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ABSTRACT

ENABLING INTEGRATIVE ANALYSES AND REFINEMENT OF

OBJECT-ORIENTED MODELS WITH SPECIAL EMPHASIS ON

HIGH-ASSURANCE EMBEDDED SYSTEMS

By

Laura Anne Campbell

Requirements modeling and analysis is one of the most difficult tasks in the soft-

ware development process. Hardware constraints and potentially complex control

logic exacerbate this problem for embedded systems development. While require-

mentS errors can be costly for software systems in general, they can be especially

costly for high-assurance or safety-critical embedded systems where failure can have

dire consequences. Therefore, methods for modeling and rigorously analyzing embed-

ded systems requirements have value for developers.

The ad hoc development approaches currently used in embedded systems lack sys-

tematic methods for both modeling and analyzing requirements. Although the em-

bedded systems community has expressed interest in exploring how Object-oriented

modeling, specifically the UML, can be used for embedded systems development,

UML lacks a formal semantics, thus precluding rigorous analysis of requirements ex-

pressed as UML models. While formalization of UML enables rigorous analysis of

formal models derived from UML diagrams, formalization itself is not sufficient to

broaden the community of embedded systems developers who can use formal meth-

ods to rigorously analyze requirements. To enable developers to model and analyze

requirements in UML without having to know details of formal models requires a

framework and process that takes advantage of a UML formalization yet insulates

developers from the formal models produced by such a formalization.

This research presents an approach to validating embedded systems requirements



 



modeled as both UML diagrams and LTL properties using formal verification (6.9.,

model checking) techniques. We describe a model development and analysis frame—

work that insulates the developer from formal models and outputs of tools, and an

overall model development and analysis process.
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Chapter 1

Introduction

As software has become increasingly used in critical systems where failure can have

dire or even catastrophic consequences [6], the need to have high assurance in its

correctness has increased. Many approaches to software development include at least

the following two phases early in the software life cycle: requirements analysis (what

the software will do) and design (how the software will accomplish its tasks) [7, 8].

Studies have shown that requirements errors are between 10 and 100 times more

costly to correct at later phases of the software life cycle than at the requirements

analysis phase itself [9]. Thus, requirements errors can have a significant impact on

the reliability, cost, and safety of a system.

One approach to this problem is to document software requirements and design us-

ing a formal language, a language with a rigorously defined syntax and semantics [10].

This approach is one of the basic elements of the software engineering disciplines re—

ferred to as formal methods, which are characterized by a formal language and a

set of rules governing the manipulation of expressions in that language [10]. The

advantages to using formal methods are significant, including the use of notations

that are precise, verifiable, and facilitate automated processing. A formal model, a

formal-language representation of a software system’s requirements and design, can
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be rigorously manipulated to allow a developer to assess the consistency, complete-

ness, and robustness of a design before it is implemented. However, attempting to

construct a formal model directly from an informal, high-level (e.g., prose) require-

ments document can be challenging. Additionally, formal methods by their nature

are rigorous and many require a steep learning curve. Thus far, formal methods are

not widely used in industry except for extremely critical software [11].

Other approaches to requirements analysis and design include numerous object—

oriented techniques [12, 13, 14, 15]. These semi-formal methods enable the rapid con-

struction of a system model using intuitive graphical notations with well-defined syn-

tax, and user-friendly languages, including Object Modeling Technique (OMT) [14]

and Unified Modeling Language (UML) [16, 17, 18]. While such techniques have

proved to be useful, as measured by their popularity in industry [19, 20], the graphi-

cal notations used with these methods are often (semantically) ambiguous, resulting in

diagrams that are easily misinterpreted. The lack of formal semantics for the diagrams

or their integration prevents rigorous and/or automated analysis of them. Further-

more, without rigorous development processes, users can potentially create diagrams

that contain inconsistencies, ambiguities, and other types of errors that cannot be

detected by syntax-oriented editing or analysis utilities [19, 21]. The potential result

is a collection of erroneous diagrams that are used to guide the development of a

computer-based system.

In an effort to leverage the benefits and address the shortcomings of both formal

and semi-formal approaches to requirements analysis and design, many projects [22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] have proposed techniques for associating

formal semantics with semi-formal modeling notations, including UML [26, 28, 29,

30, 31, 32, 33, 35]. The interest in UML is largely due to the fact that it has become

a de facto standard in object-oriented software modeling and development.

2
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1. 1 Problem Description

Errors introduced during the analysis process are commonly the most expensive to

fix, as they usually require subsequent changes to design and code [36]. While re-

quirements errors can be costly for software systems in general [9], they can be es-

pecially costly for embedded systems, i.e., systems with embedded microprocessors,

not only for safety reasons but also in terms of hardware fabrication costs. Given

the potentially critical nature of embedded systems (e.g., X-by-wire, medical devices,

etc.) in which faulty behavior of a system could lead to significant loss, methods

for modeling and developing embedded systems and rigorously analyzing behavior

before starting the design phase and committing to code are increasingly important.

However, currently much of the embedded systems industry uses ad hoc development

approaches [37, 38] that lack systematic methods for both modeling and analyzing

requirements, thus potentially leading to unreliable and unsafe systems. Although

the embedded systems community has expressed interest in exploring how object-

oriented modeling, specifically the UML, can be used for embedded systems develop-

ment [37, 38, 39], UML lacks a formal semantics, thus precluding rigorous analysis

of requirements expressed as UML models. An approach that integrates both semi—

formal and formal techniques enables rigorous analysis early in the software life cycle.

This research applies UML formalization to enable developers, who are not experts in

formal methods, to use automated tools to validate (i.e., check their understanding

of) embedded-systems requirements specified as UML models.

While formalization of UML enables rigorous analysis of formal models derived

from UML diagrams, formalization itself is not sufficient to broaden the community

of embedded systems developers who can use formal methods to rigorously analyze

requirements. To enable developers to model and analyze requirements in UML

without having to know details of formal models requires a framework and process

that takes advantage of a UML formalization yet insulates developers from the formal

3
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models produced by such a formalization.

This research presents an approach to validating embedded systems requirements

modeled as both UML diagrams and linear time temporal logic (LTL) properties

using formal verification (e.g., model checking) techniques. We describe a model

development and analysis framework that insulates the developer from formal models

and outputs of tools, and an overall model development and analysis process that

systematically applies the following steps.

1. Model creation. The overall process provides developers with model creation

guidelines to both take advantage of a UML formalization and accelerate the

initial development of requirements models.

2. Automated generation of formal models. Our approach complements

and extends an existing general UML formalization framework for embedded

systems development [31, 33] that supports the automated generation of formal

models.

3. Automated translation of UML-based LTL specifications into target-

language-based LTL specifications. Our approach enables embedded sys-

tems developers to model requirements in UML and check the UML models for

adherence to developer-specified LTL properties. The developer specifies LTL

properties in terms of UML attributes, in-state predicates, and message recep—

tion; these UML concepts are translated to their formalized representations and

checked against the formal model derived from the UML model.

4. Model analysis. In order for developers to make effective use of formal analysis

tools without being experts, the overall process provides guidelines for using the

different analyses available, including using them in an integrated fashion.

5. Visual interpretation of analysis results. The overall process incorpo-

rates visual-based feedback techniques relating sometimes cryptic analysis re-
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sults back to diagrams in order to insulate developers from the output of formal

analysis tools.

1.2 Thesis

Our approach to validating embedded systems requirements incorporates the follow-

ing enabling techniques, described in the previous section:

Model creation [40, 41, 42],

o automated generation of formal models [31, 33],

o automated translation of UML-based LTL specifications into Promela-based

LTL specifications [40],

0 model analysis [40, 41, 42], and

0 visual interpretation of analysis results [40, 41, 42].

Thesis Statement: By using a combination of graphical model construction, auto-

mated translation of models and critical properties to formal specifications, automated

analysis of specifications, and visual interpretation of analysis results, a developer can

make use offormal-verification tools to support model validation while being insulated

from the formal models used by these tools.

1.3 Contributions

This research had several objectives:

1. To leverage existing object-oriented notations, formal languages, formal analysis

techniques, and formal language analysis tools.

5



2. To keep as much of the underlying formal method(s) as possible transparent

to the user while providing user guidance for instantiating requirements-based

properties.

3. To explore the tradeoffs between different analysis techniques to determine

which technique is most appropriate at different stages of modeling.

4. To leverage visualization techniques for displaying the results of well-formedness

error detection (i.e., consistency checking) and formal analyses.

An overarching objective of this research was to facilitate technology transfer

of rigorous software engineering techniques to developers of embedded systems. To

achieve these objectives, we developed a model development and analysis framework

that leverages, integrates, and encapsulates a previously developed formalization

framework for object-oriented notations [31, 33], thus enabling embedded systems

developers to use formal-verification tools to support requirements validation while

insulating the developers from the formal models used by such tools. We described

an instantiation of these integrated frameworks with an existing object-oriented no-

tation (UML), previously developed mapping rules from UML to an existing formal

language (Promela), and an existing formal language analysis tool (Spin). We de—

scribed and demonstrated a model development and analysis process that applies

light-weight ( e. g., consistency checking) and heavy-duty (e.g. model checking) anal-

yses at different modeling stages, and leverages specification patterns by Dwyer et

al. [43] to provide user guidance for instantiating requirements-based properties to

be checked against a formal model. Results of structural and behavioral analyses are

visualized in terms of UML diagrams in order to insulate users from the output of

formal analysis tools.

In summary, this research makes several contributions [1, 40, 41, 42, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56]:
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o Bifurcated approach to analysis [40, 47, 51]. Preliminary investiga-

tions [44, 45, 46] indicated that formal analysis tools are not well-suited to de-

tecting structural problems Within the formal models generated from diagrams;

that is, diagram well-formedness should be checked prior to formal model gener-

ation. Therefore, we describe and demonstrate a bifurcated approach to analysis

that incorporates both structural (diagram level) and behavioral (formal model

level) analyses.

0 Visualization of analysis results to guide diagram refinements [40, 41,

47, 50]. We developed visualization techniques for results of both structural

analyses of diagrams and behavioral analyses of automatically generated formal

models. Visualizations include highlighting portions of diagrams, animating

diagrams, and generating new diagrams.

a Framework and process for development and analysis of (formalized)

UML models [40, 41, 49, 56]. We developed a model development and anal-

ysis framework (Chapter 4) that leverages, integrates, and encapsulates a previ-

ously developed formalization framework for object-oriented notations [31, 33],

including feedback to diagrams from formal analysis tools in order to insulate

users from the outputs of such tools. We also developed an iterative and in-

cremental model development and analysis process (Chapter 4) that comprises

steps for (1) model construction, (2) structural analyses, (3) behavioral analy—

ses, and (4) refinements based on feedback from both types of analyses.

0 Structural and behavioral patterns for modeling fault handling. High-

assurance systems must often remain operational even in the presence of

faults. We developed structural and behavioral patterns for modeling the fault-

tolerance concepts of detectors and correctors [57] in UML to provide guidance

for modeling and analyzing fault handling requirements.
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1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we present

background material regarding two formalizations of semi-formal object-oriented

graphical notations: Wang’s OMT formalization work [27] and McUmber’s general

framework for formalizing UML for embedded systems [31, 33]. Wang’s formaliza-

tion provides the context for our preliminary investigations, while we make direct

use of McUmber’s formalization framework in our approach. Chapter 3 describes

preliminary investigations with Wang’s formalization and general distributed sys-

tems [44, 45, 46] exploring tradeoffs between different analysis techniques to see what

analysis technique is most appropriate at different stages of modeling. The lessons

learned in these investigations motivated our subsequent research with analyses and

visualizations at different modeling stages as applied to McUmber’s UML formaliza-

tion and embedded systems, described in the remainder of the dissertation. Addi-

tionally, our model development and analysis framework, introduced in Chapter 4,

leverages and extends the specification generator architecture used by both of these

formalization approaches. We then instantiate this framework with tools to support

McUmber’s UML-to-Promela formalization [31, 33], and we present a model develop-

ment and analysis process based on this instantiation. This model development and

analysis process serves as a road map to the remainder of the dissertation. Chapter 5

discusses both structural and behavioral analyses enabled by the formalization of

UML, while Chapter 6 describes visualization techniques we have developed to relate

the results of both structural and behavioral analyses back to the formalized UML

diagrams from which models were generated. To validate our approach, we performed

several case studies [40, 41, 42, 53, 54, 55] obtained from the automotive industry,

including an Adaptive Cruise Control system [40] that uses radar to avoid collisions, an

Anti—Lock Braking System [53] with redundant brake sensors, a self-cleaning Diesel Fil-

ter System [41, 42] that removes soot from diesel truck exhaust, and an Electronically

8





Controlled Steering system [54, 55] that provides variable-assistance power steering;

we present results from the Adaptive Cruise Control case study [40] in Chapter 7. In

Chapter 8, we assess the cost of using instrumentation to enable visualizations in

terms of the increase in the size of the state space (an important concern for model

checking). We also discuss the applicability of the overall model development and

analysis approach to other application domains. In Chapter 9 we describe how our

model development and analysis framework can be applied to fault-tolerant systems,

including the development of structural and behavioral UML patterns, as well as crit-

ical properties. In Chapter 10 we review the related literature. Finally, Chapter 11

presents concluding remarks and outlines potential future investigations.



Chapter 2

Background

This chapter discusses two previous works that integrate semi-formal graphical model-

ing notations and formal languages: the general UML formalization framework [31, 33]

extended in this dissertation, and its predecessor, a formalization [27, 58, 59, 60] of 0b-

ject Modeling Technique (OMT) [14] diagrams in terms of LOTOS1 [61] models. The

latter was the focus of our preliminary investigations [44, 45, 46] of integrative anal-

ysis techniques for formalized object-oriented diagrams. Additionally, in Chapter 3

we use examples from these investigations to illustrate both the need for consistency

checking of diagrams prior to formal model generation, and the benefits derived from

visualizing analysis results.

2.1 Formalization of OMT

Wang et al. [27, 58, 59, 60] described a set of rules and a process to enable the

semi-automated generation of LOTOS [61] models from GMT [14] diagrams. Our

preliminary investigations [45, 46] examined the types of analyses afforded by this

formalization using existing LOTOS analysis tools. We provide a brief overview of

OMT, LOTOS, and two LOTOS analysis tools, followed by a high-level overview of

 

1Language of Temporal Ordering Specification
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Wang’s OMT-to-LOTOS formalization rules [27].

2.1.1 OMT Overview

The Object Modeling Technique (OMT) [14] uses three simple graphical notations in

a complementary manner to express structural, behavioral, and functional character-

istics of a software system. The object model depicts static structural information;

that is, the objects comprising a system and the relationships between those objects.

Furthermore, this model provides the context for the other two models, the dynamic

and functional. While the dynamic model portrays the behavior of the system and

its objects, the functional model captures the data and the services of the system and

its objects. The three orthogonal models are briefly discussed in the following text.

Object Model. An object model depicts structural information about a system.

The object model of a system consists of a class diagram; that is, a diagram consisting

of boxes and lines. Boxes represent the classes or objects comprising the system, and

lines denote the relationships or associations between them. Each class has a name

and may be adorned with text denoting a list of attributes and their data types, or

a list of operation signatures. Associations may have a filled or hollow circle at their

endpoints to indicate multiplicities of many (zero or more) or optional (zero or one),

respectively. Multiplicity of exactly one has no special adornment at the endpoint,

while one or more may be indicated with the text “1+”. A triangle or diamond at

one endpoint denotes sub-typing or aggregation, respectively. The Unified Modeling

Language (UML) [16, 17, 18], discussed in Section 2.2.2, has incorporated most of the

OMT-style class diagram notation for its class diagram.

Dynamic Model. The dynamic model of a system describes the behavior of the

system and its objects via a collection of state transition diagrams. Each state dia-

gram depicts the permissible sequence of states and events for one class. The notation

11
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attrl : int

attr2 : real Class_3

opn l () : bool <>

opn2(char) : void
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Class_2 Class_4

  

      

Figure 2.1: Example OMT class diagram

 

is based on Harel’s Statecharts [62] with slight variations. Rounded rectangles anno-

tated with names represent states, and labeled directed arcs represent state transi-

tions. States may be simple (flat), composite (containing nested states), or concurrent

(having partitions each containing a state transition diagram). The label on a transi-

tion may contain the name of the event that triggers the transition, a guard condition,

or an action such as sending an event to another object. The UML has also adopted

most of the OMT-style state diagram notation for its state diagram.

Fllnctional Model. A collection of data flow diagrams portraying the data and

services of the system and its objects comprises the functional model of a system.

In data flow diagrams (see Figure 2.3), ovals annotated with names correspond to

processes, and directed arcs correspond to data flows. Arcs are labeled with the data

type and optionally the data name. The UML does not include data flow diagrams.
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Figure 2.2: Example OMT state transition diagram
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Figure 2.3: Example OMT data flow diagram
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2.1.2 LOTOS Overview

LOTOS [61] originates from the telecommunications industry as a specification lan-

guage for networking and telecommunications protocols. Basic LOTOS is built upon

a process algebra, enabling specifiers to model externally observable behaviors, or

events. A process algebra is an algebraic theory that formalizes the notion of con-

current computation [63]. Full LOTOS includes an algebraic specification language,

ACT ONE [64], to enable specification of abstract data types (ADTs) and modeling

of process communication via data exchange. Algebraic specification can be used to

define relationships between ADTs in terms of operations on them [65].

A full LOTOS model may include definitions of abstract data types in addition

to process descriptions. Each process in LOTOS has an identifier, a formal gate list,

and a description of its functionality including behavior expressions. Each behavior

expression is built from primitive actions or events and predefined operations such

as action prefix (;) for sequentiality, choice ([1) for selection between alternative

behaviors, and parallel composition (I l) for concurrency. A full LOTOS event consists

of its name (known as the gate) and a parameter list. Processes may exchange data

if they synchronize on a gate; that is, one process offers (l) a value at the gate

and another process accepts (?) that value into a variable of compatible data type.

For example, in the LOTOS code fragments shown in Figure 2.4, process A offers the

values contained in its variables x and y at gate foo, while process B waits at gate foo

for an offer of two values, one of type Int and one of type String, respectively. If x is

of type Int and y is of type String, then processes A and B may synchronize on gate

foo, with process B’s variables w and 2 taking on the values of process A’s variables

x and y, respectively. This type of synchronization is known as value passing.

The behavior of a LOTOS model can be represented graphically by a Labeled

Transition System (LTS). An LTS is a tree-like structure with anonymous nodes and

labeled arcs. Labels on arcs represent events, or occurrences of actions. The root of

14



endproc

 



 

processA(sender) : foo! x! y;

processB(receiver) : foo ? w: Int ? 2: String;

Figure 2.4: LOTOS synchronization with data exchange

 

 

process Soda [75c, PepsiButton, DispensePepsi,

CokeButton, DispenseCoke] := noexit

75c;

(

(PepsiButton;

(DispensePepsi;

Soda [75c, PepsiButton, DispensePepsi,

CokeButton, DispenseCoke] ))

(CokeButton;

(DispenseCoke;

Soda [75c, PepsiButton, DispensePepsi,

CokeButton, DispenseCoke] ))

)

endproc

 

Figure 2.5: LOTOS model of recursive soda vending machine

the tree appears at the top of the structure.

As an example, consider a soda2 vending machine modeled as a single LOTOS

process (Figure 2.5). In this model, the vending machine first accepts 75 cents from

the customer. Next, the customer may choose either Pepsi or Coke by pressing the

appropriate button, causing the vending machine to dispense the desired beverage.

The vending machine then awaits the next customer. Note that this model is an

extremely simplistic abstraction and so does not take into account details such as

making change or indicating when a particular brand of soda is not available.

As shown in Figure 2.5, the choice construct selects between two alternative be—

 

2Pepsi and Coke are registered trademarks of their respective companies.
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Figure 2.6: LTS of recursive soda. vending machine

 

haviors (purchasing Pepsi or purchasing Coke) based on the next event (pressing the

appropriate button). Modeling a choice between two behavior expressions 81 and

82, the expression 81 [[82 behaves like 81(82) if the next event is the first event

of behavior 31(8)). The noexit operator is used for defining recursive process in-

stantiations. This construct, together with process instantiation, allows modeling of

repetitive or even infinite behaviors. In Figure 2.5, after dispensing a beverage the

vending machine awaits the next customer.

A choice can be shown in an LTS as a split or branch from the node representing

the choice operation, with the behavior tree for B1(Bg) appended to the left (right)

branch. Repetitive behavior can be shown as a dashed arc looping back to the start of

the behavior. Figure 2.6 illustrates both alternatives offered by the vending machine

(purchasing Pepsi or purchasing Coke) and its return to awaiting the next customer.
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2.1.3 Analysis Tools for LOTOS

TOPO/LOLA Overview. TOPO3/LOLA4 [66], a LOTOS tool suite developed

by the University of Madrid, offers syntax and semantics checking of basic and full

LOTOS models. TOPO can handle “incomplete” models; that is, not every operation

needs to be fully defined with algebraic equations. LOLA, a transformational and

state exploration tool built atop TOPO, provides several types of expansion (state

space generation), interactive simulation, and test composition.

CADP Overview. CADP5 [67], developed by INRIA and Verimag, also offers

syntax and semantics checking of LOTOS models, as well as interactive simulation

and test composition. However, its additional features for viewing, manipulating, and

comparing LTSs do not have a counterpart in TOPO/LOLA. Furthermore, CADP

supports automated comparison of the LTSs that represent a design before and after

refinement, the generation of counterexamples for deadlock cases, and the verification

of temporal logic properties against LTSs.

2.1.4 Formalization Overview

Wang et al. [27, 58, 59, 60] formalized the OMT models in terms of full LOTOS syntax

that allows the information expressed in the graphical object, dynamic, and functional

models to be captured in terms of algebraic specifications and process algebras. The

commonalities between the ACT ONE algebraic specifications and the basic LOTOS

process algebras induced by the formalization rules make it possible to integrate

the object, dynamic, and functional models into a full LOTOS model. Figure 2.7

contains a high-level overview of the OMT models and their corresponding LOTOS

formal models. Overall, instances of classes or objects are represented in LOTOS

 

3Toolset to support product realization from LOTOS specifications

4LOtos LAboratory

5Caesar/Aldebaran Development Package
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by a combination of abstract data types and a process instantiation. Each state

becomes a subprocess, and each state transition an instantiation of the destination

state subprocess. Object services, or the events to which objects respond, are realized

as synchronization and data exchange between processes.

 

 

Object Model [:>

Dynamic Model :>

Functional Model ::>

 s
a
m
u
u
o
n
e
z
u
e
u
u
o
d

{
)
0

:>

  

Algebraic Specifications

Objects as ADTs

Process Algebras

States as processes

State transitions as process

instantiations

Algebraic and Predicate

Specifications

Data flows as sorts

Services as operations

Pre- and postconditions

Figure 2.7: Overview of OMT-to-LOTOS formalization rules

 

2.2 Formalization of UML

MCUmber et al. [30, 31, 33] built on Wang et al.’s approach by describing a general

framework to attach formal semantics to any semi-formal diagrammatic notation(s).

They then formalized a subset of the Unified Modeling Language (UML) [16, 17, 18]

relevant to embedded systems development in terms of both VHDL6 [68] and

 

6VHSIC Hardware Description Language
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Promela7 [69]. Our research extends this general formalization framework by pro-

viding a graphical editing and visualization environment [50, 51] both for drawing

the UML diagrams comprising a system and for visualizing analysis results. Our

efforts to date have focused on McUmber’s UML-to—Promela formalization [31, 33].

Therefore, we include a description of not only UML diagrams affected by the for-

malization (e.g., class and state) but also UML diagrams used in displaying analysis

results (e.g., sequence and collaboration), and we briefly overview Promela, the input

language for the model checker Spin [69]. We then provide a high-level overview of

Spin analysis tool suite and McUmber’s UML-to-Promela formalization rules [31, 33].

2.2.1 General Formalization Framework

Wang’s approach [27], as shown in Figure 2.8, creates mapping rules from a semi-

formal language model (OMT notation) to a formal language model (LOTOS). How-

ever, his approach does not provide any guidance regarding where, how, and why to

create mapping rules. McUmber’s approach [31, 33], on the other hand, provides a

general framework to guide the creation of mapping rules. As shown in Figure 2.9,

his approach is based on mappings between metamodels, where a metamodel is a

class diagram that describes the constructs of a modeling language and the rela-

tionships between the constructs. Relationships between metamodel elements in the

source (i.e., UML) constrain the mapping rules to realize the semantics of each major

construct in the semi—formal language metamodel in terms of the formal language.

2.2.2 UML Overview

The Unified Modeling Language (UML) [16, 17, 18] comprises a collection of diagram-

matic notations that depict an object-oriented software system. A product of the Ob—

ject Management Group (OMG) under guidance from Booch, Rumbaugh, and Jacob-

 

7Process or Protocol Meta Language
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Figure 2.8: Unconstrained mapping from semi-formal to formal model

 

 

  

 

      

   
  

 

relationships

Semi-formal language metamodel > Formal language metamodel

constrains constrains constrains

instance rules instance

Semi-formal language model > Formal language model

mapping rules      

Figure 2.9: Constrained mapping from semi-formal to formal model

 

son, the UML incorporates and extends several modeling languages, most notably the

Use Case Diagram [15], Object Modeling Technique (OMT) [14] and Statecharts [62].

The UML contains several distinct types of diagrams to depict the structure (Class

Diagrams, Object Diagrams, Component Diagrams, Deployment Diagrams) and be—

havior (Use Case Diagrams, Activity Diagrams, State Diagrams, Sequence Diagrams,

Collaboration Diagrams) of a system. This research focuses primarily on the class,

state, sequence, and collaboration diagrams. As noted in Section 2.1.1, UML class

and state diagrams use notation similar to that of OMT’s object and dynamic models.

Class Diagram. As in the class diagram of the OMT object model, the UML

class diagram depicts the classes in the system and the relationships between the

20

 





classes. Classes are drawn as boxes. Each class is labeled with its name and may

additionally contain a list of attributes and their data types, and a list of operation

signatures (including optional parameters and return types). Relationships between

classes are drawn as lines, possibly with adorned endpoints, between them. There

are four types of relationships between classes. The most general, association, is a

binary relationship between two classes. Three additional relationships are subtype,

aggregation, and composition, which are drawn as a small hollow triangle at the

superclass end, a hollow diamond at the aggregate end, and a filled diamond at the

aggregate end, respectively. Multiplicity on an endpoint is indicated numerically,

with the number applying to instances at that end of the line. An optional instance

is denoted by “0.1”, “*” indicates 0 or more, and “1..*” denotes one or many.

State Diagram. Similar to the state diagram of OMT’s dynamic model, the UML

state diagram notation uses many Statechart [62] conventions to describe the dynamic

behavior of objects. States are drawn as rounded rectangles with transitions between

states depicted as directed arcs between the rectangles, indicating the direction of

the transition. Transitions are labeled with an event followed optionally by a guard

(enclosed in brackets), a forward slash, an action list (separated by semicolons), and

a message list (separated by carets). Composite states may contain further sets of

state diagrams. Concurrency of composite state machines is indicated by separating

the composite states into partitions with dotted lines.

Sequence Diagram. A UML sequence diagram depicts objects and the ordering of

messages that are exchanged between them within the context of a behavior scenario.

As shown in Figure 2.10, objects are depicted as named boxes along the .7: axis, each

with a line, the object’s life-line, extending beneath it parallel to the y axis. The

life-line may be a single dashed line, or in the case of concurrent objects, a rectangle.

Messages exchanged between objects are drawn as labeled arrows between the life-
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lines of the sender and receiver objects. The messages are ordered in increasing time

along the y axis.

   

    

c5 : Class_5 C6 3 (3885.6 c7 : Class_7

     

message_l (param__l)

 

message_2

 

message_3

 

      
Figure 2.10: Example UML sequence diagram

 

Collaboration Diagram. Isomorphic to a sequence diagram, a UML collaboration

diagram also portrays objects and the messages that pass between them within the

context of a behavior scenario. A collaboration diagram, however, emphasizes the

objects’ structural organization rather than the temporal ordering of the messages

they exchange. As shown in Figure 211, objects are depicted as named boxes, while

the paths of communication, or links, between objects that exchange messages are

drawn as lines between the boxes. These lines are adorned with labeled arrows that

indicate both the messages themselves and the direction of the messages. Messages

may be prefixed with a sequence number to indicate temporal ordering. The box

depicting an object may also include information about values that may change over

time, such as the object’s state or attributes of interest.

Other Diagrams. The UML also contains other diagrams depicting a software

system’s structure (Object Diagrams, Component Diagrams, and Deployment Dia-

grams) and behavior (Use Case Diagrams, and Activity Diagrams). However, work
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c5 : Class_S

 

 
attr_l = 3

   

2 : message_2 ]

  

c6 : Class_6

 
] 3 : message_3

attr_l = 0

   

l : message_l (param__l) ¢

    
c7 : Class_7

 

attr_1 = 9

   

Figure 2.11: Example UML collaboration diagram

 

to date has focused on the Class, State, Sequence, and Collaboration Diagrams as

relevant for modeling embedded systems and visualizing analysis results.

2.2.3 Promela and LTL Overview

Promela8 [69] is a C-based language originally developed by Bell Labs to specify

telecommunications protocols, but it has gained increasing use in other industrial

domains involving distributed systems. Promela models consist of processes, chan-

nels, and variables. Processes are global objects, created dynamically, that execute

asynchronously. Channels and variables may be either local or global. Processes

communicate via unbuffered or buffered channels.

 

8PROcess MEta LAnguage
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2.2.4 Analysis Tools for Promela

A model written in Promela can execute in a simulation environment, or model check-

ing techniques can be applied to verify a number of temporal properties, including

safety and liveness. Spin [69] (used in model-checking mode) verifies claims written

in linear time temporal logic (LTL) [5] against a model. LTL extends propositional

logic with temporal operators that apply to a sequence of states, such as the unary

operators henceforth (El) and eventually (O). D means that the operand is true at

every state in the sequence, while 0 means that the operand is true at some state in

the sequence. Some variants of LTL include a unary next (0) operator, meaning that

the operand is true in the next state in the sequence; however, the default in Spin is

to disallow this operator as it exacerbates the state explosion problem.9 Thus, we do

not consider properties containing the next operator.

LTL in terms of UML. As a convenience, l\»’IcUmber developed a utility that

enables users to specify LTL claims in terms of class, state, attribute, and signal names

from UML diagrams, and then translates them into the Promela variables and syntax

required by Spin. Acceptable terms include c1assName.attributeName to reference

the value of a particular attribute of a given class, in(className.stateName) to

test the condition that a given class has currently reached a particular (UML) state

during its execution,10 and sent (className .messageName) to test the condition that

a given class has been sent a particular message. LTL operators henceforth (Cl) and

eventually (O) are given to the utility as [J and <>, respectively.

 

9Because of what is known as the state explosion problem, model checkers in practice must use

some technique, or combination of techniques, to reduce the state space explored. Spin in particular

uses the partial order reduction to limit the number of interleaving sequences considered [69, 70].

10A state predicate term in an LTL claim causes Hydra to generate an extra boolean variable that

becomes true when Promela execution enters the part of code corresponding to the UML state, and

false when execution leaves that part of code.
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Specification Patterns. We have found the specification pattern taxonomy by

Dwyer et al. [43] to be useful when attempting to write formal temporal logic prop—

erties (i.e., LTL claims) based on English natural language requirements. The speci-

fication pattern repository organizes common specification patterns into a taxonomy

based on order (e.g., response, precedence) and occurrence (e.g., universality, absence,

existence). Specification patterns are expressed in a number of temporal formalisms,

including LTL, and include suggestions for typical use. While most of the properties

that we have explored to date fall into the globally—applicable format of their two

most popular general categories, response or leads-to (e.g., D(p ——> Oq), meaning that

it is always the case that when p is true, q eventually becomes true) and universality

or always (e. g. Dp, meaning that it is always the case that p is true), Dwyer et al.’s

addition of non-global scopes to the property patterns makes it easier for a developer

to define complex properties that apply to only a portion of system execution.

2.2.5 Formalization Overview

Figure 2.12 contains a high-level overview of the UML class and state diagrams and

their corresponding Promela specifications. MCUmber et al. [31] formalized the dia-

grams according to the following diagram integration conventions: (1) Each class that

has a modeled behavior has a corresponding state diagram that expresses that be-

havior. We say that this state diagram belongs to or is owned by the class. (2) Events

to which a class reacts may appear as events on transitions in the state diagram be-

longing to the class, but must appear in the operations list of the class. (3) Variables

used in a state diagram must appear in the attributes list of the class that owns the

state diagram.

The UML-to-Promela formalization rules are based on a constrained mapping

between the integrated UML class and state diagram source metamodels and the tar-

get language Promela metamodel. Classes are mapped to Promela type definitions
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(typedefs), with class attributes mapping to variable declarations within a typedef. A

class’s behavior as represented by state diagram is mapped to a process description

(proctype) with simple states as labels and transitions as gotos. Composite or con-

current states are mapped to separate subprocesses. Events on transitions become

message receptions while actions become either assignment statements or message

sends. The formalization rules provide a queueing mechanism between objects for

handling inter-object communication.

 

 

Class Diagram :>

State Diagram |:>

> Type Definitions

- Classes as typedefs

- Attributes as variable declarations

Process Description

- State diagram as proctype

- States as labels or subprocesses

- Transitions as guarded gotos

- Events as message reception

- Actions as assignments or

sending messages

s
a
m
u
u
o
n
e
z
u
e
w
i
o
d

  
 

Figure 2.12: Overview of UML-to-Promela formalization rules
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Chapter 3

Preliminary Investigations:

Highlights and Lessons Learned

Using Wang’s approach [27], we performed preliminary investigations of integrative

analyses and visualization-based feedback for OMT diagram refinement in two case

studies [45, 46]. In the first study [45], we examined how two different LOTOS tool

suites (TOPO/LOLA [66] and CADP [67]) can be used in tandem to analyze formal-

ized OMT diagrams, using the Environmental Information System (ENFORMS) [71],

a multimedia distributed decision support system, as a running example. The second

study [46] explored in more detail the types of analyses available with the CADP

tool suite, including how they can be used together, and illustrated the visualiza-

tion capabilities of the tool suite. We used a variation of the Teleservices and Remote

Medical Care System (TRMCS), the suggested project [72] for the Tenth International

Workshop on Software Specification and Design (IWSSD-lO), as a running example.

This chapter presents highlights from the case studies and discusses additional lessons

learned that have motivated our later work with McUmber’s UML-to-Promela for-

malization [31] and the Spin [69] analysis tools.
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3. 1 Highlights

In [45, 46], we developed an analysis process to be used in tandem with Wang’s

iterative design process [60] (see Appendix A, page 234, for a high-level overview

of Wang’s process). We also investigated using two different LOTOS analysis tool

suites (TOPO/LOLA [66] and CADP [67]) in an integrated fashion, and explored the

output options of each of the analysis tool suites. This section overviews our analysis

process, integrative analyses, and example output from the tool suites.

3. 1. 1 Analysis Process

Our analysis process (Figure 3.1) supports analyses of OMT diagrams created or re-

fined in each iteration of Wang’s design process [60] via the LOTOS model derived

from them according to Wang’s mapping rules [27]. Structural and behavioral analyses

are shown as boxes above and below the horizontal dashed line, respectively, in the

process flow diagram in Figure 3.1. First, structural analyses (syntax and semantics

checks) analyze intra— and inter-diagram consistency. Eurther, they check algebraic

equations (manually) added to the formal model by the developer, if any, for LOTOS

syntax or semantics errors. Structural analyses must be performed each time the LO-

TOS model changes; that is, each time the OMT diagrams from which it is derived

are modified (causing re-generation of the LOTOS model), or each time the developer

adds or refines an algebraic equation. All structural errors in a set of diagrams or

its derived LOTOS model must be corrected before behavioral analyses (simulation

and state-based exploration) are enabled. Simulation can be used to validate require-

ments, to increase confidence that a system or object in question behaves as desired,

or to debug erroneous behavior. Once simulation has established a reasonable level

of confidence in the model, state-based exploration can be used to find more subtle

flaws. Techniques include concurrency analyses (e. 9.. deadlock detection), test com-
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position, and refinement checking as shown in Figure 3.1. Deadlock usually indicates

an error in inter-object communication. Composing a test process, a LOTOS process

describing a desired sequence of actions, with a LOTOS model detects whether that

sequence of actions is possible in the model. (Searching the LTS1 graph corresponding

to a given LOTOS model for a pattern describing a desired sequence of actions is a

similar technique not available in all LOTOS analysis tool suites.) Finally, refinement

checking the LOTOS model derived from a set of OMT diagrams against the LOTOS

model derived from a refinement of the same set of OMT diagrams can test whether

the behavior of the refined model is equivalent2 to the behavior of the original model.

(Refinement checking is not enabled until the model has undergone at least one it-

eration of refinement in Wang’s design process [60], indicated by the dashed arc in

Figure 3.1.) As illustrated by the solid feedback arcs to the topmost process box

in Figure 3.1, flaws found with any behavioral analysis technique or combination of

techniques must be corrected in the diagram(s) before beginning the next iteration of

Wang’s design process [60]. The diagram corrections are checked by re—generating the

LOTOS model, applying and passing structural analyses, and applying and passing

the appropriate behavioral analyses.

3.1.2 Integrative Analyses

The analysis process mandates performing structural analyses before behavioral anal-

yses, and suggests performing behavioral analyses in order of increasing effort needed,

either in terms of time/space required to perform the analysis or on the part of the

developer. Of the behavioral. analyses available with either TOPO/LOLA or CADP

(some analyses are available in one tool suite but not the other; see Chapter 2, Sec-

tion 2.1.3, page 17 for a brief comparison of the tool suites), we found simulation,

 

1Labeled Transition System. See Chapter 2, Section 2.1.2, page 14 for a description.

2Depending on the LOTOS tool suite used, there may be several options available for the equiv-

alence relation between the behaviors of the original and refined models, including strong bisimula-

tion [61, 73], observational equivalence [73], and safety equivalence [74].
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Figure 3.1: Analysis process for LOTOS models derived from OMT diagrams
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concurrency analyses (6. g., deadlock detection, finding the shortest path to a deadlock

state), test composition or searching for patterns in the LTS graph, and refinement

checking to be the most useful. Simulation can be performed very early in the mod-

eling process, exploring a single path through the LTS graph at a time and guiding

the developer towards correcting more obvious flaws. State—based exploration tech-

niques are more expensive than simulation in terms of time/space or developer effort

required, so they are delayed until simulation establishes a reasonable level of confi-

dence in the design. Global concurrency analyses (e.g., deadlock detection) can be

used to check for errors in inter-object communication, but otherwise do not require

anything else from the developer. On the other hand, test composition or searching

for patterns in the LTS graph requires the developer to provide either a test process

to be composed in parallel with the model, or a pattern describing a desired sequence

of actions for which to search the LTS graph. Finally, refinement checking requires a

baseline model and a refinement of that model for comparison against each other. In

addition to being used on their own, each analysis technique can take advantage of

the less expensive techniques; for example, once a deadlock has been detected, simu-

lation can be used to demonstrate the sequence(s) of actions leading to that deadlock,

facilitating understanding of the cause of the problem.

For illustrative purposes, we focus our discussion of integrative analyses on a

few examples from the Teleservz'ces and Remote Medical Care System (TRMCS) case

study [46], in which we examined how various features of the CADP tool suite can

be used in an integrated fashion to analyze OMT diagrams via the LOTOS model

generated from them according to Wang’s mapping rules [27]. In particular, we discuss

test composition, exploration of paths that lead to deadlock, searching for patterns in

the LTS graph, and refinement checking. (See [45, 46] for discussion of other analyses

possible with LOTOS analysis tool suites.)
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TRMCS Example

The Telesemz'ces and Remote Medical Care System (TRMCS) is a distributed software

system intended to offer access to a large volume of distributed patient data. At the

most abstract level, the system should allow a user to browse a set of indices relevant

to patient data in order to select the correct patient identity, retrieve a patient’s

record based on such an identity key, and enter a diagnosis into the patient’s profile.

