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ABSTRACT

NONLINEARITY IN CENTRAL BANK INTERVENTION:

EVIDENCE FROM DM/USD MARKET

By

Jongbyung Jun

This dissertation consists of three empirical studies on the potential nonlinear-

ity in a central bank’s foreign exchange intervention and in the effects of interven-

tion on the exchange rate. One interesting result is that despite general acceptance

in the literature, a friction model which assumes a specific type of nonlinearity may

not be better than a linear model in explaining intervention behavior. However, a

more flexible nonlinear model, i.e. a threshold model, explains intervention better

than a linear model. A threshold model is also found to be useful in characteriz-

ing the conditions on which intervention becomes effective in countering excessive

exchange rate movements.

Under a floating exchange rate system, central banks do not intervene most of

the time although exchange rates are fluctuating continuously. A friction model for

intervention is based on a hypothesis that intervention occurs if the exchange rate

is highly unstable and does not occur otherwise. While previous studies accept

this hypothesis, without testing, as an appropriate explanation for the infrequency

of intervention, the hypothesis is tested in this study with official daily data on

intervention by US and German central banks. If the underlying hypothesis is

true, then an economic model built on it (a friction model) must explain the actual



intervention better than a model without such information (a linear model). As

reported in Chapter 1, however, the explanatory power of the friction model is lower

than that of a linear model in terms of the degree of correlation (R2) between the

observed amount of intervention and the fitted values. This result implies that the

core assumption of the friction model may not be true at least on a daily basis.

In Chapter 2, the test is about a similar hypothesis that a central bank’s reac-

tion to a low degree of instability is different from its reaction to a high degree of

instability. This assumption is weaker than the friction hypothesis in that a central

bank is allowed to react to small values, as well as large values, of the explana-

tory variables. The result is that a model allowing this type of regime-switching

(a threshold model) explains intervention significantly better than a linear model.

The relative frequency and average size of intervention are both larger on average

in a high instability regime than in a low instability regime.

The empirical results in Chapter 3 indicate that intervention can be effective

under certain conditions although not effective on average. First, when the size of

intervention is large enough to exceed a threshold, such intervention tends to be

effective. Secondly, intervention is effective when the short-run upward or down-

ward trend is not too strong to lean against. Finally, if central banks wait for

the right timing to break a trend driven by chartists or noise-traders, who make

short—term trading decisions based on technical trading rules rather than economic

fundamentals, such strategic intervention becomes effective.
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Chapter 1

The Friction Model And Foreign

Exchange Intervention

1.1 INTRODUCTION

A central bank does not intervene frequently under a floating exchange rate system.

In explaining intervention behavior of a central bank, therefore, it may sound

reasonable to say that an approach reflecting this infrequency of intervention must

be better than one ignoring such information. The purpose of this chapter is to test

a claim in the previous literature that a friction model, which can accommodate

the infrequency of intervention in a specific way, is better than a simple linear

model in explaining intervention under a floating exchange rate system.

Under a floating exchange rate system, an exchange rate is supposed to be

determined by market forces. However, many central banks occasionally have

intervened in foreign exchange markets by buying or selling one currency against

another. For the monetary authorities of the United States, i.e. the Department of

the Treasury and the Federal Reserve, the purpose of foreign exchange intervention

during the post-Bretton-Woods era has been “to slow rapid exchange rate moves



and to signal the US. monetary authorities’ view that the exchange rate did not

reflect fundamental economic conditions,” or in a simpler expression, “to counter

disorderly market conditions.” 1

In the light of the purpose of intervention, foreign exchange intervention can be

interpreted as a reaction by a central bank to disorderly market conditions. This

implies that there can be a stable relationship between a central bank’s intervention

and some measures of market conditions, which is sometimes called a central bank

reaction function. One interesting question about this relationship is whether it

has sufficient regularity to be called a function. Unlike the exchange rate, which

is determined by interactions among numerous buyers and sellers, intervention in

one foreign exchange market is determined by one or two central banks. While

the aggregated behavior of buyers and sellers in the market is likely to reveal some

regularity or stability, a central bank’s discretionary decisions on intervention may

be quite arbitrary. Hence the reaction function may not be clearly defined. One

reason for modelling and estimating a reaction function, therefore, is to investigate

if a central bank’s intervention behavior is consistent with the announced purpose

of intervention so that a reaction function exists.

One of the main challenges in specifying a reaction function is that it is very

difficult to find relevant explanatory variables. The announced purpose of in-

tervention seems to be reasonable as a general description of the US. monetary

authorities’ foreign exchange policy. As a practical matter, however, it is not spe-

 

1For more details, visit www.newyorkfed.org/aboutthefed/fedpoint/fed44.html.



cific enough to guide an empirical researcher who is interested in explaining past

intervention in terms of some measurable market conditions, or to guide a for-

eign exchange dealer who wants to make a prediction about future intervention.

Economic theories also fail to provide useful guidelines for empirical researchers

who want to find specific measures of ‘the rapidity of exchange rate movements’ or

‘the discrepancy between the market exchange rate and a certain equilibrium rate

based on fundamental economic conditions’. Not surprisingly, different empirical

studies rely on different measures of the disorderly market conditions.

Another challenge in specifying a reaction function is to find an appropriate way

of reflecting the infrequency of intervention. The variable measuring the amount

of intervention takes zero values for the majority of the observations, while the

explanatory variables are not zero, under a floating exchange rate system. This

implies a nonlinear relationship because the amount of intervention does not in-

crease or decrease approximately in proportion to the explanatory variables. One

way to proceed is to approximate this potential nonlinear relationship with a linear

model. This is the approach in Eijflinger, S. C. W. and A. P. D. Gruijters (1991).

Another way is to model the probability of intervention rather than the quantity of

intervention using a probit approach as in Baillie and Osterberg (1997) or a logit

approach as in Frenkel and Stadtmann (2001). If the interest lies in the quantity

of intervention rather than the probability of intervention, an appropriate model

may be a Tobit model. Humpage (1999) and Almekinders and Eijffinger (1994)

follow this approach.



However, a Tobit model takes either buying intervention or selling intervention,

one at a time but not collectively, as the dependent variable. If one wants to explain

both types of intervention simultaneously, then the friction model of Rosett (1959)

is an available specification for the nonlinear reaction function. This approach

allows us to use a data set where the two types of intervention are combined by

recording the buying amounts as positive numbers and the selling amounts as

negative numbers.

The friction model is an extension of a Tobit model, which is an appropri-

ate model if, among other things, the dependent variable can be regarded as a

continuous random variable that is restricted to be nonnegative and has positive

probability at zero. A friction model also assumes nonzero probability at zero

but the dependent variable is not restricted to be nonnegative. While a Tobit

model is closely related to a probit model,2 a friction model is closely related to

an ordered—probit model with two cut-points.3

Alternatively, a friction model with y as the dependent variable can be inter-

preted as a three-regime switching model with y > 0, y = 0 and y < 0 in each

regime. In this context, a Tobit model for time-series data is a regime-switching

model between a regime of y = 0 and the other regime of y > 0, while a linear

model is a one-regime model.

As an example, Rosett explains that the changes in the asset holdings (y)

 

2In a Tobit model, the dependent variable y is either zero or positive (y = 0 or y > 0). In a

probit model, the dependent variable is either zero or one (y = 0 or y = 1).

3In a friction model, there are three possible outcomes for the dependent variable, i.e. y < 0,

y = 0 or y > 0. If each outcome is recorded as y = —1, y = 0 and y = 1, then an appropriate

model is an ordered-probit model with two unknown thresholds.
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Figure 1.1: Friction model of Rosett

held by a certain class of investors may not respond to small changes in the yield

(:3) if the transaction cost exceeds the potential gains. The proposed relationship

between the two variables is illustrated in Figure 1.1. In this picture, y is insensitive

to a: when a: is relatively small in absolute value, i.e. between 91 and 92. This

insensitivity is called friction. Outside the friction area, the relationship is assumed

to be linear.

In the literature of central bank intervention, the friction model is used for the

first time by Almekinders and Eijflinger (1996). Their approach is followed by

two more recent papers of Kim and Sheen (2002), and Neely (2002). In Rosett’s



example, the source of friction is the transaction cost. In Almekinders and Ei-

jffinger (1996), the main source of friction is “small realizations of the explanatory

variables”. The implication of the latter is that the central banks let the exchange

rate float freely most of the time and intervene only if the exchange market is in

seriously disorderly conditions, which will be signaled by ‘large’ realizations of the

explanatory variables. Based on this assumption, they further claim that ordinary

least squares (OLS) estimator for a linear reaction function is biased and incon-

sistent while a maximum likelihood estimator (MLE) based on a friction model

suitably accounts for the infrequency and the resulting nonlinearity of interven-

tion.

These claims of Almekinders et a1. would be justified if there was an appropriate

size of friction area such as the interval between g1 and g2 in Figure 1.1. However,

if the friction area is too small or too large for a given sample, the advantage of the

friction model would be insignificant. These possibilities are illustrated in Figure

1.2.4 When the source of friction is the transaction cost as in Rosett’s example,

the friction area may be too small as in panel (a) in Figure 1.2. In the case of daily

intervention reaction function, because the amount of intervention is zero for 70%

or more of the observations,5 the friction area may be too large as illustrated in

panel (b) in Figure 1.2.

Given that the preferability of the friction model depends on the width of the

 

4While Figure 1.1 illustrates a positive relationship, the relationship in Figure 1.2 is negative.

For example, when the currency is appreciating rapidly, the central bank will intervene and sell

the currency.

5The Federal Reserve intervened on 137 days out of 651 (21%) between February 1987 and

October 1989, during which the central bank was relatively active in intervention.
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Figure 1.2: Friction models with different thresholds



friction area, it is necessary to test whether the friction model is substantially

better than a linear model as a central bank’s reaction function. However, the

previous literature has failed to provide such a test.

This paper, by contrast, employs a procedure for testing nonlinearity in which

the explanatory power of the friction model is compared with that of a simple linear

model. The explanatory power is measured as the squared correlation coefficient

of the actual quantities of intervention and their fitted values (R2).6

A simulation result reveals that R2 is a valid criterion for the comparison of

explanatory powers in that the friction model tends to have higher R2 than the

linear model when the true data generating process is a friction model with an

appropriate degree of friction. However, when the friction model is estimated

with real data, with the same explanatory variables and a similar set of data as

in Almekinders and Eijffinger (1996), R2 of the model turns out to be smaller

than the R2 of the linear model, implying that the friction model is not necessarily

better than a linear approximation of the reaction function in terms of explanatory

power. This result is robust to some, although not exhaustive, variations in sample

period and model specification.

To help understand this surprising result, Figure 1.3 depicts the official daily

intervention by the Federal Reserve against one of the measures of the disorderly

market conditions used in this paper and also in Almekinders and Eijffinger (1996).

The sample period is between February 23, 1987 and October 31, 1989. The

 

6This approach is explained in Wooldridge (2002, Chapter 16) with an example of a Tobit

model. The fitted values from the friction model are computed using the formula in Rosett

( 1959), which is re—derived in APPENDIX B of this dissertation in a clearer form.
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Figure 1.3: Federal Reserve daily intervention (Feb. 1987 - Oct. 1989)

amount of intervention is measured along the vertical axis. The horizontal axis

measures how much the Deutsche mark per US. dollar exchange rate (hereinafter

referred to as “DM/USD rate”) is away from its 7-day moving average in percent-

age. Each small circles corresponds to one observation and the multitude of circles

on the horizontal axis, i.e. zero amount of intervention, indicates that intervention

is relatively infrequent in the sample period.

Figure 1.3 is similar to panel (b) of Figure 1.2 so that the friction area, if any,

is large. In fact, more careful comparison reveals that the friction area is not

clearly identified with the given data. On the one hand, large realizations of the



explanatory variable do not warrant intervention. On the other hand, there are

many occasions of intervention on days with small realizations of the explanatory

variable. In addition, the figure shows that the Federal Reserve frequently sold

US. dollars (y < 0) in response to the depreciation of the currency (2: < 0),

while it is required to buy rather than sell US. dollars to counter the currency’s

depreciation. These facts imply either that this particular explanatory variable is

not a very good measure of the market conditions, or that the type of nonlinearity

in the data is quite different from the nonlinearity underlying the friction model.

The problem may lie in the inappropriate data frequency. When the data

frequency is daily as in this study, an underlying assumption is that the decisions on

intervention are made on a daily basis. This seems to be too strong an assumption

because it does not seem to be the responsibility of a central bank to maintain

market stability on a daily basis under a floating exchange rate system. Lower

frequency data, such as monthly or quarterly data, may reveal a clearer friction

area with the expected polarizing tendency of buying intervention to the left and

selling intervention to the right. The cost of lower frequency, however, is the

significant reduction of the sample size, which can be detrimental to the empirical

test for nonlinearity because each regime must have at least some observations.

Besides, information on daily or weekly variations in the amount of intervention is

lost in monthly or quarterly data.

Adding more observations over a longer sample period is not likely to be a

perfect solution either, due to potential structural breaks. For example, a certain

10



degree of disorderliness may be regarded as relatively small in one time period but

large in another time period. Also, the tolerance level of the monetary authorities

may depend on who the incumbent officials are. The inconsistency of the US.

intervention policy is demonstrated by the dramatic change in the frequency of

intervention around the Plaza Agreement in September 1985. While the US.

monetary authorities abstained from intervening despite the rapid rise of the US.

dollar sustained for about four years in early 1980’s, they actively intervened in the

last half of the decade. Since 1996, with another policy shift, the US. monetary

authorities have not intervened in the foreign exchange markets.7

From a long-run perspective, one may say that the underlying assumption of

friction model is consistent with the observed intervention behavior in that a central

bank tends to intervene when the market is in highly disorderly conditions and does

not intervene otherwise. However, from a shorter-run perspective, in particular on

a daily basis, there is not enough evidence that the friction model is better than

a simple linear approximation. After all, it seems to be quite difficult to find

appropriate measures of the market conditions so that the friction area is clearly

identified while at the same time decent number of observations are available in

each regime of the nonlinear model.

The rest of this chapter is organized as follows: In section 2, the two models

of central bank intervention, i.e. the linear model and the friction model used in

Almekinders and Eijffinger (1996), are explained. While only a brief description

 

7Humpage and Osterberg (2000) claims that one reason for the dwindled intervention by

the Federal Reserve since early or mid— 1990’s may be that the oflicials are unconvinced of the

effectiveness of intervention, particularly sterilized intervention.

11



of the friction model is given in the previous literature, the model is described in

detail in this section, including a comparison with a Tobit model, derivation of the

conditional mean function and interpretation of the parameters. In section 3, some

issues on checking potential misspecification of the model are discussed. Section

4 describes the set of data used in the empirical study and section 5 provides

estimation and test results. Section 6 offers a brief conclusion.

1.2 CENTRAL BANK REACTION FUNCTION

1.2.1 Linear Reaction Function

A linear model of daily central bank reaction function can be written as

yt =30+$t5r+m (1.1)

where yt is the amount of intervention on day t by a central bank, :rt is the 1 x k

vector of explanatory variables, Hg is the k x 1 vector of parameters, and at is the

error term. The amount of intervention is positive when a central bank purchases

the numeraire currency, which is the US. dollar in this paper, and negative when

the central bank sells the currency.

In order to make the estimation results comparable, art consists of the same

explanatory variables as in Almekinders and Eijffinger (1996). The first explana-

tory variable is the percentage deviation of the exchange rate from m-day moving

average. Denoting St as the spot exchange rate on day t, which is the DM/USD

12



rate, the percentage deviation is calculated as

devt = 100 [109052) — log (~71; ZSt_,-)] . (1.2)

i=1

The moving average is a proxy for the central bank’s target level of the exchange

rate, which is assumed to exist. Therefore, dam is a measure of how far the

exchange rate is away from the target level. The length of the moving average

is set to be seven (m = 7) in Almekinders et al., which is arbitrary but there is

no reliable guide in selecting the value of m. The empirical results with m = 50

as well as with m = 7 are reported in Section 5 in case the central banks have a

longer time horizon.8

The second explanatory variable, volt, is a measure of the volatility of the

exchange rate. This is the conditional variance of the log return of the exchange

rate estimated with a GARCH (1,1) model. Note that the estimated variance is

always positive while the dependent variable yt may be either positive or negative.

To correct this inconsistency, a sign is assigned to each of the estimated conditional

variance. The sign is positive on the days when the exchange rate is greater

than or equal to the market opening rate in New York on February 23, 1987, i.e.

DM/USD = 1.8255. Almekinders et al. use this specific exchange rate as the

proxy for the equilibrium level of the Louvre Accord on February 22, 1987.

volt is formally defined as

volt = Dtht, (1.3)

 

8Kim and Sheen (2002) use m = 150. This choice of moving average length is not followed in

this study because the corresponding series of dent does not pass a unit root test. See Chapter

2 (Section 2.2.1) for the unit root test results.
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where Dt is a dummy variable defined as

1 if St 2 1.8255,

Dt =

——1 if S; < 1.8255,

and the conditional variance ht is estimated with the following model of the ex-

change rate return series.

100 [log(St) — log(St_1)] = c + Vt, (1.4a)

Vt = htzt, Zt ~ N(0,1), (1.4b)

ht =w-l-a11/t2_1 +02ht_1. (1.4C)

Including an intercept, the generic form of the reaction function (1.1) can be

now rewritten as

yt = 330 + 361 devt—l + flrngIt—l + at» (1-5)

which can be estimated by ordinary least squares (OLS). Note that the explanatory

variables precede the dependent variable so that they are not correlated with the

error. Equation (1.5) is not necessarily a correct specification for a central bank

reaction function. It is likely that important variables such as lags of yt are omitted,

or the functional form is incorrect.9 However, in the absence of an agreed—upon

reaction function in the literature, this linear model serves as a benchmark in the

evaluation of the friction model.

 

9Since volt_1 in (1.5) is a generated regressor, in principle inference must reflect this. However,

this issue is ignored in this paper with the assumption that the central banks respond to the

estimated volatility rather than the true volatility because the latter is not observable to the

central banks.
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1.2.2 Friction Model

Tobit Models

A friction model can be interpreted as a combination of two Tobit models. Consider

a Tobit model as

212‘: xtfi + Eta 5t I 2:, ~ MO. 02), (1.6a)

yt = y? — 6+ if y; > 6+, (1.6b)

y, = 0 if y; 3 6+, (1.6c)

where y) and :rt are observable but y; is an unobservable latent variable. With the

assumption that art is a scalar, a set of data generated by this model is depicted in

panel (a) of Figure 1.4. In this simulation 6+ = 1.5, )8 = —1 and act is randomly

drawn from a uniform distribution between -5 and +5. at is randomly drawn from

a standard normal distribution. The sample size is 300. Note that yt is limited to

be nonnegative by (1.6b) and (1.6c).

In panel (b) of Figure 1.4, another Tobit model is depicted where yt is limited

to be nonpositive. This model can be written as

212‘ = M + Eta at | art ~ MO, 02), (1.7a)

y: = y? + 6‘ if y; < —5‘, (1.7b)

y, = 0 if y; 2 —6‘. (1.7c)

The diagram (b) is generated from the same simulated data on art and 5t as in

diagram (a). The parameter 6 maintains the same value of -1 but 6‘ is set to be

15



[a] Nonnegative Tobit [b] Nonpositive Tobit

y \ y

 

 

 

 

 

  
Figure 1.4: Simulation of Tobit approach

1. These two Tobit models are not necessarily symmetric around the origin since

t10
the intercepts may be differen although the slope coefficients are assumed to be

the same as B.

 

10To obtain a friction model by combining the two Tobit models, it is required that 6+ 2 —6‘.
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Figure 1.5: Simulation of friction approach

A Friction Model

By combining the two Tobit models”, a friction model is obtained as

y? = 27$ + 6:. arm ~ N(0,02), (1.8a)

y: = y: — 6* if y; > 5+, (1.8b)

yt = 0 if —6- S y; S 6”", (1.80)

31: = y? + 6’ if y; < —6‘. (1.8d)

Figure 1.5 illustrates this model using the same data set that has been used for

the two Tobit models in Figure 1.4. Note that the thresholds -6‘ S y; g 6+ in the

 

11It is not possible to combine the two models if B’s are not the same in (1.6a) and (1.7a)

because P(y > 0|x) + P(y < 0|;r) may exceed 1. See APPENDIX C for details.
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friction model are certain values of y: rather than some values of the explanatory

variable mt. If there is only one explanatory variable, defining the thresholds in

terms of y; is equivalent to defining them in terms of set. However, if there are

two or more explanatory variables, these two definitions will be different from each

other.

If 6+ = —6’ = 6, then yt = y: — 6 for any y; and the model becomes a

linear model. In this respect, the friction model nests a linear model. Then it

is tempting to test for nonlinearity with the null hypothesis H0 : 6+ = —-6‘

against an alternative H1 : 6+ > —6". If interest lies in testing for linearity versus

nonlinearity, then this is a valid test in that the test will reject the null hypothesis

of linearity when the true model is nonlinear.

