

DOVE, including: (i) agent-based models (ABM) for emulation of nature complex

system (ii) probabilistic methods to model the behavior of organisms; and (iii) genetic

algorithms for individual adaptation. I then explain how we apply these approaches in

DOVE, and what make them different in our system.

3.2 Agent-based Modeling (ABM)

In DOVE, phenotypic plasticity and trait-mediated interactions are the emergent

properties arising from simple interactions of digital organisms. The relationships

between pairs of species are pre-defined according to their positions in the food web

structure. We create and instantiate software agents for individual organisms with some

distribution of initial states, and model their behaviors with defined traits and rules of

interaction with other agents and the environment. The agents, which have behaviors and

traits, provide a natural and fundamental basis for the interaction at individual level.

15



Agents can perceive the internal and external statuses, react upon to the environment, and

adapt to the changes in the environment.

The evolutionary mechanism enables agents to change the trait of species over

generations. The driving force behind the trait changes is genetic algorithm that emulates

the natural selection in reproduction process through (see details in next section). This

selection process ensures that the organisms that react promptly to predation risk and fit

well with environment chances have a better chance to survive and propagate their fitness

through sexual reproduction.

Thus, modeling agents at the individual level present a natural basis to access the

behaviors of organism and examine the role and impact of PP as a response to local

interactions. Moreover, it provides a natural platform to incorporate evolution

mechanism, by which we can understand the dynamics of ecosystem and study what

environmental factors produce PP in the evolution process.

We develop the DOVE computational system in the SWARM simulation environment

developed at the Santa Fe Institute. SWARM is an agent-oriented approach for building

simulations, which extends software agent theory itself. It was designed with simulation

purposes, including artificial intelligence and artificial life.

3.3 Modeling of Organism Behavior

In DOVE, we declare objects of organisms and specify their behaviors. The

integration of all the objects into an environment provides the simulation model.

Therefore, an object of organism is described by an entity that holds both the descriptive

attributions of the objects as well as its behaviors.

16



Currently, we model the organism traits and capabilities by probabilistic method. The

organisms react with actions towards the states that they perceive. These states include:

0 Predation risk: how many predators the organism can observe?

0 Internal resource level: how close the organism is to starving or reproducing?

(this is analogous to a real organisms size and energy reserves)

0 Available resource: how much food is in the organism’s feeding range?

0 Relative resource level: how high are the resources in the feeding range

compared to what the organism has seen recently?

0 Number of habitats: how many habitats can the organism inhabit?

For a certain combination of internal and external states, an individual organism may

take an action, such as feeding, sitting or switching habitat, with a particular probability.

The possible actions and associated probabilities under a situation are organisms’

behaviors that we model.

Our experiments in DOVE suggest that the modeled digital organisms can evolve

some kinds of phenotypic plasticity analogous to that observed in many natural systems.

We plan to study more complex representations of agent trait and behavior rules, e.g., by

modeling each agent as a Classifier System in which a set of interacting behavioral rules

collectively determines the behavior of the agent (Holland 1986; Lanzi & Riolo 2002) in

the future. By exploring different representations in the same scenario, we can avoid the

biases that particular representations of behaviors may introduce.

The probability modeling of organism behaviors required a single behavioral

probability matrix, or call chromosome with genes, for each agent. Thus, it provides a

natural basis for the incorporation of genetic algorithm.
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3.4 Genetic Algorithm

We employ genetic algorithms in our computational systems to model the evolution of

individual traits, including phenotypic plasticity. The genetic algorithm is well suited to

our needs, since it can be used to model evolution in a population of agents with traits

encoded as single “chromosomes”, to evolve rules in agents modeled by probabilistic

method.

In DOVE, a gene’s instructions produce an outcome (or payoff) that affects the

agent’s reproductive fitness relative to other organisms in the computational ecology.

Relative fitness determines the probability that each behavior will propagate. Propagation

occurs when two organisms mate, while involves the recombination of their genes. Such

recombination allows them to create an entirely new organism that may integrate the best

(or worst) abilities of each “parent,” making possible the new organism superior to either

contributor. Thus, the new behaviors may eventually displace both parent behaviors in

the population of organisms. In addition, the new gene may contain random copying

errors. These mutations restore the heterogeneity of the population, counteracting

selection pressures that tend to reduce it.

An important feature of DOVE is that it has no explicit objective function, or call

fitness function, on the system level. Generally, genetic algorithm employs various

selection criteria so that it picks the best individuals for mating. The objective function

determines how 'good' each individual genome is. In my understanding, such explicit

objective functions on system level are more suitable for optimization purpose with

definite goals. In DOVE, we have no prior knowledge about the global level behavioral

preference before we run the program, and we believe the emergence of global behaviors
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arises from the interactions of the elements/organisms of the system. Thus, we choose to

emulate the natural and implicit fitness mechanisms in DOVE. Because the interaction

rules between organisms and the requirements for reproduction favor those who can

response promptly to the changes (e.g. predation risk level) in the environment, such

implicit fitness mechanisms allows organisms to evolve towards an optimal solution for

the world without the user having to specify an objective function.

3.5 Core Features and Concepts

DOVE is an agent-based simulation environment for ecosystems. Researchers can

create different resources, organisms in heterogeneous habitats to construct complex food

web structures. Before explaining DOVE design and implementation in the next chapter,

I first introduce some key concepts on ecosystem in DOVE.

3.5.1 Habitats

DOVE emulates the natural ecological systems in heterogeneous habitats. As their

counterparts in nature, organisms and resources in DOVE are located at particular

positions of the world and interact with other organism or resources in the neighborhood.

We model the world of DOVE as a 2-D grid with heterogeneous habitats, which is

distinct from each other in environmental attributions, such as available resources growth

rates and predation risk levels.

In DOVE habitats, there are no edge effects. Each habitat is a torus so that if organism

moves left and goes off the world it would appear on the right most portion of the world.
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The habitats have many real world analogs. Multiple organisms and resources can live

in same location. Different digital organisms can live and move around in different

habitats. The heterogeneity in habitats allows organisms to switch habitat to prevent

predation risk or get more foods. Currently DOVE can support either one or two habitats

in the simulation world.

3.5.2 Resources

The resources are initially distributed evenly within habitats, and then grow at user-

defined rates. As mentioned above, multiple resources can grow in the same location.

Currently, resources can grow logistically in DOVE. According to a certain grth

function, a resource may grow over time until it reaches the carrying capacity of the

resource, which represents the maximum level of resources available per location in a

habitat.

R(t +1) = rR(t)(l +@y‘

Where R is the resource level, r is the intrinsic grth rate, and K is the carrying

capacity. r = 1 is zero growth.

:3W5ifi38fi’“”“fi

 

Bottom habitat

 

Fig.1. Resources levels in different habitats ofDOVE
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As illustrated in Fig.1, The various shades of green to black represent different tropic

levels of resources.

3.5.3 Organisms

The organisms in DOVE can be either herbivores (creatures that only eat resources) or

predators (organisms that eat other organisms). Each organism has an internal resource

level. As the organisms in nature, the digital organisms in DOVE consume energy

because of metabolism, even if they just sit statically. For each species, users can define

the amount of energy lost due to metabolism at every time step. Thus, organisms’ internal

energy/resource level goes down every time step unless users set it to zero, and increases

when the organisms eat. The digital organisms can take one of the three possible actions:

feed, sit and switch, according to the “state” it observes. We discuss how organism

chooses the action in next section of this chapter.

An organism can die in four ways: being eaten by predator, aging, starvation, or by

“background death” (i.e. die for other reasons external to the environment represented).

Predators can eat the organisms and get all internal resources of the preys. Each organism

is born with a maximum age and each time step its age increases by one. Organisms die if

their ages reach the maximum age. The organism starves if it does not get sufficient foods

and dies when its internal resource level drops below zero. Organisms may die for other

unclear or unpredictable reasons. Users can define a background death probability for this

case.

As a critical part of natural organisms, the resource requirement for sexual

reproduction ensures that those fitting well with the environment will have better chance
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to survive and reproduce. Whenever an organism accumulates sufficient internal

resources, it has the ability to reproduce with another organism ready to mate. They will

bear an offspring that inherits from their “gene” of behaviors probability matrixes. After

reproduction, parents lower their internal resources level to the initial status.

In DOVE, we also introduce a new entity - global predators, to emulate the global

predation risk in the ecological environment. In some sense, global predators is the

observable and system—level predation risk, which research can manipulate in the

simulation to represent the predation pressure for the whole ecological community and

examine the behavioral reactions of organisms. They are a special class of predators.

Global predators make their appearance by having the number of global predators change

to a random number after a random period. The have the ability to eat preys anywhere

with a particular probability. However, they do not mode, reproduce or die, and thus have

no behavioral evolution among them. Global predators are used in DOVE in order to be

able to create predators with a defined density and dynamics that are not subject to

feedbacks and changes in the simulated environment.

3.5.4 Interactions

The fundamental interactions between organisms and resources are,

consumer-)resource and predator-)prey, shown in Fig 2.

C1 Predator

I I Consumer I and 2

I Resource

 

Fig.2 Food Web in DOVE
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Consumer-)resource interactions are simple and on the bottom of any food web, and

provide the energy input of the ecological community. A consumer can eat part of whole

amount of the resource and convert it to internal resource. Normally, a consumer cannot

eat out all the resource at a spot. There are two parameters putting the limitation: diet

refuge and eat percent. Diet refuge represents the percentage of the available resource

that organism cannot eat at any cell; eat percent indicates the percentage of the available

resource that organism can eat afier diet refuge mechanism. Thus, the amount of

resources available to be eaten is K*(1-DietRefuge), where K is the carrying capacity

(maximum level) of the resource, and the amount of resource consumed by an organism

is K*(1- Diet Refuge) "‘ Eat Percent.

