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ABSTRACT

MODELING GENETIC ALGORITHM DYNAMICS FOR ONEMAX

AND DECEPTIVE FUNCTIONS

By

Bulent Buyukbozkirli

In this dissertation, we develop a model predicting dynamics of the counting-ones

(OneMax) and a form of deceptive function problems. The model describes the

mean allele and, in the case of deceptive function, mean deceptive block values.

The genetic algorithm (GA) that is being modeled consists of two-point

crossover, fitness proportional selection and mutation operators. The model is

developed to estimate the average GA dynamics, but it can also be used for an

individual run of the GA.

First, we develop the model for the OneMax problem with very high

crossover rates. Then, we modify the model by using statistics of very early

generations from GA runs, to describe the complete dynamics for different

(lower) crossover rates of the OneMax problem. In the development of the

model, we introduce a new quantity that measures the effect of the crossover

operation and is independent of generation, for practical purposes. Then, the

model is generalized to cover other cases of the OneMax, such as weighted

OneMax, as well as a form of deceptive function problem, for high enough

crossover rates. The model is also modified to include Boltzmann selection with

fixed or scaled selection pressures.
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The model can be applied to OneMax and deceptive function problems

even when the crossover, mutation and the selection pressures (in the case of

Boltzmann scaling) are changed at predetermined generations during a GA run.

Since our model estimates the mean value (and, mean deceptive block value for

deceptive function) at each locus at any generation, it can be used to determine

a suitable migration time as well as the migration rate for parallel genetic

algorithms (in the island model case) when migrations are allowed at any

generation for our benchmark problems.

Although the problems for which our model proved successful were rather

simple or idealized, they were often sufficiently involved to capture interesting

nontrivial features of the GA dynamics. The author hopes to extend the approach

to model solution of more representative real-world problems with various

degrees of OneMax similarity and various amounts of deception.

At the end of the dissertation, an attempt to develop a stochastic

differential equation model to predict the evolution of the fitness distribution for

the OneMax problem is also presented. Although our attempt was not successful,

it shows a strong connection between fitness evolution and certain diffusion

equations and points toward the possibility of the existence of a diffusion-type

equation that could describe the OneMax and maybe other type of GA dynamics.
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Chapter 1

GENETIC ALGORITHMS: THEORY AND MODELS

1.1 Thesis Outline

Genetic algorithms (GA) are stochastic, heuristic search algorithms that have

been applied to a wide range of problems. In Section 1.2, the simple genetic

algorithm is described together with some of the ways its dynamics are observed.

The counting-ones (OneMax) benchmark problem is also introduced in this

section serving as a simple demonstrative example for GA operators. We present

a real-world example in Section 1.3, in order to demonstrate a nontrivial problem

in which GA can be applied to find an optimum configuration. Section 1.4

contains a review of some of the ways GAs are currently analyzed. Chapter 1

ends with a critique of the current theories in Section 1.5, and explains why we

need a new model, which is the motivation in the development of this

dissertation.

Chapter 2 starts with a detailed description of the OneMax problem. A new

and practical model for the simple Genetic Algorithm dynamics of OneMax

problem is developed in Section 2.2. The GA that is being modeled consists of

two-point crossover, fitness proportional selection and mutation operators. For



low crossover rates, the model uses statistics of the early generations of GA runs

to describe the dynamics of the problem for all time, using a variety of crossover

and mutation rates. In the development of the model, we introduce a new

quantity that measures the effect of the crossover operation and is independent

of generation, for practical purposes. Then, the model is generalized, in Section

2.3 and 2.4, to cover the weighted OneMax and the Boltzmann selection with

fixed or scaled selection pressures.

Chapter 3 follows a similar pattern as in Chapter 2, but for a type of

deceptive function in stead of OneMax. The model in this chapter is developed

only for high enough crossover rates. It estimates the simultaneous evolution of

the mean allele and the mean all-1 deceptive blocks, as well as the mean fitness

and fitness variance of the population. The model for lower crossover rates has

still been under investigation by the author at the time this dissertation was

written. In Section 3.1 the deceptive function is described and the modeling

problem is formulated. The model for fitness proportional selection is developed

in Section 3.2, which is followed by the extensions of the model to weighted

deceptive function and Boltzmann selection in Sections 3.3 and 3.4, respectively.

In Chapter 4, the model that is developed in Chapter 2 and Chapter 3 is

tested by comparing its computer simulations with the results with averaged GA

runs. Section 4.1 presents the results for OneMax and Section 4.2 for the

deceptive function.



An attempt to develop a stochastic differential equation model to predict

evolution of fitness distribution for the OneMax problem is presented in Appendix.

Although our attempt was not successful, it demonstrates a strong connection

between fitness evolution and certain diffusion equations and points toward the

possibility of the existence of a diffusion-type equation that could describe the

OneMax and maybe other type of GA dynamics.

1.2 What Is a Genetic Algorithm?

Genetic Algorithms (GAs) are stochastic search algorithms based on principles of

natural selection and genetics. They were first developed by J. Holland in the

1960's, and presented, together with a large body of accompanying theory, in his

1975 book. There are three main operations in a genetic algorithm, namely

selection, mutation and crossover (sometimes called recombination). Each

operation has many different types which may be applied, depending on the

specific nature of the optimization problem. At the beginning, an initial population

that consists of a set of proposed solutions is chosen. The selection of the initial

population is usually random, unless it is specifically required to search a more

restricted region. Then, selection, mutation and crossover operations are applied

to this initial population in a predetermined order to create the first generation (or

second population), Figure 1.1. The second generation is obtained from the first

one by the application of the same operators. This procedure continues until a

“good enough” solution emerges within the population or until the whole

population converges to the point that additional search is deemed unproductive.



       

   

Selection Selection Selection

Mutation Mutation Mutation

Crossover crossover Crossover

———> ———>

Initial Population pt 2.“

(randomly generated set of Generation Generation

input values for the fitness

function)

Figure 1.1 Genetic Algorithm creating new populations with selection, mutation

and crossover operations

Let us consider a very simple example in order to illustrate the GA operations

and define some GA-specific terms. In this example, we want to find the value of

the input variables that yields the maximum value of the objective function f

(called the ‘fitness function’ in the GA terminology)

f(al,az,a3aa4aas) = 01+ “2 + a3 + a4 + “5v

(1 .1)

where the input variables, a1,a2,a3,a4 and a5 , take discrete values of only 0 or

1. A problem of this form, of arbitrary dimension, is called a ‘counting-ones’ (or

sometimes ‘OneMax’) problem, since the value of the function is equal to the

number of 1’s in the input values. It is obvious that the solution to the problem is

al =1, a2 =1, a3 =1, a4 =1, 05 = 1. It is not so obvious, but important, that even

some real-world problems — those that can be solved by decomposition into



independent components — exhibit many aspects of the behavior of a counting

ones problem, after suitable recoding of the inputs. Because of their simplicity,

counting ones problems are often used in analyses of the dynamics of a genetic

algorithm. A few examples of this kind of application can be found in [Goldberg,

1989], [Furutani 2002], [Priigel-Bennett, 2002] and in many other publications.

Now, let us see how a GA would solve this problem of find the optimum of

the function f . First, select values for (al,a2,a3,a4,a5) randomly, for example

(1 ,0,1 ,0,0), etc.. To make the initial population, we generate a fixed-size of such

number strings each of which is called a ‘chromosome’. In Figure 1.2, we see an

example of such a population with 4 chromosomes, showing their fitness values

and the ratios of their fitness to the total fitness of the population (so-called

"relative fitness values”). In this example, the ‘chromosome length’ is 5 — i.e., 5

variables — and the ‘population size’ is 4.

 

 

# Chromosome Fitness ‘70 of Total

1 101—00 2 25

2 1000-1 2 25

3 0-0-1—1—1 3 37.5

4 00-0-10 1 12.5

Total 8 100,0

 

Figure 1.2 An example of an initial population together with the fitnesses and

relative fitnesses of their chromosomes



Given a population, the selection operation creates a new population with the

same number of chromosomes by selecting some of its chromosomes. One of

the most common types of selection is ‘fitness proportional’ selection, also called

‘roulette wheel’ selection. In this type of selection, the probability that each

chromosome would be selected for the next generation is equal to the proportion

of its fitness to the total fitness of the population (i.e., its relative fitness). In our

example, Figure 1.2, the first two chromosomes have probability 0.25 of being

selected for the next generation, while the third one has probability 0.375 and the

last one, 0.125. The selection operation is performed with replacement. That is,

the fittest chromosomes might be selected more than once, while some

chromosomes might be lost during the selection procedure. A possible outcome

of the selection is shown in Figure 1.3, in which two copies of the third

chromosome are selected, while the fourth one is not present after selection.

0-0-1-1-1

———-)

After selection, 1‘0‘0'0-1

we may have 1-0-1-0-0

' rd
two copies of 3 0-0—1-1-1

chromosome,

while 4th one is lost.

 

Figure 1.3 A possible outcome of fitness proportional selection



The crossover operation is the most complicated operation of the GA. One of the

most common types of crossover is two-point crossover. In two-point crossover,

the chromosomes are first paired randomly, using a uniform probability density

distribution. Then, within each pair, the parts of the chromosomes lying between

two randomly (with a uniform probability density distribution) selected locations

are swapped. Not all pairs of chromosomes have to undergo the crossover

operation, though. An important parameter of crossover operation, called the

crossover probability, pc, gives the probability at which a given pair of

chromosomes are crossed. In Figure 1.4, first and third chromosomes pair off

and their last two genes are swapped. Also, the second and fourth chromosomes

pair off and their third and forth genes are swapped.

  

 

   

 

     

 

  

0-0—1-1-1

* 1-0-0—0-1
f

' 1-0-1-0-0

‘ 7 0-0-1-1-1

1-0-0 0-1 0—0 l-l 1

0-0-1 1-1 1-0 1-0 0

Swap position 3 to 5: Swap position 2 to 4 :

1_0_0_1_1 0_0_1_0_1 New population

after crossover
0-0-1-0-1 1-0-1-1-0

 

Figure 1.4 An example of two-point crossover



In bitwise mutation, each gene of each chromosome changes its value from 1 to

0 or 0 to 1 with mutation probability, Pm .For example, a mutation at the 4"1 gene

of 0-0-1-0-0 gives us 0-0-1-1-0, Figure 1.5.

0—0- 1 -0-0

Mutation at

4th gene

I
0—0-1-1-0

Figure 1.5 An example of mutation

Thus, after selection, crossover and mutation are applied, we get a new

population, which is, on average, expected to be ‘better‘ than the previous one.

Sometimes the relative fitness values of the chromosomes are replaced

by some other scaled values of the fitness for the purposes of the selection

operation. For example, if one wants to give disproportionately more chance of

being selected for chromosomes with higher fitnesses, one can multiply their

fitness values by some weights and use those values instead of their original

fitness values. One of the common ways of fitness scaling is Boltzmann scaling,

in which the fitness, fc, of chromosome c is replaced by f: = em , where ,6 is

a constant, called the Boltzmann constant. The advantages of using a Boltzmann

scaling is explained in Section 2.4.



Another common application of GA involves using multiple populations in

parallel. This case is called parallel GAs. Each population (deme) evolves

separately. However, at certain times some of the chromosomes, usually the

best ones, of some populations are allowed to ‘migrate’ into other populations

(typically being copied, without removal from the 'donor‘ population). Figure 1.6

shows a possible configuration for such an application. The main purpose of

such an application is to reduce the risk of premature convergence.

   

 

  

 

Population 1 Population 2

Population 3

 

Population 5

Population 4

Figure 1.6 A GA with multiple populations, arrows showing the direction of

migration

There are several advantages of GAs over other optimization and search

procedures for some classes of search problems. First, GAs can climb many

peaks in parallel. There is then a smaller probability that they will miss a peak

that leads to a global optimum. Second, GAs use the value of a function rather



than performing operations on an explicit representation of the function (for

example, formal differentiation). It is thus possible to find a good estimation of an

optimum in a situation where the form of function itself is not known, but values of

the function in particular situations are known, such as stock prices in the

financial markets. GAs also produce effective solutions to problems with too

many variables, in which other search procedures have hard time due to time

limitations (computational complexity grows exponentially, for example, with

problem order n). Since the information is exploited directly from a fitness

function, no other information is necessary about the problem under

consideration. In addition, GAs are better than a random search for almost any

problem domains of significant interest, since they use directed randomness,

which reduces the computation time by skipping areas that are not fruitful to

search, directing the search effort towards areas where it is more likely to find the

optimum.

1.2.1 Counting-Ones (OneMax)

In this section we study the counting-ones problem with a longer chromosome

length. In this example, the chromosome length is 100. Thus the fitness function

is

f(a1,a2,...,a100) = a1+a2 +...+aloo .

(1.2)

We apply the GA with population size P = 50, mutation rate Pm = 0.01,

crossover rate Pc =1, and Boltzmann scaling with Boltzmann constant ,6 = 0.2.
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Figure 1.7 Evolution of mean fitness over 100 generations in a GA, for a

counting-ones problem. Population size = 50, chromosome length =

100, ,6 = 0.2
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In Figure 1.7, we see the evolution of fitness distribution for a run of the GA. If we

apply the GA 1000 times to this problem, starting with different randomly chosen

initial populations, and take the average of the fitness distributions, then the

picture looks as in Figure 1.8. This figure shows a typical evolution of the

average fitness distribution of a GA.
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10] and2lIJ
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Figure 1.8 Evolution of mean fitness for a counting-ones problem over 200

generations, after the average is taken over 1000 GA runs.

Population size = 50, chromosome length = 100, ,6 = 0.2.