However, as for the foreign exchange intervention, the infrequency of interven-

tion implies that the true model is not linear.12 A linear model of intervention

is just an approximation of the true nonlinear model. Given the nonlinearity of

the reaction function, a relevant question is whether the friction model, based on

a particular form of nonlinearity, is close to the true nonlinear model so that the

friction model is better than a linear approximation in explaining observed data

on intervention.

 

12If the true model is linear, then it is quite unlikely to observe y = 0 for 70% or 80% of the

sample.
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An Ordered Probit Model

If interest lies in the probability of buying or selling intervention rather than in

the amount of intervention, then the friction model (1.8) can be transformed into

a two-threshold ordered probit model.

y? = M0 + 6?, can ~ N(0,1), (1.9a)

yt =1 if 3;? > 62, (1.9b)

y: = 0 if —61 s y? s 52, (19C)

yt = —1 if y? < —61. (1.9d)

An interesting property of a Tobit model is that its parameters are closely

related to the parameters of a probit model as explained in Wooldridge (2002,

Chapter 16). Likewise, the parameters of a friction model are closely related to

the parameters of an ordered probit model. By comparing (1.9) with (1.8), it can

be seen that

y? = yi/a, 6? = at/a, (1.10s)

so = 5/0, 52 = 6+/a, 61 = r/a. (1.10b)

Therefore, it is possible to check roughly if the friction model is an appropriate

model by comparing the signs and sizes of the estimates with those of an ordered

probit model.
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1.2.3 Estimation and Hypothesis Tests

Estimation of atFriction Model

The parameter vector 0 E (B, 6+, 6',a) in the friction model of (1.8) can be esti-

mated by the method of maximum likelihood. The log-likelihood for observation

 

 

tis

€t(9;yt lint) =1(I/t > 0) -log [¢ (3” — 17f + 6+) #7]

+1(y, < 0) .log [a (3" _ ”f T 5-) m]

..(,._..e.i..[a(.-_w_rg:é:)_a(:ze;::)] a...)

where 1(~) is an indicator function, which is 1 if the expression inside the paren-

theses is true and 0 otherwise.13 Assuming that yt | art is independent for all

t = 1, . . . , T, the MLE of 0 can be obtained by maximizing 2(0) = 22;, my; 3,, l

m). With time series data, however, the assumption of independence may not be

appropriate.14 Then, MLE with 13(9) = Zthl €t(0;yt | art) should be interpreted

as the partial MLE (PMLE).15

13See APPENDIX A for the derivation of the log-likelihood.

1“Since 2:; does not include lags of yg, the latent variable model (1.8a) is not dynamically com-

plete. To compare the results with those in Almekinders and Eijffinger (1996), the specification

is maintained in the initial estimation. Then, results with additional explanatory variables are

reported later.

1"’More details about PMLE can be found in Wooldridge (2002, Chapter 13).
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For the ordered probit model (1.9), the log-likelihood of observation t is

M30, 5145mm I ft) = 1(yt = 1) '109 [1 - (IN—1150 + 52)]

+1(yt = 0) '109[‘1’(—Itfio + 52) - ‘N-Itflo - 51)]

+1(yt = —1)-logI<I>(—xtrio — 61)] (1.12)

Goodness of Fit

The usual formula of R2 for the linear model (1.5) is given as

 

T _ . 2

R3 = 1 _ rim/t 1102 (1.13)

where g}; is the fitted value of E(yt|zt), and 37 is the sample average of yt. Since the

friction model is a nonlinear model and it is estimated by the method of maximum

likelihood, (1.13) is not necessarily between zero and one. As an alternative, the

R2 for the friction model (1.8) is computed as the squared correlation of y) and

gt-l6

R2 2 . [ELIE/t - filfitr f (1 14)

’ [Zfzfiw — 3'02] [Zine — e2] '

Dropping the time subscript, E(y|:r) for the friction model17 is given as

 

E(yl$) = P(y > 0It) ° E(ny > 0&5) + P(y < Oliv) - 13(ny < 0,1?)

= [e (”5;”) (w — 6+) +e¢> (w ; 6+)]

_ [(1, (fl) (—xfl—6—)+0’¢(——x-fl—-£):l. (1.15)
0' 0’

  

 

l"Wooldridge (2002, Chapter 16) provides an example with a Tobit model.

1.,See APPENDIX B for the derivation.
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[8] Friction Model MLE [b] Linear Model OLS

 

 

  
Figure 1.6: Fitted lines by friction model and linear model

Therefore,

 
 _ [a ("xflg'6—) (—xBF—8‘)+&¢(_w;—6_)] (1.16)

where 3F, 5+, 8‘ and 6 are the maximum likelihood estimates.

OLS estimates maximize the R2 by definition while the MLEs do not neces-

sarily. Hence it is not necessarily true to say that the friction model is worse than

the linear model, even if the squared correlation coeflicient of y and y from the

MLE (R?) is smaller than the R2 from the OLS (Hg). Nevertheless, if the friction

model, including the normality and homoscedasticity assumption for the errors, is
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a significantly better specification than a linear model, then the MLE should beat

the OLS in terms of the R2 measure despite the intrinsic disadvantage. This is

illustrated in Figure 1.6, where the fitted lines are computed using the same data

in Figure 1.5. The diagram shows that the fitted line of the friction model MLE

is closer to the true lines than that of the linear model OLS.

As a more formal justification, a simulation result is reported in Table 1.1.

The simulation consists of 1,000 replications with the friction model of (1.8) as

the data generating process. In each replication, 651 observations on y in (1.8) are

generated using the same explanatory variables as in Almekinders et a1. ( 1996).

The true parameter values of the simulation are the estimates for the Federal

Reserve’s reaction function in the same paper (assuming symmetric response to

depreciation and appreciation). In summary, the model of the simulations is

y; = —107devt_1 — 3842201,-1 + at, e, ~ N(0, 2182), (1.17a)

yt = y: — 510 if y; > 510, (1.17b)

y, = 0 if —315 g y; g 510, (1.17c)

yt = y; + 315 if y; < —315. (1.17d)

The mean values of the maximum likelihood estimates from the 1,000 replica-

tions, as reported in the third column of Table 1.1, are close to the true values

in the second column. For a comparison of the explanatory powers of the friction

model and the linear model, the ratio of the R2 from the linear model OLS and

the R2 from the friction model MLE is also computed in each replication of the

23



simulation. As reported in the lower part of the table, the mean value of the ratios

(123/R?) is less than 1 implying that the friction model gives greater R2 on aver-

age. Although there are cases in which the ratio exceeds 1, these cases are only 7

out of the 1,000 replications.

Table 1.1: Simulation results of the friction model

 

Variable True Parameter Mean MLE RMSE Bias
 

devt_1 -107 -106.53 14.28 0.47

volt_.1 -384 -385.40 36.03 .140

5+ 510 512.62 43.70 0.62

6- 315 315.58 30.89 0.58

a 218 216.40 14.53 -1.60
 

Number of replications: 1,000

Mean of 123/R}: 0250/0323 = 0.782

Range of rig/R}: 0.584 ~ 1.069

Cases of Rg/R} > 1: 7 out of 1,000

 

Overall, the simulation result confirms that the R2 measures are reliable criteria

for comparing explanatory powers of the two models in that a friction model has

a substantially higher R2 than a linear approximation when the true model is a

friction model.

However, it is possible that the relative advantage of the friction model depends

on the parameter values. As a sensitivity test, Table 1.2 reports additional simu-

lation results with different values of the thresholds 6+, 6’ and the error variance

02. These parameters in the friction model play an important role in determining

whether y = 0 or not.18 From the left panel of Figure 1.5, it can be seen that the

 

18The slope parameters (5) also may affect the relative explanatory power of the friction model.
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number of observations with y = 0 will increase as 6+ and 6" get bigger because

more values of y* will lie between the two thresholds. Also, given 6+ and 6’, the

smaller the error variance the more observations will have y = 0 as more and more

values of y“ will be closer to the straight line of $6 and fall on the friction area of

(—6—,6+).19

Table 1.2: Average of R2’s with different parameter sets

 

 

 

 

0:100 0:150 0:218 0:250 0:300

5+ = 700 R3 0.149 0.158 0.162 0.163 0.158

6- = 400 R} 0.635 0.433 0.278 0.239 0.198

Average of ratio 0.238 0.377 0.604 0.705 0.822

(0) (1) (2) (22) (68)

6+ = 510 R3 0.270 0.266 0.250 0.242 0.223

6- = 315 12% 0.650 0.468 0.323 0.287 0.242

Average of ratio 0.417 0.575 0.782 0.851 0.926

(0) (0) (7) (24) (105)

6+ = 300 H? 0.533 0.474 0.394 0.360 0.307

5- = 200 R} 0.706 0.552 0.417 0.373 0.312

Average of ratio 0.756 0.860 0.947 0.968 0.985

(0) (0) (31) (104) (214) 
 

1) Number of replications: 1,000

2) Average of ratio =Z(R%/R?) /1000

3) In parentheses are the number of replications in which R? > R}.

 

In this sensitivity test, additional sets of parameter values are selected so that

both the case with the parameters larger than those in Table 1.1 and the case with

 

For the sake of simplicity, however, the slope parameters in the sensitivity test remain the same

as in Table 1.1. Also note that the explanatory variables are fixed in each simulation.

19The relationship between P(y = 0 I 3:) and P(y 51$ 0 | x) is illustrated in Figure A.1 of

APPENDIX A.
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smaller parameters are considered.

With the simulation results in Table 1.2, Figure 1.7 depicts the R; of the

friction model MLE and the R2 of the linear model OLS for three different sets

of the thresholds. In each panel, the three lines from top to bottom correspond

to the pairs of thresholds (6+, —o-)=(-200, 300), (-315, 510), and (-400, 700),

respectively.

In the upper panel, R2’s of the friction model are depicted against the five

values of the standard deviation of the error (a = 100, 150,218,250, 300) on the

horizontal axis. Regardless of the threshold levels, R; decreases as 0 increases.

Given a, R} also decreases as the distance between the two thresholds, 6+ — (—6— ),

increases.20

In the lower panel, R2’s of the linear model show a similar pattern. The top

two lines show that R? tends to be negatively related to both a and the distance

between the two thresholds. In the case of (6+, —6')=(-400, 700), R? is almost

insensitive to changes in 0.21

Compared to the three lines in the upper panel, the three lines in the lower

panel are farther apart from one another, which means that R? is more sensitive

to the changes in the thresholds than R} is. As the interval (——6_, 6+) increases,

both decrease but R? falls faster than R? does. On the other hand, the sensitivity

 

20From Figure 1.5, it can be seen that as the distance between 6*” and 6‘ gets bigger, more

values of y" fall on this interval. As a result, less observations have y 76 0 and it becomes more

difficult to predict y.

21In this case, R3 actually increases as 0 increases from 100 to 250 presumably because not

enough observations have y 516 0 when a is small relative to the distance between the thresholds.

However, once sufficient observations have y a6 0, R? begins to decrease with a.
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Figure 1.7: Sensitivity of R—squares
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Figure 1.8: Sensitivity of R-squares

to changes in error variance is larger in R; than in R3. That is, R} falls faster

than R? as 0 increases.

Consequently, the larger the error variance and the smaller the interval, the

smaller gets the friction model’s relative explanatory power. This is illustrated

in Figure 1.8, where the average ratio of 123/R; from the 1000 replications are

depicted. As represented by the tope line, the ratios are higher for smaller size of

the interval. Along the line, the ratio gets higher as 0 increases. In the extreme

case where the error variance is large and the thresholds are small (a = 300,

28



6+ = 300, 6‘ = 200), the average ratio of Rig/R} is close to one (0.985). Not

surprisingly, the OLS frequently gives a higher R2 than the MLE in this case (214

out of 1000).

Testing for Relative Explanatory Power
 

The simulation results indicate that R2 of the friction model may not be signifi-

cantly larger than the R2 of a linear model if the error variance is large relative to

the degree of friction (the distance between 6+ and -6_). Note that this is true

even if 6+ is significantly diflerent from —6', e.g. 6+ = 300 and —6_ = —200.

This finding is consistent with our earlier claim that testing 6+ = —6‘ with a like-

lihood ratio statistic is not a valid approach if what one wants to know is whether

the friction model explains the data significantly better than a linear model.

Alternatively, the strategy in this study is to directly test the null hypothesis

of R? _>_ R} against the alternative hypothesis of R? < R1"

H0 :33 2 R},

H1 :12? < R}.

Note that the null hypothesis is that the linear approximation of the reaction

function is as good as the friction model in terms of R2, i.e. in terms of the

correlation between y and 37. The alternative hypothesis is that the friction model

is significantly better than the linear approximation.

The test statistic F, is defined as

2 2

F, =L— R‘. (1.18)
1-R}
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Since F,- __<_ 0 under H0, H0 will be rejected for a large value of Fr. If H0 is not

rejected for a given sample, the implication is either that the friction model is

true but the nonlinearity from friction is blurred by a large error variance, or that

the nonlinearity in the reaction function is quite different from the nonlinearity

described by a friction model.

This statistic, if the numerator and the denominator are divided by the respec-

tive degree of freedom, is similar to the usual F statistic for a linear model. Note,

however, that Fr can be negative while usual F statistic is nonnegative, which

indicates that the distribution of Fr is likely to be nonstandard. Therefore, the

p—value will be computed by a parametric bootstrap with 1,000 replications. In

each replication, a sample of 651 observations will be generated in the same way

as in the previous simulation except that the parameter values for data generation

in each replication are set to be the maximum likelihood estimates. The p—value

is the number of replications where the F,» statistic from the replication is greater

than the F,- statistic from the estimation.

Interpretation of the Parameters
 

In the friction model of (1.8), if 6+ = —6— = 6 so that there is no friction and the

model is linear, then y = y* — 6. Moreover, if the intercept is zero ( = 0), then

y = y* . In the intervention context, assuming 6 = 0, y* can be interpreted as

the amount of intervention when the central bank attempts to counter any market

instability no matter how small it may be, which should be the case under a fixed

exchange rate system.
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Under a floating exchange rate system, the infrequency of intervention requires

6+ > 0 and —6_ < 0, and actual intervention takes place only if y* is above 6+

or below —6". Since the actual amount of intervention y always falls short of

the frictionless amount of intervention y*, instability remains in the market even

after an intervention. The limits of remaining instability are closely related to

the two thresholds 6+ and —6". Therefore, the values of these two thresholds

reflect the tolerance levels of the central bank. Note that these tolerance levels are

not in terms of the degree of instability, which is represented by the explanatory

variables 0:, but rather in terms of the amount of intervention (y*) as the central

bank estimates it to be required if the bank decides to eliminate that much of

instability.

In the linear model of (1.1) or (1.5), each element of fig has the interpretation

of the partial effect of the corresponding explanatory variable on the conditional

mean of y, i.e.,

aMylar)
——5—$j—— : 6);]. for J =1,...,k. (1.19)

In the case of the friction model, from (1.15),

—l(———-)(—)l63:]

flj on the right hand side of this equation can be interpreted as the partial effect

of an, on the latent variable y* (not on y) because from (1.8a),

0E(y*lx)

81:]-
: fij- (1.21)

In other words, 5]: is the amount of intervention if the central bank attempts to
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completely offset the effects of a unit increase in :rj.

_ + _, _ _

Since P(yt > 0 I xt) = 1_<I) (_fléi) and P(yt < 0 I (Ft) : (I>( It); 6 )9

the term inside the bracket in (1.20) is the probability of intervention given $.22

@(M)+<I>(:£—fia;§:)=P(y>0|:r)+P(y<0I:r)

a

= P(y 76 0|17). (1.22)

By plugging (1.22) into (1.20),

6E

#:ejrwom

= 5,- -[1— P0 = 0 I 4)]. (1.23)

The expected increase in actual intervention in response to a unit increase in

an explanatory variable is the same as the discounted level of frictionless partial

effect flj, where the discount factor is the probability of intervention which in turn

depends on the tolerance levels 6+ and 6‘. Since P(y ;£ 0 I 0:) < 1, the partial

effect on y is smaller than ,8.) in modulus.23

3E(y*|$)3E(y|x)
I— or, . (1.24)

61:]-  
<|fir|=|

 

In the linear model, the partial effect of an explanatory variable is constant. In

the friction model, however, the partial effect is not constant but depends on the

level of all the explanatory variables, which is also the case in a Tobit model.24 As

a corollary, it is not possible to compare the linear versus nonlinear partial effects

 

22See (A6) and (A.7) in APPENDIX A for the derivation of P(yi > 0 | 15;) and PW: < 0 I It).

23See Figure A.1 in APPENDIX A.

24This implies that interpreting the estimated coefficient of dev¢_1 as the expected amount of

intervention in response to a one percentage point appreciation of US. dollar, as in Almekinders

et a1. (1996), is not valid.
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unless .7: is given. On the other hand, it does not make much sense to directly

compare 65]. with B} because 6);]. measures the effect on 3] while 6]: measures the

effect on y*. flj will be always larger than [If]. in absolute value as illustrated by

flatter OLS fitted line in panel (b) of Figure 1.6.

1.3 ON DIAGNOSTIC TESTS

One of the critical assumptions of the Rosett’s friction model is that the condi—

tional distribution of the error is normal and homoscedastic. If this assumption is

violated, the MLE’s of the parameters can be biased. Therefore, it is important to

check normality and homoscedasticity. However, usual residual-based diagnostic

tests are not available for the friction model. In the linear model of (1.1), the error

term is

“t = yt - E(yt|l‘t) (1-25)

where E(yt|a:t) = 60 + xtflg. In the case of the friction model, from (1.8) and

(1.15),

5t =31? —$tfl

# yt - E(ytl$t)-

Therefore, the residual as an estimate of the error for observation t is not yt — gt,

where g, is given in (1.16).
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However, from (1.8),

5t = 3}; — ztfl + 6”" if yt > 0, (1.26a)

Et =yt—xtfl—6_ ifyt <0. (1.26b)

By substituting the maximum likelihood estimates for the parameters in (1.26),

we can get the residual ét if gt 74 0. If yt = 0, from (1.8a) and (1.8c),

—$tfl -- (I— _<_ Q S —$tfi + 6+. (1.27)

So, residuals are not obtainable if the amount of intervention is zero, although

interval estimates of the errors are obtainable by replacing the parameters in (1.27)

with their maximum likelihood estimates. We may try testing normality of the

errors only for the case of yt ¢ 0. However, nothing guarantees the normality of

this part of the errors. Testing for serial correlation or heteroscedasticity based on

residuals is not possible either.

1.3.1 Conditional Moment Tests

The problem related to unobservable residuals ét = y; — 17$ for these observations

with yt = 0 in the friction model is similar to the problem in a Tobit model where

ét is not observable if yt = 0. However, some diagnostic tests based on generalized

residuals or conditional moments are available for a Tobit model as in Pagan and

Vella (1989).

A similar approach may be applicable to the friction model. For example, if

the error truly has the standard normal distribution, then

30:?) = 0. (1.28)

34



For the linear model, the sample analog of this population moment condition is

T—1 :5"? z 0. (1.29)

Since ét is not obtainable in the friction model if y) = 0, (1.29) is replaced by

3A

T‘IEIE31(yt7£O)+E(e3Iy=0)-1(yt=0)Ia50. (1.30)

Note that (1.28) implies E [E(€‘t3 I yt)] = 0, and

Ere? l e = 0) = Eei l —6* < at < 6+)

3 (2 + air/Int) — (2 + b%)¢(bt)

9(th ‘- (Nat)

 (1.31)

where at EM and bt= id):25 The estimate E(5‘;3Iyt—— 0)18 obtained

by plugging the MLE estimates of a, 6‘, 6+ and H in (1.31).

Pagan and Vella (1989) provides a simple regression-based test procedure for

the moment conditions of a Tobit model with a random sample. When the assump-

tion of independent observations is violated, a robust estimator of the asymptotic

variance of the test statistic is available, albeit more complicated. It seems inter-

esting to design a test procedure for a friction model by extending the approaches

developed for a Tobit model. However, the main focus of this study is to compare

the relative explanatory power of the friction model against a linear model and the

extension is left for future research.

1.3.2 Friction Model with Student’s t-density

Another way to test for normality of the errors is to try using some other density

function as the likelihood function. By comparing the R2 measure of the maximum

25See APPENDIX D.
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likelihood estimation with normal density and R2 with some other density, it is

possible to indirectly test whether the normality assumption is appropriate.

The alternative distribution for the error considered in this study is the Stu-

dent’s t-distribution. This distribution allows fatter tails than normal distribution

which seems appealing in that observations violating the “leaning against the wind

hypothesis” 26 seem to be more frequent than implied by a normal density. In Fig-

ure 1.9, which is a duplicate of Figure 1.3, many observations of selling US. dollar

intervention (negative values of intervention) are on the days when the US. dollar

is undervalued (negative values of deviation), i.e. leaning with the wind rather

than against it. With lower frequency, the Federal Reserve buys US. dollars on

the days when the dollar is overvalued.