Predator-)prey is straightforward while critical relationships in the food web. The

predator can eat organisms of a particular Species, and get all the preys’ internal resources

when they do. Obviously, a predator in a predator-)prey relationship may be the prey in

others. A predator can also eat resources and organisms of multiple species.

In DOVE, the predator-)prey relationship is more than a who-eat-who issue. Because

individual organisms can adapt to changes of the predation risk by altering their

behaviors, the change of the organism behaviors in the Predator-)prey relationship can

significantly affect the intensity of the interactions. Therefore, I then explain how the

presence of predator affects the behaviors of preys.

As we mentioned above, organisms have three possible actions, feed, sit and switch, to

take for the next time step. The strategy in choosing which action to take represents the
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behaviors of organisms. Different organisms, even in the same species, present different

behaviors for the same situation/state.

In third section of this chapter, we mentioned that an individual organism may take an

action with a particular probability for a certain state. Thus, in the beginning of the

simulation, user can initialize the behaviors of organism with the probability matrix for

all states. There are two issues that users should consider in defining the possibility that

an organism takes a particular action: the risk to be captured by predator, and the need to

get foods for surviving and growth. Thus, whether taking an action or not depends on the

trade-off between these two issue according to current “state” the organism observe.

We cited some examples on these trade-off issues from the knowledge on natural

organisms. A natural organism that feeds can get the maximum resource that it observes,

while taking highest risk of being recognized and captured by predators. Organisms

taking sit action are less liked to be captured by predator, while they do not get food to

reproduce and make up for internal resources loss due to metabolism. Organisms in a

habitat of high predation risk may choose to switch to other safe habitats to live, while

others who feel hungry can take risks to switch to a fertile but dangerous habitat.

In this chapter, I explain how we adopt the three inter-related approaches, agent-based

modeling, genetic algorithm, and probabilistic modeling, in the design of DOVE, and

briefly introduce the core concepts and entities of DOVE. In the next three chapters, I

will present the implementation details of important system modules.
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4.Mode|ing of Organisms and Resources

The modeling of organisms and resources is fundamental to the design of our virtual

ecosystem. In this chapter, I explain how organism and resource objects are implemented

in DOVE. First, I will present the hierarchy with a brief introduction of what the classes

of organisms and resources do, and then give a more detailed account of each class.

4.1 Organism and Resource Hierarchy

I use the Object Oriented Programming (OOP) diagram to illustrate the hierarchy of

organisms. As Figure 3 shows below, Agent is the base class for all organisms and

resource classes that exist in the Virtual environment.

  

Periphyton ResourceObj
      

 

   

>

«
w
a
g
o
n
.
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.

  
  

Gene <———4> Intelligence Organism . SpeciesObj
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Composition (Owner-)Embed Object) Inheritance (Parent-)Child)

Figure 3. Organism Hierarchy

Every resource belongs to a particular resource species. The attributions of a species

such as maximum age are constant. On the other hand, resources objects may be different

in physical conditions and grth phases. Thus, we have two classes: Resource class and

Periphyton Class. The former includes all species-level attributions, while the other

specifies the properties or states that may be different among resource objects. The

species-level attributions in ResourceObj class include carrying capacity, growth rates,

initial resource level setting, and species-level statistic functions. Users can define these
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species-level attributions of a ResourceObj object before the simulations start. This class

is also responsible to collect different resource statistics at the species level. The

individual resources are all instances of the Periphyton class. This class holds attributions

such as periphyton object’s current location and resource level. The Periphyton objects

can be eaten and grow.

A similar structure exists for the organisms. There is a SpeciesObj that has all the

species-level attributions. These include a large number of variables ranging from

average death age to anti extinction number. The functions in this class are mainly

statistic collection and export/import functions. In parameters files, users can also define

the attributions of a species that will be loaded to the corresponding species object in the

initialization phase of the simulation.

The individual organisms are all objects of the Organism class. The Organism class is

one of the largest and most complex objects in the program. It includes functionality for

most of the organisms’ activities including moving, eating, reproducing and dieing. There

is also a large section in the code to deal with import and export of organism’s

attributions in population files. In order to make future changes on the intelligence

module of organisms easier, we separate the intelligence components from the Organism

class. This leads to the creation of two objects, the Gene object and the Intelligence

object.

The Gene class implements the genetic algorithm. A state-action behavioral matrix of

an organism represents the genome of this organism. The Gene class also provides a gene

operator such as crossover and mutation to create a new genome for offspring. Given a

set of state variables, the Gene object can select an action from available options. The
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Intelligence object is an interface between the Organism class and the Gene class. By

having this separate Intelligence class, the genetic algorithm can be more easily replaced

with possible other learning systems such as a classifier system or neural networks.

4.2 Agent Class

Agent class defines the basic properties and methods shared by both organisms and

resources, so that organisms and resources classes can inherit the same manipulation

interface from this class. The definition of Agent class is shown below.

@interface Agent : SwarmObject {

int ID;

id myGrid; // what world/grid do I live in?

int myX, myY; // my location in my world/grid

int myHabitat; // which habitat of the world (top=0 or bottom=1) am I in?

Color myColor; // for drawing me

int speciesNum; // species number for predation determination

}

The important ftmctions in the class are:

> -(id) drawSclfOn: (id <Raster>) r;

Usage - draw agent itself in the world/grid

> -(id) getGrid;

Usage - get the pointer to the world/grids

> -(Void) setGrid: (id) G;

Usage - set the pointer to the world/grids
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Note the simulation world is represented in grid/cells format. Each agent can only

occupy a single cell at a certain time. I will discuss the world/grid implementation in the

sixth chapter.

4.3 Resource and Periphyton Classes

As mentioned before, the Resource class defines the common properties shared by

individual resources, such as carry capacity, growth rates etc. The definitions of

ResourceObj class are shown below.

@interface ResourceObj:SwarmObject {

int idNum;

int numActions; // currently only 1 action - grow

//in the following four arrays, array[0] - top habitat, array[l] - bottom habitat

float growthRate[2]; // growthRates

float carryCapacity[2]; // maximum amounts of resources in a cell

float initialMean[2]; // mean value for normal distribution of initial resource

float initialVar[2]; // variance value for normal distribution of initial resource

char resourceName[50]; // resource name

float averageResource; // statistics variable, average resource in “world”

float averageResourceTop; // statistics variable, average resource oftop habitat

float averageResourceBottom; //statistics variable, average resource of bottom habitat

}

Currently, we only have the periphyton resource existing in the aquatic environment.

It simply includes a specific instance of ResourceObj class, and a variable indicating

current resource level.
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@interface Periphyton : Agent {

double resource;

ResourceObj "' resourceInfo;

}

We explain several important functions in Periphyton class below:

> -(double) getResource;

-(void) setResource: (double) r;

Usage - get/set resource level

> -(double) eatPeriphyton: (double) amountToEat;

Usage - Eat some portion of this resource. The amount to be the same is specified in

amountToEat.

> -(Void) grow;

Usage - define resource growing function. Each cell has resources that grow according

to a fixed equation

R(t + 1) = rR(t)(1 +W)"

Where R is the resource level, r is the intrinsic growth rate, and K is the carrying

capacity. r = 1 is zero growth. This equation is called the logistic equation, and is used

frequently in ecological theory to describe density dependent growth.

Resources do not move between cells. There can be more than one species of resource.

For each species, there can be one resource agent on each cell.

Unlike animals, resources are not important as individual agents. They serve as a

resource for animals, but we do not follow individuals. We are not concerned with their

evolution, or variation in traits, etc. However, we do record their mean value, and
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possible metrics of their heterogeneous distribution in order to understand the dynamics

of the system.

In the schedule of SWARM program, step firnction will be executed every time step.

Thus, we include the grow function in step() function of Periphyton class.

-(id) step{

[self grow];

return self;

};

4.4 Species Class

In the natural ecosystem, every organism belongs to a certain species. The organisms

of the same species share most common physical and behavior/trait characteristics, while

they may be in different physical conditions or lifetime phases, and demonstrate minor

variances in behaviors/traits.

In DOVE, the SpeciesObj class has all species-level information ranging from average

death age (a trait of the organism) to anti extinction number(an operation parameter that

affects the evolution of traits). These species-level variables can be initialized with the

parameters of ANIMAL block (refer to Appendix B). The definition of SpeciesObj class

is shown below.

