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ABSTRACT

ACTIVE SLIDING SYNTHETIC WHEEL BIPED:
DYNAMICS, CONTROL, AND VERIFICATION

By

Kyle James Crayne

The active sliding synthetic wheel biped is an underactuated, planar, biped robot capable

of sliding while walking. This biped is a modification of the previously developed Michigan

State University (MSU) synthetic wheel biped (SWB). To create the sliding-while-walking

motion, a hybrid controller was created that consisted of a continuous controller over the

course of the step and a discrete controller at the end of the step. Partial feedback lineariza-

tion was used to control the biped’s motion to a specified gait during the step. By discretely

adjusting gait parameters at the end of each step through chaos control, the biped’s motion

was stabilized over multiple steps. Numerical simulations were used to determine the con-

figurations in which the biped would step and to validate the hybrid control method. New

hardware in the form of belted feet and an electronic controller were added to the previous

MSU SWB to account for the increased complexity of sliding while walking. To implement

the controller on the physical system, the control method was modified from the theoreti-

cal design to account for physical realities. Once altered, the biped successfully walked for

multiple steps in experiments by using the hybrid control method.
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CHAPTER 1

INTRODUCTION

Bipedal robots and walking machines have superior mobility over non-uniform terrain when

compared to wheeled mobile robots. However, wheeled robots are significantly more efficient

on flat terrain when compared to walking machines. Because human-friendly environments

incorporate large stretches of flat terrain combined with non-uniform features such as stairs,

it is desirable to have machines capable of traversing both terrains in the most efficient

manner possible. A wheeled bipedal robot that can combine the functionalities of a wheeled

robot and a traditional biped could provide such mobility.

Active wheeled bipeds designed by Matsumoto et. al. [2] and Hashimoto et. al. [3] are

capable of rolling on their wheels like a car and stepping like a biped with locked wheels.

Itabashi et. al. [4] studied bipeds with passive wheels and demonstrated skating motion.

These passive skating bipeds have the ability to roll on wheels, but they cannot control their

wheels directly. Neither the passive skating bipeds by Itabashi [4] nor the active wheeled

bipeds of Hashimoto [3] or Matsumoto [2] exploit the full potential of the hybrid platform

since they do not consider sliding while walking.

The main advantage of the sliding-while-walking motion is increased versatility in terrain

navigation. While Matsumoto [2] can roll on flat ground and step over obstacles, it needs

an explicit transition point between rolling and walking. If the sliding and walking motions

are combined, it would be possible to transition between different terrain without changing

control strategies. Such control strategies, by design, guarantee stability during the transition

phase. If separate controllers are used for rolling and sliding motions, one would have to

additionally ensure stability of the switched system during transition. The sliding-while-

walking motion can enable transport over discontinuous terrain such as a step between

a side-walk and a road without needing a complete stop. Sliding-while-walking motion
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is a combination of the efficiency of rolling and the versatility of walking. While active

wheeled bipeds will require more sophisticated control strategies when compared to those

used by Matsumoto [2], Hashimoto [3], and Itabashi [4], the added complexity could enable

slip rejection in wheeled bipedal robots. A simple, active biped design based on McGeer’s

Synthetic Wheel [5] was used for the development of the control methods for this hybrid

motion.

The “Synthetic Wheel” by McGeer [5] refers to bipeds with circular arc feet that, when

walking, create a continuous rolling surface like a wheel. Asano et. al. [6] showed that

the speed of bipeds with this arc foot design can be increased by decreasing the energy lost

due to foot-ground impact. These biped designs are primarily passive walkers, but can be

modified with active joints. Different active designs such as MABEL [7] have more mobility

than their passive counter-parts but use significant energy to maintain stability and track

trajectories. In an effort to strike a balance between the mobility of active bipeds and the

efficiency of passive bipeds, Flynn et. al. developed the active synthetic wheel biped with

torso (SWB) [8].

Starting from Flynn’s synthetic wheel design shown in Figure 1.1, we have added sliding

capabilities that can be realized through the use of an active belt on the feet. While this

work explicitly analyzes sliding-while-walking motion, it may also be beneficial to those who

study motion in changing inertial frames, such as stepping onto a conveyor belt or escalator.

This hardware also has applications to slip rejection control, such as remaining stable when

slipping due to spilled water on a tiled floor. Instead of building precise low-friction surfaces

to test slip rejection methods, this hardware could be used to simulate slip at any time

through the use of the active belt on the feet. While not all of these applications will

be addressed in this paper, the hardware and overall control design being used would be

applicable to these important problems. This paper investigates the control of sliding-while-

walking locomotion, and the effectiveness of the control is analyzed through simulations.

In Chapter 2 we discuss the dynamic model and theoretical control development for
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Figure 1.1: Synthetic Wheel Biped (SWB) by Flynn [1]

the biped. In Section 1 we present the mathematical model of the biped platform, which

includes the dynamics of stepping and the foot-ground interaction. Section 2 covers the

controller design for trajectory tracking during each step. This includes designing the desired

trajectories and verifying that the biped will step. Section 3 presents the discrete chaos

control approach used to guarantee the stability over multiple steps. Numerical simulations

are presented to demonstrate the sliding-while-walking hybrid gait.

Chapter 3 explains the changes in hardware to the SWB to accommodate the desired

motion. Section 1 presents the design of the sliding foot, and Section 2 covers the design of

the electronic control unit (ECU).

The experimental results are discussed in Chapter 4. Section 1 explains the many changes

to the theoretical controller that are required for the biped to operate. Section 2 presents

experimental data of the biped while it is walking while sliding.
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CHAPTER 2

DYNAMICS AND CONTROLS

2.1 Mathematical Modeling

2.1.1 Biped Dynamics

The active sliding synthetic wheel biped is shown in Figure 2.1, which is a slight modification

of Flynn’s SWB [8]. It has four generalized coordinates: θ, φ, ψ, and x. The biped stands

on its stance leg, while the swing leg and torso are connected to the stance leg at the hip.

The angular displacement of the stance leg, measured counter-clockwise from the downward

vertical axis, is defined as θ. The angular displacement of the torso with respect to the

stance leg is φ and the angular displacement of the swing leg with respect to the stance leg

is ψ. The linear displacement of the point of contact of the stance leg is defined as x. The

length of the torso is denoted as lt and the center of mass of the torso along the axis of the

torso is measured as dt from the end of the torso. Similarly, R is the length of each leg and

dsw and dst are the locations of center of mass for the swing leg and stance leg respectively.