1.2.2 Cumulants as a Tool to Observe GA Evolution

The characteristic function of a fitness distribution ,0(F) is defined by

(13(0)) = zp(F)ein . Then the nth moment , ,an, of this distribution is defined

12



- - - _ fl" (1.60)" - - th
by the coeffrcrents of the series (I>(a))—Z——'-——. Similarly, the n

":0 n.

cumulant, K", of this distribution is defined as the coefficients obtained using the

logarithm of the characteristic function

Kn Um)"

10g(<I>(w))=2—

n=1

It follows from this definition that the first cumulant is just the mean fitness of the

population, the second cumulant is the fitness variance, the third one is the

skewness and the fourth one is the kurtosis. Cumulants are also related to the

moments as

K] = ZptnF = A
F

19 = Zp<F><F — x02 = #2 —#f
F

K3 = ZP(F)(F — m3 = #3 -3#2#1+2#13

F

K4 = ZNFXF -K1)4 = #4 ‘4.”3fl1 -3#22 +12%? -
F

(1.3)

One of the objectives of GA study is to understand and estimate how cumulants

change over time. In Figure 1.10 and Figure 1.10, we have time evolution graphs

[(3/2

of K1, K2, K3 and K4. The skewness and kurtosis are normalized byK and

K; in order to have a better representation of these quantities allowing

comparison for populations with different variances. In these graphs, two cases

13



of a GA are studied. In the first one, selection, mutation and crossover are all

applied. In the second case, only selection and mutation are applied in order to

observe the effect of the crossover operation. The parameters of the GA are the

same as in Section 1.2.1, --i.e., population size P=50, mutation rate

pm =0.01, crossover rate pc =1, and Boltzmann scaling with Boltzmann

constant ,6 = 0.2. Figures show that crossover operation, on average, increases

the fitness variance little bit while giving a more uniform look to the skewness and

kurtosis, and gives a better GA performance in terms of its mean fitness values,

in the case of our specific problem.
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Figure 1.9 The time evolution of cumulants, K1 and K2, for two cases of GA.

First with selection, mutation and crossover, the second with

selection and mutation only. The graphs are obtained by averaging

100 GA runs
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100 GA runs
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1.2.3 Counting-Ones and Mlgratlon

Although in practice, the migration between two populations which evolve

simultaneously and independently from each other, usually occur at later

generations when each population created “good” members possibly different

than the other population’s “good” members, it is still useful to look at the

following two specially-structured experiments (CASE2 and CASES), in which an

artificial migration is applied at the very beginning. In the following comparison,

the case in which the population evolves normally with no migration is called

CASE1. In the second case (CASE2), for each run of the GA, we choose an

arbitrary chromosome (migrant) with fixed fitness 65 and place it in the otherwise

randomly chosen initial population, so that the migrant is different for each run

but always with fitness 65. The third case (CASE3 ) is similar to CASE2 except

that the chromosome with fitness 65 is not chosen randomly but is always the

following special chromosome

 

65 of them

The population size is taken as 50 and the chromosome length is 100. GA

includes two-point crossover, Boltzmann selection with scaled ,6 = 0.2 (see

Section 2.4 for a detailed description of this scaled-fitness selection) and no

mutation.
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In Figure 1.11, we see the fitness density distributions for the first 9

generations of these three cases of GA experiments, with average taken over

100 GA runs. The curves move to the right as time goes. The spike in the fitness

distribution of the initial population, i.e. peak at the right of the leftmost curve, for

CASE2 and CASE3 is due to the migrant with fitness 65. In these figures, we see

how much faster the curves move when there is a migration in comparison to

CASE1.

The mean fitness and maximum fitness evolutions of these three cases

over 200 generations are shown in Figure 1.12. It shows that, for this specific

example, each case converges to the same value but in different rates. In Figure

1.13, we compare the three cases in relation to the time when they reach mean

fitness of 95. Table 1.1 shows these times when the mean fitness of each case

reaches 95. As we see, both cases of this specially-structured "migration”

perform better than the case with no migration, i.e. it takes less time for them to

evolve their populations to a mean fitness of 95, on the average. The fact that

CASE3 performs much better than CASE2 shows us that it is more beneficial to

have long series of adjacent 1’s (i.e. “correct” alleles) rather than one with same

fitness but scattered 1’s. This is because in CASE2 the part of the migrant

starting from the first allele with value 1 and ending at the last allele with value 1

is longer than the same length in CASE3. Thus, the crossover is less likely to

separate these 1’s in CASE3 into different chromosomes, in comparison to

CASE2.
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Table 1.1 The three cases with the average generation numbers when the

mean fitness of 95 is achieved

Mean Gen #

CASE 1 76.72

CASE 2 74.73

CASE 3 61.96

 

 

Now, let us look at a more realistic case of migration. In this counting-ones

experiment, we have two populations, P1 and P2, of size 100, running

simultaneously. We apply two-point crossover with 100% crossover rate,

mutation with 0.1% rate, and Boltzmann selection with scaled ,B=O.3 (see

section 2.4 for a definition of Boltzmann selection). The case when no mutation is

applied is called CASE-A. In CASE-B, 10 members with the highest fitness of P2

is migrated into P1 at generation 20. In CASE-C the migration procedure of

CASE-B applied at generations both 20 and 30.

In order to observe the inner structure of the population P1, we count the

number of loci in the population at which the mean allele values are less than or

equal to a given number, h. In Section 2.1, we define these measures more

formally and call them Ah. In particular, A0 counts the number of loci at which all

chromosomes in the population has 0 values. Figure 1.14 shows Ah curves for

h= 0, 0.1, ..., 0.5 as a function of time for each case. The migration times 20 and

30, in particular, are chosen by finding the time at which A0 is maximum, in other

22



words by finding average times when the number of loci whose values

completely converged to zero over all population members reaches to a local

maximum. As seen in these graphs, application of each migration pulls down Ah

curves towards 0. This means that, on the average, the number of loci with value

1 will increase faster with migration.

This example shows that the migration helps to make the population move

or converge faster. In more complicated fitness function problems, this kind of

migration will also prevent population converging to a false maximum, i.e. avoid

premature convergence or convergence to a non-global local maximum, when

the migration parameters are chosen correctly.
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1.3 GA with a Real-Life Problem

In this section, we will see an application of a GA to a real-world problem. We will

not give the solution of this problem by a GA in this dissertation since our main

subject is the modeling of the GA rather than its applications. However, it is

illustrative to include this example here to see how complicated the GA problems

could be. This problem, suggested by P.J. McCleer of McCleer Power Inc.,

introduced me to genetic algorithms for the first time. Considering how to solve

this problem and trying to determine most appropriate GA parameters and

structure drove me to seeking how to understand GA dynamics in a more general

framework.

The problem involves the automotive 42-Volt DC electrical systems of

hybrid cars. The system uses pulse-width-modulated inverters to convert the bus

voltage to a 3-phase AC voltage with desired amplitude and frequency. In Figure

1.16, we see a simplified circuit of this system.

DC voltage can be converted to a sinusoidal AC voltage, either single

phase or three phase, with desired amplitude and frequency, by means of

electrical devices called “switch-mode inverters.” The basic idea of these

inverters is sketched in Figure 1.15. The DC voltage is converted to an AC

voltage that alternates between values 0 and a certain fixed voltage. Only the

fundamental component of this voltage is to be used as the output. Thus, the

high frequency harmonics are filtered and the desired sinusoidal voltage is

obtained.
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Figure 1.15 Passage from DC to AC voltage by switch-mode inverters

By turning the switches, which are the six transistors Sig, 823, 83... 81b, 82., and

83b in Figure 1.16 on and off, the desired output power specifications are

achieved while providing an output voltage with a specific amplitude and

frequency but without unnecessary harmonics. One restriction in the functioning

of the switches is that, in a vertical pair, such as Sin and Sm, the transistors can

not be both on or off at the same time. Otherwise, this would cause a short

circuit. Thus, it is enough to determine the status of one transistor in each pair.

The whole art of switching scheme design comes into play at this point.

The practice in automotive inverters is to control the switches by a central

processing unit (CPU), which can be programmed to turn the switches on and off

in any desired pattern. The switching is accomplished with high-current field-

effect transistors (FET). The advantage of this method is the ability to control the

fundamental component while eliminating some of the harmonics. However, one

should be careful with the frequency of switching since, in practice, if a switch
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turns off in an inverter leg, the turn-on of the other switch is delayed by a

blanking time, which introduces low-order harmonics in the output.

On the other hand, ripples in the output current result in ripples in the

current through the capacitors. This ripple current causes the capacitors to warm

up overtime, which is very undesirable since the temperature under the engine

hood under normal operating conditions can approach 120°C. Such high

temperatures can damage the capacitors.

Because of the high cost of these capacitors, any reduction in their

number will reduce the cost of the inverter. Reducing the number of capacitors

can be obtained by reducing the current ic. Hence, the main focus of our design

is to minimize ic while still meeting the desired output voltage and/or current

specifications. As a result, the question is “what is the best switching algorithm

which will produce minimum current ic through the capacitor C?”

 
Figure 1.16 A simplified circuit of pulse-width-modulated inverter.
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Let’s say we want to determine the timing for 818, Sea and $3., (timing of

S"), 82:, and 83, are determined from them). A good solution to this problem can

be achieved by a GA in the following way. Split the chromosome into 3 equal

parts (one part for each vertical pair of transistors). For each part, the alleles

(values) at successive loci (fields) of the chromosome are interpreted as the

relative lengths of successive on and off intervals, of the corresponding

transistor. We use discrete values for the time lengths. Each allele, let’s say, can

take on a 4-bit value, so the values 0,1,2,...,15 are the possible field values

(alleles) at each locus. We assume a maximum of 101 ON and OFFs for each

transistor during a period. So each part consists of 101 loci and the total

chromosome length is, then, 3x101 = 303 loci. We take the fitness function as the

mean squared value of the current through the capacitor. The function is

restricted to the domain in which we have the correct amplitude and frequency of

the sinusoidal output (in a different application, the deviation from these

constraints can also be put as a part of fitness function with negative weights.)

Thus, we have a well-defined GA problem, whose application could produce

switching algorithms that are more efficient than traditional methods.

Recently, GA is, in fact, successfully applied to power inverters to

determine the switching angle, i.e. time delay between switching times of the

transistors, eliminating high order harmonics of the output voltage, (Ozpineci, et

al [2004].)
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Figure 1.17 The part of the chromosome representing timing of a transistor pair

during one period of the desired output voltage

1.4 Theoretical Models of GA

Some of the applications of GA may not converge to a desired value or

sometimes would take months or years to achieve a good solution just because

the design parameters are not chosen correctly. In practice, the fitness function is

often very complicated and the crossover operation is a very complex mixing

operator, which makes it quite difficult to analyze GAs theoretically. Several

theories have been developed in order to understand why and how GAs work,

and in order to choose the design parameters wisely. Theoretical models of

Genetic Algorithms (GAs) fall into three main categories. The Markov chain

model, as developed by Nix and Vose [1991], completely describes the

probabilistic behavior of the GA. However, this model is too costly to implement

computationally for problems with realistic population size and chromosome

length. The statistical mechanics approach, developed by Prt‘lgeI-Bennett,

Shapiro [1994] and Flattray [1996], gives fairly good results in modeling the

OneMax problem with Boltzmann scaling, for a crossover rate of 100%, however

it is not developed for lower crossover rates or to handle other benchmark
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problems of GA such as deceptive functions. The approach of modeling GAs by

considering building blocks (Goldberg [1989] and Goldberg, Deb, Thierens

[1993]), on the other hand, gives us a good idea about the appropriate population

size or the convergence time of the OneMax and help us determine the failure

boundaries in the “control maps”. But the question of finding the most appropriate

crossover or mutation rate is answered, so far, only by experimental results. We

still lack a model that describes the behavior of the OneMax problem for different

crossover and mutation rates together and allows us to choose the best

parameters.

1.4.1 Schema Theory

In this theory, the search space is divided into subspaces called “schemata." The

aim is to characterize the schemata using macroscopic quantities, such as the

number of individuals within a given schema H at generation t, denoted by

m(H,t), average fitness of individuals in the schema and in the population, size

of the search space, size of the schema, etc. Schema theorems model

thematically how and why m(H,t) varies from one generations to the next.

Since GAs are non-deterrninistic, one can only predict the expected value,

E[m(H,t)], of m(H,t). As an example, consider a search space consisting of

5-bit binary chromosomes. A special subset of this search space can be

described by the template, H = (1 0 * * 1), which means that the first, second

and the last loci are fixed as 1, 0 and 1, respectively, while the third and fourth
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loci can take either of the binary values. Hence the schema H consists of 4

chromosomes, Figure 1 .18.

H=(10**1)—>{10111, 10101, 10011.10001}

order : 0(H) = 3 defining length : 5(H) = 5 - 1 = 4

Figure 1.18 Template H

The order, 0(H), of a schema H is defined to be the number of fixed digits

within the schema. The defining length, 6(H ), of H is defined to be the distance

between the first and the last fixed string positions in the schema. For example,

for H=(10 * * 1) above, we have 0(H)=3 and 6(H) = 5-1 =4.

The first schema theorem was developed by J. H. Holland in the 1960's,

taught in his classes and used by his students in their theses, and made widely

available in his 1975 book. Different versions of this theorem were later

developed and published by Goldberg [1989], Whitley [1994], and Stephens and

Waelbroeck [1997]. In one form, the schema theorem states that

E[m(H,t+ 012 M -p(H,t)(1— pm)0<">[1— p, $430]

(1.4)

where
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M :population size,

N :string length,

p(H,t) :selection probability of individuals in H at generation t,

Pm : mutation probability,

pc : crossover probability.