@interface SpeciesObj:SwarmObject {

id modelPtr; // pointer to the Model object to access the environment info

int idNum; // species ID

// below is a long list of species-level variables,
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};

int eatRadius; // eating radius of the species

int moveRadius; // moving radius of the species

int initialAgeMean; // Mean value for dying age distribution

struct dietType * speciesDiet; // what kinds of preys or resource I can eat

// statistics variables, recording all the behavior or activities statistics of all

// organisms belonging to this species

int deadHistory;

int deadStep;

int deadHistoryAge;

The definition of struct dietType is below:

struct dietType {

};

int resOrOrg; // 0 if resource; 1 if organism

int species; // the ID of the species that I can eat

int actions; // how many actions can the species perform?

float "‘ chanceEat; // probability to eat the diet item when it is doing action It

float refugeRate; // the percentage of the available resource that organism can not

// eat at any cell.

float eatPercent; // the percentage of the available resource that organism can eat

// after diet refuge mechanism.

struct dietType * next; // name of the diet
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In addition to setting or retrieving species properties, the functions in Species object

are mainly statistic collection and export/import functions

> -(id) getModelPtr { return modelPtr; }

-(Void) setModelPtr: (id) m { modelPtr = m; }

Usage - get/set the pointer to the core Model objective to access the environment

information

> -(int) getSpecOijum {return idNum;}

-(void) setSpecOijum: (int) id {idNum=id;}

Usage - define/retrieve the species ID

> -(int) getEatRadius {return eatRadius;}

-(void) setEatRadius: (int) 5 {eatRadius=s;}

Usage - get/set the radius that the species has access to for consumption.

> -(int) getTotalLiveCount;

Usage - get the number of organisms of this species that are alive

> -(double) getSitFraction;

Usage - get the statistic about the percentage of organisms alive taking sit action

> -(double) getEatFraction;

Usage - get the statistic about the percentage of organisms alive taking eat action

> -(double) getSwitchFraction

Usage - get the statistic about the percentage of organisms alive taking switch action

> -(void) writeExportHeaderToFile: (FILE *) f;

Usage - writes the column headers to file

> -(void) exportSpeciesInfoToFile: (FILE *) f;
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Usage - writes the actual species related info to export file

Because each organism object embed a pointer to a certain species object, these

species-level variables of a single SpeciesObj object can be shared by organisms

belonging to the same species.

4.5 Organism Class

4.5.1 Class Definition

The Organism class is the core class of DOVE class hierarchy. The individual

organisms are all instances of the Organism object. The Organism object is one of the

largest and most complex objects in the program. The members of Organism class are

shown as following:

@interface Organism: Agent {

// variables for current conditions of organism

int

int

int

int

int

int

int

live;

resource;

lastAction;

stepCount;

eatOn;

age;

maxAge;

// 1=alive, 0=dead

// my internal resource level

// last action organism took

// current time step

// enable global predator to eat

// current age of organism

// max age organism can be

float deathProb; //death probability caused by other reasons than aging or predation.

int globalPredator; // current knowledge on predation risk

struct dietType "‘ myDiet; // pointer to the embedded speciesDiet

SpeciesObj "‘ mySpecies; // pointer to embedded species object
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Intelligence * myBrain; // pointer to embedded Intelligence object

};

Besides the variables indicating an organism’s status, the Organism class includes two

important components: mySpeices object of SpeciesObje class, and myBrainobject of

Intelligence. The former defines the common characteristics/traits of organisms, while the

later specifies the decision-making component (brain) of the organism, which can evolve

using a genetic algorithm. We will discuss the details of genetic algorithm in the next

chapter.

The organism class includes functionality for most of the organisms’ activities

including moving, eating, reproducing and dieing. These are explained in details below.

4.5.2 Class Methods

4.5.2.1 Moving Activity

In the cells/grid of Dove world, each cell (x, y) holds the lists of organisms and

resources at this location. An important feature of DOVE is that each habitat, weather

there is 1 or 2, is a torus: organisms do not see the edges, but move from one edge to the

opposite edge. Since Organism class is the child of Agent Class, it inherits the myGrid

member from its parent. This variable points to the “torus” world that the organism lives.

We will discuss the details of the myGrid object of DoveGridZd class in sixth chapter.

An important species-level variable on moving activity is MoveRadius. This variable

represents the radius (how many cells) the organisms can move in one time step. A

directly diagonal cell is still considered one space away. MoveRadius is speecified for

each species.
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Organisms movement is described by three parameters:

> -MoveByX:(int)xd Y:(int)yd;

Usage - Move the specified distance

> -MoveRandomUpToX:(int)xd Y:(int)yd;

Usage - Randomly move some distance up to the specified amount in any direction.

The actual amount of x, y, the distance to move from current position, are randomly

picked between [-xd, xd] and between [-yd, yd] respectively.

> -MoveRandom;

Usage - Randomly move up to 1 cell in any direction.

4.5.2.2 Eating Activity

Similar to MoveRadius for moving activity, EatRadius defines the radius around

which an organism can eat. If the radius is set to 0 it means an organism can only eat on

its own cell. A directly diagonal cell is still considered one space away. For an organism

that eats resources (like an herbivore), it eats a user defined percent of available resources

on each cell within the radius. For animals that eat animals, there is a user-defined

probability it will eat every organism within the EatRadius. Thus, if an organism

MoveRadius is 4, and EatRadius is 2, it will move from 0 to 4 cells away from its present

cell, and eat within a radius of 2, totally 25 cells (1+8+16).

When a natural organism forages optimally, it first observes its neighborhood and then

chooses the location that it can find maximal foods for eating. After it moves to this best

location, it then eats the preys/foods that are in its attacking range. Thus, the eating

activity of a digital organism involves two functional operations: determining the cell to

feed from, which may involve searching for the “best spot” with the highest potential

35



resource return, and then consuming resources once the cell is determined. I explain both

operations below in detail.

0 Searching Functions:

> -(void) findBestX: (int*) tX Y: (int*) tY FoodThere: (float*) bestFood;

Usage — find the best location to eat

An organism can search its neighborhood for best spot to move in the next time step.

The user determines the probability that the organism can search for the “best spot”,

versus random placement. The criterion is the amount of potential food at this spot. The

food refers to eatable resources at that location for consumer, or is preys’ internal

resources if the organism is a predator.

The implementation of this function is as following steps:

1. Find the extent of where the organism can move.

2. Allocate and fill the array of reachable cells to store the food values of them. This is

a 2-d array that "flattens out" any torus effects so that we end up with a simple grid of

values. Each cell will contain the amount of food available to me at that location. Note

that it is possible for a single cell in the real grid to show up multiple times in this

foodArray grid. For example, given a 10x10 world (torus) and a move radius of 4 and an

eat radius of 3. The organism could move left 4 cells and then eat something 3 cells to

left of its new location. That is the same cell as if the organism ate something 3 cells to

the right of its current location without moving. It simplifies the code greatly to just let

that happen. When we compute the foods value from each cell the organism can move to,

we will eliminate those duplicates.
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3. Search the range of cells the organism can get to and determine how much food the

organism can get from each location (x, y) with the cat radius.

4. Now determine which spot was the best. If multiple spots have the same best value

then the organism will randomly choose between them. This will often be choosing from

just 1 possible value.

0 Real Eating Functions:

> -(double) resourceFrom: (id) prey

Usage - How much resources do the organism gain by eating the specified prey item?

The resource amount depends on:

1) How much resource the prey item has.

2) What the prey item is doing.

3) The probability that the organism could catch it.

> -(void) eatResource;

Usage - This is the main eating routine. It eats both resources and organisms

The implementation of eatResource fimction follows the steps below:

1. Measure the area covered by organism’s eat radius. It is possible that its eatRadius

will allow it to reach the same cell multiple times (due to the torus shape of the world).

That would be invalid, so set the limits of its reach to ensure that it only eat from each

cell once.

1) If eatRadius is small enough, just set limits to the eatRadius

2) if eatRadius is too big, set limits to the world size.

Note that this test is independent for X and Y.

2. Do the eating.
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1) If the organism is a consumer, it eats a user defined fraction of all resources in

its eating area.

2) If the organism is predator, it eats the preys in its eating area that it captures, as a

function of capture probabilities defined by the user.

4.5.2.3 Step Function

Step function is the place that organism behavior is executed. The notion of a "step"

method is a nice simplification for basic simulations. As mentioned before, step function

will be scheduled to execute every time step.

> -step;

Usage - do anything that all Organisms must do each time step. Here is how it works.

1. Update time related variables, e.g. age, stepCounter, current resource level. If the

organism is going to die by aging or the reasons other than predation, such as internal

resource level reaching zero, the organism mark itself dead and exit the function.

2. If the organism has enough resources to reproduce, add itself to the reproduction list

for its species.

3. Find the best location for the organism to move to. How much food would be

available to the organism if it moved there?

4. Determine a predation risk. An organism knows about predators in "the whole

world", regardless of where they are (top/bottom, x, y), and that is the information used to

determine predation risk.

There are two ways to determine predation risk
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1) Every organism computes the value in its turn. This will likely be the preferred

procedure when the predation is based on characteristics of individuals such as length,

spines, speed, etc.

2) Compute it once for all members of a species and use that value for each member of

the species. This works ok when predation is "species-based", such as any Fox will eat

any Rabbit, regardless of size, etc.

Method 2 is much faster (computation is done once per species versus once per

organism). It does, however, have a scheduling issue in that by the time a particular

organism executes its step method the number of predators may have changed (they may

have died, reproduced, etc.) We are ignoring that issue and assuming that the organisms

get their information at the beginning of the time step.

5. Decide what to do this step

0 = sit still (“inactive” state: do nothing at all)

1 = feed = move and eat

2 = switch habitats (0 (-1 or O-)1)

As I discussed in Chapter 3, global predators is the observable and system—level

predation risk, which research can manipulate in the simulation to represent the predation

pressure for the whole ecological community and examine the behavioral reactions of

organisms. Global predators exist so that we can have a predator species with dynamics

that are pressed, rather than responding to the dynamics of their prey and associated

feedbacks. Global predator is essentially a variable predation rate. Because global

predators have distinct properties, we have a specific step function for it.

> -stepGlobalPredator;
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Usage - Do anything that global predators do each time step.