The arc angle of the foot is defined as β and a measurement of the torso with respect to the

upward vertical axis is given as α.

The vector of generalized coordinates is given by

q =
[

θ φ ψ x

]T
(2.1)

The equations of motion (EOM) for the biped when the stance leg is in contact with the

ground can be determined using Lagrange equations as

M(q)q̈ +N(q, q̇) = Q (2.2)

4



dt

lt

θ

g

φ

ψ

dsw

dst

R

R

α

β

i

j

x

Figure 2.1: An arbitrary configuration of the active sliding synthetic wheel biped

where M is the mass and inertia matrix while N is the vector of Coriolis and gravitational

terms as shown in the Appendix (1). The vector of generalized forces, Q is given by

Q =
[

RF τ1 τ2 F

]T
(2.3)

where τ1 and τ2 are the generalized forces acting on the φ and ψ coordinates, and F is is the

horizontal force produced corresponding to the generalized coordinate, x. This force creates

a moment on the stance foot, hence its term RF in the θ equation. A full derivation of the

generalized forces can be seen in the Appendix.

Walking will be achieved by interchanging the swing and stance legs at each step. It is

assumed that the generalized forces acting on the systems are non-impulsive; and, therefore,

there are no jumps in velocities caused by the foot-ground interaction at the time of foot

interchange. This assumption will be justified in later sections.
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2.1.2 Foot Interchange

A discrete coordinate transformation occurs during the foot interchange due to the switching

of the stance and swing leg. The old swing leg is now defined as the new stance leg, and

vice-versa. This coordinate transformation is given by

q+ = Tq− (2.4)

q̇+ = T q̇− (2.5)

T =

























1 0 1 0

0 1 −1 0

0 0 −1 0

0 0 0 1

























(2.6)

where q− and q+ are the generalized coordinates shown in equation (2.1) before and after the

foot interchange respectively. Figure 2.2 shows the biped about to step and the coordinates

before and after the step.

Normally a horizontal impulse from foot-ground interaction would affect the velocities

of the coordinates, as shown by Flynn et. al. [8], which would change the coordinate

transformation. However, we are modeling the foot-ground interaction force, F , to be non-

impulsive and controllable. Physically, this can be realized by a belt that interacts between

the foot and the ground but is frictionless between the belt and the connecting foot. At the

time of contact with the ground, the belt will grip the ground but will allow the foot to slide

without impulse on the belt. This frictionless belt will ideally eliminate all of the horizontal

impulsive forces and the wheel-like design of the SWB will ideally eliminate vertical impulsive

forces [8]. Additionally, it is possible to minimize horizontal impulsive forces through careful

gait design as shown in future sections.
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torso

swing
leg heel

stance
leg toe

swing
leg toe

stance
leg heel

θ− θ+

ψ−

ψ+

φ−

φ+

Figure 2.2: A schematic of the biped about to step. Stance and swing denoted in the figure
refer to their designations before the step happens.

2.2 Controller Design for Continuous Dynamics

Planar biped walkers have been explored in great detail by Westervelt et. al. [9]. The hybrid

nature of these robots was ascribed to the continuous motion over the step and the discrete

events that occur when switching legs. In this paper we control the hybrid dynamics through

the use of a continuous controller over the step and a discrete controller at the discrete foot

interchange. This is similar to the work by Mathis et. al. [10], [11] which controls the hybrid

dynamics of a hopping robot. Grizzle et. al. [12] employed an alternate control method

which used a finite time controller to ensure convergence by the end of a step. The combined

continuous and discrete controller was used instead of the finite time control method due

to the challenges of implementing finite time controllers in practice, such as discontinuous

control torques and chattering.
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2.2.1 Partial Feedback Linearization

The biped shown in Figure 2.1 is underactuated; and, therefore, it cannot independently

actuate all degrees of freedom (DOF). Partial feedback linearization was chosen to control

the motion of the biped. We define the controllable states as φ, ψ, and x where θ is uncon-

trollable. To this end, we partition the coordinates in equation (2.1) as follows:

q =









q1

q2









=

























θ

φ

ψ

x

























(2.7)

Similarly, the matrices from equation (2.2) can be partitioned as

M(q)−1 =









M1 M2

M3 M4









(2.8)

N(q) =









N1

N2









(2.9)

Q =









Q1

Q2









=

























RF

τ1

τ2

F

























(2.10)

This partitioning results in the matrices M1, M2, M3, and M4 being 1×1, 1×3, 3×1, and

3×3 sized matrices respectively. N is partitioned identically to q.

From equations (2.2) and (2.8)-(2.10), q̈2 is given by

q̈2 =M3[Q1 −N1] +M4[Q2 −N2] (2.11)

Through equation (2.10), Q1 can be rewritten as

Q1 =
[

0 0R

]

Q2 (2.12)
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Substituting equation (2.12) into equation (2.11) gives

q̈2 = C2Q2 − C1 (2.13)

where

C1 = M3N1 +M4N2
(2.14)

C2 =
[

M4 +M3

[

0 0R

]]

(2.15)

Now that the controllable accelerations (φ̈, ψ̈, ẍ) are in terms of the inputs (Q2), we

define the desired dynamics of the controllable system as

Ë = −KPE −KDĖ (2.16)

where E, KP , and KD are given by

E =

















φ− φd

ψ − ψd

x− xd

















(2.17)

KP = ω2n

















1 0 0

0 1 0

0 0 0

















(2.18)

KD = 2ζωnI (2.19)

Note that ωn and ζ are positive constants and I is the identity matrix. The last diagonal

term of KP is 0 while the last diagonal term of KD is 1, allowing us to define a desired

velocity for our biped without defining a desired displacement.

