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ABSTRACT

HANDLEBODY STRUCTURES OF RATIONAL BALLS

By

Luke Morgan Williams

It is known that for coprime integers p > q ≥ 1, the lens space L(p2, pq − 1) bounds a

rational ball, Bp,q, arising as the 2-fold branched cover of a (smooth) surface in B4 bounding

the associated 2-bridge knot or link. Lekilli and Maydanskiy [32] give handle decompositions

for each Bp,q. Whereas, Yamada [59] gives an alternative definition of rational balls, Am,n,

bounding L(p2, pq − 1) by their handlebody decompositions alone. We show that these

two families coincide - answering a question of Kadokami and Yamada. To that end, we

show that each Am,n admits a Stein filling of the universally tight contact structure, ξ̄st, on

L(p2, pq − 1) investigated by Lisca. Furthermore, we construct boundary diffeomorphisms

between these families. Using the carving process, pioneered by Akbulut, we show that these

boundary maps can be extended to diffeomorphisms between the spaces Bp,q and Am,n.
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Chapter 1

Background

Classifying the homeomorphism types of closed simply-connected smooth 4-manifolds is de-

termined entirely by their intersection pairings on the second homology groups [17]. Whereas,

the question of determining the diffeomorphism type of a given smooth 4-manifold is much

more subtle and far from being fully understood. With the addition of gauge theory to

the subject, many examples of “exotic” smooth 4-manifolds have been discovered. Two 4-

manifolds X and X ′ are exotic copies of each other if X is homeomorphic, but not diffeomor-

phic, to X ′. The first such example was an exotic CP 2#9CP 2
discovered by Donaldson [9].

A plethora of examples have been constructed since. Less is known about 4-manifolds with

boundary. In some cases, intersection pairings on simply connected 4-manifolds with bound-

ary are still enough to pin down the homeomorphism type [5].

Many invariants have been developed to detect differences in smooth structures on homeo-

morphic 4-manifolds. Arguably, one of the most successful has been the set of Sieberg-Witten

invariants (SW-invariants) [58] - which count solutions to certain PDE’s on a given 4-manifold

equipped with added structure that depends upon the diffeomorphism type of the manifold.

Although difficult to compute in general, there are many constructions which allow the SW-

invariants to be calculated efficiently. For instance, Taubes proves that there is a non-trivial

SW-invariant for each closed symplectic 4-manifold [57]. Moreover, Fintushel and Stern pro-

vide cut-and-paste techniques to construct new closed 4-manifolds from old while tracing the

effect on the set of SW-invariants - namely knot surgery [15] and the rational blow-down [14].
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This thesis is concerned with aspects of the rational blow-down which is a topological

generalization of the (honest) blow-down from algebraic-geometry. From a topologist’s per-

spective, the honest blow-down can be described as splitting off a summand of CP 2
from a

4-manifold1. Fintushel and Stern [14] and later Park [47] note that there are other configura-

tions of spheres whose neighborhoods have boundaries which are diffeomorphic to particular

lens spaces; such lens spaces are known to bound rational balls [6]. Here, a 4-manifold X is

a rational ball if its singular homology groups computed with Q-coefficients agree with those

of the 4-ball. That is, for each i we have

H̃i(X;Q) = H̃i(B
4;Q) = 0.

Removing a neighborhood of one of these configurations of spheres and gluing in the appro-

priate rational ball in its place is known as the rational blow-down of the 4-manifold along

the configuration. As with the honest blow-down, this operation kills elements of second

homology (now at the possible expense of increasing the fundamental group). Symington

proves that these surgeries can be performed in the symplectic category (provided the given

configuration consists of symplectic spheres inside a symplectic 4-manifold) [55, 56]. More-

over, under mild assumptions [14, 47], one can compute the SW-invariants of the rationally

blown-down manifold from those of the original manifold.

Rational blow-downs have been effective in producing “small” exotic 4-manifolds: Using

this technique, Park constructs an exotic CP 2#7CP 2
[48]. Also using a (generalized) ratio-

nal blow down, Stipcisz and Szabó construct an exotic CP 2#6CP 2
[54]. By employing a

1Noting that S3 is both the boundary of a punctured CP2
(since S3 is diffeomorphic to L(1, 1)), as well

as the boundary of the 4-ball B4, if a neighborhood of a sphere of self-intersection −1 is located within
a 4-manifold, it can be replaced with a copy of the 4-ball - thereby killing the −1 sphere in the second
homology of the original 4-manifold.
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variant of knot-surgery along with rational blow-downs, Fintushel and Stern provide infinite

families of pairwise exotic CP 2#kCP 2
for k = 6, 7, 8 [16]. Using similar techniques, Park,

Stipsicz and Szabó provide the same result for CP 2#5CP 2
[49]. Together, these examples

demonstrate the power of the generalized rational blow-down.

All of these manifolds are shown to be exotic by examining their SW-invariants. It is

worth noting that the rational blow-down is constructed using a specific rational 4-ball for a

given sphere configuration. We arrive at a natural question. Do the lens spaces involved in

the rational blow-down construction bound other rational balls? Yamada produces a family

of rational balls [59] that, a priori, could have settled this question in the positive. The main

results of this thesis revolve around showing that, in fact, Yamada’s family coincides with

the family of balls originally used in the rational blow-down procedure.

We employ two techniques to identify these families. Both techniques stand on their

own, however, each has its merits. The first technique uses the classification of symplectic

fillings of universally tight lens spaces [35] to quickly conclude that the families coincide.

However, this hides a large amount of the details within the machinery developed by Lisca.

That is, the actual diffeomorphisms ensured by this route go unseen. In order to rectify

this, we employ a method pioneered by Akbulut known as carving [1]. Therein, one attacks

the problem of building a diffeomorphism by first fixing a “well-behaved” diffeomorphism

near the boundary. Here we can use the calculus of links developed by Kirby [28] and Fenn-

Rourke [13] (also see Rolfsen [52]) to explicitly state such a diffeomorphism between the two

given 3-manifold boundaries.

If the chosen diffeomorphism can be extended across the co-cores of each 2-handle,

our required “well-behaved” condition, then one is left with only having to extend a self-

diffeomorphism on #k(S1×S2) across \k(S1×B3). A theorem of Laudenbach and Poénaru
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[31] implies that this new extension problem always has a solution. We then specify such

boundary diffeomorphisms on the two aforementioned families of rational balls and prove

that the carving procedure goes through for our chosen diffeomorphisms.

1.1 Preliminaries and Assumptions

We assume that the reader is familiar with the theory of handlebody structures on 4-

manifolds [2,22], the related theory of framed link surgery on three manifolds [2,13,22,28,52]

and basic symplectic and contact geometry [7], especially as it relates to handle struc-

tures [8, 21, 41]. With this in mind, we will still recall some important definitions and

relevant theorems for clarity. Since this thesis deals with rational balls bounding lens spaces,

we start with lens spaces themselves.

Fix relatively prime integers p and q. Viewing S3 as the unit complex numbers in C2,

recall that Zp acts on S3 via

(z1, z2) 7→
(
z1e

2π
p i, z2e

2πq
p i
)
.

By definition, the lens space L(p, q)
·
= S3/Zp.

We adopt the standard convention that L(p, q) is the result of−p/q-surgery on the unknot

in S3. It is well known that L(p, q) is also given as the boundary of a linear plumbing of D2-

bundles over S2 (see Figure 1.1) with Euler classes chosen according to a continued fraction

associated to −p/q:

[c1, . . . , cn]
.
= c1 −

1

c2 −
1

. . . − 1

cn

= −p
q

4



where, the ci’s are uniquely determined provided each ci ≤ −2. Taking advantage of this

uniqueness, we can make the following standard definition:

Definition 1.1.1. Given p > 0 and q coprime, let Cp,q be the 4-manifold bounding L(p, q)

obtained by plumbing D2-bundles over S2 according to a linear graph with weights ci ≤ −2

chosen so that [c1, . . . , cn] = −p/q (Figure 1.1). For conciseness, we denote C
p2,pq−1

by Cp,q.

We necessarily have that Cp,q is negative definite [40]. However, we will often forgo

the uniqueness of the ci’s in favor of more desirable continued fraction expansions and thus

bounding 4-manifolds. It is immediate that any other linear plumbing of D2-bundles over

S2 bounding L(p, q) is related to Cp,q via a sequence of blow-ups and blow-downs. It will be

useful to understand the first homology of L(p, q) when looking at it as a boundary of such

a linear plumbing.

c1 c2 cn

µ1 µ2 µn

Figure 1.1: Preferred elements spanning H1(L(p, q)) (in red) on a linear plumbing bounding
L(p, q). When each ci ≤ −2, this plumbing is denoted Cp,q.

Lemma 1.1.2. Suppose that L(p, q) is given by the linear plumbing in Figure 1.1 where the

µi’s are meridians spanning H1(L(p, q),Z). Then

H1(L(p, q),Z) = 〈µ1 : (detCn)µ1 = 0〉
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where Ci
.
=


c1 1

1
. . . 1

1 ci

 and for i ∈ {2, . . . , n}, µi = (−1)i−1 (detCi−1)µ1.

Proof. Given a Dehn surgery description of a 3-manifold, one obtains a presentation for the

first homology in terms of the right handed meridians of the (oriented) framed link [22]. In

the above case, we find that

H1(L(p, q),Z) =
〈
µ1, . . . , µn : µ2 = −c1µ1, {µi+1 = −ciµi − µi−1}n−1

i=2 , cnµn = −µn−1

〉

As µ2 = −c1µ1 = (−1)2−1(detC2−1)µ1, the result follows by induction using that

detCk = ck detCk−1 − detCk−2,

where, we are defining detC−1 = 1.

Remark 1.1.3. There is another important characterization of the lens space L(p, q): given

any continued fraction expansion [c1, . . . , cn] of −p/q, we can associate a 2-bridge knot (or

link) K in S3 such that L(p, q) is the 2-fold cover of S3 branched along K (see Montesinos [38]

for details). If K happens to be smoothly slice (or bounds an appropriate ribbon immersion

of a disk plus a Möbius band in the case that K is a 2-component link) then we can push the

interior of that surface into the 4-ball and consider the 2-fold cover of B4 branched along the

surface. Such a ramified cover is necessarily a rational ball [27] and clearly bounds the given

lens space. Interestingly, Lisca proves that every lens space L(p, q) which bounds a rational

ball, necessarily bounds a (possibly different) ball arising as such a covering of B4 [34].

Casson and Harer show that for each pair p > q > 0 relatively prime, the 2-bridge knot or

6



link associated to the fraction − p2

pq − 1
bounds such a surface Σ [6]. Moreover, they provide

a method to obtain a handle decomposition for the 2-fold cover of B4 along Σ.

Definition 1.1.4. For p > q > 0 coprime, let Bp,q be the 2-fold cover of B4 branched along

Σ defined in [6] so that ∂Bp,q ≈ L(p2, pq − 1). Figure 1.2 gives a handle decomposition of

Bp,q.