The term 0' in Equation (1.4) is taken as 1—m(H,t)/H by Holland, as 1 by

Goldberg, and as 1- p(H,t) by Whitley. In Equation (1 .4), the term M -p(H,t)

gives the expected number of population members which are instances of the

schema H after the selection operation. For example, if fitness-proportional

selection is applied, then we have

M -p(H,t)=m(H,t)f(H’t)
m
 

(1.5)

where f(H ,t) is the average fitness of strings representing H within the

population and fit) is the average fitness of the whole population. After

selection, we can calculate the probability that each individual of H within the

population will survive the changes made by mutation and crossover. The terms

6 H

(1— Pm )0”) and 1— pc -N—(—1)0‘ in Equation (1 .4) represent these survival

probabilities respectively. Equation (1.4) gives only a lower bound for
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E[m(H ,t +1)] since it does not consider the newly created instances of schema

H after mutation and crossover. On the other hand, we gain some insight into

why GAs work by examining this equation. For example, consider Goldberg's

version of the schema theorem with fitness-proportional selection:

f(H .t)

f(t)

selectlon mutation crossover

E[m(H,t +1)] 2 m(H,t)-
 (I—p.)”‘”’[1—p.@—)]

N—l

\ J

(1.6)

Equation (1.6) tells us that, if the average fitness of the schema, f(H,t), is

f(H)
greater than the average fitness of the whole population — that is, ifT> 1 ,

then, provided that 0(H ) and 6(H ) are small enough, the expected number of

instances of H in the population increases exponentially over generations. By

small enough values of 0(H) and 6(H), we mean that the values of 0(H),

5(H), pm and pc satisfy

  

f(H’t) of! 6(H)

7??) (l-pm)()[1-ch_1]>1

(1.7)

By means of this observation, Goldberg, 1989, has defined the notion of Building

Blocks (BB), which are low-order, low—defining-length schemata of above

average fitness — in other words, these schemata satisfying the condition above.

Hence, the well-known “Building Block Hypothesis” of Goldberg says that
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"A GA works by combining 885 to form higher-order 835 until it converges to an

optimum or near-optimum solution."

It is worthwhile to emphasize that Equation (1.4) works for all possible

schemata independently and in parallel. Later, in 1997, Stephens and

Waelbroeck, developed another schema theorem, which gives an exact equality

for E[m(H ,t +1)] by the formula

E[m(H,t+1)/M]=(1—p.)p(H.t)+Nag—1Nip(L(H.i),t)p(R(H,i),t)
_ i=1

(1.8)

where L(H,i) is the schema that is obtained by replacing the elements of H

to the right of position iwith *‘s, and R(H,i) is the schema that is obtained by

replacing the elements of H to the left of position i with *'s.

Schema theory is applied to modeling of single populations and to

determining good population sizes by G. Harik, D.E. Goldberg, , E. Cantu-Paz

and BL. Miller [1999] and later to modeling of parallel GAs by E. Cantu-Paz

[2001]

1.4.2 Random Walk Model

The random walk model is used with schema theory to determine the

appropriate population size N (G. Harik, D.E. Goldberg, , E. Cantu-Paz and

BL. Miller [1999]). Let x0 be the initial number of BBs in the population and the

variable x represent the number of 886 at any time. First, for a given
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configuration of the population of size N , the probability, p, of producing one

additional building block is calculated. Then one can visualize the dynamics of

the number of 83s as a one-dimensional random walk as shown in Figure 1.19

 

x: # of BB’s

q p
(\A

l l J

I I 1

=0 x0=initial #of BB’s x:

x0=N/2k

Figure 1.19 The Random Walk

Then the probability, P, that this random walk converges to x = N is calculated.

Specifying an expected value of P will determine the correct size of the

population that would result in this expected value being met or exceeded.

1.4.3 Markov Chain Model

In this model, genetic operators are described by transition matrices acting on a

vector describing the precise state of the population, (Nix and Vose [1991], V039

and Liepins [1991], Suzuki [1995].)

In a search space where there are n possible points (i.e., chromosomes),

let p = (poip1,..., p,,_1,)represent a population where pk is the proportion of

the population occupied by item k. Let q = (q0,q1,...,qn_1,) be the probabilities

that each item is generated in the next population. Consider the next population

as P (the population size) independent samples of the search space, using q as
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a probability distribution. Representing the chromosome length by L, we have

n=2L. Note that, the size of the state space, i.e. the number of different

. . . . P+2L—1 , ,
populations of Size P, IS given by P , which can be approximated by

LP

7 when P very small compared to 2" . This number easily reaches to billions

even for very small values of P and L.

Think of the action of a GA as a map G : A —> A, where

A={xe$)i" :xk 20,2xk =1}

(1.9)

Then the probability that population q follows population p is given by a

multinomial distribution

 Plfi (G(p)j )qu

.j=0 (P41)!

(1.10)

where G(p)is the expected next population, G(p)j is the 1‘“ entry of the

probability vector G(p), i.e. the probability that the 1‘“ chromosome will be

selected for the next generation.

lterating G will produce a sequence of points. G describes the limiting

behavior as the population size grow large. Then, we have the following theorem

[Vose, 1999].
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Theorem: Given an initial population p, let q be the actual population observed

after tgenerations. Then, for any 8 > O and 0 < 6 <1, there exists a number K

such that if the population size is bigger than K, then the probability that

l  
G’(p) — q" < 8 is greater than 1— 6.

1.4.4 Statistlcal Mechanics Model

The population is described by a small set of macroscopic parameters under the

assumption that microscopic details are not of critical importance, by A. Prt'igel-

Bennett, J.L. Shapiro [1994,1997], and M. Rattray [1996]. They represent the

fitness distribution by its cumulants and determine the effect of selection,

mutation and crossover on each of the cumulants. Cumulants are more natural to

use in this kind of representation instead of moments of the fitness distribution

since they are self-averaging, i.e. their average represent a typical member of

possible distributions, while moments are not self-averaging, (see Prl'igel-

Bennett, [2002] for a discussion of this comparison.) Using these results, the

shape of the next population fitness distribution is determined, (see Figure 1.20.)
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A

1 Estimate the shape of the population using

Represent the fitness distribution these cumulants.

by its cumulants, K' s

(first four of them)

xsm Ksmc

lam—578‘1 x,(i)S-——-—»t2 xtpris,e3 x.- (t)=K.(t+1)

selection mutation crossover

Needs statistical mechanics methods

Figure 1.20 The statistical mechanics model applied to cumulants

The objective is to determine average allele per site, average correlation per site,

k

etc. terms like <a.’ > < aJa- > - . The one variables are assumed to be
i I I j¢kj,

free to fluctuate subject to the constraint that the macroscopic quantities chosen

are satisfied. Then, the distribution of the allele values is assumed to be the one

which maximizes the entropy. As an example of their calculations, consider the

mean allele value at the ith locus

or. =<z=j>= 11:27! .

Let N(a3) be the number of different ways that would give a,- as mean allele

value at the f“ locus. Then, the entropy for this locus would be
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S(a,-)=log(N(a,-)). Introduce Lagrange multipliers, x and y, to enforce

constraints on mean fitness and correlation

yZZa,’ = yPZa, = yPKl : for mean fitness

i=1 i i

x2 . x2

7222mm? =7P22ai2 : for allele correlation

J' k i i

Then, the probability distribution for a {a} configuration is

L
L

2

P({ai}) : H
p(ai) = Hes(ai)+yPCY

,-+(ani) /2

i=1 i=1

The maximal value of p(a,~) with respect to a,- gives the maximum entropy

distribution for 01,. So, from derivatives with respect to a,, one gets a

relationship between a,- and the Lagrange variables x and y. Using this

expression of a,- in terms of x and y one can write down the previously chosen

macroscopic variables, such as mean fitness, K1, and fitness variance, K2 . When

the defining equations of K1 and K2 are written for the counting-ones problem,

and the average over all possible crossover operations and mutation operations

is taken, one sees that average mean fitness or the fitness variance does not

depend on the mean allele values. Thus, the expected values of K1 and K2 can

be calculated after mutation or crossover, and, we can find the values of x and

y using them. Finally, using these values of Lagrange multipliers, one finds the
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values of mean allele, 62,-. Then, ai’s are used to estimate K3 and K4 values.

Finally, the shape of the fitness distribution for the next generation is estimated

using the first four cumulants.

Recently, the maximum entropy technique is applied by Whitley [2004],

also to determine the shape of the fitness distribution from schema frequencies.

1.5 The Need for a New Model

Studying the OneMax problem is important not for solution of that problem, per

se, but because many real-world problems solved via genetic algorithms consist

of a set of separable sub-problems for which the optimum is to optimize each

individually, which is reminiscent of OneMax. When we look at all the models

mentioned in this chapter, we have the following picture:

The Markov Chain Model uses huge matrices to model the dynamics of a

GA and is not applicable in practice, although it gives a good idea about some

general features of GA evolution when applied to simple cases with too small

population size and chromosome lengths. Its application to infinite populations

give an exact description of this case, but, as pointed out by Prl'igel-Bennett

[2002], only very large population size gives results close to infinite population

case. This model, yet, is not applicable to problems with typical population sizes.

It also requires the full knowledge of the fitness function.
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Schema Theory assumes that the building blocks are already (partially)

known. Assembly of building blocks is useful to observe to understand GA

performance for many problems. This theory is hard to generalize to more

realistic cases since it has many simplifying assumptions, and loses its

applicability as populations lose their initial random character.

The Statistical Mechanics Method requires explicit knowledge of the

fitness function. This method makes very good predictions about the evolution of

the fitness distribution. However, it is applicable in practice only to problems with

very simple fitness functions. Effects of crossover are particularly hard to

estimate using this method for most classes of real-world problems.

So far, none of these models have been successfully applied to the

analysis of parallel genetic algorithm behavior that involves migration before the

population converges. Estimation of optimal times for performing such

migrations, for real-world problems such as that of McCleer Power, Section 1.3,

was among the initial motivators for the models developed in this thesis research.

The examples in Section 1.2.3, illustrate that a model that predicts the mean

allele evolutions can be applied to migration analysis.

Although the models mentioned above are applicable to some cases of

OneMax problem, there is no complete model predicting dynamics of deceptive

functions (a class of functions that misleads the GA in finding the optimum. See

Section 3.1 for a type of deceptive function).
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As a result, we need a new model that can be applied to cover crossover

rates lower than 100%, and also be used for migration analysis. Moreover, this

model should also be simple enough, both theoretically and computationally, to

potentially apply to a real-life problem.
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Chapter 2

A MODEL OF GA DYNAMICS FOR THE ONEMAX PROBLEM

2.1 Problem Description and a Visual Representation of the OneMax

Dynamics

In this section, we study the OneMax problem. We consider the simple genetic

algorithm in which two-point crossover, fitness-proportional selection and

mutation are applied in the order given. Note that, "canonical” GAs typically apply

selection before or after the crossover and mutation are applied. However,

considering selection in between crossover and mutation does not make much of

a difference in estimating the long term behavior of GAs since the essential

difference between them is only at the very beginning or very end of the GA run,

as illustrated in Figure 2.1. Also note that the order of mutation and crossover

can be changed without making any difference in GAs dynamics since each gene

remains in the population during these two operations and is equally likely to be

changed by mutation before or after crossover.

  

           
 

AA A

chchs ) CSMXCSM)C

VV V

Figure 2.1 Selection-mutation-crossover versus crossover-selection-mutation
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In this chapter, we develop a model of genetic algorithm behavior on the OneMax

problem with a population consisting of P chromosomes of length L (see also

Buyukbozkirli and Goodman [2004].) Let S(t) be the set of all chromosomes at

time t, chrom an element of this set, and chrom(i) the allele at the f" locus of this

chromosome, in other words, for chromk =(af,a§,...,af) the 1‘“ allele is

chromk (i) = a!‘ .The fitness of a chromosome, chrom, will be denoted as

f(chrom). So, for the OneMax problem,

f(chromk) = Zchrom,c (i) = of + aé‘ + + at,

l

(2.1)

where the values of of ’s are 1 or 0.

The population-level variables that we are interested in are the mean

fitness ml), the variance of the fitness mt), and the set of means of the alleles

at each locus i {ai(t)};=1 ,,,,, L , at time t. They are given by the formulae

PLP

1:10) = %Zf(chr0mk ) = %ZZa,-k,

k-l_ k=l i=1

P

K2(t)= i[Zf(chromk )2]- )'(1(t)2

P k=1 '

1 . 1 P k
all-(t) = —Zchromk (i) =—Zai (t).

Pk=l Pk=l

(2.2)
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In the case of the “weighted fitness function” for a OneMax problem, each allele i

of the chromosome is weighted by a constant weight, w;’. In this case, the fitness

of a chromosome is given by the weighted sum

f(chr0mk) = Zwi ~chr0mk (i) = wlaft + wzaé‘ + + wLaf.

t'

(2.3)

Figure 2.2 shows a sample population at time ttogether with definitions of some

of its parameters.

mean allele at the ith locus : a,-

   
chrom, = 1 O 1 0 fitness

chrom: = O 0 1 1 fitness

ehrom,= O O 0 . . . 1 1 fitness

w, w: W3 . . . WL_1WL

weights of alleles "‘03“ fitness 3 K1

variance of fitness : K2 = 0'2

Figure 2.2 The chromosomes in the population, mean allele and other

notations

In Table 2.1, we see a list of the notations used in this chapter in the

development of the model.
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Table 2.1 Notations

P :population size

L :chromosome length

a," (t) :the 1"” allele of the k‘h chromosome at generation:

a, (r) : the mean allele at the i'“ locus at generationr

f (chromk) : the fitness of the k‘” chromosome at generation:

[(10) :the mean fitness

K2 (1) : the variance of the fitness

pm : mutation probability of each allele, in decimal form

p, : crossover rate, in decimal form

S(t) : the set of all chromosomes at time t

p,(t) : the probability that a chromosome that is selected randomly at time t

with the probability scheme of the selection, has 1 at its ith locus

When we study a particular run of a GA it is useful to look at its mean allele

values for each locus and observe the way they change at each generation. In

Figure 2.3, we see the mean allele values at times 0, 10, 20, 30, 50 and 100. The

GA parameters of this OneMax problem are: chromosome length L=100,

population size P=50, crossover rate pa = 0.25 and mutation rate pm = 0.001.
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Figure 2.3 The mean allele values, ai’s at each locus i for times t =0, 10, 20,

30, 50 and 100 of a GA run with pc=0.25 and pm=0.001.