Substituting equation (2.17) into (2.16), the desired dynamics can be written as

q̈2 = K +

















φ̈d

ψ̈d

ẍd

















(2.20)
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where K is the desired linear controller, given as

K = −KP

















φ− φd

ψ − ψd

x− xd

















−KD

















φ̇− φ̇d

ψ̇ − ψ̇d

ẋ− ẋd

















(2.21)

With the desired controller defined, the control inputs (Q2) can be written as

Q2 = C−1
2

















C1 +K +

















φ̈d

ψ̈d

ẍd

































(2.22)

For this derivation, the desired accelerations (φ̈d,ψ̈d,ẍd) are allowed to be arbitrary functions

of the states and θ̈. A parametrization of this can be written as
















φ̈d

ψ̈d

ẍd

















= K̃(q, q̇)









θ̈

1









(2.23)

where K̃(q, q̇) is a 3×2 matrix that is defined by the desired accelerations of our controllable

states. The constant 1 is used to allow the desired accelerations to have components that

are only functions of the measured states. The explicit terms of K̃ used in this controller

will be defined after the definition of the desired gait.

To write our desired accelerations as a function of only the state variables, the equation

of motion for θ is used. Using the partitions from equations (2.8)-(2.10) and equation (2.2),

the desired accelerations can be written as
















φ̈d

ψ̈d

ẍd

















= K̃(q, q̇)









−M1N1 −M2N2 +
[

M1

[

0 0R

]

Q2

]

1









(2.24)

Rewriting equation (2.24) gives
















φ̈d

ψ̈d

ẍd

















= C3Q2 + C4 (2.25)
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where

C3 = K̃(q, q̇)









M1

[

0 0R

]

+M2

0 0 0









(2.26)

C4 = K̃(q, q̇)









−M1N1 −M2N2

1









(2.27)

Substituting equations (2.25) and (2.20) into equation (2.13) gives the control inputs (Q2)

as

Q2 =

















τ1

τ2

F

















= [C2 − C3]
−1 [C1 + C4 +K] (2.28)

It is assumed that [C2 − C3] is invertible. If it is not, a pseudo inverse can be used in place

of the inverse to compute the minimum norm solution.

2.2.2 Desired Gait Design

Flynn et. al. developed the “Impact-Free” gait for the synthetic wheel biped with torso [8].

This gait ideally removed impulses due to impact by making the velocity of the swing leg

zero at the end of the step. We propose a modified version of this gait as follows:

φd = π + α− θ

ψd = −β sin(πθ/β)

ẋd = −Rθ̇ + Va

(2.29)

where β is the arc angle of the foot; α is a constant that defines the desired torso angle

counterclockwise from the upright-vertical axis as shown in Figure 2.1; and Va is a constant

that determines the added velocity due to sliding. The angle at which the biped switches

feet is θ = −β/2. Note that we choose to not define a desired trajectory for the coordinate

x but we do define a desired trajectory for ẋ. This is reflected in our choice of gains in

equations (2.18) and (2.19). To obtain K̃, the second derivatives of the gait described in
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equation (2.29) are taken, resulting in

K̃ =

















−1 0

−π cos(πθ/β) (π2/β)θ̇2 sin(πθ/β)

−R 0

















(2.30)

Note that the first column is multiplied by θ̈ and the second column is just a constant.

With the gait defined, we need to guarantee that the biped will step. To this end, we

first show that if E ≡ 0 at the end of each step, then E ≡ 0 at the start of the next step.

This can be shown by setting the coordinates and their derivatives equal to their desired

trajectories at the end of the step. Note that we do not know the value of θ̇ at the end of

the step and x is arbitrarily set to zero. At the end of a step we have from equation (2.29)

θ− = −β/2

φ− = π + α + β/2 φ̇− = −θ̇−

ψ− = −β sin(−π/2) = β ψ̇− = −πθ̇− cos(−π/2) = 0

x− = 0 ẋ− = −Rθ̇− + Va

(2.31)

Substituting equation (2.31) into the coordinate transformations in equations (2.4) and (2.5),

we find the values at the beginning of the next step as follows:

θ+ = β/2 θ̇+ = θ̇−

φ+ = π + α− β/2 φ̇+ = −θ̇+

ψ+ = −β ψ̇+ = 0

x+ = 0 ẋ+ = −Rθ̇+ + Va

(2.32)

Knowing that θ = β/2 at the beginning of a step when E ≡ 0, we can find the values

of the desired trajectories at the beginning of the step. Note that θ̇− is unknown and x is

arbitrarily set to zero as stated above. These desired values are then given as

θ+d = β/2

φ+d = π + α− β/2 φ̇+d = −θ̇+

ψ+d = −β sin(π/2) = −β ψ̇+d = −πθ̇+ cos(π/2) = 0

x+d = 0 ẋ+d = −Rθ̇+ + Va

(2.33)
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A comparison of the results in equations (2.32) and (2.33) shows that E ≡ 0 before the step

results in E ≡ 0 after the step.

If we assume “perfect control”, that is E ≡ 0, the dynamics of θ, φ, and x are described by

equation (2.29). These can be substituted into equation (2.2), which then reduces to a single

DOF system in terms of the passive dynamics of θ as shown in the Appendix, equation (25).

While the passive dynamics are too complicated to solve analytically, we can numerically

investigate the dynamic behavior of θ when E ≡ 0 to determine if the biped will step.

2.2.3 Simulations of Continuous Dynamics

Simulations were used to explore the behavior of the system assuming E ≡ 0. The system

parameters are given in Table 2.1. Note that Jt, Jst, Jsw, and Mt, Mst, Msw denote the

moment of inertia about the center of mass and the mass of the torso, stance leg, and swing

leg respectively. All physical values are given in SI units and all angles were measured in

radians. Note from the values that we assume both legs are identical.

Table 2.1: Physical Parameters for Simulation

Parameter Value Units

Jt 0.2376 kgm2

Jst 0.0547 kgm2

Jsw 0.0547 kgm2

dt 0.2415 m
dst 0.3175 m
dsw 0.3175 m
Mt 12.22 kg
Mst 1.628 kg
Msw 1.628 kg
R 0.635 m
lt 0.483 m
β 0.3927 rad
g 9.810 m

The phase portrait of the passive system is shown in Fig 2.3 when α = 0. The shaded

region denotes the space where θ will reach the foot switching angle, −β/2 (≈-0.2 rad). From
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equation (2.32), we know that θ after the step will be β/2 and θ̇ does not change during the

step. This means that once the stepping angle is reached, the beginning of the next step will

be inside the shaded region. Therefore, if the biped steps, it will continue stepping when

E ≡ 0 and α = 0. If α 6= 0, Flynn et. al. [8] showed that the magnitude of θ̇ will continually

increase for the ideal case but will remain bounded due to friction and other unmodeled

dynamics. Note that this phase portrait is independent of Va because Va effectively changes

the inertial frame without affecting any internal dynamics.
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Figure 2.3: Phase portrait of passive coordinate θ when α = 0. The vertical lines at
θ = −β/2 and θ = β/2 indicate the bounds for which the dynamics are valid. The dashed
line represents the coordinate transformation q+ = Tq− at the end of the step.