Bp,q 1

q

p

pq − 1 B8,3 23

Figure 1.2: The rational ball Bp,q; e.g. B8,3

Remark 1.1.5. It is worth noting that Casson and Harer do not explicitly give the handle

decomposition of Figure 1.2. However, they do sketch a method which implies this decom-

position. Lekili and Maydanskiy write down a (Stein) handle decomposition of Bp,q [32]

for general p and q coprime (see Figure 1.4 for this handle decomposition); the structure

defined above is equivalent. This appears to be the first instance where Bp,q is stated this

way for all p and q. Prior to this, Fintushel and Stern express Bp,1 ≈ Bp,p−1 by the same

handle decomposition [14]. Gompf gives a proof that certain Seifert fibered spaces are Stein

fillable [21]. Viewing L(p2, pq−1) as Seifert fibered over S2 with three “exceptional” fibers -

two of which are honestly exceptional and the third being a regular fiber - Gompf’s argument

can be applied to give the Stein filling of L(p2, pq−1) that Lekili and Maydanskiy investigate

(see the proof of Theorem 5.4(c) and Figure 43 of that paper [21]). At this point we have

the necessary definitions to define the rational blow-down.
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Definition 1.1.6 ( [14,47]). Given X4, a smooth 4-manifold containing Cp,q as a submani-

fold, the rational blow-down of X along Cp,q is the result of performing the codimension zero

surgery of removing Cp,q and gluing Bp,q in its place:

Xp,q = (X − Cp,q) ∪Bp,q.

Since Definition 1.1.4 gives a handle decomposition of Bp,q, one can give the handle

decomposition of Xp,q given that of X. Viewing X as being built from Cp,q by attaching

handles, then one can remove Cp,q and glue in Bp,q by tracing the effect, on the belt-

sphere of each 2-handle in Cp,q, of an appropriate boundary diffeomorphism from ∂Cp,q to

∂Bp,q (Akbulut gives general details of performing codimension zero surgeries at the handle

level [2]). This type of surgery can be performed with any rational ball bounding L(p2, pq−1)

in place of Bp,q. This leads to the question:

Question 1.1.7. Is the diffeomorphism type of a rational ball, with the same homotopy

type as that of Bp,q, bounding L(p2, pq − 1) unique?

Of course, the answer to this question is no, if we don’t include some control on the

homotopy type of such a ball - for instance consider the double D of a 2-handlebody with

perfect (nontrivial) fundamental group and trivial second homology (one could choose a

surgered Σ(2, 3, 5) × I for the 2-handlebody for instance), then Bp,q#D is a rational ball

bounding L(p2, pq−1) with π1(Bp,q#D) = Zp∗π1(D). Given the state of smooth 4-manifold

theory, one wouldn’t be unreasonable in thinking that the answer to Question 1.1.7 is still

no. However, there is little technology available to deal with detecting exotic structures on

manifolds without b+2 (let alone without b2).

In spite of this, anytime one encounters a rational ball bounding L(p2, pq − 1), it is
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natural to ask if it is diffeomorphic to Bp,q. To that end, consider the following family of

handle decompositions of rational balls bounding lens spaces that appears in the literature.

Yamada [59] defines this family directly via their handle decompositions as follows:

Definition 1.1.8. For n,m ≥ 1 coprime, let Am,n be the 4-manifold obtained by attaching

a 1-handle and a single 2-handle with framing mn to B4 by attaching the 2-handle along

a simple closed curve embedded on a once-punctured torus viewed in S1 × S2 so that the

attaching circle traverses the 1-handles of the torus m and n times respectively (Figure 1.3).

Am,n

m

m+ n

mn A3,5 15

Figure 1.3: The rational ball Am,n; e.g. A3,5

Yamada goes on to define an involutive symmetric function, A, on the set of coprime pairs

of positive integers such that if A(p − q, q) = (m,n) then ∂Am,n ≈ L(p2, pq − 1). Lemma

4.0.11 gives a formal definition of the function A; in the meantime, it suffices to know that

in this case2, m+n = p and that qm = ±1 mod p. We are led to a more tractable question

than that of Question 1.1.7, posed by Kadokami and Yamada [25].

Question 1.1.9 ( [25], Problem 1.9). Supposing A(p−q, q) = (m,n), so that ∂Am,n ≈ ∂Bp,q,

when is Am,n diffeomorphic, homeomorphic, or even homotopic rel boundary to Bp,q?

2The sign ambiguity here arises because we will want to assume that m < n; obviously if qm = −1 mod p
then qn = 1 mod p.
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To answer this question, we now turn to symplectic topology.

1.1.1 Symplectic and Contact Topology

We recall the relevant theory of syplectic 4-manifolds and contact 3-manifolds [7] - especially

as it relates to handle decompositions of 4-manifolds [2, 21, 22, 41]. Recall that a smooth

manifold X admits a symplectic structure, if there exists a 2-form ω ∈ Ω2(X) such that ω∧ω

is nowhere zero. The pair (X,ω) is a symplectic manifold. Similarly, a smooth 3-manifold Y

admits a (coorientable) contact structure, if there exists a totally nonitegrable 2-plane field

ξ ⊂ TY such that ξ = kerα for a 1-form α ∈ Ω1(Y ) satisfying α ∧ dα is nowhere zero. The

pair (Y, ξ) is a contact manifold. Notice that ξ is well defined, but that contact form α can

be scaled by any smooth nowhere zero function. Here totally nonitegrable means that for

any embedding of a surface Σ2 ↪→ (Y, ξ), the set of points x ∈ Σ satisfying α(TxΣ) = 0 has

positive codimension within Σ. That said, a 1-manifold L can be embedded in (Y, ξ) with

α(TxL) = 0 for all x ∈ L - in this case, L is a Legendrian submanifold of (Y, ξ). Notice that

each Legendrian knot in (Y, ξ) inherits a well-defined trivialization of it’s normal bundle from

a transverse (with respect to the contact planes ξx) vector field along L. This trivialization

is known as the contact (or Thurston-Bennequin) 0-framing of L. Unless specifically stated

to the contrary, we will always consider Seifert framings (those measured against a framing

specified by a Seifert surface) even when looking at Legendrian knots in a contact manifold.

Contact structures split into two types: tight and overtwisted. A contact manifold is

overtwisted if it contains a disk bounding a Legendrian knot whose contact framing agrees

with the Seifert framing induced by the disk. It is tight otherwise. For manifolds with simple

enough fundamental groups (i.e. residually finite), the tight contact structures break further

into two types: universally tight and virtually overtwisted determined by whether or not the
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tight contact structure pulls back to an overtwisted structure in a finite cover.

Example 1.1.10. S3 admits a (unique) tight contact structure ξst arising as the set of

complex tangencies in TS3 by viewing S3 ⊂ C2. Interestingly, the action by Zp preserves

these tangencies. Therefore, each lens space L(p, q) inherits a “standard” contact structure

ξ̄st from ξst. As S3 is the universal cover of L(p, q), (L(p, q), ξ̄st) is universally tight.

One of the most successful ways of producing tight contact structures on a given 3-

manifold is to realize that 3-manifold as the J-convex boundary of a Stein domain. A

4-manifold X is Stein if X admits a complex structure J so that equipped with this complex

structure, X biholomorphically embeds in CN for some N . Considering the distance from

this embedding to a generic point in CN gives a Morse function on X and each regular level

set of this function becomes a (tight) contact 3-manifold Y where the contact structure arises

as the set of complex tangencies in TY - i.e. ξ = TY ∩ JTY . We’ll refer to the compact

codimension zero submanifold W ⊂ X, bounding Y as a Stein domain.

As there are natural Morse functions underlying any Stein structure, it is not surprising

that Stein 4-manifolds have a handle theoretic characterization. In fact, the following the-

orem due to Eliashberg [11] and developed in the case of 4-manifolds by Gompf [21] allows

us to recognize when a 4-manifold is a Stein domain via specific handle decompositions.

Theorem 1.1.11 ( [11,21]). A 4-manifold W admits the structure of a Stein domain if and

only if W has a handle decomposition consisting of only handles of index less than or equal

to two such that each 2-handle is attached along a Legendrian knot K in ∂(\k(S1 × B3)) =

#k(S1×S2) (equipped with the unique tight contact structure therein) with framing one less

than the induced contact framing of K.

Using Theorem 1.1.11, we see that Bp,q admits a Stein structure.
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Example 1.1.12. Lekili and Maydanskiy prove each that Bp,q admits a Stein structure

(Bp,q, Jp,q) specified by Figure 1.4 [32]. Indeed, by sliding the 2-handle of Figure 1.2 over

the 1-handle q-times one arrives at Figure 1.4. It is immediate that the attaching circle is a

Legendrian knot whose contact framing is −pq as a Seifert framing. Therefore, the handle is

attached with contact framing −1 and Theorem 1.1.11 gives that the unique Stein structure

on S1×B3 extends across the 2-handle. In [32], the authors prove that Jp,q fills the standard

contact structure on L(p2, pq − 1).

−pq − 1

p q

Figure 1.4: (Bp,q, Jp,q)

A Stein structure equips W with an almost complex structure; it is natural to ask what

c1(W,J) is for this almost complex structure. In the case of a Stein manifold presented as a

handle decomposition as in Theorem 1.1.11, c1(W,J) can be computed combinatorially:

Proposition 1.1.13 ( [21], Proposition 2.3). For a Stein structure J specified by an (ori-

ented) Legendrian 2-handlebody, c1(X, J) is equal to a 2-cochain whose value on each [Ki]

evaluates to rot(Ki).

Furthermore, as (W,J) imparts a contact structure ξJ on ∂W , it is immediate that c1(ξJ )

is simply c1(W,J) restricted to ∂W . Thus for (W,J) as above, PDc1(ξJ ) is equal to a 1-chain

satisfying that the coefficient on each right-handed meridian µi of Ki spanning H1(∂W ) is

rot(Ki).
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Returning to Question 1.1.9, we note that there is another characterization of the rational

ball Bp,q due to Lisca. To properly state this characterization we need the notion of a

symplectic filling of a contact 3-manifold.

Definition 1.1.14. A (weak) symplectic filling of a contact 3-manifold (Y, ξ), is a symplectic

4-manifold (W,ω) together with an identification ∂W ≈ Y so that ω|ξ is nonzero. (W,ω) is

a strong symplectic filling of (Y, ξ) if we further require ω to be exact near ∂W so that its

primitive is a contact form for ξ. A Stein domain (W,J) is a Stein filling of (Y, ξ) if (Y, ξ) is

the J-convex boundary of W .

A considerable effort has been placed in determining which 3-manifolds are fillable in

each sense, as well as classifying the smooth geography of such fillings. This geography can

be extremely sparse; Eliashberg proves the tight contact structures on S3 and #k(S1 × S2)

are uniquely Stein filled by B4 and \k(S1 × B3) ≈ B4 ∪ k 1-handles respectively [10]. It

can also be quite complicated; for instance Akhmedov et. al. produce an infinite family of

non-homeomorphic Stein fillings of a fixed contact 3-manifold [4]. Whereas, Akbulut and

Yasui produce an infinite family of exotic fillings of a fixed contact 3-manifold [3].

Luckily, the geography of fillings of universally tight lens spaces don’t admit such patholo-

gies. McDuff proves that the diffeomorphism types of (weak) symplectic fillings of the lens

space (L(p, 1), ξ̄st) are known to be unique upto smooth blow-up save for L(4, 1) [37]. Each

is filled by a manifold diffeomorphic to the Euler class −p D2-bundle over S2. In the case

of L(4, 1), the rational ball B2,1 gives the only other filling. (Plamenevskaya and Van Horn-

Morris give a classification of the diffeomorphism types of all fillings of L(p, 1) equipped with

any tight contact structure [50].)