Define Ah(t) to be the number of ai(t)’s whose values are less than or equal

to h,

Ah(t) =#{ a,(t)| a,(t) s h, i = 1,...

47

.L}

(2.4)

By this definition, for example, A0(t) gives the number of loci where all of the

chromosomes have value 0, while A0_6(t) gives the number of loci where at



most 60% of the chromosomes have value 1. For instance, in Figure 2.3, we

have A0(3O)=9; i.e., at the 30th generation, at 9 of the loci, all the

chromosomes have value 0. So, for this example of the GA, at generation 30, the

allele value 1 is completely lost at 9 positions of the chromosomes. A1(t), by

definition, is always equal to L.

In Figure 2.4, we see how 1404 (t) is defined and the time evolution of

Ah(t) for h=0, 0.1, 0.2, 0.9. The time evolution graphs of Aha) in Figure 2.4

are obtained by taking the average of 100 GA runs.
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Figure 2.4 Definition of Ah (t)
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The values of the variables (Km), 19(1), {m(1)}i=1 L) and Ah(t) change from one
9"!

GA run to another even if we have the same initial population. In terms of

experimental results, we run a GA, with fixed parameters of selection, mutation

and crossover, many times. For each run of the GA, we measure these quantities

at each generation and take the average over all of the runs. The goal of our

model is to estimate average values of these variables, hence the average

behavior of the GA. In order to simplify the notation, we will use the same

symbols (Km), 19(1), {ai(t)};=1,,,,L) and Ah(t) for values of a specific run of a GA,

or for an experimental average of these values, or for the estimated theoretical

average in our model. Which one is denoted will be clear from the context. We

will use the superscripts c, cs or csm in order to distinguish these variables after

crossover, selection or mutation is applied, respectively. So, cit-“(0 represents the

mean of alleles at the f" locus at the 1‘" generation after crossover and selection

have been applied, and 0493’"(t) equals a;(t+ 1). Note that the crossover operation

does not change the mean allele values in OneMax problem. Thus, aq(t) equals

ail-"(t)-

The study of the time evolution of Ah(t)’s for several values of h gives a

very practical insight into the behavior of the GA. Figure 2.5 shows the graphs of

Ah (t) for h = 0, 0.1, 0.9, where the crossover rate is 25%, the mutation rate is

0.1%, and fitness-proportional selection is used. The population size is taken as

50 chromosomes and the chromosome length is 100 genes. Each time slice of

such a graph can be seen as a “bar graph” of the mean allele distribution at the
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given instant. In other words, the vertical distance between two curves gives the

number of gene locations at which the mean allele is between the corresponding

values, averaged across runs. For example, at t=100, at about 18 gene locations,

none of the chromosomes (i.e. h=0) have value 1; at about 5 locations from 1 to

5 chromosomes (i.e., more than 0% and up to 10% of the population, i.e.

0<h50.1) have a 1 and the rest have a 0; and at about 50 locations, from 45 to 50

chromosomes (i.e., 91% to 100% of the population, i.e., 0.9<hS1) have a 1 and

the rest have a 0, etc. The closer the curves are to each other, the smaller the

variation in the population. We observe that although the population converges to

a more-or-less stable configuration after 100 generations, there is still some

variation within the population, due to the existence of mutation, which has the

potential of creating new chromosomes. Thus, for example, at the right-hand

side of the graph, about 18% of the loci are "fixed" at 0, about 50% are “fixed" at

1, and about 32% of the loci have a mixture of 0's and 1's. The number of these

“mixed" loci typically increases as the mutation rate increases.
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Figure 2.5 The experimental average values of Ah (t) as a function of time for

h =0, 0.1, 0.2, 0.9 , and the bar graph interpretation. The

population size is 50 and the chromosome length is 100 genes. The

GA parameters are p0 = 0.25, pm = 0.001. The average is taken

over 100 experiments

When h is quantized with a gap of 0.1 between two consecutive values as above,

we get 10 regions formed between the curves, including the region above the top

curve. We will use the index n to count these regions, h' = 1, 2, 10, given by

Rh’ = {050' A(h’—1)/10(‘)5 y SAir/10(1)}

where A1(t) is defined as the constant function L.

(2.5)



2.2 The Model for OneMax with Fitness Proportional Selection

The model is developed first for the case with a “high enough” crossover rate.

“High enough“ here means sufficiently high that the alleles at any locus are

distributed essentially randomly among the chromosomes. Then it is modified to

include cases with lower crossover rates. The first case involves three main

steps. First, mean alleles after crossover and selection are estimated assuming

that the crossover rate is “high enough”. Then, the effect of mutation on the mean

allele is determined. The last step involves the estimation of fitness variance

given the mean allele values.

The second case, in which the crossover rate takes more realistic values,

is modeled by observing some statistical properties of the GA at early

generations. This is an aspect in which this method differs strongly from earlier

theoretical models, but which, it is hoped, will allow simple models to be

developed that are applicable to a variety of interesting problems, adapting to the

behavior of the crossover and fitness functions on a problem-specific basis.

Note that at any GA stage, the mean fitness, K1, is always the sum of the

mean alleles across loci at that moment, i.e.

K1(t)=Za.-(t)

(2.6)

This gives us our first simulation formula:
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M 2. 1: At any stage of the GA for OneMax the mean fitness is

x1(t)=Za,-(t)

2.2.1 Selection and Crossover with “High Enough” Crossover Rate

First, consider the case in which the crossover rate is so high that the alleles at

any locus are distributed essentially randomly among the chromosomes. We will

call this crossover rate a “high enough” crossover rate. In fitness-proportional

selection, each chromosome has a selection probability proportional to its relative

fitness within the population. If we denote as q, the probability of selecting the jth

chromosome, then

f;

2,; fk

qj=

(2.7)

where fk is the fitness of the k‘h chromosome.

Let p; be the probability that a chromosome that is selected randomly with

the above probability scheme after the application of crossover, has 1 at its 1‘"

locus. As with the other symbols, we will use the notation pi(t) for values of a

specific run of a GA at time t, or of an experimental average of these values at

time t, or of the estimated theoretical average in our model, depending on the

context. It is easy to estimate pi(t) theoretically in terms of K,(t) and a;(t) when the

crossover rate is “high enough”. Let S(t) be the population after crossover is
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applied with high enough crossover rate to the population of generation t— 1.

Define the subsets S60) and Sf(t) of S(t) as

S(i, (t) = {chrome S(t) I chrom(i) = O}

and

Sf(t)={chrome S(t)| chr0n1i)=1},

 

 

(2.8)

Then, we have

2f(chrom) = P(l — a, (i))(irl (t) — a,- (n)

chrome 53(1)

and

Zflchrom) = Pa,(t)(1+ K1(t)— ai(r))

chrome Sf“) ’

(2.9)

where the bar over the summation means the average over all possible

configurations of gene distributions, in which we assume that the genes are

distributed randomly satisfying the given mean allele values, since the crossover

rate is “high enough”. Thus, the estimated average value of p,(t) is

Pa, (t)(1 + Kl (t) - a, (t))

Pa,(t)(1+ x10) — a, (t)) + P(1- a, (t))(l(l (t) — a,- (t)) ’

 

1),-(t):

(2.10)
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which simplifies to

 

(1" ai(t))ai(t) .

,(t =a, t +p ) () K10)

(2.11)

In the process of fitness proportional selection, we apply selection of

chromosomes P times with replacement. Each time, the probability that the

selected chromosome has 1 as its 1‘" allele, is p)(t). So, the expected number of

1’s at the f“ locus, after the selection is over, can be obtained by using a binomial

distribution. Let B(n,P, pi) denote the probability of having n successes after P

trials, when the success probability is p, for each trial. Then, the expected

theoretical value of alt-“(0 is

P

af‘tt)=;1,-Zn-B(n.P.p.-(t>).
n=l

(2.12)

when the crossover rate is “high enough”.

In summary, we have the following formula that is used in the code

simulating the model:

_M_g_g: (a) After crossover with high enough rate is applied, the

probability that a randomly selected chromosome that is drawn with

the probability scheme of fitness proportional selection, has a 1 at

(1 - a,- (t))a,. (t)

K10) .

 its 1'" locus is pim = 04(1) +
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(b) The mean allele values after crossover and selection for high

enough crossover rates are given by the formula

P

a,“ (t) = %2n . B(n,P, p, (t)) .

n=l

2.2.2 Mutation

In this section, we want to estimate a)“’"(t) given the values of af"(t). Each gene

of a chromosome has the probability pm of changing its value from 1 to 0 or from

0 to 1 by mutation. When we consider the possible changes at the f“ locus only,

the expected number, N, of total allele changes due to mutation can be found by

using a binomial distribution as

P

N = Zn-B(n,P,pm).

n=l

(2.13)

Since the percentage of 1’s at the it“ locus is 0408(1), a)“(t)N of these changes are

going to be from 1 to 0, and (1-aF’(t))N of the changes are from 0 to 1, on the

average. This means that the number of 1’s at the ith locus, which is Fatwa), will

become Pa,“(t)- mcs(t)N+(1-a)°s(t))N after the mutation. Simplifying this quantity

and dividing by P gives the mean allele for the next generation as

 

_ .68

dig-(H1):aI,-"‘""(t)=(x,-"s(t)+1 2a, (”N

(2.14)
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As a result we have the following recipe to use in the model simulation:

M 2.3: The mean allele after mutation is given by

P

N , where N = Zn-B(n,P,pm),

n=l

ailt+1)=afsm(t)=af‘(t)+—
——l-2:f(1)

2.2.3 Fitness Variance for “High Enough” Crossover Rates

The fitness variance by definition is

P

K2 (t) = i-{Zf(chromk )2] - K1 (t)2 .

k=l

(2.15)

If we write the fitness of chromk as the sum of its gene values a!‘ and change the

order of summation after expanding the square sign above, we obtain

1 L P

19(1) =K1(t)+—Z Zafaf —K1(t)2 .

Pit-xj k=l

(2.16)

P

The term Zafaf in Equation (2.16), counts the number of chromosomes in

k=1

which loci i and j both contain 1’s. In the case of “high enough” crossover rates,

this count is estimated by using af’ and 01st as follows. The probability,

p(i, j,n), that locations i and j have n common 1’s is given by the formula

4- P CS], where 11 could take any value

a.

J

170313") =(

n Pa? - n
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between max(O,Pa,-“ + Pale-3 — P) and min(Pa,-“,Paj-‘) and the product of

P with a’s is rounded to the nearest integer in order to calculate the

combinations. Thus, the estimation of the fitness variance in the case of “high

enough” crossover rates is found by using

CS CS 1 L - - CS

x2 (t)=l(1 (t)+-FZXn-p(l,],n)—Kl (t)2_

i¢j n

(2.17)

The estimation of fitness variance after mutation is done by Prt’igel-Bennett and

Shapiro, [1997]. Their formula gives us

L

2 1 2

K?“ = (1 - 2pm) If?” +[1_F]pm(1— Pm)ZWi

i=1

(2.18)

where w. is the weight of the ith locus. In other words, the fitness of a

chromosome (a1,a2,...,aL) is calculated by the weighted summation 2W1“: . In

our special case, the values of w,-’s are all 1. So, we use the formula

2 1 2 LKgsm(t)=(1-2pm)
K§3(t)+[1-;)(pm

— me1

i=1

CS 1

=(1-2pm)2K2 +L[1—F](pm—p31)=l(2(t+l) ,

(2.19)
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to estimate the fitness variance after mutation.

As a result we have the following two statements to use in the model

simulations:

M 2.4: The fitness variance after crossover and selection is found

1 L . .
by using K250) = K1“ (t)+FZXH'P(1.J,n)-Kfs(t)2, where

iatj n

Pa.“ P — Pa,“ P

p(i,j,n)= ' x + cs . The same formula

n Pa? —n Pa,-

can be used to estimate K2 (0) using [(1 (0) since the initial values

of the allele are chosen randomly which makes it equivalent to a

highly mixed population.

M 2.5: The fitness variance after mutation is found by using

3 2 1

K5 "’ =(1-2pm) K?” +L(1-;)(pm #73.)-

2.2.4 Lower Crossover Rates

Equation (2.11) gives the probability p. when the crossover rate is very high. In

such a case, as in Section 2.2.1, we are able to treat the 1’s at a fixed locus of

different chromosomes as identical to each other in terms of their roles in

selection because of the high mixing rate of the crossover operator, which makes

chromosomes look similar to each other, on the average. However, for lower and

more realistic crossover rates, there will be some correlation between alleles

within a chromosome and Equation (2.11) will no longer hold. Let’s keep the
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usage of notation pi(t) for the probability of selecting a 1 at the ith locus in the

case of the “high enough” crossover rate and denote the corresponding

probability in the case of a lower crossover rate by p, (t). To remedy this

situation and estimate 5,- (t) correctly, we consider artificial weights, c,-(t), for

each locus in order to reflect the average change in the role of 1’s played in the

selection process due to correlation between alleles. The correction weights, c,-(t),

are defined implicitly by

(1 — a, (1))a, (0c, (1)

K1 (1) .

 

EU) = 6310‘) +

(2.20)

The reason why we defined the correction weights as in the equation above is

because if we write Equation (2.11) for a fitness function of the form

f(chrom) = 2w,- -chrom(i) , with weights w), we would get an equation exactly

I

like Equation (2.20) with c; replaced by w). Our correction weights play a similar

role at each locus as Ms would, except that 01’s change over time.