Things done for normal organisms, but not for global predators, are:

1) increment and test age (no death by old age)

2) decrement and test resource level (no starvation)

3) reproduction (no hanky-panky)

4) find best location (the whole world is good)

5) calculate a risk to me from predators (they are invincible)

6) decide an action (they always just sit and eat)

In this chapter, I explained how we modeled the resources, organisms and their

activities in DOVE. By separating the species-level properties from the variable

individuals’ states, we created a flexible hierarchy that facilitates the modularization of

DOVE. Moreover, we demonstrate that how to design organisms’ activities within a “no

edge” world, which is an important feature of DOVE and will be discussed in

DoveGrid2D class of Chapter 6.
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5. Genetic Algorithm for Adaptation

5.1 Principle

In this version of DOVE, the evolution of the organisms is guided by the genetic

algorithm. The interaction rules between organisms and the internal resource requirement

for reproduction favor those who can respond adaptively to the changes (e.g. predation

risk level) in the environment. This allows them to evolve towards an optimal solution for

the world. The genetic algorithm in DOVE differs from the traditional approaches in that

there is no user-specified objective function that determines which agents reproduce.

Instead, we emulated the natural evolution by incorporating interaction rules among

species and resource requirements for reproduction.

In DOVE, the action taken by an organism that defines its behavior depends on

organism’s perception of its’ internal state and the state of the environment. Currently, an

organism has five state variables that the user can define.

l. Predator Risk Level: This measures how high the risk is that organism is captured

by predator, which is a function of the density level of predators in the system.

2. Hunger Level: this measures how close the organism is to starving or reproducing.

It represents the number of different internal resource levels the organism is aware of,

e.g. if user defines three levels of hungry and the organism’s internal resource level

below the lowest level, the organism is very hungry, which may lead to a feeding action.

In contrast, if an organism’s internal resource level reach the highest level, which

indicates that the organism is ready to sexually reproduce.
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3. Resource Level: This measures how high the resource is compared to

HighAvailResLevel, the highest resource on an absolute scale that user defines.

4. Relative Food Level: This measures how high the available food is relative to what

the organism has observed recently.

5. Habitat: This describes which habitat the organism occupies.

Users can also define the number of possible actions, such as feed, sit, switch, that an

organism can take. Normally, users define up to three possible actions.

Users can initialize these states with any arbitrary number. Normally, Relative food

level is set either higher or lower level, and habitat has as many states as the number of

habitats.

The “action matrix” of combination of above five parameters determines the action

taken by an individual. For each state that the individual can perceive, a probability

distribution determines its action in that state.

Environmental state:

I Habitat I 1 I 1 I 1 I 2 I

I Pred. risk level I 1 I 2 I 3 L 1 I

 

 

Action robabilil “ ene”fortwolndlvlduals:

[SI-Feed Switch 0.6 I03 I01 05 I04 I01 04 I05 I01 I07 I02 I01 I

LSitIFeed ISwitchI066I024 I0.1J0.3 I05 I02 I044“ I02 T07 I02 I01 I

    
 

 

Figure 4. Examples of Gene sequence

In the example shown in Fig.4, we suppose the state variables other than predation risk

and habitat are constant values. If the individual is in Habitat 1, and perceives the

predation risk as intermediate, then the probability that it will sit is 50%, feed is 40% and

switch habitats is 10%. In contrast, a second individual in the same population has a

30%, 60% and 20% percent probability of these actions.
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If two individuals from the same species acquire sufficient resources, they reproduce. The

organisms in the system have a simplified form of sexual reproduction. Whenever an

organism has sufficient internal resources to reproduce, it is added to the reproduction

list. Once each time step the program goes through this list and if there are two organisms

from the same species on this list, it will take them off the list, lower their resources, and

create a new organism based on their parents’ parameters. Offspring genotypes result from

the mutation and recombination of parental genes, and are thus able to “evolve”.

 

   
Parent1 I06 I03 I01 I05 I04 I01 04 I05 0.1 0.7 I02 I01 I
 

 

 
Parent2 I066 I024 0.1 I03 0.5 02 I04 04 I02 I07 0.2 0.1 I

       

 

      

Offspring 0.66I024 02 I03 I05 I01J04 0.5 0.1 0.7 I02 0.1 I
  

Mutation I ICrossover point

Figure 5. Examples of genetic Evolution

During sexual reproduction, there is currently one crossover point and a certain

mutation rate. In the example of Fig.5 shown, the genes before crossover point are from

parent 2, the rest genes are from parent 1, and there is also a mutation at this genome.

Notice that the gene operations such as mutation may generate a new probability

sequence, in which the sum of the probabilities of possible actions for a “state” may be

not equal to 1 anymore, e.g. in Figure 6, after the crossover and mutation operations, in

offspring’ gene, the probabilities of feeding, sitting, and switching for the first “state” is

0.66, 0.24 and 0.2. In this situation, we have to normalize the probabilities of actions and

make the sum of new probabilities to 1. For the case above, the normalized probabilities

of actions for first “state” are 0.66/(0.66+0.24+0.2), 0.24/(0.66+0.24+0.2),

0.2/(0.66+0.24+0.2).
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‘ One of the goals of the system is to evolve an intelligent population before they go

extinct. For this reason, DOVE has a feature called anti-extinction. DOVE monitors the

density of a specific species, and if it is less than the anti extinction number, then each

creature is cloned a user-defined number of times. This provides more organisms and

allows the creatures another chance of evolving. During cloning (for anti extinction) there

is no gene mixture or mutation.

Note that there is no prescribed objective or fitness function on system level.

Organisms that have strategies to gain enough energy to reproduce before they are killed

pass on genes and reproduce. Thus, there is selection for strategies that are the most fit in

the dynamic landscape.

5.2 Implementation

To make changes easier in the future, the intelligence for each organism is separate

from the actual organism. For this purpose, we have the Intelligence class and the Gene

class. The Gene class implements the genetic algorithm, while the Intelligence class

provides an interface between Gene class and Organism class.

5.2.1 Intelligence Class

The definition of Intelligence class is low:

@interface Intelligence: SwarmObject {

id myOrganism; // pointer to organism object

id myGenes; // pointer to decision-making brain

id <List> foodMemory;

int foodMemSize, foodMemFirst, foodMemLast, foodMemCount;

float * foodMemArray;
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}

For embedded members, it simply includes a pointer to the organism object and a

pointer to the gene object, and some variables about food memory.

The most important function of intelligence class is getAction, which is defined

below:

‘2» -(int) getAction: (int) predRisk internal: (float) intemalRL

goodFood: (int) foodPotential habitat: (int) myHab

reproductionLevel: (float) reproLevel absResource: (float) absRL

maxPredRisk:(int)mrisk maxResLevel:(float)mres

Usage — inquire about the action to taken. Here is how it works:

1. Compare my current location's food potential to the food potential of my last N

locations (averaged).

2. Compute an actionIRL (IRL = Internal Resource Level) that is a truncated integer

multiple of the reproduction resource level.

3. Similarly, compute a predation risk level index

4. Calculate an index based on the available resources

5. Inquire gene object what action to take

5.2.2 Gene Class

The Gene object is the actual brain of the organism. The definition of Gene class is

shown as following:

@interface Gene:SwarmObject {

id myOrganism;

id <NormalDist> normDist;
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int numPredRisks, numI-IungryLevels, numFoodLevels, numHabitatS, numActions;

int numStates, numResourceLevelS;

float "' geneSeq; // the full gene sequence as an array of float

float "‘ actionArray; // sized at creation time for use in deciding action at each

timestep

}

Gene class also includes a number functions for gene sequence manipulation:

> -(int) getStateOffsetFromRisk: (int) risk Hungry: (int) hunger Food: (int) foon

Habitat: (int) hab Resource: (int) res;

Usage - Determine the correct section of the gene string, based on the state

> -(void) mixGenes: (Organism *)parent1 parent: (Organism *) parent2

withMean: (float) mutationMean withVariance: (float) mutationVariance

withChance: (float) mutationChance

Usage — mix the parents’ gene sequence and make possible mutation.

> -(int) askAction: (int) predRisk hungry: (int) resLeV

foodLevel: (int) curFoodLevel

habitat: (int) myHab resourceLevel: (int) absResLev

Usage - inquire about the action to take. This is the core function of the class.

1. Determine the correct section of the gene string, based on the state.

2. Build an array that has progressively larger values so we can eventually determine

a course of action. For example, suppose that we have three actions (sit, feed,

switch). And suppose that the probability for each of these three actions (for the

current state, whatever that may be) is:
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sit = 0.20

feed = 0.50

switch = 0.30

We get those three values from the gene string. Now, we need to have some

mechanism so that 20% of the time we choose to sit, 50% of the time we feed, and

30% of the time we switch. What we do is build this actionArray with three values:

0.00 0.20 0.70 (0.20 + 0.50)

Then we will generate a random number from 0 to 1. If it is in the range [0.0, 0.20]

then we will sit. If it is in the range (0.20, 0.70], we will move and if it is in the range

(0.70, 1.00] we switch. Note: there is a slight added chance of sitting due to the

way the test is constructed. A random number value of exactly zero is one extra value

for sitting. That is an extremely small difference, though, since we are dealing with

floats.

In this chapter, I explained how to model the organisms’ behaviors through

probabilistic method. Moreover, I present the design and implementation of the

genetic evolution with genetic algorithm, from both theory and implementation

perspectives. Through the applications of these computational methodologies, plus the

interactions rules among organisms and resource requirement for sexual reproduction,

the digital organisms in DOVE can evolve towards optimal solutions without users-

specified objective functions.