Furthering these results considerably, Lisca completely classifies the diffeomorphism types
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of symplectic fillings of (L(p, q), ξ̄st) [35]. In particular, Lisca defines 4-manifolds Wp,q(n),

such that

Theorem 1.1.15 ( [35], Theorem 1.1). Let p > q ≥ 1 be relatively prime integers. Then

each symplectic filling (W,ω) of (L(p, q), ξ̄st) is orientation preserving diffeomorphic to a

smooth blowup of Wp,q(n) for some n ∈ Zp,q. Moreover, if b2(W ) = 0, then W is unique.

We don’t describe the spaces Wp,q(n) in detail since we will only be interested in the

case when a filling (W,ω) has b2(W ) = 0. In this case, the unique filling is Bp,q (Figure 1.4).

In light of Theorem 1.1.15, it is sufficient to prove that Am,n admits a symplectic structure

that fills (∂Am,n, ξ̄st) to conclude that Am,n is diffeomorphic to Bp,q - thereby providing a

complete answer to Question 1.1.9. Given a tight contact structure ξ on L(p2, pq−1), we need

a means of determining when ξ and ξ̄st specify the same contact structure on L(p2, pq − 1)

(up to contactomorphism). To answer this, we turn to homotopy invariants of the underlying

2-plane fields:

1.1.2 Homotopy Invariants of 2-Plane Fields

For identifying tight contact structures on lens spaces, it turns out to be enough to know

that the two contact structures in question are homotopic as 2-plane fields. The following

result of Honda and (independently) Giroux ensures this:

Theorem 1.1.16 ( [23], Proposition 4.24; [19], Theorem 1.1). The homotopy classes of the

tight contact structures of L(p, q) are all distinct. Moreover, if q < p−1, then all but exactly

two tight contact structures on L(p, q) are virtually overtwisted.

Further, it is known for contact structures with c1 torsion (which is always satisfied for

3-manifolds with b1 = 0; e.g. lens spaces) that particular homotopy invariants completely
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determine their homotopy classes. Gompf defines two invariants [21], d3 and Γ, and proves:

Theorem 1.1.17 ( [21], Theorem 4.16). If (Y 3, ξi) for i = 1, 2, satisfies that c1(ξ1) is torsion

and Γ(ξ1, s) = Γ(ξ2, s) for some spin structure s, then ξ1 is homotopic to ξ2 if and only if

their d3 invariants coincide.

We recall the definitions of d3 and Γ. For the three-dimensional invariant, d3, we use

the normalized definition [41] - but note that it is equivalent to the definition of θ originally

defined by Gompf [21] which relies on the fact that each contact 3-manifold can be realized as

the J-convex boundary of an almost complex 4-manifold as well as the fact that for (X4, J),

a closed almost complex 4-manifold, the quantity c21(X, J)−3σ(X)−2χ(X) = 0 where σ(X)

and χ(X) are the signature and Euler characteristic of X respectively.

Definition 1.1.18 ( [21], Definition 4.2). For a contact 3-manifold (M, ξ) with c1(ξ) torsion,

the three-dimensional invariant

d3(ξ) =
1

4

(
c21(X, J)− 3σ(X)− 2χ(X)

)
∈ Q

for any almost complex 4-manifold (X, J) with ∂X = M satisfying TM ∩ JTM = ξ.

Γ associates to each spin structure on (M, ξ) an element of H1(M ;Z). This is accom-

plished by noting that each spin structure on (M3, ξ) provides a trivialization of TM , which,

in turn, identifies SpinC(M) with H2(M ;Z). Then, with respect to this identification, Γ(ξ, s)

is Poincaré dual to the spinC-structure induced by ξ. More concretely, noting that SpinC(Y )

is an H2(Y )-torsor, any two t0, t1 ∈ SpinC(Y ), satisfy that their difference t1 − t0 is a well

defined element of H2(Y ). A spin structure on Y can be canonically viewed as a spinC-

structure. Then Γ(ξ, s) is Poincaré dual to the difference tξ − s.
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If (M, ξ) = ∂(X, J), a Stein domain, there is the following characterization [21] of Γ that

we make use of. Suppose that (X, J) is obtained by attaching 2-handles to a Legendrian link

K1 ∪ . . . ∪Kk in ∂(S1 × B3\ . . . \S1 × B3) with Seifert framings given by tb(Ki) − 1. Let

X̃ be the result of surgering each 1-handle and let L0 be the collection of 0-framed unknots,

resulting from those surgeries.

Proposition 1.1.19 ( [21], Theorem 4.12). Let (X, J) and X̃ be defined as above. Orient

K1 ∪ . . . ∪ Kk ∪ L0 to obtain a spanning set for H2(X̃;Z). Then Γ(ξ, s) ∈ H1(∂X;Z) is

Poincaré dual to the restriction of the class ρ ∈ H2(X;Z) whose value on each [Ki] is given

by

ρ([Ki]) =
1

2

(
rot(Ki) + `k(Ki, L

′ + L0)
)
∈ Z

where rot(K) = 0 for each K ∈ L0 and where L′ is the characteristic sublink (see Definition

3.2.2) associated to s.
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1.2 Statement of Results

The remainder of this thesis will provide a complete answer to Question 1.1.9 by proving the

following theorems

Theorem 1.2.1. For each pair of relatively prime positive integers, (m,n), Am,n carries

a Stein structure, J̃m,n, filling a contact structure contactomorphic to the universally tight

contact structure ξ̄st on the lens space ∂Am,n. In particular, Am,n ≈ Bp,q if and only if

∂Am,n ≈ ∂Bp,q.

The proof of Theorem 1.2.1 follows by first explicitly writing down a Stein structure on

Am,n using Eliashberg and Gompf’s [21] characterization of handle decompositions of Stein

domains. Then, verifying that the homotopy invariants of the induced contact structures

on the boundary agree with those of (L(p2, pq − 1), ξ̄st) - thereby showing that the two

structures are homotopic as 2-plane fields. Theorem 1.1.16 of Honda and Giroux shows that

this is sufficient to conclude that these two contact structures are contactomorphic. Lisca’s

classification stated in Theorem 1.1.15 of the diffeomorphism types of symplectic fillings of

(L(p2, pq − 1), ξ̄st) then gives that Am,n ≈ Bp,q.

As the diffeomorphisms ensured in Theorem 1.2.1 rely on the nontrivial work of Lisca,

Honda and Giroux, we go on to construct diffeomorphisms via handle theory alone. To do

this, we first construct boundary diffeomorphisms, then show that these boundary diffeo-

morphisms can be extended to explicit diffeomorphisms between Bp,q and Am,n through the

carving process introduced by Akbulut [1]. In fact, we have:

Theorem 1.2.2. Let (m,n) = A(p− q, q) for some p > q > 0 relatively prime. Then there

exists a diffeomorphism f : ∂Bp,q → ∂Am,n such that f carries the belt sphere, µ1, of the
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single 2-handle in Bp,q to a slice knot in ∂Am,n (see Figure 1.5). Moreover, carving Am,n

along the slice disk for f(µ1) gives S1 ×B3.

Bp,q pq − 1

µ0

q

p

µ1

f Am,n mn

γ0

m

m+ n

γ1

f(µ1) = γ

1

Figure 1.5: The boundary diffeomorphism f : ∂Bp,q → ∂Am,n.

Corollary 1.2.3. f extends to a diffeomorphism f̃ : Bp,q → Am,n.

1.2.1 Conventions

Unless specifically stated to the contrary, throughout the paper, we assume p − q > q ≥ 1,

n > m ≥ 1, and that both pairs are relatively prime. As Bp,q ≈ Bp,p−q and Am,n ≈ An,m,

this assumption doesn’t represent a restriction.

The continued fractions associated to −p2/(pq−1) involve the Euclidean algorithm [6,59].

Therefore, we use the Euclidean algorithm to define sequences of remainders and quotients

of p and q as follows:

Definition 1.2.4. For p > q ≥ 1, relatively prime, let {ri}`+2
i=−1 and {si}`+1

i=0 be defined

recursively by r−1
.
= p, r0

.
= q and

ri+1 = ri−1 mod ri, ri−1 = risi + ri+1.

Let ` be the last index where r` > 1 so that r`+1 = 1 and r`+2
.
= 0.

18



For bookkeeping purposes, we’ll differentiate between the above sequences for p and

q and the analogously defined sequences {ρi}`+2
i=−1 and {σi}`+1

i=0 associated to n > m ≥ 1.

Furthermore, provided that p−q > q, ` agrees between the two sequences when A(p−q, q) =

(m,n) or (n,m) (see Remark 3.1.8 and Lemma 4.0.11).

1.2.2 Organization

The paper is organized as follows: In Chapter 2, we construct Stein structures on each Am,n

using Eliashberg and Gompf’s characterization of handle decompositions of Stein domains,

proving Theorem 1.2.1. In Chapter 3, we outline the carving process and construct explicit

diffeomoprhisms from ∂Bp,q to ∂Am,n - proving Theorem 1.2.2. For clarity we relegate much

of the required algebra to Chapter 4. Further, we provide a complete example, working out

many of the handle-theoretic arguments of Chapters 2 and 3 in the Appendix.
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Chapter 2

Identifying Rational Balls By Fillings

This chapter is devoted to proving that each rational ball Am,n admits a Stein structure filling

a universally tight contact structure on the lens space ∂Am,n - thereby proving Theorem 1.2.1.

Throughout the chapter, we will assume that we have fixed n > m > 0 and p − q > q > 0

so that ∂Am,n ≈ L(p2, pq − 1). Ultimately we need to understand the classification of tight

contact structures on L(p2, pq − 1), so we handle this first.

2.1 Enumerating Tight Contact Structures

To begin, we determine the negative definite plumbing Cp,q. Where convenient, we use a

weighted tree Γ to represent a plumbing of disk-bundles over the sphere (see Nuemann [39]).

Let X(Γ) denote the resulting 4-manifold and let Y (Γ) = ∂X(Γ). The following is proved

in Chapter 3 (see Corollaries 3.1.3 and 3.1.7).

Proposition 2.1.1. For p > q > 0 coprime, the lens space L(p2, pq− 1) bounds X(Γ) where

Γ is the weighted graph of Figure 2.1 and where {ri}`+2
i=−1 and {si}`+1

i=0 are defined as in

−s0 s1 −s2 ±s` ∓r `
− 1

±r `
− 1

∓s` s2 −s1 s0

Figure 2.1: A linear plumbing bounding L(p2, pq − 1).