The system-level object model, object functional model (OFM), and dynamic model

shown in Figures 3.2, 3.3, and 3.4, respectively, depict the TRMCS at a high level of

abstraction. (See Chapter 2, Section 2.1.1, page 11 for an overview of OMT diagram

syntax.)

In essence, the TRMCS waits for the user to select a patient identity key. After-

wards, the user may continue to browse and select other keys, or may transmit the

request for a patient’s record. If the patient profile is found, then it becomes available

for entering a diagnosis. Otherwise, the user must select a new patient identity key.

Figures 3.5 and 3.6 Show the LOTOS model derived from the OMT diagrams in Fig-

ures 3.2, 3.3, and 3.4 according to Wang’s formalization rules [27] (the specification

has been split across two figures to comply with printing restrictions). Sorts and

operations (lines 8-38, Figure 3.5) are derived from the object and object functional

models, while processes (lines 40-77, Figure 3.6) reflect the behavior described in the

dynamic model.

 

 

TRMCS
 

dataArchives: Data_Archives

datalndices: Data_Indices

 

   

Figure 3.2: System-level object model of the TRMCS
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TRMCS

r \

User_Input m PatientJD

Patient_Record

  
 

 

  

Patient_ID Retrieve_Profile
 

  

  

V 

Diagnosis_Result
Diagnosis_Request Diagnose_Patient

V  

  
Figure 3.3: System—level object functional model of the TRMCS

 

 
 

TRMCS: t

  
 

Retrieve_Profilc(ptID: Patient_ID)

[not(isValidPtID(ptID))]

Select_Patient(ui: User_Input) I

/ Select_Patient(ui)
Browsing

   

  

  

Select_Patient(ui: User__Input)

/ Select_Patient(ui)

Retrieve_Profile(ptID: Patient_ID)Sl tPt' t ':U It6 6° _ 316W" ser— "P“ ) [isValidPtH)(ptID)] / Retrieve_Profile(ptID)
/ Select_Patient(ui)

Diagnose_Patient(diagreq: Diagnosis_Request)

/ Diagnose_Patient(diagreq)

 

 
Figure 3.4: System-level dynamic model of the TRMCS
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21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

specification TRMCS [Select_Patient, Retrieve_Profile,

library

Diagnose_Patient] (t : TRMCS) : noexit

BOOLEAN

endlib

type TRMCS is Boolean

SOI‘tS

opns

endtype

Data_Archives, Data_Indices, User_Input,

Patient_ID, Patient_Record,

Diagnosis_Request, Diagnosis_Result, TRMCS

undef_Data_Archives : -> Data_Archives

_eq_ : Data_Archives, Data_Archives -> 8001

undef_Data_Indices : -> Data_Indices

_eq_ : Data_Indices, Data_Indices -> 8001

undef_User_Input : -> User_Input

_eq_ : User_Input, User_Input -> 8001

undef_Patient_ID : -> Patient_ID

_eq_ : Patient-ID, Patient-ID -> 8001

undef_Patient_Record : -> Patient_Record

_eq_ : Patient_Record, Patient_Record -> Bool

undef_Diagnosis_Request : -> Diagnosis_Request

_eq_ : Diagnosis_Request, Diagnosis_Request -> 8001

undef_Diagnosis_Result : -> Diagnosis_Resu1t

_eq_ : Diagnosis_Resu1t, Diagnosis_Result -> 8001

undef_TRMCS : -> TRMCS

_eq_ : TRMCS, TRMCS -> 8001

Select_Patient : User_Input -> Patient_ID

Retrieve_Profile : Patient_ID -> Patient_Record

Diagnose-Patient : Diagnosis_Request -> Diagnosis_Result

isValidPtID : Patient_ID -> 8001

isValidRec : Patient_Record -> 8001

make_TRMCS : Data_Archives, Data_Indices -> TRMCS

getArchives : TRMCS -> Data_Archives

getIndices : TRMCS -> Data_Indices

Figure 3.5: High-level LOTOS model of the TRMCS, data part
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45

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

68

69

70

71

72

73

74

75

76

behavior

Select-Patient ? ui : User_Input;

Select_Patient ! Select_Patient (ui);

Browsing [Select_Patient, Retrieve_Profile, Diagnose_Patient] (t)

where

process Browsing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t : TRMCS) : noexit :=

Select_Patient ? ui : User_Input;

Select_Patient ! Select_Patient (ui);

Browsing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t)

[]

Retrieve_Profile ? ptID : Patient_ID;

(

[isValidPtID (ptID)] ->

Retrieve_Profile ! Retrieve_Profile (ptID);

Diagnosing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t)

[I

[not (isValidPtID (ptID))] ->

Browsing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t)

)

endproc

process Diagnosing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t : TRMCS) : noexit :=

Select_Patient ? ui : User_Input;

Select-Patient ! Select_Patient (ui);

Browsing [Select_Patient, Retrieve_Profi1e,

Diagnose_Patient] (t)

[l

Diagnose_Patient ? diagreq : Diagnosis_Request;

Diagnose_Patient ! Diagnose_Patient (diagreq);

Diagnosing [Select_Patient, Retrieve_Profile,

Diagnose_Patient] (t)

endproc

endspec

Figure 3.6: High-level LOTOS model of the TRMCS, behavior part
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Test composition. The simple test process we use (Figure 3.7) asks if two consec-

utive patient selections and valid patient record retrievals can be made successfully.

The reachability of a Success event (line 13 in Figure 3.7) in the behavior described

by a test process composed with the LOTOS model of a system determines the out-

come of a test. Figure 3.8 shows, in text-based format, the (successful) result of the

test from Figure 3.7 composed with the LOTOS model from Figures 3.5 and 3.6.

 

1 process Test [Select_Patient, Retrieve_Profile,

2 Diagnose_Patient, Success] : noexit :=

4 Select_Patient ! valid_User_Input;

5 Select_Patient ? ptID: Patient_ID;

6 Retrieve_Profile ! valid_Patient_ID;

7 Retrieve_Profile ? ptRec: Patient_Record;

s ([isValidRec(ptRec)] ->

9 Select_Patient ! valid_User_Input;

10 Select_Patient ? ptID: Patient_ID;

u Retrieve_ProfiIe ! valid_Patient_ID;

n Retrieve_Profile ? ptRec: Patient_Record;

m ([isValidRec(ptRec)] -> Success; stop))

w endproc

Figure 3.7: Test for high-level TRMCS model

 

Tests may be repeated after refinement to ensure that the system still performs de-

sired behaviors. After refinement (refined OMT diagrams for the TRMCS are included

for reference in Appendix B, page 236), the LOTOS model derived for the TRMCS

is composed with a revised test process updated to reflect constants LANSING and

DETROIT denoting specific Data Repository instantiations. The two valid-Pat ient-ID

constants (lines 6 and 11 in Figure 3.7) are replaced with tuples Patient-ID (LANSING ,

valid-Query_Request) and Patient_ID(DETRDIT, valid-Query_Request), intro—
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des (O, 9, 10)

(0, "SELECT_PATIENT !VALID_USER_INPUT", 1)

(1, "SELECT_PATIENT lVALID_PATIENT_ID", 2)

(2, "RETRIEVE_PROFILE !VALID_PATIENT_ID", 3)

(3, "RETRIEVE_PROFILE lVALID_PATIENT_RECORD", 4)

(4, "SELECT_PATIENT !VALID_USER_INPUT", 5)

(5, "SELECT_PATIENT lVALID_PATIENT_ID", 6)

(5, "RETRIEVE_PROFILE lVALID_PATIENT_ID", 7)

(7, "RETRIEVE_PROFILE IVALID_PATIENT_RECORD", 8)

(8, SUCCESS, 9)

Figure 3.8: Results of high-level TRMCS model under test

 

duced during refinement of the high-level TRMCS Retrieve Profile service (see [46]

for details or Appendix B for an overview of this service refinement). Thus the re-

vised test asks if it is possible to query the LANSING Data Repository, receive a valid

patient record, and then query the DETROIT Data Repository, also receiving a valid

patient record in response. If all paths lead to success, then we can say that the orig-

inal high-level LOTOS model (derived from the original OMT diagrams modeling

the system) and the more detailed refinement LOTOS model (derived from refined

diagrams) are testing equivalent (with respect to this simple test).

Information regarding the results of the refined model under test is shown in

Figure 3.9. CADP indicates six deadlock states (i.e., sinks) in the resulting LTS

graph.3 By examining the labeled arcs leading to these deadlock states, we determine

that only the paths ending at states 185 and 186 are successful (i.e., terminate with

arcs labeled with the Success event). Paths ending at any of the other deadlock

states represent the test’s failure; that is, either the first query (LANSING) results in

an undefined patient record, or the first query passes but the second query (DETROIT)

 

3CADP uniquely numbers the nodes in an LTS graph.
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results in an undefined patient record. Thus the original model and its refinement

are not testing equivalent with respect to the consecutive query test.

 

refined_trmcs.aut:

187 states, 282 transitions , 6 taus transitions

27 distinct labels

Branching factor : 1.50802

refined_trmcs.aut is deterministic

120 122 123 173 185 186 are deadlock states

Figure 3.9: Information about refined TRMCS model under test

 

Paths leading to deadlock. Further investigation is warranted to determine the

nature of the failed queries. CADP offers several options for eliciting examples of such

queries. The most straightforward one simply explores the LTS graph and finds the

shortest path from the initial state to a given state, in this case one of the deadlock

states 120, 122, 123, or 173 listed in Figure 3.9 (recall that paths ending at deadlock

states 185 and 186 are successful). The shortest path gives the developer a minimal

example depicting a problem. Ideally the developer will gain insight into the nature

of the problem either by examining the example itself or by stepping through the

example with interactive simulation. Figure 3.10 shows the shortest path to state

120, indicating that the first Retrieve Profile query (LANSING) results in an undefined

patient record. Similar results are obtained for states 122 and 123, while the shortest

path to state 173 reveals a path where the first query passes but the second query

(DETROIT) results in an undefined patient record.
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des (O, 12, 121)

(0,"SELECT_PATIENT IVALID_USER_INPUT",1)

(1,NAME_MDNITOR_GETTABLE,6)

(6,"SELECT_PATIENT lSELECT_PATIENT (VALID_USER_INPUT, DATAINDICESLIST)",15)

(15,"NAME_MONITOR_GETTABLE IEMPTY",32)

(32,"NAME_MONITOR_REGISTER iDETROIT i5678",53)

(53,"RETRIEVE_PROFILE lTUPLE_PATIENT_ID (LANSING, VALID_QUERY_REQUEST)",63)

(63,"CLIENT_QUERY ILANSING lVALID_QUERY_REQUEST",75)

(75,NAME_MONITOR_GETTABLE,84)

(84,"NAME_MONITDR_GETTABLE lINSERT (EMPTY, DETROIT, 5678)",91)

(91,"NAME_MONITUR_REGISTER iLANSING l1234",99)

(99,"CLIENT_QUERY IUNDEF_QUERY_RESULT",110)

(110,"RETRIEVE_PROFILE lUNDEF_PATIENT_RECURD",120)

Figure 3.10: Example of shortest path to state 120 in refined TRMCS model under

test

 

Searching for patterns. Initial examination of these four shortest path examples

suggests that failed queries can be attributed to the timing of Data Repository regis-

tration. That is, if the Client attempts to query a Data Repository before that Data

Repository has registered with the Name Monitor, then the Client will not be able to

make the connection and must return an undefined patient record. To further con-

firm our suspicions, we may use another CADP feature that allows us to search for

patterns in the LTS graph. In this case, we are interested in paths leading to the

return of an undefined patient record in response to a query (this pattern is shown

in Figure 3.11). Either breadth-first or depth-first search may be used; we opt for

depth-first search and obtain 43 examples at varying depths, only 14 of which pass the

first query (i.e., receiving a valid patient record from the LANSING Data Repository).

One such example is shown in Figure 3.12. Examining these additional paths leads

us to conclude that the undefined patient records are indeed the result of a delayed

Data Repository registration with the Name Monitor.
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<unti1> [SELECT_PATIENT !VALID.*]

<until> [RETRIEVE_PROFILE !UNDEF.*]

Figure 3.11: Pattern: undefined patient records in response to valid queries

 

 

*** sequence found at depth 25

<initial state>

"SELECT_PATIENT !VALID_USER_INPUT"

"SELECT_PATIENT !SELECT_PATIENT (VALID_USER_INPUT, DATAINDICESLIST)"

"RETRIEVE_PROFILE !TUPLE_PATIENT_ID (LANSING, VALID_QUERY_REQUEST)"

"NAME_MONITOR_GETTABLE"

"NAME_MONITOR_GETTABLE !EMPTY"

"NAME_MONITOR_REGISTER !LANSING !1234"

"CLIENT_QUERY !LANSING !VALID_QUERY_REQUEST"

"NAME_MONITOR-GETTABLE"

"NAME_MONITOR_GETTABLE !INSERT (EMPTY, LANSING, 1234)"

"DATA_REPOSITORY_SEARCH !VALID_QUERY_REQUEST !1234"

"DATA_REPOSITORY_31234 !VALID_QUERY_REQUEST !1234"

"i" (i)

"DATA_REPOSITORY_SI234 !VALID_QUERY_RESULT"

"DATA_REPOSITORY_SEARCH !VALID_QUERY_RESULT"

"CLIENT_QUERY !VALID_QUERY_RESULT"

"RETRIEVE_PROFILE !VALID_PATIENT_RECORD"

"SELECT_PATIENT !VALID_USER_INPUT"

"SELECT_PATIENT !SELECT_PATIENT (VALID_USER_INPUT, DATAINDICESLIST)"

"RETRIEVE_PROFILE !TUPLE_PATIENT_ID (DETROIT, VALID_QUERY_REQUEST)"

"CLIENT_QUERY !DETROIT !VALID_QUERY_REQUEST"

"NAME_MONITOR_GETTABLE"

"NAME_MONITOR-GETTABLE !INSERT (EMPTY, LANSING, 1234)"

"NAME_MONITOR-REGISTER !DETROIT !5678"

"CLIENT_QUERY !UNDEF_QUERY_RESULT"

"RETRIEVE_PROFILE !UNDEF_PATIENT_RECORD"

<goal state>

Figure 3.12: Failure on second query (DETROIT) in refined TRMCS model under test
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Refinement checking. If the methods previously described do not yield conclu-

sive results, then CADP offers an automated way to check refinement by comparing

the LTS graphs of a model before and after refinement. Several bisimulation equiv-

alences [61, 73] are available, as well as observational [73] and safety relations [74].

The comparisons offer a diagnostic counterexample at the first indication that the

LTSs differ. For illustrative purposes we compare the model under test before and

after refinement, subject to minimization under the safety relation and hiding of the

aggregate objects’ services (to make the LTS graphs amenable to visual inspection).

By visually comparing the LTS graphs in Figure 3.13 (the high-level LOTOS

model derived from the original OMT diagrams, under test) and Figure 3.14 (the

LOTOS model derived from the refined OMT diagrams, under test), we immediately

see that the refined model has two opportunities to fail the test (in Figure 3.14, the

arcs from node 4 and node 7 to node 9). The high-level model (Figure 3.13) treats

the Retrieve Profile service as a function, so that valid queries (arcs from node 2 to

node 3 and from node 6 to node 7) always result in valid patient records (arcs from

node 3 to node 4 and from node 7 to node 8). However, the refined model realizes

the high-level Retrieve Profile service as a collaboration of aggregate objects’ services.

If we attribute the failed queries to the nature of distributed computation, that is,

the possibility in our model that the Client may pose a query before the desired

Data Repository has registered, then, in this context, the refined TRMCS realizes

the Retrieve Profile service transparently. If, however, the system requires that all

Data Repositories be online and accessible all the time, then the current design is not

satisfactory.

3.1.3 Analysis Tool Output

Overall, CADP has much more user-friendly output than TOPO/LOLA. During the

case studies [45, 46], we were able to output both text-based paths through the LTS
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SELECT_PATIENT !VALID_USER_INPUT

SELECT_PATIENT !VALID_PATIENT_ID

RETRIEVE_PROFILE lVALID_PATlENT_lD

RETRlEVE_PROFILE !VALID_PATIENT_RECORD

SELECT_PATIENT !VALID__USER_INPUT

SELECT_PATIENT !VALID_PATIENT_ID

RETRIEVE_PROFILE !VALID_PATIENT_ID

RETRIEVE_PROFILE !VALID_PATIENT_RECORD

SUCCESS

Figure 3.13: Original TRMCS model under test
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s ELECT_PATIENT

!VALID_USER_INPUT

s ELECT_PATIENT

!SELECT_PATIENT (

VALID_USER_INPUT,

DATAINDICESLIST )

l' TRIEVE_PROFILE

!TUPLE_PATIENT_ID (

LANSING.

VALID_QUERY_REQUEST )

RETRIEVE_PROFILE

!VALID_PATIENT_RECORD

ELECT_PATIENT

!VALID_USER_INPUT

s ELECT_PATIENT

!SELECT_PATIENT (

VALID_USER_INPUT.

DATAINDICESLIST )

I' ETRIEVE_PROFILE

!TUPLE_PATIENT_ID (

DETROIT,

VALID_QUERY_REQUEST )

RETRIEVE_PROFILE

!VALID_PATIENT_RECORD

RETRIEVE_PROFILE

!UNDEF_PATIENT_RECORD

SUCCESS  

RETRIEVE_PROFILE

!UNDEF_PATIENT_RECORD

 
Figure 3.14: Refined TRMCS model under test, safety-reduced
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graph matching certain criteria (such as the shortest path to a particular state or

matching a given pattern of actions), and graphical depictions of minimized LTS

graphs (a feature not available in TOPO/LOLA). CADP’S graphical depiction of an

LTS graph can act as a “road map” for simulations and facilitate understanding of

failed test cases (Figure 3.14), while its text—based output is easily read by humans.

On the other hand, TOPO/LOLA’S cryptic text-based output informs the de-

veloper that deadlocks exist, but makes the developer search for the deadlocks in

a cumbersome log file and manually back-trace the sequence of actions that led to

them. For example, in [45] TOPO/LOLA found four deadlocks in initial refinements

of the requirements model for ENFORMS [71] that, after examining the log file (see

Figure 3.15 for excerpts), we attributed to the Client being unable to submit a query

with an undefined address. We first had to search the log file for the keyword stop,

indicating a deadlock, and then manually back-trace each process’s instantiation to

figure out the sequence of actions leading to the deadlock. Adding a guarding condi-

tion to the dynamic model of the Client to check for undefined Archive Server addresses

resolved these deadlocks.

3.2 Lessons Learned

In addition to the highlights, we learned two lessons from these case studies [45, 46]

that have motivated our later work with McUmber’s UML-to—Promela formaliza-

tion [31] and the Spin [69] analysis tools. First, structural analyses (i.e., diagram

consistency checking) should be performed prior to formal model generation because

formal model analysis tools do not always detect diagram inconsistencies. Second,

in order to be useful, analysis results should be related back to the diagrams. This

section briefly overviews these lessons and how they have affected our later work.
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process duplicate3 [format_request,retrieve_data,analyze_data,client_query,

name-server-gettab1e,archive_server-query,name_server_register,

archive_server_q4899,archive_server_q5699] : noexit :=

name_server_register ! storet ! 5699;

stop

endproc

process duplicate4 [format_request,retrieve_data,analyze_data,client_query,

name_server_gettable,archive_server_query,name_server_register,

archive_server_q4899,archive_server_q5699] : noexit :=

name_server_register ! pcs ! 4899;

stop

endproc

process duplicate9 [format,request,retrieve_data,analyze_data,c1ient_query,

name_server_gettable,archive_server_query,name_server_register,

archive_server_q4899,archive_server_q5699] (rr_92:retrieve_request)

: noexit := archive_server_query ! retreq_getqueryrequest(rr-92)

! undef_address;

stop

endproc

process duplicate17 [format_request,retrieve_data,analyze_data,client_query,

name_server_gettable,archive_server_query,name_server_register,

archive_server_q4899,archive-server_q5699] (rr_92:retrieve_request)

: noexit := archive_server_query ! retreq_getqueryrequest(rr_92)

! undef_address;

stop

endproc

Figure 3.15: TOPO/LOLA log file indicating deadlock in ENFORMS
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Structural Analysis of Diagrams. In [45], in order to validate Wang’s ap-

proach [27] we applied Wang’s mapping rules to object-oriented diagrams for EN-

FORMS [71]. During this process, we discovered (by visual inspection), but did not at

first correct, several diagram inconsistencies. In many cases, the signature of a given

message send in one state diagram did not match the signature of a corresponding

event, the given message’s reception, in another state diagram (e.g., parameters were

transposed, etc). However, we found that the TOPO analysis tool was incapable

of detecting these errors in the resulting formal model (i.e., syntax and semantics

checking passed).

In Wang’s formalization of OMT diagrams into full LOTOS models [27], a mes-

sage, possibly with parameters, from the state diagram of a sender object is received

by a target object as an event on a transition in the target object’s state diagram. The

variables in the event’s parameter list (representing attributes of the target object)

take on the values passed in the message. An example of inconsistent state diagrams

is shown in Figure 3.16. The diagrams are inconsistent because the signature for

message foo’s reception on the transition in Object B’s state diagram differs from

the signature for sending message foo to Object B on the transition in Object A’s

state diagram (:1: is an Int and y is a String). However, in terms of LOTOS, which

does not require that processes must synchronize, there is nothing syntactically or

semantically wrong with the model fragments shown in Figure 3.17 derived from the

diagrams in Figure 3.16, even though the processes will not synchronize and exchange

data as intended.

This example underscores the motivation for consistency checking at the diagram

level, as well as for automated instead of manual translation of diagrams to models.

Consistency checking at the diagram level is necessary to detect inconsistencies that

might otherwise pass target language syntax and semantics checking and introduce

subtle errors into the model. Chapter 5 discusses how we use this approach in our
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Object_A Ob’ect—A

A .

x: 1m State_A1\ ObJCCt-B'f°°(x‘ y) >( State_A2

y: String / L

Object_B Ob‘ICa‘B

2: String j k

Figure 3.16: Inconsistent OMT state diagrams

processA (sender) : foo ! x ! y;

processB(receiver) : foo ? 2: String ? w: Int;

Figure 3.17: LOTOS model fragments from inconsistent diagrams
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work with McUmber’s UML-to—Promela formalization [31].

Visualization of Analysis Results in Terms of Diagrams. Our experiences

demonstrate that the visualized LTS graph produced by CADP can act as a “road

map” for simulations and facilitate understanding of failed test cases, much more so

than TOPO/LOLA’S cryptic text—based output. However, Wang’s formalization does

not include information other than event names and parameters on are labels in the

LTS, and thus analysis results cannot be automatically mapped back to state diagrams

(the same event may appear on multiple transitions so a simple name lookup scheme

fails). Instead, the developer must infer the relationship between the analysis results,

including the visualized graph, and the original diagrams, based in part on knowledge

of Wang’s mapping rules. One approach to this problem is to push diagram-specific

knowledge into the formal model so that such information can be recovered from

analyses of the formal model. Chapter 6 discusses how we use this approach in our

work with McUmber’s UML-to-Promela formalization [31].
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Chapter 4

Model Development and Analysis:

Framework and Process

This chapter describes a model development and analysis framework that addresses

model creation, model analysis, and model refinement based on analysis results. This

framework extends the formal model generator architecture suggested by Wang’s [27]

and McUmber’s [31] approaches, including well-formedness checks and visual feedback

to diagrams (Chapter 3, Section 3.2). To provide context for the following chapters,

we instantiate this framework with concrete tools that support McUmber’s UML-to-

Promela mapping rules [31], and describe a model development and analysis process

that pertains to this instantiation of the framework. This process encapsulates the

steps of model creation, model analysis, and model refinement, and it serves as a

roadmap for the analyses discussed in Chapter 5 and the visualizations of analysis

results discussed in Chapter 6.

Formal Model Generator Architecture. Both Wang’s [27] and McUmber’s [31]

approaches suggest an architecture similar to what is shown in Figure 4.1 to real-

ize a formal model generator based on mapping rules from a (source) semi-formal
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1 Each mapping approach uses a graphicallanguage to a (target) formal language.

notation (e. g., OMT, UML) as the semi-formal language, which implies the use of a

Graphical Editor for that particular notation. The user draws graphical diagrams

for an object—oriented system based on (prose) requirements. A Translator that

incorporates knowledge of the mapping rules from a given graphical notation to a

particular formal language (e.g., OMT-to—LOTOS, UML-to-Promela) generates the

formal model corresponding to the (intermediate representation of) graphical dia-

grams drawn by the user. Together, the Graphical Editor and 'Iranslator realize

a formal model generator. However, formal model generation is not an end in itself.

As shown in Figure 4.1, the user then performs analyses on a generated formal model

with appropriate Formal Language Analysis Tools (e.g., TOPO/LOLA, Spin).

Such tools may require interaction from the user, as illustrated by the “commands”

data flow. If the formal language allows, the user may optionally supply properties

(as indicated by the dashed arcs in Figure 4.1) for the formal language analysis tool(s)

to check against the formal model (e.g., a test process to compose with a LOTOS

model, an LTL property to check against a Promela model). As indicated by the

dash-dotted arc in Figure 4.1, the user must interpret (raw) analysis results obtained

from the formal language analysis tool(s).

Problems with Suggested Architecture. Both approaches assume the well-

formedness of diagrams, including diagram integration constraints. Therefore, neither

addresses the problems that ensue from attempting to generate formal models from

ill-formed diagrams, other than expecting that syntax/semantics checking or other

analyses provided by formal language analysis tool(s) will detect such errors at the

formal model level. However, as discussed in Chapter 3, some diagram ill-formedness

errors are not readily detectable at the formal model level.

Additionally, as represented by the dash-dotted arc in Figure 4.1, both approaches

 

1Appendix C illustrates the architectures realized in these approaches.
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Prose

requirements

 

 

 

 

 
commands

User input

for graphical

diagram(s)

 

Graphical Editor

Intermediate

representation

( of diagram(s)

r 

 

   

  

Translator

 

  

   

     

Mapping rules

for formal language

 

Formal Language

Analysis Tool(s)

I

Analysis

results (raw)

I ...................................... i

 
L

Formal Model Generation:

Output graphical diagram(s)

to intermediate representation,

and generate formal model

according to mapping rules.

Formal Model Analysis:

Perform syntax and semantics

checks on formal model, and

perform tool-specific analyses

such as simulation or model

checking.

Figure 4.1: Suggested architecture for a formal model generator
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expect the user to interpret raw analysis results emanating from formal language

analysis tool(s). As noted in Chapter 3, sometimes these results are quite cryptic.

No mechanism is provided for relating analysis results back to the original diagrams

in order to guide diagram refinement.

Model Development and Analysis Framework. Our model development and

analysis framework, shown in Figure 4.2, extends the formal model generator archi—

tecture from Figure 4.1 in two ways. First, although we still split the task of analysis

into two parts, structural and behavioral, we apply structural analyses to the di-

agrams (i.e., prior to formal model generation) to ensure intra- and inter-diagram

consistency, thus placing this burden on tools that are more suited to the task than

formal language analysis tools. Formal language analysis tools then perform behav-

ioral analyses on formal models generated from well-formed diagrams.

Second, as represented by the bold arcs to the Graphical Editor & Visual-

ization Environment oval in Figure 4.2, results from both types of analyses are

visualized in terms of graphical diagrams. Structural analyses are visualized in terms

of the original diagrams in order for the user to locate and correct diagram inconsis-

tencies. Raw analysis results from behavioral analyses are processed by an Analysis

Result Processor (shown as a bold oval) and then visualized in terms of either the

original diagrams or complementary ones, thus relating analysis results from the for-

mal model level back to the diagram level to guide diagram refinements. (Raw analysis

results from behavioral analyses may also be processed into a human-readable report

to complement visualizations, as represented by the bold dash-dotted arc to the User

oval in Figure 4.2.) Therefore the graphical editor of Figure 4.1 becomes a Graphical

Editor & Visualization Environment (shown as a bold oval in Figure 4.2).

While current work [40, 41, 42, 53] has focused on a subset of the UML graphical

notation appropriate to embedded systems, generated Promela models (according to
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McUmber’s UML-to—Promela mapping rules [31]), and the Promela analysis tools of

Spin [69], future work may include extending the framework in a third dimension to

incorporate other formal languages and tools, such as SMV2 [75].

 

 

User input

for graphical

diagram(s)

  

  

 
Structural Analysis:Graphical Editor

Perform intra- and inter-
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 Analysis results
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visualization instnictions.

_] Analysis Result Processing:

    

Figure 4.2: Model development and analysis framework

 

Instantiated Framework. The formalization of UML enables various types of

analyses of the UML diagrams and corresponding formal model of an object-oriented

software system, depending on the mapping rules given and the formal language anal-

ysis tools(s) available for the chosen target formal language. To provide the context

 

2Symbolic Model Verifier
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for the following chapters, we first instantiate the model development and analysis

framework with concrete tools that support McUmber’s UML-to-Promela mapping

rules [31]. Based on this instantiation, we then describe an iterative and incremental

model development and analysis process to create, analyze, and refine (formalized)

UML diagrams. This process serves as a roadmap for subsequent chapters.

Figure 4.3 refines the framework from Figure 4.2, instantiating the Graphical

Editor & Visualization Environment with our (UML) tool MINERVA [40, 47, 50,

51, 52], and the Translator with McUmber’s tool Hydra [31, 48] that incorporates

his UML-to—Promela mapping rules [31]. Parts A and B, respectively, indicate that

MINERVA and Hydra can be used cooperatively both to perform structural analyses on

UML (class and state) diagrams drawn by the user, and to generate formal models in

a (supported) target language (in this case, Promela). The user performs behavioral

analyses of generated Promela models with Spin [69] (Part C), which instantiates the

Formal Language Analysis Tool(s) process oval of Figure 4.2.

If using Spin in model-checking mode, the user may supply Spin with an LTL

property (Part D) to check against the Promela model. As indicated by the dashed

arc in Figure 4.3, we recommend but do not require the use of Dwyer et al.’s speci-

fication patterns [43] to guide the creation of LTL properties [40, 41, 42, 53]. We

have found the specification pattern taxonomy to be useful when attempting to write

formal properties based on English natural language requirements (see Chapter 2,

Section 2.2.4 for a brief overview of specification patterns).

Finally, as represented by the bold arcs from MINERVA, Hydra, and Spin to MIN-

ERVA in Part E, a combination of plug-in functions within MINERVA and a collection

of Perl scripts handle the responsibilities of the Analysis Result Processor from

Figure 4.2.
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Model Development and Analysis Process. The model development and anal-

ysis process is iterative and incremental. As shown in the process flow diagram in

Figure 4.4, in Step A, the user begins by drawing UML diagrams in MINERVA’S graph-

ical editors for the class and state diagrams. The class diagram is required, and then

additional state diagrams may be associated with individual classes. Assuming no

errors are introduced at the diagram level, in Step C MINERVA produces an intermedi-

ate representation of the diagrams, and in Step E, Hydra translates the intermediate

representation into a Promela model (according to UML-to-Promela mapping rules).

Spin can then be used either in simulation mode (Step F) to explore behavior such

as requirements or usage scenarios, or in model checking mode (Step G) to check

requirements-based properties.

Steps B and D shown as bold rectangles (and Feedback lines 1 and 2 shown as bold

dotted arcs) in Figure 4.4 were not present in Wang’s and McUmber’s approaches.

In general, it was left to the formal model analysis tool(s) to detect syntax and

semantics errors at the formal model level with no direct feedback to the diagrams to

indicate the source of the errors. We argue that diagram inconsistencies are better

detected, and visual feedback of these errors is more easily achieved, at the diagram

level (that is, prior to formal model generation). Chapter 5, Section 5.1, describes

the structural analyses available. Discussion of how visual feedback from structural

analyses (Feedback lines I and 2) is accomplished is deferred until Chapter 6.

Analysis feedback support as depicted by Feedback lines 3 and 4, shown as bold

dotted arcs in Figure 4.4, were also not available in Wang’s and McUmber’s ap—

proaches. Chapter 5, Section 5.2, discusses the behavioral analyses afforded by Spin,

namely simulation and model checking. In Chapter 6 we show how both UML model

simulation and simulation of counterexamples3 with Spin (Steps F and H, respec-

tively) can produce trace data that can be displayed directly in the context of the

 

3A counterexample produced by the Spin model checker can be retraced with Spin in guided

simulation mode in order to produce trace output, normally suppressed in model checking mode.
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Figure 4.4: Iterative and incremental model development and analysis process  
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diagrams using MINERVA (Feedback lines 3 and 4) to aid in the debugging and re-

finement of the UML diagrams.
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Chapter 5

Analyses

This chapter discusses the types of analyses enabled by the formalization of semi—

formal object—oriented graphical modeling notations such as OMT or UML. For il-

lustration purposes, we focus primarily on the analyses enabled by McUmber’s [31]

formalization of UML diagrams with Promela, the input language for the analysis tool

Spin [69]; thus, the model development and analysis process described in Chapter 4

for use with the model development and analysis framework instantiated in Chapter 4

is reproduced in Figure 5.1 for convenience to the reader. This chapter discusses the

bolded and dash-dotted boxes in the process flow diagram.

As shown in Figure 5.1, analyses are divided into two categories, structural and

behavioral. (Structural analyses are indicated with bolded boxes, and behavioral

analyses are indicated with dash-dotted boxes.) Structural analyses, discussed in

Section 5.1, pertain to intra- and inter-diagram consistency checking with respect to

several criteria, while behavioral analyses available, discussed in Section 5.2, depend

on the target formal language and formal language analysis tool(s) chosen. For exam-

ple, as shown in Figure 5.1, McUmber’s UML-to-Promela formalization [31] affords

both simulation (Step F) and model checking (Step G) capabilities via Spin [69]. In

contrast, as discussed in Chapter 3 and [45, 46], Wang’s OMT-to—LOTOS formaliza-
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reprised from Figure 4.4. Bold boxes (A, B, D) represent structural analyses; dash-
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tion [27] enables simulation, concurrency analyses, test composition, and refinement

checking via TOPO/LOLA [66] and CADP [67].

5. 1 Structural Analyses

Structural analysis of object-oriented graphical diagrams refers to consistency check-

ing at the diagram level. Consistency checks cover graphical and textual syntax

inherent to the object—oriented graphical modeling notation used (e.g., OMT, UML),

well-formedness assumptions and integration conventions inherent to the notation

used or imposed by the formalization rules, and constraints relative to the intended

target formal language.

For ease of exposition, we group the discussion of structural analyses into three

categories, which correspond to Steps A, B, and D of Figure 5.1, respectively. Sec-

tion 5.1.1 describes to what extent the graphical editing environment can prevent

certain types of graphical syntax violations from being drawn (Step A), or guide

the user towards creating consistent diagrams. Section 5.1.2 presents many types

of checks performed within individual class and state diagrams (Step B), while Sec-

tion 5.1.3 enumerates several integration checks performed between the class diagram

and each state diagram, and among all state diagrams (Step D). We use the term

problem to denote an aspect of a diagram that warrants user attention. The severity

of a problem and its potential consequences dictate whether it is classified as a warn-

ing or as an error. Problems categorized as warnings do not have adverse effects on

the behavior of the generated formal model (e.g., defining an attribute in a class in

the class diagram but not using it in the corresponding state diagram). On the other

hand, problems categorized as errors either indicate syntactically ill—formed diagrams

(e.g., giving two states the same name in a state diagram) or have the potential to

invalidate a generated formal model (e.g., a state diagram expecting an event that is
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never sent as a message from any state diagram in the model, an error that has the

potential to cause deadlock). We use a conservative approach to classify problems;

therefore, most problems described in the remainder of this section have been deemed

errors. Errors must be corrected prior to formal model generation.

5.1.1 Preventing or Containing Diagram Errors

The graphical editing environment can prevent certain types of graphical syntax vi-

olations from being drawn, or guide the user towards creating consistent diagrams.

We refer to these strategies as prevention and containment, respectively.

Prevention. Consistency with a graphical syntax can, to a large extent, be im-

posed by a graphical editing tool that has been enhanced by knowledge of the correct

syntax, thus preventing many graphical syntactical errors from ever being drawn.

Note that in an ordinary drawing application such as xfig [76], it is possible to draw

a syntactically incorrect UML state diagram1 like the one shown in Figure 5.2. The

state diagram shows a transition (directed arc) from an initial pseudostate (small

filled black circle) to a state (rounded rectangle labeled State-A), and a transition

leaving StateJ. (directed arc labeled with the event eventl). This state diagram is

syntactically incorrect with respect to the graphical syntax of state diagrams because

the transition labeled event] has a source state (State-A) but no destination state.

A generic drawing application like xfig has no knowledge of state diagram syntax,

and therefore does not impose any relationships (or constraints on relationships) be-

tween filled circles, rounded rectangles, and directed arcs. Further, although the state

diagram example in Figure 5.2 uses only pseudostates, states, and transitions, noth-

ing inherent in a generic drawing application like xfig would prevent the user from

 

1Our example pertains to the UML state diagram, but the general concept also applies to other

diagrams, such as the UML class diagram, or other graphical notations, such as OMT. See Chapter ‘2

for an overview of OMT and UML syntax.
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drawing squares, triangles, and undirected lines, none of which is a valid component

of a state diagram.

. E s... A W

Figure 5.2: Syntactically incorrect state diagram, with respect to graphical syntax

 
 

 

 

However, a metamodelQ—based graphical editing tool, such as MINERVA [40, 47,

50, 51, 52] which supports both UML class and state diagrams, can prevent the

construction of diagram components that are inconsistent with the metamodel for the

corresponding type of diagram. For example, as shown in Figure 5.3, a transition in a

state diagram must have a source and destination state and cannot be drawn otherwise

with a graphical editing tool such as MINERVA that comprehends and enforces state

diagram graphical syntax. Further, unlike a generic drawing application, MINERVA’S

state diagram editor allows only those diagram components that are consistent with

the state diagram metamodel, that is, pseudostates, states, and transitions, to be

drawn. Preventing such well-formedness errors decreases the consistency-checking

burden placed on other tools.

. >/ State_A \ even” cf State_B ]

L J

Figure 5.3: Syntactically correct state diagram, with respect to graphical syntax

 
  

 

 

 

 

Containment. In addition to a graphical syntax, textual annotations are a com-

mon feature of many graphical notations for object-oriented systems. OMT and

 

2Recall from Chapter 2 that a metamodel is a class diagram that describes the constructs of a

modeling language and the relationships between the constructs.
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UML in particular use text in class diagrams to label classes, to list attributes and

operation/signal signatures, and to label relationships. They also use text in state

diagrams to label states, and to describe events, guards, and actions on transitions

between states. Many kinds of textual annotations in UML have their own suggested

syntax to a certain extent. For example, the suggested textual annotation syntax

for a transition label in a state diagram is described in Expression (5.1), where the

actionExpression may comprise a sequence of actions, some of which may be message

sends [18]. The transition syntax currently supported by MINERVA [40, 47, 50, 51, 52]

and Hydra [31, 48], described in Expression (5.2), allows message sends to be dis-

played either as actions (e.g., send(target0bjectName . signalName)) or separately,

preceded by a caret (e.g., AtargetObjectName . signalName). This transition syntax

is used in the following examples.

 

eventSignature [guardCondition] / actionExpression (5.1)

eventSignature eventName

eventName(param1, . . . , parami)

 

guardCondition booleanEccpression

 

 

 

  

(5.2)

actionExpression actionList messageList

actionList actionl; . . . ;actionj

messageList Amessagef‘. . ."message;c

 

In a graphical editing tool that enforces the graphical syntax of state diagrams but

places no restrictions on the entry of textual annotations such as transition labels, it

would be possible to draw the state diagram shown in Figure 5.4. This state diagram,

while obeying graphical syntax, has a nonsensical string as its transition label.

Between the metamodel for overall diagram syntax and the user interface for a

diagram editing tool, it is possible to offer the user some structured guidance for
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State_A W the quick brown fox >( State_B ]

J

Figure 5.4: Nonsensical transition label

 

 

entering textual annotations. In MINERVA, for example, we present the user with

separate text entry areas for the event name, parameter list, guarding condition, list

of actions, and list of messages in a state diagram transition label. MINERVA combines

all the information with the proper delimiting characters into one label for display.