2.3 Controller Design for Hybrid Dynamics

2.3.1 Periodic Behavior

We have shown that the “perfectly controlled” biped (where E ≡ 0) will keep stepping for

certain initial conditions. In general, E will not be identically zero; and, therefore, the biped

will not perfectly track its desired gait. The coordinate transformation at the time of foot

interchange could magnify this error. It is therefore necessary to control the behavior of the
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biped across multiple steps and ensure that the biped asymptotically approaches a periodic

configuration, which will induce stepping.

Assume the initial conditions at the end of the kth step to be

p(k) =
[

φ(k) ψ(k) θ̇(k) φ̇(k) ψ̇(k) ẋ(k)

]T
(2.34)

Note that these are our generalized coordinates and their derivatives excluding θ and x. We

do not need θ because it is constrained at the end of the step to be −β/2. We also do not

need x because it is allowed to be arbitrary.

For the initial conditions given, the Poincaré map P (·), that describes the motion from

one step to the next, is given as

p(k + 1) = P (p(k)) (2.35)

The initial conditions in (2.34) can be defined as a period-1 periodic point [13] if

P (p∗)− p∗ = 0 (2.36)

The periodic points of (2.36) were found numerically in a defined space of p. Multiple

periodic points were found and we chose p∗ that resulted in behavior that mimics the phase

portrait in Figure 2.3, i.e. E ≡ 0 and α = 0. Note that we had to fix values for ωn, ζ ,

α, and Va to simulate the dynamics and find the periodic points. Knowing that there are

multiple periodic points in our dynamic space, we want to force our desired periodic point

to be asymptotically stable.

2.3.2 Chaos Control

With our desired periodic point found, we now want to control the biped to this periodic

point, i.e. asymptotically stabilize the periodic point. To do this, we will use the OGY

method of Chaos Control [14]. We start by defining error states for our initial conditions as

x̃(k) = p(k)− p∗ (2.37)
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where p∗ is the desired periodic point. We then define the input at each step k as

u(k) =
[

ωn(k) ζ(k) α(k) Va(k)

]T
(2.38)

and the error input as

ũ(k) = u(k)− u∗ (2.39)

where u∗ is the desired set of control values used to find the periodic point in the previous

section. We can now write a discrete linear controller as

x̃(k + 1) ≈ Ax̃(k) +Bũ(k) (2.40)

Note that A is the Jacobian of the Poincaré map, i.e. A = δP/δx̃|x̃=0, and that A and B

were computed numerically. The discrete control ũ(k) is defined as follows:

ũ(k) = −Kx̃(k) (2.41)

where K can be found by using the discrete LQR method [15]. This would use ωn(k), ζ(k),

α(k), and Va(k) to control p(k) to p∗ when we start from initial conditions arbitrarily close

to the periodic point.

2.3.3 Simulations of Hybrid Dynamics

Simulations were used to validate the hybrid controller described above. The physical param-

eters from Table 2.1 were used for these simulations. The desired periodic initial conditions

at the end of the step were assumed to be

p∗ =
[

3.338 0.393 −0.664 0.664 0.000 0.722

]T
(2.42)

and the desired control values are

u∗ =
[

10 0.7 0 0.3

]T
(2.43)

The starting configuration was assumed to be

q0 =
[

0 π 0 0

]T

q̇0 =
[

0 0 0 0

]T (2.44)
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Note that this configuration is one where the biped is at rest with both legs straight down

and the torso straight up. The gain used in the chaos control feedback is

K =

























0.02 0.02 −0.09 −0.08 0.04 0.23

0.02 −0.00 −0.09 −0.08 0.05 0.24

0.07 −0.00 0.05 0.04 0.00 −0.11

0.05 −0.01 0.08 0.07 −0.01 −0.17

























(2.45)

To move from rest, α(0) or Va(0) will have to be non-zero. To this end, we choose u(0)

to be

u(0) =
[

10 0.7 −0.08 0

]T
(2.46)

Figure 2.4 shows the simulated angle states. The vertical dashed lines represent a step,

with the step number listed next to them. The initial step is not shown so the consistency

of the steps can be seen. Transient effects are seen in the first few steps after which periodic

behavior can be observed.
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φ− π
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Figure 2.4: Simulated Angle States. Each vertical dashed line represents a step.

Figure 2.5 shows the components of x̃(k) vs. time for the same simulation as Figure 2.4.1

1A video of the simulation results can be found at www.egr.msu.edu/~mukherji/Active_
Sliding_Synthetic_Wheel_Biped_Simulation.mp4
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Figure 2.5: Plot of error states vs time

Note that the error of the chaos controller has converged to zero within 15 steps. Figure 2.6

shows the generalized forces and how they decreased in magnitude over time as the biped

approached its periodic gait. The jumps in magnitude are due to jumps in the non-linear

terms of the input calculations, which can be attributed to the coordinate transformation

at the end of the step. Note that these torque discontinuities are an idealization and it will

not be possible to reproduce them exactly in experiments.

From Figure 2.3, it is clear that the sign of θ changes during the step, but θ̇ remains the

same. This is because θ is an odd function, while θ̇ is an even function. This implies that θ̈

is an odd function. Since θ and θ̈ are odd functions, their discrete jumps at the end of each

step cause the discontinuities in the inputs. Even and odd function characterization of the

passive dynamics of the SWB were explored by Flynn [1].
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Figure 2.6: Plot of continuous control effort vs time
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CHAPTER 3

HARDWARE DESIGN

To experimentally validate the control algorithm developed, the Synthetic Wheel Biped

(SWB) created by Flynn [1] was re-purposed to allow for additional sliding motion at the

foot. The original SWB as seen in Figure 1.1 was a planar biped with two hip motors and

solid arc shaped feet. The new biped as seen in Figure 3.1 maintains the majority of the

hardware from the previous version but has new feet and new electronics. To create the

sliding motion, a mechatronic foot was designed to replace the previous solid foot. The

Electronic Control Unit (ECU) on the SWB did not have the capacity for the extra motors

and encoders needed to operate the feet, so a complete redesign of the robot’s electronics

was done.