Definition 1.2.4.
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X(Γ) defined in Proposition 2.1.1 has spheres of positive self intersection and is therefore

not Cp,q. We can alter the plumbing of Figure 2.1 through a series of blow-ups and blow-

downs to repair this. With that goal in mind, consider the standard Lemma:

Lemma 2.1.2. Suppose that Y 3 ≈ Y (Γ) is given as the boundary of a plumbing of D2-

bundles over S2 plumbed according to a weighted tree Γ. If v ∈ Γ has valence at most two

and weight ai > 0, then Y 3 ≈ Y (Γ′) for the graph Γ′ obtained from Γ by replacing the Euler-

class ai D
2-bundle specified by v with a chain of ai− 1 Euler-class −2 D2-bundles (with the

framing of v’s neighbors changing accordingly) as in Figure 2.2.

ai−1 ai ai+1 ∂
≈

a i−
1
− 1

−2 −2 a i+
1
− 1

ai − 1

Figure 2.2: Removing spheres of positive self intersection.

Lemma 2.1.2 allows the exchange of each positive Euler-class disk bundle for, possibly

many negative Euler-class bundles without altering the boundary. By applying it to Propo-

sition 2.1.1, we immediately arrive at:

Corollary 2.1.3. For p > q ≥ 1, coprime, let {si}`i=0 and {ri}`+1
i=−1 be as defined in Defi-

nition 1.2.4, the space Cp,q is given by one of the linear plumbings of Figure 2.3 (depending

upon the parity of `).

Remark 2.1.4. Notice that since each si ≥ 1 we have that each weight in the graphs of

Figure 2.3 are less than or equal to −2. By Definition 1.1.1, Figure 2.3 specifies Cp,q. In

general, Cp,q admits numerous Stein fillings. According to the classification of tight contact

structure on lens spaces [19,23] each such contact structure arises as the boundary of a Stein
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` ∈ 2Z :

µ0

−s 0
− 1

−2 −2
s1 − 1

µ2

−s 2
− 2

µ2i

−s 2i
− 2

−2 −2
s2i+1 − 1

µ`

−s `
− 2

−2 −2
r` − 2

µ`+1

−r `
− 3

−2 −2
s` − 1

µ`−1

−s `
−1
− 2

µ2i+1

−s 2i
+1
− 2

−2 −2
s2i − 1

µ1

−s 1
− 2

−2 −2
s0 − 1

` ∈ 2Z + 1 :

µ0

−s 0
− 1

−2 −2
s1 − 1

µ2

−s 2
− 2

µ2i

−s 2i
− 2

−2 −2
s2i+1 − 1

µ`−1

−s `
−1
− 2

−2 −2
s` − 1

µ`+1

−r `
− 3

−2 −2
r` − 2

µ`

−s `
− 2

µ2i+1

−s 2i
+1
− 2

−2 −2
s2i − 1

µ1

−s 1
− 2

−2 −2
s0 − 1

Figure 2.3: Cp,q when ` ∈ 2Z and when ` ∈ 2Z+ 1 with relevant meridians used in homology
calculations (in red).

structure on Cp,q obtained by attaching the 2-handles of Cp,q along Legendrian unknots

whose Seifert framings are each one less than the their Thurston-Bennequin framings. For

each n < −1, by stabilizing the standard Legendrian unknot positively and or negatively

as needed, there are exactly |n| − 1 distinct rotation numbers for Legendrian unknots with

Thurston-Bennequin framing equal to n + 1: namely n + 2, n + 4, . . . ,−n − 2 (see Figure

2.4). In particular, each unknot in the handle decomposition of Cp,q with Seifert framing −2

−n+ x

2
−n− x

2

Figure 2.4: A Legendrian unknot with Thurston-Bennequin framing n+ 1 < 0 and rotation
number x.
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necessarily has rotation number zero for any Stein handle attachment. Therefore, if we let

Ki denote the attaching circle of the 2-handle in Cp,q whose belt-sphere is the meridian given

by µi as labeled in Figure 2.3, we see that specifying rotation numbers only for Ki fixes a

Stein structure on Cp,q. With this in mind, for each x = (x0, . . . , x`+1) chosen so that

x0 ∈ {1− s0, 3− s0, . . . , s0 − 1},

xi ∈ {−si, 2− si, . . . , si}, i ∈ {1, . . . , `}

x`+1 ∈ {−1− r`, 1− r`, . . . , r` + 1},

we get a unique Stein structure on Cp,q inducing a distinct (up to isotopy) tight contact

structure on L(p2, pq − 1). In an abuse of notation, we ignore the obvious dependence on p

and q and choose to call this structure Jx. As constructed, Theorem 1.1.13 gives that

PDc1(Cp,q, Jx) =
`+1∑
i=0

xi[Ki].

As each Jx has distinct first Chern class, no two can specify the same Stein structure. The

uniqueness of the isotopy classes of the induced contact structure, ξJx , follows from a result

of Lisca and Matić [36]. It is a much more subtle fact, due to Honda and Giroux, that these

Stein structures induce all the isotopy classes of tight contact structures on L(p2, pq − 1):

Theorem 2.1.5 ( [23], Theorem 2.1; [20], Theorem 1.1). The number of distinct isotopy

classes of tight contact structure on L(p2, pq − 1) is equal to

s0

∏̀
i=1

(si + 1)

 (r` + 2).
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It is known that Jxmin
and Jxmax induce the two universally tight contact structures

on L(p2, pq − 1), where xmax fixes the largest allowable rotation number on each Ki and

xmin = −xmax. Let ξx, ξmin and ξmax be the contact structures induced by Jx, Jmin

and Jmax respectively; similarly define the spinC-structures tx, tmin and tmax. ξmin and

ξmax are also induced by the Stein structures (Bp,q, Jp,q) and (Bp,p−q, Jp,p−q) specified in

Example 1.1.12. Therefore, the spinC-structures tmin and tmax both extend over Bp,q to

spinC-structures smin, s
max ∈ SpinC(Bp,q). No other tx has this property:

Proposition 2.1.6. Let Ξp,q denote the set of homotopy classes of 2-plane fields induced by

tight contact structures on L(p2, pq− 1) and let S =
{
tξ ∈ SpinC(L(p2, pq − 1)) : ξ ∈ Ξp,q

}
,

then S contains exactly two spinC-structures that extend across the ball Bp,q; both of which

arise from contact structures contactomorphic to ξ̄st.

Before we prove Proposition 2.1.6 we recall the obstruction to extending a given spinC-

structure t ∈ SpinC(L(p2, pq − 1)) across a rational ball bounding L(p2, pq − 1). We can

measure this obstruction against any fixed spinC-structure which is known to extend. As

every 4-manifold admits a spinC-structure (which extends its restriction to the boundary),

we always have such an element to measure against.

Lemma 2.1.7. Suppose that B is a rational ball bounding L(p2, pq − 1). For each pair

t0, t1 ∈ SpinC(∂B) such that t0 extends across B to some s0 ∈ SpinC(B), t1 extends across

B if and only if p divides the difference t0 − t1 ∈ H2(∂B).

Proof. From the standard fibration S1 → SpinC(4) → SO(4), we find that extending t1
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amounts to the following lifting problem:

B
S1

B
SpinC(4)

BSO(4)

∂B

B

t1

τ

ϕ

where τ is the classifying map for the tangent bundle TB. The obstructions to extending t1 to

such a map ϕ are in the cohomology groups Hi+1
(
B, ∂B; πi

(
B
S1

))
. Since B

S1 ' K(Z, 2),

the only obstruction occurs at H3(B, ∂B) ∼= H1(B) ∼= Zp. By assumption t0 extends,

therefore t1 extends if and only if the image of the difference t0− t1 is trivial under the map

H2(∂B) ∼= Z
p2

[p]
−−−−−−→ Zp ∼= H3(B, ∂B)

sending t0 − t1 to its mod p reduction - giving the result.

We can use Lemma 2.1.7 to determine which other spinC-structures induced by some Jx

extend over Bp,q. Note that for any spin-structure s ∈ Spin(L(p2, pq − 1)) the difference

PD
(
Γ(ξy, s)

)
− PD (Γ(ξx, s)) = (ty − s)− (tx − s) = ty − tx

doesn’t depend on the choice of spin-structure. Using Proposition 1.1.19, we calculate

PD(ty − tx) =
`+1∑
i=0

yi − xi
2

µi =
`+1∑
i=0

(−1)i
yi − xi

2
ρ`−i+1µ0
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where the last equality1 follows by applying Lemma 1.1.2 as well as Lemma 4.0.15 (which

works out the determinants involved in Lemma 1.1.2) to write each µi as an appropriate

multiple of µ0. As an aside, since c1(t) = t− t̄ where t̄ is the conjugate spinC-structure and

since t̄x = t−x we can write down the Poincaré dual of the first Chern class for each tight

contact structure on L(p2, pq − 1) in terms of the standard generator for H1(L(p2, pq − 1)):

PDc1(ξx) = PD(tx − t−x) =
`+1∑
i=0

(−1)ixiρ`−i+1µ0.

Of course, this also follows by simply restricting PDc1(Cp,q, Jx) to the boundary and applying

Lemma 1.1.2.

Proof of Proposition 2.1.6. Suppose that t ∈ S extends across Bp,q. We can assume that

t = tx for some Stein structure (Cp,q, Jx) on Cp,q. Lemma 2.1.7 gives that tx extends if and

only if p divides the difference PD(tmax − tx) in H1(L(p2, pq − 1). Write x = xmax − 2c

where c = (c0, c1, . . . , c`+1) necessarily satisfies c0 ∈ {0, 1, . . . , s0 − 1}, ci ∈ {0, 1, . . . , si} for

each i ∈ {1, 2, . . . , `} and c`+1 = {0, 1, . . . , r` + 1}. Then we find

PD(tmax − tx) =
`+1∑
i=0

(−1)i
xmax
i − xi

2
ρ`−i+1µ0 =

`+1∑
i=0

(−1)iciρ`−i+1µ0.

Therefore, we investigate solutions to
∑`+1
i=0(−1)iciρ`−i+1 ≡ 0 mod p. We will prove in

Corollary 4.0.17 that there are exactly two solutions - namely c = 0 and 2c = xmax - giving

that the only spinC-structures which extend correspond to xmax and xmin = −xmax - which

are known to induce the universally tight contact structures on L(p2, pq − 1).

1Recall that {ρi}
`+1
i=−1 is the collection of remainders when applying the Euclidean algorithm to n and

m as in Definition 1.2.4.
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According to Theorem 1.1.17, two 2-plane fields (with torsion c1) are homotopic if and

only if they have the same Γ and d3 invariants. Lisca proves that in the case of tight contact

structures on a lens space, the Γ invariant alone is enough [33] - that is if Γ(ξx, s) = Γ(ξy, s),

then ξx is homotopic to ξy (and their d3 invariants necessarily coincide). Of course, one

cannot expect the same result to hold with d3 in place of Γ. However, the d3-invariant does

detect the universally tight structures on L(p2, pq − 1). In fact by combining Proposition

2.1.6 with the “correction terms” from Heegaard Floer homology we arrive at the following

Proposition known to experts:

Proposition 2.1.8. Every tight contact structure ξ on L(p2, pq − 1) with d3(ξ) = −1/2 is

universally tight.

Ozsváth and Szabó define relatively Z-graded homology groups HF±, HF∞ associated

to each 3-manifold endowed with a spinC-structure [44,45]. If the spinC-structure is torsion,

one obtains absolute Q-gradings [46]. Using this grading, Ozsváth and Szabó define the

correction term d(Y, t) of any rational homology spinC 3-sphere (Y, t) as the minimal degree

of the image of a non-torsion element of HF∞(Y, t) in HF+(Y, t) [43]. Of interest to the

present problem, is the following result of Ozsváth, Stipsicz and Szabó.