Enforcing the general syntactical structure of transition labels may also assist a parser

or other consistency checking utility in pinpointing errors, for example in the event

name, guarding condition, etc..

Even with such guidance, constructing structured nonsense may still be possible

(although not very likely since we assume users generally have a valid transition label

in mind), as shown in Figure 5.5. To prevent the nonsense transition label in this

example, additional guidance could be provided to the user in terms of pop-up menus

for state transition label components populated with information gleaned from the

class diagram. However, diagram integration rules would need to be coded into the

diagram editing environment, making it needlessly complex to maintain and slow to

execute. Additionally, any item desired to be displayed in a transition label would

first have to be entered in the class diagram, forcing the user to switch back and

forth between diagrams. Bookkeeping would also need to be performed to invalidate

transition labels that use information subsequently deleted from the class diagram.

Text entry for items such as class, attribute, operation/signal, and state names could

not be restricted, so parsing and consistency checking would-not be eliminated. We

have found that using structural guidance to alleviate most textual syntactical errors,

parsing to detect any remaining syntactical errors, and consistency checking to detect
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definition/usage and other discrepancies, including graphical syntax anomalies such

as a missing start state, effectively distributes the responsibilities for consistency

checking between the diagram editing environment and other utilities.

[ State A \ mary[had]/a"little.lamb fState B 1

Figure 5.5: Structured nonsense on a transition

  
 

 

 

5.1.2 Problems Within a Diagram

This section discusses problems within individual diagrams; that is, the class diagram

and each state diagram. A diagram and its elements are checked for graphical and

textual syntax problems and violations of well—formedness assumptions that could

not be prevented by the graphical editing environment, such as a missing start state

in a state diagram or an invalid class, operation/signal, or attribute name in a class

diagram. Diagram elements may also be checked for consistency with the target

formal language in terms of reserved word usage. Figures 5.6 and 5.7 list class di-

agram well-formedness assumptions (overall diagram assumptions and assump«

tions about the various parts of the class diagram). Figure 5.8 lists state diagram

well-formedness assumptions.

5.1.3 Problems Between Diagrams

This section discusses problems between diagrams; that is, between the class diagram

and each state diagram, and between state diagrams. The class diagram provides

the context for other diagrams; therefore, an important type of consistency check

between the class diagram and each state diagram is definition/usage check. Such
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o Naming

— A valid name depends on the formalization rules and target language con-

straints (such as no whitespace, no special characters, must start with a

particular letter, etc.)

— Name uniqueness among classes

— Name uniqueness among attributes within a class

— Name uniqueness among operations/signals within a class

— No reserved words from target language used as names

0 Data Types

- A valid data type depends on the formalization rules and target language

constraints (for example, Promela does not support real numbers as a data

type)

0 Inheritance

— No circular inheritance (formal model generation cannot handle cycles)

— No multiple inheritance

 

Figure 5.6: Overall class diagram well-formedness assumptions
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0 Classes

— A class must have a name

a Attributes

— An attribute must have a name

— An attribute must have a data type

An attribute may have a default value

— A default value must match the attribute’s data type

c Operation/Signals

— An operation/signal must have a name

— An operation/signal may have parameters (depends on formalization rules

and target language constraints)

— An operation/signal parameter must have a data type

— An operation/signal may have a return data type (depends on formaliza-

tion rules and target language constraints; McUmber’s UML-to-Promela

formalization uses only asynchronous signals)

 

Figure 5.7: Class diagram parts well—formedness assumptions
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o Naming

—— Name uniqueness among all states

— No reserved words from target language used as names

a Hierarchy

- State diagrams are hierarchical and as such may have nested levels

— The topmost level of a state diagram must have exactly one start state

0 States

A simple state, composite state, concurrent-composite state, or concurrent

region must have a name

A simple state may have entry or exit actions

A concurrent—composite state must contain more than one concurrent re-

gion

— A concurrent region must have exactly one start state

0 Transitions

— A transition may have associated actions

0 Actions

— An action may be an assignment statement or a message send

 

Figure 5.8: Overall state diagram well-formedness assumptions

69

 





a check ensures, for example, that all the variables used in actions and messages on

transitions or entry/exit actions in states within a state diagram have been defined as

attributes in the owning class in the class diagram, and that events used on transitions

within the state diagram have been defined as operations/signals in the owning class.

Usage of variables or events in a state diagram without their having been defined in the

class diagram will lead to syntax errors in the target language formal model; thus, such

usage is flagged as an error. However, definition of attributes or operations/signals

in a class without their use in the corresponding state diagram is a common practice

during the evolution of a system’s model. Attributes and operations/signals may be

introduced in a class with the intent of being used at some point in the future when

more detail is added to the model. Therefore, this type of inconsistency between

a class and its corresponding state diagram is flagged as a warning only. Another

check between state diagrams alerts the user when a state diagram expects a message

that no object sends. This situation is an inconsistency among the state diagrams

contained in the entire model that may cause a deadlock when the behavior of the

model is explored with the target—language analysis tool. It is therefore considered

an error .

Integration assumptions between the class and state diagrams are listed in Fig-

ure 5.9. Problems between the class diagram and a state diagram are listed in Fig-

ure 5.10, while problems between state diagrams are summarized in Figure 5.11. Both

Figures 5.10 and 5.11 include a brief problem description, a classification of the prob-

lem as a warning or an error, and the potential consequence if the problem is not

detected and addressed prior to specification generation.
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0 State diagram ownership

— A class may have zero or one state diagrams associated with it; we say

that the class owns the state diagram

— A state diagram must be owned by a class

0 Attributes

— Variables used on the left hand side of assignment statements in actions

within states or on transitions in a state diagram must be defined as at-

tributes in the owning class

— Variables used in event and message parameter lists, guarding conditions,

or expressions on the right hand side of assignment statements must be

defined as attributes in the owning class

0 Operations/Signals

- The events handled by a state diagram must be defined as opera-

tions/signals in the owning class

0 Messages

— The recipient of a message must be defined as a class in the class diagram

— Messages sent must be defined as operations/signals in the owning class of

the recipient state diagram

— The recipient class of a message must have a state diagram associated with

it

For each message sent to a recipient state diagram, there should be at least

one transition in the recipient state diagram that handles the message.

 

Figure 5.9: Integration assumptions between class and state diagrams
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Problem Classification Consequence
 

Use of a variable in a state

diagram without it being de-

fined as an attribute in the

owning class in the class di-

agram

Error Target language syntax er-

ror

 

Defining an attribute in a

class in the class diagram

but not using it as a variable

in the corresponding state

diagram

Warning No adverse effect on target

language specification, ex—

cept in the case of some

model checkers may con-

tribute to state space explo-

sion
 

Use of an event in a state di-

agram without it being de-

fined as an operation/signal

in the owning class in the

class diagram

Error Target language syntax er-

ror

 

 
Defining an operation/signal

in a class in the class dia-

gram but not using it as an

event in the corresponding

state diagram, or as a mes-

sage in any state diagram  
Warning

 
No adverse effect on target

language specification

 

Figure 5.l0: Problems between class and state diagrams
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Problem Classification Consequence
 

Use of an operation/signal

in a message send to a state

diagram that never handles

that event

Error Potential deadlock: If the

message send takes place,

then the recipient state dia-

gram will be unable to han-

dle the incoming event and

will deadlock.

 

Use of an operation/signal

in a message send to a state

diagram when the opera-

tion/signal is not defined in

the owning class of the recip-

ient state diagram

Error Target language syntax er-

ror

 

 

Expecting an event that is

never sent as a message from

any state diagram

Error

  

Potential deadlock: If an ob-

ject enters a state where the

only transitions out of that

state depend upon the re-

ception of messages which

will clearly never be sent,

then the object will deadlock

in that state.
 

Figure 5.11 : Problems among state diagrams
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5.2 Behavioral Analyses

After addressing any problems detected with structural analyses and then successfully

generating the target language formal model for the model of the software system,

behavioral analyses can be performed with the appropriate target language analysis

tools. In the case of Promela models, we use Spin [69], a Promela model analysis tool

that offers simulation and model checking capabilities. Simulation is useful for vali-

dating behavior of specific paths of execution through a given system. The analysis

is not complete in the sense that it is not possible to validate every possible scenario.

Once simulation has been used to validate the “common” scenarios and critical “ex-

ception cases”, then model checking can be used to help check that the entire model

satisfies specific critical properties. These analyses, corresponding to Steps F, G, and

H of the process depicted in Figure 5.1 (page 60) respectively, are described in the

remainder of this chapter.

5.2. 1 Simulation

Simulation (Step F) enables validation of behavioral requirements or scenarios, and

debugging of a system model. Hydra can be used to automatically generate Promela

models from UML diagrams in order to use Spin’s simulation utilities to “execute”

the UML diagrams. Simulation reveals whether a system model executes at all, and if

it does, how closely it conforms to expected behavior. Because the effort (construct-

ing temporal claims) and resources (memory and time) required to perform model

checking are more demanding than that needed for simulation, we find that using

an iterative process of simulation and visualization of results within UML diagrams,

refinement of UML diagrams, and automatic regeneration of a formal model enables

us to gain a better intuitive understanding of a system and to correct many flaws

prior to using model checking.
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5.2.2 Model Checking

Model checking [69, 70] (Step G) can be used to check for violation of global properties.

Each simulation run interleaves the execution steps of various concurrent components,

but, nonetheless, follows only one particular execution path. Model checking, on the

other hand, expands a restricted set of execution paths from all possible interleavings

3 By exhaustively exploringof execution steps into one large graph, or state space.

this state space, model checking can automatically detect deadlocks, test system

invariants against a model, and check temporal claims. Deadlock usually indicates a

communication protocol error between objects in a system model. System invariants

may, for example, check that the value of an instance variable does not fall outside

a certain range. Temporal claims usually test properties such as “something good

always happens,” or “something bad never happens.” If a claim is violated, then

model checking produces a counterexample, which is a sequence of execution steps

that demonstrates how the claim was violated. Counterexample traces, which can

themselves be simulated (Step H), can be extremely useful in tracing the source of

errors.

In our approach, we use requirements-based properties and model checking to

detect counterexamples in order to validate UML models. That is, we are looking

for counterexamples (indicating flaws in a UML model) rather that trying to verify

correctness of a model. In this dissertation, the phrase “verified successfully” means

that Spin did not produce a counterexample in an exhaustive search of the generated

state space, while “failed” means that the property did not hold, and Spin did produce

a counterexample.

 

3Because of what is known as the state explosion problem, model checkers in practice must use

some technique, or combination of techniques, to reduce the state space. Spin in particular uses the

partial order reduction to limit the number of interleaving sequences considered [69, 70].
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Chapter 6

Visualizations

This chapter discusses visualization techniques that we have developed for results

of both structural analyses of diagrams and behavioral analyses of generated formal

models. For illustration purposes, we focus primarily on visualization of results from

the analyses enabled by McUmber’s UML-to-Promela formalization [31]; thus, the

model development and analysis process described in Chapter 4 for use with the

model development and analysis framework instantiated in Chapter 4 is reproduced

in Figure 6.1 for convenience to the reader. The bold directed arcs 1—4 represent

feedback of analysis results to diagrams, discussed in this chapter. We visualize

results in terms of both original and newly generated, complementary, diagrams in

order to guide the user in refining the original diagrams modeling a system.

The following sections overview visualizations of results of both structural and be-

havioral analyses, including generation of new UML diagrams from behavioral anal-

ysis results. We introduce a small example for illustration purposes in Section 6.1.

Feedback lines 1—4 in Figure 6.1 represent feedback of analysis results to diagrams.

Feedback lines 1 and 2, discussed in Section 6.2, represent feedback of results from

structural analyses of diagrams, while Feedback lines 3 and 4, discussed in Section 6.3,

represent feedback of results from behavioral analyses of a generated Promela model
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Figure 6.1: Iterative and incremental model development and analysis process,

reprised from Figure 4.4. Bold arcs 1-—4 represent feedback of analysis results to

diagrams.
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(specifically, from simulation or simulation of counterexamples with Spin). Because

screen shots of the MINERVA GUI do not reproduce well, in this chapter we simulate

what the user would see for each visualization example by providing either textual

output or drawings of diagrams. “Highlighting in color” is simulated by drawing the

affected portion(s) of the diagram(s) in bold.

6.1 Producer- Consumer Example

To illustrate structural and behavioral visualizations in the following sections, we

introduce a small Producer—Consumer model. While not specific to the embedded

systems domain, the Producer- Consumer problem has the advantages of being both

well-known and small enough to illustrate several visualizations effectively, and it

enables us to demonstrate a key issue in embedded systems design, namely, the im-

portance of coordinated inter-object communication.

The class diagram for the model is shown in Figure 6.2. Each class has a state

diagram associated with it that describes its behavior. Additionally, the system is

represented by a special class, the _SYSTEMCLASS_, that is an aggregate of classes

representing its main components, the Producer and Consumer classes. We model

one Producer and one Consumer as indicated by the (default) multiplicity of one on

the association between the .SYSTEMCLASS- and each of the Producer and Con-

sumer classes. This variation of Producer-Consumer follows a very simple supply-

and-demand philosophy: the Producer waits for the Consumer to demand an item

before supplying one. We assume that the Consumer does not make another demand

until the Producer has handled the previous demand. Additionally, the Producer sup-

plies only a limited number of items (five, as indicated by the default value1 of the

 

1If a default value is not given, then Spin [69] automatically sets a variable’s initial value to zero;

however, not all target languages behave this way. For example, in the absence of a default value,

SMV [75] non-deterministically chooses a variable’s initial value from the variable’s range of possible

values.
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attribute limited-ed). The Producer keeps track of how many items it has supplied

in the attribute num.made.

 

 

_SYSTEMCLASS_
 

 

 

  OK(): void
 

  
 
 

Producer

limited_ed: int = 5

num_made: int = O

 

Consumer
 

 

 

 

   demand(): void    
Figure 6.2: UML class diagram for Producer- Consumer model

 

The state diagrams for the Producer and Consumer are shown in Figures 6.3 and

6.4, respectively. Upon instantiation, the Producer sends an OK message to the

_SYSTEMCLASS- and enters its Waiting_For_Demand state. Until it has supplied the

entire limited run of items, the Producer responds to demands from the Consumer,

increments its counter that tracks the number of items it has supplied, and enters its

Advertise state. The transition from state Advertise to state Waiting_For_Demand

has no explicit event or guard. Instead, it has an implicit event done that causes

the Producer to return immediately to state Waiting_For_Demand. Once the Pro-

ducer has supplied the entire limited run of items, it enters the Sorry-Sold_0ut state.

The Consumer starts in its Have.Money_Will-Spend state. The transition from state

Have_Money_Will_Spend to state Waiting-For_Supply has no explicit event or guard.
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Instead, it has an implicit event done that causes the Consumer to transition immedi-

ately to state Waiting-For-Supply after sending a request to the Producer. Likewise

the transition from state Waiting_For_Supply to state Have_Money_Will_Spend fires

immediately.

 

demand[num < limited_ed]

/num := num + 1

" SYSTEMCLASS .OK \ “ J

k“ — {Waiting_For_Demand1 ll/ (Advertise

fl

 
 

 

[num_made >= limited_ed]/

@rry_Sold_OuD

Figure 6.3: UML state diagram for Producer

  

 

 

 

Have_Money_Will_Spend

 

[]/ []/"Producer.request

 

Waiting_For_Supply

 

Figure 6.4: UML state diagram for Consumer
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6.2 Structural Visualizations

Structural visualizations, as described in the next subsection, include visualization

of problems within and between diagrams. Problems within an individual diagram

are visualized within that diagram, while the different parts of a problem between

diagrams are visualized within the affected diagrams.

6.2.1 Within and Between Diagrams

Visualizations of structural analysis results include displaying text-based messages

and using color to highlight the location of problems in UML diagrams within the

graphical editing environment (e. 9., MINERVA). Problems within individual diagrams

are simply highlighted within each diagram, while problems between diagrams may be

presented in a specific ordering. For example, definition/usage problems between class

and state diagrams may show the class diagram first, while send/receive problems

between state diagrams may show the sender first (if there is one) and then the

receiver.

6.2.2 Structural Analyses Applied to the Producer-

C'onsumer Example, with Visualizations

First, the diagrams are drawn in MINERVA. The intermediate representation is then

generated and given to Hydra for structural analysis, which reveals several prob-

lems as shown in Figure 6.5. Each problem reported is prefixed with four asterisks

“*Ikaluk”) and a classification of warning or error. For example, the errors on lines 3,

5, 7, 9, and 11 in Figure 6.5 indicate inconsistencies between the class diagram and

the state diagram for the Producer. In each case, the problem stems from the fact

that the variable num has been used in the Producer state diagram but has not been

declared. The error corresponding to these messages is visualized by highlighting the
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appropriate transition(s) in the Producer state diagram, and then highlighting the

Producer class in the class diagram, as simulated in Figures 6.6 and 6.7, respectively,

to indicate that a variable has been used, but has not been declared. The actual error

(determined by the user after evaluating the aforementioned error messages together

with the corresponding visualization) is that the variable num has been used instead

of the declared variable num_made. To correct the error, we revise the appropriate

transition(s) in the Producer state diagram to use the declared variable num_made.

The revised Producer state diagram is shown in Figure 6.8.

 

1 **** Starting ..Hydra V1.4 (4/18/2002)

2 parse complete

3 **** ERROR Class: [Producer] State: [Waiting_For_Demand]

4 Variable num is undeclared

5 **** ERROR Class: [Producer] State: [Waiting,For_Demand]

6 Variable mum is undeclared

7 **** Error: variable num undefined in transition

8 demand[num < limited_ed]/num := num + 1

9 **** ERROR Class: [Producer] State: [Waiting_For_Demand]

10 Variable num is undeclared

11 **** Error: variable num undefined in transition

12 demand[num < limited,ed]/num := num + 1

13 **** Warning Class: [Producer]

14 Instance variable ’limited_ed’ is declared but unused

15 **** Warning Class: [Producer]

16 Instance variable ’num_made’ is declared but unused

17 **** Warning Class: [Consumer] No Initial state

18 **** ERROR Class: [Consumer] State: [Have_Money_Will_Spend]

19 Signal ’request’, sent to class Producer, is not declared

2o **** Warning Class: [_SYSTEMCLASS-] State: [Done]

21 State can never be exited (no outbound transitions)

22 **** Warning Class: [Producer] State: [Sorry_Sold_Out]

23 State can never be exited (no outbound transitions)

Figure 6.5: Structural problems reported by Hydra

 

Line 18 in Figure 6.5 reports that the signal request is not declared for class

Producer in the class diagram, although it is used in the Consumer state diagram

to send a message to Producer. This error represents another inconsistency between

82



 

demand[num < limited_ed]

/num := num + 1

" SYSTEMCLASS .OK ‘ T )

G 7 — {Waiting_For_Demandl ll/ Advertise

[num_made >= limited_ed]/

CSorry_Sold_OuD

Figure 6.6: UML state diagram for Producer showing highlighted transition from state

Waiting_For_Demand to state Advertise that uses the undeclared attribute num

 

 

 

  

 

 

 

_SYSTEMCLASS_
 

 

 

OK(): void   
 

 
 . Producer 1 *

limited_ed: int = 5

 

Consumer
 

 

num_made: int = O

demand(): void

 

  
 

 

Figure 6.7: UML class diagram for Producer-Consumer model showing highlighted

class Producer that has not declared the attribute num nor the signal request
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demand[num_made < limited_ed]

/num_made :2 num_made + l

" SYSTEMCLASS .OK \ )

G 7 _ fiaitingj‘oLDemand) ll/ (Advertise

[num_made >= limited_ed]/

[Sorry_Sold_OuD

Figure 6.8: UML state diagram for Producer after fixing structural problems. (Used

declared attribute num_made instead of undeclared num on transition from state

Waiting_For_Demand to state Advertise.)

 
 

 

 

  

 

diagrams and is visualized by first displaying the highlighted transition in question

in the Consumer state diagram as simulated in Figure 6.9 and then the highlighted

Producer class in the class diagram as (previously) simulated in Figure 6.7. The

actual error is that the signal request has been used instead of the declared signal

demand. To correct the error, we revise the message on the transition in question in

the Consumer state diagram to use the declared signal demand. (Alternately, we could

have revised the declarations in the Producer class in the class diagram to declare the

signal request.)

Line 17 in Figure 6.5 (page 82) describes a well-formedness warning specific to

the Consumer state diagram. Because the problem is a missing start state, only

the state diagram for the Consumer itself can be shown, along with a textual mes-

sage indicating the problem. The developer must decide which is the initial state

(Have_Money_Will_Spend or Waiting_For-Supp1y) and connect a start pseudostate

to it in order for any of the Promela code representing the Consumer state diagram

in the generated formal model to be reachable. To correct this error, we add a start

state and an initial transition to state Have-Money_Will_Spend, indicating that state

Have_Money_Will_Spend is the initial state of the Consumer state diagram. The re-
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Have_Money_Will_Spend

 

[l/ []/"Producer.request

 

Waiting_For_Supply

 

Figure 6.9: UML state diagram for Consumer showing highlighted transition from

state Have-Money-Will_Spend to state Wait ing-For-Supply that uses the undeclared

signal request

 

vised Consumer state diagram, handling the errors on both Line 17 and Line 18 in

Figure 6.5 (page 82), is shown in Figure 6.10.

For completeness, Figure 6.11 shows the class diagram after structural revisions

(no changes were needed). We apply structural analyses to the intermediate represen-

tation generated from the revised diagrams and find no errors. Now that structural

problems have been addressed, Promela models can be generated from the diagrams

and behavioral analyses applied. The next section discusses the types of visualiza-

tions possible from Spin’s behavioral analysis results and then demonstrates them in

terms of the Producer- Consumer example.
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“_SYSTEMCLASS_.OK

 
 

Have_Money_Will_Spend

 

[]/ (]/"Producer.demand

 

Waiting_For_Supply

 

Figure 6.10: UML state diagram for Consumer after fixing structural problems.

(Used declared signal demand instead of undeclared request on transition from state

Have_Money_Will_Spend to state Waiting-For-Supply. Added initial transition to

state Have_Money-Will_Spend.)
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_SYSTEMCLASS_
 

 

 

  OK(): void
 

  
  

Producer
 

Consumer
 

limited_ed: int = 5

num_made: int = 0

 

 

 

  
demand(): void

 

   
Figure 6.11: UML class diagram for Producer- Consumer model after fixing structural

problems. (N0 changes were made.)
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6.3 Behavioral Visualizations

Behavioral visualizations, as described in the following subsections, include state dia-

gram animation, sequence diagram generation, and both collaboration diagram gen-

eration and animation. Refinements shown to the Producer- Consumer diagrams in

this section will be described step-by-step in Section 6.3.4. To enable feedback to

existing state diagrams, MINERVA offers the user three ways to augment the interme-

diate textual representation that will later be translated into Promela. These choices

are: “States Only”, “Transitions Only”, and “States and Transitions” (the default

generation of the intermediate textual representation uses none of these options).

The choice selected affects the type of print statements2 added to the intermediate

representation, and thus the final formal model. These print statements, combined

with several options for Spin runtime flags, affect the level of detail present in the

trace output from Spin and thus the type of visualizations that can be achieved. The

default generation does not add any extra statements to the intermediate represen-

tation. Currently the formalization to Promela does not incorporate identity tags

for graphical elements, so with no extra statements, no automatic feedback to the

original diagrams can be generated other than possibly highlighting states based on a

unique naming scheme (depending on the Spin flags chosen, it may still be feasible to

generate sequence and/or collaboration diagrams). MINERVA’s user interface offers

the choices “States Only” and “Transitions Only” as mechanisms to add special print

entry actions to states or special print actions to transitions, respectively, while the

choice “States and Transitions” does both. These special print actions, while not

explicitly available to the user at the UML diagram level, are added transparently to

the intermediate representation that is then given to Hydra. The generated Promela

mOdel will have appropriate print statements that will fire when states are entered or

 

 

2Note that this technique will only work for target languages with a print statement. Future

work includes investigating a more general approach to instrumentation that adds boolean variables

to the formal model to indicate when a state has been entered or when a transition has been taken.
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transitions are taken during the exploration of the model.

Trace data captured from both random simulation and simulation of counterex-

amples obtained from model checking results enables animation of state diagram(s)

originally drawn by the user (via the print statements just discussed), and generation

of new sequence and collaboration diagrams. An example of raw trace data output

from a Spin simulation with no runtime flags of a Promela model generated from an

intermediate representation3 augmented with print statements using the “States and

Transitions” option is shown in Figure 6.12. The data has been manually elided and

formatted for space considerations and readability as follows: (1) As line 1 indicates,

data from the beginning of the trace has been elided so that the figure shows only

the last five transitions and state entries (lines 2—31), plus the contents of all model

queues at the end of the trace (lines 3441) ; and (2) Normally, the information from a

print statement pertaining to a transition firing (such as shown in lines 2—4) or a state

being entered (such as shown in lines 6—7) would appear all on a single line, with data

fields delimited by the character ‘@’. This data can be processed into either a human-

oriented report, as shown in Figure 6.13, or visualization instructions for MINERVA

as shown in Figure 6.14. The numbers delimited by ‘@’ characters in the long strings

in Figure 6.12 are the graphical element identity numbers from MINERVA’S internal

representation.

6.3.1 State Diagram Animation

A state diagram, originally drawn by the user, depicts the behavior of a class. De-

pending on the amount of detail present in the trace data (which, in turn, depends

on the instrumentation option chosen at the time of generating the intermediate

 

3The intermediate representation used to generate the formal model that produced the trace data

in Figures 6.12, 6.13, and 6.14 was created from a refined version of the diagrams in Figures 6.8

(page 84), 6.10 (page 86), and 6.11 (page 87). Figures 6.12, 6.13, and 6.14 are for illustration

purposes only; however, the refinements to the diagrams presented in the next few sections will be

described step-by-step in Section 6.3.4.
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[manually elided, formatted for readability]

TRANSITIONQQOQ130817257517QProducer@209130692280326

@Waiting_For_Demand@209130753228840

@Advertise0209130817257519@demand

in state Producer.Advertise

STATEQProducerQ209130692280326

@Advertise@209130817257519

TRANSITIONQ2091343017410580Producerfl209130692280326

@Advertise@209130817257519

@Waiting_For-Demand@209130753228840®

in state Producer.Waiting_For_Demand

STATEQProducerQ209130692280326

@Waiting_For_Demand@209130753228840

TRANSITIONQ209130748051490@Consumer@209130692280330

@Waiting_For_Supp1y@209130747068447

@Have_Money_Will_Spend@209130736058394©supp1y(edition_num)

in state Consumer.Have_Money_Will_Spend

STATEQConsumerc209130692280330

@Have_Money_Wi11_Spend@209130736058394

TRANSITION0209130748051488@Consumer@209130692280330

@Have_Money_Wil1_Spend@209130736058394

@Waiting_For_Supp1y@2091307470684470

in state Consumer.Waiting_For_Supply

STATEQConsumerQQOQ130692280330

@Waiting_For_Supp1y@209130747068447

TRANSITIONQ209130817257514©Producer®209130692280326

@Waiting_For_Demand@209130753228840

@Sorry_Sold_Out@2091308172575160

in state Producer.Sorry_Sold_Out

STATEQProducerQ209130692280326

@Sorry_Sold_Out@209130817257516

timeout

#processes: 3

416:

416:

416:

queue 2 (_SYSTEMCLASS_-q):

Producer_V.limited_ed = 5

Producer-V.num_made = 5

queue 3 (Producer_q): [demand]

Consumer_V.edition_num = 5

queue 4 (Consumer_q):

queue 5 (Consumer_supply_p1):

queue 1 (t): [free]

proc 2 (Consumer) line 158 "producer_consumer_.pr" (state 37)

proc 1 (Producer) line 110 "producer_consumer_.pr" (state 47)

proc O (_SYSTEMCLASS_) line 64 "producer_consumer_.pr" (state 48)

3 processes created

Figure 6.12: Raw trace data output from Spin with no flags
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Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

"-SYSTEMCLASS_" transitions from state "Initial" to state

"Create_Producer" on event "modelstart"

"_SYSTEMCLASS_" enters state "Create_Producer"

"Producer" transitions from state "Initial" to state

"Waiting_For_Demand" on event "modelstart"

"_SYSTEMCLASS_" transitions from state "Create_Producer" to state

"Create_Consumer" on event "OK"

"Producer" enters state ”Waiting_For_Demand"

"_SYSTEMCLASS_" enters state "Create_Consumer"

"Consumer" transitions from state "Initial" to state

"Have_Money_Will_Spend" on event "modelstart"

"_SYSTEMCLASS_" transitions from state "Create_Consumer" to state

"Done" on event "OK"

"_SYSTEMCLASS_" enters state "Done"

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supp1y"

"Producer" transitions from state "Waiting_For_Demand" to state

"Advertise" on event "demand"

"Producer" enters state "Advertise"

"Producer" transitions from state "Advertise" to state

"Waiting_For_Demand" on event ""

"Producer" enters state "Waiting_For_Demand"

"Consumer" transitions from state "Waiting_For_Supply" to state

"Have_Money_Will_Spend" on event “supply(edition_num)"

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting-For_Supp1y" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to state

"Advertise" on event "demand"

"Producer" enters state "Advertise"

"Producer" transitions from state "Advertise" to state

"Waiting-For_Demand" on event ""

"Producer" enters state "Waiting_For_Demand"

"Consumer" transitions from state "Waiting_For_Supply" to state

"Have_Money_Will_Spend" on event "supply(edition_num)"

"Consumer" enters state "Have_Money-Will_Spend"

[three more cycles, manually elided]

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting-For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to state

"Sorry_Sold_Out" on event ""

"Producer" enters state "Sorry_Sold_Out"

Figure 6.13: Trace data from Spin processed into human-oriented report
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1 (list

2 . . [12 previous instructions, manually elided]

3 (list "TRANSITION" "209130817257517" "Producer" "209130692280326"

4 "Waiting_For_Demand" "209130753228840"

5 "Advertise" "209130817257519" "demand")

6 (list “STATE" "Producer" "209130692280326"

7 "Advertise" "209130817257519")

8 (list "TRANSITION" "209134301741058" "Producer" "209130692280326"

9 "Advertise" "209130817257519"

10 "Waiting_For_Demand" "209130753228840" "")

11 (list "STATE" "Producer" "209130692280326"

12 "Waiting_For_Demand" "209130753228840")

13 . [38 more instructions, manually elided]

14 )

Figure 6.14: Trace data from Spin processed into visualization instructions for MIN-

ERVA corresponding to lines 19—24 of Figure 6.13

 

representation), the items highlighted in the state diagram may be states entered,

transitions taken, or both. We find that highlighting the transitions taken is espe-

cially useful when there is more than one transition from the source state to the

destination state (e. 9., several transitions using the same event but different guard—

ing conditions). Figures 6.15—6.18 simulate the state diagram animation steps that

correspond to lines 19—24 in Figure 6.13. Bold arcs in Figures 6.15 and 6.17 indicate

the transition taken in each step, while bold rounded rectangles in Figures 6.16 and

6.18 indicate the state entered in each step.

6.3.2 Sequence Diagram Generation

Sequence diagrams complement state diagrams, portraying a single possible path

through a collection of state diagrams. They are the isomorphic equivalent of collab-

oration diagrams, depicting a single sequence of message sends and receives (directed

lines) over time (a vertical column per object, with time increasing from top to bot-

tom). Message ordering and potential race conditions can be visualized with sequence
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demand[num_made < limited_ed]

/num_made := num_made + 1

" SYSTEMCLASS .OK \ 7 I

. _ _ {waiting_FOI-_Demandl U/ACOnSumeI-_supp]y(num_made) Advertise

[num_made >= limited_ed]/

(Sorry_Sold_OuD

Figure 6.15: Highlighted transition corresponding to lines 19—20 of Figure 6.13. Pro-

ducer transitions from state Waiting_For_Demand to state Advertise on event de-

mand.

 

 

 

 

  

 

 

demand[num_made < limited_ed]

/num_made := num_made + 1

A SYSTEMCLASS .OK i )

0—7 7 ‘vQVaitingFoLDemandl []/"Consumer.supply(num_made) (Advertise

j‘

 
 

 

 

[num_made >= limited_ed]/

(Sorry_Sold_Out I

Figure 6.16: Highlighted state corresponding to line 21 of Figure 6.13. Producer enters

state Advertise.
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demand[num_made < limited_ed]

/num_made := num_made + 1
 

 

" SYSTEMCLASS .OK \

%‘ — #GVaiting_For_Demand! []/"Consumer.supply(num_made)l Advertise
 

[num_made >= limited_edl/

[Sorry_Sold_OuD

Figure 6.17: Highlighted transition corresponding to lines 22—23 of Figure 6.13 Pro-

ducer transitions from state Advertise to state Wait ing-For.Demand on the implicit

event done.

 
 

 

 

demand[num_made < limited_ed]

/num_made := num_made + l

A SYSTEMCLASS .OK i ” j

% " ' @aitingFoLDemand) []/"Consumer.supply(num_made) (Advertise

[num_made >= limited_edl/

(Sorry_Sold_OLD

Figure 6.18: Highlighted state corresponding to line 24 of Figure 6.13 Producer enters

state Waiting-For_Demand.
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diagrams. Figure 6.19 shows the lifelines for three objects, _SYSTEMCLASS-, Pro-

ducer, and Consumer, with messages depicted as arrows from the sender to the receiver

labeled with the name of the message and the value of any parameters. This sequence

of messages also corresponds to the series of events depicted in Figure 6.13 (page 91),

although the trace data that generated this sequence diagram was produced by ex-

ecuting Spin with more verbose output options4 than that used to generated the

output in Figure 6.12 (page 90). For illustration purposes, a portion of the visual-

ization commands generated by processing the verbose raw trace data is shown in

Figure 6.20.

6.3.3 Collaboration Diagram Generation and Animation

A collaboration ah'agr'am5 depicts a snapshot in time, a particular instance of com-

munication between objects in the system (rectangles) via links (directed lines).6

Animation of a collaboration diagram, then, depicts a series of these snapshots over

time. When playing back trace data in a collaboration diagram, MINERVA highlights

message pathways (links) as they are used. While state diagrams describe the order in

which objects communicate via events, the actual communication pathway between

the objects is not visualized. in collaboration diagrams, messages are preceded by

sequence numbers denoting the order in which messages occur. Optional information

displayed about a class instance at each step in an animation may include attribute

values, the object’s state, and for our visualization purposes, queue contents.7 Fig-

ure 6.21 simulates a snapshot corresponding to the visualization instruction on line

 

4The command spin -C -g -1 -p -r -s -w specname.pr includes information about channels

used, global and local variables, message sends and receives, and forces print statements and a high

level of verbosity in the output from Spin.

5Recall from Chapter 2 that collaboration and sequence diagrams are isomorphic.

6This notation convention is specific to our editor MINERVA. UML syntax suggests using labeled

arrows to indicate the direction of message flow across a undirected link in a collaboration diagram,

whereas we have attached the message label to a directed link to represent our asynchronous event

flow.

7Recall (Chapter 2) that McUmber’s formalization [31] uses queueing semantics.
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l l demand l
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I ' demand ',

i E supply 2 \E
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E l supply 3 \l

l : demand l
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: : supply 5 \:

l l /}
: l E demand ,

l

I

Figure 6.19: Example sequence diagram corresponding to events depicted in Fig-

ure 6.13 (page 91)
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Figure 6.20: Visualization commands processed from raw trace data output from Spin

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

(list

"STARTOBJECTS")

"OBJECT" "_SYSTEMCLASS_" "O" "2")

"OBJECT" "Producer" "1" "3")

"OBJECT" "Consumer" "2" "4")

"ENDDBJECTS")

"STARTTHREADS")

"ENDTHREADS")

"STARTQUEUES")

"QUEUEDEF" "_SYSTEMCLASS_" "2" "0")

"QUEUEDEF" "Producer" "3" "1")

"QUBUEDEF" "Consumer" "4" "2")

"ENDQUEUES")

"STARTDATA")

"CHAN" "evq")

ll CHAN II II evt H)

"CHAN" "wait")

"CHAN" "_SYSTEMCLASS-_q")

"CHAN" "Producer_q")

"CHAN" "Consumer_q")

"CHAN" "Consumer_supply_p1")

"CHAN" Ht")

[approximately 29 commands manually elided]

"STATE" "Consumer" "209130692280330"

"Have_Money_Will_Spend" "209130736058394")

"STATE" "Producer" "209130692280326"

"Sorry_Sold_0ut" "209130817257516")

"SEND" "2" "Consumer" "demand" "3" "Producer_q")

HQUEUEII "3" "producer-q" "1" lldemandll)

"STATE" "Consumer" "209130692280330"

"Waiting_For_Supply" "209130747068447")

"ENDDATA")

with verbose flags
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28 in Figure 6.20. As shown by the arrow on the link from Consumer to Producer,

the Consumer is in the act of sending the message demand to the Producer, although

the message has not yet reached the Producer’s queue. The sequence number “13”

indicates that this message is the thirteenth message in the sequence being animated.

 

 

:_SYSTEMCLASS_

queue = {}

state = "Done"

 

  

  
 

 
  
 

:Producer

limited_ed = 5 l3: demand edition num = 5

num_made = 5 _queue
:- {l

queue = {}
_ .. . ..

state 2 ..Sorry__S01d_Out" state — Have_Money_Will_Spend

:Consumer 

 

  
   

 

Figure 6.21: Example collaboration diagram corresponding to line 28 in Figure 6.20

 

6.3.4 Behavioral Analyses Applied to the Producer-

C’onsumer Example, with Visualizations

We now return to our Producer— Consumer example, modeled by the diagrams from

Figures 6.8, 6.10, and 6.11 after fixing structural problems but prior to final refine-

ments. The diagrams are reproduced here in Figures 6.22, 6.23, and 6.24 respectively,

for reference.

We generate the intermediate representation with the “States and Transitions”

instrumentation option, translate it into a Promela model, and then run a simulation

with Spin using verbose flags to determine whether the model behaves as we intended.

The human-oriented report and sequence diagram generated from Spin’s processed
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demand[num_made < limited_ed]

/num_made := num_made + l

" SYSTEMCLASS .OK \ j

r " _ #GVaitingjzoLDemand) n/ (Advertise

”—

 

 

 

[num_made >= limited_ed]/

Gorry_Sold_O©

Figure 6.22: UML state diagram for Producer after fixing structural problems, re-

peated from Figure 6.8. (Used declared attribute num_made instead of undeclared mum

on transition from state Wait ing_For_Demand to state Advertise.)

 
 

 

 

“_SYSTEMCLASS_.OK

 
 

Have_Money_Will_Spend

 

[]/ []/"Producer.demand

 

Waiting_For_Supply

 

Figure 6.23: UML state diagram for Consumer after fixing structural problems, re-

peated from Figure 6.10. (Used declared signal demand instead of undeclared re-

quest on transition from state Have-Money-Will_Spend to state Waiting_For_Supply.

Added initial transition to state Have_Money_Will-Spend.)
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_SYSTEMCLASS_
 

  

 

  OK(): void
 

 
 

 
 Producer

 

Consumer
 limited_ed: int = 5

num_made: int = O

 

 

 

  
 

 demand(): void 
 

Figure 6.24: UML class diagram for Producer— Consumer example after fixing struc-

tural problems, repeated from Figure 6.11. (No changes were needed.)

 

output are shown in Figures 6.25 and 6.26, respectively. We can also generate visu-

alization instructions for state diagram animation, not shown, from Spin’s processed

output, illustrating that the Consumer is able to send a second demand message before

a first one has been handled by the Producer. The original intent was to have the

Producer manufacture items on demand from the Consumer, but it is now apparent

that in our naive model, based on the erroneous assumption that the Producer and

the Consumer would take turns, the demands from the Consumer can out pace the

Producer’s ability to fulfill them. The simulation eventually terminates due to three

factors: first, the Producer reaches its Sorry-Sold-0ut state after making five items

and thus is unable to fulfill any more demands; second, Promela queues must be of

finite length;8 and third, the default simulation behavior for Spin is to block when

attempting to enqueue a message on an already-full queue rather than losing the mes-

sage. By the end of the simulation, the Producer is in a state where it cannot respond

 

8The default queue length imposed by McUmber’s Promela formalization [31] is five.