The next step will be to estimate the c,’s statistically by means of some

data gathered from experiments. In order to do this, the GA is run with fixed rates

of pm and pc up to a pre-selected generation, say to. Let us call this generation

Go. The crossover operation with the current rate, pc, is applied to Go many

times. Each time, W t ) values are calculated from the experimental data for

each locus i, and the corresponding 0,- values are found using Equation (2.20).
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This process is repeated for many runs of the GA to obtain statistical measures.

It is observed that the value of c) strongly depends on the values of at, as

expected. Because of this dependence, it makes more sense to group the or

according to their corresponding a) values before finding the statistics of the data

gathered from the experiments. So, define Ciao) as the set

{ c,- values of the k‘h experiment of GA such that h s a,(t0) < h + 0.1}. for h = 0,

0.1, ...0.9 . The mean of the correction weights is obtained by finding

,u(h',t0):mekan(mean(C,:'(to)», h' = 1, 2, ...,10, where the relationship

between the index h and h' is given by h = (h' -1)/10, to be consistent with

definition (2.4). In order to measure how much the correction weights vary from

one experiment to another, we also calculate the standard deviation

0(h',t0) = s£d(mean(C,:’ 00)».

The experimental results show that, when pc is not too low (below about

4%), p and 0 remain more or less at the same value regardless of the time, to.

Moreover, 11 shows a linear-like behavior while a shows a quadratic-like behavior

as a function of h'. This behavior of the crossover operator allows us to use the

linear approximation of p(h',5) to predict 5,1! ) for the following generations.

Figure 2.6 shows the graphs of p for two different rates of crossover with to at

generations 5, 15 and 30. We have observed that the inclusion of u in our model

is good enough for describing the effects of c; distributions and the information

coming from a does not play a significant role in the counting-ones problem.
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However, for other problems, such as OneMax with Boltzmann scaling, 0 might

be needed in the model. The deviations from the linear behavior, in Figure 2.6, at

h'=1 or 10 are due to effects of statistical averaging in which there were not

enough data points available for these border values.

 

         

3 2.51 2 5

pc = 0.25 2t pc = 0,75 2» p6 = 3

2 1.51 ' 1.5L

1 1M
1

1‘ . 0.5» 0.5,
- Iiiearfitforb=5

0* 0* 0’ Estoppedatto=3o

. * stoppedatto=5

e. :' '0.5‘ '0.5 "u stopped atto=15

-1 ' . J _1 1 a _1 1 l

0 5 10 0 5 h. 10 0 5 10

Figure 2.6 The mean value of the correction weights as a function of mean

allele levels, h', for crossover rates pc = 0.25, 0.75 and 3. The

statistical average is found over 100 runs of the GA. Population

size is 50 and chromosome length is 100 genes

M 2.6: The mean allele values after crossover and selection for a

crossover rate pc are given by the formula

 

P
— . . .

Cit-“(0 = i2]; - B(n,P,p'iU», Where fit“) ___ 0’10) + (1 al(t))al(t)cl(t)

Pn=l
K1 (I)

and the values of c, (t) are determined as described above for the

corresponding crossover rate.
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2.2.5 The Algorithm of the Model

Diagram 1, page 65, shows the flowchart of the algorithm that is used in the

simulation of the model that has been developed in the previous sections. We

apply this algorithm N times. The estimations of mean fitness and fitness

variance are found by taking the averages over these N runs. a,(t) values of

each run are used to find Ah (t) values for that particular run, h = 0, 0.1, 0.2,

0.9, Taking the average of these measures for each t, in turn, gives us the actual

Ah (t) evolutions, that describe average GA behavior.

The simulation of the model for high enough crossover rates starts with

selecting a set of ai(0) values chosen by considering a binomial distribution for

each locus in which we have P selections with a 50% chance of selecting a 1

each time. _M_g_.g (page 56) and M2_.3 (page 58) are applied to estimate the

mean alleles after the crossover, selection and mutation operations. This process

is iterated for each generation to obtain a dynamic simulation of the mean allele.

At any moment, the mean fitness is estimated by MA (Section 2.2), and the

fitness variance in the case of “high enough” crossover rates is estimated using

M_2_.g orM (Section 2.2.3), depending on whether we are considering the

variance right after the selection process or after the mutation, respectively.

In the case of lower crossover rates, M 2.2 is replaced by M 2.6, in which

the crvalues are pro-determined by the linear approximation of the data gathered

at the 5th eneration of a set of GA runs as described in Section 2.2.4, Fi ure 2.6.9 9
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Diagram 1 The Flowchart of the Simulation Algorithm

 

Select a, (O)’s randomly, i = 1, ,2 , , L using binomial distribution

for each i, P selections with 0.5 success probability
 

V
 

Apply M 2.1, (page 54), to find K1(O)

Apply M 2.4 ,(page 60), to find K2 (0)

   

 

Fort: 1 to Maximumieneration number
   

 

Fori=1toL:
   

  

Apply M 2.2(a), (page 56), to find the value of p,- (t)
 

Apply M 2.2(b), (page 56), to find a sample value for mean allele,

af‘ (t), using a binomial distribution, P selection with p, (t) as

the probability of success

 

i=i+1   
J

  

Apply M 2.1, (Sec. 2.2), to find it,“ (t)

Apply M 2.4,(Sec. 2.2.3), to find K? (t)

Apply M 2.3, (See. 2.2.2), to find mean allele,

afsm (t) = a,- (t +1), after mutation

Apply M 2.1, (Sec. 2.2), to find mean fitness of the next generation

K?“ (t) = K1 (t + 1)

Apply M 2.5, (See. 2.2.3), to find the fitness variance of the next

generation K§sm (t) = K2 (t -l- 1)

   



2.3 Weighted OneMax Fitness Function

Now, we will consider the case in which each allele contributes to the fitness with

different weights. In other words the fitness of a chromosome

chromk =(a1k,a§,...,af) is

f(chromk) = Zwi -a{‘ .

I (2.21)

 

Fitness function for weighted counting l's problem:

IIIIOIIOO Fame”;

“1 “a “a “4 “5 “0 “1 “a “1 “1*“21'w31'w41’w01'w1

  
 

Figure 2.7 Fitness with weights

In Figure 2.7, we see an example of the weighted fitness of a chromosome of

length 9.

When we study the GA with the weighted fitness function of Equation (2.21) at

time t, for the 1‘“ locus, Equation (2.9) would change to
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42flchr0m) = P(1- 0!. (1)th (t) — ma,- (0)

chrom e 53 (t)

and

 

2f(chrom) = Pat,-(t)(1(1 (t) + (1 — at. (t))Wi )

chrome S{(t)

(2.22)

Then, Equation (2.11) would be replaced by

(1 - a, (t))a,. (ow, .

K10)

 

[7,-(1): at“) '1'

(2.23)

This would change our simulation model formula as

M 2.2’: (a) After crossover with high enough rate is applied, the

probability that a randomly selected chromosome that is drawn with

the probability scheme of fitness proportional selection, has a 1 at

(1‘ at “Dar (”Wt

K10)

 is f" locus is p,- (t) = a, (t) +

(b) The mean allele values after crossover and selection for high

enough crossover rates are given by the formula

P

af‘(t>=%Zn-B(n.P.p.-(t>)-
n=1

The existence of weights changes Equation (2.16) as
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L P

K2(t)=Kl(t)+-l—Z Zwmfwja’; «10)?

tab j k=1

(2.24)

Then, Equation (2.17) is replaced by

1 L 2
K55 (1) = K1“ (t) + 7522" - wiwjp(i, j,n) - K1“ (t) ,

i¢j n

(2.25)

where p(i, j,n) remains the same as

Pa.“ P - Pa,“ P

P“, j,n) = l X + cs ’

n Pa? —n Pa}

(2.26)

as in Section 2.2.3.

The fitness variance after mutation is already given by Equation (2.18) for

the weighted case.

The modification for the lower crossover rates is straightfonrvard. The

defining equation for the correction weights, Equation (2.20) is now

(1-a,.(z))a,.(t)w,.c,.(t)

K1 (1) .

 

13.0): ai(t)+

(2.27)
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2.4 OneMax with Boltzmann Scaling

One of the most common ways to scale the fitness values so that the

chromosomes with higher fitness have more chance to survive the selection

operation compared to the usual fitness-proportional selection is Boltzmann

scaling. In this scaling, the fitness value f(chromi) of the ith chromosome is

replaced by

f(chromi) = efikhmm‘),

(2.28)

where ,6 , which controls the pressure of the selection, might be a function of

some parameters of the population or it might be a constant. Then, the

probability, q,- that the ith chromosome would be selected by the Boltzmann-

scaled fitness proportional selection is given by the quotient

efi‘(chromi)

i = p '

Zefikhmmj)

i=1

 

q

(2.29)

The advantage of using a Boltzmann scaling is that the value of q,- is shift

invariant. In other words, if the fitness values of all chromosomes present in the

population at any time t are shifted by a value c, then q,- would remain

unchanged for chrom). One can see this property easily from
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efl(f(chromi )+c)

 

qi : p

Zefl(f(chrom,)+c)

i=1

eficeflflchrom)

 

 

eflc ieflkhmmi)

j=l

efi‘(chrom,)

= p = qi

Zefllchmmi)

j=l

In the case of scaled ,6, the selection pressure, ,8, is sealed at each generation

inversely proportional to the standard deviation, 0‘ = ,iKz of the fitness. So,

.33 =___V21“(P)fi is used instead of ,8 and the fitness values, f(chrom), are

0'

replaced by

Then q,- is

,(21n(P))flf(chrom)

f(chrom): e a

(2.30)

  

i

J

i

_mnmfl(chrom.)

f(chromi) = e a t

,. ,_[______21n(r>)

(chrom) Zea___—131mm,.)

=1
j=—l
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When ,8 is scaled like this, then the value of f(chromflis invariant under

multiplication of fitness values by a constant. This is because when all the fitness

values in a population are multiplied by c, then the new variance of the

2

population would be c [(2, where K2 is the variance of the original population.

Then,

i—gflflcflchrom) V 21“(1’),5cf(chrom)

f(chrom)’ = e “C K2 = e CJK—Z

 

= f(chrom).

Hence, using a Boltzmann selection with sealed ,6 , the selection operation

would be invariant under constant multiples or shifts of fitness values.

We will study two types of Boltzmann selection for the high enough

crossover rates only. In the first one, ,6 is kept constant throughout the whole

GA run. We call this case the ‘Boltzmann selection with fixed ,6 ’. In the second

one, ,6 changes inversely proportional to the standard deviation of the fitness

distribution of the current population. This case will be called ‘Boltzmann

selection with sealed ,6 .’

Using the same notation as in Section 2.2.1, we define the sets

Sf, (t) = { chrom e S(t) I chrom(i) = O}

and
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Sf(t)={chrome S(t)| chr0m(i)=1},

where S(t) is the set of all chromosomes at time t.

Let us consider an instance of a GA run and study this instance for the ith

locus. We define probability p), similar to that in Section 2.2.1, as the probability

that a chromosome that is selected randomly with the Boltzmann probability

scheme after the application of crossover has 1 at its 1th locus. Then, we have

Zeflflchrom)

chrome S i (t)

Zefiuhrom) + Zefikhrom) °

chrome Sf (t) chrome S3 (t)

 

1910‘) =

(2.31)

We want to find the expected value of the probability, pi(t), when the crossover

rate is ‘high enough’. If the ith locus values of all chromosomes in this population

are replaced by 1’s then we would have a fitness distribution whose mean fitness

is Kl + (1 — (1,), where [(1 is the mean fitness of the original population. At this

point, we assume that the variance of this new population is almost the same as

the variance of the original population. Further, assuming that all the fitness

distributions under consideration are normal distributions, we propose a model

distribution for the set Sf (r) :

M 2. 7: Fitness values of Sf (t) are assumed to have a normal

distribution with mean [(1 + (1— a,) and variance K2.
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Similarly, for the fitness values of S60) we have:

M 2.8: Fitness values of 53(1‘) are assumed to have a normal

distribution with mean K1 — ai and variance K2.
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Chapter 3

A MODEL OF GA DYNAMICS FOR THE DECEPTIVE FUNCTION

PROBLEM

GAs, with the help of the selection operator, have a tendency to treat the

direction in which an increase in fitness is observed when a gene value is

changed as the direction to go to seek the optimum value (essentially, hill

climbing). However, not all such changes, in general, lead toward a gene value

that is part of the optimum chromosome. In particular, there are some test

functions that are especially designed to mislead GAs that take advantage of this

weakness of the algorithm. An important class of such functions is called

“deceptive functions”. In this chapter, we will describe a form of deceptive

function and develop a model for the GA with this function.

3.1 Deceptive Function

First, we define an N-bit deceptive function. For this function, the chromosome is

made up of some number of N-bit blocks and the fitness of the chromosome is

found by adding up the fitness contribution of each block. The fitness contribution

of an N-bit block is given by
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A ifai=1foralli

f(a ,a ,...,a )= . .
1 2 N Bm it some a, sare 0, wherem=# of zeros

(3.1)

The chromosome consists of many such N-bit blocks and its fitness is the sum of

each of their contributions given by Equation (3.1). The constants A and B are

such that A>BN. In other words, a deceptive block with the highest fitness

contribution would have all 1’s as its alleles.

Figure 3.1 shows an example of a 3-bit deceptive fitness function. In this

example the fitness of (111 101 100) is A+1B+ZB = A+SB. We see that the

fitness of the chromosome would increase if the last deceptive block, 100, would

change to 000. However, it is clear that the optimum chromosome is the one with

all 1’s. This is the reason why these functions are called deceptive: From the GA-

selection operator's point of view 111 101 000 is better than 111 101 100, while

the later is bitwise closer to the optimum.