Proposition 2.1.9 ( [42], Corollary 1.7). Suppose (Y, ξ) is a rational homology 3-sphere

equipped with a symplectically fillable contact structure ξ supported by a planar open book,

then

d3(ξ) +
1

2
= −d

(
Y, tξ

)
.

As every tight contact structure on a lens space is supported by a planar open book [53],

we gain knowledge about the three-dimensionsal invariant d3 from the correction term and
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vice versâ. In particular, compare Lemma 2.1.7 with the following result of Jabuka, Robins

and Wang:

Proposition 2.1.10 ( [24]). If t0 and t1 are spin-c structures on L(p2, pq − 1) satisfying

that their respective correction terms vanish, then p divides t0 − t1 ∈ H2(L(p2, pq − 1)).

Proof of Proposition 2.1.8. As ξ is symplectically fillable and supported by a planar open

book, Proposition 2.1.9 gives that

d
(
L(p2, pq − 1), tξ

)
= −d3(ξ)− 1

2
= 0.

Proposition 2.1.10 then gives that p divides tξ̄st
− tξ; and thus tξ extends across Bp,q as tξ̄st

does. Clearly ξ ∈ Ξp,q, so by Proposition 2.1.6, ξ is contactomorphic to ξ̄st.
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2.2 Stein Structures on Am,n

In this section, we show that Am,n admits a Stein structure. In light of the results of the

previous section, the existence of such a structure immediately proves Theorem 1.2.1. To

accomplish this, we use Eliashberg and Gompf’s handle characterization of Stein surfaces

stated in Theorem 1.1.11. This is done constructively; that is, we isotope the attaching

circle of the 2-handle in Am,n so that it becomes Legendrian with respect to the tight

contact structure on S1 × S2 and so that the 2-handle is then being attached with framing

one less than the resulting contact framing. For clarity, a worked example of Proposition

2.2.1 is contained in the Appendix (Figure A.1) for the rational ball A3,5.

Proposition 2.2.1. Each Am,n admits a Stein structure, J̃m,n, specified by the Stein handle

decomposition of either Figure 2.5 or 2.6 depending upon the parity of ` where we assume

{ρi}`+1
i=−1 and {σi}`i=0 are as in Definition 1.2.4.

Proposition 2.2.1, will be proved inductively. To motivate the proof as well as set up

the base cases for induction we note that by sliding the 2-handle of Am,n once under the

1-handle (upper left of Figure 2.7) we find a route toward realizing the 2-handle in Am,n as

a Stein handle attachment by an appropriate isotopy of the attaching circle K. Indeed if

we refer to the portion of K passing behind the central plane of the two attaching balls of

the 1-handle as the “bad” strand. We see that we can pair off negative crossings in the bad

strand with positive crossings in K by “unraveling” the 2-handle. To accomplish this, begin

by dragging the bad strand once over the 1-handle (bottom of Figure 2.7). By dragging

the bad strand another σ0 − 1 times over the 1-handle we find the bad strand now involves

ρ1 − 1 strands rather than the original ρ−1 − 1 strands (upper right of Figure 2.7). In fact,

if ρ1 = 1, then we immediately have the Stein structure (Am,n, J̃m,n) of Proposition 2.2.1.
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30

σ0

σ2

σ2i

σ`

ρ0 − ρ2

ρ2 − ρ4

ρ2i − ρ2i+2

ρ` − 1

σ`(ρ` − 1)

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

σ0

σ2

σ2i

σ`

σ`(ρ` − 1)

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

ρ0 − 1

mn− 2(m+ n)

Figure 2.5: (Am,n, J̃m,n) when ` ∈ 2Z. Warning: The vertical scaling differs between the left and right foot of the 1-handle.
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σ0

σ2

σ2i

σ`−1

ρ0 − ρ2

ρ2 − ρ4

ρ2i − ρ2i+2

ρ`−1 − 1

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

ρ` − 1

σ0

σ2

σ2i

σ`−1

σ`−1(ρ`−1 − 1)

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

ρ` − 1

ρ0 − 1

mn− 2(m+ n)

Figure 2.6: (Am,n, J̃m,n) when ` ∈ 2Z+ 1. Warning: The vertical scaling differs between the left and right foot of the 1-handle.



ρ0 − 1

ρ1

ρ0

ρ0

ρ0 − 1

σ0

mn− 2(m+ n)

Drag the bad
strand once
over the 1-
handle.

σ0

ρ0 − 1

ρ1 − 1

ρ0 − 1

ρ0 − 1

ρ0 − 1

σ0

mn− 2(m+ n)

Drag the bad
strand another
σ0 − 1 times
over the 1-
handle.

ρ0 − 1

ρ1

ρ0

ρ0 − 1

ρ0 − 1

σ0 − 1

mn− 2(m+ n)

Figure 2.7: The result of sliding the attaching circle K once under the 1-handle, followed by
isotopies of K as described.

Remark 2.2.2. We cannot assume ρ1 = 1, that said, the same principle holds far more

generally; that is, there exist isotopies of K taking the bad strand from involving ρ2i−1 − 1

strands to involving ρ2i+1 − 1 strands. This is the content of Proposition 2.2.3. Notice, for

any tangle in the red band of K (upper right of Figure 2.7), can be shifted down ρ1 strands

by dragging it over the 1-handle σ0 + 1 times. Similarly, any tangle in the blue bands can be

shifted up ρ0 − 1 strands by dragging it once over the 1-handle. Such isotopies will prove:
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Proposition 2.2.3. For each integer k such that 0 ≤ 2k ≤ `, Am,n is specified by attaching

a 2-handle with framing mn+ 2(m+ n) along (the closure across the 1-handle of) the braid

Bk defined in Figure 2.8.

σ0

σ2

σ2i

σ2k

ρ0 − ρ2

ρ2 − ρ4

ρ2i − ρ2i+2

ρ2k − 1

ρ2k+1 − 1

σ2k(ρ2k − 1)

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

σ0

σ2

σ2i

σ2k

ρ2k+1 − 1

σ2k(ρ2k − 1)

σ2i(ρ2i − 1)

σ2(ρ2 − 1)

σ0(ρ0 − 1)

ρ0 − 1

D0

D2

Di

Dk

Uk

Ui

U1

U0

mn− 2(m+ n)

Figure 2.8: The braid Bk: Isotoping away the “bad strand” of the attaching circle for the 2-
handle in Am,n. The bands labeled Di and Ui are those described in Lemma 2.2.4. Warning:
the 1-handle of Am,n has been suppressed and the braid does not preserve vertical scale from
left to right.

Proposition 2.2.3 immediately gives Proposition 2.2.1 in the case ` ∈ 2Z. This follows

since ρ`+1 − 1 = 0 and the central band vanishes at the `th stage. To prove Proposition
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2.2.3, we note that isotopies similar to those mentioned in Remark 2.2.2 hold in Bk as well.

Denote the bands moving downward in Bk by Di and those moving upward by Ui (as in

Figure 2.8).

Lemma 2.2.4. For each pair of integers 0 ≤ i ≤ k so that 0 ≤ 2k ≤ `, the braid Bk admits

an isotopy shifting any tangle T in the Di-band down exactly ρ2i+1 strands. Similarly, Bk

admits an isotopy shifting any tangle T ′ in the Ui-band up exactly ρ2i − 1 strands.

ρ2i+1

T
DiT Di

isotopy

isotopy

ρ2i − 1

T ′
UiT ′ Ui

Figure 2.9: Moving tangles in Di- and Ui- bands of the braid Bk.

Proof. We proceed by induction on k. The case when i = k = 0 is covered by Remark 2.2.2.

Suppose the result holds for each 0 ≤ i ≤ k − 1 in Bk−1. It is immediate that the same

isotopies persist in Bk. Therefore, we only need to show that tangles in the Uk and Dk

bands can be moved up and down respectively. We prove that the isotopy on Uk holds first.

Suppose we have moved the tangle T ′ into the Di band for some i < k as in Figure 2.10.

Here, we use that ρj − ρj+2 = σj+1ρj+1 and

ρ2i+1 =
k∑

j=i+1

ρ2j−1 − ρ2j+1 + ρ2k+1

=
k∑

j=i+1

ρ2jσ2j + ρ2k+1 =
k∑

j=i+1

(σ2j + ρ2j(σ2j − 1)) + ρ2k+1.
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σ2i

σ2i+2

σ2k

ρ2k+1

T ′

σ2i+2(ρ2i+2 − 1)

ρ2i+1(σ2i+1 − 1)

Di
ρ2i+1

Figure 2.10: Moving T ′ through the Di-band.

Clearly, by initially pushing the tangle T ′ once over the 1-handle, we can view T ′ in the D0-

band. By induction, there exists an isotopy of Bk taking any tangle in the Di-band down

exactly ρ2i+1 strands. Applying this isotopy a total of σ2i+1-times moves T ′ into Di+1 in

the same position as Figure 2.10 (with i + 1 replacing i). Repeating this process for each

i < k, moves T ′ as in Figure 2.11 giving the claimed isotopy of T ′ in Uk. With the isotopy

σ2k

ρ2k − 1

T ′

ρ2k+1

ρ2k+1 − 1

Dk

Uk

Figure 2.11: The desired isotopy on Uk.

for Uk in place, we show that the desired isotopy of a tangle T in Dk also exists. By first

dragging the tangle T once over the 1-handle, we can view T in the U0-band; suppose we

have moved T into the Ui band for some 0 < i < k as in the left side of Figure 2.12. By

induction, there exists an isotopy of Bk moving any tangle in the Ui-band up ρ2i−1-strands.
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Applying this isotopy σ2i-times places T in the Ui+1 band. Repeating this process for each

i ≤ k, moves T as in the right side of Figure 2.12 giving the claimed isotopy of T in Dk.

T

Dk

ρ2k+1

ρ2k+1 − 1
T

ρ2i − ρ2k

(σ2i − 1)(ρ2i − 1)

Ui

ρ2i − 1

Figure 2.12: Left: Moving T through the Ui-band. Right: Moving T above the Uk-band
giving the desired isotopy on Dk. .

Proof of Proposition 2.2.3. We proceed by induction on k. Figure 2.7 gives the case when

k = 0. Suppose K has been isotoped to Bk for some k with 2k < ` − 2. We view the

“bad” strand as a tangle on ρ2k+1 strands. By examining the proof of Lemma 2.2.4, we

see that this tangle can be viewed in each Di as a tangle directly above T ′ in Figure 2.10

(when i < k) and ultimately above T ′ in Figure 2.11. Lemma 2.2.4 allows us to move

this tangle down ρ2k+1 strands as long as the tangle remains in Dk. As Dk consists of

ρ2k − 1 = ρ2k+1σ2k+1 + ρ2k+2 − 1 strands, we can move the bad tangle down a total of

σ2k+1 times before it begins to leave Dk. At this point, we find that ρ2k+2 − 1 strands of

Dk as well as the strand directly below Dk can be pulled passed a single strand of the bad

tangle (top of Figure 2.13). Repeating this process j times gives the bottom of Figure 2.13

Taking j = σ2k+2 then gives Bk+1.