47



6. Modeling of Ecosystem Environment

6.1 System Architecture

DOVE is built in the Swarm platform with objective C. It was programmed following

object-oriented principles with the emphasis on scalability and extensibility. In Figure 6, I

illustrate the system architecture ofDOVE.
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Figure. 6 Dove Model Architecture

The real core of DOVE begins in a class called Model. Model controls the schedule

and holds lists of all species, resources and individual organisms. Model also has the

functions for all aspects of global operations. These includes importing and exporting

populations, managing global predator densities, maximum resource levels, reproduction,

anti-extinction, reporting and communication with the graphs. Note that Model is

analogous to the setup and implementation of an experiment by an investigator doing

experimental ecology.

Model also holds a pointer to an instance of the DoveGrid2d object. DoveGrid2d takes

care of coordinating the actual grid on which everything lives. Moreover, DoveGrid2d

helps to manage all interactions between organisms and resources. This includes finding
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the best location for an organism to go, eating resources and other organisms in the

neighborhood, etc.

The Parameters object takes user-defined simulation parameter profiles of different

resources, organisms, habitats and food webs structure and import/export information for

the initialization and running of the program.

The Observer object is a standard swarm object, which deals with all Graph User

Interface (GUI) details. It retrieves information from Model and Parameters objects, and

displays world, organisms, periphyton, and graphs for analysis.

Below, I explain the DoveGrid class and Model class in details.

6.2 DoveGrid Class

DoveGrid class holds the list of cells that both resources and organisms inhabit. An

important feature on DOVE is that multiple organism and resources can occupy the same

cell. The class definition is below:

@interface DoveGrid2d : MoGrid2d {

id myModel; // pointer to model object

id <List> cellList; // list of everything in a particular cell

}

There are times when the world object of DoveGrid2d needs to be able to call methods

of the Model object. This pointer ofmyModel gives them that ability.

In the MoGrid2d class, the super class of DoveGrid2d, each cell has an associated list

that contains all of the objects residing at the cell. In DOVE, we are extending that

definition. The list of the cell no longer has the actual occupants of the cell, but rather

contains two lists.
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List 0 = resources

List 1 = organisms

Furthermore, lists 0 and 1 are themselves lists of lists. That is, list 0 contains a

separate list for each type of resource and list 1 contains a separated list for each species

of organism.

There are some important functions in DoveGrid2d:

> -(void) moveAgent: (id) agnt toX: (int) newX toY: (int) newY

Usage — move an agent to a new location.

Because each cell has two lists: resourceLists for resource objects, orgLists for

organisms objects, we have to figure out if the agent is an organism. If it is, we check

which species (SpNum) it is. To actually move an organism to a new location, we have to

first remove the organism from the appropriate species list of its current location/cell,

then add this organism into the appropriate species list at the new X,Y values.

> -(double) attemptEat: (id) prey by: (id) predator

Usage - Attempt to eat an organism. “Attempt” refers to the fact that there is only a

probability that a predation act will be successful. If successful:

1) Mark the organism as dead, but do not do anything else to the organism. We will

handle the actual "killing off" of the organism later.

2) The amount of resources attained by the attacking individual is equal to the

internal resource of the attacked organism. This value will be the return value of the

function.

‘P -(double) eatOrganism: pred whichSpec: (int) specNum atX: (int) x 3th (int) y
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Usage — eat all organisms of a particular species in the cell (x, y). It actually calls

attempEat function for all of the organisms of a particular species at (X,Y). Before agent

eat, it must ensure that

1) the prey must be alive

2) cannot eat itself

> -(int) calculateRiskForOrganism: (id) anOrganism Global: (int) gR

Usage - Calculate a perceived risk of being eaten by a predator.

The risk is based on the value of gR(Global) switch. If gR is true (non-zero), it assume

that the prey organism somehow has knowledge of any predators that exist anywhere.

All we need to check for is if any global predators exist in the world.

If gR(Global) is false (zero), the prey organism will only consider risk from local

predators, which refer to the predators other than global predators, within range to eat it.

This is based only on:

1) prey's current location (x,y)

2) local predator's location (x,y)

3) local predator's EatRadius

The return value is the number of predators that are considered to pose a threat to the

prey organism. 'In the future, we will likely want to consider potential movement as well,

since that changes the danger zone around a predator.

> -(int) calculateRiskForSpecies: (id) specObj Habitat: (int) ha

Usage - Calculate (for a species) a perceived risk of being eaten by a predator.

This is very similar to the calculateRiskForOrganism routine above. The difference is

that we are just calculating a risk for an entire Species, therefore we have no location
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information to use. That means we are always in the "Global=true" mode for the

organism risk routine. The return value is the number of predators that are considered to

pose a threat to the prey species. We assume risk is the same for each individual of the

species, and we ignore variation in the position of local predators.

6.3 Model Class

The Model class is the core module of the ecosystem. The definition of this class is

below:

@interface Model: Swarm {

id parameters; // pointer to parameters object

int worldSizeX, worldSizeY; // how big the world is

int yDivide; // the border that divides two habitats

int numberSpecies, numberResourceTypes;

int antiExtinctionSteps; // the time step threshold of anti-extinction function

int topBottomMultiplier;

int doGlobalPredation; // l=yes; 0=no

int globalPredationSteps; // number of steps left before switching states

int maxGlobalPredators;

int activeGlobalPredators; // 0..max. Oindicates global predation is OFF

id modelActions; // scheduling data structures

id modelSchedule;

DoveGrid2d * worldObj; // This is the object that holds the world
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id <List> orgList, resourceList, reproductionList;

}

Below I explain several important functions about scheduling and organism activities.

> -buildObjects

Usage - Model object builds the embedded objects in the following order:

1.

2.

7.

>

Initial lines of report file

Create the various lists of resources and organisms.

Create the list shuffler object using for scheduling the activities

Get the parameters and build the world using those parameters

Set up the global predator

Read in organisms’ and resources’ properties for parameters in files and command

line, then build the populations.

create the report files for resources and organisms.

-(Void) steps

Usage - This is the largest function that gets called every time and actually runs the

program. It will first allow the resources (periphyton) to grow, then it will ask all the

organisms what they want to do. It will then take all the predator prey relations into a list

and randomize the list. It will then execute them and hopefully organisms will eat and be

eaten.

Here are the details about how it works.

1. Check whether there are organism from the same species are ready to reproduce.

If it is, make it happen.
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Run the anti-extinction code if needed.

Update the statistic for average resource and organisms.

Calculate the predation risk for each species of organism. Note that by

calculating it once (at the beginning of the time step) it may be somewhat out-of-

date by the time a particular organism executes its own step method. Thus, we

may wish to revisit this at some point, especially if scheduling becomes a more

important issue.

Go through all organisms (in random order) and step with them.

Compute some statistics on the regular organisms, then let any active global

predators do their thing.

Check the status of each organism. If it has died at any point in this time step up

until now, add it to the temporary Dead List. Note that when a predator eats an

organism, the only thing we do to the organism at that time is change its live

status. In this way we ensure that we do not try to kill it more than once.

Predators also check that live status before attempting to eat an organism.

Go through the temporary dead list and kill all the creatures.

Update the global predator status. Global Predator state at each time step is from

0 to maxGlobalPredators active. When we turn on a group of global predators,

they will stay on for some specific number of time steps. Similar thing happens

when we turn them all off. Once that number of time steps has expired we re-

compute the number of global predators to turn on. There are 2 possibilities:

1) globalPredationTimeOffMean > 0

This means that we will have a consistent off period between each on period.
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So the number of predators will be something like:

4, 0, 2, O, 5, 0,1, 0, 3, 0, 3, 0,1,0, etc

2) globalPredationTimeOffMean = 0

This means that we never force a zero. We will always use the

globalPredationTimeOnMean value, and we simply change the number

of active global predators each turn. The progression would be something like:

1, 3, 6, 0, 3, 2, 3,1, 0, 5, etc

> -(void) reproduceWithMom: (Organism *) mom Dad: (Organism *) dad

Usage - create a new baby object

1. figure out where to be born (random location in mom's habitat) move it there (ask

the grid to move it)

3. ask the baby to be born from the given mom and dad.

> -(void) buildPopulation

Usage - build the populations of various resources and organisms

1. Build the resource types, then build individual resource agents at each cell.

2. If specified, create and initialize the global predators. They are created as ordinary

organisms for simplicity. They will, however, be treated a little bit differently by

the model. They are not added to all of the model lists that regular organisms are.

Note that we will always create a global predator species object and that species

number 0 will always be reserved for the global predator. This is true even if the

user specifies that there are no global predators. It simplifies life for coding the

rest of the model if we can always start at species number 1 for all other organism

species.

55

 L

. LIL



3. build the "normal" organism species objects and set up the diet for each species.

Note that all organisms of a particular species have the same diet.

4. Add organisms of each species and place them randomly through the world.

In this chapter, I presented how DOVE incorporates various resources and organisms,

and organizes their interactions. I explained two main classes in the ecosystem:

DoveGrid2D class and Model class, both of which manage the interactions among

organisms and resources, which finally lead to the emergence of the global pattern

behaviors of the ecosystem.
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7. Experiments and Analysis

7.1 Overview

We have conducted some preliminary experiments to study phenotypic plasticity and

trait-mediated interactions. In order to validate our approaches in DOVE, including

agent-based modeling and genetic algorithm, in the designing of the DOVE, we

performed a preliminary experiment, in which we examine a simple system with a

resource species, a consumer species that could evolve, and a global predator. . Using this

system, we can examine the behavioral responses of a consumer species to changes in

predator density and analyze these results caused by phenotypic plasticity.