100



to any more demands, the Producer’s queue is full of unmet demand messages, and

the Consumer must block.

Spin’s underlying execution model uses interleaving; that is, only one Promela

process at a time may execute a step. Because Promela processes are not executed in

lockstep (i.e., not executed simultaneously), Spin has extremely weak fairness heuris-

tics (i.e., processes can starve), and our simple model has no special measures to

ensure that the Producer and Consumer behave in a coordinated fashion, the Con-

sumer is able to send multiple demand messages to the Producer without waiting for

them to be handled. In order to resolve this problem, we introduce handshaking;

that is, each demand message from the Consumer is acknowledged with a new supply

message from the Producer. (Handshaking is a commonly used technique in the em-

bedded systems domain to ensure coordinated inter-object communication [39].) The

revised class diagram and Producer and Consumer state diagrams are shown in Fig-

ures 6.27 (page 104), 6.28 (page 104), and 6.29 (page 105), respectively. In the class

diagram, class Consumer has been refined to include the new supply message, plus a

new attribute called edition_num. The Producer state diagram has been refined to

respond to a demand from the Consumer with a supply message that also carries the

num_made value as a parameter to indicate which item in the limited edition series

is being supplied. As shown in the Consumer state diagram, that value is stored in

Consumer’s edition_num variable upon receiving a supply message from the Producer.

After the diagrams are refined, we generate the intermediate representation again

with the “States and Transitions” instrumentation option, translate it into a Promela

model, and then run another simulation with Spin using verbose flags. Results are

shown as a human-oriented report and a sequence diagram in Figures 6.30 (page 107)

and 6.31 (page 108), respectively. These figures were also used earlier for illustration

purposes in Figures 6.13 (page 91) and 6.19 (page 96). The refined version of the

model seems to behave more in keeping with the original intent. The sequence dia-
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Object
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Object

[elided 6 interleaved statements involving -SYSTEMCLASS_]

"Producer" transitions from state "Initial" to state

"Waiting_For_Demand" on event "modelstart"

"Producer" enters state "Waiting_For_Demand"

"Consumer" transitions from state "Initial" to state

"Have_Money_Will_Spend" on event "modelstart"

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money-Will_Spend"

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Consumer" transitions from state "Waiting_For_Supply" to

"Have_Money_Will_Spend" on event ""

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend"

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to

"Advertise" on event "demand"

"Producer" enters state "Advertise"

"Consumer" transitions from state "Waiting_For_Supply" to

"Have_Money_Will_Spend" on event ""

"Consumer" enters state "Have_Money_Will_Spend"

"Producer" transitions from state "Advertise" to state

"Waiting_For_Demand" on event ""

"Producer" enters state "Waiting_For_Demand"

"Consumer" transitions from state ”Have_Money_Will_Spend"

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Consumer" transitions from state "Waiting_For_Supply" to

"Have_Money_Will_Spend" on event ""

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend"

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to

"Advertise" on event "demand"

"Producer" enters state "Advertise"

[elided 23 more steps]

to state

state

to state

state

state

to state

state

to state

state

Figure 6.25: Human-oriented report for Producer- Consumer example generated from

the output of a Spin simulation with verbose flags
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Figure 6.26: Sequence diagram for Producer- Consumer example generated from the

output of a Spin simulation with verbose flags
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_SYSTEMCLASS_
 

  

 

  OK(): void
 

 
 

 
 Producer

 

Consumer
 limited_ed: int = 5

num_made: int = 0

 

edition_num: int = 0
 

 

  supply(int): void
 

  demand(): void

 

Figure 6.27: UML class diagram for Producer- Consumer example after fixing behav-

ioral problems. (Added attribute edition_num and signal supply to class Consumer.)

 

 

demand[num_made < limited_ed]

/num_made := num_made + l

A SYSTEMCLASS .OK i

‘ — _ @ting_For_Demand) []/"Consumer.supply(num_made) (Advertise l

[num_made >= limited_ed]/

I Sorry_Sold_OuD

Figure 6.28: UML state diagram for Producer after fixing behavioral problems.

(Added message supply sent to Consumer on transition from state Advertise to state

Waiting_For_Demand.)
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“_SYSTEMCLASS_.OK

 
 

Have_Money_Will_Spend

 

supply(edition_num)[]/ []/"Producer.demand

 

Waiting_For_Supply

 

Figure 6.29: UML state diagram for Consumer after fixing behavioral prob-

lems. (Added event supply on transition from state Waiting_For_Supply to state

HaveJVloneyJJilLSpend.)
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gram in Figure 6.31 shows that each demand message from the Consumer, save the

last, is met with a supply message from the Producer. Lines 41—46 of the human-

oriented report in Figure 6.30 Show that the simulation ends with the Consumer in

its Waiting-For-Supp1y state and the Producer in its Sorry_Sold_Out state. The

simulation trace data can also be processed to create visualization instructions for

state diagram animation, not shown, that would end with steps highlighting the Con-

sumer’s Waiting-For_Supply state and the Producer’s Sorry-Sold-Out state. From

the state diagrams in Figures 6.28 and 6.29, we know that the Producer will never

respond to the final demand shown in the sequence diagram of Figure 6.31. The

Consumer deadlocks in its Waiting-For_Supply state.

One approach to address the issue of the unmet demand is to alter the model as

follows. Before accepting any demands from the Consumer, the Producer informs the

Consumer of the number of items in the current collection as defined by limited_ed.

The Consumer would thus have to add a new message with a parameter and an at-

tribute in which to store the parameter’s value. The Consumer then compares the

latest edition it has received (edition_num) with the total number of items in the

collection to determine when it has acquired the entire collection and can thus stop

sending demand messages. To explore the ramifications of this possible solution, we

would refine the diagrams, generate a Promela model from the intermediate represen-

tation once it has passed structural checks, and perform simulation or model checking

with Spin. However, this example has served its purpose of illustrating types of struc-

tural and behavioral visualizations, and so we do not refine it further.
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41
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43
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46

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

"_SYSTEMCLASS_" transitions from state "Initial" to state

"Create_Producer" on event "modelstart"

"_SYSTEMCLASS_" enters state "Create_Producer"

"Producer" transitions from state "Initial" to state

"Waiting_For_Demand" on event "modelstart"

"_SYSTEMCLASS_" transitions from state "Create_Producer" to state

"Create_Consumer" on event "OK"

"Producer" enters state "Waiting_For_Demand"

"_SYSTEMCLASS_" enters state "Create_Consumer"

"Consumer" transitions from state "Initial" to state

"Have_Money_Will_Spend" on event "modelstart"

"_SYSTEMCLASS_" transitions from state "Create_Consumer" to state

"Done" on event "OK"

"_SYSTEMCLASS_" enters state "Done"

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to state

"Advertise" on event "demand"

"Producer" enters state "Advertise"

"Producer" transitions from state "Advertise" to state

"Waiting_For_Demand" on event ""

"Producer" enters state "Waiting-For_Demand"

"Consumer" transitions from state "Waiting_For_Supply" to state

"Have_Money_Will_Spend" on event "supply(edition_num)"

"Consumer" enters state "Have_Money_Will_Spend"

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For-Supply"

"Producer" transitions from state "Waiting_For_Demand" to state

"Advertise" on event "demand"

"Producer" enters state "Advertise"

"Producer" transitions from state "Advertise" to state

"Waiting_For_Demand" on event ""

"Producer" enters state "Waiting_For_Demand"

"Consumer" transitions from state "Waiting_For_Supply" to state

"Have_Money_Will_Spend" on event "supply(edition_num)"

"Consumer" enters state "Have_Money_Will_Spend"

[three more cycles, manually elided]

"Consumer" transitions from state "Have_Money_Will_Spend" to state

"Waiting_For_Supply" on event ""

"Consumer" enters state "Waiting_For_Supply"

"Producer" transitions from state "Waiting_For_Demand" to state

"Sorry_Sold_Out" on event ""

"Producer" enters state ”Sorry_Sold_Out"

Figure 6.30: Trace data from Spin processed into l'niman-oriented report
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Figure 6.31: Sequence diagram corresponding to events depicted in Figure 6.30
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Chapter 7

Validation: Industrial Case Study

This chapter overviews the Adaptive Cruise Control project [77], which we obtained

from Siemens Automotive, and presents the results of a case study [40] we performed

in order to validate our approach. Recently, this type of system was presented as a

central part of an automotive collision avoidance system [78]. This chapter discusses

how the system has been modeled with UML, analyzed via the (generated) formal

model, and analysis results visualized in terms of both the original UML diagrams

and automatically generated sequence diagrams. Results include detection of incon-

sistencies between diagrams using static checking, detection of an error on a guard

using simulation and visualization, and deadlock detection in a critical brake scenario

using model checking and visualization of the counterexample. These discoveries led

to several refinements of the UML model.

7.1 Adaptive Cruise Control Project Overview

The Adaptive Cruise Control uses radar and an engine control module to control a

car’s speed when a vehicle, called the lead vehicle, is encountered in front of the

car. When it detects a lead vehicle, Adaptive Cruise Control re-commands the engine

control module to match the lead vehicle’s speed. The trail distance behind the lead
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vehicle is specified as the distance the lead vehicle travels in a given amount of time

(usually two seconds). If the Adaptive Cruise Control-equipped car closes to within

90% of the specified trail distance (called the safety zonel) behind the lead vehicle,

an audio warning must be sounded and the cruise disengaged. Otherwise, the system

must match the speed of the lead vehicle while maintaining a trail distance close to

the specified optimum trail distance, but never less than the safe distance. Speed

matching should continue until either the lead vehicle moves out of the radar’s range

(by speeding up or turning) or until the car’s driver applies the brakes.

Figure 7.1 depicts the most common situations. Line 1 defines the various zones

the control algorithm uses; Appendix D, page 248, provides more details. Line 2

depicts the radar acquiring the lead vehicle at about 400 feet, the range of the radar,

at which time a periodic calculation is initiated to determine how long to maintain

the current cruise speed. During this time, the car is in the closing zone. As soon as

the relative speed and distance calculation determine coasting should be initiated, the

system commands the engine control module to match the speed of the lead vehicle.

The lead vehicle’s speed is easily determined from two or more distance samples and

the car’s current speed. Because the car has inertia, the command to set the engine

to a slower speed effectively results in the car decelerating until it assumes the correct

trail position as shown on lines 3 and 4. Finally, line 4 shows the car having achieved

the proper trail position of approximately two seconds behind the lead vehicle. If the

radar loses the lead vehicle (e.g., vehicle turned or the car driver changed lanes), then

the initial cruise speed is resumed.

If the system determines that the closing speed is too fast, such that a collision is

unavoidable without driver action, then it must produce visual and audio warnings,

but not disengage the system. This behavior allows the driver to change lanes without

 

1The safety zone is approximately 1.8 seconds of lead vehicle travel, or approximately 185 feet

at 70 miles per hour. While this distance between vehicles may appear small, human drivers often

use much smaller trail distances.
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Figure 7.1: Common situations the Adaptive Cruise Control system must handle.
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affecting the current cruise speed. Such a situation is shown on line 5 (Figure 7.1).

The system will disengage only when the safety zone is entered, or when the driver

applies the brakes. Otherwise, all unsafe conditions result in visual and audio warn-

ings to the driver, line 6. (The preceding definitions are summarized in Appendix D,

page 248.)

7 .2 UML Modeling for Case Study

After discussing prose requirements with project engineers, we created an initial model

that supports the main functionality of the system in the absence of exceptional be-

havior. The motivation for this approach is to establish and rigorously analyze normal

operation of the system, and to add exception cases as later refinements. The initial

UML diagrams created to model the system call for the Adaptive Cruise Control-

equipped car to detect a slower-moving lead vehicle, calculate the appropriate trail

distance, close on the lead vehicle, and decelerate to match the lead vehicle’s speed.

The system also warns if collision is imminent and disengages the system when the

safety zone is violated. Exceptional behavior, such as the lead vehicle accelerating, de-

celerating, turning, or changing lanes, the driver changing lanes, applying the brakes,

or turning off the cruise control, or the radar losing the target, is not examined in

the initial version of the model. Furthermore, based on discussions with project engi-

neers, several abstractions were made in order to make the model tractable for model

checking. These abstractions are noted in the following paragraphs.

The initial class diagram for the Adaptive Cruise Control system is shown in Fig-

ure 7.2 (portions highlighted in bold will be discussed in Section 7.3). In our modeling

approach, each class has a state subdiagram that describes its behavior. Additionally,

a system is represented by a _SYSTEMCLASS_ class that is an aggregate of classes

representing its main components, and a special class, Environment, that represents
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the context or the environment for the system and can provide external stimuli to

the system.

As shown in Figure 7.2, the three main classes that comprise the Adaptive Cruise

Control system are Control, Car, and Radar. (Appendix D, page 248, contains a

detailed explanation of these classes’ attributes and signals.) Sensors, actuators, and

the target vehicle are not represented explicitly but have beenabstracted. The Car

reports its current speed on request, and the Radar (for modeling purposes) calculates

the distance to the target based on the Car’s speed and the target vehicle’s speed

(represented in the model as attribute vt of Radar) rather than obtaining actual

radar samples. Control accepts input from the driver (represented by the Environment)

either to set the desired cruising speed by activating the Radar and controlling the

throttle via adjustments to the Car’s speed, or to disengage the system in the event

that the driver applies the brakes. Once the Radar has been activated by the Control,

it continually simulates scanning for a target and informs the Control of the distance

to the target. For modeling purposes, the Radar sampling rate is assumed to be once

per second.2 The Adaptive Cruise Control-equipped Car continually adjusts its speed

to match the desired speed as calculated by Control.

The initial state diagrams for the Car and Radar classes are shown in Figures 7.3

and 7.4 respectively (portions highlighted in bold will be discussed in Sections 7.3

and 7.4.1). Recall (Chapter 2) that the UML dynamic model or state diagram is

based on Statechart [62] conventions and describes the dynamic behavior of objects.

TYansitions are labeled with an (optional) event followed optionally by a guard, an

action list, and a message list.

Figure 7.3 describes the behavior of the Car class, which abstracts the speed

management functionality of an Engine Control Module. There are four concurrent

 

2The radar sampling rate was not specified in the Adaptive Cruise Control requirements [77].

Experimentation with more frequent sampling rates exceeded available memory for model checking

without clear benefit.
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Figure 7.2: Class diagram for Adaptive Cruise Control
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Figure 7.3: State diagram for Adaptive Cruise Control class Car
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partitions (delimited by dashed lines) to handle the main functionality of the Car.

Partition updatex continually adjusts the car’s speed (realv) to match the desired

speed as calculated by Control (setv). The rate of change is specified as 1.5 feet per

second (the distance scale for the model is tenths of a foot to give the Control algorithm

enough distance samples to be effectiv'e3). Partitions updatespd and DOGE’I‘SPD receive

the desired speed from Control and send the current speed to Control, respectively.

Partition DOUNSET handles an unset message from Control, indicating that the system

has been turned off.

Figure 7.4 (page 116) depicts the behavior of the Radar class. The Radar is off until

activated by the Control. Rather than modeling actual radar samples, which would

involve beam-intensity calculations and the possibility of losing the target, target

acquisition is represented in the model by the distance x to the target becoming less

than 400 feet (the range of the Radar), when the boolean flag tmode is set to true.

The Radar continually performs distance calculations and, after target acquisition,

informs the Control of the distance to the target.

We did not include multiple iterations of the Control state diagram in this chapter;

however, the final refinement of the diagram is included in Figure E2 in Appendix E,

page 254. (The corresponding Promela code for the Control class and its state diagram

is included in Appendix F, page 257.) For discussion purposes, the initial behavior of

Control is captured by Figure E2, minus the dashed and bold transitions which were

added as later refinements. The Control accepts a set message from the environment,

queries the Car for its current speed, and activates the Radar. After a target is

acquired, Control receives distance samples and begins periodic calculations for the

zones described in Figure 7.1, line 1 (page 111).

 

3Experimentation with finer distance scales exceeded available memory for model checking with-

out clear benefit.
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7.3 Structural Analysis

In this section, we briefly describe a few subtle structural errors detected by MINERVA

and Hydra, using visualization techniques to highlight the source of the errors.

In the case study, the tool suite detected that an instance variable setspeed was

included in the Control class but was not used, and that instance variable setspd was

used in the state diagram for the Control class but was missing from the Control class

(this error, if propagated to the Promela model, would cause a syntax error in Spin).

Visualizations for these two problems within MINERVA highlighted the class Control

and its instance variable setspeed as shown in bold in Figure 7.2 (page 114), and

also highlighted transitions and states in the state diagram for Control that used the

instance variable setspd (not shown). The actual error was due to the misspelling of

instance variable setspd in the Control class that resulted in an inconsistency between

the class diagram and the state diagram for the Control class.

Structural analysis also detected that the event care was used on a transition in

the concurrent partition updatex of the Car state diagram (Figure 7.3, page 115), but

there was no class that sent the signal care to class Car anywhere within the model.

As shown in bold in Figure 7.3, MINERVA highlighted the transition using the signal

care in the updatex partition. Instead of the signal com, the developer meant to

use the signal getv, a signal from the Radar requesting the current speed of the Car.

While this developer error, if not corrected prior to Promela generation, would likely

be discovered later during simulation or model checking with Spin when deadlock

occurred in state carO of the updatex partition, determining the exact cause of the

problem and automatically tracing it back to the diagrams would be difficult due to

its subtle nature.
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7.4 Behavioral Analysis

We use Spin in either simulation or model-checking mode to perform behavioral anal-

ysis of UML diagrams via their automatically generated formal model. MINERVA’s

visualization techniques playback simulation and counterexample traces within UML

diagrams, facilitating understanding of behavioral analysis results. Section 7.4.1 illus-

trates (via the Adaptive Cruise Control example) how simulation and visualization can

be used to detect and highlight errors in UML models. In Sections 7.4.2 and 7.4.3 we

model check several requirements-based properties against the Adaptive Cruise Con-

trol model to attempt to detect counterexamples in two situations: first, when the

car successfully trails the lead vehicle; and second, when the car approaches the lead

vehicle too quickly to avoid entering the safety zone. Finally, in Section 7.4.4, we use

model checking and visualization to detect and highlight errors in a refined version

of the model that includes the driver applying the brakes.

In our approach, we use requirements—based properties and model checking to

detect counterexamples in order to validate UML models. That is, we are looking

for counterexamples (indicating flaws in a UML model) rather that trying to verify

correctness of a model. In this chapter, the phrase “verified successfully” means that

Spin did not produce a counterexample in an exhaustive search of the generated state

space, while “failed” means that the property did not hold, and Spin did produce

a counterexample. The number of transitions explored, which Spin reports as a

combination of the number of states stored, matched, and visited during a verification,

is a measure of how much work Spin performed. We used Spin version 3.3.3 with the

default memory allocation on a Solaris-based Spare Ultra—60 workstation with 238

megabytes of free RAM and 305 megabytes of available swap space on disk. Unless

otherwise noted, Spin’s default memory allocation was sufficient for complete coverage

of the state space for each property.
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7.4.1 Simulation of Preliminary UML Diagrams

Simulation revealed an error in a constant used in a guard on several transitions in the

Radar state diagram. During initial simulation, the model ran until the Radar issued

a target message indicating that a vehicle had been detected at (presumably) about

400 feet (the situation depicted in Figure 7.1, page 111, line 2). However, Control

then immediately raised an alarm that the car was too close to the target (i.e., had

violated the safety zone), and shut the system down. This behavior was unexpected,

as the car should have closed with the lead vehicle and achieved proper trail distance.

The simulation trace data from Spin was processed by MINERVA to generate the

sequence diagram in Figure 7.5 that reveals that the initial distance sent to class

Control by the Radar after target acquisition was around 30 feet, which is much too

small (the initial distance should have been close to 400 feet, the range of the Radar).

Because class Radar generates the target event signifying target acquisition and sends

distances to class Control, the state diagram for class Radar was a logical place to look

for the problem.

The problem was found quickly by reviewing an animation of the Radar state

diagram within MINERVA. This diagram is shown in Figure 7.4 (page 116). As

mentioned previously, during the design of the Adaptive Cruise Control model we

decided that the distance scale would be tenths of a foot, which gives the Control

class enough distance samples to be effective without making the model intractable.4

For example, 400 feet in the model is represented as 4000. However, in the Radar

state diagram, the guards on state r3 (shown in bold in Figure 7.4) to test whether

a target message should be sent were inadvertently coded in the UML state diagram

for Radar as 400 instead of 4000. This developer error had the effect of issuing a

target message to class Control at approximately 30 to 40 feet, which does not allow

 

4Using a radar sampling rate of once per tenth of a second and a distance scale of hundredths of

a foot causes about ten times more transitions per execution path explored during model checking,

exceeding available memory without clear benefit.
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Figure 7.5: Sequence diagram from simulation.
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sufficient time for the car to react.

When the guards in the Radar state diagram were changed to use 4000, the Promela

model regenerated, and the simulation repeated, then the model ran as expected. A

target message was sent around 400 feet, and the car closed with the lead vehicle to a

distance of 186.5 feet. Afterwards, the car maintained proper trail distance for several

minutes of simulated time until the simulation was terminated manually (without an

external event, the car would trail the lead vehicle indefinitely). While this error was

simple to fix once we detected it using MINERVA’s sequence-diagram generation5 and

state-diagram animation of the Spin simulation trace data, relying solely on visual

inspection of the UML diagrams might have meant that the error would be propagated

through the design, coding, and testing stages before being detected.

7.4.2 Model Checking Initial UML Diagrams

Recall that this version of the model represents a typical scenario, where the Adaptive

Cruise Control detects a slower-moving lead vehicle, calculates the appropriate trail

distance, closes on the lead vehicle, and decelerates to match the lead vehicle’s speed.

The system also warns if collision is imminent and disengages the system when the

safety zone is violated. In this section, we focus on the situation where the initial

values for the speeds of both the car and the lead vehicle as well as the initial distance

between them ensure that the car does not enter the safety zone. We examine several

LTL variations of two requirements in an attempt to detect counterexamples.

Requirement: Normally, the car eventually matches the lead vehicle’s

speed. When the Adaptive Cruise Control is on and detects a lead vehicle, the re-

quirements state that the car should eventually match the lead vehicle’s speed. In

terms of the model, this property could be expressed a number of different ways:

 

5 MINERVA’s sequence diagram depicts communication between UML objects whereas Spin gen-

erates message sequence charts (MSCs) in terms of Promela processes.
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( []( sent(Control.target) -> (1)

<>(Car.realv == Radar.vt) ) )

says it is always (U) the case that when class Control receives a target message (i.e.,

a target has been acquired), eventually (O) the speed of the Car (realv) will match

the speed of the lead or target vehicle (vt as obtained by the Radar).

The above property may be modified slightly to hold only after Control receives

a set message (i.e., the cruising speed has been set) using Dwyer et al.’s response

specification pattern6 with an after scope ( [] (q -> [] (p -> <>s)) ) [43], which

says that s responds to p after q:

( []( sent(Control.set) ->
(2)

[]( sent(Control.target) ->

<>(Car.realv == Radar.vt) ) ) )

This modification accurately reflects both the requirements and the model of the sys-

tem, because the Radar will not issue target messages until after it has been activated

by the Control.

Finally, we may choose to interpret the property as follows. The algorithm used

for calculating trail distance and controlling the speed of the car sets a boolean flag,

closing, to true after the car has become close enough to the lead vehicle that the

car can begin decelerating. The property

( []( Control.closing -> (3)

<>(Car.realv == Radar.vt) ) )

says it is always the case that after the closing flag has been set to true, eventually

the speed of the Car will match that of the lead vehicle.

These three claims were verified successfully with Spin, exploring approximately

1.14 million, 1.4 million, and 1.08 million transitions respectively.

Requirement: Normally, the car should not enter the safety zone. Under

normal circumstances, the car should trail the lead vehicle at a safe distance as

 

6Chapter 2, Section 2.2.4, contains a brief overview of specification patterns [43].
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calculated by the Control’s algorithm. At no time should it enter the safety zone,

as defined on line 1 of Figure 7.1. This requirement can be expressed as a system

invariant

( [l(Control.zi <= Control.x1) ) (4)

meaning it is always the case that the calculated minimum safe distance from the lead

vehicle (21) is less than or equal to the last sampled distance to the lead vehicle (x1).

The property is verified successfully in less than 270,000 transition explorations.

7.4.3 Model Checking After Changing Default Conditions

The system must warn if collision is imminent and disengage the system when the

safety zone is violated. In this section, we focus on the situation where the car

approaches the lead vehicle too quickly to avoid entering the safety zone. We modify

the UML diagrams used in Section 7.4.2 to adjust some of the initial values (e.g.,

decrease vt, the speed of the lead vehicle as obtained by Radar), thus creating such

a situation. Then we automatically regenerate the corresponding formal model and

re-examine Property 4, which fails as expected (i.e., the car enters the safety zone),

and examine LTL versions of two related requirements:

Requirement: Entering the safety zone disengages (turns off) the sys-

tem. Once the car has entered the safety zone, it is too close to the lead vehicle

to avoid a collision; so the cruise control must be disengaged. In terms of the UML

diagrams, disengaging the system means that the Control class returns to its idle

state and the Radar class returns to its r_off state:

( []( (Control.x1 < Control.z1) -> (5)

<>( in(Control.idle) & in(Radar.r_off) ) ) )

This property is verified successfully in less than 220,000 transition explorations.

Requirement: If collision is imminent, yet the car is still outside the

safety zone, then do not begin disengaging the system until the car enters
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the safety zone. We say a collision is imminent if the Control algorithm determines

that a collision will occur without action on the driver’s part. However, the Control

will not begin disengaging the system until the car enters the safety zone so that the

driver may change lanes without slowing down.

We can express this requirement using Dwyer et al.’s absence pattern with a

between scope ( [1((q 85 !r & <>r) —> (!p U r)) ) [43], which says that p is false

between q and r:

( []( ( (Control.xl < Control.xhit) & (6)

~(Control.x1 < Control.zl) &

<>(Control.x1 < Control.zl) ) ->

( ~(in(Control.alloff) ) U

(Control.xl < Control.zl) ) ) )

where xhit is the calculated distance from the lead vehicle such that if the car were

that distance behind the lead vehicle and began decelerating immediately, it would

still hit the lead vehicle. This expression says that the Control will not enter its

alloff state (i.e., will not begin the process of disengaging the system) between

the time that collision is imminent, yet the car is still outside the safety zone, and

the time that the car enters the safety zone. The property is verified successfully in

approximately 342,000 transition explorations.

7.4.4 Model Checking New Driving Scenarios

All of the preceding requirements-based properties were checked against the initial

version of the Adaptive Cruise Control UML model (in two different configurations),

which uses only one event external to the system, set, sent by the Environment to

simulate the driver pressing a button on the steering column to activate the cruise

control. The scenarios involving other external events, such as the driver applying

the brakes, represent exceptional behavior and thus were not reflected in the original

UML diagrams. We now refine the initial Adaptive Cruise Control UML diagrams,
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specifically, the state diagram for Control that ultimately handles the brakes event,

to accept a brakes message issued by the Environment, thus simulating the driver

applying the brakes. These refinements are shown as dashed transitions in Figure E2

in Appendix E, page 254. In order to focus our analysis efforts, we study the situation

of when the brakes are engaged after the cruise control has been activated. After

regenerating the formal model, we examine the following requirement:

Requirement: Brakes disengage the system. If the brakes are applied while

Adaptive Cruise Control is controlling the speed of the car, then the requirements call

for turning off the cruise control and radar. In terms of the UML diagrams, complete

disengagement of the system is represented by the Control being in its idle state and

Radar being in its r_off state.

( []( sent(Control.brakes) -> (7)

<>( in(Control.idle) & in(Radar.r-off) ) ) )

Verification of the property failed initially, because the system model deadlocked

before Control could reach its idle state. State diagram animation and sequence

diagram generation within MINERVA using the trace data from the counterexample

given by Spin illustrated that Control (Figure E2) had stopped in state caroff after

the following sequence of events (shown in the generated sequence diagram in Fig-

ure 7.6). Upon entry to state calc, Control issued a getspeed message to the Car to

request its current speed, but before the Car had responded with a carspeed message,

a brakes message arrived. The brakes message caused the Control class to enter its

caroff state. A carspeed message, the response from the Car, was then at the top

of the message queue for Control;7 however, no transition from state caroff handled

message carspeed. The Control class deadlocked in state caroff. After an addi-

tional transition was added to state caroff to handle the carspeed message (shown

in bold in Figure E2) and the Promela model was regenerated from the updated

 

7Recall that McUmber’s formalization [31] uses queueing semantics. Spin outputs queue contents

at the end of a verification run.
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UIVIL diagrams, the property was verified successfully, although the verifier had to be

recompiled with the option -DMA=632 (suggested by Spin) when the default mem-

ory allocation proved to be inadequate. The verification explored approximately 3.9

million transitions.
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Figure 7.6: Sequence diagram representing counterexample.
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Chapter 8

Reflection: Cost and Applicability

In this chapter, we reflect on our approach to validating embedded systems require-

ments. Specifically, we examine two aspects of the approach: ( 1) the cost of instru-

menting the formal model in order to enable UML-oriented visualization, and (2) the

potential applicability of the approach to other application domains.

8.1 Cost of Instrumentation

In this section, we examine the cost of the visualization aspect of our overall

approach to validating embedded systems requirements. First, we overview our

instrumentation-based approach to UML-oriented visualization. Second, we define

the cost of this instrumentation in terms of the change in the Size of the formal

model’s state space. Third, we demonstrate the effect of instrumentation on formal

model derivation, formal model internal representation, and formal model state space

size using the Producer— Consumer model from Chapter 6 as an example. Fourth, we

measure the cost of our instrumentation-based approach to UML-oriented visualiza-

tion as applied to the Adaptive Cruise Control industrial case study from Chapter 7.

Fifth, we present general conclusions regarding the cost of the approach and outline

potential cost-containing enhancements to the approach.
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8.1. 1 Overview

As shown in Figure 8.1 (reprised for the reader’s convenience from Figure 4.1 in

Chapter 4), our overall approach to model development and analysis comprises both

a model development and analysis framework [40] and an existing formalization frame-

work [31, 33] that derives a formal (target language) model from a semi-formal (UML)

one according to mapping rules. In this section, we focus on the portion of our in-

tegrated frameworks shown in Figure 8.2(a). In Figure 8.2(b), the formalization

framework is instantiated with Hydra [31, 33] and McUmber’s Promela mapping

rules [31, 33], while the model development and analysis framework is instantiated

with our graphical editor/visualization environment MINERVA [47, 50, 51, 52, 40] and

the Promela analysis tool Spin [69]. Figure 8.2(b) illustrates that a set of Promela

mapping rules FpROM applied to a UML model It results in a derived Promela model

p. In other words,

FPROMO‘) 2' p. (8.1)

Also shown in Figure 8.2(b), our model development and analysis process applies the

behavioral analyses of Spin, A5p,N, to such a derived Promela model p. Results of

these behavioral analyses applied to p, denoted as 7',,, take the form of a trace through

the state space of p. In other words,

ASP1N(FPR0M(U)) = ASP1N(P) = Tp- (8-2)

Part of our model development and analysis process includes a mechanism for

visualizing behavioral analysis results (e.g., 7‘,,) in terms of the UML model u from

which a formal model (2162., p) was derived. For example, Chapter 6 describes several

UML-oriented visualizations, including state diagram animation, sequence diagram

generation, and collaboration diagram generation and animation. In order to enable

various UML-oriented visualizations, information about a UML model itself (e.g., in—
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Figure 8.1: Model development and analysis framework encompassing formalization

framework (reprised from Figure 4.1 in Chapter 4)
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formation about when a UML state is entered or when a UML transition is taken)

must be present in, or able to be inferred from, a formal model derived from it.

Because formal languages in general have no concept of UML, UML-model-specific

information must either be encoded in formalization rules from the beginning (poten-

tially expensive) or added to a formal model during the translation process, ideally

only when needed. For example, McUmber’s Promela formalization rules [31, 33]

take advantage of Promela’s built-in queueing mechanisms to handle communication

between Promela representations of UML state machines. Queue exchanges appear

in and can be extracted from Spin’s analysis results. However, a Promela model de-

rived with McUmber’s rules does not track which UML transition is currently enabled

during execution. Therefore, such information does not appear in Spin’s analysis re-

sults. Thus, McUmber’s rules enable UML sequence diagram generation (message

exchange), but not UML state diagram animation. To enable UML state diagram

animation for a model using McUmber’s rules, information about when a UML state

is entered and/or when a UML transition is taken must be added to the formal model

during the translation process.

Our approach to enable UML-oriented visualization has two parts. In the first

part, we push information about a UML model not already encoded in formalization

rules into the formal model derived from it as part of the translation process. This

information then manifests itself in the results of analyses performed on the formal

model. We depict this information as an asterisk (*) in Equations 8.3 and 8.4, which

are refinements of Equations 8.1 and 8.2, respectively. Equation 8.3 states that a set of

Promela mapping rules FpR0M applied to a UML model augmented with information

about u, u*, results in a derived Promela model augmented with information about

u, 19*. Equation 8.4 states that results of Spin’s behavioral analyses (Aspm) applied

133



ID p‘. dt‘

In the SH

retrieves

C'OII'S'E’I'IS

1r. Figup-

n. r .

Vix‘l‘ '1' -.
'* “(11126,

 



to p“, denoted as rp-, take the form of a trace through the state space of p*.

FPROM(U*) = 10* (8-3)

ASPIN(FPROM(U*)) = ASPIN(P*) = Tp‘ (8-4)

In the second part, a mechanism (i.e., the Analysis Result Processor in Figure 8.2)

retrieves such information about u, u*, from the (raw) formal analysis results and

converts it into visualization instructions in terms of the UML model (denoted as ’Uu

in Figure 8.2(b)). Because different formal analysis tools have differing outputs, this

mechanism is specific to the formal analysis tool used. Equation 8.5 illustrates the

visualization mechanism specific to Spin, V3pm, applied to Spin’s analysis results rp-.

VSP11v(ASP1N(FPROM(IUD) = VSPIN(ASPIN(p*)) = VSP1N(Tp’) = vu (8-5)

We call this approach to enabling UML-oriented visualization the breadcrumb ap-

proach, likening it to Hansel dropping breadcrumbs in the forest to mark the way

home [79].

The breadcrumb approach currently offers three options for pushing diagram in-

formation from a UML model into the formal model derived from it (in the sequel we

will refer to these options as breadcrumb options). We may choose to augment the

formal model with information about

a UML states only,

0 UML transitions only, or

0 both UML states and UML transitions.

Note that the default is to instrument no additional UML diagram elements. We

call this version of the breadcrumb approach naive because it affects an entire set of
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UML elements ( e. 9., all UML states of all state diagrams in a model) rather than

just a select subset of UML elements (e. 9., a group of user-identified “interesting”

transitions of all state diagrams in a model, only those UML states referenced in a

requirements—based property to be checked against the model).

In the case where we instantiate our model development and analysis framework

with the formal analysis tool Spin and our Spin-specific visualization mechanism,

these breadcrumb options transparently instruct MINERVA to add special print ac-

tions to UML states and/or UML transitions prior to their translation to Promela.

Hydra translates such an action added to a given UML state into a printf statement

in the corresponding Promela model indicating that the UML state has been entered.

Similarly, Hydra translates such an action added to a given UML transition into a

printf statement in the corresponding Promela model indicating that the transi-

tion has been taken. The Spin-specific visualization mechanism then searches Spin’s

analysis results for the output of these printf statements (i.e., the breadcrumbs).

8.1.2 Defining Cost

One of the most important issues in model checking is the size of a formal model’s

state space [70] (measured as the number of unique states in the state space). A

seemingly small change to a formal model (e. g., adding a printf statement) may

have a large effect on the size of its state space. Therefore, we must measure the cost

of the naive breadcrumb approach. As part of its analysis output, Spin reports the

number of unique states in a derived Promela model’s state space (i.e., the size of

the state space). For each of the three breadcrumb options applied to a given UML

model, we measure the change in the size of the corresponding derived formal model’s

state space. To obtain baseline measurements for a given UML model, we derive a

Promela model from the UML model without using any of the breadcrumb options

and then use Spin to perform a state space exploration of this Promela model. We
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use as a baseline the number of unique states in this Promela model’s state space.

For a Promela model derived with any one of the breadcrumb options, we measure

the change in the size of the state space as

(sizebrmdcrumb, - Sizebasezz‘ne)
(8.6) 

Slzebaseline

where sizebrmdaumbi is the size of the state space for a formal model generated with

the breadcrumb options

1. UML states only,

2. UML transitions only, or

3. both UML states and UML transitions;

sizebasehne is the size of the state space for a formal model generated with no bread-

crumb options; a positive result indicates an increase in the size of the state space;

and a negative result indicates a decrease in the size of the state space.

8.1.3 Producer- Consumer Example

To demonstrate the effect of each breadcrumb option on formal model derivation,

formal model internal representation, and formal model state space size, we use the

Producer-Consumer example from Chapter 6. For convenience to the reader, the

(final) UML diagrams for the Producer— Consumer example are reproduced here (Fig-

ures 8.3, 8.4, 8.5, and 8.6). Recall that the role of the SYSTEMCLASS. is to instan—

tiate the other objects of the system, as indicated by the “new” entry actions in the

states of the _SYSTEMCLASS_ state diagram in Figure 8.4.

Effect on formal model derivation. From the UML model of Producer-

Consumer, we derive the corresponding baseline Promela model (generated with no
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_SYSTEMCLASS_
 

  

 

  OK(): void
 

  
 
 

Producer
 

Consumer
 

limited_ed: int = 5

num_made: int = O

 

edition_num: int = 0
 

 

supply(int): void    
demand(): void   
 

Figure 8.3: Class diagram for Producer- Consumer

 

breadcrumb options), as well as Promela models generated with each of the three

breadcrumb options: UML states only, UML transitions only, and both UML states

and UML transitions. The Promela code for each of these four models is listed in

Appendix G (page 266) in Sections (3.1, G.2, G3, and G.4, respectively. Breadcrumb

options that transparently add print actions to a UML transition cause printf state-

ments to appear in the generated Promela code for that transition (e.g., Section (3.3,

page 278, line 93; Section G.4, page 285, line 107), while breadcrumb options that

transparently add print entry actions to a UML state cause printf statements to

appear in the generated Promela code for that state (e. 9., Section G2, page 272, line

32; Section G.4, page 285, line 99).

Effect on formal model’s internal representation. Recall (Chapter 2) that

McUmber’s Promela formalization [31, 33] maps each UML state diagram into a set

of proctypes (fiat UML state diagrams, such as those in the Producer- Consumer ex-
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entry/new(Consumer)
 

OK[]I

Figure 8.4: State diagram for Producer— Consumer class _SYSTEMCLASS-

 

 

demand[num_made < limited_ed]

/num_made := num_made + l 
 

 
A_SYSTEMCLASS_.OKf

._

KWaiting_For_Demand) []/"Consumer.supply(num_made) (Advertise I

[num_made >= limited_ed]/

@rry_Sold_O@

Figure 8.5: State diagram for Producer- Consumer class Producer
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A_SYSTEMCLASS_.OK

 
 

Have_Money_Will_Spend

 

supply(edition_num)[]/ []l"Producer.demand

 

Waiting_For_Supply

 

Figure 8.6: State diagram for Producer- Consumer class Consumer
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ample, are mapped into a single proctype each; z'.e., a singleton set). Spin internally

converts each proctype into a finite-state machine (FSM) with uniquely numbered

states and offers an option to display it. For example, the FSMs for the baseline

Promela model derived from the UML state diagrams of the _SYSTEMCLASS_, Pro-

ducer and Consumer are shown in Figures 8.7, 8.8, and 8.9, respectively. Each arc in

Figures 8.7, 8.8 and 8.9 corresponds to a Promela statement in the proctype derived

from the UML state diagrams of the _SYSTEMCLASS_, Producer, and Consumer, re-

spectively. Therefore, when breadcrumb options introduce printf statements into

a derived Promela model, each printf statement in a proctype becomes a new arc

and state in the FSM for that proctype. For example, the FSMs for the Promela

model derived from the UML state diagrams of the -SYSTEMCLASS-, Producer and

Consumer using the breadcrumb option “Both UML States and UML Transitions”

are shown in Figures 8.10, 8.11, and 8.12, respectively. Note that each one of these

FSMS (with instrumentation) has more unique states and arcs than its corresponding

baseline FSM (without instrumentation).
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Figure 8.9: Finite state machine for Consumer proctype, baseline
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Effect on formal model’s state space size. For each derived Promela model for

Producer-Consumer (i.e., one model derived without any instrumentation and one

model apiece derived for each of the three breadcrumb options), we then generate

and explore its state space with the following commands:

1. spin -a modelnamepr

Executes Spin on the Promela model modelname. pr (in this case, the automati-

cally generated Promela model for Producer— Consumer with a given breadcrumb

option, or lack thereof) with option -a. Option -a generates a verifier, a C pro-

gram file called pan. c that when compiled and executed performs an exhaustive

verification (i.e., exploration) of the model’s state space according to various

run-time options.