The frequent observations of these counterintuitive types of intervention, where

the signs of explanatory variables are inconsistent with the signs of observed in-

tervention, indicate either that the error variance is quite large, or that the error

distribution is severely leptokurtic.27 In this respect, it will be interesting to see

whether the observed data can be better explained by a t-density with a low degree

of freedom than by a normal density with a very large variance.

The probability density of a random variable t with 71 degrees of freedom28 is

_ I’((n +1)/2) 1

T M F(n/2) (1 + t2/n)(n+l)/2’

26This hypothesis implies that P(y > 0 I :1: < 0) and P(y < 0 | a: > 0) are high while

P(y < 0 | .7: < 0) and P(y > 0 | a: > 0) are low. See Figure A.1 in APPENDIX A.

27When the estimated P(y < 0 I a: < 0) or P(y > 0 I a: > 0) are unexpectedly high, it may also

imply that the explanatory variables are inappropriate.

28This density function is from Hogg and Tanis (1997 page 600).

 

f(t, n) —oo < t < oo (1.32)
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Figure 1.9: Intervention and deviation of DM/USD rate from moving average

where F(-) is the gamma function given as

CX)

I’(a) 2/ za—le—‘rdz, 0 < t. (1.33)

O

For the maximum likelihood estimation of (1.8) with EtIIEt having a Student’s

t-distribution instead of a normal distribution, the log likelihood of (1.11) should
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be replaced by

W) 2109130)]

=1(yt > 0) '109 [f(yt — 1'10 + 6+)]

+1(yt < 0) '109 [f(yt - xtfl — 6“]

+1(yr = 0) - log [F(—:rtfi + 5+) — F(—:rtB — (5‘)] (1.34)

where F() is the t-distribution CDF.

For the computation of the R2 measure, replace the conditional expectation of

(1.15) with

+ (w — 6“)2
 

E014) = For — 60073 — 3+) + "

 F(—r6—- 6”)(:rB+6”) — mow“). (1.35)

This conditional expectation exists if n > 1. Then, by plugging in the maximum

likelihood estimates, it is possible to get fitted values of y and compute the squared

correlation to compare it with the R2 of OLS or R2 of MLE with normal density.

If n S 1, this comparison is not possible because the conditional mean does not

exist.

1.4 THE DATA

The reaction functions of the two central banks are estimated separately assuming

that each bank makes decisions independently.29 Therefore, the dependent variable

yt can be either the Federal Reserve intervention or the Bundesbank intervention.

 

29This assumption does not necessarily rule out cases of joint intervention.
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Oflicial daily data on the sterilized intervention by the Federal Reserve and the

Bundesbank are used for yt. The net amount of US dollars (in millions) purchased

on day t is recorded as a positive number and the amount sold as a negative

number. The DM/USD exchange rate (St) is recorded at 9:30 in Paris on day t.

The data set is the same as in Baillie and Osterberg (2000) covering the period

between 1/5/87 ~ 1/22/93.30

The sample period is matched with that of the Almekinders and Eijffinger

(1996), which is from February 23, 1987 to October 31, 1989. Although their

sample on the exchange rate consists of three intra—day observations in Frankfurt

and four observations in New York while our sample consists of single observation

per day in Paris, the estimation results are turned out to be similar to each other.

One of the explanatory variable, i.e. the signed conditional variance of the

exchange rate volt as defined in (1.3) and (1.4), requires preliminary estimation

of (1.4). The MLE estimates of this GARCH(1,1) model are reported in the

second column of Table 1.3. They are quite similar to the two sets of estimates in

Almekinders et al., which are duplicated in the third and fourth column in Table

1.3.

In Figure 1.10, the Federal Reserve’s intervention is depicted against the signed

volatility volt_.1. Compared with the scatter plot against the deviation measure

devt_1 in Figure 1.9, the major difference is that there is no observation around the

origin. However, this is not due to friction but due to the fact that the minimum

 

30The author thanks Dr. Baillie for providing the data.
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Table 1.3: Estimated GARCH model for the DM/USD returns

 

Parameters Estimates Results in Almekinders et al.

Frankfurt rate New York rate

 

 

c 0.005 (0.187) 0.015 (0.650) 0.013 (0.540)

0.: 0.017 (2.349) 0.021 (2.770) 0.020 (2.830)

a 0.076 (4.124) 0.073 (4.470) 0.064 (4.130)

6 0.890 (42.128) 0.874 (31.510) 0.890 (34.830)

log likelihood -667.62 -649.34 ~684.79

skewness 0.11 0.04 -0.09

kurtosis 3.99 4.29 4.65

Q(12) 10.39 10.29 7.47

Q2(12) 10.30 20.63 6.88

 

* Number of observations: 651

* t-statistics are in parentheses (heteroskedasticity consistent).

* 5% critical vlaue for Ljung—Box Q-statistics is 21.03.

positive and the maximum negative values of the volatility measure are away from

zero. In other respects, both diagrams are quite similar to each other. These

diagrams suggest that the core assumption of the friction model may not be true

at least in its strict form. Above all, zero values of intervention are observed not

just over a subset of each explanatory variable around zero but rather spread over

the entire range. Also note that nonzero values of intervention are not clustering

around large realizations of the explanatory variables but rather many of them are

observed when the explanatory variables take small values. Furthermore, there is

no clear tendency of proportionate change between y and 3:, which implies that

the adopted explanatory variables may not be relevant measures of the disorderly

market conditions.31

 

31Unlike dev¢_1 in Figure 1.9, the sign of vol¢_1 is mostly consistent with the “leaning against

the wind hypothesis” implying that the proxy of the equilibrium exchange rate of the Louvre
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Figure 1.10: Intervention and volatility of DM/USD rate

1.5 ESTIMATION RESULTS

1.5.1 Federal Reserve Reaction Function

Table 1.4 reports the estimation results for the reaction function of the Federal

Reserve. The OLS estimates of the linear model (1.5) are in the second column,

while the maximum likelihood estimates of the friction model (1.8) are in the third

column. The maximum likelihood estimates of Almekinders and Eijffinger (1996,

column (3) in Table 2) are reproduced here in the last column for comparison.

 

Accord (1.8255 deutsche mark per US. dollar) may be a better target rate than the 7-day moving

average.
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Table 1.4: Federal Reserve reaction function

 

Variable Linear-OLS Friction-MLE Almekinders et al.2)

constant -16.94*** (-5.22)

devt_1 -18.16*** (-3.96) -77.62*** (-4.22

(-

 

-106.91*** (-8.76

 

   

) )

volt_1 -45.89*** (7.68) -285.13*** 9.00) ~383.92*** (8.46)

6+ 506.59*** (10.82) 509.97*** (10.61)

6- 342.33*** (10.09) 315.47*** (9.58)

a 85.83 271.11*** (12.61) 218.51*** (14.51)

log L -1171.98 -1168.40

(~3820.75)3)

R2 0.114 0.092
 

1) t-statistics in parentheses (*** Significant at 1% level).

2) From Almekinders et al (1996, Column (3) in Table 2).

3) With the restriction of 6+ = —6".

All estimates of the linear model and the friction model are significant at 1%

l32 and have expected signs. The estimates and t-statistics in the third columnleve

are quite similar to those in the last column. This similarity implies that the data

and estimation procedure of this study are similar to those in Almekinders and

Eijffinger (1996).

The OLS estimates in the second column are much smaller in size than the

maximum likelihood estimates. As discussed in section 1.2.3, this is because the

OLS estimates are the partial effects of the explanatory variables on the expected

amount of intervention E(ny), while the ML estimates are the partial effects on

E(y*I:r) which is the expected amount of intervention when the central bank wants

to completely remove market disruptions.

 

32'1’he t-statistics are based on a robust variance estimate.
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Table 1.5: Estimated partial effects of Federal Reserve’s intervention

 

Variables OLS MLE(devt_1gO) MLE(devt_1 >0)

devt_1 -18.16 -24.08 —11.31

volt_1 -45.89 -88.46 -4155

 

 

In Table 1.5 are the estimated partial effects of the two explanatory variables.

By comparing the second column and the third column, it can be seen that the

partial eflects for the friction model, which are evaluated at the sample means of

the explanatory variables given devt_1 g 0, are larger than the OLS estimates.33

The partial effects at the sample mean given devt_1 > 0 are in the last column,

which are smaller than the OLS estimates.

If the friction model of (1.8) is correctly specified, a test for linearity is equiv-

alent to testing if 6+ = —6—. From the log likelihoods reported in Table 1.4 with

or without the restriction, i.e. -1171.98 and -3820.75 respectively, it can be seen

that the test statistic is huge (LR = 2(—117l.98 + 3820.75) = 5297.54). The null

hypothesis of linearity is rejected in favor of nonlinearity, with the p-value close to

zero.

Nevertheless, as reported on the last row of the table, R2 of the linear model

(0.114) is larger than the R2 of the friction model (0.092). With H0 : R? Z R2
f

against H1 : R? < R2, the test statistic and the p—value are

_ R} - R? __ 0.092 — 0.114

"_1—R§_ 1—0.092

Prob(F,. > —0.024) = 0.998.

= —0.024
 

 

33Note that the sample means of dev¢_1 and 11011-1 are both close to zero so that the partial

effects evaluated at sample means of the two variables are not interesting.
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Figure 1.11: A histogram of F, statistics

The test fails to reject Hg with p-value close to 1, which indicates that there is

not enough evidence that the friction model explains the intervention behavior of

the Federal Reserve better than a linear model. Prob(Fr > ——0.024) is from a

parametric bootstrap of 1,000 replications. In each replication, 561 random errors

are drawn from N(0, 271.1) distribution and values of y in the friction model (1.8)

are computed with the estimated parameters and the fixed $.34 The histogram in

Figure 1.11 shows the frequencies of the 1,000 F,— statistics from the bootstrap.

In the upper panel of Figure 1.12, the fitted values of the friction model (3)}:

denoted by circles) are compared with those of the linear model (fig denoted by

the 45° line). The horizontal axis measures 9), i.e. the fitted values of the linear

model OLS. Most of the fitted values of the friction model are around the 45°

 

34R; is larger than R} in 230 replications out of the 1,000.
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line, meaning that the two models’ fittings are quite similar. The main difference

between the two sets of fitted values occur when :1)! S —80, i.e. for large selling

operations of $80 million or more.

For these observations, the fitted values of the friction model are below the

45° line (in the upper panel) but the actual amounts of intervention, y, are above

the 45° line (in the lower panel). As a result, when the fitted y by OLS is below

-80, the linear fitted values are closer to the actual amounts of intervention than

the fitted values of the friction model. This seems to be the main reason why the

friction model has lower R2 than the linear model.

Estimation with Ordered Probit Model

After transforming the data on intervention so that yt = 1 for buying intervention

and 3); = —1 for selling intervention, the ordered probit model (1.9) is estimated

with the likelihood in (1.12).

The estimates are reported in the second column of Table 1.6. All parameters

are significantly different from zero at 1% level. In the second column, the estimates

Table 1.6: Ordered Probit Model (Federal Reserve)

 

 

Variable Ordered Probit-MLE Estimates x 6 2) Friction-MLE

devt_1 -0.286*** (-4.02) -77.55 -77.62***

volt_1 -1.139*** (9.47) -308.88 -285.13***

5” 1384*“ (18-12) 510.86 506.59***

5' 1291*“ (17-06) 349.88 342.33***   
 

1) t-statistics in parentheses (*** Significant at 1% level).

2) 6 = 271.11 from Table 1.4.
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of the ordered probit model are multiplied by the estimated standard deviation of

the error of the friction model (6). As shown in (1.10b), these values must be

similar to the corresponding estimates of the friction model, which is reproduced

in the last column. Comparing the last two columns shows that this is indeed the

case.

The next table, Table 1.7, summarizes the predictive power of the ordered

probit model. Out of the three possible outcome, i.e. buying, no intervention, or

selling, the type of predicted intervention is the one with the highest estimated

probability. As shown in the third column, the model predicts 0 days of buying

operation and 18 days of selling Operation. The rest 633 days are predicted to go

without intervention. The fourth column shows how many times the predictions

are correct for each possible outcome. The last column reports the number of

days on which the predicted outcome is different from actually observed outcome.

None of the buying operations are correctly predicted and only 8 out of 101 selling

operations are correctly predicted.35

Table 1.7: Prediction by Ordered Probit Model (Federal Reserve)

 

 

y Observations Predicted” Correctly Errorz)

(A) Predicted (B) (C)

1 (buy) 36 0 0 36

0 514 633 504 10

-1 (sell) 101 18 8 93
 

l) 3); =1, 2’ = 1,0, -1, is predicted if yt = 1' maximizes P(yt I mt).

fiCzA—B

 

3’5The pseudo R2 is 0.15.
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This pattern of prediction is similar to the one implied by the estimated friction

model. In the case of the friction model, among the three types of intervention, the

estimated probability of buying, P(y > 0 I :r), is the highest on none of the days

in the sample. The probability of selling intervention, P(y < O I .r), is estimated

to be the highest on 12 days while P(y = 0 I 3:) is estimated to be the highest on

the rest 639 days.

Overall, both the friction model and the ordered probit model do not have

substantial power in predicting intervention. This result helps us understand why

the friction model is not significantly better than a linear model. The friction model

specifies both probability and quantity for each type of intervention. However, the

predicted direction of intervention (buy, sell, or do not intervene) rarely matches

the observed direction. Consequently, the friction model does not explain the data

better than a linear approximation.

Partially Asymmetric Reaction Function
 

One of the explanatory variable, devt_1, represents the distance in percentage be-

tween the exchange rate and its average during the previous 7 days. The exchange

rate is moving upward (appreciation of US. dollar against Deutsche mark) when

devt_1 > 0, and moving downward (depreciation of US. dollar against Deutsche

mark) when devt_1 < 0.

One implicit assumption underlying the estimation results in Table 1.4 is that

the Federal Reserve’s reaction is the same for appreciation and depreciation of

its currency. However, as shown in Figure 1.9, the central bank’s reaction may
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Table 1.8: Federal Reserve reaction function (asymmetric)

 

 

 

Variable Linear-OLS Friction-MLE Almekinders et al.2)

Constant ~17.66*** (-3.52)

pos.dev -17.13* (-1.80) -60.01* (-1.77) -121.55*** (-6.07)

neg.dev -19.14** (-2.47) -95.05*** (-3.03) -92.75*** (-4.74)

volt_1 -45.97*** (-7.65) -286.64*** (-9.03) -381.99*** (-8.37)

6+ 520.89*** (10.11) 493.70*** (9.56)

6‘ 329.46*** (9.14) 327.10*** (9.00)

0’ 85.90 271.01*** (12.64) 217.77*** (14.39)

log L -1171.70 -1168.03

(~3820.73)3)

R2 0.114 0.096   
 

1) t-statistics in parentheses (*, **, *** significant at 10%,

5% and 1% level, respectively).

2) From Almekinders et al (1996, Column (4) in Table 2).

3) With the restriction of 6+ = ~45".

be different depending on whether the US. dollar is appreciating or depreciating.

In order to take care of this potential asymmetry of reaction, Almekinders and

Eijffinger (1996) re-estimate the friction model with positive deviation and negative

deviation as two separate explanatory variables. Following this approach, the

estimation results for the asymmetric reaction function of the Federal Reserve are

reported in Table 1.8.

On the whole, the results are similar to the symmetric case in Table 1.4 except

that the estimated coefficient of positive deviation is slightly smaller than the

coefficient estimate of the negative deviation and not significant at 5% level (but

significant at 10% level) for both the linear model and the friction model. This

result is consistent with Figure 1.9 where selling as well as buying observations are
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frequently observed when the deviation is negative.

Fully Asymmetric Response
 

To see if other parameters as well as the slope coefficients for deviations are differ-

ent between appreciation regime and depreciation regime of the US. dollar, fully

asymmetric versions of the linear model and the friction model are estimated.36

The results are in Table 1.9. In the second and fourth column are the estimated

parameters when the daily exchange rate is at or below its 7-day moving average,

i.e. when the US. dollar is depreciating against Deutsche mark, for the linear

model and friction model, respectively.

Table 1.9: Federal Reserve reaction function (fully asymmetric)

 

 

 

 

Variables OLS MLE

H2 51 - 32 [32 [31 - B2

Constant -20.02* (2.78) 4.02 (0.40)

dev7t_1 -21.27* (2.19) 2.03 (0.14) -79.74* (2.31) 19.50 (0.37)

volt_1 -52.02* (-6.10) 11.98 (1.00) -352.77* (7.48) 123.98 (1.96)

15+ 471.80* (7.56) 83.07 (0.86)

5- 322.67* (6.69) 14.07 (0.20)

a 85.96 224.68* (10.33) 73.99 (1.93)

log likelihood -1164.76

R2 0.116 0.102
 

1) t-statistics in parentheses (* Significant at 5% level).

2) Number of observations: 651.

3) Parameters are 62 if devt_1 S 0, 61 otherwise.

Instead of the corresponding parameters when the exchange rate is above the

moving average, the differences of the parameters between depreciating regime and

 

36See APPENDIX C for details of the fully asymmetric model and the estimation strategy.
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appreciating regime are estimated and reported in the third and fifth column. This

method makes it easier to test whether the differences are statistically significant

or not. Both the linear model OLS and the friction model MLE indicate that

the differences are not significant at 5% level. As a result, there is not much

improvement in R2 compared to the symmetric or the partially asymmetric model.

Once again, however, OLS gives higher R2 than the MLE of the nonlinear model

(0.116 versus 0.102).

1.5.2 Bundesbank Reaction Function

The estimation results of both the symmetric and partially asymmetric cases for

the Bundesbank intervention are given in Table 1.10. The estimates are similar to

those for the Federal Reserve intervention.

Again, the likelihood ratio test for linearity rejects the null hypothesis of 6+ =

—6_ with the test statistic LR = 2 =1: (—1475.73 + 3997.40) = 5043.34 for the

symmetric model and LR = 2 :1: (—1475.30 + 3997.39) = 5044.19 for the partially

asymmetric model. The p-values in both cases are virtually zero.

However, the R2 measures of the ML estimation (0.088 and 0.091) are smaller

than those of the OLS (0.097, 0,097). Consequently, the H0 : R; Z R} is not

rejected with test statistic F,» = (0.088 — 0.097) / (1 — 0.088) = —0.01 and p—value

= 0.945. (303 out of 1000 replications in the bootstrap have R? > Rf') Also note

that the R2’s are somewhat smaller than those of the Federal Reserve reaction

functions.

The estimation results for a fully asymmetric model in Table 1.11 tell a similar
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Table 1.10: Bundesbank reaction function

 

 

 

 

Variable Symmetric reaction Asymmetric reaction

OLS MLE A—El OLS MLE A-E2

Constant -18.39* -19.06*

(—4.21) (-2.57)

devt_1 -30.61* -111.51* -79.77*

(-5.20) (-5.70) (-9.27)

pos.dev -29.66* -88.91* -55.07*

(-2.17) (-2.53) (-3.44)

neg.dev -31.52* -134.00* -103.56*

(-3.33) (-4.09) (~6.56)

000.1 -40.92* -207.83* -221.07* -41.00* -209.50* -224.96*

(-5.03) (—7.34) (-8.30) (-5.02) (-7.38) (-8.27)

15+ 500.67* 381.79* 519.22* 406.91*

(10.90) (12.13) (10.29) (10.94)

6‘ 303.20* 226.79* 286.78* 205.32*

(9.89) (11.65) (8.28) (8.99)

0’ 112.59 297.08* 196.32* 112.68 297.08* 195.69*

(12.53) (18.65) (12.52) (18.72)

log L -1475.73 -1300.18 -1475.30 -1298.70

(-3997.40) (-3997.39)

R2 0.097 0.088 0.097 0.091
 

1) t-statistics in parentheses (* Significant at 5% level).

2) Columns (4) and (7) from Table 2 in Almekinders et al.

story as that of the Federal Reserve intervention. One exception is that the esti-

mated difference for the slope of the conditional volatility is significant at 5% level.

On the whole, the reactions of the two central banks do not change significantly be-

tween depreciating and appreciating regime. Therefore, only the empirical results

of the symmetric models are reported in the rest of this paper.
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Table 1.11: Bundesbank reaction function (fully asymmetric)

 

 

 

 

Variables OLS MLE

32 31 - 32 32 31 - 32

Constant -14.09 (-1.59) -9.28 (-0.64)

dev7t_1 -27.66* (-2.56) 0.57 (0.03) -87.34* (-2.48) 25.64 (0.46)

601)-] -52.61* (5.27) 23.46 (1.43) -281.96* (6.46) 142.85* (2.42)

6+ 439.81* (7.46) 159.94 (1.66)

6‘ 323.54* (5.80) -66.57 (0.93)

a 112.64 269.18* (8.69) 41.91 (0.94)

log likelihood -1467.89

R2 0.101 0.099
 

1) t-statistics in parentheses (* Significant at 5% level).

2) Number of observations: 651.

3) Parameters are 52 if devt_1 S 0, 31 otherwise.