Before the experiments, we have a hypothesis on the phenotypic plasticity. We believe

that phenotypic plasticity will evolve in species faced with trade-offs between predation

risk and energy gain in a dynamic environment. Therefore, the species evolving by

phenotypic plasticity will have a competitive advantage over the species that cannot

modify phenotype.

7.2 Experiments

We will examine the behavior of the consumer with two scenarios, in which the

consumer does, and does not, have a gene structure that allows the potential for

phenotypic plasticity to evolve. In both cases all other parameters are identical. The

resource is initialized and distributed evenly in the world, which is evenly divided into

two habitats. We also set up the habitat attributions in the parameter files. In our setting,
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the top habitat is fertile but more dangerous for the prey organisms, while the bottom

habitat where resources are growing relatively slow provides a safer environment to the

prey organisms evading the threats from predators. The presentation or absentation of the

global predator is scheduled by a random generator, which thus brings in the change of

the predation risk that the prey organisms can observe. The detailed parameter setting of

the following experiments are in Appendix E.

7.2.1 Phenotypic plasticity and Behaviors Evolution

First consider the case in which the behavioral reactions in the prey organisms

have the propensity to develop phenotypic plasticity. This is achieved by allowing the

consumer (i.e. prey) species to perceive the presence and absence of the predators, and

act in different ways respectively. Thus, the gene - “state matrix” of the prey species

defines two different probabilities sets of actions for different predation risk levels that

the organisms of prey species observe. If the ability to behave differently when the

predator is present and absent evolves, this would represent phenotypically plastic

behavior. Similar to natural organisms, the prey organisms in this experiment can evolve

through genetic evolution.

In this scenario, we have one global predator and twenty prey organisms initially,

and the resource in both habitats. Figure 7 illustrates the results at two distinct time

periods early (300th time step), and later(1200th time step), in the simulation. At both

times, an three figures show a “snapshot” of the world, Global predator presence VS.

Time graph, and Prey activities vs. Time graph.

In the former graph, when global predator appears, the blue line jumps to 1; while

global predator is absent the blue line goes down to 0. In the Prey activities vs. Time

graph, we can find four lines: the red, blue and yellow lines represent what percent of
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organisms in this species are feeding, sitting, and switching respectively. The green line

indicates what percent of organisms in this species inhabit in the top habitat.
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In this experiment, the population of the prey does exhibit phenotypic plasticity

through the genetic evolution. Comparing the screen shot (Fig.6. a) and graphs (Fig.6. b

and Fig.6. c) at 300th time step with the screen shot (Fig.6. d) and graphs (Fig.6. e and

Fig.6. f) at 1200th time step, we can see a clear gene-select process, in which a larger

percent of the organisms chooses the lower and safer habitat when the predator presents,

and more organisms are back to the fertile habitat to feed while predator is absent.

Through the activity history shown in prey activities graphs (Fig.6. c and Fig.6. f), we can

see that the evolving of organisms’ behaviors gradually selects for the organisms that

respond more quickly to the change of the predation risk. This trend indicates that the

organisms that display a strong phenotypic plasticity and response to the change of the

predation risk more promptly have a competitive advantage over those organisms that do

not modify phenotype or have a weak phenotypic plasticity for the change.

7.2.2 Without Phenotypic plasticity

In order to examine the role of phenotypic plasticity, I next conduct another

experiment, in which all parameters are the same except that there is no potential for

phenotypic plasticity among prey organisms. We “turn off” phenotypic plasticity of prey

by setting the number of the predation risk level to 1. Because the gene - “state matrix” of

the prey species defines only a single probabilities set of actions for different predation

risks (predator is present or absent), the prey organisms lack the ability of phenotypic

plasticity to behave differently when the predator is present and absent, even though they

can evolve through genetic evolution. The results of the experiment without phenotypic

plasticity are shown in Figure 8.
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Figure 8. Experiment without phenotypic plasticity

Initially, the probability of being on the top is 50%, and the probability of doing one of

the 3 actions is 33% (Fig. 8c). But over time, the consumer evolove a stategy the

optimizes their behavior given a changing predator density: only in this case, it is a

constant behavior. After 1000 steps, the population of the preys without exhibit

phenotypic plasticity does not display a behavior adaptation with the fluctuation of the

predation risk, because they can not perceive the presence of predators. The activities of

the prey population that were randomly initialized evolve under the predation pressure
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posted by predator, even though they can not sense the change of the predation risk.

Because predators have different probabilities to eat preys taking different actions and

feeding actions make preys more vulnerable, no all organisms are doing feeding action

even though they can not sense the danger from predators. Also because predators have a

much better chance to catch preys in the top habitat, preys that inhabit in the top habitat

are generally fewer than those in the bottom habitat.

As we demonstrated above, these experiments demonstrate that digital organisms can

evolve phenotypic plasticity with the DOVE platform. Moreover, the success of the

experiments validates the interdisciplinary approaches, e.g. agent-based modeling, we

adopted in the designing of the DOVE. Next, the ecologists can use this platform to

perform experiments examining how phenotypic plasticity will effect population and

community structure and dynamics.
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8. Conclusion and Future Work

8.1 Conclusion

This thesis discusses the design and implementation of a computational ecosystem -

DOVE, to study phenotypic plasticity and trait-mediated interactions among digital

organisms. It also covers some experiments on the dynamics of food web, and reaches

several hypotheses about the impacts of phenotypic plasticity in feed webs. Later it

provides a user manual and parameter profiles explaining parameter settings to construct

dynamic and complex food web and conduct large-scale simulations using Drone tool.

The main contributions ofmy research and this thesis are the following:

1)

2)

Aid by Dr. Peacor’s guide and advice, I worked with other researchers and helped

implement a computational system that addressed the shortcomings of traditional

approaches. Because traditional modeling techniques are insufficient to address the

complexities associated with phenotypic plasticity and trait-mediated interactions

in natural systems, our researches in DOVE propose a bottom-up approach to

understand the dynamics of ecological communities and uncover complex and

functional relationships associated with phenotypic plasticity.

In DOVE, we exemplify the capabilities of computational methodologies and

approaches in interdisciplinary research. We adopted several inter-related

computational methodologies and approaches, including agent-based modeling,

genetic algorithm, to emulate individuals’ behaviors and dynamic environments.

Thus, ecologists can manipulate various levels of dynamic complexities of

63



ecosystems with great flexibility, and study phenotypic plasticity and its

consequences efficiently.

8.2 Future Work

In current version of DOVE, we assume that the genetic evolution happens in the

sexual reproduction and the behaviors of an organism do not change during its lifetime.

This is true for many low-level consumer species. However, if we consider the complex

ecosystems having some highly intelligent species, this assumption is probably not

applicable. Therefore, I suggest incorporating other learning and behavioral approaches

to address this issue. For example, we can use Bayesian Network to emulate the learning

process of natural organism, so that digital organisms can learn from their experiences

and become smarter by altering their behaviors accordingly. To incorporate those

learning and behavioral systems, we can build different interfaces in Intelligence class to

various kinds of decision-making “brains”. Such “brains” can either be hardwired in the

codes, or be linked as external components built in coding-free modeling tools, such as

Bayesian Network tools from Netica and Microsoft.

In dove, we apply the methodologies from computer science to propose a new

research approach in ecology. On the other hand, the research in biology or ecology also

presents the challenges and opportunities for computer scientists in many subjects, e.g.

the study of natural adaptation leading to genetic algorithm, and neural network hinted by

biology research. In DOVE, we present an interesting fact to the genetic algorithm

community: how to explain that the emulated implicit fitness mechanisms allow

organisms to evolve towards an optimal solution without specifying an explicit objective

function on system level. Traditionally, researchers employ the explicit objective function
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for the optimization purposes with definite goals (Goldberg, 1989, etc.). Some

researchers tried to model each predator-prey relationship into a static objective ftmction

so that multi-objective functions/optimizations may be applied to the ecosystem scenarios

(Laumanns M., Rudolph G., Schwefel H. P., 1999). However, for ecological systems that

we modeled in DOVE, we do not have prior knowledge about global preferences to

individuals’ behaviors before a simulation starts. Actually, all global patterns or

behaviors of ecological system emerge from relatively simple interactions among

resources and organisms. Therefore, we adopt a more general and implicit approach by

emulating the natural ecosystem and setting up some implicit fitness mechanisms, e.g.,

the interactions rules among species and resource requirement for sexual reproduction.

Our preliminary experiments confirmed our hypothesis that under these implicit fitness

mechanisms, organisms can evolve towards optimal solutions without the users having to

specify an explicit objective function. From this perspective, I believe that emulating

implicit and characteristic rules, not formularizing global objective/fitness function, is a

more natural and appropriate approach to the research of complex systems in many

disciplines.
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Appendix A: How to Run DOVE

DOVE is built in SWARM development environment, and can run in Linux, or in

Window OS through Cygwin package. Following the SWARM program standard, DOVE

has all commands and parameters of SWARM programs. Among these standard

command line parameters, the most useful is:

-b or -batch Run in batch model

In batch model, Instead of putting up fancy graphics, batch DOVE read data from files

to control the model and write the data out to other files for analysis.