Proof of Proposition 2.2.1. As each isotopy from Bk to Bk+1 is clearly writhe preserving.

The writhe of Bk is that of B0 which equals mn − 2(m + n) + 2. Therefore, the handle

attachments of Figures 2.5 and 2.6 are Stein since their contact framings are easily seen to
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σ2k

ρ2k − ρ2k+2
ρ2k+2 − 1ρ2k+1 − ρ2k+2 − 1ρ2k+2 − 1

σ2k

ρ2k − ρ2k+2

j − 1
ρ2k+2 − 1ρ2k+1 − j(ρ2k+2 − 1)j(ρ2k+2 − 1)

Figure 2.13: Isotoping Bk to Bk+1.

be one less than the writhe of Bk. That is tb(Bk) = mn− 2(m+ n) + 1. Then Proposition

2.2.3 immediately gives the result when ` ∈ 2Z by isotoping to B`. On the other hand, if

` ∈ 2Z + 1, applying the induction step of Proposition 2.2.3 one final time is easily seen to

give the result in this case as well.
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Proof of Theorem 1.2.1. The fact that (∂Am,n, ξJ̃m,n
) is contactomorphic to the universally

tight lens space (L(p2, pq − 1), ξ̄st) follows by noting that any almost complex structure on

the rational ball Am,n (indeed any rational ball) satisfies that

c21(Am,n, J)− 2χ(Am,n)− 3σ(Am,n)

4
= −1

2
,

thus d3(ξ
J̃m,n

) = −1/2. By Proposition 2.1.8, ξ
J̃m,n

is universally tight. As (Am,n, J̃m,n)

gives a symplectic filling of (L(p2, pq − 1), ξ̄st), Theorem 1.1.15 gives that Am,n ≈ Bp,q.

Remark 2.2.5. Although Lisca’s result allows us to conclude that Am,n ≈ Bp,q whenever

their boundaries coincide, it does not tell us anything about the Stein structures J̃m,n versus

Jp,q. It is worth noting that Bp,1 = A1,p−1 (they are specified by the same handle decom-

position) and J̃1,p−1 coincides with Jp,1. Lekili and Maydanskiy note that it is unknown

whether or not Bp,q admits more than one Stein structure [32]. Clearly, Theorem 1.2.1 fails

to answer this question; although, it does provide another candidate for study.

It appears that the Legerdrian isotopy class of the attaching circle for the 2-handle in

Figure 2.5 or 2.6 is “maximal” in an appropriate sense: Consider the rational ball Amn+1
m,n

given by attaching the 2-handle in Am,n with framing mn+ 1 rather than mn (e.g. A7
2,3 is

shown in Figure 2.14). Here we take “maximal” to mean that the following question should

be settled in the negative.

Question 2.2.6. Is there any choice of n > m > 1 so that Amn+1
m,n admits a Stein structure?

If the answer is no, then in particular there cannot be a smooth isotopy of the attaching

circle of the 2-handle in Am,n to a Legendrian knot in the tight S1×S2 where the difference

between the resulting contact and Seifert framings is more than one. This is clearly true in

some cases.
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For instance, it is easy to verify that ∂Ap1,p−1 ≈ L(p, 1)# − L(p, 1) - surger L(p, 1) × I

so that the boundary is connected. By a Theorem of Eliashberg’s, any Stein structure

on Ap1,p−1 would necessarily decompose as a boundary sum of Stein fillings of L(p, 1) and

−L(p, 1) respectively [7]. However, it is known that no rational ball symplectically fills

−L(p, 1) equipped with any tight contact structure [50]. Therefore, Ap1,p−1 fails to be Stein.

An arguably more interesting case: Kadokami and Yamada prove that L(25, 7) bounds

A7
2,3 [25]. It is worth noting that Lawrence Roberts has this same result in 2008 [51].

Direct calculation shows that the tight contact structures on L(25, 7) have three-dimensional

7

Figure 2.14: A7
2,3 - A rational ball bounding L(25, 7) which cannot symplectically fill any

tight contact structure on its boundary.

invariants lying in {−1/50, 11/50, 19/50}. Therefore, this rational ball cannot syplectically

fill L(25, 7) equipped with any tight contact structure; in particular A7
2,3 fails to admit a

Stein structure.

A7
2,3 is the only member of Amn+1

m,n bounding a lens space [25]. Using methods of Chapter

3, we can show that ∂Amn+1
m,n is always Seifert fibered (for instance, one can verify ∂A4s+3

2,2s+1 ≈

M(−3;−3− s,− s
s−1 ,−

3
2)). Unfortunately, classification results for fillings of general Seifert

fibered spaces are less developed than those of lens spaces. That said, the answer to Question

2.2.6 is likely no in these cases as well.
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Chapter 3

Identifying Rational Balls By Carving

Chapter 2 provided a complete answer to Question 1.1.9. However, this answer is a bit

unsatisfying. Both the spaces Bp,q and Am,n can be defined by their respective handle de-

compositions alone, yet the diffeomorphisms ensured by Theorem 1.2.1 provide little insight

into how these two decompositions are related within the handle theory. This chapter aims

to rectify this. Herein, we define the boundary diffeomorphisms of Theorem 1.2.2 and prove

Corollary 1.2.3 that these maps extend across the interiors of Bp,q and Am,n. The latter is

done through the method of carving.

3.1 Extending Maps through Carving

Carving, introduced by Akbulut [1], is a powerful tool for understanding handle decomposi-

tions (see also [2]). The method can be described as follows: suppose we have two 4-manifolds

X and X ′ and a diffeomorphism f : ∂X → ∂X ′. Suppose that X admits a handle decompo-

sition consisting of a single 0-handle, k 1-handles, and N 2-handles, where the ith 2-handle

hi is attached along a knot Ki in #k(S1 × S2). Let µi denote the belt-sphere of hi (i.e. a

meridian of Ki). We attempt to extend f to a diffeomorphism between X and X ′.

If f does extend, then in particular it extends across a neighborhood of the collection of

cocores of the 2-handles in X. Thus, a necessary condition for f to extend is that the image

of the belt-spheres f(µ1) ∪ . . . ∪ f(µN ) must be a slice link in ∂X ′. That is, there exists a
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collection of properly embedded disks Di ⊂ X ′ such that Di ∩ Dj = ∅ and ∂Di = f(µi).

Assuming this, if f carries the 0-framing of each µi (induced by the cocore) to the framing

of f(µi) induced by the slice disk, then f extends across the neighborhoods of the cocores of

the 2-handles in X. In order to extend f across the rest of X, we are left needing to extend

a map f0 : #k(S1 × S2) → #k(S1 × S2). Laudenbach and Poenaru prove that every self

diffeomorphism of ∂(\k(S1 ×B3)) extends [31]. Therefore, f0 extends provided that

X ′ − ν(D1 ∪ . . . ∪DN ) ≈ \k(S1 ×B3).

In practice, one defines f via framed link surgery, then traces each belt-sphere µi under

f paying careful attention to how the map effects the 0-framing of µi. If each f(µi) bounds

a disjoint disk in X ′, inducing the same framings as those traced, then f extends provided

that surgering these disks gives \k(S1 × B3) - this last question is usually verified directly

using 4-dimensional handle moves. We apply this process to Bp,q and Am,n.

3.1.1 Boundary Diffeomorphisms: ∂Bp,q

In this section, we exhibit explicit diffeomorphisms from ∂Bp,q to L(p2, pq−1). To accomplish

this, we find boundary diffeomorphisms to particular linear plumbings associated to p and

q. Bearing in mind the carving procedure, outlined in the previous section, we trace the

belt-sphere of the single 2-handle of Bp,q.

It’s worth noting that such diffeomorphisms have been known previously. Yamada pro-

duces similar diffeomorphisms from ∂Am,n to L(p2, pq − 1) expressed as the boundary of

the unique linear plumbing of D2-bundles over S2 with Euler classes each ≤ −2 [59]. To

accomplish this, one must carefully keep track of every stage of the Euclidean algorithm
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applied to (p − q, q) = 1 - that is every time ai is subtracted from bi or bi from ai in Ya-

mada’s definition of A(p − q, q) (see Lemma 4.0.11). We perform a courser bookkeeping of

the Euclidean algorithm via Definition 1.2.4, which allows for arguably clearer definitions -

however, we don’t arrive at a linear plumbing with Euler classes ≤ −2. Yet, as shown in

Corollary 2.1.3, through a sequence of blow-ups and blow-downs, one can easily get to that

plumbing if so desired.

We first employ this method to ∂Bp,q. Again, for clarity a worked example of the diffeo-

morphisms defined in Proposition 3.1.1 as well as Corollary 3.1.3 is provided in the Appendix

(Figure A.2) for the rational ball B8,3.

Proposition 3.1.1. Let {ri}`+2
i=−1 and {si}`+1

i=0 be as defined in Definition 1.2.4. Then for

each i ∈ {0, . . . , `+ 1}, Bp,q
∂
≈ Bip,q where Bip,q is the 4-manifold given by Figure 3.1.

(−1)i−1s0

(−1)i−2s1
si−1

(−1)is0

(−1)i−1s1

si−2

−si−1

si

1

ri

ri+1

µ1

ri−1ri − 1

Figure 3.1: The 4-manifold Bip,q

Proof. We induct on i. When i = 0, the result is immediate since B0
p,q ≈ Bp,q. Therefore,

the proposition holds provided that ∂Bip,q ≈ ∂Bi+1
p,q . Let Ki

1 be the attaching circle of the

ri−1ri− 1-framed 2-handle in Bip,q. Suppose the result holds for some i ≤ `. For i+ 1, first,

surger the single 1-handle and introduce a canceling pair of 1- and 2-handles to remove the

si-full twists between Ki
1 and the, now surgered, 1-handle (Figure 3.2). Since Ki

1 links the
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(−1)i−1s0

(−1)i−2s1
si−1 −si

(−1)is0

(−1)i−1s1

si−2

−si−1

si
1

ri

ri+1

µ1

riri+1 − 1

Figure 3.2: Introducing a canceling pair after surgery.

new 1-handle ri times, the framing on Ki
1 decreases by sir

2
i and the new framing on Ki

1 is

ri−1ri − 1− sir2
i = ri(ri−1 − siri)− 1 = riri+1 − 1.

Sliding the −si−1-framed 2-handle under the new 1-handle as indicated in Figure 3.2, and

isotoping the ri+1-stranded band (see Figure 3.3) we find that the ri+1-stranded band tra-

(−1)is0

(−1)i−1s1 −si−1

si

(−1)i−1s0

(−1)i−2s1
si−1

−si

1

ri

ri+1

ri − ri+1

µ1

riri+1 − 1

Figure 3.3: Isotoping Ki
1.

verses the 1-handle (positively) si+1-times as a complete band, while ri+2-strands traverse

an additional one time to make up the complete si+1ri+1 + ri+2 = ri linking. With this

view in mind, we isotope Ki
1 into a closed braid on ri+1 strands appropriately linking the

carving disk of the 1-handle - Figure 3.4. The result holds by induction.
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(−1)is0

(−1)i−1s1 −si−1 si

(−1)i−1s0

(−1)i−2s1 −si−2

si−1

−si

1

si+1

ri+1

ri+2

µ1

riri+1 − 1

Figure 3.4: Further isotopy of Ki
1 to Ki+1

1

Remark 3.1.2. At no point does µ1, the meridian of Ki
1, get damaged under the boundary

diffeomorphisms defined in Proposition 3.1.1. In particular, for each i, µ1 bounds a disk in

Bip,q and the image of a collar neighborhood of µ1 arising from such a disk persists under

the boundary diffeomorphisms defined above - that is that each diffeomorphism preserves

the 0-framing on µ1.