1.5.3 Hiction Model with Student’s t-density

As an indirect test for normality of the errors, Table 1.12 reports the results of

the friction model MLE with Student’s t-density. The estimates are much smaller

Table 1.12: Reaction functions with t-density

 

 

 

Variables Federal Reserve Bundesbank

Estimates (t-statistics) Estimates (t-statistics)

devt_1 -6.28* (-5.69) -1.49 (-1.66)

volt_1 -32.22* (-8.01) -4.61* (-3.62)

6+ 48.72* (9.27) 4214* (5.10)

6‘ 41.49* (8.36) 1030* (7.00)

degree of freedom 0.39* (31.07) 039* (29.09)
 

than the normal-density MLEs. They are even smaller than the OLS estimates.

The estimated degree of freedom (0.39) is less than unity. Therefore, the con-



ditional mean specified in equation (1.35) does not exist and we cannot rely on the

squared correlation measure to evaluate the explanatory power of this approach.

On the other hand, the small estimated degree of freedom indicates that the error

distribution has fat tails and the normality assumption of the friction model is

likely to be inappropriate.

1.5.4 With Additional Explanatory Variables

In Table 1.13, the estimation results for both central banks using other explanatory

variables are reported so as to see if the lower R2 of the friction model is due to

omitted variables problem.

Table 1.13: Reaction functions with other variables

 

 

 

 

Variables Federal Reserve Bundesbank

OLS MLE OLS MLE

Constant -12.59* (-3.85) -13.62* (-3.43)

dev50t_1 -7.37* (-4.59) -38.93* (-5.92) -12.20* (-6.06) -48.81* (-7.47)

volt_1 -20.70* (-3.84) -168.06* (-6.23) -7.48 (-0.93) -85.05* (-3.63)

intt_1 0.27* (5.03) 0.78* (7.18) 0.27* (4.40) 0.62* (5.52)

rett_1 3.94 (0.91) 13.70 (0.82) -1.30 (-0.21) -7.92 (-0.46)

6+ 478.64* (9.88) 461.22* (11.19)

6' 346.60* (9.96) 301.40* (10.20)

0’ 80.95 234.13* (11.22) 103.53 245.29* (12.98)

log L -1105.32 -l393.87

R2 0.234 0.211 0.258 0.234
 

1) t-statistics in parentheses (* Significant at 5% level).

2) Number of observations: 634.

Now the deviation variable is based on 50—day moving average of the daily

exchange rate. The underlying assumption is that the central banks look at about
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two-month average of the exchange rate rather than 7-day average when they make

decisions about whether to intervene, or about how much to buy or sell.

In addition, two more variables are added. The lagged dependent variable (lag

order 2 1) is added to make the latent variable model closer to a dynamically

complete model, hence reducing serial correlation in the errors. The log return

of the exchange rate on day t - 1 is also added to see if amount of intervention

reflects daily fluctuation in the exchange rate as well as deviation from longer-run

average.

Unlike Neely (2002), the exchange rate returns are not statistically significant

in any of the four cases reported in Table 1.13. In contrast, the lagged intervention

is significant and has the correct sign in all cases. All other variables are also

significant at 5% level except for the OLS estimate of the volatility variable in the

Bundesbank reaction function. The R2 measures are much higher now with the

additional variables, and OLS still beats the MLE for both banks.

1.5.5 With Extended Sample Period

To see whether the results change with different sample period, the sample period

is extended from that of Almekinders et al., i.e. 2/23/87 ~ 10/31/89, to 1/5/87

~ 1 /22/93. The sample size is more than doubled. The results are summarized in

Table 1.14.

In terms of included variables, there are three different models. In Model A,

the variables are the deviation of the exchange rate from its 7-day moving average,

and the signed conditional variance of the exchange rate, which are the same as
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Table 1.14: R2 with extended sample (1/5/87 ~ 1/22/93)

 

 

 

Federal Reserve Bundesbank

OLS MLE OLS MLE

Model A 0.081 0.065 0.062 0.056

Model B 0.227 0.186 0.213 0.171

Model C 0.226 0.186 0.213 0.169

 

1) Included variables are dev7t_1, volt_1 for model A,

dev50t_1, 000-1, yt_1 and rett_1 for model B,

d6050t_1, volt_1 and yt-1 for model C.

2) Number of observations: 1456 for A, 1413 for B & C.

in Almekinders et al. In Model B, the variables are the same as in Table 1.13

where the deviation is from 50—day moving average and two more variables (lagged

intervention and exchange rate return) are added. In Model C, the insignificant

return series are drOpped from Model B.

OLS of the linear model still outperforms the friction model MLE in all three

cases and for both central banks.

1.6 CONCLUDING REMARKS

The core assumption of the friction model is that the dependent variable is insensi-

tive to the changes in the explanatory variables over some range of the explanatory

variables. This assumption, albeit plausible, does not seem to be consistent with

the daily sterilized intervention data of the Federal Reserve and Bundesbank in the

DM/USD market. It is shown in this chapter that a friction model, as adopted in

Almekinders and Eijffinger (1996), is not better than a simple linear model in terms
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of in-sample explanatory power measured by the squared correlation coefficient of

the actual and fitted values of intervention.

Although it is yet to be seen whether the results of this study are robust to

further variations in sample periods and also in currencies, it seems doubtful that

the friction model can explain the intervention behavior substantially better than a

linear model as long as similar explanatory variables, particularly in terms of data

frequency, are used as in Almekinders and Eijffinger (1996). This is not surprising

in that it is not the responsibility of the central banks to secure an orderly market

on a daily basis under the free floating exchange rate system.

As pointed out in Neely (2000), intervention may be a highly political process.

Ito (2002) provides an example where the change of a key official dramatically

changes the intervention behavior of the Japanese monetary authorities. Further-

more, central banks may rely on more powerful policy measures such as monetary

policy rather than sterilized intervention, the effectiveness of which is at most un-

clear, when the instability in the foreign exchange market is too high to counter

with limited foreign reserves. In short, there is not enough evidence that supports

the friction hypothesis for foreign exchange intervention under a floating exchange

rate system, at least on a daily basis.
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Chapter 2

Threshold Nonlinearity In

Central Bank Reaction Function

2.1 INTRODUCTION

Although infrequency of foreign exchange intervention indicates a nonlinear reac-

tion function, it is shown in the previous chapter that the form of nonlinearity may

not be consistent with the one implied in the friction model of Rosett (1959). If the

friction model is a correct specification, then days of intervention (y ;£ 0) must clus-

ter around large positive or negative values of the explanatory variables while days

without intervention (y = 0) must be coupled with small values of the explanatory

variables. On the contrary, as seen in Figure 1.9 and Figure 1.10, observations

with intervention and observations without intervention are both scattered over

the entire range of the explanatory variables.

Decisions on intervention involve two stages. In the first stage a central bank

has to decide whether to intervene or not. If the bank decides to intervene, then

the next decision is about how much to buy or sell a currency against another.

As a reaction function, a friction model attempts to explain the two stages of
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decision-making simultaneously. The first decision depends on whether the degree

of instability in the market exceeds a certain threshold levels or not. Once a central

bank decides to intervene, the amount of intervention (amount of US. dollars

purchased against Deutsche marks) is in proportion to the degree of instability.

Albeit attractive, this model seems to be too specific about the form of nonlinearity

to be true.

As an alternative, a more flexible nonlinear model is considered in this chapter,

which is a threshold model a la Hansen (2000). As a modelling tool of a central

bank reaction function, a threshold model assumes that the expected amount of

intervention is in proportion to the explanatory variables but the parameters in

the conditional mean function, E(y I :r) = 0:5, may change depending on the level

of a threshold variable.

Assuming that the threshold variable is the same as the explanatory variable,

a three-regime threshold model is illustrated in Figure 2.1. Note that the slope

of the reaction function changes at the two thresholds in the figure, g1 and 92.

The underlying assumption of this threshold model is that a central bank’s re-

action changes depending on the level of the disorderliness measured by :5. It is

further assumed that the central bank becomes more sensitive to disorderly market

conditions when x is below g1 or above 92.

This univariate threshold model in Figure 2.1 is similar to its friction model

counterpart in Figure 1.5 in that both models are nonlinear but piecewise linear.

However, there are substantial differences between the two models. First, the

59



 

  

    
Figure 2.1: Threshold nonlinearity in a reaction function

threshold variables that determine the regimes are different. In the friction model

(1.8), the threshold variable is the latent variable y*, which is the amount of

intervention if the central bank were to intervene no matter how small the level

of disorderliness may be. In the threshold model, the threshold variable q is one

of the measures of the degree of disorderly market conditions. While y* is not

observable in the friction model, q in the threshold model is observable.

Secondly, the slepe of the middle regime is restricted to be zero in the friction

model. There is no such restriction in the threshold model so that the slope may

be nonzero. Therefore, the existence of friction becomes a testable hypothesis with
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a threshold model while it is embedded in the friction model.

Finally, the friction model requires explicit assumptions on the density func-

tion of the errors and it is estimated by the method of maximum likelihood. As

explained in the previous chapter, it is not easy to test for specification errors

since residuals are not obtainable. A threshold model, on the contrary, can be

estimated by the method of least squares without assuming normality of the re-

gression errors. Residual based tests for misspecification are also applicable with

this modelling approach.

In the following section, the specification, estimation and test strategies of

a threshold model are described in the context of foreign exchange intervention,

which relies heavily on Hansen (1997, 1999, and 2000). Section 3 explains the

data set, and section 4 presents the results of estimation and inference where some

evidence is found in favor of a two-regime or three-regime threshold model against

a linear model. As expected, intervention is more frequent and larger in size in the

outer regimes than in the middle regime. Section 5 concludes with a summary.

2.2 THE MODELS

2.2.1 Measures of Disorderly Market Conditions

Rewrite the linear model of central bank reaction function in (1.1) as

yt = SW3 + at (2.1)

where the (k + 1) x 1 parameter vector ,8 now includes the intercept [350 as well as

the slope coefficients 6 , . . . ,fi . One important question in specifyin this linear(31 [k g
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model is what measures of disorderly market conditions should be included in the

vector of explanatory variables mt. We simply followed Almekinders and Eijffinger

(1996) in the previous chapter so that the estimation results were comparable. In

this chapter, we want to be more careful about choosing the variables.

Although most empirical studies include deviation of exchange rate from some

target levels and a measure of volatility of the exchange rate, there is no clear

answer to the appropriate measures of the disorderly market conditions. Conse-

quently, different studies include different variables in st. Almekinders and Ei-

jffinger (1996) include the deviation of DM/USD rate from 7-day moving average

and the conditional volatility estimated by GARCH(1,1). Frenkel and Stadtmann

(2001) use 25-day moving average as a short-run target level of exchange rate, and

purchasing power parity as a long-run target. For the volatility measure, they also

rely on a GARCH model but they include lagged interventions of the central bank

and its foreign counterpart as additional explanatory variables. Humpage (1999

Appendix) uses 10—day moving average, daily exchange rate return, a dummy vari-

able representing the relative importance of the exchange market conditions among

the policy objectives of the Federal Open Market Committee, and a 10-day rolling

standard deviation of the exchange rate as a measure of its volatility. Kim and

Sheen (2002) include interest rate differentials, profitability of intervention, and

' a ratio of foreign reserves to imports as a proxy of the budget constraint, as well

as the usual deviation and volatility measures of the exchange rate. In calculat-

ing the deviation, they use a 150—day moving average rule following Neely (1998)
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and LeBaron (1999) who claims that it is the common choice among the market

traders.

We follow these previous literature to include a deviation variable and a measure

of exchange rate volatility. The deviation measure (devt) is defined in (1.2), which

is

dev(m)1: 100 [Iog()St)—-log (fit-125”-J] . (2.2)

The order of moving average (m) ranges from m = 7 to m = 150 in the above

mentioned literature. We choose m = 7 for a short term target exchange rate and

m = 25 for a longer term target. We do not choose the value of m = 10 as in

Humpage (1999 Appendix) since it is similar to m = 7. The value of m = 150 in

Kim et al. is also excluded because the corresponding series of devt is close to a

unit root series. The Augmented Dickey-Fuller unit root test results are in Table

 

 

2.1.

Table 2.1: ADF unit root test statistics for devt series

Sample dev7 dev25 devl50 Obs.

02/23/87 ~ 10/31/89 -8.62*** -4.03*** -2.09 651

01/05/87 ~ 01/22/93 -12.36*** -6.07*** -2.39 1459

 

1) 4 lags and an intercept are included in the tests.

2) *** significant at 1%, ** at 5%, * at 10% level.

3) Critical values for both samples: -3.4 at 1%, -2.9 at 5%, -2.6 at 10% level.

As for the volatility measure, the dominant choice seems to be the GARCH

estimates. However, we need an appropriate signing method for these estimates
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since our combined intervention data can be either positive or negative while the

estimated conditional variance is always positive. One possibility is to sign them

with the sign of the exchange rate return as in Kim and Sheen (2002). One

drawback with this approach is that the sign of exchange rate return changes almost

every day while the direction of intervention is quite persistent. Almekinders et

al.’s approach described in the previous chapter has the merit that the sign does

not change too often. Therefore, we will continue to use their volatility measure

as defined in (1.3) and (1.4).

Following Kim and Sheen (2002) and Neely (2002), we also include lags of

intervention variable as the explanatory variables. The order of autoregressive

terms p is chosen so as to eliminate the serial correlation in the residuals. Other

variables such as daily exchange rate return, intervention by the foreign central

bank and the interest rate differential are not included since they are in general

not statistically significant in the previous literature or in our own preliminary

estimation results. The rest of the variables mentioned above are also not included

since daily observations on such variables are not available.

Consequently, the vector 3:; is

$t=(1 d6U7t-1 463251-1 volt—1 yt—l 311—2 yt—p) (23)

where dev7t_1 and dev25t_1 denote dev(m)t_1 in (2.2) with m. = 7 and m = 25,

respectively. Although this seems to be a relatively parsimonious specification, it

will help us reduce the time required for bootstrap in the test procedure of the

threshold model considered below. With a three-regime model, one more variable
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means three more parameters to estimate which significantly increase the running

time of the bootstrap procedure that is required for testing linearity.

2.2.2 Threshold Models

An Z-regime threshold model allows the parameter vector B in the linear model

(2.1) to change Z times based on the values of a threshold variable qt. A three-

regime threshold model can be written as

yt = $t31'1(611 S ’71)+ $132'1f71< (It S 72) + $133 ° 1((11 > 72) +81 (2-4)

where 1(-) is the indicator function, and fl,- = (6,0 6,1 311:), for z' = 1,2,3.

Figure 2.1 in the previous section is a special case of (2.4) with one regressor

If mt consists of lags of 37) only, it is called a TAR model. In addition, if qt is

one of the lagged yt, the model becomes a SETAR model. We use some exogenous

variables such as deviation and volatility measures as explanatory variables in

addition to the autoregressive terms of yt. Thus we call the model a threshold

model, following Hansen (2000), rather than a TAR model. In our analysis, the

threshold variable qt is one of the exogenous variables. Specifically, we try all three

candidates, dev7t_1, dev25t_1 and volt_1, one by one as the threshold variable and

then choose the one that minimizes the sum of squared residuals.

The parameters (31, 32, B3, 71, 72) can be estimated by the method of se-

quential conditional least squares. If the thresholds '71 and 72 are given, the model
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becomes linear in the rest of the parameters and can be rewritten as

= {t9 + 5t (2-5)

where 0 = (31, 62, 33) and the 3(k + 1) row vector {t is

51: ($1‘1(Qt S 71) $t ' 1(71 < Qt S 72) Hit ° 1((11 > 72))- (2.6)

Now, 0 in (2.5) can be estimated by OLS.

Define the set of threshold observations F as

F={tht——-I,...,T}. (2.7)

For each pair of (q), qj) E [‘2 where 2', j = 1,. . . ,T and 1],: < qj, substitute (qi, qj)

for ('71, 72) in (2.6). Estimate (2.5) by OLS and obtain the sum of squared residuals

S(q), qj) which is defined as

S(qii qj)= _Et6)2 (2.8)

M
s
]

t=1(y

Then the pair of (q), qj) that minimizes the sum of squared residuals will be the

threshold estimates ()1, ’72). The estimates of the other parameters, ([31, [32, [33),

are obtained as the OLS estimates of equation (2.4) with '71 = ”)1 and '72 = ’72. Note

that this procedure requires up to T(T — 1) /2 OLS regressions. With T=648, this

means about 210,000 regressions.1 Since we have three candidates for the threshold

variable, the whole estimation process requires about 630,000 regression. Although

this is not a problem in the estimation stage, it becomes a critical problem in the

 

lActual number of regressions is smaller than this because we have to allow minimum number

of observations in each regime.
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hypothesis testing where the computation of bootstrap p—value requires thousands

of replications of this procedure. In order to reduce this computational burden,

Hansen (1999) proposes a two-step estimation procedure where the two thresholds

are estimated sequentially one by one. Details of this two-step procedure will be

described later.

In order to estimate the multi-regime model of (2.4), some restrictions must be

imposed on the range of 71 and '72 so that each regime has at least the minimum

required number of observations. One obvious requirement is that the number of

observation of each regime, T, for 1' = 1,2,3, must be greater than or equal to

the number of explanatory variables, it + 1. Another more important requirement

is concerned with the asymptotic properties of the estimators and test statistics.

For a linear model, we can rely on consistency of the OLS estimator if T is large.

Similarly, with the three regime model of (2.4), we need to have large T,- for each

regime because the conditional least square procedure is equivalent to splitting the

sample into three sub-samples and then estimate 6,- using only T,- observations.2

Hansen (1999) explains that it is necessary to have Ti/T 2 T for some 7' > O as

T —> 00. In practice, however, it is inevitable to choose 1' somewhat arbitrarily.

Hansen (1999) suggests r = 0.10. We start with 1' = 0.15 so that each regime has

approximately 100 observations or more, and then see how the results change with

lower or higher values of 7’.

 

2This involves three smaller regressions and it is faster than running one large regression with

equation (2.5).
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2.2.3 Hypothesis Testing

If there exists a friction area in the reaction function, i.e. the slope is zero between

91 and 92 in Figure 2.1, then the parameters in (2.4) must meet two conditions.

First, all the parameters in the middle regime must be zero ([32 = 0), while the slope

coeflicients in the two outer regimes are not zero (311» . . . , [3,), 76 0 for z' = 1,3).

Secondly, since the friction is assumed to be around zero values (i.e. over small

realizations) of the threshold variable, we must have '71 < 0, 72 > 0. These

conditions form a testable hypothesis as

H0 : 71 < 0, '12 > 0. 31 ¢ 0, 32 = 0,3nd33 ¢ 0, (2-9)

where each parameter vector 3,- for 2' = 1,... ,3 is zero if all of its elements are

zero.

However, this hypothesis is meaningful only if there exist three distinct regimes,

or a significant threshold effect, in the central bank reaction function. Thus, it is

necessary to test if the nonlinear model in (2.4) is a better specification than the

linear model in equation (2.1). This is equivalent to testing the null hypothesis of

L0 : 31 = 32 = 33 = 3- (2.10)

Hansen ( 1999) suggest a test statistic of

F = T (1:21;) (2.11)

ST

where SL is the sum of squared residuals from LS estimation of the linear model

(2.1) and ST is the sum of squared residuals from the three-regime model (2.4).
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When the thresholds 71 and 72 are known, F is asymptotically equivalent to the

usual F statistic. Since the thresholds are unknown and not identified under (2.10),

however, F follows an unknown asymptotic distribution. We rely on bootstrapping

methods to compute the p—values with and without the conditional heteroscedas-

ticity assumption.

Under homoscedastic error assumption, we get a set of bootstrap errors, é =

{ét | t = 1,. . . ,T} by randomly drawing T times with replacement from the OLS

residuals 6 = {ét I t = 1,. . .,T} of the linear model (2.1). Then a set of data on

the dependent variable is generated by

Kit = 5313 + 3t (2.12)

where it = (1,dev7t_1,dev25t_1,volt_1,gt_1,37t_2, - -- ,gt_p)' and [3 is the OLS

estimate of equation (2.1). Substituting 371 for 37¢ in the linear model and the

threshold models, the models are re-estimated to get one value of F which is

F=T(S°TSI) (2.13)
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where So and S1 are the sum of squared residuals from the linear model and the

threshold model, respectively, with the bootstrap data. Out of 2,000 replications,

the proportion of F greater than F is the approximate p—value.

Under heteroscedastic error assumption, the procedure is a bit more compli-

cated because we have to impose heteroscedasticity on the bootstrap errors é. See

APPENDIX E for a detailed description of the bootstrap procedure.

If the linearity hypothesis is rejected in favor of the threshold nonlinearity, we
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can move on to test H0 in (2.9). Hansen (1997) explains that since the threshold

estimates are super-consistent for the true thresholds due to the discrete nature of

the parameter space, inference on the slope parameters can be done in the usual

way, i.e. relying on the asymptotic normality of the slope estimators (31, 32, 33).

Unfortunately, the asymptotic distribution of the threshold estimators (61,62)

are not developed so far for three or higher order models. However, Bai (1997)

and Bai and Perron (1998) show that the estimate of the threshold in a two-regime

model is consistent for one of the two thresholds in the three-regime model.