2. gcc -o modelname pan.c

Executes the gcc (GNU Compiler Collection) [80] C and C++ compiler on the

file pan. c and outputs the executable to a file named modelname.

3. modelname

Executes the file modelname, performing an exhaustive verification of the de-

rived Promela model’s state space (i.e., in this case, checking user-specified

assertions, or boolean conditions about the state of the model, and checking for

invalid endstates, or states in which the overall model’s execution ends before

each proctype has reached its final statement or with non-empty channels).

In the Producer-Consumer model, there are no user—specified assertions. The

analysis results (contained in Appendix H, page 294) indicate an invalid end-

state because at the end of execution, there is still one demand message left

in the queue for the Producer. Recall (Chapter 6) that we did not refine the

Producer-Consumer model further to handle this final message explicitly. For

the purposes of this discussion, we do not consider this invalid endstate an error.
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The verification generates the reachable state space of the model, a product of

the interleaved FSMs of the proctypes of the derived Promela model. At the end

of the verification, Spin reports the number of unique Promela states stored, i.e.,

the size of the state space. The Spin analysis results for exploring the state space of

the baseline Promela model and Promela models for the three breadcrumb options

for the Producer-Consumer example are shown in Appendix H in Figures H.1, H2,

H3, and H4, respectively. The size of the state space for each model is shown in

Figure 8.13. The amount of change in the size of the state space for the Producer-

Consumer example, as calculated by Equation 8.6 (page 136), for each breadcrumb

option is shown in Figure 8.14 (values have been rounded to two decimal places).
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Figure 8.13: Number of unique (Promela) states in formal model of Producer-

Consumer example for baseline and each breadcrumb option
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8.1.4 Cost of Instrumentation as Applied to Adaptive Cruise

Control

In this section, we consider the cost of our approach as applied to two Adaptive Cruise

Control UML models from [40]. The models are identical in every way except one. In

the first model, the Adaptive Cruise Control-equipped car acquires the lead vehicle as a

target, achieves the proper trailing distance, and trails the lead vehicle indefinitely. In

the second model, the (constant) speed of the lead vehicle (represented as an attribute

in the UML model) is set too low for the Adaptive Cruise Control-equipped car to

safely achieve the proper trailing distance. Thus, the cruise—control powers off almost

immediately. These models represent a normal or sunny-day and an exceptional or
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rainy-day scenario, respectively.

After generating the Promela model for each scenario, we apply Spin to the

Promela models as described in the previous section to obtain baseline measurements

for the size of the state space. Figure 8.15 shows the size of the state space for the

model of each scenario. Note that although the UML models and subsequently the

corresponding derived Promela models for each scenario are identical in every way

except the value of the lead vehicle’s speed, the state spaces of the formal models

for each scenario differ significantly in size. This difference is explained by the fact

that Spin takes into account only reachable states during analysis. The sunny—day

scenario exercises a large portion of the Adaptive Cruise Control UML (and thus its

corresponding formal) model, including several iterations through a calculation algo-

rithm to determine the proper trailing distance and car speed. On the other hand,

the rainy-day scenario exercises a much smaller portion of the Adaptive Cruise Control

UML (and thus its corresponding formal) model, determining on the first iteration

through the calculation algorithm that achieving a safe trailing distance is not possible

and shutting down the cruise control.

For comparison, we also generate three more Promela models for each scenario, one

for each of the three breadcrumb options, and perform analysis with Spin as described

in the previous section. For both scenarios, the change in the size of the state space

for each breadcrumb option is shown in Figure 8.16 (values have been rounded to

two decimal places). The amount of change across all breadcrumb options is slightly

larger for the rainy-day scenario. This effect is due to the smaller baseline state

space size of the rainy-day model. The baseline state space size is the denominator in

Equation 8.6 (page 136), so a similar absolute increase (decrease) in the state space

size between two models will yield a greater amount of change in the model with the

smaller baseline state space size.

We next examine Properties 1 — 4 from Chapter 7 (page 123) against the sunny-
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day scenario. The first three properties represent different ways in LTL to express the

Adaptive Cruise Control requirement that the car eventually matches the lead vehicle’s

speed, while the fourth property expresses the requirement that the car should not

enter the safety zone. The state space explored in each case is the product of the

formal model executed synchronously with the FSM for the given property. The

resulting state space size for each exploration is shown in Figure 8.17, while the

change in state space size is shown in Figure 8.18 (values have been rounded to two

decimal places). Although the state space size of the models for these properties vary

widely, the change in state space size across all the breadcrumb options for these

models is very similar.
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Figure 8.17: Number of unique (Promela) states in formal model of Adaptive Cruise

Control for Properties 1 — 4 checked against sunny-day scenario

 

Finally, we examine Properties 4 — 6 from Chapter 7 (page 124) against the rainy-
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day scenario. Property 4 expresses the requirement that the car should not enter the

safety zone, which produces a counterexample when checked against the rainy-day

model. Property 5 expresses the requirement that entering the safety zone disengages

the system, and Property 6 expresses the requirement that when collision is imminent,

disengagement does not occur until the car enters the safety zone. The resulting state

space size for each exploration is shown in Figure 8.19, while the change in state space

size is shown in Figure 8.20 (values have been rounded to two decimal places). The

state space size for the model checked against Property 4 is significantly smaller

than the other two because Spin detected a counterexample almost immediately and

terminated the analysis. Again, although the state space size of the models for these

properties vary widely, the change in state space size across all the breadcrumb options

for these models is very similar.

8. 1.5 Conclusions

Figure 8.21 shows, for all the models measured, the cost for each of the three bread-

crumb options as a function of state space size. The breadcrumb option Both UML

States and UML Transitions pushes the most information into the formal model,

instrumenting both UML states and UML transitions with print actions. As demon-

strated in Section 8.1.3, these print actions manifest as printf statements in the

Promela model, and as additional arcs in the FSMs for each proctype. Therefore

it is not surprising that this option incurs the most cost in terms of the amount of

change in the size of the state space for all the models measured (shown in Figure 8.21

as the dotted line). Beyond 100,000 states, the cost for this option drops below 15

percent. The breadcrumb option UML Transitions (solid line) appears the least

costly for the models measured, dropping below six percent beyond 100,000 states.

As current model checking endeavors may need to handle 1020 states and beyond, six

percent is a more practical bound.
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In addition to focusing on the UML Transitions breadcrumb option that appears

to incur the least cost of all the options, future work may consider various other

strategies to limit the cost of the breadcrumb approach while still providing relevant

feedback to the user. Three such strategies are outlined below:

User-selected elements. A selective approach to instrumentation of UML ele-

ments would, in general, incur less cost than the naive approach. To implement this

strategy, we would need to add to MINERVA the capability for the user to select

which UML elements to instrument and/or to ignore, Similar to setting breakpoints

in a debugging tool.

Elements in requirements-based properties. Automatically instrumenting

only those UML states and/or UML transitions involved in a requirements-based

property would, in general, incur less cost than the naive approach. Intuitively,

the elements involved in a requirements-based property are of interest and should

be instrumented. To implement this strategy, we would need to add to MINERVA

the capability to automatically instrument the UML states and/or UML transitions

involved in a requirements-based property.

Combination strategy. While either of the above two strategies would, in general,

incur less cost than the naive approach, the first offers no guidance to users as to

which elements(s) to instrument, while the second instruments only a small subset

of UML elements of possible interest to the user. A combination strategy would

automatically instrument elements involved in a requirements-based property thus

giving a starting point for visualization of formal analysis results. However, this

strategy would also enable the user to select additional UML states and/or UML

transitions for instrumentation in order to extend the focus of visualizations.
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8.2 Applicability of the Approach to Other Do-

mains

This research applies UML formalization to enable developers to use automated tools

to validate embedded-systems requirements. Specifically, we describe a model de-

velopment and analysis framework that integrates an existing formalization frame-

work ]31, 33], and a model development and analysis process for a specific instanti-

ation of the integrated frameworks (Chapter 4). This process systematically applies

the steps of model creation, formal model generation, formal specification transla-

tion, model analysis, and visual interpretation of analysis results. In this section, we

discuss the applicability of the presented approach to other application domains.

Our instantiation of the model development/analysis and formalization frame-

works with tools MINERVA [40, 47, 50, 51, 52], Hydra [31, 48], and Spin [69] in-

corporates several assumptions relevant to the embedded systems domain that may

preclude the use of the approach for other application domains. These assumptions

include the use of state diagrams to model requirements, static model configurations,

and object-level concurrency with single-threaded objects. Below, we discuss the

ramifications of these assumptions:

Use of state diagrams. This approach uses state diagrams to model requirements.

Therefore, other application domains that might be able to use this approach are those

that typically rely on state diagrams to model requirements (e. g., controllers, reac-

tive systems, some user interfaces). Application domains that are not traditionally

modeled with state diagrams, such as databases, would not use this approach.

Static model configurations. Embedded systems are control systems with static

configurations; that is, objects are not dynamically created and destroyed during ex-

ecution. McUmber’s Promela formalization rules [31, 33], realized in Hydra [31, 48],
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make this assumption. Therefore, application domains that typically have dynamic

configurations where objects are created and destroyed on-the—fiy, such as user inter-

faces, would not use this approach.

Object-level concurrency and single-threading. Our approach to modeling

embedded systems requirements assumes that each object has a single thread of con-

trol, and that all objects in the system execute concurrently. Again, McUmber’s

Promela formalization rules [31, 33], realized in Hydra [31, 48], make this assump-

tion. Therefore, this approach would not be applied to multi-threaded applications,

or applications with many passive objects such as user interfaces.
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Chapter 9

Extension: A Pattern-Driven

Approach to Fault Handling

High-assurance systems must deliver their services in a manner that satisfies cer-

tain critical properties, which may include fault-tolerance properties [81]. A fault-

tolerant system provides a certain guaranteed level of service despite the presence of

faults (e. 9., hardware failures, environmental anomalies, dangerous or illegal system

conditions). This chapter discusses how we can extend our modeling and analysis

framework with patterns for handling fault-tolerance requirements.

Faults manifest themselves as errors (e. 9., a flag indicating a hardware error is

set, a value is out of acceptable range), that in turn lead to system failure, i.e.,

the system deviating from desired or acceptable behavior. The relationship between

faults, errors, and failure is shown in Expression (9.1).

fault —> error —> failure (9.1)

According to Lee and Anderson [82], there are four phases of fault tolerance that,

taken together, prevent faults from leading to system failure:
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1. Error detection. While a fault itself cannot be detected, the presence of a

fault generates detectable error conditions.

2. Damage confinement and assessment. Because it is more likely than not

that a delay has occurred between the occurrence of a fault and the detection of

the offending error condition(s), overall damage to the system must be assessed

before recovery is attempted.

3. Error recovery. Recovery techniques bring the system back into a well-defined

and error—free state.

4. Fault treatment and continued system service. Detecting an error condi-

tion does not necessarily unambiguously identify the fault that caused it (i.e.,

several different faults may cause the same error condition to arise). Ideally, the

particular fault that caused the error condition to arise is identified and treated

so that it does not recur. This phase differs from the previous three phases in

that it addresses faults themselves rather than their resulting error conditions.

In this chapter, we focus on Lee and Anderson’s phase 1, error detection, and

phase 3, error recovery or correction. First, we provide an overview of two fault-

tolerance concepts, namely error detection and error correction, and introduce three

Detector- Corrector Patterns for modeling these concepts in UML. Second, we summa-

rize Konrad and Cheng’s object analysis patterns1 [1] for (non-distributed) embedded

systems; i.e., templates in the spirit of design patterns [83] that include example

UML class, state and sequence diagrams describing structural and behavioral pat-

terns common to embedded systems. Object analysis patterns, and their included di-

agram templates, guide developers in modeling embedded systems requirements with

UML. A given object analysis pattern also includes constraints [53], specification-

pattern-based [43] temporal logic templates for properties of interest with respect to

 

1Object analysis patterns [1] were formerly termed requirements patterns [2, 3, 4].
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the object analysis pattern providing their context. These temporal logic templates

guide developers in specifying and instantiating requirements-based properties appro-

priate to check against a UML model created using the given object analysis pattern.

Object analysis patterns and their constraints can be used to drive our model de-

velopment and analysis process presented in Chapter 4. Third, because this chapter

focuses on patterns for fault tolerance, we overview a specific requirements patternz,

the Fault Handler requirements pattern [2, 3, 4], that describes how to incorporate a

centralized FaultHandler into an embedded system. While this requirements pattern

provides a state diagram template for the ComputingComponent of an embedded sys-

tem, it does not give any modeling guidelines for the behavior of the FaultHandler.

Therefore, using our previously introduced Detector-Corrector Patterns, we next ex-

tend the original Fault Handler requirements pattern with both a revised UML class

diagram template and a new UML state diagram template for the FaultHandler. We

then extend the underlying formalization framework with semantics for centralized

fault handling. Finally, we apply this pattern-driven approach to the Adaptive Cruise

Control example from Chapter 7.

9.1 Detectors and Correctors

To facilitate the modeling and analysis of fault-tolerance requirements, we propose

to explore how the concepts of detectors and correctors from the fault-tolerance com-

munity [57] can be used to develop structural patterns for modeling fault-tolerance

in non-distributed embedded systems. A detector is a system component that “de-

tects” whether some state predicate (i.e., a boolean expression over system variables)

is satisfied by the system state [57]. Examples of detectors in embedded systems

 

2At the time of this writing, object analysis patterns for fault handling were still under develop—

ment. This chapter presents preliminary work in revising the original Fault Handler requirements

pattern. The overall pattern-driven approach to model development and analysis, first presented

in [41], remains the same whether the patterns are termed requirements patterns or object analysis

patterns.
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include comparators, watchdog programs, and exception conditions. A corrector is a

system component that “corrects” the system state (i.e., adjusts the values of system

variables) in order to satisfy some state predicate whenever it is not satisfied [57].

Examples of correctors in embedded systems include reset procedures and exception

handlers.

In this work, we model specific types of detectors and correctors as classes in the

UML class diagram as shown in Figure 9.1. The detector attribute of a PredicateDe-

tector is modeled as a boolean expression over system variables, while the corrector

attribute of an ActionCorrector is modeled as a sequence of actions adjusting the val-

ues of system variables. Modeling detectors and correctors as classes rather than as

data types allows us to model the relationships between them with associations. A

detector can be modeled without a corrector, as denoted by the arity of the “corrected

by” association in Figure 9.1. Such a detector can be used to prevent a system from

entering an undesirable state. Otherwise, a detector can be used together with a

corrector that restores the system to a desirable state, as denoted by the arity of the

“responds to” association in the figure. The type boolExprString indicates that the

value of the PredicateDetector attribute detector is a string that should be parsed as

a boolean expression, where the terms are constants, or referencesto attributes from

the aggregating class or from other classes in a UML model. Attributes may be com-

pared with constants or with other attributes. The type actionSeqString indicates

that the value of the ActionCorrector attribute corrector is a string that should be

parsed as a sequence of UML actions that adjust the values of system attributes (i.e.,

attribute assignments or message sends). Because we model detectors and correctors

in UML class diagrams as aggregated classes, PredicateDetector and ActionCorrector

attributes (detector and corrector, respectively) may then be referenced in the

UML state diagram owned by the aggregating class.3

 

3Recall (Section 2.2.5, page 25) that according to MCUmber et al.’s diagram integration conven-

tions, 8. state diagram expressing the behavior of a class is said to be owned by the class.
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Figure 9.1: Modeling detectors and correctors in the UML class diagram

 

Thus far, we have determined three patterns for modeling detectors and correc-

tors in UML. We refer to these patterns collectively as Detector- Corrector Patterns.

Figures 9.2, 9.3, and 9.4 illustrate patterns 1, 2, and 3, respectively. In the first pat-

tern (Figure 9.2), a detector is modeled without a corresponding corrector. There are

no associations between the detector and any corresponding corrector. For example,

the PredicateDetector in the class and object diagrams in Figures 9.2(a) and 9.2(b)

is not associated with any ActionCorrector. Detectors modeled without correctors are

used to prevent entry to a particular state when the error condition detected by the

detector is true. For example, in one of our case studies, the Diesel Filter System

(DFS) [41, 84] may not enter its cleaning cycle if the current system pressure is below

8,000 or above 10,000 Pascals (Pa). We model this usage in the UML state diagram

with a negated detector as a guard on transitions targeting a particular state in order

to permit entry to the state when the error condition detected by the detector is false

(e. g., the DFS may enter its cleaning cycle if the current system pressure is between

8,000 and 10,000 Pa). The detector is used as a guard on other transitions in order to

transition to another state when the error condition detected by the detector is true

( e. 9., when the pressure is above 10,000 Pa, the DFS shuts down). In the example

state diagram in Figure 9.2(c), corresponding to the object diagram in Figure 9.2(b),
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it is undesirable to enter State-w2 when the condition detected by PD is true. There-

fore, the condition ! (PD . detector), the negated detector, guards the transition from

State_Wl to State-w2 (i.e., if the condition detected by PD is false, then entering

state State..w2 is permissible). Additionally, the condition PD.detector guards an-

other transition from State_Wl to a desirable state when the condition detected by

PD is true (i.e., a state other than State-w2).

 

  

      

   

 

      

Class W : Class

PredicateDetector PD : PredicateDetector

(a) Class diagram (b) Object diagram

    
[!(PD.detector)]

State_W2 [PD.detector]i
[State_W3

(c) State diagram

Figure 9.2: Pattern 1 for modeling detectors and correctors

 

In the second pattern (Figure 9.3), both a detector and its corresponding corrector

are aggregated by the same class. There are associations between the detector and its

corresponding corrector. For example, the PredicateDetector and ActionCorrector in

the class and object diagrams in Figures 9.3(a) and 9.3(b) have associations between
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them. These associations relate a particular detector with a particular corrector, since

different error conditions most likely require different corrective actions. For example,

in the Integrated Starter/Generator (ISG) [85] project, if the ISG is in running power

generation mode, then low battery voltage requires that drive assist be disabled,

whereas excessive battery charge requires that the charging system be turned off.

This relationship between a detector and its associated corrector carries over into the

state diagram, as illustrated in Figure 9.3(c). For illustrative purposes, the transition

from State.“ to State_X2 in the state diagram (that corresponds to the object

diagram in Figure 9.3(b)) is annotated with the detector PD.detector, as a guard,

and its corresponding corrector AC. corrector, as an action sequence. The transition

is enabled when the condition detected by PD is true. Firing the transition performs

the corrective action described by AC.

In the third pattern (Figure 9.4), corresponding detectors and correctors are ag-

gregated by two different classes. For example, in the Anti-Lock Braking System

(ABS) [53, 86] project, a centralized FaultHandler activates a redundant brake sen-

sor when a Watchdog detects that the primary brake sensor has failed. There are

associations between the detector and its corresponding corrector as illustrated in

Figures 9.4(a) and 9.4(b). These diagrams also show the PredicateDetector PD aggre-

gated by object Y, while object Z aggregates its corresponding ActionCorrector AC.

In this pattern, the detecting object (e.g., Y) must somehow inform the correcting

object (e. g., Z) that a specific error condition has been detected in order to take the

appropriate corrective action. In the state diagrams for Y and Z in Figure 9.4(c) that

correspond to the object diagram in Figure 9.4(b), this information is imparted via a

parameterized signal message that Y sends to Z when the condition detected by PD

(via a guard on a transition in the state diagram of Y) is true. The class of object

Z must have declared the parameterized signal message, and the parameter error,

in the class diagram in order for Z to use message as an event on a transition in its
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Figure 9.3: Pattern 2 for modeling detectors and correctors
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state diagram. If 2 aggregates more than one ActionCorrector, then there must be

more than one transition handling the signal message, with each guard testing the

parameter value against known error codes to determine the appropriate transition

to fire, and thus the corrective action sequence to perform.

9.2 Object Analysis Patterns and Constraints

Konrad and Cheng have identified several patterns to describe requirements for the

main elements of an embedded system [1, 2, 3, 4]. Figure 9.5 gives a list of the object

analysis patterns4 that have been identified to date with a brief description of each.

The complete set of object analysis patterns and their full descriptions are given else-

where [1]. In order to address the needs of requirements engineering, they developed

a template to describe these object analysis patterns [1, 2, 3, 4] by modifying the orig-

inal design pattern template [83]. Such modifications include extending the original

design pattern template with a Constraints field [53] that contains specification-

pattern—based [43] representations of properties of interest.

Object analysis patterns can provide both guidance to novices of embedded sys-

tems development for determining the key elements of many embedded systems, and

examples of how to model these elements with a commonly accepted diagramming

notation, UML. Additionally, object analysis pattern constraints provide a template

for instantiating properties specific to a modeled system in terms of the UML dia—

grams describing the system. Thus far, the constraints have included representations

of two of Dwyer et al.’s [43] most commonly used general specification pattern cate-

gories, universality/absence (to capture invariant properties) and response (to capture

cause/effect relationships in system behavior).

Preliminary feedback from industrial collaborators indicates that object analy-

sis patterns can be an effective mechanism for describing requirements of embedded

 

4Object analysis patterns were formerly termed requirements patterns.
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(c) State diagrams

Figure 9.4: Pattern 3 for modeling detectors and correctors
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o Actuator-Sensor: The Actuator-Sensor pattern specifies basic types of

sensors and actuators in an embedded system. In addition, the interaction

with the environment via sensors and actuators is one of the main respon-

sibilities of an embedded system. Therefore, the pattern also describes

how relationships between actuators and sensors and other components

in the system can be captured.

0 Communication Link: Due to the growth in demand for distributed

real-time embedded systems, communication capabilities are becoming

more important. The Communication Link pattern describes how to cap-

ture high-level information about communication capabilities offered by

an embedded system, such as sending periodic “heartbeat” messages to

other systems.

0 Computing Component: Embedded systems have to offer various oper-

ational modes as they often function in an environment where a shutdown

of the system would lead to a significant loss. In this pattern, various op-

erational modes of an embedded system are specified, such as fail-safe

modes that a system enters in response to occurring faults.

0 Controller Decompose: This pattern describes how to decompose an

embedded system into different components according to their responsi-

bilities. It is the foundation upon which all other patterns are based. It

introduces a high-level view on an embedded system and refers to other

object analysis patterns for refinement.

0 Fault Handler: Fault banding is crucial for embedded systems. In

this pattern, a fault handler for an embedded system is specified. The

fault handler collects fault messages from various sources and initiates

corresponding recovery actions.

0 User Interface: User interaction is an important aspect of an embedded

system. The system interacts with the user via so—called controls and indi-

cators. Differing from sensors and actuators, interaction via controls and

indicators is usually not as tightly constrained (e.g., timing constraints

are less strict). The User Interface pattern describes how to specify an

object model for a user interface that is extensible and reusable.

o Watchdog: Embedded systems commonly have tight timing and oper-

ational constraints. Monitoring these constraints and ensuring that they

are not violated is the responsibility of a so-called watchdog. The watch-

dog monitors a device or system conditions and initiates corrective ac-

tion(s) if a violation is found.

Figure 9.5: Current list of object analysis patterns for embedded systems [1]
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systems. Furthermore, by adding specification-pattern-based [43] representations of

properties to the Constraints field of the object analysis pattern template [53], de-

velopers have some guidance as to what kinds of properties can be checked for a given

system when a particular pattern is applied. The specification patterns [43] used in

conjunction with object analysis patterns [1, 2, 3, 4] enable even novice developers

to easily formulate claims to check the system for specific constraints. Then using

McUmber’s formalization work [31, 33] and our model development and analysis pro-

cess (Chapter 4), developers have a mechanism to rigorously check the requirements

using simulation and model checking techniques [53, 41].

9.2.1 Object-Analysis-Pattern-Driven Modeling and Analy-

sis

Figure 9.6 illustrates how object analysis patterns [1, 2, 3, 4] and constraints [53] can

be used to drive the iterative model development and analysis process described in

Chapter 4. The user begins by selecting appropriate object analysis patterns based on

the requirements of the system. Using the structural and behavioral diagrams in the

object analysis patterns as a guide, the user constructs UML class and state diagrams

in MINERVA’S graphical editors (Figure 9.6, part A). Hydra performs consistency

checks (Figure 9.6, part B), and MINERVA visualizes structural consistency-checking

results (dash-dotted arc in Figure 9.6, part F). (See Chapters 5 and 6 for details of

these capabilities.) Hydra then generates formal models from textual representations

of UML diagrams (Figure 9.6, part C); these formal models can be used to validate

the UML diagrams through simulation using Spin (Figure 9.6, part D). Furthermore,

constraints from the object analysis patterns can guide novices in constructing for-

mal properties to check against their UML models. The user may instantiate (as LTL

claims) properties from the Constraints field of those object analysis patterns used

to guide the modeling of the system (Figure 9.6, part E). These LTL claims, defined
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in terms of attributes, signals, and states of the UML model, can then be checked

against the UML diagrams (Figure 9.6, part D) through model checking using Spin.

Finally, MINERVA visualizes behavior simulation and counterexample traces (solid

arc, Figure 9.6, part F) via state diagram animation, generation/animation of collab—

oration diagrams, and generation of sequence diagrams (Chapter 6), thus facilitating

the debugging and refinement of the original UML diagrams. A complete example

applying this process to an industrial case study can be found in [41] (where object

analysis patterns were termed requirements patterns).
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9.3 Fault Handler Requirements Pattern

Because this chapter focuses on patterns for handling fault-tolerance requirements,

we next overview a particular requirements pattern, the Fault Handler requirements

pattern [2, 3], that describes how to incorporate centralized fault handling into an

embedded system (the complete Fault Handler requirements pattern is included in

Appendix I). The pattern contains the UML class diagram template shown in Fig-

ure 9.7 that suggests a structure or architecture for an embedded system with a

centralized FaultHandler. A Watchdog, Examiner, or Monitor monitors a given Device

and reports errors to the FaultHandler (the Device itself may also report errors to

the FaultHandler). Based on the particular error message received, the FaultHandler

performs an appropriate recovery action, such as sending a message to the Com-

putingComponent (to initiate transitioning to a designated “safe” state, described in

the next paragraph), the Userlnterface (to give warning feedback to the user), or a

FailSafeDevice (to activate a redundant Device, such as a backup sensor, in case of

hardware failure).

The original Fault Handler requirements pattern as developed by Konrad and

Cheng [2, 3, 4] also contains a UML state diagram template for the Computing-

Component of an embedded system, as shown in Figure 9.8. The diagram template

includes many different UML states, including either acceptable recovery states or

“safe” states for the system (not all recovery states will be required by every sys-

tem). Generally, recovery states (the states other than PowerOff and Hold shown as

rounded rectangles in Figure 9.8) are intermediate states that eventually lead to either

a system shutdown (i.e., the ComputingComponent transitions to state PowerOff) or a

system reset (i.e., the ComputingComponent transitions to state Initialize). These

intermediate states are described in more detail in the Fault Handler requirements

pattern, included in Appendix I. The state PowerOff is considered “safe” because the

system is not executing and therefore cannot perform harmful actions. For our pur-
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Figure 9.7: UML class diagram template from the original Fault Handler requirements

pattern incorporating a FaultHandler into an embedded system
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poses, the state Initialize is considered “safe” because (1) the system is believed to

start in an acceptable or legal configuration (so that a system reset can successfully

re-start the system in an acceptable state), and (2) during initialization, embedded

systems generally perform built-in tests (BITS) or power-on self—tests (POSTS) and

innnediately shut the system down if a problem is encountered.

9.3.1 UML Modeling and Semantics for the FaultHandler

While the original Fault Handler requirements pattern [2, 3, 4] includes a state di-

agram template for the Controller, it does not include a state diagram template for

the FaultHandler. However, several of our case studies involving fault-handling (e. g.,

an Anti-Lock Braking System [53], a Diesel Filter System [41]) have modeled the be-

havior of the FaultHandler in a way similar to that shown in Figure 9.9, that has now

been codified as part of Detector-Corrector Pattern 3 (each detector is aggregated by

a Watchdog, Examiner, Monitor, or Device as shown in Figure 9.10, a revised UML

class diagram template also utilizing Detector-Corrector Pattern 3). The FaultHandler

begins in state Monitoring. The reception of error messages is modeled using the

signal StoreError(Error), where the FaultHandler attribute Error stores a numeric

code indicating the specific error received (each modeled error for a given system uses

its own unique code, often indicated in the requirements document for the system).

When the FaultHandler receives an error message (due to a Watchdog, Examiner, Mon-

itor, or Device detecting an error), it self—transitions to state Monitoring based on

the error received. To ensure coverage for all modeled errors, there must be as many

self—transitions for Monitoring as there are possible modeled errors. In Figure 9.9,

these transitions are indicated by n transitions annotated with [Error == E-i] /

ActionCorrector-i, 1 S i S n, where n is the number of possible modeled errors.

The particular error code received (stored in the attribute Error) determines, via the

guards, which one of these n self-transitions for state Monitoring is taken, thereby
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 inal Fault Handler requirements pattern, including “safe” states [2, 3, 4]

Figure 9.8: UML state diagram template for the ComputingComponent from the orig-
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determining which corresponding recovery action is performed.

i
A_SYSTEMCLASS_.OK

 

StoreError(Error) [Error == E_n] / ActionCorrector_E_n

 

    StoreError(Error) [Error == E_1] / ActionCorrector_E_l
V

1 Monitoring 2

I

 

 
 

 

Figure 9.9: Sample UML state diagram template for a centralized FaultHandler

(not included in the original Fault Handler requirements pattern) utilizing Detector-

Corrector Pattern 3

 

The sample UML diagram templates for the FaultHandler shown in Figures 9.9 and

9.10 have the following characteristics. First, the FaultHandler receives error messages

indicating particular problems from non-FaultHandler sources (e.g., a Watchdog, Ex-

aminer, Monitor, or Device). Therefore, the FaultHandler itself is not involved in the

actual detection of errors, but only the response to errors. Second, a Watchdog,

Examiner, or Monitor typically monitors a single Device for problems. Thus, the er-

rors detected and reported to the FaultHandler are localized to a particular Device

or part of the system, rather than indicative of global error conditions (i.e., error

conditions involving more than one component). Third, the original requirements

patterns, including the Fault Handler requirements pattern, were developed with the

idea of leveraging McUmber’s UML—to—Promela formalization [31, 33] in mind. The

FaultHandler state diagram would therefore be translated to a Promela process and

execute in the same manner as all other state diagrams in the UML model (Fig-

ure 9.11). Spin interleaves all processes and has only weak fairness, so the Promela

179



 

monitors

l l i

Watchdog Examiner Monitor Device

i i i i
I PredicateDetector PredicateDetector PredicateDetector PredicateDetector

 

 

  

 

          

 

            

 
 

        

     

responds to responds to responds to responds to

corrected by corrected by corrected by corrected by

ActionCorrector ActionCorrector ActionCorrector ActionCorrector

         

 

  W {_J I
Q sends errors to

O FaultHandler

reports to J

  
     

  

  sends

values to

   
  

UserInterface

   

controls 
 

ComputingComponent

   

Figure 9.10: Refined UML class diagram template for FaultHandler utilizing Detector-

Corrector Pattern 3
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process corresponding to the behavior (i.e., UML state diagram) of the FaultHandler

might not execute immediately after an error is detected and reported.

 

 

   

 

   

 

   

Class 1 process

® ------------ Class II process

FaultHandler process

 
Figure 9.11: Spin non-deterministically interleaves all processes (dashed lines), each

representing the behavior of a UML class.

 

9.4 Refined UML Modeling, Semantics, and For-

malization for the FaultHandler

We refine modeling and semantics for the FaultHandler in two ways. First, we now

allow the FaultHandler itself to perform global error detection, rather than only re-

sponding to error messages received from external components due to the local error

detection of those components. Global error detection enables detection of system

conditions where, taken individually, local conditions do not indicate a problem, but

when examined together (globally), they do indicate a problem. We enable the Fault-

Handler to perform global error detection by allowing it access to all system variables.

Because we allow the FaultHandler access to all system variables (i.e., all attributes

in a UML model), global error conditions (e.g., the accelerator pedal is depressed to

181



a level indicating high demand, but the battery charge, while adequate for normal

performance, is below the lowest acceptable level to provide power assist for a high-

demand situation) can now be modeled by detectors aggregated by the FaultHandler.

Second, because fault handling is a critical task, we may opt to increase its scheduling

priority. The original semantics assumed by the Fault Handler requirements pattern

executes all objects, including the FaultHandler, with the same priority, so that there

may be a significant delay after an error has been detected before the FaultHandler

performs a corresponding corrective action. Scheduling the FaultHandler to execute

more often shortens the delay before corrective action is performed; however, doing

so may incur a significant penalty in terms of increasing the size of the formal model’s

state space.

Global error detection. The refined UML class diagram template for the Fault-

Handler utilizing Detector-Corrector Patterns 2 and 3 is shown in Figure 9.12. The

FaultHandler itself now aggregates one or more pairs of PredicateDetector and Action-

Corrector objects (i.e., utilizes Detector-Corrector Pattern 2). Thus, the FaultHandler

itself can now perform error detection. The refined UML state diagram template for

the FaultHandler utilizing Detector-Corrector Patterns 2 and 3 is shown in Figure 9.13.

Similar to Figure 9.9 (page 179), the FaultHandler begins in state Monitoring. Using

Detector-Corrector Pattern 3, we model the reception of error messages using the

signal StoreError(Error), where the FaultHandler attribute Error stores a numeric

code indicating the specific error received. When the FaultHandler receives an error

message (due to a Watchdog, Examiner, Monitor, or Device detecting an error with

a local detector, i.e., a detector examining only these attributes belonging to that

component), it self-transitions to state Monitoring based on the error code received.

In contrast to Figure 9.9, Figure 9.13 now also includes global detectors (detectors

aggregated by the FaultHandler itself that may examine attributes from more than
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one non-FaultHandler component) with corresponding correctors (Detector-Corrector

Pattern 2). To enable the FaultHandler to perform global error detection, we revise

our modeling and formalization frameworks to allow any Detector aggregated by the

FaultHandler access to all system variables. In an actual embedded system, access to

all system variables can be achieved through polling or shared memory. The existing

UML—to—Promela formalization [31, 33] already declares all variables globally, so we

assume shared memory in our model.
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Figure 9.12: Refined UML class diagram template for FaultHandler utilizing Detector-

Corrector Patterns 2 and 3

 

Increased scheduling priority. As a further extension to modeling fault han-

dling, we may adjust the underlying formalization semantics to increase the Fault—
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StoreError(Error) [Error == E_n] / ActionCorrector_E_n
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k
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i ”

 

 
    
   
 

Figure 9.13: Refined UML state diagram template for FaultHandler utilizing Detector-

Corrector Patterns 2 and 3

 

Handler’s scheduling priority. This approach may increase the size of the formal

model’s state space, so additional abstractions may be needed. Spin has no built-in

way to manage scheduling of processes, so we explicitly force the FaultHandler’s be-

havior to be interleaved with the behavior of the rest of the system via a boolean

flag (Figure 9.14). We implement an increase in the scheduling priority of the Fault-

Handler in Promela via a global boolean flag called globaLUMLStep in the following

manner. When global-UMLStep is true (i.e., equal to one), the rest of the system

excluding the FaultHandler may take a step (take a UML transition). We model

this constraint by adding, as a conjunct, the boolean condition (globaLUMLStep ==

1) to all guards on non-initial transitions in all state diagrams in the UML model

except for the _SYSTEMCLASS- (a modeling construct responsible for instantiating

objects in the system), Environment (a modeling construct responsible for providing

external stimulus to the system), and FaultHandler. Similarly, we add the entry action

globaLUMLStep := O to all states in all state diagrams in the UML model except for

the _SYSTEMCLASS_, Environment, and FaultHandler. For convenience to the devel-
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oper, these additions to the guards and entry actions can be performed automatically

(and transparently) by either MINERVA (during generation of the intermediate textual

representation), as shown in Figures 9.15 and 9.16, or by Hydra (during translation

to Promela code, not shown).

 

 

  

. . Class 1 process

@ ------------ Class II prOCCSS

FaultHandler process

 

 

    
 

   

Figure 9.14: Forcing Spin to interleave the behavior of the FaultHandler with the be-

havior of the rest of the system. Spin alternates between allowing the FaultHandler to

take a step (solid line) and allowing one of many Promela processes, each representing

the behavior of a UML class, to take a step (dashed lines).

 

When globa1_UMLStep is false (i.e., equal to zero), the FaultHandler may take a

step (i.e., a UML transition). We model this constraint by adding, as a conjunct, the

boolean condition (global-UMLStep == 0) to all guards on non-initial transitions in

the FaultHandler state diagram. We also add the action global_UMLStep := 1 to

all non-initial transitions in the FaultHandler state diagram. For convenience to the

developer, these additions to the guards and actions can be performed automatically

(and transparently) by either MINERVA (during generation of the intermediate textual

representation), as shown in Figures 9.17 and 9.18, or by Hydra (during translation

to Promela code, not shown).
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FaultHandler Scheduling Priority Rule 1:

Description: Adds the conjunct (globaLUMLStep == 1) to guards on all non-

initial transitions in all state diagrams in a UML model except for the state diagrams

of the _SYSTEMCLASS_, Environment, and FaultHandler classes.

Purpose: Ensures that non-FaultHandler, non-modeling—construct objects only exe-

cute when the FaultHandler is not executing.

Note: This addition can be performed transparently by MINERVA during generation

of the intermediate textual representation as follows:

) let u be a UML model

) foreach class c E u

) if 0 ¢ {_SYSTEMCLASS_, Environment, FaultHandler}

) let sd be the state diagram of c

) foreach non-initial transition t E sd

) let g be the guard for t

) if g is empty then g +— global_UMLStep ==

)

(

(

(

(

(

(

(

( elseg +— (( g) /\ (globaLUMLStep == 1))

1

2

3

4

5

6

7

8

Figure 9.15: Rule for increasing the scheduling priority of the FaultHandler: non-

FaultHandler components may only take a step when (globaLUMLStep == 1)
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FaultHandler Scheduling Priority Rule 2:

Description: Adds entry action global_UMLStep := O to all states in all state dia-

grams in a UML model except for the state diagrams of the -SYSTEMCLASS-, Envi-

ronment, and FaultHandler classes.

Purpose: Ensures that after every step performed by non-FaultHandler, non—

modeling—construct objects, the FaultHandler is enabled to execute (and non-

FaultHandler, non-modeling-construct objects are disabled).

Note: This addition can be performed transparently by MINERVA during generation

of the intermediate textual representation as follows:

) let u be a UML model

) foreach class c E u

) if c g (_SYSTEMCLASS_, Environment, FaultHandler}

) let sd be the state diagram of c

) foreach state .3 6 sd

) let eas be the entry action sequence for s

) if eas is empty then eas <— global-UMLStep := O;

) else eas «— eas ; global-UMLStep := O

(1

(2

(3

(4

(5

(6

(7

(8

Figure 9.16: Rule for increasing the scheduling priority of the FaultHandler: after

every UML step, enable the FaultHandler to take a step
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FaultHandler Scheduling Priority Rule 3:

Description: Adds conjunct (global-UMLStep == 0) to guards on all non-initial

transitions in the FaultHandler state diagram.

Purpose: Ensures that the FaultHandler only executes when non-FaultHandler, non-

modeling-construct objects are not executing.