Since r`+1 = 1 and r`+2 = 0, by definition, s`+1 = s`+1r`+1 + r`+2 = r`. So, by looking

at B`+1
p,q we arrive at the following result of Casson and Harer [6].

Corollary 3.1.3. ∂Bp,q ≈ L(p2, pq − 1).

Proof. By Proposition 3.1.1, we have that ∂Bp,q ≈ ∂B`+1
p,q (Figure 3.5). We show that ∂B`+1

p,q

(−1)`−1s0

s`−1

−s` r`

r`−1

s`

−s`−1

(−1)`s0

µ1

Figure 3.5: The space B`+1
p,q .

is diffeomorphic to a linear plumbing of circle-bundles over S2 as follows. Surger the 1-handle

and introduce a canceling 1- and 2-handle, as in the induction step of Proposition 3.1.1, (top
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of Figure 3.6). Next, slide the −s`-framed 2-handle as well as µ1 under the 1-handle as

indicated in the top of Figure 3.6 (middle of Figure 3.6). Surgering the new 1-handle and

blowing down gives the linear plumbing (bottom of Figure 3.6).

(−1)`−1s0

s`−1

−s`

r`

µ1

−1

−r`

s`

−s`−1 (−1)`s0

(−1)`−1s0 s`−1 r` −r` −s`−1 (−1)`s0

−s`
µ1

s`

−1

(−1)`−1s0 s`−1 r` −r` −s`−1 (−1)`s0

−s`
µ1

s`

1

Figure 3.6: From top to bottom: The introduction of a canceling pair to B`+1
p,q after surgery;

the result of the indicated slides; a linear plumbing associated to ∂Bp,q.

Remark 3.1.4. From Lemma 4.0.14, we see that the linear plumbing in Figure 3.6 bounds

L(p2, pq − 1). Indeed, we find that

[−s0, s1, . . . ,±r`, 1,∓r`, . . . ,−s1, s0] = − p2

pq − 1
.

3.1.2 Boundary Diffeomorphisms: ∂Am,n

As in the previous section, we exhibit explicit diffeomorphisms, this time from ∂Am,n to

L(p2, pq − 1). As the image of µ1 is given as the 0-framed push-off of the attaching circle

of the central 1-framed unknot at the bottom of Figure 3.6. We’ll trace where the curve, γ
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in Figure 1.5, goes as well - finding that it too goes to the 0-framed push-off of the central

1-framed unknot via an appropriately defined diffeomorphism. We want to define these

diffeomorphisms in a structurally similar manner to those of Proposition 3.1.1. To that end,

Lemma 3.1.5. Am,n is given by Figure 3.7.

1

σ0

ρ1

m

mn

γ

Figure 3.7: An alternative description of Am,n.

Proof. As in Section 2.2, we are taking n = mσ0 + ρ1. The result follows from an isotopy of

the 2-handle given in Figure 3.8.

As with previous sections, we have provided a worked example in the case of A3,5 in

Figure A.3 of the Appendix. With Lemma 3.1.5 in place we prove:

Proposition 3.1.6. Let {ρi}`+2
i=−1 and {σi}`+1

i=0 be as defined in Definition 1.2.4 (associated

to n > m ≥ 1). Then for each i ∈ {0, . . . , `+1}, Am,n
∂
≈ Aim,n where Aim,n is the 4-manifold

given by Figure 3.9.

Proof. We induct on i, treating the base case and the induction step simultaneously. For

the base case, start with the handle decomposition from Lemma 3.1.5. For the induction

step, suppose that the result holds for some i ≤ `. Let Ki
1 be the attaching circle of the
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mn

m

m+ n

γ

mn

m

n

1

γ

mn

m

n

n−m

1

γ

Figure 3.8: The isotopy of the 2-handle in Am,n used in the proof of Lemma 3.1.5.

ρi−1ρi

σ i−
1
−σ

i−
2

(−
1)
i−

2 σ 1

(−
1)
i−

1 (σ
0
+

1)

1 (−
1)
i (σ

0
+

1)

(−
1)
i−

1 σ 1

σ i−
2

−σi−1

1

σi

ρi

ρi+1

Figure 3.9: The 4-manifold Aim,n

ρi−1ρi-framed 2-handle in Aim,n. Surger the 1-handle and introduce a canceling 1- and 2-

handle (for the base case see the left side of Figure 3.10, for the induction step see Figure

3.12). Notice, similar to Proposition 3.1.1 the framing of Ki
1 changes from ρi−1ρi to ρiρi+1.

Slide the now surgered 1-handle as indicated in the respective figures and, for the base case,
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ρ0ρ1

σ0

−σ0 ρ1

ρ0

1

γ

ρ0ρ1

σ0

−σ0 − 2
ρ1

ρ0

1
γ

Figure 3.10: The base case of Proposition 3.1.6

blow-up once (right side of Figure 3.10). From here the base case follows similarly to the

ρ0ρ1
−σ0 − 1

1
σ0 + 1

ρ1

ρ0

1

γ

Figure 3.11: Finishing the base case of Proposition 3.1.6

induction step; both of which are structurally similar to Proposition 3.1.1. Indeed, isotope

Ki
1 to view a band with ρi+1 stands traversing the 1-handle σi+1-times along with ρi+2 of

those strands traversing an extra time as in Figure 3.13.
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ρiρi+1
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+
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Figure 3.12: Introducing a canceling pair.
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−σi
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ρi − ρi+1

ρi

ρi+1

Figure 3.13: Isotoping Ki
1 in Aim,n.



A further isotopy of Ki
1 gives a closed braid on ρi+1-strands geometrically linking the

carving disk of the new 1-handle ρi-times. Finally, notice that to get the appropriate linking

on the chain of unknots, we have to wind the chain (as indicated in Figure 3.14) to add a

total of i positive half-twists to the left of the euler-class 1 disk-bundle along with i negative

half-twists to the right. The result follows by induction.

ρiρi+1

σ i −σ
i−

1

(−
1)
i−

1 σ 1

(−
1)
i (σ

0
+

1)

1 (−
1)
i+

1 (σ
0
+

1)

(−
1)
i σ 1

σ i−
1

−σi

1

σi+1

ρi+1

ρi+2

Figure 3.14: Further isotopy of Ki
1 to Ki+1

1 in Ai+1
m,n.

Corollary 3.1.7 ( [59], Theroem 1.1). ∂Am,n ≈ L(p2, pq − 1) for (p− q, q) = A(m,n).

Proof. By Proposition 3.1.6, ∂Am,n ≈ ∂A`+1
m,n (figure 3.15). We proceed as in Corollary 3.1.3.

−σ`

σ `−
1

(−
1)
`−

1 (σ
0
+

1)
1

(−
1)
` (σ

0
+

1)

−σ
`−

1 σ`

ρ`

ρ`

γ

Figure 3.15: The space A`+1
m,n

After surgering the 1-handle and introducing a canceling 1- and 2-handle (top of Figure 3.16),

slide the −σ`-framed 2-handle under the 1-handle and the −ρ`-framed 2-handle over the 0-

50



−σ`

σ `−
1

(−
1)
`−

1 (σ
0
+
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+

1)
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1 σ`

0
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−ρ`

γ

ρ` −σ`

(−
1)
` σ 1

(−
1)
`+

1 (σ
0
+

1)

1

(−
1)
` (σ

0
+

1)

(−
1)
`−

1 σ 1 σ` −ρ`

γ

Figure 3.16: The result of surgering A`+1
m,n and introducing a canceling pair; a linear plumbing

associated to ∂Am,n

framed 2-handle as indicated in the top of Figure 3.16. Canceling the 1-handle with the

0-framed 2-handle gives the linear plumbing (bottom of Figure 3.16).

Remark 3.1.8. The fact that ∂Am,n is L(p2, pq − 1) for A(m,n) = (p − q, q) follows by

noting that given p and q, or equivalently m and n, we can define the other pair by an

appropriate identification of the linear plumbings in Corollaries 3.1.3 and 3.1.7 - provided

that s0 > 1 (that is, provided that p − q > q - which we have assumed all along). In fact,

this could be taken as the definition of the function A defined by Yamada [59]. The latter

claim is the content of Lemma 4.0.11. Notice also that γ bounds a disk in each ∂Aim,n as

well as in the linear plumbing of Figure 3.16. Furthermore, each boundary diffeomorphism

defined in Proposition 3.1.6 and those of Corollary 3.1.7 preserve the 0-framing of γ specified
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by those disks. Therefore, we can employ the carving method of Section 3.1 provided that

carving along γ gives S1 ×B3 - which it does:

Proposition 3.1.9. Carving Am,n along γ gives S1 ×B3.

Proof. Carving Am,n along the curve γ means removing a neighborhood of the disk γ bounds

inside Am,n. The resulting handlebody decomposition is given by that of Am,n along with an

extra 1-handle whose carving disk is γ. If we let γi be the analogous curve in Aρi−1,ρi , then

the result of carving Aρi−1,ρi along γi is given in Figure 3.17. Notice that Am,n = Aρ0,ρ−1

ρi−1ρi

ρi ρi

σi
ρ
i+1

Figure 3.17: Aρi−1,ρi carved along γi.

and γ = γ0. By sliding the original 1-handle across the newly carved 1-handle σi times,

twisting the 1-handle σi-times (negatively) and finally sliding as indicated in the left side of

Figure 3.18 we arrive at Aρi,ρi+1 carved along γi+1 (right side of Figure 3.18). Therefore,

the result of carving along γi in Aρi−1,ρi is diffeomorphic to carving along γi+1 in Aρi,ρi+1 .

As carving A1,ρ`
along γ` gives S1 ×B3 we have the result.

Proof of Theorem 1.2.2. As A(p − q, q) = (m,n), we can identify the plumbings of Figures

3.6 and 3.16. Then, by first, applying the diffeomorphisms of Proposition 3.1.1 we get a
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isotopy

ρiρi+1 ρiρi+1

ρi ρi
σiρ

i+1

ρ
i+

1

ρi+1 + ρi

−σi

Figure 3.18: Aρi−1,ρi carved along γi after sliding and twisting σi-times.

diffeomorphism from ∂Bp,q to the boundary of the linear plumbing of the bottom of Figure

3.6 carrying µ1 as indicated. Then applying the diffeomorphisms of Proposition 3.1.6 in

reverse from the boundary of the linear plumbing of Figure 3.16 to Am,n gives the required

diffeomorphism f : ∂Bp,q → ∂Am,n.

3.2 Spin Structures and Orientations

In the interest of fully understanding the map f , we determine how it behaves with respect

to elements of H1(∂Bp,q) as well as how f treats spin structures.