Hansen (1997, 2000) in turn provides a method to construct an asymptotically

valid confidence interval for the threshold of the two-regime model. Noting that

the likelihood ratio statistic LR(7) is a function of the threshold 7, he recommends

inverting the LR(7) statistic to get the confidence interval for 7. See APPENDIX

F for details.

Therefore, it is possible to test either ’71 < 0 or ’72 > 0 if some regularity

conditions are met. For this purpose we also estimate a two-regime model as

yt = $1011 '1(Qt S 7) + xta2°1(7 > Qt) + Vt- (2-14)

The fact that the threshold estimate ’7 for the two-regime model is the same

with either ’n or ’72 is very useful in reducing the running time for the estimation

of the three-regime model of (2.4).3 The two-step approach proposed by Hansen

( 1999) consists of the following steps:

0 Estimate the two-regime model and obtain ’7 which is the element of I’ that

 

3“ IS 3.180 true that 61: BI lf“) = ’71, 01' d2 = 8311"")i = ’32.
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minimizes the sum of squared residuals.

0 Estimate the three-regime model (2.5) after setting 71 and 72 in (2.6) as

either (6, qs) or (qs, &) for each q, E I‘. Since 71 < 72 by assumption, the

rule is

(71, 72) = ((13, 7) if qs S 7,

(71. 72) = (7. qs) if as > 7-

If there are N distinct elements in I” for each of the M candidates of the thresh-

old variable, then the two—step approach requires up to (2N — 1)M regressions.4

With N = 648 and M = 3, it is only 3,885 OLS regressions which is far less than

the over 0.6 million regressions of the joint estimation approach.5

2.3 THE DATA

We use the official data on Federal Reserve and Bundesbank intervention in the

DM/USD market during 2/23/87 ~ 10/31/89. This is the same data set used in

chapter 1, which in turn is a subset of the data set used in Baillie and Osterberg

(2000) covering the period between 1/5/87 ~ 1/22/93. We focus on the sub-

sample period to minimize the potential effects of structural breaks over time.6

 

4For each candidate of the threshold variable, N regressions are required in the first stage and

N — 1 regressions in the second stage.

5After allowing for the minimum number of observations in each regime, the required number

of regressions is smaller than this. With the minimum requirement of sample 7 = 0.15, the

joint estimation requires up to 0.55N(0.55N — l) /2 i: 3 z 190, 000 regressions while the two-step

estimation involves maximum (0.7N +0.4N) *3 = 2, 138 regressions. In computing the bootstrap

p-values, we use the estimated threshold, hence M = 1. For 2,000 bootstrap replications, it takes

about 1.5 hours with the two-step approach on a personal computer with a Pentium IV 2.4Gh

CPU. With the joint estimation approach, it will take more than a week.

6It is possible theoretically to allow both regime switching and structural breaks in a nested

threshold model with two threshold variables, e.g. dev25 and time. However, it seems diflicult to
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Figure 2.2: DM/USD exchange rate (1/4/1971 ~ 1/22/1993).

Excluding holidays and weekends, our sample has total 651 daily observations.

Federal Reserve intervenes 137 times, of which 36 are buying operations and the

rest 101 are selling operations. Bundesbank intervenes 173 times with 42 buying

and 131 selling Operations.

The asymmetry between buying and selling operations seems to reflect the fact

that during the sample period the value of the US dollar against deutsche mark

had been around the historic minimum level of the floating exchange rate system.

The exchange rate movement between 1 /4/1971 and 1 /22/1993 is shown in Figure

2.2 where our sample period is between the two dashed lines. Since the exchange

 

find appropriate inference methodology for such a case. Also, the noticeable drop in the frequency

of intervention in 1990 and thereafter makes it difficult to rely on asymptotics.
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rate is low in our sample period due to the sharp decrease in the previous two

years, the agencies seem to have been more worried about the possibility of rapid

upward movement of the exchange rate than rapid downward movement.

The amount of intervention at time t is the amount of US dollars bought by

Federal Reserve against Deutsche marks between the market closing time on day

t — 1 and the market closing time on day t. The exchange rate at time t is the bid

rate at 9 : 30 AM in Paris, which is 3 : 30 AM in New York time. Therefore, the

deviation variable devt_1 precedes yt by about 13 hours.

2.4 ESTIMATION AND TEST RESULTS

We estimate the reaction functions for the Federal Reserve and the Bundesbank.

For each bank, the two-regime and three-regime threshold reaction functions are

estimated with GAUSS programs, which are revised versions of those available at

Bruce Hansen’s web site.7

2.4.1 Federal Reserve Reaction Function

Tests for nonlinearity
 

Although estimation precedes hypothesis tests, we begin with the results of the

tests whether two—regime or three-regime threshold nonlinearity exists in the reac-

tion function.

As reported in Table 2.2, the test statistic F12 for one-regime linear model

against two-regime model is 62.37. The p-values are computed as the proportion of

 

7www.ssc .wisc.edu/ bhansen/progs/progs.threshold.html
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Table 2.2: Test for nonlinearity (Federal Reserve, 1' = 0.15)

 

F—statistic Bootstrap p—values
 

Homoscedastic Heteroscedastic1* Heterosecdastic2**
 

F12 62.37 0.0000 0.0755 0.0160

F13 67.68 0.0000 0.1355 0.0470

F23 4.84 1.0000 0.9400 0.9580
 

* ht is from a regression of (E? on 11:? keeping all elements of It.

** Insignificant elements of mt are dropped in estimating ht.

those bootstrap simulations out of 2,000 replications that have the F-statistic larger

than 62.37. When the errors in the linear model is assumed to be homoscedastic,

the p-value is zero. Therefore, we reject the null hypothesis of linearity in favor

of a two-regime threshold nonlinearity. With correction for heteroscedasticity, the

p—value is about 0.08 and we reject the null of linear reaction function at 10% level

but not at 5% level. However, when the conditional variance ht is re—estimated

with only significant regressors in equation (E2), the bootstrap p-value drops to

about 0.02.

Against three-regime alternative, the F13 statistic from the estimation is 67.68,

which is not much different from the statistic of 62.37 for the two-regime alter-

native. The bootstrap p—value is still close to zero with homoscedasticity. With

heteroscedasticity, the p—value is 0.1355 and we fail to reject the linearity at 10%

level. Again using the re-estimated ht with only significant elements of 2?, we get

a p-value below 0.05.

On the other hand, the F23 statistic is clearly insignificant with or without the

heteroscedasticity assumption for the regression errors.
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Figure 2.3: Distribution of F-statistics (Federal Reserve 87 ~ 89).

The clear difference between the homoscedastic p-values and heteroscedastic

p-values are depicted in Figure 2.3. The three graphs in the upper panel are,

respectively, the true density of x2 distribution with k = 7 degrees of freedom, the

kernel density estimated with the 2,000 bootstrap data with homoscedastic error

assumption, and the kernel density estimated with heteroscedasticity (keeping all

regressors). The kernel density graphs are to the right of the X2 density, reflecting

the sampling errors in the threshold estimates. Of the two kernel densities, the

one with heteroscedasticity has much higher dispersion.

In the middle panel, the three graphs for F13 statistic reveal a similar pattern.
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Comparing the two panels, we can also see that F13 statistics tend to have fatter

tails on the right than F12 statistics implying that a lot more improvement in

goodness-of-fit is required for a three-regime model to beat a linear model, in

particular when there is heteroscedasticity. In the lower panel are the density

graphs of the test statistics for the null of two regimes against three regimes. The

three density graphs for F23 statistics are closer to one another compared to the

cases for F12 and F13 statistics.

Linear reaction function

The estimation results are in Table 2.3. The second column is for the linear model.

The next two columns are for the two-regime threshold model, and the last three

columns contain the estimation results with the three-regime model.

As for the linear model, all three measures of the disorderly market conditions

(dev7t_1, dev25t_1, volt_1) are significant at 5% or lower level and have the ex-

pected negative signs implying that the Federal Reserve’s intervention tends to be

against the wind and in proportion with the degree of market instability.

Out of the three lags of the dependent variables, yt_1 and gt-3 are significant at

1% and 10% level, respectively, while yt_2 is insignificant. Overall, the implication

is that recent interventions increase the expected amount intervention in the near

future. These three lags are enough to eliminate serial correlation in the residuals.

Ljung—Box test statistics indicate that there are no strong serial correlations in the

residuals up to the order of 12 (Q(12) = 13.07, 5% critical value 21.03).

However, there is very strong evidence for heteroscedasticity (Q2(12)=80.83).
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Table 2.3: Federal Reserve reaction function (2/23/87 ~ 10/31 /89, q=dev25)

 

 

 

 

 

 

 

Variable Linear Two-regime Three-regime

Regl Reg2 Regl Reg2 Reg3

Constant -10.36*** -4.39* 9755* -4.44 -2.79 9755*

(2.83) (2.40) (58.66) (14.03) (2.22) (58.66)

dev7t_1 -11.14** -8.25** 3.31 -3.80 -11.19*** 3.31

(4.70) (3.38) (18.75) (6.26) (3.85) (18.75)

dev25t_1 -5.84** -1.78 -58.24" -3.00 -3.97 -58.24"‘*

(2.41) (2.14) (24.52) (6.75) (2.92) (24.52)

volt_1 -22.05*** 47.65”" -47.90"* -24.34"* 42.62”“ 47.90""

yt_1 025*" 026*” 0.12 0.21“ 027*" 0.12

yt-2 -0.03 0.12 -0.23*** 0.16 0.08 -0.23"‘**

yt_3 0.17* 0.05 0.18 0.10 0.05 0.18

Obs. 648 542 106 194 348 106

Buy 36 36 0 28 8 0

Sell 101 55 46 13 42 46

6 77.63 57.60 132.90 66.06 52.30 132.90

R2 0.28 0.24 0.27 0.25 0.22 0.27

Fall=0 42.22 28.92 5.97 10.66 15.87 5.97

(Pvalue) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fb2b3b4=0 21.11 9.83 4.50 3.13 5.81 4.50

(Pvalue) (0.00) (0.00) (0.01) (0.03) (0.00) (0.01)

"II/”72 2.09 -1.08 / 2.09

R2(all) 0.28 0.35 0.35

Skewness -1.96 -1.14 -1.15

Kurtosis 17.23 14.07 14.07

Q(12) 13.07 14.50 15.50

Q2(12) 80.83 76.43 77.43    
1) Heteroskedasticity consistent standard errors in parenthesis.

*** significant at 1%, ** at 5%, * at 10% level.2)

3) Fall=0 tests overall significance except the constant.

4) Fb2b3b4=0 tests significance of the three exogenous variables.
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A separate regression of the squared residuals on squared regressors, as reported

below, also indicates that the errors are heteroscedastic. Therefore, White’s het-

eroscedasticity consistent standard errors are reported in parentheses for all three

models in Table 2.3.

5,2 = 1091.58 + 291.68 deo7f_, + 885.82 deo25,2_, —1662.80 trot,2_1

(1236.88) (716.34) (297.01) (2351-78)

—0.01 y?_, —0.04 y,2_2 + 0.16 y?_,

(0.02) (0.02) (0.10)

- R2 = 0.13

- F-statistic (p-value)= 100.37 (0.00)

- Standard errors in parentheses.

Despite the strong evidence for heteroscedasticity, we cannot claim that the

functional form of the heteroscedasticity is correct. Note that the R2 is relatively

low at 0.13 and the squared explanatory variables are insignificant except dev25?_1.

We have already seen that dropping the insignificant regressors (keeping intercept

even if insignificant) changes the nonlinearity test results in 2.3. Also, some of the

coefficients are negative so that the fitted conditional variances are non-positive

for 20 out of 648 observations (3.1 %). In the bootstrap procedure, we drop these

20 observations.

The standardized errors 5 obtained by equation (E.1) are depicted in Figure 2.4

together with the autocorrelograms of (’2’ and (’52. The Ljung—Box test statistics are

Q(12)=18.23 for the standardized errors and Q2(12)=1.06 for the squared errors.

Both are below the 95% critical value of the x2(12) = 21.03, justifying the random

draws from these standardized errors in the bootstrap procedure.
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Figure 2.4: Standardized errors (Federal Reserve 87 ~ 89).

Two-regime model
 

With the two-regime model, the optimal threshold variable is estimated to be

d6025t_1 and the point estimate of the threshold 7 is 2.09. This positive threshold

indicates that the strongest nonlinearity in the Federal Reserve’s reaction function

exists when the dollar appreciates rapidly. This supports our earlier claim that

the two central banks are more sensitive to appreciation than depreciation of the

dollar in light of the history of the exchange rate fluctuations under the floating

rate system.

In order to see if the threshold is indeed positive, we estimate its 95% confi-
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dence interval using the LR statistic defined in equation (El) and the criterion in

equation (F7) in APPENDIX F. When 62 in (F1) is estimated by a polynomial

regression, the confidence interval is {-2.36, 2.20] while it is [1.42, 2.20] with kernel

regression (Epanechnikov). In Figure 2.5 LR(7) is depicted against '7. With the

polynomial regression, the entire graph is way below the 95% critical value for any

values of '7. Therefore, there is no meaningful interval estimate for the threshold.

Since the linearity test statistic F12 was significant at least at 10% level, we believe

the 1‘72 is overestimated by the polynomial regression so that the LR(7) statistic

is scaled down too much. With the kernel estimate of 62, on the other hand, the

confidence interval exists and clearly positive.

From Table 2.3, we see that about 84% of the observations belong to regime 1

and the rest 16% belong to regime 2. Since most of the observations are in regime

1, the slepe estimates of this regime are similar to those of the linear model. In

regime 2, the slepe estimates for d6025t-1 and 000-1 are much bigger in modulus

than in regime 1 but the shorter term deviation measure (dev7t_1) is insignificant.

All 46 occasions of intervention in regime 2 are selling operations, which means

the Federal Reserve leans against the wind when the exchange rates are above the

target of 25-day moving average by 2.1% or more.

The R2 of the two-regime model (0.35) is much larger than the linear model

R2 (0.28), which is consistent with the significance of the F12 statistic in Table

2.3.
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Figure 2.5: Confidence interval of threshold (Federal Reserve 87 ~ 89).

Three-regime model
 

In the case of the three-regime model, the estimate of the second threshold is

$1 = —1.08. It has negative sign. Note that the other threshold estimate 62 = 2.09

is the same as ’7 Of the two-regime model. Consequently, the third regime is the

same as the second regime Of the two—regime model. The Opposite signs Of the two

threshold estimates are consistent with the friction hypothesis.

As we have seen in the nonlinearity tests, however, this model is no better

than the two-regime model. We find some evidence confirming this earlier finding.

There is no gain in terms Of R2 and the slope estimates of the mid-regime are closer
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Table 2.4: Descriptive statistics (Federal Reserve, 7' = 0.15)

 

Regime 1 Regime 2 Regime 3
 

 

Frequency of buying 0.14 0.02 0.00

Frequency Of selling 0.07 0.12 0.43

Mean buying ($Million) 18.47 2.60 0.00

Mean selling ($Million) 9.10 15.62 91.10
 

to the estimates of regime 1 while they are quite different from the estimates of

regime 3 which is already identified by the two-regime model.

The explanatory variables are jointly significant in all three regimes. The three

measures of market instability are also jointly significant in all three regimes. The

significance of the explanatory variables in the middle regime is noteworthy since

they must be jointly insignificant if there is friction in the reaction function.

With this three-regime model, we don’t see the zero values Of intervention

clustering around “small realizations” of the threshold variable as the friction hy-

pothesis suggests. In regime 1, there is no intervention for 83% of the Observations.

This nO-intervention ratio is 86% in regime 2 and 57% in regime 3.

However, there is a tendency for the Federal Reserve to buy dollars more Often

and in larger amounts in regime 1, where the dollar is depreciating, than in other

regimes. Likewise, the central bank sells more frequently and in larger quantities

in regime 3, where the dollar is appreciating, than in other regimes. This finding

is summarized in Table 2.4.
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Table 2.5: Sensitivity to T (Federal Reserve)

 

 

 

 

 

     

T = 0.05 T = 0.10 T = 0.20 T = 0.30

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

qt dev7 dev7 dev25 dev25

"I 1.35 1.33 1.82 1.27

”“11 0.99 -1.41 -1.54 -1.08

Obs. 533 55 60 65 519 64 156 361 131 194 261 193

Buy 35 0 1 17 18 1 25 11 0 28 7 1

Sell 60 14 27 9 63 29 12 36 53 13 23 65

F12 .178 (0.083) .126 (.034) .064 (0.017) .049 (0.013)

F13 .337 (0.180) .177 (.063) .117 (0.029) .053 (0.010)

F23 .785 (0.795) .571 (.597) .887 (0.899) .334 (0.293)

Fslope .00 .28 .33 .01 .00 .33 .01 .00 .00 .03 .01 .00
 

1) R1, R2, R3 are the regimes in the three regime model.

2) qt is the estimated threshold variable.

3) P-values Of Fij statistics are reported with heteroscedasticity assumption.

In the parentheses are the p-values based on conditional volatilities

re—estimated without insignificant variables.

4) Fslope is the p-value for the F-statistic testing joint significance

of the exogenous variables in each regime.

Sensitivity Of results
 

The above empirical results are Obtained by setting the minimum sample size T in

each regime as 15% Of the whole sample. In order to see if this choice is critical

for the results, we re-estimate the models with different values Of T as summarized

in Table 2.5.

The estimated threshold variable is dev7t_1 when T < 0.15 while it is dev25t_1

otherwise. This implies that when the market is extremely unstable, the Federal

Reserve’s intervention is more sensitive to shorter run movements Of the exchange

rate.
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The first threshold estimate is positive in all cases. Except for T = 0.05, the

second threshold is estimated to be negative. The positive second threshold for

T = 0.05 suggests that further nonlinearity may exist in the outer regimes Of the

three-regime model.

For the cases where the two thresholds are Opposite in signs, buying Operations

are relatively more frequent in the depreciating regime and selling Operations are

more frequent in the appreciating regime.

The test statistics for linearity against two- Or three-regime alternative are

insignificant at 5% level except for F12 statistic with T = 0.30. However, when

the parameters Of the conditional variance equation (E.2) were re-estimated after

dropping insignificant explanatory variables, the p—values Of the statistics are much

smaller as reported in the parentheses of the table. With this change, two- and

three—regime models are significantly better than a linear model at 5% level for

most of the cases with T Z 0.10. One exception is for the F13 statistic with

= 0.10.

Again, for the cases with positive and negative thresholds, the variables that

measure market instability (dev7t_1, d6025t_1, 000-1) are jointly significant in

all sub—regimes except in regime 3 with T = 0.10.

Overall, the results are quite similar with different values Of T and dO not

provide sufficient evidence for the existence of friction.
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Table 2.6: Test for nonlinearity (Bundesbank, T = 0.15)

 

F-statistic p—values
 

Homoscedastic Heteroscedastic
 

F12 81.32 0.0000 0.0190

F13 98.35 0.0000 0.0295

F23 15.12 0.4690 0.4485
 

2.4.2 Bundesbank Reaction Function

Tests for nonlinearity
 

The test results in Table 2.6 indicate that the two-regime or three-regime model

is better than a linear model in explaining the Bundesbank’s reaction during the

period covered by Almekinders et al.’s sample. The F12 and F13 statistics are

significant at lower than 5% level even without dropping insignificant regressors

in estimating the conditional variance ht. The F23 statistic is still insignificant

although the p—values are much smaller than those for the Federal Reserve. The

simulated distribution Of the statistics are in Figure 2.6, where the graphs have

similar patterns as the Federal Reserve’s case in Figure 2.3.

Linear reaction function

The estimation results for the Bundesbank reaction function are reported in Table

2.7. We add four lags Of yt instead Of three to eliminate serial correlation in

the errors. There are signs of heteroscedasticity and the estimated conditional

variance equation (not reported) is similar to the Federal Reserve’s case in that

only dev25t_1 is significant at 10% or lower level. The standardized residuals and
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Figure 2.6: Distribution Of F-statistics (Bundesbank 87 ~ 89).

the autocorrelograms are depicted in Figure 2.7. Ljung-Box statistics are less than

95% critical values with Q(12)=16.15, Q2(12)=6.11.

From the second column in Table 2.7, we see that the short-run deviation

measure dev7t_1 and the volatility measure volt_1 are not significant even at 10%

level while they were significant at 5% level for the Federal Reserve’s case. In fact,

deve7t_1 is not significant in any Of the regimes of the multi—regime models, either.