Figure 3.1: Picture of Active Sliding Synthetic Wheel Biped
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3.1 Sliding Foot

Figure 3.2 shows a comparison of the old foot (top) and new foot with one side panel removed

(bottom). On the new foot, a belt is driven by a small motor to allow for slip between the

ground and the foot. The torque on the motor creates a linear force (F ) at the ground due

to the traction provided by the belt. An oil-impregnated plastic was used for the contact

surface of the belt and Delrin rollers were used to reduce friction while snaking through the

foot. The motors used for the feet were Faulhauber’s 2342-024CR with a 14:1 gearhead and

Faulhaber IE2-512 encoders. The new sliding foot has the same curvature as the previous

static foot created by Flynn [1] to maintain the synthetic wheel design. The two bolts in the

center of each foot are used to mount each foot to the biped’s legs.

Figure 3.2: Comparison of old (top) and new (bottom) feet
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3.2 Electronic Controller

With 8 motors and 8 encoders needed to run the newest iteration of the Synthetic Wheel

Biped, a new ECU was designed. Figure 3.3 shows the major components and logic flow to

operate the robot while Figure 3.4 shows the ECU when mounted on the robot. Figures de-

picting the ECU schematic and physical board layout are shown in the Hardware Appendix.

To accommodate all of the different voltages required for operation, a 30V Nickle-Cadmium

(NiCd) battery was used with several different DC/DC voltage regulators to power every

component on the ECU. A separate 24V NiCd battery was used to power the motors and

motor amplifiers.

Microcontroller

Encoders

IMU

Wireless Comm.

Data Storage

Motor Controllers

Figure 3.3: ECU block diagram

Figure 3.4: Picture of ECU mounted on robot
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An STM32F4-Discovery board was used as the microcontroller for the ECU. This was

chosen for its large number of serial communication buses and high clock speed. A CH

Robotics UM6 Inertial Measurement Unit (IMU) was used to measure the biped’s angle

relative to the earth, and encoders on each motor allowed for angular measurements of each

joint. A Digi Xbee S1 wireless module was used to communicate with the microcontroller

during operation by sending commands from a computer wirelessly. Data was stored using

a microSD card reader.

The motor controllers were also changed in this version of the Synthetic Wheel Biped

to account for the added motors. AMC motor amplifiers Z6A6 and Z12A8 operating in

torque control mode were used because it was possible to mount 8 of them on the biped

torso by using AMC two-axis MC2XZQD mounting cards as shown in Figure 3.5. Six Z6A6

controllers were used to control the feet and linear joints, while two Z12A8 controllers were

used for the hips due to their higher amperage capacity. All of these amplifiers use a ±10

V analog input to control the output torque. This voltage was not readily available from

the microcontroller, so an amplifier circuit was designed to convert a 0-5V output from the

Digital-to-Analog Converter (DAC) to the required ±10 V input of the motor amplifiers. A

diagram of this system can be seen in the ECU schematic in the Hardware Appendix.

Figure 3.5: Picture of motor amplifiers mounted on robot
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CHAPTER 4

EXPERIMENTAL VALIDATION

4.1 Controller Implementation

4.1.1 Programming and Operation

The STM32F4-Discovery breakout board uses an ARM Cortex-M4 processor for its com-

putations. To program this chip, code was written in C and compiled using proprietary

software to run on the chip. Several Integrated Development Environments (IDEs) allow for

this compilation, and the Embedded Workbench from IAR Systems was used.

The program used software interrupts for timers and serial data input. This allowed

the system to have a precise, fixed-time loop and read all of the information sent from the

IMU and Xbee. The data coming from the IMU contain checksum information to verify the

data being received, while the Xbee does not. This is acceptable because no data is being

streamed over the wireless connection, only commands from a computer to enable/disable

operation and data logging.

The software has two main phases, being a setup phase and a fixed loop phase. In

the setup phase, all of the communication buses are initialized before any data is being

manipulated. Once setup is complete, the system enters an infinite, fixed-time loop phase

where the main body of the program runs. This phase reads all of the information from the

sensors, computes the desired torques, and sends the information to the motor amplifiers and

data storage if enabled. The motors and data storage are initially disabled until a command

is sent to the Xbee. To start the robot, the encoder values and angle from the IMU are

recorded to initialize the system in a set configuration. Once initialized, a command is sent

to the Xbee to start the data collection and robot walking.
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4.1.2 Control Changes

To account for differences between the theoretically modelled control system and the imple-

mentable system, several changes were made to the controller as described in the previous

section. In the dynamic derivation, it was assumed that the biped could slide with perfect

slip to uncouple the coordinates x and θ. In reality though, the designed foot is not fric-

tionless enough for this assumption to hold true. To compensate, the control algorithm was

reworked as a 3 DOF system where the biped will roll with a set slip speed, meaning

ẋ = −Rθ̇ + Va (4.1)

Instead of the system having 4 DOF where sliding is caused by controlling the force at

the ground, the biped’s controller uses the 3 DOF model described by Flynn [8] and has a

velocity controller on the motors of the foot. The added velocity Va just changes the inertial

frame of the biped and none of the dynamics include this term.