Note: This addition can be performed transparently by MINERVA during generation

of the intermediate textual representation as follows:

(1) let u be a UML model

(2) foreach class c E u

(3) if c E {FaultHandler}

(4) let sd be the state diagram of c

(5) foreach non-initial transition t E sd

(6) let g be the guard for t

(7) if g is empty then g <— globa1-UMLStep ==

(8) else g +— (( g ) /\ (globa1-UMLStep == 0))

Figure 9.1 7: Rule for increasing the scheduling priority of the FaultHandler: the Fault-

Handler may only take a step when (globaLUMLStep == 0)
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FaultHandler Scheduling Priority Rule 4:

Description: Adds action global_UMLStep := 1 to all non—initial transitions in the

FaultHandler state diagram.

Purpose: Ensures that after every step performed by the FaultHandler, non-

FaultHandler, non-modeling-construct objects are enabled to execute (and the Fault-

Handler is disabled).

Note: This addition can be performed transparently by MINERVA during generation

of the intermediate textual representation as follows:

(1) let u be a UML model

(2) foreach class c 6 u

(3) if c E {FaultHandler}

(4) let sd be the state diagram of c

(5) foreach non-initial transition t E sd

(6) let as be the action sequence for t

( 7) if as is empty then as <— globaLUMLStep := 1

(8) else as <— as ; globaLUMLStep := 1

Figure 9.18: Rule for increasing the scheduling priority of the FaultHandler: after

every FaultHandler step, enable the rest of the model to take a step  
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9.5 Adaptive Cruise Control Example

In this section, we apply our approach for modeling and analysis of fault handling to

the Adaptive Cruise Control model from Chapter 7. Recall from Chapter 7, Property 6

(page 125), that if collision is imminent, yet the Adaptive Cruise Control-equipped

car is still outside the safety zone, then the system will not begin disengaging until

the Adaptive Cruise Control-equipped car has violated the safety zone. (Definitions of

zones used by the Adaptive Cruise Control algorithm can be found in Appendix D.)

This stipulation allows the driver time to change lanes without slowing down the car.

We now examine the following related requirement:

Requirement: If collision is imminent, yet the Adaptive Cruise Control-

equipped car is still outside the safety zone, then an alarm sounds to warn

the driver that action is required on the driver’s part (e.g., applying brakes,

changing lanes) to avoid a collision.

In the original UML model for Adaptive Cruise Control developed in Chapter 7, the

concept of an alarm sounding was modeled by the Control periodically entering a state

called sendwarn, as shown in the elided Control state diagram in Figure 9.19. The

disadvantage of modeling any occurrence (such as an alarm sounding) as periodic

entry to a particular non-final state 3 rather than as a particular boolean flag f

becoming (and remaining) true is that any temporal logic claim involving <>(in(s))

(eventually the model is in state 3) becomes violated as soon as the model leaves state

.9. In the case of the Adaptive Cruise Control model from Chapter 7, the claim

( []( C (Control.xl < Control.xhit) & (Control.21 <= Control.xl) ) -> (8)

<>( ( in(Control.sendwarn) 8t (Control.zl <= Control.xl) ) ) ) )

becomes violated as soon as the Control leaves the (non-final) state sendwarn.

In order to address this shortcoming, we refine the way the concept of an alarm

sounding is modeled in two ways. First, we model the alarm being triggered as a

boolean attribute alarm in the Control class that is initially false (i.e., zero) and
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Figure 9.19: Elided Control state diagram. Control periodically enters state sendwarn

{shown as a bold rounded rectangle). Portions of the state diagram that have been

abstracted for illustrative purposes are shown with dashed states and transitions

(dashed rounded rectangles and directed arcs, respectively). Notes indicating critical

conditions in the model are shown as shadowed callout boxes.
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becomes true the first time the Control state sendwarn is entered (i.e., we add an

entry action to state sendwarn that sets the value of alarm to true (i.e., one)).

However, the alarm being triggered does not necessarily mean that the alarm emits a

sound. The Adaptive Cruise Control requirements stipulate that a microphone check

to make sure that if the alarm is triggered, then a sound is actually emitted to warn

the driver. Therefore, we additionally model the alarm emitting a sound as a boolean

attribute sound in the Control class. The value of this attribute is initially true. These

additions to the Control class and state diagrams are shown in Figures 9.20 and 9.21,

respectively. In Figure 9.20, previously declared attributes have been elided, indicated

with ellipses. In Figure 9.21, the state sendwarn is indicated in bold, while annotation

boxes describe portions of the state diagram that have been elided. The Control enters

the state sendwarn if the safety zone has not been violated, yet collision is imminent.

  

Control
 

bool alarm = 0

bool sound = 1   
 

Figure 9.20: Refinements to Control class: Added boolean attributes alarm and

sound.

 

9.5.1 Fault Handling in Adaptive Cruise Control

We inject the following fault into the model: the alarm’s speaker fails during execution

(i.e., after the cruise-control is in operation, as speaker failure prior to execution

would be detected during initialization, not modeled here). As shown in Figure 9.22,

we make a non-deterministic self-transition from the Control state warn to itself that

sets the value of sound to false, indicating that the alarm fails to emit a sound

(i.e., the alarm’s speaker has failed during execution). To handle this fault, we
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Figure 9.21: Refinements to Control state diagram: Added entry action “alarm :=

1” to state sendwarn (both the action and the state are bold). Portions of the state

diagram that have been abstracted for illustrative purposes are shown with dashed

states and transitions (dashed rounded rectangles and directed arcs, respectively).

Notes indicating critical conditions in the model are shown as shadowed callout boxes.
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then introduce a FaultHandler into the model according to the Fault Handler object

analysis pattern in the following manner. We detect the fault by testing the following

condition: (Control_V.a1arm & !Control_V.sound). If the alarm is triggered, but

the alarm does not emit a sound, then the driver is in potential danger and not aware

of it. The best course of action is to disengage the cruise control, thus slowing the

car by disengaging the throttle (the Adaptive Cruise Control does not have control of

the brake). We therefore correct the problem with a recovery action that consists

of sending a shutdown message to the Control. This condition and recovery action

are modeled using Detector-Corrector Pattern 2 in the FaultHandler class and state

diagrams as shown in Figures 9.23 and 9.24, respectively. We also refine the Control

state diagram according to the Fault Handler object analysis pattern by encapsulating

the previously modeled behavior in a composite state called Norma1_Behavior that

has an outgoing transition to handle the new signal shutdown from the FaultHandler,

with additional actions to turn off the remaining components in the system. We add

the signal shutdown to the Control class diagram. These refinements are shown in

Figures 9.25 and 9.26, respectively.

From the refined UML diagrams, we generate the formal Promela model (without

the optional increased scheduling priority). We then check the property

( [] ( ( Control.a1arm 8: !Control . sound ) -> <>( send(Control . shutdown) ) ) ) (9)

meaning that it is always the case that if the alarm is triggered and does not produce a

sound, then eventually the system shuts down. The results are shown in Figure 9.27.
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Figure 9.22: Injecting a fault into the Adaptive Cruise Control model: Added non-

deterministic self-transition with action “sound := O” to state warn in the Control

state diagram to indicate that the alarm’s speaker fails (both the action and the

transition are bold). Portions of the state diagram that have been abstracted for

illustrative purposes are shown with dashed states and transitions (dashed rounded

rectangles and directed arcs, respectively). Notes indicating critical conditions in the

model are shown as shadowed callout boxes.
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Figure 9.23: Adaptive Cruise Control FaultHandler class utilizing Detector-Corrector

Pattern 2

 

 

i
A_SYSTEMCLASS_.ready

l \
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[AlarmTriggeredNoSound.detector]

/ ShutdownACC.corrector

I

Monitoring

 

Figure 9.24: Adaptive Cruise Control FaultHandler state diagram utilizing Detector-

Corrector Pattern 2
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shutdown() : void

   

Figure 9.25: Refinements to Control class to handle new signal shutdown from Fault-

Handler
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(Spin Version 3.3.3 -- 21 July 1999)

+ Partial Order Reduction

Full statespace search for:

never-claim +

assertion violations + (if within scope of claim)

acceptance cycles - (not selected)

invalid endstates (disabled by never-claim)

State-vector 688 byte, depth reached 755, errors: 0

317 states, stored

19 states, matched

336 transitions (= stored+matched)

209 atomic steps

hash conflicts: 0 (resolved)

(max size 2‘18 states)

1.596 memory usage (Mbyte)

Figure 9.27: Spin results for analyzing property 9
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Chapter 10

Literature Review

Developing specifications in any formal language, including Promela, manually has

the potential to be an error—prone task. In an effort to leverage the benefits and

address the shortcomings of both formal and semi-formal approaches to requirements

analysis and design, many projects [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]

have proposed techniques for associating formal semantics with semi—formal modeling

notations, including UML [26, 28, 29, 30, 31, 32, 33, 35]. The work described in

this dissertation leverages a particular approach to UML formalization [31, 33] but

is not, itself, concerned with formalization approaches or techniques for automated

generation of formal specifications. We refer the interested reader to [31] for a detailed

discussion of these topics.

While formalization of UML enables rigorous analysis of formal models derived

from UML diagrams, formalization itself is not sufficient to broaden the community of

(embedded systems) developers who can use formal methods to rigorously analyze re-

quirements. To enable developers to model and analyze requirements in UML without

having to know details of formal models requires a framework and process that takes

advantage of a UML formalization yet insulates developers from the formal models

produced by such a formalization. This research presents an approach to validating
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embedded systems requirements modeled as both UML diagrams and temporal logic

properties using formal verification (e. g., model checking) techniques. We describe a

model development and analysis framework, complementary to a previously developed

formalization framework [31, 33], that insulates the developer from formal models and

outputs of tools. As shown in Figure 10.1, this framework includes a graphical edi—

tor and visualization environment, and an analysis result processor (both shown as

bold ovals). As shown in Figure 10.2, we instantiate the framework with tools (e. g.,

MINERVA, Hydra, and Spin) and describe an overall model development and analysis

process that incorporates the following enabling techniques: model construction (Part

A), automated generation of formal models (Part B), guidance for instantiation of

formal properties (Part C), model analysis (Parts D and E), and visual interpretation

of analysis results (Part F, bold arcs to the MINERVA process oval).

This chapter overviews work related to these enabling techniques (with the excep-

tion of automated generation of formal models; as noted previously, see [31] for details

regarding this topic), as well as environments for embedded systems development, in-

cluding formalized approaches and the leading commercial UML Computer-Aided

Software Engineering (CASE) tools.

10.1 Guidance for Model Construction

Our approach enables formal analysis of UML models of embedded systems require-

ments. However, such models must first be constructed, and, as discussed in Chap-

ter 3, shown to be well-formed, before they can be formally analyzed. Sections 10.1.1,

10.1.2, and 10.1.3 overview, respectively, how graphical editing environments, stereo-

types, and patterns can provide user guidance for constructing well-formed UML-

based requirements models for a given application domain, and how these techniques

compare with our approach.
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10.1.1 Graphical Editing Environments

As discussed in Chapter 5, there are essentially three techniques that a graphical

editing environment may use, in some combination, in order to ensure diagram well-

formedness: prevention/containment, static consistency checking, and dynamic con-

sistency checking. In this section we examine the first and third techniques; we

consider static consistency checking as a structural analysis technique later in this

chapter in Section 10.3.1.

Prevention/Containment. In Chapter 5, Section 5.1.1, we discussed how a graph-

ical editing environment, when augmented with knowledge of an object-oriented nota-

tion’s graphical syntax, can prevent certain types of graphical syntax violations from

being drawn, or guide a user towards creating consistent diagrams. Our graphical ed-

itor and visualization environment, MINERVA, is built atop Honeywell’s DOME (Do-

main Model Editing) utility [87, 88]. DOME supports custom-built graphical editors,

where the syntax of a diagram is described in terms of metamodels.1 The resulting

graphical editors prevent developers (or automated diagram generation utilities such

as our sequence— and collaboration—diagram visualizations) from constructing syntac—

tically incorrect diagrams with respect to the constraints imposed by the underlying

metamodels.

As discussed in Chapter 5, generic drawing applications (e. g., xf ig [76]) that have

no knowledge of an object-oriented notation’s graphical syntax cannot impose any

constraints on the graphical elements drawn. Such an application places the entire

burden for well-formedness checking on a separate utility for static consistency check-

ing. While UML does not require that a graphical editor supporting its notation use

a metamodel-based approach for its own underlying implementation, it makes sense

to leverage the UML’S metamodel. Therefore, we do not consider generic drawing

 

1Recall (Chapter 2) that a metamodel is a class diagram that describes the constructs of a

modeling language and the relationships between the constructs.
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applications further. It is possible, however, to provide a drawing application with

text-based rules rather than a graphical metamodel depiction in order to constrain

what can be drawn. For example, Method Workbench and MetaEdit+ [89] com—

prise a suite Of tools that provides a framework for defining domain-specific modeling

languages and realizing customized domain-specific CASE tools. While the domain

modeling language supports features similar to MINERVA’S underlying DOME meta-

models (domain concepts and properties, visual symbols to represent them, and rules

about how they are connected), the tools use text-based forms to define the concepts,

properties, and rules rather than a graphical class diagram metamodel depiction.

Dynamic Consistency Checking. Whether or not a graphical editing environ-

ment has been augmented with knowledge Of an Object-oriented graphical notation’s

syntax, the environment must still perform some consistency checking (i.e., metamod-

els or rules cannot prevent or contain every error). This task can be performed either

statically (as a separate step after the user reaches a stopping point in the drawing of

a diagram), or dynamically (i.e., the environment constantly monitors the status of

the diagram-in-progress, alerting the user to possible errors). As described in Chap-

ter 5, Sections 5.1.2 and 5.1.3, MINERVA and Hydra use static consistency checking to

detect diagram anomalies not inherently prevented by MINERVA’s metamodel-based

editors; in Section 10.3.1 we examine static consistency checking in more detail. In

contrast, here we consider how dynamic consistency checking can also be incorpo-

rated into a graphical editing environment in order to guide a developer in producing

well—formed UML models. ArgOUML [90], for example, is a graphical editing environ-

ment for UML diagrams that provides interactive guidance during model construction

via analysis agents, called design critics, based on “best practices” for software de—

sign. Design critics continually monitor a UML model-in-progress, Offering advice

and warnings in the form Of dynamically updated to—dO lists and highlighted diagram
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elements. While this approach is based on cognitive psychology principles that enable

the user to continually reflect upon and improve a design—in-progress, there may be

an implicit cost in terms Of negative user attitude incurred by the “constant critique”

approach. Additionally, the critics are implemented as separate threads running in

parallel, so there is a much higher computational cost than for static consistency

checking.

Comparison with Our Approach. We find that using MINERVA’s underlying

metamodels and structural guidance within its graphical user interface to prevent

and/or contain graphical and textual errors as much as possible, and then using static

consistency checking to detect definition/usage and other discrepancies, including

graphical syntax anomalies such as a missing start state, effectively distributes the

responsibilities for consistency checking between the graphical editing environment

and other utilities without unduly constraining the user during model development.

10. 1.2 Stereotypes

UML was developed to be a general-purpose software modeling language. However,

despite its attempt to be all things to all people, developers may still need modeling

elements more specific to a given application domain than those already present in the

UML. Stereotypes [16, 17, 18] in UML address this problem, allowing developers to

extend the UML with new modeling elements specific to a given application domain.

This approach has been used generally for modeling product lines [91] and system

families [92], as well as more specifically for modeling middleware [93], fault-tolerant

real-time systems [94] and embedded systems [95, 96], to give some examples.

Comparison with Our Approach. McUmber’s formalization framework [31, 33],

leveraged by our model development and analysis framework, uses only the model-

ing elements already present in the UML without extending it, in order to make the
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approach available to any general-purpose UML modeling tool, and potentially appli-

cable to other application domains besides embedded systems. However, in the past

several years, stereotypes (an extension mechanism), and more recently, profiles2 [97]

(in part, a constraining mechanism) have become more prevalent for domain-specific

modeling (e. g., real-time modeling [98]; data modeling [99]; web modeling [100]; busi—

ness modeling [101]; schedulability, performance, and time modeling [102]; CORBA

modeling [103]). Stereotypes allow developers to model their systems using model-

ing elements specific to their application domain, i.e., elements that model familiar

objects and concepts. Profiles combine this approach with the technique Of limiting

the developers’ modeling “palette” to only the necessary elements; for example, the

approach discussed in this dissertation uses only the UML class and state diagrams

for modeling embedded systems. An UML-based approach that extends UML with

stereotypes that represent familiar Objects and concepts within a specific applica-

tion domain, yet limits the available modeling elements to only the ones necessary

for modeling that domain, can guide developers unfamiliar with UML in both con-

structing models that have domain-specific meaning, and avoiding constructing extra

diagrams or diagram elements that have not been found generally useful for modeling

that domain.

If we chose to incorporate stereotypes into our approach, possible candidates would

be the special modeling constructs _SYSTEMCLASS_ and Environment. These con-

structs are really specialized classes used for modeling purposes, so stereotypes rep-

resenting them could be reused for other application domains. Other, embedded-

system-domain-specific, candidates for stereotypes would be sensors and actuators.

However, because these concepts are domain-specific, adding such stereotypes would

make the approach more explicitly tied to the embedded—systems domain, and there-

fore less generally applicable.

 

2A profile is a subset Of UML tailored to a specific application domain.
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10. 1.3 Patterns

Patterns are a third way to provide user guidance for constructing UML-based mod-

els for a given development phase and/or for a given application domain. Patterns

supercede well-formedness constraints and stereotypes by offering diagram templates

that express relationships between diagram elements specific to a given problem or

application domain (e. g., the Visitor design pattern [83] enables the definition of new

operations on an Object without changing the Object; the Watchdog real—time safety

and reliability design pattern [104] enables time—based detection Of deadlock in real-

time systems). Patterns largely entered the software engineering scene with the advent

of Gamma et al.’s book Design Patterns [83] that provided a catalog of creational,

structural, and behavioral patterns to guide construction of Object-oriented models

during the design phase of development. Patterns for other development phases (e.g.,

analysis patterns [105], architectural patterns [106], etc.) and specific application do-

mains (e.g., database access patterns [107], fault-tolerant telecommunication system

patterns [108], design patterns tailored to distributed real-time embedded systems

(DREs) [109, 110, 111, 112], design patterns for avionics control systems [113], real—

time design patterns [104, 114], security patterns [115], etc.) soon followed. Here, we

overview design patterns and analysis patterns for the embedded systems domain, as

well as fault-tolerance patterns.

Design Patterns and Analysis Patterns. Currently much Of the embedded sys-

tems industry uses ad hoc development approaches [37] that emphasize design and

coding over analysis [116]. The large number of design patterns [83], especially those

tailored to real-time systems [104, 114] and distributed real-time embedded systems

(DREs) [109, 110, 111], is further evidence Of this focus. Despite its importance, the

analysis phase is Often neglected in current embedded systems development practice,

Often causing conceptual errors to be propagated to design and coding [36].
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To address this problem, Konrad et al. propose requirements patterns [2, 3, 4] (now

termed object analysis patterns [1]) for use in the analysis phase Of embedded systems

development to guide the construction of a conceptual model of a system. Analysis

patterns are not new per se (e.g., [36, 105, 117, 118]); for example, Fowler [105]

identified several patterns that might be used during the analysis phase to repre-

sent conceptual models Of business processes, such as abstractions from accounting,

trading, and organizational relationships. While Fowler’s analysis patterns may be

relevant to only one application domain, or may span several domains, Konrad et

al.’s object analysis patterns focus explicitly on software development for the embed-

ded systems domain. Fowler also uses an informal description style for his patterns,

while Konrad et al. use a template similar to the one used by Gamma et al. for

their design patterns [83], with some modifications. (TO distinguish the contents and

objectives of their work from Fowler’s, and to leverage Douglass’s ROPES [37] de-

velopment process, Konrad et al. use the term object analysis patterns instead Of

analysis patterns.)

Object analysis patterns not only guide developers in constructing UML-based

conceptual models Of requirements, but, unlike the other pattern approaches previ-

ously mentioned, also provide property templates so that developers are able to val-

idate their conceptual models, prior to design, by leveraging McUmber’s previously

developed UML formalization framework [31, 33].

Fault-Tolerance Patterns. Fault-tolerance, the ability Of a system tO continue to

execute correctly in the presence of a finite number of hardware and software faults,

is a non-functional property potentially desired by many high-assurance applications,

including fault-tolerant (individual or distributed) embedded systems. For example,

several Of Konrad et al.’s previously identified requirements patterns for individual

embedded systems [2, 3, 4], namely the Actuator-Sensor, Watchdog, Fault Handler,
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Communication, and Actuation-Monitor patterns, Offer informal guidelines for mod—

eling fault-tolerance under different contexts. Some of these, such as the Actuator-

Sensor, Communication, and Actuation—Monitor patterns, suggest introducing fault-

tolerance at the architectural level via the common technique of redundancy (e.g., if

a primary sensor fails, then a backup sensor takes over).

Indeed, design patterns for fault-tolerance in non-distributed systems exist that

make use Of hardware and/or software redundancy. For example, Daniels et al. [119]

present a general design pattern for software fault—tolerance utilizing redundant vot-

ing strategies to minimize the potential for common-cause software faults. Ferreira

and Rubira [120] present a system Of design patterns to implement fault-tolerance

that utilize replication, diversity, and exception-handling redundancy strategies for

hardware, software, and environmental faults, respectively.

Comparison with Our Approach. As discussed in Chapter 9, requirements pat-

terns [2, 3, 4] (now termed Object analysis patterns [1]) can be used to drive our

model development and analysis process introduced in Chapter 4. In comparison to

our work, none of the other aforementioned pattern approaches Offers a combination

of patterns to guide construction of conceptual models, templates for the formal spec-

ification of critical properties, and a formalization framework tailored to the software

analysis process Of embedded systems development.

With regards to fault-tolerance patterns, while redundancy can reduce (but not

eliminate) the risk of system failure due to random faults in hardware or common-

cause software faults [37], it does not address detecting or handling faults due to

inappropriate, missing, ill-timed, or out-Of—sequence actions, or dangerous and/or

illegal system conditions. The fault—handling patterns described in Chapter 9, based

on the concepts of detectors and correctors [57], enables developers to model fault

handling requirements and analyze them using specification-pattern-based constraints
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related tO the occurrence and ordering of actions such as message reception.

10.2 Guidance for Instantiating Formal Properties

Using our approach, developers can check requirements-based properties against the

formal model derived from UML diagrams. Developers instantiate properties in terms

of UML elements, such as attributes, states, and messages. Our approach recommends

the use of specification patterns [43], temporal logic templates for specifying commonly

occurring properties, to guide the formation and instantiation Of requirements-based

properties in LTL to check against the derived formal Promela model using Spin.

Requirements patterns [2, 3, 4], now termed Object analysis patterns [1], take this

idea one step further. They contain specification-pattern-based constraints [53] that

can be checked against UML models that have been constructed using the diagram

templates in the object analysis patterns. Thus, the object analysis patterns provide

context for the constraints, so that developers not only know how but also when to

instantiate and check a given property.

Comparison with Our Approach. Chapter 2, Section 2.2.4, briefly overviews

specification patterns, and Chapter 4 discusses their role in our approach. As dis-

cussed in Chapter 9, Object analysis patterns [1] can be used to drive our model

development and analysis process introduced in Chapter 4. Both specification pat-

terns and Object analysis patterns provide guidance to developers for instantiating

formal properties; however, without a framework and process to leverage this capa-

bility, their utility is limited. Our model development and analysis framework and

process leverage these patterns, providing developers with a mechanism to construct

diagrams against which to check instantiated properties in order to validate require-

ments.
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10.3 Model Analysis

As discussed in Chapter 5, we divide analysis into two phases, structural analysis and

behavioral analysis. Structural analyses (i.e., consistency checks) are performed on

UML models (i.e., diagrams), while behavioral analyses (i.e., simulation and model

checking with Spin) are performed on formal (i.e., Promela) models. We overview

work related to these tasks in Sections 10.3.1 and 10.3.2, respectively.

10.3.1 Diagram Consistency Checking

The Object Management Group (OMG) developed well-formedness rules for UML

that CASE tools for UML (e.g., IBM’s Rational Rose) should support. We have

already discussed in Chapter 5, Section 5.1.1, and this chapter, Section 10.1.1, how

some such rules can be enforced a priori by a metamodel-based or otherwise rule-

enhanced graphical editing environment; however, consistency checking is still re-

quired for those rules that a graphical editing environment cannot enforce a priori.

Existing CASE tools for UML support the well-formedness rules in a variety Of ways

(e. g., some combination Of metamodel- or rule-based constraints, and static or dy-

namic consistency checking); here we overview one general-purpose approach to static

consistency checking, xlinkit [21], that could be utilized by any UML CASE tool that

supports XML3 [121] and the XMI4 format. (ArgOUML’s design critics [90], discussed

in Section 10.1.1, are an example of dynamic consistency checking.) The xlinkit [21]

tool Offers a framework for rule-based detection Of inconsistencies between distributed

XML [121] documents. In particular, static consistency checking based on the OMG

well-formedness rules for UML can be performed on UML diagrams in ’XMI format.

The tool automatically generates hyperlinks, where an inconsistent link relates ele-

ments that violate consistency rules.

 

3Extensible Markup Language

4XML Metadata Interchange
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Comparison with Our Approach. The application of the xlinkit framework to

static consistency checking of UML diagrams is complementary to our approach and

quite powerful. Its ability to check distributed documents is especially pertinent to

industry, where projects may contain thousands of diagrams in documents spread

across several networks or even continents. However, xlinkit is targeted entirely tO-

wards consistency management rather than dynamic property verification.

10.3.2 Behavioral Analysis of UML Diagrams with Spin

The model checker Spin [69] was developed in the 1980’s at Bell Labs specifically

for the verification Of distributed software systems. While Spin originated in the

telecommunications industry, it has gained increasing use in other industrial domains

involving distributed [122] and embedded systems, such as flight systems [123] and

railway systems [124]. Its non-deterministic input language, Promela, is loosely based

on Dijkstra’s guarded command language [125] and Hoare’s CSP (Communicating

Sequential Processes) [126].

Our approach uses the Spin model checker to validate (embedded systems) re-

quirements expressed as LTL properties and UML diagrams. Therefore, we limit

our discussion here tO two UML—based graphical front-ends to Spin: vUML [127]

and the Visual Interface for Promela (VIP) tool [128]. The vUML tool translates

UML state diagrams to Promela and displays counterexamples as UML sequence

diagrams. VIP supports a visual extension to Promela, called v-Promela, that ex-

tends the Promela language with graphical notations and Object—oriented concepts.

VIP translates UML-style collaboration diagrams (termed structure diagrams in v-

Promela) and state diagrams to Promela, using many Promela-specific notations in

the UML diagrams.
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Comparison with Our Approach. McUmber’s formalization framework [31, 33],

leveraged by our approach, was designed to be as target-language independent as

possible at the graphical modeling level. It includes a generic syntax for commonly

occurring concepts such as boolean expressions, variable assignments, and message

sends that are transparently translated tO formal language syntax (e.g., Promela) dur-

ing formal specification generation; developers do not need to know formal language

syntax. Additionally, the formalization framework may be extended with formaliza-

tion rules for other target languages (e.g., VHDL [30]), so it, and thus our approach,

is not specifically tied to Promela and Spin. Finally, Hydra generates Promela from

both the class and state diagrams, rather than state diagrams only, while MINERVA

animates the original UML state diagrams, as well as generating UML sequence and

collaboration diagrams, based on the behavioral analysis results from simulation and

model checking using Spin.

10.4 Visual Interpretation of Analysis Results

We divide analysis into structural and behavioral phases, with corresponding visual-

ization techniques, so we briefly overview approaches to both types Of visualizations

here. Regarding structural visualization techniques, static consistency checking tools

generally highlight questionable diagrams and/or diagram elements (e.g., xlinkit [21]

highlights questionable relationships between such items), while dynamic consistency

checking tools such as ArgOUML [90] highlight questionable diagrams and/or diagram

elements and Offer textual messages to the user (e.g., additional warnings, error mes-

sages, or advice). Regarding behavioral visualization techniques, commercial UML

CASE tools for embedded systems development (e. g., [19, 20, 129, 130]) overwhelm-

ingly visualize simulation traces with state diagram animation and sequence diagram

generation and/or animation.
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Comparison with Our Approach. Chapter 6 discusses our visualization tech-

niques for displaying results of both structural and behavioral analyses to the user.

MINERVA’s structural visualizations include textual messages and highlighting ques-

tionable diagram elements. MINERVA’S behavioral visualizations include state dia-

gram animation, sequence diagram generation, and collaboration diagram generation

and animation. In addition to displaying message ordering, we include the capability

to display attribute values and the current state Of each object during collaboration

diagram animation, thus augmenting the amount and type Of information usually

displayed with either a state diagram (current state) or a sequence diagram (message

ordering). Additionally, our approach incorporates both structural and behavioral

analyses rather than only one or the other, so we likewise incorporate both structural

and behavioral visualizations into one environment.

10.5 Development Environments for Embedded

Systems

This research presents an approach to validating embedded systems requirements

modeled as both UML diagrams and linear time temporal logic (LTL) properties

using formal verification ( e. g., model checking) techniques. We developed a model

development and analysis framework (Chapter 4) that leverages, integrates, and en-

capsulates a previously developed formalization framework for Object-oriented nota-

tions [31, 33], including feedback to diagrams from formal analysis tools in order

to insulate users from the outputs of such tools. We also developed an iterative

and incremental model development and analysis process (Chapter 4) that comprises

steps for (1) model construction, (2) structural and behavioral analyses, and (3) re-

finements based on feedback from both types of analyses. While previous sections

explored work related to the enabling techniques for these steps, this section com—
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pares our approach with leading environments for embedded systems development,

including formal and commercial approaches. Specifically, we overview the Omega

project [131], the Software Cost Reduction (SCR) toolset SCR* [132], the NIMBUS

environment [133] that leverages RSML [134] specifications, and the four major com-

mercial UML CASE tool Offerings for embedded systems development according to

current market research [135]: ARTiSAN’s Real-time Studio [129], IBM Rational’s

Rose RealTime [19], I-Logix’s Rhapsody [20], and Telelogic’s TAU Generation2 [130].

The main difference between our approach and the commercial environments is that

they rely on validation and testing rather than verification techniques; therefore, we

do not include a separate comparison section for each but highlight salient differences

within the overview of each environment.

10.5.1 Omega Project

The EU-IST Omega project [131] (Correct Development Of Real-Time Embedded sys-

tems) selects a subset Of UML, including class and state diagrams, applicable to the

embedded systems domain and extends this subset by leveraging the Schedulability,

Performance and Time profile [102] to create an Omega kernel model, or interme-

diate representation in XMI format [121], used as the basis for a common input to

different formal analysis tools. The intermediate representation has a fixed formal

semantics, and connects commercial UML CASE tools such as Rhapsody [20] and

TAU [130] with formal tools such as model checkers or interactive theorem provers.

Requirements may be expressed via Live Sequence Charts (LSCs) [136], a subset of

OCL [137], or special state machines stereotyped as Observers. Omega supports inter-

active simulation Of LSCs, while error traces from formal analysis tools are provided

to the user as scenarios.
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Comparison with Our Approach. Our approach leverages McUmber’s formal-

ization framework [31, 33], that maps a unified metamodel Of a subset Of UML into

the metamodel of the syntax Of a formal target language. The source UML meta-

model remains fixed, while the metamodels for different target languages will vary as

the syntax Of each target language varies. The Omega project translates UML models

into an intermediate representation, the Omega kernel model, that has a fixed seman—

tics. This model is used as the basis for further translation to the input format Of

formal analysis tools. The Omega project formalizes a few additional UML concepts

not addressed in McUmbers’s formalization embodied by Hydra: Hydra supports

asynchronous signal—based communications only, whereas Omega also supports syn-

chronous operation calls; in Hydra, all classes have associated state diagrams, whereas

Omega makes a distinction between reactive and non-reactive classes (only reactive

classes have associated state diagrams); in Hydra, each class has its own thread of

control and event queue, whereas in Omega, only active classes do so. Addition-

ally, the Omega project includes support for timing, whereas McUmber’s original

formalization framework did not; current work has focused on extending McUmber’s

formalization with timing [54]. While Omega provides error traces to the user in the

form Of scenarios (it is unclear whether this terminology refers to LSCs, sequence

diagrams, or use case diagrams—the most likely case is sequence diagrams), more

elaborate feedback mechanisms are outside Of the scope of the project. As we have

learned from case studies (e.g., [1, 41]), sequence diagrams display the sequence Of

events leading up tO an error, but do not always provide enough information to deter-

mine why the error occurred. Therefore, in addition to sequence diagram generation,

our approach enables state diagram animation and collaboration diagram generation

and animation in order to provide the user with additional information.
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10.5.2 SCR*

SCR* [132] is an integrated tool suite supporting the Software Cost Reduction (SCR)

method. SCR uses a tabular notation to capture behavioral information about re-

lations between monitored and controlled variables. The tool suite SCR* Offers a

simulator and verification capabilities through the use of model checkers and theorem

provers. Recently, Gargantini and Riccobene developed an approach to model-driven

animation of SCR specifications [138]. This approach derives animation goals from

either predicates over states or temporal logic formulas. Predicates or formulas are

specified by the user based on SCR tables, and are used as input tO model checkers

integrated into SCR* (e.g., Spin [69] or SMV [75]). A detected counterexample then

becomes an animation scenario animated via graphical user interface (GUI) wid-

gets that may mimic actual control panels, or otherwise display information about

monitored and controlled variables.

Comparison with Our Approach. Although its tabular notation is much differ-

ent from the UML diagrammatic notation used in our approach and currently being

adopted by industry, SCR has been successfully applied to large-scale critical systems

(e. g., avionics systems [139], weapons control systems [140], etc.). When combined

with Gargantini and Riccobene’s animation approach [138], formal analysis results,

can be displayed in formats more accessible to users, such as control panels that

mimic the actual deployed system. In this way, SCR* meets our goal of insulating

developers from formal analysis tools, although the analysis results are not displayed

in terms Of the original model (in SCR*, tables; in our approach, UML diagrams).

Because we also utilize counterexamples to drive our animations, we could extend

our visualization techniques to include animating GUI widgets like Gargantini and

Riccobene in order to present information to users in terms of the context of the

deployed system.
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10.5.3 NIMBUS

The NIMBUS environment [133] is a framework for specification-based prototyping

of embedded systems. The environment enables simulation Of RSML (Require-

ments State Machine Language) [134] specifications of embedded systems compo-

nents. RSML, based on Harel’s Statecharts [62], was originally developed as a spec-

ification language for embedded systems requirements. RSML specifications can be

analyzed for completeness, consistency, and adherence to safety and liveness proper-

ties. The NIMBUS environment provides for iterative refinement of an RSML specifi-

cation to the point Of executing it directly within the context of actual hardware, or

“hardware-in-the-loop” simulation.

Comparison with Our Approach. The NIMBUS environment [133] directly in-

corporates RSML specifications, whereas our approach leverages McUmber’s general

formalization framework [31, 33] that enables flexibility for targeting different formal

languages and analysis tools. It is not clear from the description of the NIMBUS envi-

ronment whether guidance is provided to developers for creating RSML specifications

or formulating properties to check against them; however, like SCR [132], the speci-

fications utilize a tabular notation. A software emulation Of the environment drives

simulation, and information about controlled variables is collected in text files for

later examination with spreadsheets rather than being presented in terms of RSML.

10.5.4 ARTiSAN’s Real-time Studio

ARTiSAN ’s Real—time Studio [129], a suite of tools for software modeling and compo-

nent based development, enables developers to model system architecture and func-

tional requirements. It supports both stereotypes and profiles, including real-time

extensions to UML. Executable code is automatically generated from UML state

diagrams, including test harnesses. Animation of sequence and state diagrams en-
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able developers to validate system behavior via simulation. There are no underlying

formal semantics; this tool suite relies on validation and testing rather than formal

verification.

10.5.5 IBM Rational’s Rose RealTime

Rational Rose [19], a general-purpose UML modeling tool, is part Of a family Of

integrated products that support the analysis, design, implementation, and testing

phases of software development. It Offers a “modelcheck” utility that detects diagram

construction errors such as unconnected associations or transitions, which we avoid

inherently with MINERVA’s metamodel-based graphical editors. On the other hand,

the Rational Rose RealTime suite, aimed at embedded systems software development,

has been optimized to model concurrent, event-driven, reactive, and state-based sys-

tems. Validation is performed by generating executable code from UML models, while

the visual debugger shows message traces and state changes on the UML models at

runtime. Nevertheless, both families Of products, oriented towards code generation,

rely on validation and testing rather than formal verification.

10.5.6 I-Logix’s Rhapsody

I-logix’s Rhapsody [20] family of products offers a UML-driven approach to analysis,

design, testing and implementation of embedded systems: Use cases and sequence di-

agrams capture requirements; Object diagrams depict system architecture; statecharts

and activity diagrams model component behavior; and component diagrams describe

run-time artifacts. Design-level debugging features include highlighting states in stat-

echarts, displaying message traces in sequence diagrams, and monitoring attribute

value changes. While the underlying semantics Of the executable models developed

with these products is based on Harel’s Statecharts [62], McUmber’s formalization

framework [31, 33] that underlies our approach enables support for different seman-
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tics and integration with various formal verification tools.

10.5.7 Telelogic’s TAU Generation2

Telelogic’s TAU Generation2 tool suite [130] consists of four products:

TAU/Architect, TAU/Developer, TAU/Tester, and TAU/Logiscope. These tools

are used for systems architecture and design, model-driven software development,

systems and integration testing, and software quality assurance and metrics, respec-

tively. TAU/Architect and TAU/Developer are the most closely related to our work.

TAU/Architect enables developers to create UML-based structural (e. g., component

diagrams) and behavioral models (e. g., state diagrams) and use simulation to validate

them. It allows user-defined symbols for domain-specific modeling (i.e., stereotypes).

TAU/Developer compiles executable models from the diagrams and includes a model

debugger that includes visualizing execution traces with on-the-fly creation Of se-

quence diagrams and animation of the model’s state diagrams. Again, this tool suite

relies on validation and testing rather than formal verification.
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Chapter 11

Conclusions and Future

Investigations

While requirements errors can be costly for software systems in general [9], they

can be especially costly for high-assurance or safety-critical embedded systems where

failure can have dire consequences. Therefore, methods for modeling and rigorously

analyzing embedded systems requirements are needed. However, the ad hoc devel-

opment approaches currently used in embedded systems lack systematic methods for

both modeling and analyzing requirements [37, 38].

Although the embedded systems community has expressed interest in exploring

how Object-oriented modeling, specifically the UML, can be used for embedded sys—

tems development [37, 38, 39], UML lacks a formal semantics, thus precluding rigorous

analysis Of requirements expressed as UML models. While formalization Of UML en-

ables rigorous analysis Of formal models derived from UML diagrams, formalization

itself is not sufficient tO broaden the community of embedded systems developers who

can use formal methods to rigorously analyze requirements. To enable developers to

model and analyze requirements in UML without having to know details of formal

models requires a framework and process that takes advantage Of a UML formalization
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yet insulates developers from the formal models produced by such a formalization.

This research presents an approach to validating embedded systems requirements

modeled as both UML diagrams and temporal logic properties using formal veri-

fication (e.g., model checking) techniques. We describe a model development and

analysis framework, complementary to a previously developed formalization frame-

work [31, 33], that insulates the developer from formal models and outputs of tools,

and an overall model development and analysis process.

We have validated this work by applying the approach to several case studies from

industrial collaborators:

e an Adaptive Cruise Control system [40, 77] (also described in Chapter 7) that

uses radar to avoid collisions,

e an Anti-Lock Braking System [53, 86] with redundant brake sensors,

0 a self-cleaning Diesel Filter System [41, 42, 84] that removes soot from diesel

truck exhaust, and most recently

e an Electronically Controlled Steering system [54, 55, 141] that provides variable-

assistance power steering.