An important feature of DOVE is that we use UM-ExpTools4 objects to make it

easier to add and process run time parameters, to get random variants in replicable ways,

all of which will make it easy to use Drone package. To use the parameter options from

UM-ExpTools4, users need add —D with the sub-parameters of global and

resource/species parameter profiles (we explained parameter setting later in this

appendix).

-D, --drone-param=PARAM Parameter from drone.

There are two classes of parameters:

1. Global parameters: is related to the global setting, such as world dimension,

habitats, import/export.

2. Resource and species parameters: is related to the specific parameters for different

species and resources.

These are read in from two different files, and (most of them) can be set on the run

command, to override defaults or values read from files.
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1. Global parameters

You can see them by running:

./dove -Dh

These include parameters inherited from the RParameters object in UM-ExpTools.

The bold abbreviation of parameters can be used with —D to override the default value

in command line. We will explain the details of global and resource/species parameters in

Appendix B.

reportFileNarne (RFN) = report

reportFileNameSuffix (RN) =

reportFrequency (RF) = l

outputDirName (OD) = .

stopT (T) = 4

seed (8) = O

inputFileName (IF) = rparametersin

rDebug (D) = 0

And these include parameters specific to Dove, but which are "global", i.e., not

related to particular Resources or Species.

worldXSize (X) = 40

worldYSize (Y) = 40

yDivider (yD) = 10

numResourceTypes (R) = l

homogeneousResource (hR) = 0

antiExtinctionSteps (aES) = 20000
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topToBottomMultiplier (tTBM) = 3

maxGlobalPredators (mGP) = 1

pannFileName (pFN) =

importFileName (iFN) = import.pop

exportFileNarne (eFN) = export.pop

importOrganismCount (iOC) = 50

exportPopAtEndFileName (ePAEFN) =

All the global parameters can be set in the input file (via the -DIF= parameter),

and/or on the run-time command. For example

./dove -b -DIF=parametersO.in -DT=50 -DyDivider=20

tells dove to read parameters from the file parametersO.in but then overrides the T

(stopT) and yDivider values as indicated. (The -b tells it to run in batch mode.)

Note all the global parameters are written to the start of the report file, in a format

that can be used as input, for example, suppose you did a run and had a report file named

"report". You can re—run a particular run including the seed Via

.ldove -b -DIF=report -DRN=rerun0

This will produce a report file named report.rerun0, (If the run is producing species

specific output in the Species files, it will also append the RN (run number) to those file

names, too.)

2. Resource and Species (Organism) parameters.

These are parameters specific to particular Resources or Species, as specified in the

RESOURCE and ANIMAL blocks.

There is a global parameter that tells dove the name of the file that contains these:
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parmFileName (pFN) =

So for example,

./dove -b -DT=19 -DpFN=parfile0.txt

tells dove to use defaults for global parameters, except stopT (T) = 19, and to read

Resource/Species parameters from the parfile0.txt.

There is also a parameter which can be used to override parameters in specific

Resource or Species objects. This is for use on command lines, e. g., for Drone to use,

overRide (OR) =

For example:

./dove -b -DT=19 -DpFN=parfileO.txt —DoverRide = Species.Bluegill.MoveRadius = 2

tells dove to run in batch mode, with a stopT of 19 steps, using default global

parameters, but reading in the Resource and Species parameters from the file parfile0.txt,

but overriding the value of MoveRadius to set it to 2, for the Bluegill species.

Appendix B: Parameters Setting

1. Global Parameters

0 worldXSize: This reads in an integer that defines the size of the X dimension for the

world

0 worldYSize: This reads in an integer that defines the size of the Y dimension for the

world

- yDivider: This reads in an integer that defines where the top habitat ends and the

bottom begins. If the goal is to run the system with one habitat set the yDivide to one

higher than the worldYSize.
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- numResourceTypes: This reads in the number of resource types defined in

Resource/Species parameter files. DOVE allows multiple types of resources to grow in

the same cell.

0 antiExtinctionSteps This reads in an integer which defines the number of steps

before the anti extinction is turned off. This is used to allow populations to evolve but

then seeing if they will eventually go extinct. Currently all species will have anti

extinction turn off at the same time.

0 topBottomMultiplier: This represents how much more likely an organism is to be

eaten on the top habitat versus the bottom habitat.

° maxGlobalPredators: This represents the maximum number of global predators in

the world.

0 globalPredationTimeOnMean This represents the average time before the number of

global predators change.

- globalPredationTimeOnVar This represents the variability in the time before the

global predators change.

0 globalPredationTImeOffMean This represents the average time that the global

predator is away after a global predator time.

0 globalPredationTimeOffVar This represents the volatility in the time that the global

predator is away after a global predator time.

0 globalPredatorDietNames This is a list of all the resources and organism species that

the global Predator cats.

0 globalPredatorDietProbs This represent the probability of the global predator eating

the organism and resource species listed in the globalPredatorDietNames attribute. The

70



probabilities represent the chance of the global predator eating prey based on the different

actions the prey is doing. If the diet entry is a resource there will only be one number, if

the diet entry is an organism there will be between two and three percents.

° globalPredatorTraceOn: This indicates whether DOVE will trace the global predator

activities and put the results in file for analysis purpose.

0 parmFileName: This is a string variable that holds the default name of the

Resource/Species parameters file.

0 importFileName: This is a string variable that holds the default name of the import

file.

° exportFileNarne: This is a string variable that holds the default name of the

exportfile.

- importOrganismCount: This reads in the number of the organisms that will be

imported in the initial phase of program execution.

0 exportPopAtEndFileName: This is an optional parameter for the suffix name of

population file(.pop). Using this parameter will cause exports at the end of each run.

2. Resource/Species Parameters

0 Resource

For all of resource definition variables, there should be one entry per resource. This

means that if there are two resource types the Names should be entered like: ”Clover,

Grass”.

0 Names: This is a list of resource names.

0 SizesX: This is a list of the size of the resource patch. As a default (and in most

cases) it should be set the same as wolrdSizeX. It would be set differently if for instance
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there was a reason to want part of the world to have more or less resources than the other.

This is likely to not occur but may make further enhancements easier later.

0 SizeY: This is a list of the sizes of the resource patches. As a default (and in most

case it should be set the same as worldSizeY. See worldsizeY for more in depth

description.

0 InitialTopValueMean: This is a float that describes the mean value for the initial

resource on the top. It should be listed for each resource.

- InitialTopValueVar: This a float which represents the variance of the initial resource

level on the top habitat. It should be listed for each resource.

0 InitialBottomValueMean: This is the same as resInitValMeanTop but for the bottom

habitat.

° InitialBottomValueVar: This is the same as resInitValdDevTop but for the bottom

habitat.

° GrowthRateTop: This is the growth rate at which the resources on the top grow each

step. It should be listed for each resource.

0 CarryCapacityTop: This is the maximum resource level on the top. It should be listed

for each resource.

0 GrowthRateBottom: This is the same as resGrowthTop but for the bottom habitat

- CarryCapacityBottoszhis is the same as resCarryTop but for the top habitat

0 Animal

For all of resource definition variables, there should be one entry per resource. This

means that if there are two resource types the Names should be entered like: ”rabbit,

hamster”.
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0 Name: This is where the names of each organism is entered. It should be listed for

each species.

0 Number: This variable represents the number of organisms at initialization per

species. It should be listed for each species.

0 orgTraceOn This variable represents whether the trace is on or off (l=on). The

organism trace prints a file for each organism that includes its actions at each step, its

gene and its reproduction history. It should be listed for each species.

- MoveRadius: This variable represents the radius (how many cells) the organisms can

move in one time step. A directly diagonal cell is still considered one space away.

moveRadius should be listed for each species.

0 EatRadius: This variable represents the radius around which an organism can eat. If

the radius is set to 0 it means an organism can only eat on its own space. A directly

diagonal cell is still considered one space away. eatRadius should be listed for each

species.

0 SwitchOn This is currently not used and should be removed.

0 InitialAgeMean: This represents the average age that an organism has when the

population is created. It should be listed for each species.

° InitialAgeVar: This represents the variance of the age that organisms receive when

the population is created. It should be listed for each species.

0 DeathAgeMean: This represents the average maximum age that an organism can

attain before dieing of old age. It should be listed for each species.

0 DeathAgeVar: This represents the variance in the maximum age that an organism

can attain before dieing of old age. It should be listed for each species.
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° DeathProb: This represents the death probability that is causes by Situations other

than aging or predation.

- InitialResource: This represents the resource that the organism has when they are

born and after they reproduce. It should be listed for each species.

0 ReproductionResource: This represents the resource level needed for an organism to

reproduce. It should be listed for each species.

0 StepLoss: This represents the amount of internal resources that an organism loses

each step. It should be listed for each species.

0 NumActions: This represents the number of actions that an organism can perform. If

it is set to one it can only sit. If two it can sit and feed. If three it can sit, feed and switch.

It should be listed for each species.

- NumPredRiskLevels: This represents the number of different predator risk levels the

organism can observe. It should be listed for each species. Associated parameter

HighPredRiskLevel indicated the largest value of Predator Risk Level.

0 NumFoodLevels: This represents the number of different relative resource levels that

the organism can observe. 1 means do not use, 2 means look at whether the resource is

higher or lower than what we have seen recently. It should be listed for each species.

- NumHungryLevels: This represents the number of different internal resource levels

the organism can observe. It should be listed for each species.