This implies that the Bundesbank is less sensitive to short-run fluctuations Of the

exchange rate than the Federal Reserve is. The R2 Of the linear model is 0.29

which is close to 0.28 for the Federal Reserve’s reaction function.
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Table 2.7: Bundesbank reaction function (2/23/87 ~ 10/31 /89, q=dev25)

Variable Linear Two-regime Three-regime

Regl Reg2 Regl Reg2 Reg3

Constant -9.26" -2.87 54.01 21.15 -3.12 54.01

(3.60) (2.94) (91.37) (23.92) (3.23) (91.37)

dev7t_1 -9.03 ~2.76 -2.33 -14.11 -0.98 -2.33

(5.75) (4.42) (28.30) (13.55) (4.75) (28.30)

dev25t_1 -9.00**"‘ -6.06*" -40.38 6.10 -6.93" -40.38

(2.99) (2.26) (38.29) (8.01) (3.01) (38.29)

volt_1 -12.19 -19.69*** -6.30 -49.42*** -10.95 -6.30

yt_1 024*“ 034*" 0.00 053*" 026"" 0.00

yt..2 0.03 0.04 -0.03 -0.19** 0.12 -0.03

yt_3 0.11 0.05 0.20“ 0.06 0.07 0.20“

yt_4 0.13" -0.03 040*" -005 -0.06 040*"

Obs. 647 549 98 119 430 98

Buy 42 42 0 29 13 0

Sell 131 75 56 10 65 56

6 100.21 72.79 177.44 87.49 66.87 177.44

R2 0.29 0.26 0.26 0.36 0.20 0.26

Fau=0 38.12 27.09 4.42 9.04 14.95 4.42

(Pvalue) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

szbsb4=0 14.24 8.10 1.16 3.06 2.87 1.16

(Pvalue) (0.00) (0.00) (0.33) (0.03) (0.04) (0.33)

’yl/fig 2.20 -2.01 / 2.20

R2(all) 0.29 0.37 0.39

Skewness -1.60 -0.91 -1.09

Kurtosis 15.38 14.88 15.17

Q(l2) 14.65 14.37 12.76

Q2(12) 94.48 63.30 63.84    
l) Heteroskedasticity consistent standard errors in parenthesis.

2) *** significant at 1%, ** at 5%, * at 10% level.

3) Fall=0 tests overall significance except the constant.

4) F02b3b4=0 tests significance of the three exogenous variables.
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Figure 2.7: Standardized errors (Bundesbank 87 ~ 89).

Two-regime model
 

The estimated threshold variable is the same with that of the Federal Reserve’s

reaction function, i.e. the deviation from 25-day moving average. The first thresh-

old is 2.20 which is similar to 2.09 for the Federal Reserve. Unlike the Federal

Reserve’s case, the 95 ‘70 confidence interval with polynomial regression is positive

(0.21, 2.20) as well as the interval with kernel regression (1.70, 2.20). The test

statistics are depicted in Figure 2.8. The upper limits of these intervals are the

maximum value of the threshold variable indicating that the minimum sample re-

striction of T = 0.15 is binding. This binding restriction implies that there is a
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Figure 2.8: Confidence interval of threshold (Bundesbank 87 ~ 89).

strong nonlinearity in the region where the deviation above 25-day moving average

is large.

Three-regime model
 

The second threshold is -2.01. The additional regime increases the R2 to 0.39 from

0.37 of the two-regime model while there was no such improvement for the Federal

Reserve’s reaction function. In regime 1, the volatility measure is significant but

the two deviation measures are insignificant at 10% level. In regime 3, none of

the measures of market instability are significant. This suggests that once the
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Table 2.8: Descriptive statistics (Bundesbank, r = 0.15)

 

Regime 1 Regime 2 Regime 3

 

Hequency of buying 0.24 0.03 0.00

Frequency of selling 0.08 0.15 0.57

Mean buying ($Million) 41.42 5.12 0.00

Mean selling ($Million) 7.39 15.36 131.23

 

exchange rate is away from the target by more than 2% or so, then the amount of

intervention does not grow in proportion to the deviation. On the other hand, in

regime 2 where the deviation is small, the deviation from 25-day moving average

is significant at 5% level. This result contradicts with the friction hypothesis.

Like the Federal Reserve’s intervention, however, both the frequency and av-

erage amount of buying intervention are apparently higher than those of selling

intervention in regime 1 where the US. dollar is depreciating. Similarly, the fre-

quency and average amount of selling is higher than those of buying intervention

in regime 3, where the US. dollar is appreciating, as reported in Table 2.8.

Sensitivity of results
 

Table 2.9 reports some of the estimates and statistics for different values of the

minimum sample ratio 1'. They show similar patterns as those for the Federal

Reserve intervention in Table 2.5.

However, the estimated threshold variable is the deviation measure from monthly

target d6025t_1 for all cases while it was dev7t_1 for the Federal Reserve’s inter-

vention when 1' < 0.15. The Bundesbank seems to be less sensitive to short-run
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Table 2.9: Sensitivity to T (Bundesbank)

 

 

 

 

 

     

T = 0.05 1' = 0.10 T = 0.20 1' = 0.30

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

qt dev25 dev25 dev25 dev25

"y 2.46 2.46 1.81 1.24

’71 3.20 -2.55 -1.92 -0.53

Obs. 569 39 39 84 485 78 129 386 132 248 205 194

Buy 42 0 0 22 20 0 29 13 0 37 5 0

Sell 84 17 30 8 76 47 11 49 71 19 29 83

F12 0.078 0.024 .005 0.001

F13 0.104 0.030 .017 0.013

F23 0.597 0.513 .347 0.498

Fslope .00 .45 .83 .06 .00 .43 .04 .01 .02 .06 .02 .00

 

1) R1, R2, R3 are the regimes in the three regime model.

2) qt is the estimated threshold variable.

3) P-values of Fij statistics are reported with heteroscedasticity assumption.

In the parentheses are the p-values based on conditional volatilities

re—estimated without insignificant variables.

4) Fslope is the p-value for the F-statistic testing joint significance

of the exogenous variables in each regime.

movements of the exchange rate even when the deviation is large in size.

Another noticeable difference is that the test statistics for linearity against

multiple regimes are significant at 5% level even without dropping the insignif-

icant variables in the conditional variance estimation. Therefore, the evidence

for nonlinearity is stronger for Bundesbank’s reaction function than for Federal

Reserve’s.

The measures of disorderly market conditions are highly jointly significant in

the middle regime as shown by small p-values for the Fslope statistic. In the outer

regimes the variables are insignificant for some values of T. Therefore, the rejection
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of the friction hypothesis in its strict form does not depend on the values of T.

2.5 CONCLUSION

The Federal Reserve and the Bundesbank’s reaction functions are estimated with

a linear and two threshold type nonlinear models using the official intervention

data in the DM/USD exchange market during 2/23/87 ~ 10/31 /89. This sample

period is the same as in Almekinders et a1. (1996) and enables us to compare the

results with those of the friction model and to reduce potential effects of structural

breaks that may exist in a longer sample period.

Unlike the friction model considered in Chapter 1, the multi—regime threshold

models tend to have significantly higher R2 than a linear model. As a result,

we could reject linearity of the reaction function in favor of two or three-regime

piece-wise nonlinearity at about 10% or lower level.

However, the implied nonlinearity of the intervention reaction functions is not

consistent with the friction hypothesis which claims that observations on interven-

tion are mostly zero when the exchange rate is around the target level while they

are mostly nonzero otherwise. We tested this hypothesis by two criteria. First,

we checked whether the three-regime model is better than a two-regime model as

well as a linear model. Secondly, we tested whether those variables measuring the

degree of disorderly market conditions are jointly insignificant in the mid-regime

while significant in the two outer-regimes. Neither of the two central bank reaction

functions met these conditions.
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Strictly speaking, therefore, we failed to find evidence for the friction hypoth-

esis in that substantial amount of interventions are observed together with small

realizations of the threshold variable and also the central banks do not intervene

on many of the days on which the exchange rate deviates from a target level by

large amount.

However, we found that the central banks tend to intervene more frequently

and in large amount when the deviation is large. We also found that this tendency

was stronger in dollar appreciation regime than in depreciation regime during our

sample period.
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Chapter 3

Conditions For Effective

Intervention

3.1 INTRODUCTION

In the previous two chapters, the common question is how the amount of interven-

tion is determined. In contrast, this chapter is concerned with another interesting

question about foreign exchange intervention, that is whether such intervention is

effective or not.

So far, empirical studies have generally failed to find substantial evidence in

favor of the stabilizing effect of infrequent intervention. This is particularly true

for sterilized intervention, the impact of which on money supply is offset by open

market operations in the Opposite direction. For example, Rosenberg (1996), after

surveying 18 widely cited empirical studies, published between 1983 and 1994, con-

cludes that “while episodes of successful intervention can be found, no systematic

relationship between intervention and exchange rates has been uncovered”.1 More

recently, Humpage and Osterberg (2000) reasserts the ineffectiveness of foreign

 

lOne well-known exception is Dominguez and Frankel (1993).
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exchange intervention.

Notwithstanding the general consensus in the academic literature on the in-

eflicacy of intervention, Neely (2001) reports a survey result of 22 central banks

which is in sharp contrast. Most of the central banks (21 banks) relied on inter-

vention between 1990 and 2000, although with varying amounts and frequencies.

Why do central banks continue to intervene if it is indeed ineffective? This incon-

gruity is partially resolved in the previous literature where it is also suggested that

intervention may sometimes, but not always, influence exchange rates through a

mechanism known as the signalling channel or expectations channel.

If intervention is effective sometimes but mostly ineffective, then a natural

question is what the conditions for effective intervention are. One answer to this

question is that the effectiveness may depend on the way intervention is imple-

mented. In this context, Hung (1997) points out that the monetary authorities

should take a more strategic approach to increase the probability of success with

limited resources for intervention. In fact, the survey in Neely (2001) also reveals

that most central banks (19 out of 20) reflect the market reaction to previous in-

tervention when they make decisions on subsequent rounds of intervention. This

implies that central banks have been already exerting some deliberate eflorts to

increase the probability of success. Even though this conjecture on strategic inter-

vention is quite interesting, it is unclear so far, as noted in Baillie, Humpage and

Osterberg (2000), how closely the success is related to intervention strategies.

As an attempt to characterize the conditions for effective intervention, this pa-
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per investigates how the efficacy of intervention varies depending on three factors,

i.e. the size of intervention, the strength of the exchange rate movement being

countered, and the timing of intervention. It is often suggested or implied in the

previous literature that these factors may play an important role for the success

or failure of intervention. However, few studies thus far have actually tested this

possibility in a systematic way.

In the empirical tests of this study, each of the three factors is considered

separately for the sake of simplicity.2 The common hypothesis in each test is

that intervention becomes effective when the level of the factor considered is in

a certain range, while it is inefl'ective otherwise. The threshold model described

in the previous chapter is an appropriate model for this type of nonlinear effects

of intervention. The threshold variable in each test is one of the three factors

above. This threshold-effect approach differs from the linear—effect approach of the

previous literature in that the latter tests the overall effectiveness of intervention

while the former attempts to identify the conditions under which intervention

becomes effective.

The empirical results for the Federal Reserve System (hereinafter referred to

as the “Fed”) and the Bundesbank intervention indicate that all three factors do

matter for effective intervention.3 Specifically, the first condition is that the size

of intervention should be larger than a certain threshold to be effective.4 This

 

2A joint test, if any, is obviously more desirable. However, it seems very difficult to consider

the three factors simultaneously in a tractable model.

3The Fed and the Bundesbank are known to have routinely sterilized their intervention.

4In the case of the Federal Reserve intervention, the estimated thresholds for buying and

selling operations are $128 million and $61 million, respectively.
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condition is related to the familiar proposition that intervention is ineffective in

general because usual amount of intervention is too small relative to the volume

of trading in the foreign exchange market.

Secondly, intervention becomes effective when the short-term trend in the ex-

change rate that the central banks attempt to counter is fairly weak. If the short-

term trend being countered is too strong, then intervention fails to reverse the

trend.

Note that the above two conditions do not rely on any specific channels through

which sterilized intervention take effects. The effect may come through changes

in relative supply of foreign and domestic assets (portfolio-balance channel), or

through changes in market expectations rendered by the signal or information

contents of intervention (signalling channel).

On the contrary, the third condition depends upon a specific transmission mech-

anism, the “noise-trading channel”, which is originally proposed by Hung in her

unpublished paper and cited in Rosenberg (1996) and Hung (1997). Noise-traders,

or chartists, are the traders in the foreign exchange markets who make trading de-

cisions based on technical trading rules rather than economic fundamentals. One

common feature of various technical trading rules is to forecast future movements of

an exchange rate by extrapolating its recent movements.5 Frankel and Froot (1990)

note that, in response to the poor short-term forecasting performance of exchange

 

5For example, a popular trading rule recommends to buy a currency when its value is above

the recent lowest level (a filter rule) or above the moving average of a given length (a moving

average rule) by more than a certain percentage. Rosenberg (1996, Chapter 12) provides a good

summary of popular trading rules.
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rate models based on economic fundamentals, the majority of the foreign exchange

forecasting firms, surveyed annually by Euromoney magazine between 1978 and

1988, have switched from fundamental analysis to technical analysis around mid

19808. This trend is reconfirmed by Taylor and Allen (1992) who report a survey

result that about 90 percent of the traders in London use some form of technical

analysis.

On this background, Hung claims that, since noise traders may be the main

source of short-term exchange rate instability, central banks may improve the ef-

fectiveness of foreign exchange intervention by identifying the right timing implied

by the trend-following trading rule. She suggests, for example, to wait until noise-

traders drive the exchange rate sufficiently up or down. At this point, central banks

can break the trend with ease since noise-traders themselves suspect that the ex-

change rate has overshot some appropriate level and consequently the momentum

toward further deviation is relatively weak.

More recently, Sarno and Taylor (2001) suggest a similar channel of effects,

which is termed the “coordination channel”. They complement Hung’s proposition

by pointing out that the central bank may serve as a coordinator for those traders

who are aware of severe misalignment in an exchange rate but reluctant to bet

individually against a sustained trend. The estimation and test results in this

chapter strongly support these claims.

In testing for efficacy of intervention, the effect of intervention is directly mea-

sured by percentage change in the exchange rate for one day after intervention.
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However, the amount of intervention is measured by a 3-day average (moving

average) rather than the daily amount of intervention with the assumption that

intervention on consecutive days contains more information than an isolated single

day intervention.6 As shown in Figure 3.1, the 3-day average dominates all other
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Figure 3.1: Choice of the moving average of intervention

choices of time span, including the single day, in minimizing the sum of squared

residuals (SSR) for a linear effect model. Each SSR in this figure is obtained by

regressing the daily change in DM/USD rate (1987 - 1989) on an intercept and an

 

6This approach is in line with recent tendency in the literature that favors signaling or ex-

pectations channel over portfolio-balance channel with emphasis on the role of intervention as a

medium of information transmission, as in Baillie, Humpage and Osterberg (2000).
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n-day moving average of intervention for n = 1, . . . ,25.

As an illustration of the potential nonlinear effects of intervention, Figure 3.2

compares the fitted line of a linear model with that of a nonlinear model. In the

upper panel, the estimated line is from a linear regression of the percentage change

in daily DM/USD rate on the 3-day average amount of intervention. In the lower

panel, the fitted line is given by Loess regression in order to identify potential

nonlinearity. While the OLS line is almost flat, the slope of the Loess line becomes

noticeably positive when the average amount of purchase is greater than about 200

million US dollars (large buying interventions).

The rest of this chapter is organized as follows. The next section discusses

some issues specific to modelling the effects of intervention within a threshold

model framework. Section 3 describes the data. Estimation and test results are

presented in section 4 and a brief conclusion is in section 5.

3.2 THE MODELS

3.2.1 Models of Linear Effects

In order to test if intervention is eflective, it is necessary to look at whether the

exchange rate moves in the desired direction in response to recent intervention.

The usual measure of daily exchange rate fluctuation is the log return. Let St be

the DM/USD spot exchange rate. Then the log return yt is defined as

gt 5 100 X (109(30 — l09(5t—1))~ (3—1)
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With the assumption that intervention has a linear effect on returns, the model

can be written as

yt = C + 91% + “t (3.2)

where art is the average amount of intervention for previous three days. The log

return of the exchange rate may be affected by intervention either by the Fed or the

Bundesbank, or both. Therefore, the amount of daily intervention is measured as

the sum of US. dollars purchased by the two banks. As in the previous chapters,

the amounts are recorded as negative numbers when the banks sell US. dollars so

that art is a real number. This explanatory variable is defined more formally as

xt = intv3t_2 = fed3t_2 + bun3t_2 (3.3)

1 3

fed3t_2 = 5 Z fedlt—i—l (34)

1:1

1 3

bun3t_2 = 3- gbunlt_,~_1 (3.5)

where fedlt is the amount of intervention by the Fed on day t, and haul; is the

corresponding intervention by the Bundesbank. Note that an is the average amount

of intervention between t—2 and t— 4 and thus precedes yt, which is the percentage

change of the exchange rate between t and t — 1.

The exchange return series yt is known to have GARCH type conditional

heteroscedasticity. Therefore, the error term of the linear model can be specified

as

at = 2m; (3.6)

at? = w + [3034 + 0117,24, (3.7)
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where zt ~ i.z'.d. N(0,1).

3.2.2 Definition of Effectiveness

Suppose the Fed believes that the DM/USD exchange rate is above the appropriate

level, i.e. the US dollar is overvalued against the deutsche mark. Then the Fed

will sell US dollars, (rt < 0, to increase the relative supply of dollar-denominated

assets in the economy. If the DM/USD rate falls subsequently, yt < 0, then such

intervention is successful. Similarly, buying intervention, an > 0, is successful if

yt > 0. To sum, the conditions for successful intervention are

It < 0 => yt < 0, and (3.8)

set > 0 => yt > 0. (3.9)

Note, however, that these conditions for sucess, (3.8) or (3.9), are sufficient

but not necessary for effectiveness of intervention. For one thing, intervention can

be regarded as effective so long as the trend of appreciation becomes weaker due

to intervention, even if the trend is not reversed. Eirthermore, depending on the

basis of comparison, this ‘weaker trend’ criterion may mean different things. By

comparing yt with yt_1, Humpage (1999) counts observations with :13; < 0 => 0 <

yt < yt_17 and xt > 0 => yt_1 < yt < 08 as success.

On the other hand, the so—called “leaning against the wind effect” requires

comparison between the observed return yt and the unobservable return that might

 

7After a selling US. dollar operation seeking to counter rapid appreciation, the currency keeps

to appreciate but the degree of appreciation is smaller than the degree in the previous day.

8After a buying operation seeking to counter rapid depreciation of US. dollar, the currency

still depreciates rather than appreciates. However, the degree of depreciation is smaller than the

degree in the previous day.
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have been realized if there had not been any intervention. The law of demand and

supply says that increase in supply, whether it is a flow or a stock, should lower the

price while decrease in supply should increase the price, other things being equal.

Therefore, selling US. dollar intervention should decrease the DM/USD rate, and

buying intervention should increase the exchange rate. That is, intervention should

be effective. However, many empirical studies report perverse signs of 0 with the

linear model (3.2). The culprit is generally believed to be the policy endogeneity

or the simultaneity bias. That is, the efl'ect of intervention is often dominated by

the other stronger determinants of the exchange rate, which are the very things

that are being countered. Of course, this counterfactual effect is not testable.

For simplicity, the focus in this study is on the slope coefficient 0 in (3.2), which

is expected to be positive if intervention is effective. This coefficient measures the

partial effect of intervention on the exchange rate return, i.e. t9 2 0E(y | 2:)/02:.

A positive slope, 0 > 0, does not necessarily mean that the conditions for success

in (3.8) and (3.9), or the secondary conditions of Humpage (1999), are satisfied.9

However, it does mean that additional amount of intervention tends to move the

exchange rate to the desired direction.

3.2.3 Nonlinearity and Threshold Models

Theoretically speaking, a threshold model may have any finite number of regimes.

This study, however, considers the model with two or three regimes only. Although

 

9For example, even with 0 > 0 and 2:, > 0, the predicted value of exchange return may be

negative (1); = 6 + 0,t < 0) if E is negative large in absolute value.
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a complete description of the nonlinearity may require higher-order threshold mod-

els, a three-regime model will be sufficient to ascertain nonlinearity, if any, in the

effects of sterilized intervention.10 The two—regime model can detect the strongest

nonlinearity while the three-regime model enables us to see, for example, whether

both large selling and buying operations are more effective than medium-sized

intervention when the amount of intervention is used as the threshold variable.

The two—regime model is specified as

0: = (01+ 01230-101: S 7) + (C2 + 02xt)°1(<1t> 7) + at (3-10)

and the three-regime model as

yt = (01+ 01$t)'1((1t§ 71) + (C2 + 9211) ° 1(71 < (It S 72)

+ (63+931‘t)'1((1t > 72) +ut (3-11)

where 1() is the indicator function. The minimum sample size of each regime is,

to begin with, 5% of the number of unique observations on the threshold variable

7' = 5%. Then, the result will be compared with the cases of T=10%, 15% and

20%.

10One obstacle to specifying the model with four or more regimes is the infrequency of inter-

ventions. The data set used in this paper has 220 days of intervention which is only about 30%

of the 723 total observations.
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The threshold variable qt is defined as one of the following three.