Each case study uses the integrated model development/analysis and formalization

frameworks from Chapter 4 instantiated with tools (e. g., MINERVA [40, 47, 49, 50, 51,

52, 56], Hydra [31, 33, 48], and Spin [69]) as described in the process diagram in Fig-

ure 4.3, page 55, and demonstrated in the remainder Of the dissertation. Additionally,

the latter three studies leverage Object analysis patterns [4] as described in Chapter 9,

Section 9.2, while the Electronically Controlled Steering system uses an extension Of

McUmber’s formalization framework with timing information [54, 55]. These case

studies demonstrate that our framework and process enables embedded systems de-

velopers to model and analyze their requirements in UML with formal-verification
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(e.g., model checking) techniques while being insulated from formal models and out—

puts Of tools.

11.1 Summary Of Contributions

In summary, this research makes several contributions [1, 40, 41, 42, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56]:

e Bifurcated approach to analysis [40, 47, 51]. Preliminary investiga-

tions [44, 45, 46] (Chapter 3) indicated that formal analysis tools are not well-

suited to detecting structural problems within the formal models generated

from diagrams; that is, diagram well-formedness should be checked prior to for-

mal model generation. Therefore, we describe and demonstrate a bifurcated

approach to analysis (Chapter 5) that incorporates both structural (diagram

level) and behavioral (formal model level) analyses.

Impact. While formalization Of object-oriented notations combined with an-

tomated generation of formal specifications enables rigorous analysis of diagrams

(via the formal specifications), such formalizations make implicit assumptions

about the well-formedness of diagrams. Ill-formed diagrams may result in de-

generate formal models, but in ways that cannot be detected by the formal

analysis tools (Chapter 3 presented several examples). Therefore, an approach

to formalizing Object-oriented notations intended for use by typical software de-

velopers must include diagram consistency-checking (structural analysis) prior

to formal model generation and behavioral analysis.

0 Visualization Of analysis results to guide diagram refinements [40, 41,

47, 50]. We developed visualization techniques for results of both structural

analyses of diagrams and behavioral analyses Of automatically generated formal
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models. Visualizations (Chapter 6) include highlighting portions of diagrams,

animating diagrams, and generating new diagrams.

Impact. As discussed in Chapter 6, analysis results from formal language

analysis tools are often cryptic, and are expressed in terms Of the formal model

rather than the original diagrams. Therefore, an approach to rigorous analysis of

Object-oriented diagrams incorporating formal language analysis tools intended

for typical software developers must include a mechanism for interpreting formal

analysis results in familiar terms; we have chosen to interpret and visualize

results in terms of the original UML diagrams or complementary ones in order

to facilitate model refinement and understanding.

Framework and process for development and analysis of (formalized)

UML models [40, 41, 49, 56]. We developed a model development and anal-

ysis framework (Chapter 4) that leverages, integrates, and encapsulates a previ-

ously developed formalization framework for object—oriented notations [31, 33],

including feedback to diagrams from formal analysis tools in order to insulate

users from the outputs Of such tools. We also developed an iterative and in-

cremental model development and analysis process (Chapter 4) that comprises

steps for ( 1) model construction, (2) structural analyses, (3) behavioral analy-

ses, and (4) refinements based on feedback from both types of analyses.

Impact. Automated tools are necessary to broaden the community Of users

who can take advantage of the benefits of formal methods. The model develop-

ment and analysis framework (embodied by MINERVA) described in Chapter 4

encapsulates an existing formalization framework (embodied by Hydra), thus

providing a graphical diagram editing and visualization environment as both a

front-end for the formalization framework and a back—end for formal analysis
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tools. While analysis and visualization techniques, and a framework to support

them, are important, they have greater impact and utility when incorporated

into a systematic process that guides typical software developers in modeling

and analyzing their requirements. Chapter 4 describes our process, and the

industrial case study presented in Chapter 7 illustrates its application to a real-

world embedded system. Typical software developers thus have a systematic

process and tools with which to model their requirements and view analysis

results in UML.

Structural and behavioral patterns for modeling fault handling. High-

assurance systems must Often remain operational even in the presence Of

faults. We developed structural and behavioral patterns for modeling the fault-

tolerance concepts of detectors and correctors [57] in UML (Chapter 9) to pro-

vide guidance for modeling and analyzing fault handling requirements.

Impact. In Chapter 9, we extended our framework and process to incorporate

requirements patterns [2, 3, 4] (now termed Object analysis patterns [1]) that use

templates for (UML) diagrams and (temporal logic) system properties to guide

developers in creating UML models and instantiating properties to check against

them. We used our patterns for detectors and correctors to refine Konrad et al.’s

original Fault Handler requirements pattern [2, 3, 4], and applied the refined

requirements pattern to the Adaptive Cruise Control example from Chapter 7.

Patterns for specific application domains, such as embedded systems, provide

guidance for typical software developers who may not be familiar with UML,

formal methods, or a given application domain, in constructing UML models

of their requirements and in instantiating temporal logic properties to check

against their models.
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Collective impact. An overarching Objective of this research was to facilitate tech-

nology transfer of rigorous software engineering techniques to typical software devel-

opers, especially in the embedded systems domain. As the complexity and critical na-

ture of embedded systems increase, developers can no longer rely on ad hoc methods.

Effective analysis techniques are needed to minimize the number of errors introduced

during the early stages Of development, and to assist in detecting the causes Of such

errors. Our model development and analysis framework and process, integrated with

McUmber’s formalization framework [31, 33], enable rigorous analysis of UML-based

requirements using consistency—checking, simulation, and model checking techniques,

all combined with visualizations of analysis results. Therefore, the collective contri-

bution Of this work enables developers from the broad UML user community to make

use of formal-verification tools to support model validation while being insulated from

the formal models used by these tools.

11.2 Future Investigations

Several investigations complementary to the research presented in this dissertation

may be pursued in future work. These investigations include creating formalization

(i.e., mapping) rules for other target languages, codifying mapping rules in a more

precise way, extending both the model development and analysis framework and the

formalization framework to support timing, and developing patterns to guide model-

ing and analysis of distributed real-time embedded systems. These ideas are further

elaborated below.

0 Creating formalization (mapping) rules for other target languages.

MCUmber developed a general framework for formalizing Object-oriented mod-

eling notations [31, 33]. The model development and analysis framework pre-

sented in this dissertation leverages and integrates this formalization framework.
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To demonstrate the flexibility Of the formalization framework, McUmber cre-

ated mapping rules from UML to both VHDL [30, 31], a simulation language

used in embedded systems development, and Promela [31, 33], the input lan-

guage for the model checker Spin [69]. The instantiation Of the model develop-

ment/analysis and formalization frameworks described in this dissertation uses

his UML-tO-Promela mapping rules [31, 33] and the Spin [69] model checker.

Using McUmber’s metamodel-based approach to formalization, it would be pos-

sible to create mapping rules to other target languages, such as SMV [75], to

enable the use Of other formal analysis tools.

Model checkers for SMV (e.g., Cadence SMV [142], NuSMV [143, 144]) sup-

port Computational Tree Logic (CTL), a branching-time temporal logic where

temporal Operators quantify over the paths possible from a given state, as well

as LTL, a linear-time temporal logic where temporal Operators describe events

along a single path Of computation. Because CTL and LTL are not expressively

equivalent [5], a mapping to SMV would provide the potential for checking prop-

erties previously not expressible with the Spin instantiation of the integrated

frameworks, such as AC(EFp) [70], or the mutual-exclusion property described

in Figure 11.1. Specification patterns [43] and some Object analysis pattern

constraints [53] also support CTL [145], so developers would still have some

guidance when instantiating CTL properties. Currently, there are few UML

formalizations to SMV (e.g., [146, 147, 148]).

Codifying mapping rules more precisely.

State—Of-the-art formalization approaches (e. g., [26, 27, 31, 33, 146]) overwhelm-

ingly use what we term correspondence-style rules [35] to define mappings from

a source to a target language for every source language feature formalized. That

is, each rule presents, in an inherently informal style, a prose description of the
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Example: Consider an instance Of the mutual exclusion problem, where each process

P, has a non-critical section NC3,, a trying section TRY,, and a critical section C8,.

It should be possible for a particular process P,- either to remain in its non-critical

section forever while other processes P, perform their tasks in a mutually exclusive

fashion, or to eventually enter its trying section. The key property is that once P,

is in NC3,, it either remains there forever or eventually enters TRY,, which can be

expressed in CTL as

EC(inNCS,-) /\ EF(inTRY,-) /\ A(C(inNCS,-) V F(inTRY,)) (11.1)

where path quantifiers A (“for all paths”) or E (“for some paths”) may prefix asser-

tions composed Of linear—time temporal Operators G (“always”), F (“sometimes”), X

(“next”), and U (“until”). Thus, Expression (11.1) states (in CTL) that for some

paths, process P, is always in its non-critical section NC5,; and for some paths, pro-

cess P, is sometimes in its trying section TRY,; and for all paths, process P, is either

always in its non-critical section NCS, or sometimes in its trying section TRY,.

Because LTL cannot explicitly express the existence Of alternate computation paths,

but only describe events along a single path, the closest candidate expression using

the linear-time temporal Operators described above for Expression (11.1) is

A(G(inNCS,-) v F(inTRY,-)), (11.2)

which unfortunately allows for a degenerate model where all paths satisfy F(inTRY,),

the possibility that process P, eventually enters its trying section, and no paths satisfy

C(inNCS,), the possibility that process P, remains in its non-critical section forever.

Using the LTL notation of Chapter 2, Expression (11.2) can be written as

CI(inNCS,-) V <>(inTRY,-). (11.3)

Figure 11.1: Example CTL property not fully expressible in LTL [5]
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context for instantiating the rule, and examples Of the target-language code

snippets to be generated. For example, Wang’s OMT-to—LOTOS formaliza-

tion [27] and McUmber’s UML-tO—Promela formalization [31, 33], described in

this dissertation, both use this approach. However, recent investigations by

Cheng et al. [35, 149] suggest that a combination of a natural deduction system

(NDS) and metamodel—based approach to formalization has an advantage over

correspondence-style rule-based ones in that NDS rules themselves can precisely

capture a mapping from source- to target-language metamodels. Potentially

ambiguous, inconsistent, and/or incomplete correspondence-style rules, on the

other hand, must first be interpreted by a human (an inherently error—prone step

by itself) in order to be encoded into an executable tool. Cheng et al. [35] found

that an NDS and metamodel-based approach forces developers to be explicit

about assumptions when creating a set Of formalization rules, and also revealed

ambiguities and missing cases in an existing set Of correspondence-style rules

mapping a subset of UML to SMV [146]. Precisely codifying a mapping from

UML to a given target language in a format amenable to automated reasoning

(i.e., NDS rules) will enable unambiguous generation Of a formal model from

UML diagrams.

Extending both frameworks to support timing.

Konrad et al.’s preliminary work with validating timing—based embedded sys-

tems requirements [54, 55] has shown that checking untimed properties is not

suflicient for systems that rely critically on timing. For example, a property for

a cruise control system that states that “it is always the case that if the driver

taps the brake pedal, the cruise control system eventually disengages” does not

include any timing information about the actual time delay that it takes from

the activation of the brake until the disengagement of the system. Therefore,

it is also necessary to check the property that “it is always the case that if
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the driver taps the brake pedal, the cruise control system disengages within a

specific time period.” Because (real-time) embedded systems frequently have

strict timing constraints, methods for modeling and analyzing time-based re-

quirements have value for embedded systems developers.

Konrad et al. [54, 55] introduce a timer type in UML class diagrams and use a

notation similar to timed automata [150] to add the ability to manipulate and

evaluate timers in UML state diagrams. Correspondingly, they extend McUm-

ber’s previous UML-to—Promela formalization [31, 33] to incorporate semantics

similar to timed automata, using the digital-clock model [150]. The result is that

requirements-based properties involving time (expressed in a subset Of metric

temporal logic (MTL) [151]) can be checked against the formal Promela model

automatically generated from UML diagrams.

Modified versions of Spin [152, 153] for analyzing timing have been developed,

as well as other tools for the verification of real-time systems, such as Kro-

nos [154] and HyTech [155]. However, these tools lack both a mapping from

UML into their respective target languages, and a UML-based graphical editing

and visualization environment. Therefore, these tools dO not Offer any support

for the graphical UML-based modeling Of a system nor for visualizing property

violation traces in terms of UML diagrams.

MINERVA’s graphical editors could be extended to support timing syntax, and

Hydra’s automated generation of formal models could be extended to support

timing semantics, at first using Konrad et al.’s extension to McUmber’s UML—

tO-Promela formalization [54, 55] described above, and then potentially using

mappings to other target languages and tools that have built-in support for

timing. Additionally, timing-based visualizations might be helpful for indicating

when a particular property is violated.
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0 Developing patterns for distributed real-time embedded systems.

Given the potentially critical nature Of embedded systems (e.g., X-by-wire, med-

ical devices, etc.) in which faulty behavior Of a system could lead to significant

loss, methods for modeling and developing embedded systems and rigorously

analyzing behavior before starting the design phase and committing to code

are increasingly important. However, currently much of the embedded systems

industry uses ad hoc development approaches [37] that emphasize design and

coding over analysis [116]. The large number of design patterns [83], especially

design patterns tailored to real-time systems (e.g., [104, 109, 110, 111, 114]), is

further evidence Of this focus. Despite its importance, the analysis phase is of-

ten neglected in current embedded systems development practice, often causing

conceptual errors to be propagated to design and coding [36]. TO address this

problem for (non-distributed) embedded systems, Konrad et al. propose object

analysis patterns [1, 2, 3, 4] to be used in the analysis phase Of development

that not only guide developers in constructing UML-based conceptual models

of their systems, but also provide property templates so that developers are

able to validate these models, prior to design, using McUmber’s formalization

framework [31, 33]. In Chapter 9, we discussed and demonstrated how these

patterns can be used to drive our model development and analysis process from

Chapter 4 by guiding both model construction and property instantiation.

The demand for distributed real-time embedded systems (DREs) has increased

considerably in recent years and is expected tO continue to grow. DRES occur

in many application domains, including automotive, aerospace, manufacturing, ‘

and telecommunication. The complexity Of DRES has increased in order to add

new services and features in an effort to keep these applications competitive in a

global market. These embedded devices Often operate in environments where a

failure could lead to significant losses, such as human life or financial losses. The
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increase in the number and complexity of DREs strongly motivates the need for

more rigorous, repeatable, and cost-effective development techniques, Of which

patterns can play an important role. However, Konrad et al.’s Object analysis

patterns [1, 2, 3, 4] focus on an individual embedded system, rather than a

collection of embedded systems that work cooperatively together as they would

in a DRE. These patterns could be expanded significantly to address various

concerns Of the DRE domain, such as decentralized fault-handling, real-time

hard timing constraints, concurrency, synchronization, and safety.
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Appendix A

Wang’s Design Process

In order to formalize OMT, Wang developed a systematic design process for con-

structing and refining the object-oriented models [60]. The design process contains

iterations of model development. For each step Of model development during a given

iteration, corresponding formal models are derived or refined (see Figure A1). The

process explicitly addresses the consistency between the formal models Of two adjacent

levels of abstraction thus enabling stepwise refinement and consistency checking [60].

In the design process, Steps 1-3 focus on creating system-level versions Of Object,

dynamic, and functional models, respectively. Steps 4—7 are refinements and decom- _

positions of the models from Steps 1-3. An Object functional model (OFM) in Step

5 is a variation of data flow diagrams, and it depicts visible services Offered by the

Object. A service refinement functional model (SRFM) in Step 6b is also a variation

Of data flow diagrams, depicting a system/object service in terms of the services pro-

vided by the aggregate Objects of the system/Object. Step 8 composes the dynamic

models for all aggregate Objects to depict the overall system behavior. The formal

models of the diagrams enable automated analysis to check that the diagram and

model refinements are consistent with earlier versions of diagrams and models.
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Appendix B

TRMCS Refinement

The Teleseruices and Remote Medical Care System (TRMCS) design proposed in [46]

is a distributed system that realizes its functionality via a collection Of communicat-

ing software components. The distributed operation is supported by a client-server

architecture. The main components of interest examined in the refinement cooperate

to realize the services expressed in the high-level model. This Appendix overviews

Object, service, and dynamic model refinement for the TRMCS to complement the

discussion in Chapter 3 illustrating different LOTOS analyses.

Object refinement. The system-level Object model for the TRMCS is refined

(according to Step 4 Of Wang’s design process, Appendix A, Figure A.1, page 235)

to include new Objects as shown in bold in Figure B.1, where the diamond indicates

aggregation and a filled circle indicates the “zero or more” relationship (see Chapter 2,

Section 2.1.1, page 11, for more details on OMT syntax). As shown in Figure B.1, a

Data Repository handles requests for patient records issued by Clients, while a Name

Monitor is responsible for maintaining a list of active Data Repositories and handling

Client requests for copies of this list. A Channel represents the connection between

a Client Object and any Of the Data Repositories. LOTOS models (not shown) are

derived for all Of the aggregate Objects in the same manner in which a LOTOS model
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was derived for the high-level system (Chapter 3).
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Figure B.1: Refined TRMCS Object model (attributes have been elided)

 

 

Service refinement. The refinement of the high-level TRMCS into aggregate Ob-

jects Client, Data Repository, Name Monitor, and Channel allows us to refine the high-

level Retrieve Profile service in the TRMCS object into a composition of services

offered by the aggregates. TRMCS uses the Client’s Query service to implement the

high-level Retrieve Profile service. Thus the client-server architecture suggests a re-

finement Of the dynamic model Of the TRMCS system (Figure B2) to depict the

Retrieve Profile service being handled by the Client’s Query service. The WaitQuery
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state is introduced to handle the redirection of the Query Request and the conversion

of the returned Query Result as described below. The modified parts of the model

(indicated by bold states or transition text outlined by dotted rectangles) specify

that:

1. When a request for the high-level Retrieve Profile service occurs, the input

argument Patient ID is decomposed into Data Repository Name and Query

Request.

2. The Query Request is redirected to a Client Object for a Query service.

3. The TRMCS system enters the WaitQuery state to await a Query Result from

the Client.

4. When a Query Result is received from the Client, the TRMCS converts the

Query Result to a Patient Record and delivers it to the user.

Dynamic model refinement. As indicated in Step 8 of Wang’s design process

(Appendix A, Figure A.1, page 235), the dynamic models Of instantiations Of all the

aggregate Objects and the TRMCS Object are composed concurrently, and the refined

Object-oriented models are again translated to LOTOS to create the refined model

(not shown). For our case study [46], we composed the instantiated behaviors Of one

Client (Figure B.3), one Name Monitor (Figure 8.4), and one Channel (Figure 8.5)

with the instantiated behaviors Of two Data Repository instances (Figures 8.6 and

B. 7). The behaviors of the Client, Name Monitor, Channel, and each Data Repository

were instantiated as described in Figure B.8.

We included two instances of Data Repository in order to validate correct con-

current behavior for the distributed system. The two instances Of Data Repository,

LANSING and DETROIT, are fully interleaved.
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Retrieve_Profile(ptID: Patient_ID) [not(isValidPtID(ptID))]

- Select_Patient(ui: Userlnput)

/ Select_Patient(ui)

‘-

—_-- —---—--———--‘_-q

I

I Retrieve_PrOfile(ptID: Patient_ID) [isValidPtID(ptID)] l

l "Client.Query(PtID_getDataRepositoryName(ptID),

| PtID_getQueryRequest(ptID))

!— _________ .5__________ l

Select_Patient(ui: Userlnput) (WaitQuera

    

  

    

 

   
Select_Patient(ui: Userlnput)

/ Select_Patient(ui)

 

/ Select_Patient(ui)
 

l Client.Query(qrs: Query_Result)

Ll Retrieve_PrOfile(QueryResult2PatientRecord(qrs)) l

Diagnose_Patient(diagreq: Diagnosis_Request)

/ Diagnose_Patient(diagreq)

Figure B.2: Refined TRMCS high-level dynamic model (state diagram)
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"Name_Monitor.GetTable()

(Client_lnit)

Name_Monitor.GetTable(st: Server_Table)

 

Query(dm: Data_Repository_Name, qrq: Query_Request)

"Name_Monitor.GetTable()

   

(Client_ldle Client_WaitTable)

  

Name_Monitory.GetTable(st: Server_Table)

[getAddress(st, dm) eq undef_Address]

/ Query(undef_Query_Result)

Name_Monitory.GetTable(st: Server__Table)

[not(getAddress(st, drn) eq undef_Address)]

AData_Respository.Search(qrq, getAddress(st, dm))

Data_Repository.Search(qrs: Query_Result)

/ Query(qrs)

 

Client_WaitQuery

 

Figure B.3: Dynamic model (state diagram) of the TRMCS Client
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 Register(dm: Data_Repository_Name, a: Address) I

/ Register(dm, a)

 

 
e {NMPOllingRQ

 

GetTable/ GetTable()

Figure 34: Dynamic model (state diagram) of the TRMCS Name Monitor

 

 

Data_Repository_Search(qrq: Query_Request, a: Address) [a eq 1234]

AData__Repository_S 1234(qrq, a)

 

WaitCh1239

 

Data_Repository_S l 234(qrs: Query_Result)

/ Data_Repository_Search(qrs)

Idle

Data_Repository_85678(qrs: Query_Result)

/ Data_Repository_Search(qrs)

 

WaitCh5679

 

Data_Repository_Search(qrq: Query_Request, a: Address) [3 eq 5678]

AData_Repository_SS678(qrq, a)

Figure 8.5: Dynamic model (state diagram) of the TRMCS Channel
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Register(getRepositoryName(dr), getAddress(dr))

 
 

 

 

V

DRPOllingRQ Data_Repository_S 1234(qrq: Query_Request,

a: Address) [not(1sMyAddress(a, dr))]

Data_Repository_S 1234(qrq: Query_Request,

a: Address) [isMyAddress(a, dr)]

Search

dO/ Search(qrq)

 

Figure 8.6: Dynamic model (state diagram) of first TRMCS Data Repository
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Register(getRepositoryName(dr), getAddress(dr))

 
Y

DRPOllingRQ Data_Repository_S5678(qrq: Query_Request,

a: Address) [not(isMyAddress(a, dr))]
 

Data_Repository_SS678(qrq: Query_Request,

a: Address) [isMyAddress(a, dr)]

 

( Search

kdo/ Search(qrq)

 

Figure B.7: Dynamic model (state diagram) Of second TRMCS Data Repository

 

 

 

 

   

Client make_Client(empty)

Name Monitor make-Name_Monitor(empty)

Channel make_Channel (empty)

__First Data Repository make_Data-Repository(lansing, lansing_db, 1234)

[icond Data Repository make_Data_Repository(detroit, detroit-db, 5678)

 

Figure 8.8: TRMCS LOTOS instantiations
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Appendix C

Formal Model Generator

Architectures

This Appendix compares both the architecture realized in Wang’s approach (Sec-

tion Cl) and the architecture realized in McUmber’s approach (Section C2) to the

general formal model generator architecture first introduced in Chapter 4.

C. 1 Wang’s Approach

Figure C.1 illustrates the architecture realized in Wang’s approach as compared to

the general formal model generator architecture (Figure C.1(a)) first introduced in

Chapter 4. Wang created a set of mapping rules from OMT to LOTOS, shown as

a bold solid rectangle in Figure C.1(b). Wang then augmented a simple Motif-based

graphical editor for OMT class diagrams, VISUALSPECS [156], to add support for

OMT state and data flow diagrams (shown as a bold solid oval in Figure C.1(b)).

This augmented editor was, in future work, to have output an intermediate (textual)

representation of OMT diagrams. Wang intended to write a parser for this inter-

mediate representation in order to generate LOTOS models based on his mapping

rules from OMT to LOTOS. These unfinished portions are shown as the bold dashed
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intermediate representation data flow arrow and bold dashed Translator pro-

cess oval in Figure C.1(b), respectively. The bold solid LOTOS model data flow

arrow in Figure C.1(b) represents LOTOS models generated by manual application

of Wang’s mapping rules. Finally, with this architecture it may be possible to ana-

lyze some types of properties against the generated formal model as represented by

the dot—dashed data flows and solid properties rectangle in Figure C.1(a). As an

example Of a type of property that can be analyzed with LOTOS analysis tools, such

as the TOPO/LOLA LOTOS tool shown in Figure C.1(b), a developer can compose

a test process (solid rectangle between dashed data flows) with a LOTOS model to

check whether the behavior described by the test process is present in the model. An

example of test composition is described in Chapter 3, page 36.
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(b) Wang’s approach

Figure C.1: Architecture for formal model generator realized in Wang’s approach

 

 



C.2 McUmber’s Approach

Figure C.2 illustrates the architecture realized in McUmber’s approach as compared

to the general formal model generator architecture (Figure C.2(a)) first introduced in

Chapter 4. As represented by the bold solid intermediate representation data flow

in Figure C.2(b), McUmber created a textual representation language Of UML class

and state diagrams, called Hydra Intermediate Language (HIL). As his 'Ii‘anslator,

he created a parser for HIL, Hydra [31], to generate both VHDL and Promela models

(each target language had its own set of mapping rules). Figure C.2(b) shows Hydra (a

bold solid oval) instantiated with his mapping rules for Promela (a bold rectangle).

The instantiation shown generates Promela models, as represented by the bold solid

Promela model data flow arrow. He did not create a graphical editor for UML that

would output HIL; thus, the UML Graphical Editor is shown as a bold dashed

process oval in Figure C.2(b). Finally, with this architecture it may be possible to

analyze some types Of properties against the generated formal model as represented

by the dot-dashed data flows and solid properties rectangle in Figure C.2(a). As

an example of a type of property that can be analyzed with Promela analysis tools,

such as the Spin tool shown in Figure C.2(b), a developer can check LTL properties

(solid rectangle between dashed data flows) against a Promela model. An example Of

checking LTL properties is described in Chapter 7.
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Appendix D

Adaptive Cruise Control Attributes and

Signals

 

 

trail distance closing zone

. 1 l ,
I 7 fl

safety zone coast zone

I J l J

l I I
 

I

 

 
[ C} j H l :33

lead / \ I f Car

vehicle 21 22 xhit: xcoast: xl

 

_
.
—
q
p
_
_

direction of travel

Figure D.1: Variables and zones used by Adaptive Cruise Control Control algorithm.

 

 

Scales

0 Time is measured in seconds.

0 Distance is measured in tenths of a foot.

0 Speed is measured in tenths of a foot per second.
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Signals

o All signals are asynchronous.

o Signals that carry parameters include each parameter type in the signal signa-

ture.

Glossary

0 Car: Adaptive Cruise Control-equipped vehicle.

0 Lead vehicle (also called the target vehicle): Vehicle encountered in front of the

Car.

0 Trail distance: Distance the lead vehicle travels in a given amount of time

(usually two seconds).

0 Safety zone: 90% of the specified trail distance.

0 Closing zone: Zone in which the Radar has acquired the lead vehicle as a target,

but the Car has not yet achieved proper trail distance behind the lead vehicle.

0 Coasting: Continued (forward) movement without throttle.

0 Closing speed: Speed at which the Car approaches the lead vehicle. In a typical

scenario, the Car approaches a slower moving lead vehicle at the set cruising

speed, but will not begin decelerating until the Control algorithm’s relative

speed and distance calculations determine that coasting should be initiated.

0 Coast zone: Zone in which the Car is coasting.

0 Adjusted speed: Speed calculated by the Control algorithm. The Control algo-

rithm simulates adjusting the Car’s throttle by calculating a new (increased or

decreased) speed for the Car.
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Car Attributes
 

 

 

  
 

 

 

 

 

 

 

 

 

  

Attribute Description

setv Adjusted speed of the Car as set by the Control algorithm. For

modeling purposes, this speed is initially set to 1100 tenths of a

foot per second.

realv Current speed of the Car. For modeling purposes, this speed is

initially set to 1100 tenths of a foot per second.

Figure D2: Car attributes

Car Signals

Signal Description

carv Developer error: Should have been getv. Detected and corrected

in Section 7.3.

setspeed(int) Signal (from the Control) Whose parameter is the adjusted speed

of the Car as set by the Control algorithm.

unset Signal from the Control indicating the beginning of the cruise

control disengagement process.

getv Signal from the Radar requesting the current speed of the Car.

getspeed Signal from the Control requesting the current speed of the Car. 
 

Figure D.3: Car signals
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Radar Attributes
 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

  

Attribute Description

v Closing speed of the Car. Used by the Radar simulation algo—

rithm to calculate the next sampled distance to the target vehi-

cle. Calculated as v = vc — vt.

vc Most recent Car speed as obtained from the Car.

vt (Constant, 900) Speed of the target vehicle.

x Current distance to the target vehicle. Calculated as :1: = x — 2)

every time the Radar simulates sampling the distance to the

target vehicle (assumed to be once per second). For modeling

purposes, this distance is initially set to 4500 tenths of a foot,

greater than the range of the Radar (4000 tenths of a foot).

tmode Boolean flag used by the Radar simulation algorithm. Set to

true when Radar acquires a target.

Figure D.4: Radar attributes

Radar Signals

Signal Description

ackcontrol Acknowledgment signal received from the Control in response to

target, dist, and lost signals.

on Signal received from the Control indicating that the Radar should

be turned on.

ofl Signal received from the Control indicating that the Radar should

be turned off.

caru(int) Signal (received from the Car) whose parameter is the current

speed of the Car.

ackcar Unused signal.

acksys Unused signal. 
 

Figure D.5: Radar signals

 

251

 

 

 



 

 

Control Attributes
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Attribute Description

a (Constant, 15) Acceleration/deceleration adjustment to the

speed of the Car.

closing Boolean flag used in the Control algorithm. Set to true when

the Control algorithm’s relative speed and distance calculations

determine that coasting should be initiated.

setspeed Developer error: Should have been setspd. Detected and cor-

rected in Section 7.3.

setspd Cruising speed set by the driver.

tinc (Constant, 1) Increment of time (in seconds) between Radar dis-

tance samples.

tmin (Constant, 2) The number of seconds of target vehicle travel

used to calculate the desired trail distance.

v Calculated closing speed of the Car as it approaches the target

vehicle. Calculated as v = (51:1 — 2:2)/tinc.

vc Current speed of the Car. Obtained from the Car.

vt: Calculated current speed of the target vehicle. Calculated as

at = '00 — '0.

x1 Previous sampled distance to the target vehicle as obtained from

the Radar. After i), vt, 22, and 21 are calculated in a single cycle

of the Control algorithm, 231 is set equal to 3:2 in Control state

getxc.

x2 Current sampled distance to the target vehicle as obtained from

the Radar.

xcoast Calculated distance from the target vehicle at which to start

coasting in order to achieve the desired trail distance. Calculated

as

:rcoast = :rhit + 22 + tine * 1!.

xhit Calculated distance from the target vehicle at which to start

coasting in order for the Car to exactly match the speed of the

target vehicle at zero trail distance. Calculated as xhit = (v *

v) / (2 * a).

21 Calculated closest safe distance from the target vehicle. Bound-

ary of the safety zone. Calculated as 90% of the desired trail

distance,

or 21 = 22 -— (22/10).

22 Calculated desired trail distance from the target vehicle. Calcu- lated as 22 = vt * tmin.
 

Figure D.6: Control attributes
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Control Signals
 

 

 

 

 

 

 

 

  

Signal Description

ackcar Acknowledgment signal received from the Car in response to

setspeed and unset signals.

acki‘adar Acknowledgment signal received from the Radar in response to

an on signal.

brakes External signal that simulates the driver has applied the brakes.

carspeed{int) Signal (received from the Car) whose parameter is the current

speed of the Car.

dist(int) Signal (received from the Radar) whose parameter is the current

distance from the target vehicle.

lost Signal received from the Radar indicating that a previously ac-

quired target has been lost.

set External signal that simulates the driver has set the desired

cruising speed.

target Signal received from the Radar indicating that a target has been acquired.
 

Figure D.7: Control signals
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Appendix E

Adaptive Cruise Control Control State

Diagram

The modified Control state diagram as described in Section 7.4.4 includes transitions

that handle the brakes message (shown as dashed arcs). The missing transition from

state caroff to handle the carspeed message is shown in bold. Due to printing

limitations, the transitions have been annotated with unique numbers that correspond

to the legend in Figure 13.1.
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23

24

25
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30

31

32

33

34

35

36

37

"_SYSTEMCLASS_ . ready

set [1 / ‘Car.getspeed

carspeed(setspd) [J / “Car.setspeed(setspd)

ackcar [J / “Radar.on

ackradar [] /

target [J / “Radar.ackcontrol

lost [J /

ackcar [J / ‘Radar.ackcontrol

dist(xl) [J / xcoast :=O

lost [J /

dist(x2) [] /

carspeed(vc) [J /

["closing] / xhit:=(v*v)/(2*a); xcoast:=xhit+z2+tinc*v

[closing] /

[x1 >= 21] /

[xhit <= x1] /

[xhit > X1] /

[l /

[closing] /

[”closing] /

[x1 > xcoast] /

[x1 <= xcoastJ / closing =1 ‘Car.setspeed(vt)

ackcar [J /

brakes [J

brakes [J

brakes [J

brakes [J

brakes [J

brakes [J /

carspeed(vc) [J /

lost [J /

dist(xl) [J /

target [1 /

ackcar [J /

[x1 < 21] / “Car.unset

brakes [J /

ackcar [J / ‘Radar.off

\
\
\
\
\

Figure 13.1: Legend for transitions in Figure E2
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l E ' entry/ send(Radar.ackcontrol) ' ,_
: . l\ , entry/ vt .— vc - v

: E g, 1'1 F—H entry/ 22 := vt * tmin 37

E g l calc 12 entry/ zl := z2 — (22/ 10) 34
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I
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I 23 entry/ send(Radar.off)
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. I................................... ' l_3z_l L33

Figure E2: State diagram for the Adaptive Cruise Control class Control
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Appendix F

Hydra-Generated Promela Code

for Adaptive Cruise Control

This appendix contains the Promela model for class Control and its state diagram.

(This code has been excerpted from the Promela model automatically generated for

the Adaptive Cruise Control UML diagrams in Chapter 7.) Extra linebreaks have

been added in order to ensure that the formal model is readable; no attempt has

been made to add additional comments to annotate the formal model. The inclusion

of the formal model is intended to illustrate the correspondence between the UML

diagrams and the Promela code.

1typedef Control_T {

2 int a;

3 int tmin;

4 int vc;

5 int x1;

6 int vt;

7 int tinc;

8 int x2;

9 bool closing;
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10 int v;

11 int z1;

12 int xhit;

13 int 22;

14 int setspd;

15 int xcoast;

16 }

17Control_T Control_V;

ischan Control_q=[5] of {mtype};

igchan Control_carspeed_p1=[5] of {int};

zochan Control_dist_p1=[5] of {int};

n

22proctype Control()

23{

24mtype m;

25int dummy;

2s Control_V.a = 15;

27 Control_V.tmin = 2;

23 Control_V.tinc = 1;

29/* Init state */  30/* Initial actions / messages */

31 _SYSTEMCLASS__q!ready;

32 goto idle;

33/* State idle */

34idle: printf("in state Control.idle\n");

35 atomic {if :: !t?[free] -> t!free :: else skip fi;}

36 if

37 :: Control_q?set -> t?free; Car_q!getspeed; goto gotit

33 fi;



39/* State gotit */

4ogotit: printf("in state Control.gotit\n");

41 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

42 if

43 :: atomic{Control_q?carspeed —>

44 Control_carspeed_p1?Control_V.setspd} -> t?free;

45 atomic{Car_setspeed_p1!Control_V.setspd; Car_q!setspeed};

46 goto setitO

47 fi;

48/* State caroff */

49caroff: printf("in state Control.caroff\n");

50/* entry actions */

51 atomic{

52 Radar_q!off;Car_q!unset;

53 }

54 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

55 if

56 :: atomic{Control_q?carspeed ->

57 Control_carspeed_p1?Control_V.vc} -> t?free; goto caroff

58 :: Control_q7ackcar -> t?free; goto idle

59 :: atomic{Control_q?dist -> Control_dist_p1?Control_V x1} ->

60 t?free; goto caroff

61 :: Control_q?brakes -> t?free; goto caroff

62 :: Control_q?target -> t?free; goto caroff

63 :: Control_q?lost -> t?free; goto caroff

64 fi;

65/* State getxc */

oegetxc: printf("in state Control.getxc\n");

67/* entry actions */
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63 atomic{

69 Control_V.v=(Control_V.x1-Control_V.x2)/Control_V.tinc;

7o Control_V.vt=Control_V.vc-Control_V.v;

71 Control_V.z2=Control_V.vt*Control_V.tmin;

72 Control_V.21=Control_V.z2-Control_V.z2/10;

73 Control,V.x1=Control_V.x2;

74 }

75getxc_G:

76 atomic {if :: !t?[freeJ -> t!free :: else skip fi;}

77 if

73 :: 1 -> t?free; if

79 :: Control_V.closing -> goto alarm

&) :: !Control_V.closing ->

at Control_V.xhit=(Control-V.v*Control_V.v)/(2*Control_V.a);

32 Control_V.xcoast=Control_V.xhit+Control_V.22+

83 Control_V.tinc*Control_V.v;

s4 goto alarm

85 :: else -> goto getxc_G

86 fi

37 fi;

ss/* State alarm */

sealarm: printf("in state Control.alarm\n");

goalarm_G:

91 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

92 if

93 :: 1 -> t?free; if

94 :: Control_V.x1<Control_V.21 -> Car_q!unset; goto alloff

95 :: Control-V.x1>=Control_V.21 -> goto warn

96 :: else -> goto alarm_G
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97 fi

 

98 fi;

99/* State alloff */

1m1alloff: printf("in state Control.alloff\n");

101 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

m2 if

m3 :: Control_q?ackcar -> t?free; Radar_qloff; goto idle

m4 :: Control_q?brakes -> t?free; goto alloff

ws fi;

m6/* State warn */

m7warn: printf("in state Control.warn\n");

mswarn_G:

m9 atomic {if :: !t?[free] -> t!free :: else skip fi;}

no if

111 t: 1 -> t?free; if

n2 :: Control_V.xhit>Control_V.x1 -> goto sendwarn

n3 :: Control_V.xhit<=Control_V.x1 -> goto close

n4 :: else -> goto warn_G

115 fi

no fi;

n7/* State close */

usclose: printf("in state Control close\n");

n9C108€_G:

in) atomic {if :: !t?[free] -> tlfree :: else skip fi;}

121 if

122 :: 1 -> t?free; if

123 :: !Control_V.closing -> goto waiting

m4 :: Control_V.closing -> goto getspd

125 :: else -> goto close_G
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126 fi

127 fi;

ms/* State sendwarn */

mgsendwarn: printf("in state Control.sendwarn\n");

no atomic {if :: !t?[free] -> tlfree :: else skip fi;}

131 if

m2 :: 1 -> t?free; goto close

133 fi;

m4/* State waiting */

1' waiting: printf("in state Control.waiting\n");(
I
.