0 Relative Resource Level: This measures how high the resources/food are compared

to HighAvailResLevel.

- HighAvailResLevel : This defines the highest resource on an absolute scale.
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- FoodMemory: This defines how many steps organism can memorize about the foods

that it observed.

0 AntiExtinctionOn: This represents whether anti-extinction is on or off. 1 is on. It

should be listed for each species.

0 AntiExtinctionNumber: This number represents the threshold of Anti—Extinction. If it

is less than the anti extinction number then each creature is cloned a certain number of

times.

0 AntiExtinctionMultiplier: This is the number of organisms that get cloned for each

organism if anti-extinction is used. It should be listed for each species.

0 FindBestEatSpotProb: This represents the chance that an organism will find the best

spot to feed if feed is the chosen action. If it is set to 1 then the organism would always

move randomly. FindBestEatSpotProb should be listed for each species.

. - MutationProb: This represents how often a gene mutates. It should be listed for each

species. ‘

- MutationMean: This represents the average change in a gene when it is being

mutated. It should be listed for each species.

0 MutationVar: This represents the variance of the change in a gene when it is being

mutated. It should be listed for each species.

- DietNames: This is a list of all the resources and organism species that the organism

eats. It should be listed for each species.

- DietProbs: This represent the probability of the organism eating the organism and

resource species listed in the DietNames attribute. The probabilities represent the chance

of the organism eating prey based on the different actions the prey is doing. If the diet
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entry is a resource there will only be one number, if the diet entry is an organism there

will be between two and three percents.

- DietRefuge: This represents the percentage of the available resource that organism

can not eat at any cell.

EatPercent: This represents the percentage of the available resource that organism can

eat after DietRefuge mechanism. Thus, the resource consumed by organism is ( l-

DietRefuge) * EatPercent.

GeneticEvolution: This switch can turn on/off genetic evolution mechanism. That

means there is no gene mutation and recombination during reproduction.

DefaultImportFile: This is a string parameter which holds the default import file name

for this animal if GeneticEvolution is turn off. In this situation, instead generating new

gene sequence for offspring, DOVE will import a existing gene sequence from this file.

Appendix C: Import/Export

Importing organisms

A common way to run the model is:

1. Run it with par files that set up some resources, predators, prey after running under

these conditions for a while export the pops.

2. Restart, but load only the resources and predators, so that one can import the

organisms from the (end of) the previous run(s).

To do this, the "Org" parfile (loaded with parmFileName) must still specify:

- resources
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- species (ANIMAL) info for each species, including all to be imported at any time

in the run.

If animals are to imported, just start with number-0. For examples, the file should

have entries like

BEGIN ANIMAL

Name = Consumerl

Number = 0

END ANIMAL

This must be done because at the start of the run, when things like the global predators

are created, they must be able to find the species info for all prey listed for them,

including prey that will only be imported later in a run.

Export Results

Right now there are l + numSpecies‘output files. The default names are:

0 report -- the base report file.

It has the global parameters at the top, including date/time run, seed, etc. The name of

this is set by -DRFN=name and a suffix can be added via -DRN=nn, eg, -DRN=00

produces report.00. This file then contains one line per trme step with various

aggregate measures written on each line.

0 report-sp<dd> -- a file for each species, e.g. report-spOO, report-spOl, etc.

Each file contains detailed info about a particular species, one line for each time step.

Note the "report" part of the name is the same name as the base report file (from the
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RFN parameter), and the suffix is the same as on that base file, e.g. -DRN=00 will

produce report.00 and report-sp00.00 &etc.

o <name>.<rn>.<specName>.pop population files

<rn> is the runNumber and <specName> is the species name. The runNumber is the

same as the suffix added to report.* files, and is set by Drone for each run it does with

different RNG in a "case", and can be set on the run command with -DRN=x . These

files are produced at the end of batch runs when this parameter:

exportPopAtEndFileName (ePAEFN) =

is given a value, e.g. exportPopAtEndFileName=popAtEnd would produce (in batch

runs) files named popAtEnd.00.Cl.pop, popAtEnd.00.C2.pop, popAtEnd.01.Cl.pop,

popAtEnd.01.C2.pop, and so on, for two species, Cl and C2, for runs 00, 01 and so

on.

Appendix D: Using Drone Tool

Drone is a tool to run experiments. It makes it easy to:

c sweep parameters (1, 2, or more)

0 N runs for each case

0 organize data into output directories and files

0 automatically log experiments

0 easy to replicate a whole experiment, case or run

0 run on multiple machines at once

Basically, you have to tell drone, through a "control file"(.ctrl) which includes

0 what program to run
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0 how many runs to do

0 where to put the output

0 the basic (non-changing parameters)

0 any parameters to be varied across cases

0 comment for the log

We list most important parameters for DOVE as following:

0 Environment setting:

- rootDir: all your simulation output goes in directories under this directory.

- programDir: the directory that contains the program to run

- programName: the simulation program to run

- emailAddr: your email address to notify the completion of simulation.

- numRunS' how many runs to do.

0 Constant global and resource/species parameters

These are a set of "base values" that act as defaults. These are specified between the

begin input file

@begin

@end

end input file

The format is the same as the global parameters input via —DIF = parameter, as noted

earlier in Appendix B. (note that resource/species parameters are specified in a file named

in the global section).

0 “Sweep” parameters
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These are parameters to have values varied for the different "cases" of this experiment.

We can override the parameter values set as above, e. g.:

sweep yDivider 5 10 15

to have a set of runs for each Of those yDivider values.

We can also select world dimension by sweeping a pair of parameters like this:

sweep (X Y) (10 10) (10 20) (20 10) (20 20)

Now you are ready to run the experiment:

./drone-linux exp01.ctrl

drone will fire up and if all is well, it will (create if needed and) use these directories

expdata/ experiment-1 experiment-2 and etc for each run of drone with this rootDir

errorlogs/ look for files here if errors

logs/ info for doing re-runs if you want

Drone can allow DOVE to run on multiple machines at once. There are the instructions to

follow:

1. Get mmdrone:

mkdir ~/mmdrone

cd ~/mmdrone

cp ~mcharter/Drone/mmdrone .

cp ~mcharter/Drone/drone-linux .

2. Create .bashrc.drone and .bashrc.regular:

cd
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cp .bashrc .bashrc.regular

cp .bashrc .bashrc.drone

edit .bashrc.drone and change the line:

export PS1

to be:

export PS l="DRONEPROMPT"

3. Create control file as before except set this so it dishes out jobs:

useLocalHost = 0

4. Create hosts file, set this to point to the hosts file:

param hostDir = $rootDir/hostfiles

and set the name of the file the hosts are in:

param hostFile = hosts

so if the rootDir is lusers/mcharter/RePast/ABModel1/drone there should be a file named

"hosts" in /users/mcharter/RePast/ABModel1/drone/hostfiles with the list of hosts

5. Be sure this parameter is set thus:

param cacheIPAddresses = 0

6. open a terminal window and make the width large (150 chars or so), then do:

./mmdrone expl .ctrl

Appendix E: Experiment Profiles

The simulation parameters profiles for the experiments in Chapter 7 are list below:

Global parameters:

@begin
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reportFileName = report

reportFrequency = l

stopT = 50

rDebug = 0

worldXSize = 30

worldYSize = 60

yDivider = 30

numResourceTypes = 1

homogeneousResource = 0

antiExtinctionSteps = 10000

topToBottomMultiplier = 8

# set maxGlobalPredators to 0 to disable the present of Global Predator, 1 to enable

maxGlobalPredators = l

globalPredationTimeOnMean = 25

globalPredationTimeOnVar = 100

globalPredationTimeOffMean = 25

globalPredationTimeOffVar = 100

globalPredatorDietNames = (Consumerl,Consumer2)

globalPredatorDietProbs = ([0.001,0.006,0.004])

globalPredatorTraceOn = 0

# note we have to specify this full path for drone runs:

parmFileName = ./datlparOrg_2Hx2P_SF.in

exportFileNarne = export.pop
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@end

BEGIN RESOURCE

Name = Resource

SizeX = 30

SizeY = 60

InitialTopValueMean = 150.0

InitialTopValueVar = 15.0

InitialBottomValueMean = 150.0

InitialBottomValueVar =15.0

GrowthRateTop = 1.03

CarryCapacityTop = 400.0

GrowthRateBottom = 1.03

CarryCapacityBottom = 400.0

END RESOURCE

BEGIN ANIMAL

Name = Consumerl

Number 2 50

MoveRadius = l

EatRadius = 0

SwitchOn = 0

InitialAgeMean = 75
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InitialAgeVar = 5

DeathAgeMean = 300

DeathAgeVar = 0

DeathProb = .005

InitialResource = 60

ReproductionResource = 400

StepLoss = 0

NumActions = 3

NumPredRiskLevels = 2

HighPredRiskLevel= l

NumFoodLevels = 1

NumHungryLevels = l

NumAvailResLevels = 1

HighAvailResLevel = 400

FoodMemory = 0

AntiExtinctionOn = 0

AntiExtinctionNumber = 40

AntiExtinctionMultiplier = 1

FindBestEatSpotProb = 0.0

MutationProb = 0.1

MutationMean = 0.0

MutationVar = 0.1

DietNames = (Resource)
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DietPrObS = ([1.0])

DietRefuge = ([0.1])

EatPercent = ([035])

GeneticEvolution = l

DefaultImportFile = ./dat/Even l Hx2P.Consumerl .pop

END ANIMAL
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