 

Fitness function for n-bit Deceptive problem:

34)“ case: me"

   
| I 1 I o 1 I o o I “(C I" deceptive b106k3)

“7" i/ H -- o 9:01 0's)

A 9 a A 4' 39   

Figure 3.1 The definition of the fitness of a 3-bit deceptive function
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3.2 A Model for the Deceptive Function with Fitness-Proportional

Selection

When a GA is applied to find the optimum value of the deceptive function defined

in the previous section, it tries to increase the number of both 0’s and 1’s at the

same time. So, the problem involves a counting-0’s and a counting-all-l-

deceptive blocks (i.e., the N-bit blocks with all their allele values equal to 1)

problem, competing with each other. Both the counting-0’s and counting-all-1-

deceptive blocks work similarly to the OneMax problem modeled in Chapter 2. In

this section, we apply this idea and develop a model for the deceptive function,

using the results of the OneMax model.

We use the index letter j to index the deceptive blocks, and the index letter

i to index the locus in the chromosome. Similarly to the mean allele values

defined in Section 2.1, Figure 2.2, we define

a _ # of 0's at the jth locus of all chromosomes
J. _

P

 

and

y _ # of all -1 deceptive blocks at the 1"" N - bit deceptive loci in the population

’ _ P

 

(3.2)

where P is the population size. Figure 3.2 shows the definitions of a and y for a

3-bit deceptive function.

76



   
  

  

 

chrom1 *** *** **=l¢

chrom2 *** *** ***

chrom? *** *** *** 

1t 0's
(1.: __ 11 ill—blocks

4 Population Size yi "
Population Size

Figure 3.2 Variables a and yin a 3-bit deceptive function problem

Similarly to Equation (2.4), Figure 2.4, define

A:(t)=#{aj(t)| aj(t).<_h,j=l,...,L}

and

A; (t) =#{ 7,-(t)| 7,-(t) S h, i = Lug-1%},

(3.3)

where L is an integer multiple of N.

In the following subsections, we develop a model to estimate the average

expected values of aj (t) and 7,-(t) from their previous values.
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3.2.1 Selection and Crossover with “High Enough” Crossover Rate

Similarly to Section 2.2.1, we first consider the case in which the crossover rate

is so high that the alleles at any locus are distributed essentially randomly among

the chromosomes. We will call this crossover rate a “high enough” crossover

rate.

We have the following simple equation, following directly from the

definition of the mean fitness

M 3. 1 At any stage of the model the mean fitness is given by

L/3 L

i j=l

Define p? (t) as the probability at generation tthat the f‘ locus of a chromosome

that is selected randomly with the fitness proportional selection scheme after the

application of crossover, has 1 as its gene value. p! (t) is defined as the

probability at generation tthat the f“ N-bit deceptive block of a chromosome that

is selected randomly with the fitness proportional selection scheme after the

application of crossover, has all 1’s as its alleles. In Figure 3.3, we see a pictorial

definition of p? (t) and pf (t) for a 3-bit deceptive function.
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. \ W16
{9 I?“ 66cc?“

= chrom: . .® .

Select one with the fitness /

proportional selection p,’ (i) : Probability that this block is 111

probability scheme

Population after pffl) : Probability that this allele is 1

generation t- 1

Figure 3.3 Definitions of p? (t) and pl?’ (t) fora 3-bit deceptive function

Let S(t) be the population after crossover is applied with a high enough

crossover rate to the population of generation t— 1. Define the subsets 753 (t),

(sf (t), “55' (t) and “311(1) of S(t) as

7510) = chrome S(t) i'h deceptive block Of chrom is 11...1 ,
1

7530) = S(t)-(Sf (0.

05110) = {chrome S(t) j’h locus 01 chrom iS 1 }.

“55' (z) = S(t)-“511' (t).

(3.4)

Then, by definition of pj'(t) and p," (t) we have
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2f(chrom) 2f(chrom)

 

  

pg“) ___ 4 chromeasgfl) 4 : chromeaSJU)

2f(chrom) + 2f(chrom) K1“

chromeaSJ (t) chromeaSljU)

and

2f(Ch?om) 2f(chrom)

p170) = _ chronie78{(t) J = chromersffl)

2f(chrom) + 2f(chrom) Kf

chromersli (t) chrome’S3(t)

(3.5)

In order to simplify notation, from now on we assume that the deceptive function

is 3-bit. All the arguments below can easily be generalized to a deceptive

function with any number of bits.

Then, for the set 781" (t) we have

 

iZflchromFP[A+(14(1)-Arf(t)-B(aj+t(t)+a).2(t)+aj+a(t)»1.
chrome 751‘ (t)

(3.6)

where the values of land 1 are related to each other by j = N(i - 1), (N = 3 in

our case).

For the set “Slj (t), we have

 

Zflchmm) = P[3 + (Ki (t) - Aria) - 309(0)].

chrome "SJ (t)

(3.7)
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where the values of land j are related to each other by i = int(j/N) + 1, (“int” is

the function giving the integer value of its argument and N = 3 in our case).

In both Equations (3.6) and (3.7), the bar over the summation means the

average over all possible configurations of gene distributions, In which we

assume that the genes are distributed randomly satisfying the given mean allele

values, since the crossover rate is “high enough”. The superscript “d’ in both

equations means the values of the corresponding variables after crossover is

applied. Note that, in the case of the deceptive function, the crossover operation

changes the value of mean fitness, K1(t), as well as 7,-(t), while 051- (1) remains

unchanged. In the OneMax problem, the mean fitness was not changed by

CI‘OSSOVGI’.

Equations (3.6) and (3.7) give us the probabilities p? (t) and p,” (t) as

 

y ___ yf(A+(xf —Ay,."—B(czj+1+arj+2 +698»

 

' ,where '=3i—1p. Ki 1 ( )

(3.8)

and

23+ K‘—A F-Ba.

Pf: J( (I y, 1)),wherei=int(j/3)+1.

Ki

(3.9)

In order to use equations (3.8) and (3.9), we need to estimate the values of Kf

and yf - i.e., the mean fitness and deceptive block percentages at each
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deceptive locus after crossover is applied. For high enough crossover rates, they

are easy to estimate. yf is determined by

c _ G(Pa—afil)’ P(1-(Zj+2), P(1-aj+3))

yi_ P i

 

(3.10)

where G(nl,n2,n3) is the function that gives the expected number of 111’s in

the population when the genes are completely shuffled with nk being the number

of 1’s at the corresponding locus of all the chromosomes. Then, Kf is given by

L/3 r.

Kf = Any + B a}.

i j=l

(3.11)

In the process of fitness-proportional selection, we apply selection of

chromosomes P times with replacement. Each time, the probability that the

selected chromosome has 1 as its 1‘“ allele, is p? and the probability that the f“

deceptive block is 111 is p}’ . So, we use a binomial distribution to find the

expected number of 1’s at the f“ locus and expected number of all-1-deceptive

blocks at the f“ deceptive place. We use the notation B(n,P, r) to denote the

probability of having n successes after P trials, when the success probability is r

for each trial. Then, the expected theoretical value of a§‘(t) is
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1 P

61?“) zign-B(n,P,p3-z(t)),

(3.12)

when the crossover rate is “high enough”. Similarly, the expected theoretical

value of yf‘(t) is

7,-“(0 =%ZP:"'B("’P”"'7(’)) '
n=l

(3.13)

Then, in the model simulation, we have

M 3.2: The values of a? (t) after crossover and selection for high

enough crossover rates are given by Equation (3.12), where p? (t)

is given by (3.9) .

Having found the values of 15:10), ale-:20) and 1.130) in the simulation, we

need to modify Equation (3.13), in order to find yf‘(t), where j =3(i-1), as

follows. Since the values of 615.110), ajiza) and a§i3(t) are already

determined, this means that we have only

13=nnn(P(1—a;:,(i)), p(i-a3t120», P(1—a§-i3(t))).

(3.14)
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chromosomes left in the population which have the possibility of having 111-

deceptive blocks at their 1”“ deceptive places. Moreover, the probability p! (I)

would be modified as

pi’

pi7(t)______

" Pk

(3.15)

where k is the index of a for which we get the minimum value in

{P(1— 075110)), P(1— a§12(t)). P(l — ale-:30»). Thus, the expected

theoretical value of y,“ (t) is now given by

1 P

r."‘(t)=;Zn-B(nP 1),-70>)

"—1 (3.16)

As a result, we have

3

3.3 After 014,10), 0"-+20) and a1+3() are determined by M

3.2, the values of yf(t) are given by Equation (3.16), where P

and p7(t) are determined by Equations (3. 14) and (3. 15),

respectively.

3.2.2 Mutation

The modeling of mutation is done exactly as in Section 2.2.2.
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Thus we have

3.4 The mean allele after mutation is given by

csm CS 1 _ 2a§s (t)

aj(t+1)=aj (t) =aj (t)+ N
 

, where

B(n,P,pm)

u_
M
'
b

After the values of aj(t+ 1) are determined as above, the values of yi(t+ 1)

are estimated from them by using the function G, which Is defined in Section

3.2.1,

 

G(P(1—aj+1)9 P(1_aj+2)’ P(1_aj+3))

(3.17)

3.2.3 Fitness Variance

Fitness variance by definition is

1 P L 2 2
[(2 (t) = — Zf(chromk) — Kl(t)

P k=l

(3.18)

In order to write the fitness of a chromosome more easily in the calculations,

define variables gi and a, as

_ 1if the i’” deceptive block is 111

' 0 othen~ise
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a _ lif the I“ alleleis0

I 0 othenlvise

Then the fitness of a chromosome is

L/3
_ k k k k

f(chromit) — 2(148i 1‘ B(a3(i-1)+l 1’ a3(i—l)+2 1' a3(i—1)+3))'

l

(3.19)

Then,

P ,(ZEflChmmk) = F223018; + mam-0+1 + “3(1—1)+2 + “3(j-l)+3))*
=

1,1

k k k 1.

(A81 "' B(a3(i—1)+1 1' a3(i—l)+2 1' “3(i-1)+3))

(3.20)

Separating the terms with i=j from the rest of the summation yields an

estimation of the above expression, given by
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1 P L/3

— 2f(chromk )2 2'— E[Azyi + (33?;-

P k=1 i=1

2

+ (23) a3(i—l)+l 'a3(i—1)+2 '(1‘ a3(i-l)+3)

2

+ (23) a3(i-l)+1 ' (1 ‘ a3(i—1)+2) ' a3(i—1)+3

2

+ (23) (1" a3(i—l)+1)'a3(i—l)+2 'a3(i—l)+3

2
'1" B a3(,-_1)+1 ° (1 "" a3(i—l)+2) ' (1 _ a3(i-l)+3)

2

+ B (1‘ a3(i-1)+1) ' ash-1H2 '(1‘ a3(i-l)+3)

2
+ B (1 — a3(i—1)+1) ° (1 " “3(1-1)+2)' ash—n+3]

L/3

+ E[(B(a3(i—l)+l 1' “3(1—1)+2 + a3(i-1)+3)+ Ai’i)*

tatj

(3(axj—1)+l + a3(j—1)+2 + a3(j—1)+3)+ A7j )1

(3.21)

In the estimation above, 5,- is the estimated percentage of deceptive blocks

which are 000 at the f" deceptive place.

As a result, we have

M 3.5 The estimation of fitness variance for high enough crossover
 

rates is given by Equation (3.18), where the first term is estimated

using Equation (3.21).
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3.2.4 The Algorithm of the Model

Diagram 2, page 89, shows the flowchart of the algorithm that is used in the

simulation of the model developed in the previous sections. We apply this

algorithm several times (~10 times). The estimations of mean fitness and fitness

variance are found by taking their averages over these runs. Then, aj (t) and

79-0) values of each run are used to find A?0) and A; 0) values, h = 0, 0.1,

0.2, 0.9, whose averages, in turn, give us the average Ah 0) evolutions.
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Diagram 2 The Flowchart of the Simulation Algorithm

 

Select a]. (O) ’s randomly, j = 1, ,2 , , L using binomial

distribution for each i, P selections with 0.5 success probability

Estimate 71(0) by Equation (3.10), i=1, , U3    
 

Apply M 3.1, (page 78), to find K1 (0)

Apply M 3.5,(page 87), to find K2 (0)

   

 

For t = 1 to maximum generation number do the following |
  

 

 

 

For each n =1 to U3:

Estimate yg0) by Equation (3.10), n=1, , U3

Apply M 3.1.. (page 78), to find K‘f (t)   
 

For eachi: 1 to US:

Apply M 3.2, (page 83), to find the values of a? (t) ,

forj={3(i—1)+l, 3(1-1)+2, 3(i—1)+3}

Apply M 3.3, (page 84), to find to find the value of new),

 

 

Apply M 3.1. (Page 78), to find K1“ (1‘)

Apply M 3.5.(page 87), to find 19“ (t)

Apply M 3.4, (page 85), to find mean allele, afsm (t) = or, 0+1),

after mutation

Apply M 3.3, (page 84), to find to find the value of yfsm 0),

Apply M 3.1, (page 78), to find mean fitness of the next generation

14"" (t) = x, (t +1) . Apply M 3.5.(page 87), to find the
 

fitness variance of the next generation K5” 0) = K2 0+ 1)    
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3.3 Weighted Deceptive Fitness Function

We define the weighted fitness function for an N-bit deceptive problem by

assigning weights both for each locus and for each N-bit deceptive block. Let’s

use the notation W]. for the weight of f“ locus, and v,- for the weight of the i“

deceptive N-bit block. Define variables g,- and a, as

= {1 if the i‘” deceptive block is all 1 's

81 .