0
"

mswaiting_G:

m7 atomic {if :: !t?[free] -> t!free :: else skip fi;}

me if

we :: 1 —> t?free; if

no :: Control_V.x1<=Control_V.xcoast ->

m1 Control_V.closing=1;

M2 atomic{Car_setspeed_p1!Control_V.vt; Car_q!setspeed};

M3 goto ac

N4 :: Control_V.x1>Control_V.xcoast -> goto getspd

m5 :: else -> goto waiting_G

me fi

m7 fi;

ms/* State ac */

mgac: printf("in state Control.ac\n");

mo atomic {if :: !t?[free] -> tlfree :: else skip fi;}

151 if

wz :: Control_q?ackcar -> t?free; goto getspd

ws :: Control_q?brakes —> t?free; goto caroff

154 fi;
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m5/* State getspd */

 '
f

wegetspd: printf("in state Control.getspd\n");

w7/* entry actions */

158

159

160

161

162

163

164

165

166

167

atomic{

Radar_q!ackcontrol;

1

atomic {if :: !t?[free] -> tlfree :: else skip fi;}

if

°: atomic{Control_q?dist -> Control_dist_p1?Control_V.x2} ->

t?free; goto calc

': Control_q?brakes -> t?free; goto caroff

': Control_q?lost -> t?free; goto ackcarO

fi;

ms/* State calc */

169 calc: printf("in state Control.calc\n");

no/* entry actions */

171

172

173

174

176

177

I78

179

atomic{

Car_q!getspeed;

}

atomic {if :: !t?[freeJ -> t!free :: else skip fi;}

if

': atomic{Control_q?carspeed ->

Control_carspeed_p1?Control_V.vc} -> t?free; goto getxc

': Control_q?brakes -> t?free; goto caroff

fi;

mo/* State setitO */

iaisetitO: printf("in state Control.setit0\n");

182

183

atomic {if :: !t?[free] -> tlfree :: else skip fi;}

if
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w4 :: Control_q?ackcar -> t?free; Radar_q!on; goto setitl

185 fi;

186 /* State setitl */

m7setit1: printf("in state Control.setit1\n");

ms atomic {if :: !t?[free] -> tlfree :: else skip fi;}

189 if

mo :: Control_q?ackradar —> t?free; goto maintain

191 fi;

m2/* State ackcarO */

1m1ackcar0: printf("in state Control.ackcar0\n");

w4/* entry actions */

195 atomic{

m6 atomic{Car_setspeed_p1!Control_V.setspd; Car_qlsetspeed};

wr }

ms atomic {if :: !t?[free] -> tlfree :: else skip fi;}

199 if

mo :: Control_q?ackcar -> t?free; Radar_q!ackcontrol; goto

m1 maintain

202 fi;

ma/* State maintain */

2a1maintain: printf("in state Control.maintain\n");

m5 atomic {if :: !t?[free] -> t!free :: else skip fi;}

206 i f

m7 :: Control_q?brakes -> t?free; goto caroff

ms :: Control_q?target -> t?free; Radar_q!ackcontrol; goto getxl

209 f i ;

mo/* State getxl */

211getx1: printf("in state Control.getx1\n");

m2 atomic {if :: !t?[free] -> t!free :: else skip fi;}
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213 if ll

!:

2m :: atomic{Control_q?dist -> Control_dist_p1?Control_V.x1} ->

as t?free;

m6 Control_V.xcoast=O;Control_V.closing=0; goto getspd

m7 :: Control_q?brakes -> t?free; goto caroff

ms :: Control_q?lost -> t?free; goto ackcarO

m9 fi;

noexit: skip

wt}
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Appendix G

Hydra—Generated Promela Code

for Producer- Consumer

This Appendix contains four versions of the formal (Promela) model for the Producer-

Consumer example. The first version is the baseline, generated according to formal-

ization rules and without pushing additional diagram information into the formal

model. The next three versions were generated according to the three breadcrumb

options, states, transitions, and both, respectively. In the latter three versions, each

printf for STATE and TRANSITION information was manually wrapped at the charac-

ter ‘(9’ for readability in this Appendix (e.g., lines 37—38 and 44—47 in Section G.4);

however, when generated, a printf statement appears all on one line of code.

G. 1 Baseline

1#define min(x,y) (x<y->x:y)

2#define max(x,y) (x>y->x:y)

schan evq=[10] of {mtype,int};

achan evt=[1OJ of {mtype,int};

schan wait=[1OJ of {int,mtype};
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6mtype={demand, 0K, supply};

7chan _SYSTEMCLASS__q=[5] of {mtype};

stypedef Producer_T {

9 int limited_ed;

16 int num_made;

11 }

12Producer_T Producer_V;

13chan Producer_q=[5] of {mtype};

14typedef Consumer_T {

15 int edition_num;

16 }

17Consumer_T Consumer_V;

1schan Consumer_q=[5] of {mtype};

16chan Consumer_supply_p1=[5] of {int};

m1chan t=[1J of {mtype};

21mtype={free};

22active proctype _SYSTEMCLASS_()  
23{

24 mtype m;

zsint dummy;

26/* Init state */

27 goto Create_Producer;

26/* State Create_Producer */

m1Create_Producer: printf("in state _SYSTEMCLASS_.Create_Producer\n");

M)/* entry actions */

31 atomic{

32 run Producer();

33 }

34 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}
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35 if

 n
-

36 :: _SYSTEMCLASS__q?0K -> t?free; goto Create_Consumer

37 fi;

33/* State Create_Consumer */

39Create_Consumer: printf("in state _SYSTEMCLASS_.Create_Consumer\n");

40/* entry actions */

41 atomic{

42 run Consumer();

43 }

44 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

45 if

46 :: _SYSTEMCLASS__q?0K -> t?free; goto Done

47 fi;

46/* State Done */

49Done: printf("in state _SYSTEMCLASS_.Done\n");

50 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

51 if

52 :: skip -> false

53 fi;

54exit: skip

55}

m

57

ssproctype Producer()

59{

somtype m;

61int dummy;

62 Producer_V.limited_ed = 5;

63/* Init state */
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 64/* Initial actions / messages */

u
n
'

65 _SYSTEMCLASS--q!OK;

66 goto Waiting_For_Demand;

67/* State Waiting_For_Demand */

66Waiting_For_Demand: printf("in state Producer.Waiting_For_Demand\n");

69Waiting_For_Demand_G:

7o atomic {if :: !t?[free] -> tlfree :: else skip fi;}

71 if

72 :: Producer_q?demand -> t?free; if

73 :: Producer_V.num_made<Producer_V.limited_ed ->

u Producer_V.num_made=Producer_V.num_made+1; goto

75 Advertise

76 :: else -> goto Waiting_For_Demand_G

77 - fi

73 :: 1 -> t?free; if

m :: Producer_V.num_made>=Producer_V.limited_ed -> goto

80 Sorry-Sold_0ut

91 :: else -> goto Waiting_For_Demand_G

92 fi

83 fi;

64/* State Sorry_Sold_0ut */

assorry_Sold_0ut: printf("in state Producer.Sorry_Sold_0ut\n");

86 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

87 if

88 :: skip —> false

89 fi;

96/* State Advertise */

91Advertisezprintf("in state Producer.Advertise\n");

92 atomic {if :: !t?[free] -> tlfree :: else skip fi;}
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93 if

94 :: 1 -> t?free;

95 atomic{Consumer_supply_p1!Producer_V.num_made;

96 Consumer_qlsupply}; goto Waiting_For_Demand

97 fi;

96exit: skip

99}

mo

1m

m2proctype Consumer()

m3{

m4mtype m;

msint dummy;

m6/* Init state */

m7/* Initial actions / messages */

m8 _SYSTEMCLASS__q!0K;

m9 goto Have_Money_Will_Spend;

no/* State Have_Money_Will_Spend */

111Have_Money_Will_Spend:

n2 printf("in state Consumer.Have_Money_Will_Spend\n");

n3 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

n4 if

n5 :: 1 -> t?free; Producer_q!demand; goto Waiting_For_Supply

n6 fi;

n7/* State Waiting_For_Supply */

noWaiting_For_Supply: printf("in state Consumer.Waiting_For_Supply\n");

n9 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

no if

121 :: atomic{Consumer_q?supply ->
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m2 Consumer_supply_p1?Consumer_V.edition_num} -> t?free; i—

 
M3 goto Have_Money_Will_Spend

m4 fi;

nsexit: skip

we}

I27

129

Mo/* This is the universal event dispatcher routine */

131proctype event(mtype msg)

 

w2{

M3 mtype type;

M4 int pid;

us

no atomic {

M7 do

no :: evq??[eval(msg),pid] ->

M9 evq??eval(msg),pid;

Mo evt!msg,pid;

M1 do

M2 :: if

M3 :: evq??[type,eval(pid)] -> evq??type,eval(pid)

M4 :: else break;

n5 fi

M6 od

M7 :: else -> break

M8 od}

M9exit: skip

mo}
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(3.2 UML States

1#define min(x,y) (x<y->x:y)

2#define max(x,y) (x>y->x:y)

3chan evq=[10] of {mtype,int};

4chan evt=[1OJ of {mtype,int};

5chan wait=[10] of {int,mtype};

6mtype={demand, 0K, supply};

7chan _SYSTEMCLASS__q=[5] of {mtype};

atypedef Producer_T {

9 int limited_ed;

10 int num_made;

II }

12Producer_T Producer_V;

13chan Producer_q=[5] of {mtype};

14typedef Consumer_T {

15 int edition_num;

16 }

17Consumer_T Consumer_V;

iachan Consumer_q=[5] of {mtype};

19chan Consumer_supp1y_p1=[5] of {int};

2ochan t=[1J of {mtype};

21mtype={free};

22active proctype _SYSTEMCLASS_()

23{

24mtype m;

25int dummy;

26/* Init state */

27 goto Create_Producer;
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23/* State Create_Producer */

29Create_Producer: printf("in state _SYSTEMCLASS_.Create_Producer\n");

30/* entry actions */

31 atomic{

32 printf("STATE@_SYSTEMCLASS_@209130692280324

33 ©Create_Producer©209130704732175\n");

34 run Producer();

35 }

36 atomic {if :: !t?[free] -> t!free :: else skip fi;}

37 if

38 :: _SYSTEMCLASS__q?0K -> t?free; goto Create_Consumer

39 fi;

4o/* State Create_Consumer */

41Create-Consumer: printf("in state _SYSTEMCLASS_.Create_Consumer\n");

42/* entry actions */

43 atomic{

44 printf("STATE@_SYSTEMCLASS_@209130692280324

45 ©Create_Consumer©209130704732176\n");

46 run Consumer();

47 }

48 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

49 if

59 :: _SYSTEMCLASS__q?0K -> t?free; goto Done

51 fi;

52/* State Done */

53Done: printf("in state _SYSTEMCLASS_.Done\n");

54/* entry actions */

55 atomic{

56 printf("STATE©_SYSTEMCLASS_@209130692280324
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 57 ©Done©209130706632727\n"); E

56 }

59 atomic {if :: !t?[free] -> t!free :: else skip fi;}

60 if

61 :: skip -> false

62 fi;

63exit: skip

64}

65

66

67proctype Producer()

68{

69mtype m;

mintdmmw;

71 Producer_V.limited_ed = 5;

72/* Init state */

73/* Initial actions / messages */

74 _SYSTEMCLASS__q!OK;

75 goto Waiting_For_Demand;

76/* State Waiting_For_Demand */

77Waiting_For_Demand: printf("in state Producer.Waiting_For_Demand\n");

76/* entry actions */

79 atomic{

6o printf("STATEQProducerQQOQ130692280326

61 QWaiting_For_Demand©209130753228840\n");

62 }

63Waiting_For_Demand_G:

64 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

85 if
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66 :: Producer_q?demand -> t?free; if

 

67 :: Producer_V.num_made<Producer_V.limited_ed ->

66 Producer_V.num_made=Producer_V.num_made+1; goto

69 Advertise

90 :: else -> goto Waiting_For_Demand_G

91 fi

92 :: 1 —> t?free; if

93 :: Producer_V.num_made>=Producer_V.limited_ed -> goto

94 Sorry_Sold_0ut

95 :: else -> goto Waiting_For_Demand_G

96 fi

97 fi;

96/* State Sorry_Sold_0ut */

9osorry_Sold_0ut: printf("in state Producer.Sorry_Sold_Out\n");

m0/* entry actions */

101 atomic{

m2 printf("STATE©Producer©209130692280326

m3 @Sorry_Sold_0ut@209130817257516\n");

um }

ms atomic {if :: !t?[free] -> tlfree :: else skip fi;}

me if

m7 :: skip -> false

m6 fi;

m9/* State Advertise */

noAdvertisezprintf("in state Producer Advertise\n");

111/* entry actions */

n2 atomic{

n3 printf("STATEQProduceIQ209130692280326

n4 @Advertise6209130817257519\n");
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115 } 5

g,

H6 atomic {if :: !t?[free] -> t!free :: else skip fi;}

M7 if

M6 :: 1 -> t?free;

n9 atomic{Consumer_supply_p1!Producer_V.num_made;

no Consumer_qlsupply}; goto Waiting_For_Demand

n1 fi;

uzexit: skip

n3}

n4

M5

”6proctype ConsumerC)

nrt

msmtype m;

121int dummy;

m0/* Init state */

131/* Initial actions / messages */

m2 _SYSTEMCLASS__q!DK;

m3 goto Have_Money_Will_Spend;

M4/* State Have_Money_Will_Spend */

”5Have_Money_Will_Spend:

M6 printf("in state Consumer.Have_Money_Will_Spend\n");

M7/* entry actions */

M6 atomic{

no printf("STATEQConsumer©209130692280330

Mo @Have_Money_Will_Spend@209130736058394\n");

M1 }

M2 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

143 if
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M4 :: 1 -> t?free; Producer_q!demand; goto Waiting_For_Supply

M5 fi;

M6/* State Waiting_For_Supply */

147Waiting_For_Supp1y: printf("in state Consumer.Waiting_For_Supply\n");

M6/* entry actions */

M9 atomic{

mo printf("STATEQConsumeIQ209130692280330

m1 ©Waiting_For_Supply@209130747068447\n");

m2 }

m3 atomic {if :: !t?[free] -> t!free :: else skip fi;}

m4 if

ms :: atomic{Consumer_q?supply —>

m6 Consumer_supp1y_p1?Consumer_V.edition_num} -> t?free;

m7 goto Have_Money_Will_Spend

m6 fi;

mgexit: skip

m0}

161

162

163

m4/* This is the universal event dispatcher routine */

msproctype event(mtype msg)

m6{

m7 mtype type;

ms int pid;

mg

no atomic {

n1 do

n2 :: evq??[eval(msg),pid] —>
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I73

174

175

176

180

181

182

183 exit:

184 }

 

od}

evq??eval(msg),pid;

evt!msg,pid;

do

': if

 

': evq??[type,eval(pid)] -> evq??type,eval(pid)

': else break;

fi

od

': else —> break

skip

G.3 UML Transitions

1#define min(x,y) (x<y->x:y)

2#define max(x,y) (x>y->x:y)

3chan evq=[10] of {mtype,int};

4chan evt=[10] of {mtype,int};

5chan wait=[10] of {int,mtype};

6mtype={demand, 0K, supply};

7chan -SYSTEMCLASS_-q=[5] of {mtype};

stypedef Producer_T {

9

10

11

i

i

}

nt limited_ed;

nt num_made;

12Producer_T Producer_V;

13chan Producer_q=[5] of {mtype};

14typedef Consumer_T {
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15 int edition_num;  [
I

16 }

17Consumer_T Consumer_V;

16chan Consumer_q=[5] of {mtype};

19chan Consumer_supply_p1=[5] of {int};

2ochan t=[1J of {mtype};

21mtype={free};

22active proctype _SYSTEMCLASS-()

23f

24mtype m;

25int dummy;

26/* Init state */

27/* Initial actions / messages */

26 printf("TRANSITIONQ209130706632721@_SYSTEMCLASS_

29 @2091306922803246Initial

39 @209130704732174©Create_Producer

31 0209130704732175©modelstart\n");

32 goto Create_Producer;

33/* State Create_Producer */  
34Create_Producer: printf("in state _SYSTEMCLASS_.Create_Producer\n");

35/* entry actions */

36 atomic{

37 run Producer();

38 }

39 atomic {if :: !t?[free] -> t!free :: else skip fi;}

40 if

41 :: _SYSTEMCLASS__q?DK -> t?free;

42 printf("TRANSITIDNG209130706632723©_SYSTEMCLASS-

43 @209130692280324©Create_Producer
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44

45

46

47

@209130704732175@Create_Consumer

@20913070473217600K\n");

goto Create_Consumer

fi;

46/* State Create_Consumer */

49Create_Consumer: printf("in state _SYSTEMCLASS_.Create_Consumer\n");

50/* entry actions */

51

53

54

55

56

57

58

59

60

61

62

atomic{

run ConsumeIC);

}

atomic {if :: !t?[free] -> tlfree :: else skip fi;}

if

': _SYSTEMCLASS__q?0K -> t?free;

printf("TRANSITIONQ209130706632725@_SYSTEMCLASS-

@209130692280324QCreate_Consumer

©209130704732176©Done

©209130706632727©0K\n");

goto Done

fi;

63/* State Done */

64Done:

65

66

67

68

69exit:

7o}

71

72

printf("in state _SYSTEMCLASS_.Done\n");

atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

if

°: skip -> false

fi;

skip
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73proctype Producer()

74{

 

75mtype m;

76int dummy;

77 Producer_V.limited_ed = 5;

76/* Init state */

79/* Initial actions / messages */

6o printf("TRANSITIONQZOQ130753228837©Producer

61 6209130692280326©Initia1

62 @2091307532288396Waiting_For_Demand

63 @209130753228840©modelstart\n");

64 _SYSTEMCLASS__q!OK;

65 goto Waiting_For_Demand;

66/* State Waiting_For_Demand */

67Waiting_For_Demand: printf("in state Producer.Waiting_For_Demand\n");

66Waiting_For_Demand_G:

69 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

96 if

91 :: Producer_q?demand -> t?free; if

92 :: Producer_V.num_made<Producer_V.limited_ed ->

93 printf("TRANSITIONQ209130817257517©Producer

94 @2091306922803260Waiting_For_Demand

95 @2091307532288400Advertise

96 @209130817257519©demand\n");

97 Producer_V.num_made=Producer_V.num_made+1;

96 goto Advertise

99 :: else -> goto Waiting_For_Demand_G

mo fi

m1 :: 1 -> t?free; if

281

 

 



m2 :: Producer_V.num_made>=Producer_V.limited_ed ->

m3 printf("TRANSITIONQ2091308172575146Producer

w4 @2091306922803266Waiting_For_Demand

m5 @209130753228840©Sorry_So1d_0ut

um @209130817257516@\n");

w7 goto Sorry_Sold_Out

m6 :: else -> goto Waiting_For_Demand_G

w9 fi

Mo fi;

111/* State Sorry_Sold_Out */

M2Sorry_Sold_0ut: printf("in state Producer.Sorry_Sold-0ut\n");

M3 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

H4 if

M5 :: skip -> false

M6 fi;

M7/* State Advertise */

M6Advertisezprintf("in state Producer.Advertise\n");

M9 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

no if

121 :: 1 -> t?free;

n2 printf("TRANSITIONQ209134301741058@Producer

M3 @2091306922803260Advertise

121 @209130817257519@Waiting-For_Demand

n5 @209130753228840@\n");

m6 atomic{Consumer_supply_p1!Producer_V.num_made;

u7 Consumer_qlsupply}; goto Waiting_For_Demand

n6 fi;

UQGXitI skip

no}
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I32

M3proctype Consumer()

I34 {

135 mtype m;

Moint dummy;

M7/* Init state */

M6/* Initial actions / messages */

M9 printf("TRANSITIONQ209130740318236©Consumer

Mo @209130692280330QInitia1

M1 @2091307360583930Have_Money_Will_Spend

M2 @209130736058394©modelstart\n");

M3 _SYSTEMCLASS__q!0K;

M4 goto Have_Money_Will_Spend;

M5/* State Have_Money_Will_Spend */

M6Have_Money_Will_Spend:

M7 printf("in state Consumer.Have,Money_Will_Spend\n");

M6 atomic {if :: !t?[free] -> tlfree :: else skip fi;}

hm if

Mo :: 1 -> t?free;

151 printf("TRANSITIONQZOQ130748051488@Consumer

M2 @209130692280330©Have_Money_Will_Spend

M3 @209130736058394©Waiting_For_Supply

M4 @209130747068447@\n");

M5 Producer_qldemand; goto Waiting_For_Supply

M6 fi;

M7/* State Waiting-For_Supply */

M6Waiting_For_Supply: printf("in state Consumer.Waiting_For_Supply\n");

M9 atomic {if :: !t?[free] -> tlfree :: else skip fi;}
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160 if

 

M1 :: atomic{Consumer_q?supply ->

M2 Consumer_supp1y_p1?Consumer_V.edition_num} -> t?free;

M3 printf("TRANSITIONQ209130748051490©Consumer

M4 @2091306922803306Waiting_For_Supply

M5 @209130747068447QHave_Money_Will_Spend

66 @209130736058394©supp1y(edition_num)\n");

M7 goto Have_Money_Will_Spend

M6 fi;

M9exit: skip

no}

171

173

M4/* This is the universal event dispatcher routine */

nsproctype event(mtype msg)

W6{

n7 mtype type;

n6 int pid;

M9

M6 atomic {

M1 do

M2 :: evq??[eval(msg),pid] ->

M3 evq??eva1(msg),pid;

M4 evt!msg,pid;

M5 do

M6 :: if

M7 :: evq??[type,eval(pid)] -> evq??type,eva1(pid)

M6 :: else break;
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189 fi

190 0d

M1 2: else -> break

192 0d}

193 exit: Skip

194 }

G.4 Both UML States and UML Transitions

1#define min(x,y) (x<y->x:y)

2#define max(x,y) (x>y->x:y)

3chan evq=[10] of {mtype,int};

4chan evt=[10] of {mtype,int};

5chan wait=[10] of {int,mtype};

6mtype={demand, 0K, supply};

7chan _SYSTEMCLASS__q=[5] of {mtype};

stypedef Producer_T {

9 int limited-ed;

10 int num_made;

ll }

12Producer_T Producer_V;

13chan Producer_q=[5] of {mtype};

14typedef Consumer_T {

15 int edition_num;

16 }

17Consumer_T Consumer_V;

16chan Consumer_q=[5] of {mtype};

19chan Consumer_supply_p1=[5] of {int};

2ochan t=[1] 0f {mtype};
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21mtype={free};

22active proctype _SYSTEMCLASS_()

23{

24mtype m;

2sint dummy;

26/* Init state */

27/* Initial actions / messages */

26 printf("TRANSITIONQ209130706632721@_SYSTEMCLASS-

29 @20913069228032461nitial

36 6209130704732174@Create_Producer

31 @209130704732175©modelstart\n");

32 goto Create_Producer;

33/* State Create_Producer */

34Create-Producer: printf("in state _SYSTEMCLASS_.Create-Producer\n");

35/* entry actions */

36 atomic{

37 printf(”STATE@_SYSTEMCLASS_@209130692280324

38 @Create_Producer@209130704732175\n");run

39 Producer();

40 }

41 atomic {if :: !t?[freeJ -> tlfree :: else skip fi;}

42 if

43 :: _SYSTEMCLASS__q?0K -> t?free;

44 printf("TRANSITIONQ209130706632723@_SYSTEMCLASS_

45 @209130692280324©Create_Producer

46 0209130704732175@Create_Consumer

47 @209130704732176©0K\n");

46 goto Create_Consumer

49 fi;
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56/* State Create_Consumer */

51Create_Consumer: printf("in state _SYSTEMCLASS_.Create_Consumer\n");

52/* entry actions */

53 atomic{

54 printf("STATE@_SYSTEMCLASS_@209130692280324

55 @Create_Consumer@209130704732176\n");run

56 Consumer();

57 }

56 atomic {if :: !t?[free] -> t!free :: else skip fi;}

59 if

60 :: _SYSTEMCLASS__q?OK -> t?free;

61 printf("TRANSITIONQZOQ130706632725©_SYSTEMCLASS_

62 @209130692280324©Create_Consumer

63 @209130704732176QDone

64 @209130706632727QOK\n");

65 goto Done

66 fi;

67/* State Done */

66Done: printf("in state _SYSTEMCLASS_.Done\n");

69/* entry actions */

70 atomic{

n printf("STATE©_SYSTEMCLASS_@209130692280324

72 @DoneQ209130706632727\n");

73 }

74 atomic {if :: !t?[free] -> t!free :: else skip fi;}

75 if

76 :: skip -> false

77 fi;

76 exit: skip
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79}

66

m

62proctype ProducerC)

83{

64mtype m;

65int dummy;

66 Producer_V.limited_ed = 5;

67/* Init state */

66/* Initial actions / messages */

69 printf("TRANSITIONQ209130753228837©Producer

96 @209130692280326@Initial

91 ©209130753228839©Waiting_For_Demand

92 @209130753228840©mode1start\n");

93 _SYSTEMCLASS__q!DK;

94 goto Waiting_For_Demand;

95/* State Waiting_For_Demand */

msWaiting_For_Demand: printf("in state Producer.Waiting_For_Demand\n");

97/* entry actions */

96 atomic{

99 printf("STATEQProducerQ209130692280326

um @Waiting_For_Demand@209130753228840\n");

161 }

1m2Waiting_For_Demand_G:

um atomic {if :: !t?[free] —> t!free :: else skip fi;}

um if

165 :: Producer_q?demand -> t?free; if

um :: Producer_V.num_made<Producer_V.limited_ed ->

167 printf("TRANSITIONQ209130817257517©Producer
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108

1 09

110

111

112

113

11-1

115

116

117

118

119

120

121

122

123

124

@209130692280326©Waiting_For_Demand

@209130753228840©Advertise

@209130817257519©demand\n");

Producer_V.num_made=Producer_V.num_made+1;

goto Advertise

': else -> goto Waiting_For_Demand_G

fi

1 -> t?free; if

Producer_V.num_made>=Producer_V.limited_ed ->

printf("TRANSITIONQ209130817257514©Producer

@209130692280326©Waiting_For_Demand

@209130753228840©Sorry_So1d_0ut

@209130817257516@\n");

goto Sorry_Sold-0ut

': else -> goto Waiting_For_Demand_G

fi

fi;

125/* State Sorry_Sold_Out */

1msSorry_Sold_0ut: printf("in state Producer.Sorry-Sold_0ut\n");

127/* entry actions */

1'28

129

130

131

132

133

134

135

atomic{

printf("STATEQProducerQQOQ130692280326

©Sorry_Sold_0ut@209130817257516\n");

}

atomic {if :: !t?[free] -> t!free :: else skip fi;}

if

': skip -> false

fi;

1M5/* State Advertise */
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w7Advertise:printf("in state Producer.Advertise\n");

m6/* entry actions */

m9 atomic{

No printf("STATEQProducerQ209130692280326

141 ©Advertise©209130817257519\n");

H2 }

H3 atomic {if :: !t?[free] -> t!free :: else skip fi;}

H4 if

N5 :: 1 -> t?free;

H6 printf("TRANSITIONQ209134301741058©Producer

m7 @209130692280326©Advertise

M8 0209130817257519©Waiting_For_Demand

1w @209130753228840@\n");

m0 atomic{Consumer_supply_p1!Producer_V.num_made;

1m Consumer_q!supply}; goto Waiting_For_Demand

m2 fi;

m3exit: skip

m4}

155

156

m7proctype Consumer()

158 {

159 mtype m;

160 int dummy;

161/* Init state */

m2/* Initial actions / messages */

m3 printf("TRANSITIONQ209130740318236©Consumer

w4 @209130692280330©Initial

m5 @209130736058393©Have_Money_Will_Spend
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m6 @209130736058394©mode1start\n");

m7 _SYSTEMCLASS__q!0K;

m6 goto Have_Money_Will_Spend;

m9/* State Have_Money_Will_Spend */

noHave_Money_Will_Spend:

171 printf("in state Consumer.Have_Money_Will_Spend\n");

n2/* entry actions */

n3 atomic{

n4 printf("STATEQConsumerQ209130692280330

n5 @Have_Money_Wil1_Spend@209130736058394\n");

n6 }

n7 atomic {if :: !t?[free] -> t!free :: else skip fi;}

n6 if

n9 :: 1 -> t?free;

m6 printf("TRANSITIONQZOQ130748051488©Consumer

1m @209130692280330©Have_Money_Will-Spend

m2 @209130736058394©Waiting_For_Supply

m3 @209130747068447©\n");

w4 Producer_q!demand; goto Waiting_For_Supply

ms fi;

m6/* State Waiting_For_Supply */

m7Waiting_For_Supply: printf("in state Consumer.Waiting_For_Supp1y\n");

m6/* entry actions */

mg atomic{

m6 printf("STATEQConsumerQZOQ130692280330

m1 ©Waiting_For_Supply@209130747068447\n");

m2 }

m3 atomic {if :: !t?[free] -> t!free :: else skip fi;}

w4 if
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m5 :: atomic{Consumer_q?supply —>

w6 Consumer_supply_p1?Consumer_V.edition_num} —> t?free;

m7 printf("TRANSITIONQ209130748051490©Consumer

we @2091306922803300Waiting_For_Supply

mg @209130747068447©Have_Money_Will_Spend

2m) @209130736058394©supp1y(edition_num)\n");

2m goto Have_Money_Will_Spend

262 f i ;

261exit: skip

W4}

mm

206

207

m6/* This is the universal event dispatcher routine */

m9proctype event(mtype msg)

m6{

m1 mtype type;

m2 int pid;

2m

m4 atomic {

as do

2m :: evq??[eval(msg),pid] ->

m7 evq??eva1(msg),pid;

m6 evt!msg,pid;

mg do

226 : : if

2m :: evq??[type,eval(pid)] -> evq??type,eval(pid)

m2 :: else break;

223 fi
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224

226

227 exit:

228 }

od

': else -> break

od}

skip
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Appendix H

Produce'r- Consumer Spin Analysis

Results

This Appendix contains the Spin analysis results described in Chapter 8 for the

Producer- Consumer model of Chapter 6. Figure H.1 gives the analysis results for

the baseline Promela model, while Figures H.2, H.3, and H4 give the analysis results

for the breadcrumb options UML States, UML Transitions, and Both UML

States and UML Transitions, respectively. Recall (Chapter 6, Section 6.3.4) that

the “error” in each case is that a final demand message remains in the Producer queue.

In Chapter 6 we did not refine the example further to handle this message.
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pan: invalid endstate (at depth 183)

pan: wrote pc_exp_none.pr.trail

(Spin Version 3.3.3 -- 21 July 1999)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

State-vector 356 byte, depth reached 183, errors: 1

144 states, stored

3 states, matched

147 transitions (= stored+matched)

42 atomic steps

hash conflicts: O (resolved)

(max size 2‘18 states)

1.493 memory usage (Mbyte)

Figure H.1: Spin analysis results for Producer- Consumer, baseline
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pan: invalid endstate (at depth 210)

pan: wrote pc_exp_states pr.trail

(Spin Version 3.3.3 -- 21 July 1999)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

State-vector 356 byte, depth reached 210, errors: 1

169 states, stored

3 states, matched

172 transitions (= stored+matched)

44 atomic steps

hash conflicts: 0 (resolved)

(max size 2‘18 states)

1.493 memory usage (Mbyte)

Figure H.2: Spin analysis results for Producer-Consumer, breadcrumb option UML

States
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pan: invalid endstate (at depth 201)

pan: wrote pc_exp_trans.pr.trail

(Spin Version 3.3.3 -- 21 July 1999)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

State-vector 356 byte, depth reached 201, errors: 1

162 states, stored

3 states, matched

165 transitions (= stored+matched)

42 atomic steps

hash conflicts: O (resolved)

(max size 2‘18 states)

1.493 memory usage (Mbyte)

Figure H.3: Spin analysis results for Producer- Consumer, breadcrumb option UML

Transitions
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pan: invalid endstate (at depth 228)

pan: wrote pc_exp_both.pr trail

(Spin Version 3.3.3 -- 21 July 1999)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never-claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

State-vector 356 byte, depth reached 228, errors: 1

187 states, stored

3 states, matched

190 transitions (= stored+matched)

44 atomic steps

hash conflicts: O (resolved)

(max size 2‘18 states)

1.493 memory usage (Mbyte)

Figure H.4: Spin analysis results for Producer- Consumer, breadcrumb option Both

UML States and UML Transitions
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Appendix I

Original Fault Handler

Requirements Pattern

This Appendix contains Konrad et al.’s original Fault Handler requirements pat-

tern [3, 4] prior to refinements discussed in Chapter 9.

L1 Fault Handler: Behavioral Pattern

Intent:

Specify a centralized fault handler for an embedded system.

Motivation:

Fault handling is essential for embedded systems. Embedded systems frequently

need to determine what responses are necessary to recover from errors. Consider

a flight control system in an airplane, where the system should never shut down

completely in response to an error. The system has to decide if it should perform a

partial shutdown and offer basic functionality, or if the error is no threat to system

safety and logging is sufficient. This fault handler must offer the possibility for other

devices to read the error log. But it should also have access to a user interface to
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signal that errors have occurred. An important function of the fault handler is to

send the system into different safety states depending on the severity of the error.

These safety states have to be implemented in the computing component, such as

the operation for performing an emergency stop. If an error is reported to the fault

handler justifying this action, then the fault handler will activate this state.

Therefore, the fault handler acts as a centralized coordinator for safety monitoring

and, hence, control of system recovery.

The following inputs are usually captured [37]:

o Timeout messages by watchdogs, examiners, or monitors.

0 Assertions of software errors.

0 Built-in-tests (BITS) that run on a periodic or continuous basis.

The centralized safety control facilitates the verification and validation of the

safety measures and eases the reuse of the fault handle r in different systems.

Figure 1.1 gives the use—case diagram for the Fault Handler Pattern, with the

major goals being to detect and to handle faults.

 

Use-Case: System running.

Actors: None

Description: This use-case represents the system when it is functioning.

Includes: Handle faults, Interact with user   
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 Figure 1.1: UML use-case diagram for the Fault Handler Pattern

r
1

F
a
u
l
t
H
a
n
d
l
e
r
_
-
_
_
U
s
e
-
C
a
s
e
.
d
o
m

J
 

E
m
b
e
d
d
e
d
S
y
s
t
e
m
B
o
u
n
d
a
r
y

   

I
n
t
e
r
a
c
t

 

U
s
e
r

 

   
   

    

 

w
i
t
h

u
s
e
r

I

I

«
e
x
t
e
n
d
»

i
n
S
a
f
e

M
o
d
e

<
<
i
n
c
l
u
d
e
>
>
-

I

S
y
s
t
e
m

r
u
n
n
i
n
g

 
     

<
<
i
n
c
l
u
d
e
>
>

\

H
a
n
d
l
e

f
a
u
l
t
s

D
i
a
g
n
o
s
e
 

<
<
e
x
t
e
n
d
>
>

<
<
i
n
c
l
u
d
e
>
>

D
e
t
e
c
t

f
a
u
l
t
s

 
  

 

T
e
c
h
n
i
c
i
a
n

 

 



 

Use—Case: Use in safe mode.

Actors: User

Description: Special case of the use-case System running. System offers basic

functionality due to errors that have occurred. The exact level of function-

ality is system-dependent.

Includes: -  

 

 

Use-Case: Interact with user.

Actors: User

Description: Read user settings and activate indicators.

Includes: -

 

 

 

Use-Case: Handle faults.

Actors: None

Description: Initiate corrective actions if needed.

Includes: Detect faults.
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Use-Case: Diagnose faults.

Actors: Technician

Description: Special case of the use-case Handle faults. The system offers ex-

tended diagnostic functions instead of handling faults to identify the source

of the fault(s).

Includes: -

 

 

Use-Case: Detect faults.

Actors: None

Description: The system offers fault detection functionality.

Includes: -   
 

Applicability:

The Fault Handler Pattern is applicable

0 in embedded systems where fault handling is to be centralized.

Structure:

The UML class diagram of the Fault Handler Pattern can be seen in Figure 1.2.

The FaultHandler sends messages to the UserInterface to activate warning levels and

sends the ComputingComponent into different safety states. For every safety state

defined in the requirements, an operation in the ComputingComponent is needed. The

safety states are listed in the Behavior field.

The FaultHandler also receives error messages from Watchdogs, Examiners, and

Monitors. The Device class represents possible devices in the system that also send

error messages to the FaultHandler.
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Depending on the safety measures and policies defined, the FaultHandler decides

what action to take, for example, such as activating a FailSafeDevice.
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ComputingComponent FaultHandler "mes” UserInterface
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Figure 1.2: Structural Diagram for the Fault Handler Pattern

 

Behavior:

Figure 1.3 shows the state diagram of the ComputingComponent of the Fault Han-

dler Pattern. The state diagram shows which states are possible and what messages

activate them. Not all of the states are needed in every system. For example, ABS

systems generally do not have partial shutdown states because the system constraints

require that an inactive system should not affect the basic functionality of the brakes.

Therefore, an emergency stop where the ABS system cuts power immediately is suf-

ficient. These states are defined for the class ComputingComponent; when an error

occurs, the FaultHandler decides which state is appropriate and sends the respective

message to the ComputingComponent to activate the corresponding state if needed.
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The FaultHandler also activates the UserInterface to notify the system user of the cur-

rent system state. The definitions for the possible system states are as follows [37]:

0 Normal Behavior: This state captures the system when no errors have oc-

curred and it is functioning normally.

0 Manual/External: In this state, the system is controlled by an external entity,

such as a diagnostic device.

0 Production Stop: This state is useful, for example, when a human enters a

hazardous area. The system should be able to complete its current task and

secure the environn’ient, but it should shutdown as soon as possible.

0 Protection Stop: Ceases operation immediately, but does not turn off power.

This state is appropriate, for example, when a machine needs to be stopped, but

a device should continue to operate to avoid hazardous situations. For example,

a cooling device should remain working even in case of a system malfunction.

0 Partial Shutdown: The system only offers basic functionality; for example,

medical devices may remain in a monitoring state.

0 Hold: No functionality is provided in this state, but safety actions are taken;

for example, a rocket self-destructs in the case of abnormal functions. There is

no outgoing transition from this state; a system can only be reactivated by a

complete restart.

o Initialize: In this state, the system initializes itself.

0 Power Off: The system might be connected to a power supply in this state,

but is not yet activated. For example, a television set can operate in a standby

mode.
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Furthermore, an emergency stop can be performed by the system. This stop

state is not modeled as a separate state because this action takes the system to the

PowerOff state immediately.

Participants:

FaultHandler: Fault handler of the system. Contains safety measures and poli-

cies.

o ComputingComponent: Central computing component of the system.

0 UserInterface: Class offering functionality to notify the user about errors.

0 Device: Component representative for a number of possible devices in the sys-

tem.

o Watchdog/ Examiner: Watchdog or examiner in the system.

0 Monitor: Possible monitor monitoring the Device.

o FailSafeDevice: Possible backup component for the Device.

Collaborations:

o The FaultHandler receives error messages and stores those messages in an error

log. Furthermore, the FaultHandler decides, depending on the safety measures

and policies, if a fail-safe state in the ComputingComponent should be entered,

or whether the user interface or recovery device should be activated.

0 Watchdog, Examiner, and/or Monitor monitor the device and report violations

to the FaultHandler.

o FailSafeDevice is activated to recover from faults.
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Pattern

Figure 1.3: UML state diagram of the ComputingComponent in the Fault Handler
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o The UserInterface gets activated by the FaultHandler.

Consequences:

1. Required safety states have to be implemented in the ComputingComponent.

2. Only one fault handler should exist in the system and should handle all error

messages to avoid inconsistent handling of faults [37].

3. The fault handler is one of the critical elements for system safety. Therefore,

during the development process of this component, techniques should be used

that result in a high assurance of the software component, such as formal meth-

ods and thorough testing.

4. Hardware and software redundancies exist in the system, thus meaning higher

system costs.

5. Overall safety of the system can significantly be improved by the centralized

fault handling component.

Constraints:

0 Absence Pattern:

If system initialization fails, then the system should remain in a powered-off

state. Therefore, the system should never be in a state where the initialization

failed and the system power is on.

CK! (‘ ‘Initialization failed’ ’ && “System power on’ ’))

0 Response Pattern:

When an error message is sent to the fault handler, it should process the er-

ror and, depending on the error classification, perform the predefined recovery
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action as a result of the error. This action can range from “Do nothing” to

“Perform emergency shutdown of the system”.

Cl( ‘ ‘Error reported to fault handler’ ’ —>

O(“Start defined recovery action”))

0 Response Pattern:

When an error message is sent, it should be stored in an error log for system

diagnosis purposes.

Cl(‘ ‘Error reported to fault handler” —>

O(“Store error in error log”))

0 Response Pattern:

If an error message is sent to the fault handler, then it should activate the

appropriate user interface warning level if required.

D(‘ ‘Error reported to fault handler’ ’ —+

O(“Activate appropriate user interface warning level”))

0 Response Pattern:

If some device, such as a diagnostic device, requests the current error list, then

the error list should be sent to the device.

CK ‘ ‘Error list requested from fault handler’ ’ —>

O(“Return list of errors in error log”))

Design Patterns:

0 Singleton Design Pattern [83]:

Assure that only one fault handler exists in the system.
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0 Strategy Design Pattern [83]:

Encapsulate algorithms for the safety states and make them interchangeable.

Also Known As:

To be determined.

Known Uses:

To be determined.

Related Requirements Patterns:

0 Controller Decompose Requirements Pattern:

This requirements pattern describes how the fault handler relates to other com-

ponents in a system.

0 User Interface Requirements Pattern:

This pattern can be used for the user interface to signal a user the current

system state.
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