Case 1: qt = int'v3t_2 (3.12)

20

Case 2: qt 2 devZOt_3 E 100 (log (St_3) - log (21—0 Est-24)) (3.13)

2:1

Case 3: qt 2 dev50t-3 E 100 log(St_.3) - log J—OSZOSt_2_j . (3.14)

j=1

In Case 1, the threshold variable, which is the 3-day average amount of inter-

vention, is the same as the explanatory variable, i.e. qt = art. The hypothesis in

this case is that intervention tends to be effective when the size of intervention is

below 71 or above '72, as illustrated in Figure 3.3.11

In Case 2, the threshold variable, dev20t_3, is the deviation of the DM/USD

rate from its 20—day moving average.12 It is the proxy for the strength of the

short-term trend of the exchange rate being countered. Admittedly, this measure

of deviation may not be the best proxy. However, this measure seems to be a

reasonable proxy in that the distance between the exchange rate and the 20-day

moving average gets bigger when there is a rapid upward or downward trend, as

shown in the upper panel of Figure 3.4.13 The lower panel of this figure illustrates

the hypothesis that intervention is not effective when the upward or downward

trend in the exchange rate is too strong (the far-left or far-right graph) but efl'ective

 

11Note that in this figure y is allowed to be discontinuous.

12Since the explanatory variable 12¢ is an average of daily purchases of US. dollars from t — 2

to t — 4, the deviation is measured on day t — 3 which is in the middle of the three days. This

also holds for dev50¢_3 in Case 3.

l3dev20¢_3 is measured in percentage. As a result, the percentage deviation becomes smaller

as the 20-day moving average increases even if the distance between the exchange rate and the

20-day moving average remains the same.
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Figure 3.3: Threshold effect by size of intervention.

when the short-term trend is relatively weak (the middle graph).

In case 3, the threshold variable is the deviation from a 50-day moving average

of the exchange rate. The 50—day moving average, which is depicted as the dotted

line in the upper panel of Figure 3.5, serves as the proxy for a longer-run trend of

the exchange rate. The hypothesis in this case is illustrated by the three graphs

in the lower panel of Figure 3.5. One of the popular technical trading rule is to

sell a currency when it is depreciating and buy when it is appreciating. If noise

traders have already sold enough of a currency following a depreciating short-term
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trend so that the exchange rate is sufficiently below the longer-run trend (q < '71),

then buying intervention is likely to be effective. This situation corresponds to the

far-left graph in the lower panel of Figure 3.5. In the opposite situation described

in the far-right graph of the figure, where the noise traders are in heavy overbought

positions (q > 72), selling intervention is also hypothesized to be effective.14

In Case 2 and Case 3, the order of moving average is m = 20 and m = 50,

respectively. These numbers are chosen based on an interesting pattern, as il-

lustrated in Figure 3.6, in the response of the sum of squared residuals of the

two-regime threshold model (3.10) to different values of m.15 In the figure, the

global minimum is at m = 80 while there is a local minimum at m = 20. Note

that the SSR(m) is increasing in m for 20 < m < 35 while it is decreasing in m for

35 < m < 80. As it turns out, this non-monotonic behavior of SSR(m) is closely

related to the clear difl'erence between the pattern of nonlinearity in Case 2 and the

pattern of nonlinearity in Case 3. In case 2, intervention becomes effective when

the threshold variable dev20t_3 is relatively small, i.e. when the exchange rate is

closer to the short-run moving average (with m around 20).16 In sharp contrast,

intervention becomes effective in Case 3 when the exchange rate is away from the

 

1“The graphs in Figure 3.5 are drawn under the assumption that the central banks buy US.

dollars when the DM/USD rate is below the longer-run trend and sell when the exchange rate is

above the longer-run trend.

15In this experiment, the minimum sample size is set to be 5% of the unique values of the

threshold variable (7‘ = 5%).

16This is consistent with the moving average rule or the filter rule of the noise-traders. For

instance, the moving average rule recommends to buy a currency if its value goes up more

than 0% above a moving average. From a central bank’s point of view, this implies that the

appropriate timing of intervention is before the value of the currency reaches the threshold level

of 01%. Once the value of the currency goes beyond the threshold level, it will be much difficult

to counter the trend because the trend will be enhanced by quite a large number of traders.
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longer-run moving average (with m around 80) as claimed by Hung (1997) and

Sarno et al. (2001). Therefore, m = 20 is a natural choice in Case 2. In Case 3, we

choose m = 50 rather than m = 80 because the deviation of exchange rate from

80—day moving average is quite close to a unit root series.

3.2.4 Estimation and Test Strategies

The linear effect model of (3.2) can be estimated by ordinary least squares. The

threshold models of (3.10) and (3.11) can be estimated by the method of sequential

conditional least squares as explained in Hansen (2000).

To see whether there is a significant threshold effect in each of the three cases,
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it is necessary to test the null hypothesis of cl = 62 and 01 = 02 against cl 96 c2

or 01 ¢ 02 in the two-regime model (3.10).

The test strategy is to compare the explanatory powers of two competing mod-

els. When the test is about the linearity against two-regime nonlinearity, the test

statistic is

SSR] — SSR2

SSR2

 F12 = T x (3.15)

where SSR1 is the sum of squared residuals of the linear model (3.2), SSR2 is the

sum of squared residuals of the threshold model (3.10) and T is the sample size.

Similarly, test statistics for linearity against three regimes and for two regimes

against three regimes are

 

 

_ SSRl - SSR3

F13 — T X SSR3 (3.16)

_ SSR2 - SSR3

F23 — T X SSR3 (3.17)

where SSR3 is the sum of squared residuals from the three—regime model (3.11).

When the threshold is known, the asymptotic distribution of Fij statistic is

x2 with k or 2k degrees of freedom, where k is the number of regressors in the

linear model, including the intercept. Since 7 is not known and it is not identified

under the null hypothesis of no threshold effect while SSR2 and 88R3 depend on

the value of the threshold(s), the asymptotic distribution is not X2- Hansen (1996)

provides the asymptotic distribution of these statistics but the distribution does not

allow the critical values to be tabulated. As an alternative, the same paper provides

a simulation scheme to approximate the p-values. For homoscedastic errors, it is

suggested to replace yt with Q ~ N(0, 1) and compute the test statistics with
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sufficiently large number of replications. For heteroscedastic errors, yt is replaced

by 21; « 8t. Some examples of application are in Hansen (2000) for a two-regime

threshold model and Hansen (1999) for a TAR model of up to three regimes.

However, this approximation of asymptotic p—values is not directly applicable

to our analysis. One condition for the approximation procedure is that the errors

are independent over time. This condition is violated in our model due to the

GARCH effect in the conditional variance. As an alternative, the tests in this

chapter rely on a bootstrap procedure as in Hansen (1999).

The bootstrap data in each application will be generated based on the GARCH

specification in (3.7). Specifically, standardized residuals for zt in (3.6) are obtained

by MLE of a linear-GARCH(1,1) model (or a two-regime-GARCH(1,1) model for

F23 statistic). A set of bootstrap errors are drawn from these standardized residuals

t.17 Then data on at, at and yt will be generated sequentially withwith replacemen

the ML estimates of the parameters ((21 B 6:) in (3.7), and 6 in (3.2) (or 61 and 62

in (3.10) for F23 statistic).

However, note that the test statistics in (3.15) - (3.17) are to be computed

based on least squares estimation without explicit consideration on the GARCH

property of the errors. One reason for this is it is computationally much easier to

implement. The OLS estimators are not efficient but still consistent with a large

sample.18 Another reason is that once the GARCH specification is included in

 

171f the time dependent heteroscedasticity is not removed, so that the residuals are not inde-

pendent, random drawing from the residuals does not make much sense.

18It is possible to estimate a threshold model by sequential MLE, that is by comparing the

fitted likelihoods instead of R2 from OLS for each value of the observed threshold variable.

However, the properties of such slope estimates are unknown while LS estimates are known to
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the multi-regime model, the regimes may be determined largely by the GARCH

parameters (a?) )6 d in (3.7)) rather than the coefficients of the explanatory variables

(6). Although this possibility itself is interesting, the focus in this paper is the effect

of intervention on the level of the exchange rate.19

3.3 THE DATA

Like in the previous chapters, the main data set for the empirical part of this

chapter is the one in Baillie and Osterberg (2000), which contains daily data on the

DM/USD exchange rate and official interventions by the Fed and the Bundesbank

during 01/03/1987 - 01 /22/ 1993. The exchange rates are observed at 9:30 AM

Paris time and originally provided by Olsen and Associates of Zurich, Switzerland.

Figure 3.7 depicts the exchange rate movements and sum of interventions by the

two central banks during the original sample period. To minimize potential effect

of structural breaks, the sample period is limited to 01/03/1987 - 12/29/1989,

which is the left side of the vertical line in Figure 3.7.20 From Figure 3.7, it can

be seen that the frequency of interventions has significantly dropped in the early

19908 implying potential structural breaks.21

 

be consistent and asymptotically normal.

19By adopting a threshold model with four or more regimes, at least theoretically, it is possi-

ble to consider both nonlinearity in the volatility and the nonlinearity in the exchange return.

However, such a higher—order threshold model seems to be very demanding in terms of minimum

sample size in each regime as well as computational burden.

20During this sample period, the two central banks are known to have intervened intensively.

The first observation falls on the first business day in 1987 and the last observation on the last

business day in 1989. The period roughly covers the so-called ’post-Louvre era’, which has been

a popular object of analysis in the previous literature.

21It is at least theoretically possible to consider threshold effects and structural breaks simul-
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Figure 3.7: Exchange rate and intervention.

Excluding holidays and weekends, the sub-sample has 723 daily observations

instead of 1464 in the whole sample. Although the total number of observations

has decreased by more than 50%, the decrease in number of days with nonzero net

intervention is much smaller (from 272 to 220). Detailed numbers of interventions

by bank and type of intervention are given in Table 3.1.

Table 3.1: Number of interventions (1987 - 1989)

 

 

 

Fed Bun Sum Joint

Buy 36 48 59 25

Sell 100 132 161 71

Total 136 180 220 96
 

* Sum is the number of days of intervention by either central bank.

** Joz'nt is the number of days of intervention by both central banks.

 

taneously in a nested threshold model where the regimes are defined by two or more threshold

variables. This approach, however, is beyond the scope of this paper.
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yt is the percentage change in DM/USD rate from 9:30 AM on day t—l in Paris

to 9:30 AM on day t. To avoid correlation between the errors and the explanatory

variable, yt is matched with interventions before 9:30 AM on day t — 1. Thus, 1‘) is

the average amount of US dollars purchased per day between day t— 4 and t— 2.22

With this transformation of the data, four observations are lost and the final size

of the sample in our regressions is 719. The 3—day moving average of interventions,

intv3t_2, has 344 nonzero observations with 105 positive values and 239 negative

values.

In Case 2 and Case 3, the threshold variables are the deviations of exchange

rates from 20— and 50-day moving averages. One critical requirement of the thresh-

old model is that the threshold variable should be (strictly) stationary. If the

threshold variable is non-stationary, hence no tendency for mean-reverting, the

idea of switching over a limited number of regimes depending on the value of the

threshold variable does not make much sense?3 Table 3.2 reports the results of

ADF unit root tests for our threshold variables. The null hypothesis of unit root

is rejected in all three cases.

 

22The amount of intervention on day t — i for i = 2, 3, 4 is the amount of US dollars purchased

between the market closing time on day t — i - 1 and the market closing time on day t - 2'.

23 For the two-regime model (3.10), for example, it is required to have some observations with

Q, g 7 and other observations with q; > 7. If qt is a unit-root time series, it may be the case

that qt > '7 always after some time point, hence no more observations for regime l.
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Table 3.2: ADF unit root tests for threshold variables

 

 

Sample intv31) dev202) (161,502)

ADF statistic -6.20*** -5.23*** -2,85***

Obs. 716 722 722

 

1) 4 lags and an intercept are included in the test.

2) Insignificant lags and intercept are dropped in the test.

*** significant at 1%, ** at 5%, * at 10% level.

3.4 RESULTS

3.4.1 Threshold Effect by Amount of Intervention

To see if effectiveness of intervention depends on the size of intervention, two and

three regime threshold models are estimated together with a linear effect model.

This is Case 1 in (3.12) where the threshold variable is the same with the explana-

tory variable intv3t_2. The minimum number of observations in each regime of the

two- or three-regime threshold model is restricted to be 5% (13 observations) of the

unique observations on the threshold variable (267 observations). The estimation

result is in Table 3.3.

From the second column, it can be seen that the intervention variable intv3t_2

is insignificant in the linear model, which is consistent with the overall results in

the previous literature, except that the Sign is correctly positive here while previous

studies have often reported a result with the negative sign. With two-regime model,

effect of intervention gets significant when the 3—day average intervention exceeds a

threshold of $128 million. The small number of buying interventions that belong to
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Table 3.3: Threshold effect by amount of intervention (qt 2 intv3t_2)

 

 

 

 

 

Variable Linear Two-regime Three-regime

Regl Reg2 Regl Reg2 Reg3

Constant -0.014 -0.007 -1.622*** 0.329“ -0.035 -1.622***

(0.028) (0.029) (0.449) (0.135) (0.029) (0.449)

intv3t_2 0.019 0.020 0.641*** 0.136** 0.173 0.641***

(0.032) (0.034) (0.216) (0.060) (0.141) (0.216)

Obs. 719 695 24 129 566 24

Buy 105 81 24 0 81 24

Sell 239 239 0 129 110 0

r? 1.281 -0.613 / 1.281

R2 0.001 0.020 0.033

Q(20) 19.533 20.823 20.604

Q2(20) 111.309 106.057 103.725   
 

l) 95% critical value for x2(20) : 31.41

2) Minimum sample size in each regime is 5% of unique observations on qt.

3) Heteroscedasticity consistent standard errors are in parentheses.

4) **, *** significant at 10% and 5% level, respectively.

regime 2 (24 out of the 105 observations that have positive 3-day average), implies

that buying interventions must be exceptionally large to be effective. When this

condition is satisfied, for each additional $100 million purchased, the exchange rate

is estimated to increase by about 0.64% the next day. Table 3.4 shows that 0.64%

is slightly less than the sample standard deviation of the dependent variable while

$100 million is about one standard deviation of the intervention variable.

The results for the three-regime model reported in the last three columns of the

table, indicate that selling intervention greater than $61 million is also effective.

Unlike the buying interventions, more than half (129 out of 239) of selling opera-

tions satisfy this condition. Note that the Ljung-Box tests with the residuals and
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Table 3.4: Descriptive statistics of the variables

 

 

 

Variable Mean Std Dev Variance Minimum Maximum

31) (%) -0.019 0.731 0.534 -3.198 3.386

intv3t_2 ($100 million) -0.261 1.079 1.165 -6.841 4.133

 

squared residuals find little evidence for significant serial correlation but strong

evidence for heteroscedasticity.

The test results for threshold nonlinearity are reported in Table 3.5. The p-

value in each test is the ratio of the number of bootstrap replications out of 2,000

that give larger values of the test statistics than the one based on the observed data.

The bootstrap data are generated with the following estimated GARCH models

to take care of heteroscedasticity. When the null model is the linear model (F12

and F13), the data generating process is approximated by the following Linear-

GARCH(1,1) model, which is separately estimated with the data.

.2), = — 0.010 + 0.008 into3,_2

(0.025) (0.033)

a? = 0.019 + 0.088 u,2_1 + 0.879 o,?_,.

(0.007) (0.019) (0.021)

When the null hypothesis is a two-regime model (F23), the data are generated
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with

yt =(—0.001 + 0.017 intv3t_2) - (qt g 1.281)

(0.025) (0.033)

+(—1.210 +0.48Ointv3t-2) . (Qt >1-281)

(0.729) (0.373)

0,2 = 0.018 + 0.081 034 + 0.886 o,2_1.

(0.008) (0.020) (0.021)

The Ljung—Box test statistics with the standardized residuals are Q(20) = 18.32

for the residuals and Q2(20) = 24.83 for the squared residuals of the linear-GARCH

model, and Q(20) = 18.75 and Q2(20) = 24.94 for the two—regime-GARCH model.

None of these statistics are significantly different from zero at a conventional signif-

icance level. Thus random drawings from these standardized residuals are justified

for the bootstrap procedures.

The bootstrap p-values in Table 3.5 indicate that both two-regime and three-

regime models are significantly better than a linear model at less than 10% level.

However, the evidence for the three-regime model is weaker in the sense that the

test fails to reject the two—regime model against the three-regime model at 10% or

lower level although the F23 statistic becomes significant at a more generous level

of 15%.

On the other hand, when it is assumed that the thresholds are given as the

estimates, hence sampling errors on the thresholds are ignored, the p-values from
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Table 3.5: P-values for testing number of regimes

 

 

F12 F13 F23

F-statistic 13.942 23.832 9.701

Bootstrap P-value 0.056 0.063 0.150

23(2) P-value 0.001 0.008

x2(4) P-value 0.000
 

Fij is the test statistic for i-regime(s) against j-regimes.

x2 distribution indicate that the difference in the coefficients are very significant

among the three regimes.

The above test results are based on the restriction that each regime in the

threshold models must have at least 5% of the unique observations on the threshold

variable (7' = 5%). Table 3.6 shows how the test results change depending on the

Table 3.6: P-values for different restrictions on minimum sample size

 

 

 

T F12 F13 F23

0.05 0.056 0.063 0.150

0.10 0.168 0.180 0.346

0.15 0.141 0.216 0.563

0.20 0.129 0.164 0.397

 

Fij is the test statistic for i-regime(s) against j-regimes.

value of 7'. When the minimum sample size increases to 10% or higher level, none

of the test statistics are significant at 10% significance level. This phenomenon is

related to our earlier finding that only exceptionally large size buying interventions

are effective. When this type of intervention is allowed to form a separate regime

by a small value of 7', the multi-regime models are significantly better than a

linear model. For a larger value of 1', however, the threshold effect is diluted since
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heterogeneous observations are forced to be included in the same regime.

3.4.2 Threshold Effect by Strength of Wind

In Case 2, the test is about whether the effectiveness of intervention depends

on how strong the short-run trend is. The degree of short-run momentum (qt)

is measured by the deviation of DM/USD rate from its previous 20-day moving

average as discussed earlier.

Table 3.7: Threshold effect by strength of wind (qt = dev20t_3)

 

 

 

 

 

Variable Linear Two—regime Three-regime

Regl Reg2 Regl Reg2 Reg3

Constant -0.014 -0.122*** 0.089** -0.055 -0.312*** 0.089”

(0.028) (0.040) (0.040) (0.044) (0.083) (0.040)

intv3t_2 0.019 0.100 0.038 0.055 0.989*** 0.038

(0.032) (0.067) (0.038) (0.066) (0.259) (0.038)

Obs. 719 347 372 269 78 372

Buy 105 93 12 85 8 12

Sell 239 48 191 38 10 191

’7 -0.083 -0.670 / -0.083

R2 0.001 0.021 0.045

Q(20) 19.533 20.717 20.708

Q2(20) 111.309 109.326 104.165   
 

1) 95% critical value for X2(20) : 31.41

2) Minimum sample size in each regime is 5% of unique observations on qt.

3) Heteroscedasticity consistent standard errors are in parentheses.

4) *, **, *** significant at 10%, 5% and 1% level.

In Table 3.7 are the estimation results with minimum sample size of 5%. As

shown in the last three columns of the Table, intervention is significantly effective
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Table 3.8: Bootstrap p-values for testing number of regimes

 

 

F12 F13 F23

F — statistic 15.027 33.617 18.210

P — value 0.024 0.005 0.014

 

Fij is the test statistic for i-regime(s) against j-regimes.

Table 3.9: P—values for different restrictions on minimum sample size

 

 

T F12 F13 F23

0.05 0.024 0.005 0.014

0.10 0.018 0.003 0.007

0.15 0.011 0.023 0.320

0.20 0.008 0.028 0.589

 

F,- is the test statistic for i-regime(s) against j-regimes.

in the middle regime where the wind is weak. The estimated thresholds are -0.670

and -0.083 implying that if central banks intervene when the exchange is below the

20—day moving average by more than 0.08% but less than 0.67%, such intervention

tends to be effective. Like in Case 1, this condition for effectiveness is very tight

since only 8 out of 105 buying interventions and 10 out of 239 selling interventions

meet this condition.

The tests for linearity reported in Table 3.8 show that both of the two multi-

regime models are significantly better than the linear model. Also, the three-regime

model is significantly better than the two-regime mode].

When the minimum sample size (7') is increased to 10% of the whole sample,24

 

2“ All observations on the threshold variable are unique in Case 2 and Case 3.
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the results remain the same. For larger values of 7', the tests still reject the linear

model against the multi—regime models. However, the three-regime model is no

longer better than the two-regime model.