Instead of re-deriving the entirety of the dynamics and control as done in the previous

sections, the general form of the Lagrange equations as shown in equation (2.2) can have the

terms manipulated to convert the 4 DOF system into a 3 DOF system as follows:

M̂(q̂)¨̂q + N̂(q̂, ˙̂q) = Q̂ (4.2)

where

q̂ =
[

θ φ ψ

]T
(4.3)

Q̂ =
[

0 τ1 τ2

]T
(4.4)

M̂ is now a 3×3 matrix and N̂ is a 3 element column vector. The values of M and N from

the Appendix (1), can be manipulated to find M̂ and N̂ . We can couple the x dynamics

into the other terms by equating F in Q and using equation (4.1). Note that no terms in the

original M and N contained x or ẋ, therefore the Va term does not appear in the dynamics
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as stated earlier. The conversion from 4 DOF to 3 DOF can be seen as

M̂11 = M11 − 2RM14 +R2M44

M̂12 = M12 −RM24

M̂13 = M13 −RM34

M̂21 = M21 −RM24

M̂22 = M22

M̂23 = M23

M̂31 = M31 −RM34

M̂32 = M32

M̂33 = M33

N̂1 = N1 − RN4

N̂2 = N2

N̂3 = N3

(4.5)

With these new equations, the partial feedback linearization derivation follows the same

steps as equations (2.8) to (2.22), resulting in









τ1

τ2









= [C2]
−1[C1 +K] (4.6)

where

C1 =M3N1 +M4N2 (4.7)

C2 =M4 (4.8)

K = −ω2n









φ− φdes

ψ − ψdes









− 2ωnζ









φ̇− φ̇des

ψ̇ − ψ̇des









− 2ωnζd









φ̇

ψ̇









(4.9)

remembering that M1, M2, M3, M4 are the partitioned matrices from the inversion of the

mass matrix. The full derivation can be found in the Appendix, equations (8)-(24). In

this derivation, the desired accelerations were assumed to be zero. If the accelerations are

included, numerical inaccuracies can accumulate from velocity squared terms and matrix
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inversions which can cause instability. It is also important to note that K now includes

an additional viscous damping term with a small positive constant ζd based on the angular

speeds compared to the damping term based on the error of angular speeds. This serves to

filter the torques applied to the biped based on the speed of the robot. Instead of filtering

the torques using a generic low-pass filter or first-order filter, the viscous damping term was

added. This results in slower, smoother motion of biped.

Now that the torques (τ1 and τ2) have been found, the speed of the belt still needs to be

controlled. This was done by using a simple, linear, proportional-integral (PI) controller on

the speed of the motors. The desired speed was set to Va, and an individual PI controller

was used for each foot to account for the differences in friction of each foot. To keep the

biped walking straight, the speed controllers had additional terms from each foot that were

coupled to the other foot. This controlled the speed between feet to each other as well as

the desired speed, resulting in straight walking.

Besides the change in DOF, the theoretical model also assumed that both legs had equal

physical parameters while the physical system has legs with different masses and moments

of inertia. To account for this, the robot had to keep track of which leg was in contact with

the ground and apply the physical parameters appropriately in the control algorithm. As

expected, these changes in physical parameters lead to differences in the gait of the robot

depending on which foot is in contact with the ground. Similar to Figure 2.3, which showed

the desired region of operation for the theoretical biped during perfect control, Figure 4.1

shows the phase portrait of the passive coordinate θ when the stance leg is on the inside

(left) and outside (right) leg respectively. As shown, the desired path of θ differs per step,

but the symmetry about θ = 0 allows for a single desired period-1 periodic point instead of

a period-2 point. This allows the chaos controller to still update every step instead of once

every two steps, making the convergence twice as quick.

Besides the physical parameters, there are measurements needed by the controller that are

not explicitly available with the sensors on the biped, being θ̇, φ̇, ψ̇, and ẋ. While encoders
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Figure 4.1: Phase portrait of passive coordinate θ with α = 0 when the inside leg (left) and
the outside leg (right) are the stance leg. The vertical lines at θ = −β/2 and θ = β/2
indicate the bounds for which the dynamics are valid. The dashed line represents the
coordinate transformation q+ = Tq− at the end of the step.

allow for measurement of angular rotation, they do not measure angular rate. However,

the velocity measurements can be obtained by numerically differentiating the encoder sig-

nals and passing the output through a low-pass filter. The filter is required to avoid large

discontinuities in the velocity measurements, which could induce chattering in the system.

In the theoretical model, it is assumed that the center of mass (COM) of the torso is

along the axis of the torso. In the physical system, however, this is not the case. It was

emprically determined that the COM of the torso is actually 2 degrees counter-clockwise of

the torso’s axis as shown in Figure 2.1. To compensate, all terms with φ in the EOM have an

offset of 2 degrees added. This ensures the gravity compensation in the non-linear controller

is as accurate as possible.

The final change is in the design of the chaos controller. In the theoretical model, all

states at the periodic point are used to update gains in the controller (ωn, ζ) and desired

values (α, Va). In the physical system, it was decided that the chaos controller should only

update the desired values (α, Va). It is undesirable to update the controller gains because

it can cause instability and chattering in the system after usable gains have been found via
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experimentation. From Figure 4.1, we see that the dynamics of the system collapse to the

2D manifold of θ × θ̇ when the continuous control is perfect (E ≡ 0). Because we fix θ at

the end of the step to define our periodic point, the periodic point can be uniquely described

by the value of θ̇ at the end of the step. Therefore, instead of 6 values, only the value of

θ̇ will be used in the chaos control as the control objective. In the actual implementation,

the measurement of θ̇ is averaged over several time steps to reduce errors caused by noise in

the velocity data. Therefore, ¯̇θ will be the implemented control objective. With all of this

information, the chaos controller used is as follows:









α(k + 1)

Va(k + 1)









= −K
¯̇
θ(k) +









αdes

Vades









(4.10)

4.2 Experimental Results

The physical parameters of the biped are given in Table 4.1. Note that these are different

values from those in the theoretical simulations. As physical changes to the biped were

made, the parameters were updated to make the controller as accurate as possible. Feedback

linearization is sensitive to differences between the model and the physical device, so these

changes were crucial in obtaining the desired performance.