0 othervwse

a __ lit the 1'“ alleleiso

I 0 otherwise

Then, the fitness of a chromosome for a 3-bit case, for example, would be given

by

f(chromk ) =

“3 k k k k -

E[Awigi 1' B(v3(i—l)+la3(i—l)+l 1' V3(i—1)+2“3(i-1)+2 1' V3(i-1)+3“3(i-1)+3)]

i

(3.22)

Figure 3.4 shows an example fitness calculations for the chromosome

111101100, with a 3-bit weighted deceptive function.
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Fitness function for 3—bit weighted deceptive problem:

I l I §l o I $1 0 0 Fitness:

Allele weights ill| w, w,§w4 w5 w,’ £111., w, w, Av, + B(Wstl'wsdrwq)

Deceptive block V. V2 V,

 weights 
 

Figure 3.4 An example of the weighted fitness function for a 3-bit deceptive

problem

For the mean fitness, in this case, we have

M 3.1’ At any stage of the model the mean fitness is given by

L/3 L

K1 =A2viy, +Bijaj.

r j=1

The Equations (3.6) and (3.7) would be changed as

 

2f(chrom)

chrom e ’5: (t)

= P[Av,- + rcf (t) — Aviyf (t)— B(wj+1aj+1(t) + wj+2aj+2 (t) + wj+3aj+3 (0)]

where j = 30 — 1) ,

(3.23)

and
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h 2f(chrom) = P[Bwj + (Kf (t) — Aviyf (t) — Bwjaj (0)] ,

c rome a ({(t)

(3.24)

where i=int(j/N)+1.

These modifications give us the probabilities p?(t) and pf (t) as

p7 =
l

7:? [Avi +ch(t)—Aviyic(t)- B(Wj+laj+l(t)+Wj+2aj+2(t)+Wj+3aj+3(t))]

Kf

 

(3.25)

where j = 3(i — 1) , and

pa _ alewj + (Kf(t)- Aviyf(t)-Bwjaj(t))J

j —
,.

 

(3.26)

where i=int(j/3)+1.

3.4 Deceptive Function with Boltzmann Scaling

In Section 2.4, we have defined the Boltzmann scaling for two cases, one with

fixed ,6 and the other with ,6 adjusted inversely proportional to the standard

deviation of the fitness distribution. The development of the model of the

deceptive function with Boltzmann scaling is similar to Section 2.4. Using the
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definitions of 123-'0) and p,-7(t) and the sets 7S3(t), 75(0), “SJ (t) and

“51} (t), in Section 3.2.1, the equation corresponding to (3.5) would be

Zeflflchrom)

chromEaSJU)

“0) -
pf _ Zeflwhmm) + Zefi‘whrom)

chromeang) chromeaslj (t)

 

and

Zeflkhmm)

chromE’SHt)
7’ _

pi (t) _ Zeflkhmm) + Zeflkhmm) °

chromersffl) chrom€753(t)

 

(3.27)

In the model, we need to estimate expected values of Zemdm’m),

chromeaSlj (t)

Zemmm'"), Zefifwhm’") and Zefi(Ch’om).When the crossover

chromeaSJ (t) dimmers: (t) chrome 756 (t)

rate is high enough, we have for the y counting

 

fizf(chrom) = P[A + (Kf (t) — A7,? (t) - B(aja) + a1+1 (t) + a1+2 (t)))]

chrome 75(0)

 

 

(t) + all-+10) + aj+2(t))]_ (a,

h =P KC —A F B 12f(c ram) [ 1(t) 7, (0+ 1-7f(t)

chrom e ’53 (t)

(3.28)

and for the a counting
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2f(chrom) =

chrom e “S((t)

P[xf (t) — Bar]- (t) + A(Common(1— a1+1 (0,1 - a1,2 (t))-— yf (0)]

 

Zf(chrom) = P[B + (xfo) -- Ayfo) — Ba1(0)] .

chrome “SJ (t)

(3.29)

Then, for the model simulation we have the assumptions

M 3.6 The fitness distributions of the sets 756 (t) and "S11' (t) are

normal with the mean values given by Equation (3.28).

M 3.7 The fitness distributions of the sets “SJ (1) and “Slj (t) are

normal with the mean values given by Equation (3.29).

94



Chapter 4

COMPARISON OF THE MODEL WITH GA EXPERIMENTS

In this chapter, we explore the model for OneMax and deceptive functions

developed in Chapter 2 and 3, with various sets of GA parameters, and compare

the model predictions with the data obtained from GA runs. This way, we both

examine the GA behavior under different circumstances and also test the validity

of the model assumptions. The exploration of the OneMax function includes both

“high enough” and lower crossover rates, while for the deceptive function, we

have only the results for “high enough” crossover rates since the model for lower

rates is a subject for future research. In all the graphs of this chapter comparing

the model with the actual GA runs, the black lines represent the experimental GA

results and the thick gray lines represent the results obtained from our model.

For notation purposes only, in some of the graphs, we denote the fitness

proportional selection without the Boltzmann scaling as )3 = _1, although it is clear
 

that there is no such ,6 variable in this case.
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4.1 OneMax Problem

4.1.1 Fitness Proportional Selection

In this section we apply the model developed in Sections 2.2.1 through 2.2.5.

The population size is 50 and the chromosome length is 100 genes. The

experimental results are obtained by averaging 100 runs of the GA. The “high

enough” crossover rate in our case is p6 = 300%, which means that 100%

crossover is applied 3 times in a row before the selection. This rate of crossover

is verified experimentally as “high enough" by observing that there is no

significant change in the graphs of Ah(t), K1(t) and K2(t) if a higher value of pc is

used. It can also be verified from Figure 2.6, since the correction weights, when

p0 = 300%, are all very close to 1. In Figure 4.2 and Figure 4.2, the time variation

of A, is shown for crossover rates of pa = 4%, 25%, 75% and 300%. We

observed in our experiments with the model that when the crossover rate is too

low, such as p0 = 4%, the statistics of correction weights taken only from the 5th

generation are not enough and we needed adjustment by using the statistics at

the 15th generation. Figure 4.2(a) shows the graph with this adjustment. For p6 =

25% and 75%, the statistics from only the 5th generation are used. The simulation

for pa = 300% is obtained by taking all cis as 1. In all four cases, no mutation is

applied — i.e., pm = 0. The graphs look quite similar to each other, except that

there is some variation in the value to which the lines converge as time

approaches 200 generations. We see that the limit value decreases from around

40 to 30 as pc increases from 4% to 300%. This slight decrease observed in the

experimental graphs is well captured by the model simulations. Such a change in
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the converged values has a significant effect in the final fitness values of the

population as a whole.

In Figure 4.3, the time evolution of An is shown for two different mutation rates, in

both of which pc is kept constant at 50%. In the first case the mutation rate is very

low at pm = 0.1%, while in the second case it is pm = 2%. In both cases, the

model predicts the mean allele behavior very well.
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(b) t

Figure 4.1 Ah as a function of time for four different cases where the crossover

rate is 4 and 25 percent, respectively. There is no mutation. Black

lines are the experimental averages over 100 GA runs and thick

gray lines are the results obtained by model simulations. Population

size is 50 and the chromosome length is 100 genes
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(b) t

Figure 4.2 A, as a function of time for four different cases where the crossover

rate is 75 and 300 percent, respectively. There is no mutation.

Black lines are the experimental averages over 100 GA runs and

thick gray lines are the results obtained by model simulations.

Population size is 50 and the chromosome length is 100 genes
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Figure 4.3 Ah as a function of time for two different cases where the mutation

rate is 0.1 and 2 percent, respectively. The crossover rate is 50% in

both cases. Black lines are the experimental averages over 100 GA

runs and thick gray lines are the results obtained by model

simulations
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The experimental results and the model estimations of mean fitness for several

values of pm with crossover rates of p6 = 25%, 75% and 300% are shown in

Figure 4.4. The impact on the mean fitness of changing pc from 300% to 25% is

more visible when pm is low, around 0 or 0.1%. The effect of higher mutation

rates dominates the dynamics of mean fitness evolution, and decreases the

amount by which different crossover rates affect the mean fitness. The estimation

of the fitness variance when pa = 300% is shown in Figure 4.5 for various

mutation rates, together with experimental averages. In all these graphs, we see

that these dynamics of mean fitness and fitness variance are well captured by

the simulation of the model.
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Figure 4.4
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(c) 0 so 160 13to 260 2350 360

The mean fitness for p6 = 25%, 75% and 300%. In each figure four

different mutation rates, pm = 0%, 0.1%, 1% and 2%, are shown.

Black lines are the experimental averages obtained by averaging

over 100 GA runs and thick gray lines are the results obtained by

model simulations
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Figure 4.5 The fitness variance for four different rates of mutation, pm = 0%,

0.1%, 1% and 2%, with crossover rate at 300%. Black lines are the

experimental averages obtained by averaging over 100 GA runs

and thick gray lines are the results obtained by model simulations

4.1.2 Boltzmann Scaling

In this section, we examine the model for fl =0.1, 0.3 and 0.6 for both fixed and

scaled ,6. The “high enough” crossover rate for Boltzmann selection is observed

to be pc 2 3000%, in other words, full crossover (i.e. 100%) is applied at least

30 times in the crossover operation.

In Figure 4.6 and Figure 4.7, we have the Ah curves. Figure 4.6 shows

the case when no mutation is applied. The ,6 values are fixed at 0.1 or 0.6.
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Figure 4.7 has the graphs for 0.1%, 1% and 2% mutation rates with ,6=0.1

selection pressure. The corresponding mean fitness graphs are shown in Figure

4.9 and Figure 4.9. This figure also contains the mean fitness curves for the

corresponding GA parameters when ,8 is scaled. The comparison of mean

fitness graphs for fixed-,6 Boltzmann selection for three different selection

pressures, ,6 = 0.1, 0.3, 0.6 , without any mutation are seen in Figure 4.10. The

corresponding fitness variance graphs are seen in Figure 4.11.

When the selection pressure, ,6 is scaled, the Ah curves look as in

Figure 4.12. Lastly, the comparison of fitness variance curves for different

mutation rates of ,6 = 0.1 and ,6 = 0.6 are seen in Figure 4.13.
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Figure 4.6 Ah curves for fixed ,6 Boltzmann selection. pm = 0, pc = 60. The

first graph is for ,6 = 0.1, the second, for ,B = 0.6
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Figure 4.7 Ah curves for fixed ,6 = 0.1 Boltzmann selection.

pm = 0.01, 0.1, 0.2 , p, = 60
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Figure 4.8 The mean fitness graphs for fixed- ,6 Boltzmann selection. The

graphs show mean fitness for different mutation rates with fl = 0.1

or ,6 = 0.6
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Figure 4.9 The mean fitness graphs for scaled— ,6 Boltzmann selection. The

graphs show mean fitness for different mutation rates with fl = 0.1

or ,8 =0.6
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109





 

25 1 I I l I

  
   

Figure 4.11 The fitness variance for fixed ,6 Boltzmann selection for three

different selection pressures ,6 = 0.1, 0.3, 0.6 with Pm = O
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Figure 4.13 The fitness variance for scaled ,6 Boltzmann selection for two

different selection pressures ,6 = 0.1 and ,6 = 0.6 showing each

selection pressure for different mutation rates
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4.1.3 Weighted Fitness Function

In this section, we study the GA with two different weight profiles. We will call

them Profile-A and Profile-B. The graphs of the weight profiles as a function of

the gene locus are shown in Figure 4.14 and their equations are given by

—1§(i—1)+1.9 if ISiSSO
49

Profile-A wi =4

 
%(i—51)+O.1 if 51sis100

L

1 if Isisso

Profile-B w, = i—l ,

3—— If SISiSIOO

(4.1)

In Profile-A, the weight increases from 0.1 to 1.9 linearly as we go from the

middle of the chromosome towards the ends. Hence the gene values in the

middle of the chromosome contribute less to the fitness compared to the ones

near the ends of the chromosome. The maximum possible fitness value of this

profile is 100, which is obtained when all the alleles are 1.

Profile-B is constant 1 for the first half of the chromosome. The weights of

this profile decrease from 1 to -1 linearly in the second half of the chromosome.

Note that Profile-B takes negative values in the last quarter of the chromosome.

This means that having a 1 in this part of the chromosome causes the fitness to

decrease. So, the GA would try to have 0’s instead of 1’s in the last quarter of the

chromosome. The maximum possible fitness value of this profile is 63, which is
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obtained when all the alleles from locus 1 to 75 are 1 and from locus 77 to 100

are 0. The value of locus 76 does not matter in this case since its weight is 0.

First we study Profile-A. The A}, curves for fitness proportional selection and

Boltzmann selection with ,8 = 0.6 , without mutation are shown in Figure 4.15

and Figure 4.16. In Figure 4.15 (b) we also see the graphs for fitness proportional

selection when the mutation rate is 2%. Figure 4.17 and Figure 4.18 have the

mean fitness curves for several cases. In Figure 4.17, we see the graphs for

different mutation rates of the fitness proportional selection. In Figure 4.18(a), the

fitness proportional selection is compared with ,6 = 0.1 and ,6 = 0.6 of

Boltzmann selection with scaled ,6 . And, in Figure 4.18(b) ,6 =0.6 case of

Boltzmann selection is shown for mutation rates of 0%, 0.1% and 1%. The

corresponding fitness variance curves of all the cases of are shown in Figure

4.19 and Figure 4.20.

When we consider Profile-B, Ah curves look as in Figure 4.22 and Figure

4.22, where we see the curves for ,6 = 0.1 and ,6 = 0.6 with no mutation and

,8 = 0.6 with 1% mutation. Comparison of mean fitness curves for fitness

proportional selection and Boltzmann selection with ,8 = 0.1 and ,B = 0.6 is in

Figure 4.23. In Figure 4.24, the mean fitnesses with Boltzmann selection

( ,6 = 0.6) for different mutation rates are shown for time > 9, to be able to show

the details of the graphs. Lastly, the fitness variance curves comparing fitness

114



proportional selection and Boltzmann selection with ,6 = 0.1 and ,6 = 0.6 are in
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Figure 4.15 Ah curves for Profile-A with fitness proportional selection, pm = 0
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Figure 4.16 Ah curves for Profile-A for scaled- ,6 Boltzmann selection.
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117



 

 
   

2.7

J- i

__l

45 l P _ l. l

0 50 100 150 200 250

Figure 4.17 Mean fitness curves for Profile-A for fitness proportional selection

with different pm’s

118



 
 

pm = 0 , Profile-A

 

  
 

5‘ fl

[3 = -1
l

2

45 50 1(1) 1‘30 200

(a) t

102
 

100

932

96‘

92~

90*  
88-

86 " 
  

(b)

Figure 4.18 Mean fitness curves for Profile-A with Boltzmann selection, scaled

,B: (a) comparing different ,6 cases; (b) for ,6 = 0.6 with different

0

Pms

119



 

1
.
1
.
4
9
.
5
.
.
.
2

u
l
h
l
t
l
.