3.4.3 Threshold Effect by Noise Trading Channel

The question in Case 3 is whether intervention tends to be effective if the central

banks wait for the right timing rather than lean against a very strong upward or

downward momentum developed by noise traders or chartists. We approximate the

Table 3.10: Threshold effect by noise trading channel (qt 2 dev50t_3)

 

 

 

 

 

Variable Linear Two-regime Three-regime

Regl Reg2 Regl Reg2 Reg3

Constant -0.014 -0.236*** 0.002 -0.236*** -0.020 0.392**

(0.028) (0.090) (0.030) (0.090) (0.030) (0.187)

intv3t_2 0.019 0.260*** 0.002 0.260*** -0.093* 0.162**

(0.032) (0.078) (0.035) (0.078) (0.051) (0.066)

Obs. 719 119 600 119 525 75

Buy 105 54 51 54 51 0

Sell 239 2 237 2 166 71

’y -3.959 -3.959 / 3.634

R2 0.001 0.020 0.038

Q(20) 19.533 17.617 21.708

Q2(20) 111.309 108.937 100.044   
 

1) 95% critical value for X2(20) : 31.41

2)

3)

4)

Minimum sample size in each regime is 5% of unique observations on Q).

Heteroscedasticity consistent standard errors are in parentheses.

*, **, *** significant at 10%, 5% and 1% level.

right timing with the deviation of exchange rate from its previous 50-day (about

two months) moving average. When a newly developed trend by the chartists is

124



not supported by the corresponding change in the economic fundamentals, it will

be much easier for the central banks to counter such a trend or instability.

With T = 5%, the estimation results are reported in Table 3.10. The estimated

two-regime model indicates that when the exchange rate is below the longer-run

equilibrium by more than 4%, buying intervention has significant effect on the

exchange rate movement. More than half of the observed buying operations (54

out of 105) meet this condition. The three-regime model shows that when the

deviation is positive and larger than 3.6%, selling intervention is also effective.

About 30% of the selling operations meet this second condition.

Table 3.11: Bootstrap p-values for testing number of regimes (T = 0.1)

 

 

F12 F13 F23

F — statistic 14.286 27.741 13.193

P -— value 0.043 0.020 0.065

 

Fij is the test statistic for i-regime(s) against j-regimes.

The test statistics for threshold effects are reported in Table 3.11. Both F12 and

F13 statistics are statistically different from zero implying that the multi-regime

models are better than the linear model. F23 statistic is insignificant at 5% level

but significant at 10% level.

On the other hand, the evidence for these threshold effects by noise-trading

channel is stronger with T = 10% as reported in Table 3.12. For higher values of

T, the threshold effects become weaker. In comparison to Case 1 and 2, however,

the threshold effect in Case 3 spans a fairly large portion of the observed data.
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Table 3.12: P-values for different restrictions on minimum sample size (T)

 

 

T F12 F13 F23

0.05 0.043 0.020 0.065

0.10 0.024 0.005 0.030

0.15 0.021 0.012 0.111

0.20 0.129 0.152 0.326

 

 

Fij is the test statistic for i-regime(s) against j-regimes.

3.5 CONCLUSION

Using threshold models and official data on the Fed and Bundesbank intervention

in the DM/USD market during 1987 - 1989, it is tested whether nonlinearity

exists in the effects of sterilized intervention on the DM/USD exchange rate. This

is the first empirical study testing explicitly the potential conditions for effective

intervention with nonlinear specifications, given that sterilized intervention has

been ineffective on average in stabilizing the exchange rates.

First, I find that intervention is effective if the size is exceptionally large, par-

ticularly when the interventions is a buying US dollar operation so as to support

the value of this currency against deutsche mark. Secondly, intervention tends to

be effective if a short-run trend in the exchange rate movement is not too strong

to lean against. Finally, intervention can be effective if the central banks take a

strategic approach to beat the noise-traders. While only a few observations in the

sample meet the first two conditions, a large share of the sample (about 50% of

buying and 30% of selling operations) meet the third condition.
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For the third test, based on a proposition in Hung (1997)and Sarno et al.

(2001), it is assumed that short—run fluctuation of the exchange rate is mainly

driven by noise-traders or chartists who rely heavily on technical analysis as well

as fundamental analysis. Our estimation and test results indicate that the central

banks may increase the effectiveness of intervention by waiting, instead of attempt-

ing to counter newly developed strong momentum, until the daily exchange rate

deviates from a bimonthly or longer-run moving average beyond the estimated

thresholds.

It is yet to be seen whether these results are robust across different pairs of

currencies or over different time periods. Nevertheless, I believe that this study

demonstrates a new approach in evaluating the performance of intervention under

the floating exchange rate system, which can provide some useful guidelines for

future studies as well as for many central banks in designing future intervention

strategies.
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Appendix A

Log Likelihood of the Friction

Model

The friction model is

y? = 135 + at. Etlzrt ~ N(0, 02), (A.1a)

y) = y?“ — 6* if y; > 6+, (A.1b)

y, = 0 if —6' s y; 3 6+, (A.1c)

y) = y; + 6‘ if y; < —6-. (A.1d)

By substituting y; with (A.1a) in equations (A.1b) and (A.1d), we get

yt = 1&3 — 5+ + 8t if 3}) > 0, (A.2a)

yt = xtfi + 5_ + 6t if y) < 0. (A.2b)

Note that y) > 0 if and only if y: > 6"” and yt < 0 if and only if y; < —6_.

With the normality assumption for the errors, stlxt ~ N(0, 02), the conditional

distribution of yt is given as

yilxi ~ N(133 — 6+. 02) if y) > 0, (A.3a)

ytlxt ~ N(xtfl + 6102) if y) < 0. (A.3b)
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Let Lt(9) E L(0;yt | 27)) be the likelihood function for observation t. From

(A.3), we see that

 

 

1 ,—:I:, +6+ ,

Lt(6)=;-¢(”’ ’f ) typo.

1 ,—:r, ~6‘ ,

[4(0) = g (b (111‘ tag ) 1f yt < 0.

where ¢() is the standard normal probability density function (PDF).

In the case of 3)) = 0,

L109) = P(yt = 0137f)

=1—P(yt>0|$t)—P(yt<0|$t)°

(A.4a)

(A.4b)

(A.5)

In Figure A.1, the relationship among P(yt = 0 | art), P(yt > 0 I act) and P(yt <

0 | at) is illustrated, assuming ,6 < 0. P(yt = 0 | art) is the shaded area under the

PDF of N(xtfl,a2). Note that P(yt > 0 I act) is larger than P(yt < 0 I 16)) when

it) < 0 but P(yt < 0 | wt) 76 0. Likewise, P(yt > 0 I act) sé 0 when x) > 0, which is

not illustrated in the figure.

From (A.2a),

P(yt>0|$t)=P($t,B—6++Et >0|$t)

=P(€t > -$t5+5+ lxt)

=1-P(€t_<_ -$t5+5+ l-Tt)

_ +

=1_¢(M_)

0'

(A.6)

where <I>(.) is the standard normal cumulative density function (CDF). Also from
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P(y>0|x)

 

 — — _ — — — — — d

 

  
Figure A.1: Conditional density of y*

(A.2b),

P(yt<0|$t)=P(:r¢fl+6_+€t<0|xt)

= P(€t < —$t)3 - 6—117t)

= <1) (15%—4:) . (A.7)

By plugging (A6) and (A.7) into (A5) and rearranging,

L,(0) = <1» (flégfi) -— <1> (iii—35:) if y, = 0. (.48)
0'
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From (AA) and (A8), the log-likelihood for observation t is obtained as

6(6) 5 log[Lt(9)l

=1(yi > 0) - 109 [<15 (gt — W3 + 6+) M]
 

 

a

+1(3/t < 0) -log [¢ (3“ - x’f — 6-) fir]

+1(yt = 0) -log [a (#6:) — <1> (Kigali-LN (A.9)

where 1() is the indicator function.
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Appendix B

Conditional Mean of the Hiction

Model

Dropping the time subscript from the friction model of (A.1), E(ylzr) is given as

E(9I$) = 1’01 > 0Irv) ° 13(ny > 0,17) + 1’01 < 0117) - E(y|y < 0,97), (31)

where the two probability terms are given in (A6) and (A.7). The two expectation

terms can be derived from (A.2) with the normality assumption for the errors.

From (A.2a),

E(y|y> 0,15) = E(:1:/3—6++€|8 > —a:[3+6+,:r:)

=xB—6++E(e|e>—x[3+6+,x)

_ +

:xfl—6++0E( li>fl,$)

U U

i

(15 ((—x5 + 6W0)
_ _ + 0,

"w ‘5 + 1—<I>((—:rfi+6+)/a)
(13.2) 

where the last equality follows from the fact that (€/0)|:i: ~ N(0, 1), and E(zlz >

c) 2: 05(0) / [1 —- <I>(c)] if 2 ~ N(0, 1). See Wooldridge (2000 chapter 17) for details
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of this approach applied to the case of a Tobit model. Similarly, from (A.2b),

E(y|y< 0,33) = E(zfl+6— +6 I E < —a:fl—6_,:r)

=xfi+6—+E(€|5<—$B—6_,z)

=Tfi+6_+aE(§- :<_—_:r,_fl;6_,$)

a a 0'

 :xfl-l-(S— —0E (-—E I —S > x6+6—,T)

a a a

¢((zB+6‘)/o)

=w+a~ ”“1—9iix6+6-)/a)'
 (B.3)

After plugging equations (A.6), (A.7), (B.2) and (B3) into (8.1) and rearrang-

ing, we get

W= l3 (“t“) <w-i+>+w(“;“")l

- [5 (reg—4‘) (35-5) A... (12.1)] (B...)

where we rely on the properties of ¢(c) = ¢(-c) and <I>(c) = 1 — (13(6) to simplify

  

the notation.
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Appendix C

Friction Model of a Fully

Asymmetric Reaction Function

In the friction model of (A.1), it is assumed that y: is a linear function of :17).

One implication of this assumption is that the central bank’s reaction to abrupt

appreciation is the same as its reaction to depreciation. Consequently, 6 remains

the same whether y > 0 or y < 0 although the intercepts (—6+ and 6") may

be different in size. If the central bank responds differently to appreciation and

depreciation of its currency so that the slope parameter 3 changes, this symmetric

reaction function becomes invalid. To account for potential asymmetry, separate

Tobit models may be estimated for buying intervention and selling intervention,

respectively. Alternatively, the friction model may be modified to allow asymmetric

responses.

It seems almost impossible, without additional arbitrary assumptions, to allow

different slope coefficients between buying interventions (y > 0) and selling inter-

ventions (y < 0) in the friction model. This is because the distribution of yIa: is

not defined for some 1: if the slope parameters are not constant. To see this, note
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that for the normal cdf <I>(-),

@(a) + [1 — <I>(b)] <1 ifa < 0,

=1 ifa=b, (C.1)

>1 ifa>b.

From (A.7) and (A6),

P(y < 0(5) + P(y > 012:) = 6 (jg—0‘5) + [1- 6 (MN. (0.2)
0'

Since 6+ > 0 and 6" > 0 by assumption, —:rB — 6‘ < —:r:fl + 6+, which is the first

case in (C.1). Therefore, P(y < OISE) + P(y > 0|;r) < 1 as it should be so that the

distribution of ylz is well defined. However, if the slope parameters are difl'erent

asfllfory>0andfigfory<0,

P(y < 0(5) + P(y > 0(5) = <1) (1”?) + I1 — <1> (MN. ((3.3)
0’

Note that for some 2:, —2252—6‘ > ‘351 +61" so that P(y < 0|2:)+P(y > 0|:r) > 1,

which is the third case in (C1). Therefore, the distribution of yla: is not defined

for some a: if 61 76 62.

Although it is not possible, or intractably complicated, to allow asymmetry

based on the values of y, it is possible to allow asymmetry based on the values

of an explanatory variable or other exogenous variable. Let st be an observable

threshold variable so that the parameters in (A.1) are different between the two

cases of st > 0 and 3t _<_ 0. Daily log return or deviation from m—day moving

average of the exchange rate may be used as 6).
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If 3) > 0,

9i; = $151+ 811» €1t|$t ~ N(0»0f)» ((3.43)

y, = 5,61 — (if + 51, if 3);, > 5f (y, > 0), (C.4b)

yt = 0 if —61_ g git S (If, (C.4c)

y) = Ttfll + 6; + Eu if lift < —61_ (y) < 0) (C.4d)

and if 3) S 0,

ya. = 662 + 52.. €2t|$t ~ M03) (950

yt = xtfig — 6; + 82) if ygt > 63” (yt > 0), (C.5b)

yt = 0 if —6g 3 ya} 3 63", (CSC)

yt = :rtfiz + 62— + em if 3);, < —6§ (yt < 0). (C.5d)

Since (CA) and (C5) are of the same form as the symmetric friction model

of (A.1), the log-likelihood for observation t must be the same as (1.11) with

appropriate replacement of the parameters. Therefore,

 

 

  

M9) = 1(3t > 0)£lt(9) + 1(3t _<_ 0)32t(9)i (C-G)

where

_. 5+

1311(9) =1(yt > 0) '109 I¢ (y: $2511 + 1 ) /01I

. _ _ 6"

+1(yt < 0) .log <15 (gt $2311 1)/<71I

f- — + - - _

+1(yt=0) -iog <I>( $‘5;1+61)—<1>( wall 61)I (0.7)
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[a] Latent variable fy") [b] Observations [y]

:1:

Y Y

 

 
  

Figure C.1: Simulation of asymmetric friction approach

and

 

02

_ +

221(9) = 1(1)) > 0) .10, I43 (3" W" + 62 ) /02I

 

I _- _ _.

+1(yt<0)°109 03(1)) “52 62)/02I

  

 

02

. — + _ _ _

+ 1(yt = 0) - log (I) 1352 + 62 — (I) “B2 62 . (C.8)

I 0'2 02

This asymmetric version of the friction model is illustrated in Figure CI for

the simple case where at is a scalar and st 2 (lit. The values of parameters are 01 E

(61,6f,5;,ol) = (—1,1,1.5,1) and 02 -=- (62,6;,6;,02) = (—0.5,1.5,1,1.5). The

asymmetric model considered in Almekinders et al., where the asymmetry is al-
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lowed only for the slope coefficient of the deviation variable devt_1, is a restricted

version of this fully asymmetric friction model.

In order to make the comparison of the estimation results of this asymmetric

model with those of the symmetric model in (A.1), we can rewrite the model as

.11? = flit/311+ 5t» Etlxt ~ N(0, 0,2), (C.9a)

y: = M) — 62‘ + 5t if y) > 0. (C.9b)

yt = mtfit + 5t— + 81 if yt < 0, (C.9C)

yt = 0 otherwise, (C.9d)

where fit E 62 + (61 — fig)(st > 0) and 6+, 6t— and at are defined in the same way.

We estimate ,6), E ,82 and 6), E 61 — 62. By looking at the t-statistics of 01 — [32,

we can see whether this difference in parameters is significantly different from zero

or not.

The corresponding asymmetric linear model is

yt = [[301 + $1671 + Ultl(8t > 0) +1302 + 1171372 + u2ti(3t S 0) ((110)

: BOt + xtfltt + uta (Cl-1)

where 301 = 502 + ([301 - 302)(St > 0), 37, = 572 + ([371 - 572)(St > 0) and

"t = U1t(3t > O) + u2t(8t _<_ 0)-

The conditional expectation E(ytlxt, st) for the asymmetric friction model of

(C9) is easily obtained as in (8.4) by replacing 6 with [3), 6+ with 6:" and so on.

Therefore, we can obtain and compare the R2 measures from these asymmetric

linear model and nonlinear model.

138



Appendix D

Generalized Residuals of the

Friction Model

For a Tobit model, Pagan and Vella (1989) show that a generalized residual can be

computed and used for their proposed diagnostic tests, which are based on moment

conditions. For the friction model (A.1), it is also possible to define generalized

residuals which may be useful when the usual residuals are not obtainable from

the estimated nonlinear model.

Define 7)) as

yi—zvifl+6+ ifyt>0

m = 91 - 221B — 6" if y, < 0 (D.1)

E(yf|yt=0)—T¢B ifyt=0.
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Note that when yt = 0,

EM“ | yt = 0) “133 = E(€t 1 yt = 0)

= E(€t I -5_ < 92' < 5+)

= E(€t I —6_ < xt3+€t < 6+)

= E(€t I —5_$t5 < 8t < 5+ - 1715)

_- +._.

:E(E_t. 6$tfl<2<6___flg).

0' 0' 0' 0’

 

Let

Then,

E E,

E<etlyi=0)=aE(—jlat<g<bt)

= 0 (Mat) - ¢(bt)

(prt) - (Nat)

 

(D?)

where the last equality is from the fact that for a random variable 2 ~ N(0, 1),

 

 

 

b

E(z I a < z < b) = <I>(b)i<1>(a)/¢; z¢(z)dz

_ 1 _ z b
_ @(b) _ @(a) I ¢( ”0

= ¢(a) - 60)

‘be) - 9(a).
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The generalized residual fit is defined as

yt-xt3+5+ ifyt>0

0t = yt - xtB - 5_ if y) < 0 (D3)

E(€tlyt=0) ifyt=0-

where E(at T3; = 0) is obtained by plugging the maximum likelihood estimates of

the parameters in (D2).

Although this generalized residual cannot be treated in the same manner as

the usual residual from a linear model, it can be used to test conditional moment

restrictions. For example, a test for first-order serial correlation may be based on

T"1 Z fitrjt_1, which can be justified by noting that

E(€t€t-1) = E[E(€t€t—1 I 9591—1)]

= E(€t I yt)E(€t—1 I yt—l)

under the assumption that at is independent of et_1.

If a test for specification error involves a higher moment of the error, it can be

computed in a similar way. For example, to test whether E(a?) = 0, a generalized

sample analog can be obtained from the fact E(s?) = E[E(a;; I yt)] as

r1253 if .2): ¢ 0.

T—1:E(5?Iyt=0) iii/i=0

A

where E03? I 311 = 0) is the conditional moment E(6%3 I yt = 0) evaluated at the

maximum likelihood estimates.
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Eta? | y) = 0) = E03? I —6‘ < y: < 6+)

= E03? I —6‘ < mm + 5t < 6+)

= Eff? I —6_.’L‘tfi < 8t < 6+ — xtfi)

= E (6;?- | ———6-xtfi < 3 < ——6+—:r)fi)
0' U 0'

3 (2 + a?)¢(at) - (2 + b.2110»)

(th) — (Nat)

 

where at and bt are as defined above, and the last equality is from the fact that

for a random variable 2 ~ N(0, 1),

3 _ 1 b 3
E(z Ia<z<b)— (I>(b)—<I>(a)A z ¢(z)dz

1

= <I>(b) — <I>(a) I'(2 + 22)‘WII

(2 + a2)¢(a) — (2 + 02)¢(b)

<I>(b) — <I>(a) '

 

b

 

a
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Appendix E

Bootstrap Procedure with

Heteroscedasticity

First, each element of the OLS residual vector (E is divided by an estimate of the

conditional standard deviation (V fit) to obtain a set of homoscedastic errors of

é:{é17"°9éTIét:ét/ fit, t=1,...,T}. (E.1)

The conditional variance estimate, fit, is obtained as the fitted value from an aux-

iliary regression of 6?? on :12? = (1, dcv7?‘_1, d6025%_1, volt2_1, yt2_1, 302—21 - -- ,yt2_p)’,

i.e.

6% 233,26 + o) (B.2)

fit 293% (E3)

where v) is an error term and 8 is the vector of OLS estimates in that auxiliary

regression.

Now the random draws are from these standardized errors of 8. Then, the t-th

bootstrap error ét is

ét = ét ht (EA)

143



where it) = 12% and 5:) = (1,devt_1,dev25t_1,volt_1,gt_1,§t_2, - -- ,gt_,,). Once

ét is given, the value of the dependent variable gt is computed by (2.12). Note

that fit 96 it) because it 96 2:). Since it contains lags of 37), in each replication the

bootstrap data on fit, ét and 3), must be computed recursively. The rest of the

bootstrap procedure is the same as the homoscedastic case.
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Appendix F

Confidence Interval for a

Threshold

Consider an LR statistic for H0 : '7 = '70 as

 

 

5.2 _ *2 a

LR(7) = T( (7272 5 (7)) (RI)

where

62(7) %Zé(7)2. (F 2)
t=1

2 (131-[32)V031 - 32)

” I”: (61— 62)’D(Bi — 92)” (F3)

E($tztet I9t= 7)

D = E($t$iIQt = 7)-

and ét('y) is the residual from two-regime threshold regression. The numerator and

denominator of 712(7) can be estimated either by polynomial regression on (1 qt

q?), or by kernel regression. See Hansen(1997, 2000) for details.

Note that the LR statistic is a measure of the change in error variance as the

threshold moves away from "7. It is standardized by a scale factor 62 which becomes

62(6)) if the regression error of the two-regime model is homoscedastic. Asymptotic
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distribution (cdf) of the LR statistic is

P(LR g c) = (1 — e—C/2)2. (F.4)

Let c5 be the 6 level critical value (e.g. B = 0.95). Then

P(LR 3 c5) = 6. (F5)

Using (F.4), solve for c5.

5,, = —2ln(1 — (fl?) (F.6)

Then the [3 level confidence interval for '7 consists of those elements of qt for

t: 1,...,T such that

L601) _<. —2zn(1 — 7'6). (FT)
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