Figure 4.2 shows the angle states of the biped during an experimental trial. Each vertical

dashed line represents a step, with a step number next to it. The biped was started at step

0. The data before step 1 was not shown so that the details of the following steps would be

visible. Due to the way the biped is started, the first step takes a long time because the biped

does not immediately start walking. Note that the experimental data is qualitatively similar

to that of the simulations in Figure 2.4. There are two major distinctions, being the lack of

similarity between steps in the experimental data and the small upswing in θ on some steps

of the experimental data. The lack of similarity between steps of the experimental data could

be due to external stimuli in the form of impulses from the ground or ground irregularity.
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Table 4.1: Experimental Physical Parameters

Parameter Value Units

Jt 0.192 kgm2

Jout 0.128 kgm2

Jin 0.094 kgm2

dt 0.3429 m
dout 0.3096 m
din 0.2048 m
Mt 11.744 kg

Mout 3.956 kg
Min 2.132 kg
R 0.638 m
lt 0.467 m
β 0.35368 rad
g 9.81 m

In simulation, all of the states smoothly traversed from their starting position to their final

position. In some portions of the experimental data (namely steps 2, 3, 7, & 8), it seems

that the biped hesitated and even moved backwards slightly at certain spots. This indicates

that the passive dynamics are underdamped based on the controller used, resulting in an

overshoot and oscillation about the desired path. Despite the differences from the simulated

results, the biped still continued to step in experiments.
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Figure 4.2: Experimental Angle States. Each vertical dashed line represents a step

Given E1 = φ − φdes and E2 = ψ − ψdes from equation (2.17), these errors and their
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derivatives are shown in Figure 4.3 for the experimental trial. Note at the beginning of each

step, the velocity error E2 corresponding to the swing leg ψ has a discrete jump. This error

then moves towards zero, while the position error grows. The discrete jumps in velocity

error are due to impulses from collision with the ground at each step. If the velocity of

the swing leg is not exactly zero as the gait specifies, these impulses noticeably affect the

motion of the biped. From Figure 4.3, it is clear that the position error of the biped is

not constantly decreasing. However, when the position error is increasing, the velocity error

is converging towards zero. The relationship between which errors converge at what rates

could be manipulated by adjusting the gains (ωn, ζ , ζd). If the steps took more time, it may

be possible for the errors and their derivatives to both converge to zero before the next step

occurs.
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Figure 4.3: Experimental Angle State Errors

The torques for the experimental trial are shown in Figure 4.4. Note that these do not

match well with the torques shown in the simulated results in Figure 2.6. This could be

due to many factors including the difference in models, physical parameters, external noise,

impulses, and measurement filtering. It is important to note that the torques on the swing

leg (τ2) are large at the start of the step. This is most likely due to τ2 trying to counter the
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effects of the impulse from the contact with the ground. As shown, the experimental torques

are still bounded and the biped did successfully walk. These differences just show the lack of

correlation between simulated and experimental control input to result in walking motion.
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Figure 4.4: Experimental Torques

Figure 4.5 shows the experimental chaos controller data over multiple steps. Note that

the value of ¯̇θ does not completely converge compared to the theoretical estimations. This

could be due to external stimuli such as impulses from impact pushing the biped’s motion

away from the periodic point. There is a large jump in magnitude of all values at step 8. It

is unclear what caused the jump, but it was possibly in response to ground irregularities or

some other stimulus.
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CHAPTER 5

CONCLUSIONS

In this work, the previous MSU SWB was modified to allow for sliding-while-walking mo-

tion. The first model of the active sliding synthetic wheel biped had the ability to control

the horizontal ground interaction force, thus allowing the biped to slide. A partial feedback

linearization controller was designed to track desired trajectories during each step. It was

shown that once the biped steps, it will continue stepping when the error of the continuous

controller is zero. However, this will not be always true. Due to the asymptotic convergence

of the tracking controller, finite time of each step, and any impulses from impact, the con-

tinuous controller will likely not be converged by the end of the step. A chaos controller was

therefore designed to stabilize the biped’s motion to a desired periodic gait in the presence

of these issues. This hybrid controller was shown to effectively control the motion of the

biped during each step and over multiple steps through simulation.

To implement this controller, the synthetic wheel biped built by Flynn [1] was modified to

allow sliding-while-walking motion. The feet were changed to incorporate motors and a new

ECU was designed to handle the increased complexity. It was clear in early experimentation

that the physical feet were not capable of near-frictionless motion, so the theoretical biped

system was re-modeled and the control was changed to account for these differences. After

changes were made, the biped exhibited sliding-while-walking motion in an experimental

trial. While the gait did not converge as expected, the chaos controller did add a level of

stability in that it can account for external stimuli that change between steps and the robot

was able to walk for multiple steps.

In the future, it would be beneficial to investigate a new design of the foot that would allow

frictionless motion at the ground. This could be accomplished by redesigning the current

foot to remove sources of friction. Another possibility would be to eliminate the synthetic
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wheel design and substitute wheels for arc feet. While the latter option completely changes

the model, it can still create the desired sliding-while-walking motion. This biped would

need to be designed with ”point feet” instead of the synthetic wheel, but the capabilities

would remain essentially the same. This wheeled biped could also include knee joints, which

would allow for other motions like climbing ledges or stairs to greatly extend the biped’s

mobility.
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Equations

Lagrange Equations - 4 DOF

Terms of the 4 DOF Lagrange equations. Note that the mass matrix, M , is symmetric.

M11 = Jst + Jsw + Jt +mst(dst −R)2 +msw(dsw −R)2 +mt(dt − lt)
2

M12 = Jt +mt(dt − lt)
2

M13 = Jsw +msw(dsw −R)2

M14 =msw(R − dsw) cos(ψ + θ) +mt(lt − dt) cos(φ+ θ) +mst(R− dst) cos(θ)

M22 = Jt +mt(lt − dt)
2

M23 = 0

M24 =mt(lt − dt) cos(φ+ θ)

M33 = Jsw +msw(R− dsw)
2

M34 =msw(R − dsw) cos(ψ + θ)

M44 =Mst +msw +mt

N1 = [mt(lt − dt) sin(θ + φ) +mst(R− dst) sin(θ) +msw(R − dsw) sin(θ + ψ)]g

N2 =mt(lt − dt) sin(θ + φ)g

N3 =msw(R − dsw) sin(θ + ψ)g

N4 =msw(dsw − R) sin(θ + ψ)(θ̇ + ψ̇)2

+mt(dt − lt) sin(θ + φ)(θ̇ + φ̇)2

+mst(dst − R) sin(θ)θ̇2

(1)
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Generalized Force Derivation

The generalized forces in equation (2.3) are derived here from Figure .1 and the analysis

below.

θ

g

dsw

dst

dt

lt

R

R

C

j

i

x

z

φ, τ1

ψ, τ2

F

Figure .1: Biped Model with forces

The vector C points from the center of mass of the stance leg to the contact point on the

ground.