,
A
.
.

  



 
 

B = -1 , Profile-A

 

  
 

 

35 'r——_~7 If”

I

30[ 2

H

A = 0.02

25l l 2 p25 ..w ”
.

I _ £13,. h | V»

20- - '2 _ , .2 . ‘

N
p = 0 01

2 . m '

15— ,
4

102 pm = 0
d

5)
2

(a)
t

pm = 0 , Profile-A

35
. T l

  
  

(b)

Figure 4.19 Fitness variance curves for Profile-A: (a) for fitness proportional

selection with different pm’s; (b) comparing different ,6 cases

120



-
;
.
l
i
'
e
’
I
I
l
‘
A
“

 

 



B = 0.6 , p" = 0 , Profile-A

T

35 l
 

30—
_

25
2

20

l l

 

10~

  

  

20 ' 30 40 50 so 70

Figure 4.20 Fitness variance curves for Profile-A for )6 = 0.6 with different

pm ’s. Boltzmann selection is with scaled ,6

121



_
L
-
A
:

1
'
1
.

 
 



B = 0.1 , pm = 0 , Profile-B

 

  
(a)

 

   
(b)
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Figure 4.24 Mean fitness curves for Profile-B. Boltzmann selection with

,6 = 0.6, and different mutation rates
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4.2 Deceptive Function Problem

In this Section, we apply the GA to a 3-bit deceptive function. We study only the

case where the crossover rate is high enough. The chromosome length is

chosen as L = 99, and the population size is P = 50. So, we have 33 deceptive

blocks, each of which is 3 bits long. In all the cases studied in this section, the

values of A and B are chosen as A=4 and 8:1. Note that the maximum possible

fitness for a chromosome, when the fitness is not weighted, is

A x 33 = 4 x 33 = 132, which is achieved when all the alleles are 1.

4.2.1 Fitness Proportional Selection

We apply the model developed in Sections 3.2.1 through 3.2.4. In Figure 4.26,

we have the curves for both the evolution of alleles with zero value, A2, and the

evolution of the deceptive blocks, A7 , h =0,0.1,...,0.9, when the fitness

proportional selection is applied. The mutation rate is zero and the crossover rate

pc= “high enough”. In Figure 4.27, A: and A; curves are shown when the

mutation rate is 0.1%. The graphs of mean fitness and fitness variance are

shown in Figure 4.28 comparing cases with different mutation rates.
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Figure 4.26 A: and A}; curves for fitness proportional selection. pc= “high

enough”, pm = 0. Black lines are from GA run, gray lines are from

model simulation
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Figure 4.27 Af,’ and A; curves for fitness proportional selection with mutation

rate pm = 0.001, and pc = “high enough”
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4.2.2 Boltzmann Selection

Application of scaled- ,6 Boltzmann selection with 0.1 and 0.6 selection pressures

to our deceptive function yield A}? and A; curves in Figure 4.29 and Figure

4.30, in which cases the mutation rate is taken as zero. Comparison of mean

fitness and fitness variance for selection pressures of 0.1, 0.3 and 0.6 are in

Figure 4.31. Lastly, in Figure 4.32, we have the mean fitness and fitness variance

curves for ,6 =0.1 Boltzmann selection with four different mutation rates, pm =0,

0.001, 0.01 and 0.02.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we have developed a new and very practical model for the GA

dynamics of the OneMax problem and for a form of deceptive function problem

that is described in Section 3.1. The model can be used to find the mean allele

and, in the case of deceptive function, mean all-1 deceptive blocks values. Then,

it predicts mean fitness and fitness variance of the population. Although the

problems for which our model proved successful were rather simple or idealized,

they were often sufficiently involved to capture interesting nontrivial features of

the GA dynamics.

An attempt to develop a stochastic differential equation model to predict

evolution of fitness distribution for the OneMax problem is presented in Appendix

A. Although our attempt was not successful, it shows a strong connection

between fitness evolution and certain diffusion equations and points toward the

possibility of the existence of a diffusion-type equation that could describe the

OneMax dynamics.
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The model can be applied to these benchmark problems even when the

crossover, mutation and the selection rates (in the case of Boltzmann scaling)

are changed at predetermined generations during a GA run. Because of this

capability of the model, it is unique, to the best of the author‘s knowledge, among

the current models of the GA.

The method of building blocks for modeling parallel genetic algorithms is

applied by Cantfl-Paz [2001] in the case where the migration occurs only when

all the populations are converged. Since our model estimates the mean value at

each locus at any generation, it can be used to determine a suitable migration

time as well as the migration rate for parallel genetic algorithms (in the island

model case) when migrations are allowed at any generation for our benchmark

problems.

The OneMax model, Diagram 1 (page 65), for modeling the case of typical

crossover rates, uses some statistics of early generations of the GA in order to

predict the rest of the evolution. The simulation results in Section 4.1 show that

the model describes the GA dynamics for the OneMax problem very well for

different crossover and mutation rates with fitness proportional selection. The

correction weights introduced by Equation (2.20) are a new way of analyzing the

crossover operator, and they work very well for two-point crossover, in our GA

problem.

Note that our OneMax model for “high enough” crossover rates is covering

a different case than the statistical mechanics model of Priigel-Bennett and
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Shapiro [1994]. The maximum entropy assumption of Priigel-Bennett and

Shapiro essentially models a situation in which the crossover operator is

assumed to be effective enough to allow a relocation of the alleles which is

probabilistically most likely to occur, under the constraints of the given mean

fitness and fitness variance, when the alleles move freely. On the other hand, our

model of “high enough” crossover rates does not assume any constraint in

relation to how much the alleles can be mixed. The lower crossover rates are

modeled relative to this extreme case using correction measures.

Extension of the OneMax model to the weighted fitness function is

described in Section 2.3. The graphs of the model simulations, Section 4.1.3,

show that the model is tested for weight Profiles A and B and the results are in

excellent agreement with the GA results. The author believes that the model is

effective for any weight profile.

Application of the OneMax model, modified as described in Section 2.4, to

the Boltzmann selection gives very good estimations of this case for both the

fixed and the scaled selection pressures, in the case of “high enough” crossover

rates.

The model for the deceptive function, Diagram 2 (page 89), is quite powerful in

predicting the dynamics for both fitness proportional and Boltzmann selections.

This model is unique, to the best of the author’s knowledge, in predicting the

dynamics of a deceptive function to such an extent. It estimates the simultaneous
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evolution of both the mean allele values and the mean all-1 deceptive blocks, as

well as the mean fitness and fitness variance of the population.

5.2 Future Work

One immediate improvement needed in our OneMax model is to modify it to

include the lower crossover rates with Boltzmann selection. It is observed by the

author that the correction weights, as defined in Section 2.2.4, are not by

themselves sufficient to predict the Boltzmann selection behavior since they-

graphs, Figure 2.6, of this case change significantly as a function of time, unlike

the fitness proportional selection case in which the statistics from generation 5,

for example, would be sufficient to predict future behaviors.

Our model of the deceptive function also needs to be developed further to

include lower crossover rates. In this case, one would need two sets of correction

weights, one for modifying Equation (3.8) and the other for Equation (3.9). Then,

the correction weights are going to be a function of two variables, a and 7.

The future work to improve the model would also include the estimation of

the fitness variance for lower crossover rates, and an investigation of the

predictive power of the model in the presence of external noise.

The next step in developing our model towards more complex fitness

functions is to consider a fitness function which is made up several OneMax and

deceptive parts as shown in Figure 5.1. Here, the chromosome has many
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subdivisions, possibly ovenapping, and the fitness of the chromosome is found

by adding up the contribution of each part, which is found by applying either a

(weighted) OneMax or a (weighted) deceptive function. It is speculated that a

model for such a GA problem might be established by “pasting together” models

developed in this thesis.

 ¢ chromosome 2

I l l loul II J

Lounting I's S-bit deceptive 41—bit deceptive “W““Q ‘3 34’“ de‘iV‘

 

 

 
 
 

   

Figure 5.1 A complicated fitness function a composition of several OneMax

and deceptive parts

Once a model is developed for a GA problem as described in Figure 5.1,

the next step might be to consider a real-life problem and try to represent it with a

fitness function that looks like Figure 5.1.

A different direction to follow in developing a model for complex real-life

problems is as follows. Note that, when a ”snapshot” of a GA is examined at

some instant, from the point of view of the crossover + selection operators, in

relation to determining the next mean allele (or mean all-1 deceptive block)

values, any GA problem looks as if it is a weighted OneMax problem at that

instant. In other words, any GA problem, in theory, can be seen as a series of

weighted OneMax problems, the weights of which change dynamically from

generation to generation. So, if one can estimate such a weighted OneMax

decomposition of a real-life problem, it should be sufficient to predict the
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dynamics the real-life problem by applying the OneMax model developed in this

dissertation with fitness weights changing as a function of time.
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APPENDIX

A COMPARISON OF THE ONEMAX PROBLEM WITH A

DIFFUSION MODEL

In this section we will study the diffusion equation

Lg’) ..— .%[A, (2)f(x,t)]+ ggp,(x)f(x,t)] (M)

where

2 2

A1(x)= x(l—%lnx)|:a+%—(l——l—lnx]—g—] (A2)

and

2

A2 (x) = 02x2[1— imac) (A.3)

_ K

with initial condition

lim f(x, t) = 6(x — x0) (A.4)

t—->0

and explore its relationship to the evolution process of the one-max problem. The

constants are chosen such that 0', K > O and 0 < a < 1 .
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Equation (A.1) appear in the study of population growth processes in

random environments [Capocelli,Ricciardi,1975], [Ricciardi,1977, 1985]. If we

consider the equation

fl = ax(l — ilnx) (A.5)

K

as modeling a growth process with fertility rate a, then 2" becomes the

asymptotic population size. Changing a into a+ A(t), where A(t) is a white

2
a

noise with intensity —2—, the resulting stochastic equation becomes

ézax(l_-1_lnx)+X(l—ilnXJA(t) - (A6)

dt K K

Equation (A.1) is the Fokker-Plank equation, in other words the forward equation,

for the transition probability density function, f(x, t), of the stochastic process

described by Equation (A.6). Here, A1(x) and A2 (x) give the infinitesimal drift

and variance of this diffusion process, respectively. From Equations (A2) and

(A3) we see that the diffusion interval is (0,eK ).

We can also write the so-called Kolmogorov or the backward equation for

(A.6) as
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af( 2 x)_ 62f
T2:A(xog—l 2.2.2.,2;. (Ar)

  

 

In this equation, the initial condition, x0, of the forward equation is considered as

another variable of the function f . The solution of (A.7). or equivalently of (A.1),

can be obtained by applying the transformation

 

" d
(r/(t,x)=I :1 -at,

u[l——lnu]

K

3?=i//(t,x),

3'0 =V(t,xo),

to Equation (A.7). Defining 7 as

x0) , (A.8)
 f(xtl~o)=[L5’0]flat

Equation (A?) is transformed into the well known Wiener process described by

the equation

    67(“3 '“ )= 627

at 52,2

 

 

with the solution in the form of a Gaussian function
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~~ 2

76,435): (4m)‘“2exp[-—15%] . (A.9)

By (A.8) we obtain

r 2 .

[K 1n(__—II((_13:0] - as]

-exp<— - x , > . (A.10)
K

f(x’t) 2 2(K —1nx)x[nrt 47f

  

  

where x takes values between 0 and ex.

Figure (A.1) shows the graph of this solution for different time values. The

constants in f are taken as a =1.5, 0'2 = 0.4, and K = 4.6052. For any fixed

value of t, say t = t1, the function f(x,t1) gives the probability density function

for the value of population after t1 time units from the beginning. In particular

Tflxetlfl" = eIf(x,tl)dx =1-

145



K=4.6052, a=1.5, 0 2=0.4
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Figure A.1 Evolution of transition probability distribution, f(x,t)

 

On the other hand, in Figure (A.2) we see the evolution of fitness

distribution for the OneMax problem with a population size of 50, (mutation rate

0.001 and Boltzmann selection with ,6 =0.3, in which two-point crossover is

applied). The figure shows the fitness graphs for every second generation from 0,

180. For each generation the area under the curve remains equal to 1 as in the

case of Figure (A.1). When we compare Figure (A.1) with Figure (A.2) we see a

remarkable similarity between two figures.
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In Figure (A.3), the initial distribution is chosen somewhat similar to the

artificial migration case CASE2 of in Section 1.2.3. The solution of the differential

equation for this initial condition is shown together with the solution with regular

initial condition. The comparison shows a similar relationship as seen in Section

1.2.3 between CASE1 and CASE2.

chrom slze=100, pop size=50, margari=200, maxruns=500, beta=0.3, pm =0.001
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Figure A.3 Evolution of two transition probability distributions, f(x,t). For the

dark curves, initial condition is given to resemble a migration case

Although our attempts to determine suitable A1 and A2 and find an

evolution equation in the form of Equation (A.1) for the fitness distribution failed,

the similarity between two evolution graphs suggests that with a suitable

modification to Equation (A.1), one might be able to obtain a differential equation

which models the evolution of the fitness distribution for the one-max problem of

genetic algorithms.
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