C = −(R − dst) sin(θ)i− [R − (R − dst) cos(θ)]j (2)

Therefore, the moment produced by F on the stance leg about its center of mass is given by

[R − (R− dst) cos(θ)]F (3)
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The net moments operating on each link about their respective centers of mass are given as:

Mst : [R− (R− dst) cos(θ)]F − τ1 − τ2

Msw : τ2

Mt : τ1

(4)

The virtual work done on the system can now be expressed as

δW = ([R− (R − dst) cos(θ)]F − τ1 − τ2)δθ + τ1(δθ + δφ) + τ2(δθ + δψ) + Fδz (5)

where

z = x+ (R− dst) sin(θ) (6)

Upon simplification, the virtual work is given as

δW = RFδθ + τ1δφ+ τ2δψ + Fδx (7)

Thus, the generalized forces corresponding to θ, φ, ψ, and x are RF , τ1, τ2, and F respec-

tively.
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Partial Feedback Linearization - 3 DOF Derivation

The following equations derive the feedback linearized controller in 3 DOF. We start by

defining the state and input vectors of the generalized Lagrange equations.

q =
[

θ φ ψ

]T
(8)

Q =
[

0 τ1 τ2

]T
(9)

M(q)q̈ +N(q, q̇) = Q (10)

With the equations of motion defined, the vectors and matrices are partitioned to separate

the controllable (φ, ψ) and uncontrollable (θ) coordinates.

q =









q1

q2









=

















θ

φ

ψ

















(11)

M(q)−1 =









M1 M2

M3 M4









(12)

N(q) =









N1

N2









(13)

Q =









Q1

Q2









=

















0

τ1

τ2

















(14)

With the partitioned matrices, we can solve for q̈2 as

q̈2 = −M3N1 +M4[Q2 −N2] (15)
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which simplifies to

q̈2 = C2Q2 − C1 (16)

where

C1 =M3N1 +M4N2 (17)

C2 =M4 (18)

With the controllable accelerations (φ̈, ψ̈) defined, the desired controller is defined as

Ë = −ω2nE − 2ζωnĖ (19)

where

E =









φ− φd

ψ − ψd









(20)

Note that ωn and ζ are positive constants. Rewriting this in terms of the desired accelerations

results in

q̈2 = K +









φ̈d

ψ̈d









(21)

where K is the desired linear controller, given as

K = −ω2n









φ− φd

ψ − ψd









− 2ζωn









φ̇− φ̇d

ψ̇ − ψ̇d









(22)

For the actual controller, an additional viscous damping term based on angular speeds instead

of angular error speeds is added, resulting in

K = −ω2n









φ− φd

ψ − ψd









− 2ζωn









φ̇− φ̇d

ψ̇ − ψ̇d









− 2ζdωn









φ̇

ψ̇









(23)

where ζd is a small positive constant.

The desired accelerations φ̈d, ψ̈d are assumed to be zero in the implemented controller to

avoid numerical inaccuracies caused by velocity squared terms and matrix inversions in the

desired accelerations.
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The final control torques can then be written as

Q2 =









τ1

τ2









= [C2]
−1 [C1 +K] (24)

Passive Dynamics of θ

If E ≡ 0, the passive dynamics of θ can be written as

θ̈ = (Mswg sin(θ)(dsw − R)− R(πMswθ̇ cos(πθ/β) sin(θ − β sin(πθ/β))

(θ̇ − πθ̇ cos(πθ/β))(dsw − R)− θ̇(Mswθ̇ sin(θ)(dsw − R)

+Msw sin(θ − β sin(πθ/β))(θ̇ − πθ̇ cos(πθ/β))(dsw −R))

+(Mswπ
2θ̇2 cos(θ − β sin(πθ/β)) sin(πθ/β)(dsw − R))/β)

+Mtg sin(α)(dt − lt) +Mswg sin(θ − β sin(πθ/β))(dsw − R)

−(π2θ̇2 sin(πθ/β)(Mswdsw
2 − 2MswdswR +MswR

2 + Jsw))/β)

/(2Jsw +R(Msw cos(θ − β sin(πθ/β))(dsw −R)

+Msw cos(θ)(dsw − R)−Mt cos(α)(dt − lt))

+R(R(2Msw +Mt) +Msw cos(θ − β sin(πθ/β))(dsw − R) +Msw cos(θ)(dsw −R)

−πMsw cos(πθ/β) cos(θ − β sin(πθ/β))(dsw − R))− d2tMt + 2Msw(dsw − R)2 −Mtl
2
t

+Mt(dt − lt)
2 + 2dtMtlt − π cos((πθ)/β)(Mswd

2
sw − 2MswdswR +MswR

2 + Jsw))

(25)
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Hardware

Table .1: Electrical Hardware on ECU

Component Name Part Number Schematic Name
Microcontroller STM32F4-Discovery STM
DAC MAX510 DAC1-DAC2
Encoder Counters LSI LS7366R EC1-EC8
Wireless UART Xbee S1 XBee
SD Card Reader uDRIVE uSD-G1 SD
Voltage Regulator (12V) CUI V7812-1000 VR+12V
Voltage Regulator (24V) CUI V7812-1000 VR+24V
Voltage Regulator (5V) CUI V7805-1500 VR+5V
Voltage Regulator (3.3V) CUI V7803-1500 VR+3.3V
Header (Encoders) – EnH1-EnH8
Header (Amps) – AMPH1-AMPH2
Header (IMU) – IMUH
Header (Battery) – Batt
Header (STM Power) – STM Pow

Table .2: Additional Electrical Hardware

Component Name Part Number

IMU CH Robotics UM6
Motor amplifier (hips) AMC Z12A8
Motor amplifier (feet) AMC Z6A6
Motors (feet) Faulhauber 2342-024CR
Motors (hips) Maxon RE40
Motors (linear) Faulhauber 3243 CR
Encoders (feet) Faulhauber IE2-512
Encoders (hips) Agilent HEDS-5500
Encoders (linear) Agilent HEDS-5500
Battery (motor) 24V NiCd
Battery (ECU) 30V NiCd
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Figure .2: ECU Board - Component Layout
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Figure .3: ECU Wiring Schematic
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