Remark 3.2.1. Lemma 1.1.2 allows us to determine f−1
∗ γ0 ∈ H1(∂Bp,q) where γ0 is the

meridian defined in Figure 1.5. From Proposition 3.1.6, we have that a meridian of −(σ0+1)-

framed unknot of figure 3.16 is carried to γ0 in ∂Am,n. Similarly, µ0 is carried to a meridian of

−s0-framed unknot of Figure 3.6. Furthermore, by Corollary 4.0.18, we have that γ0 = ±nµ0

if ` ∈ 2Z and γ0 = ±mµ0 if ` ∈ 2Z + 1 where we view γ0 and µ0 as their respective images

in the aforementioned linear plumbings. Now, by an appropriate choice of identification of
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the plumbings of Figures 3.16 and 3.6 we can always assume that

f−1
∗ γ0 =


+nµ0 if ` ∈ 2Z,

+mµ0 if ` ∈ 2Z + 1.

Indeed, if as defined, f−1
∗ γ0 was −mµ0 or −nµ0, we can simply flip one pluming over before

making the identification and redefine f accordingly!

Recall that L(p2, pq−1) admits a unique spin structure if p is odd and two spin structures

if p is even. In the former case, f clearly maps the unique spin structure to itself. In the later

case, we investigate how f behaves on spin structures by looking at characteristic sublinks

due to Kaplan [26]:

Definition 3.2.2 ( [26], Definition 1.10). For a framed link L ⊂ S3, a sublink L′ ⊂ L is

characteristic if for each K ⊂ L,

`k(K,L′) = `k(K,K) mod 2.

When M3 is given as (integral) surgery on L, spin structures on M are in bijection with

characteristic sublinks of L. Furthermore, fixing a spin structure and thus a characteristic

sublink of M , one can trace where that structure goes under a diffeomorphism specified

via handle moves / blow-ups by tracing how the sublink evolves under those moves (see

§5.7 of [22]). To accomplish this, we adopt the following notation to specify (M, s) for

s ∈ Spin(M) - the set of spin structures on M :

Notation 3.2.3. If M3 is given by integral surgery on a framed link L = K
f1
1 ∪ . . . ∪K

fN
N

with framings fi ∈ Z and s ∈ Spin(M) is a spin structure with associated characteristic
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sublink L′ ⊂ L, then we denote

(M, s) = K
(f1;t1)
1 ∪ . . . ∪K(fN ;tN )

N

where each ti ∈ Z/2Z = {1,−1} satisfies ti = −1 if and only if Ki ∈ L′. (e.g. see Figure

3.19.)

1

q

p

(pq − 1; t1)

(0; t0)

m

m+ n

(mn; v1)

(0; v0)

Figure 3.19: A choice of spin-structure on ∂Bp,q, respectively on ∂Am,n.

When sliding Ki over Kj , (fi; ti) 7→ (fi+fj±2`k(Ki, Kj); ti) and (fj ; tj) 7→ (fj ; titj) [22].

Furthermore, blowing-up corresponds to the addition of (±1;−1)-decorated unknot. From

these two observations, we immediately conclude the following lemma.

Lemma 3.2.4. Suppose that a band of k strands has r strands contained in the characteristic

sublink of a spin structure s on M and the remaining k− r strands not in the characteristic

sublink, then adding −si-full twists to the band, through the introduction of a canceling pair,

effects the characteristic sublink as in Figure 3.20 with no change to the original characteristic

sublink and with framings within the band changing in the obvious way.

Thus, we can refine Proposition 3.1.1 to carry a fixed spin structure on ∂Bp,q to each ∂Bip,q.

Lemma 3.2.5. Let s ∈ Spin(∂Bp,q) be specified by the pair (t0, t1) ∈ Z/2Z× Z/2Z, then s

corresponds to the spin structure on ∂Bip,q in Figure 3.21 where T0 = t0 and for 1 ≤ i ≤ `+1,
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k
r

si
∂
≈

(
0; (−1)(r+1)si

) (si; (−1)r)

Figure 3.20: Tracing characteristic sublinks when introducing a canceling pair.

Ti = (−1)1+detAi−1(−t0)ρ`+1−i(t1)p detAi−1+iri such that Ai and ρ`+1−i are as defined in

Lemma 4.0.11.
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(0
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)

si

1
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Figure 3.21: A fixed spin structure on ∂Bp,q and ∂Bip,q.

Proof. Starting with (t0, t1) on ∂Bp,q as in Figure 3.19, Lemma 3.2.4 combined with Propo-

sition 3.1.1 gives that the Tj ’s in Figure 3.21 are defined recursively by T−1
.
= 0, T0

.
= t0,

and Tj =
(
−Tj−1t

rj−1
1

)sj−1
Tj−2. To see that the closed form for Tj is as claimed, note

that we can assume Tj = (−1)
aj (t0)

bj (t1)
cj for sequences {aj}, {bj}, {cj} ⊂ Z which only
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need to be determined to their respective parities. Then, the recursion on Tj descends to

a−1
.
= 0 b−1

.
= 0 c−1

.
= 0

a0
.
= 0 b0

.
= 1 c0

.
= 0

aj = sj−1(aj−1 + 1) + aj−2. bj = bj−1bj−1 + bj−2. cj = sj−1(cj−1 + rj−1) + cj−2.

By noting that ρ`+1 = 1, ρ` = s0 and ρ`+1−j = ρ`+1−(j−1)sj−1 + ρ`+1−(j−2) the result

follows by induction on j.

Remark 3.2.6. By Lemma 4.0.11, we have that detA` = ±d for d defined therein. Thus,

T`+1 = (−1)1+d(−t0)m(t1)pd+`+1.

If p ∈ 2Z, then t1 = −1 for both spin structures on ∂Bp,q and we can further reduce T`+1 to

(−1)c+`t0 (as m is necessarily odd and the parities of c and d always oppose each other in

this case). Therefore, when p ∈ 2Z, we can measure which spin structure s gives on ∂Bp,q

in the linear plumbing of Figure 3.6 by noting that the −r`-framed unknot will be in the

characteristic sublink associated to s if and only if (−1)c+`t0 = −1. Of course, we can also

measure this by looking at the −s0-framed unlink. However, to see which spin structure is

induced on ∂Am,n, it is convenient to look at −r`. To that end, we have

Proposition 3.2.7. Let s be the spin structure on ∂Bp,q specified by (t0, t1) in Figure 3.19,

then f∗(s) is the spin structure on ∂Am,n specified by

(v0, v1) =

(
(−1)c+`t0 + t1 + (−1)c+`+1t0t1 + 1

2
, t1

)

where the pair (v0, v1) ∈ Z/2Z× Z/2Z is defined for ∂Am,n as in Figure 3.19.
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3.2.1 Homotopy Invariants Revisited

In Chapter 2, we proved (∂Bp,q, ξJp,q) and (∂Am,n, ξJ̃m,n
) are necessarily contactomorphic.

As an application of Proposition 3.2.7, we can compute the induced spinC-structures com-

ing from (∂Bp,q, ξJp,q) and (∂Am,n, ξJ̃m,n
) directly from the definition of the Γ invariant of

Proposition 1.1.19. This shows, unsurprisingly, that f can be arranged to give the contac-

tomorphism.

Proposition 3.2.8. For p > q ≥ 1 relatively prime, the contact structure induced by the

Stein structure, Jp,q, on Bp,q given by Figure 1.4 has Γ(ξJp,q , s) = pq
2 · µ0 in an appropriate

basis of H1(L(p2, pq − 1);Z) and for a fixed choice of s when p ∈ 2Z.

Proof. Let K0 be the boundary of the carving disk of the 1-handle in Figure 1.4 let K1

be the attaching circle of the single 2-handle, and let X0 be the 4-manifold obtained from

Figure 1.4 by surgering the 1-handle (exchanging the “dot” on K0 for a 0-framed 2-handle).

Then, let s ∈ Spin(∂Bp,q) be the spin structure on ∂Bp,q specified by (t0, t1) in Figure 3.21.

As we have to slide the 2-handle under 1-handle q-times to arrive at Figure 1.4, we see that

s corresponds to the characteristic sublink

L′ =
1− t0t

q
1

2
K0 +

1− t1
2

K1

in X0. Orient the 2-handles so that rot(K1) = q and so that `k(K0, K1) = p. In this

orientation, let µ̃i be a right handed meridian for Ki in X0 and let µi be a right handed
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meridian for the corresponding (oriented) knots in ∂Bp,q of Figure 3.21 so that

H1(∂X0;Z) = 〈µ̃0, µ̃1 : pµ̃1 = 0, pµ̃0 = (pq + 1)µ̃1〉 ,

H1(∂Bp,q;Z) = 〈µ0, µ1 : pµ1 = 0, pµ0 = (1− pq)µ1〉 ,

where µ̃0 = µ0 + qµ1 and µ̃1 = µ1. Then, for j = 0, 1, by Proposition 1.1.19, we have

ρ([Kj ]) =
1

2

(
1− t1

2
p

)
(1− j) +

1

2

(
q +

3− t0t
q
1

2
p− 1− t1

2
(pq + 1)

)
j.

Noting that µ1 = pµ0, we find that

Γ(ξJp,q , s) =
1

2

(
1− t1

2
p

)
µ̃0 +

1

2

(
q +

3− t0t
q
1

2
p− 1− t1

2
(pq + 1)

)
µ̃1

=

(
pq

2
+

(
3− t0t

q
1

2

)
p2

2

)
· µ0.

Since there is no 2-torsion in Z/p2Z if p ∈ 2Z + 1, p2/2 = 0 in that case. If p ∈ 2Z, then we

can take s corresponding to (t0, t1) = (1,−1). In either case, (fixing the spin structure) we

have Γ(ξJp,q , s) = pq
2 · µ0.

Proposition 3.2.9. For n > m ≥ 1 relatively prime, the contact structure induced by the

Stein structure (Am,n, J̃m,n) given by Figure 2.5 or 2.6 has

Γ(ξ
J̃m,n

, f∗(s))

=
m+ n

2

(
(d− c)2 +

1− t1
2

(
1 + (d− c)2

(
mn+

1 + (−1)c+`t0
2

(m+ n)

)))
γ0

in an appropriate basis of H1(∂Am,n;Z) where cm+ dn = 1.
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Proof. Let X̃0 be the 4-manifold obtained from Am,n by surgering the 1-handle. Let f∗(s) ∈

Spin(∂Am,n) be the spin structure corresponding to the characteristic sublink (t0, t1) in

∂Bp,q. From Proposition 3.2.7, we have that f∗(s) =

(
(−1)c+`t0+t1+(−1)c+`+1t0t1+1

2 , t1

)
.

Then, since we slide the 2-handle once under the 1-handle to get to Figure 2.5 or 2.6, we

consider the characteristic sublink

L′ =
1− t1

2

((
1 + (−1)c+`t0

2

)
K0 +K1

)

where K0 is the 0-framed unkot arising from the surgery and K1 is the Legendrian attaching

circle of the single 2-handle. Orient K0 and K1 so that rot(K1) = 1 and so that `k(K0, K1) =

m+n. With respect to this orientation, let γi be a right-handed meridian for Ki (viewed in

∂Am,n prior to the single handle slide). Then, by Proposition 1.1.19,

Γ(ξ
J̃m,n

, f∗(s)) =
1− t1

2

m+ n

2
γ0 +

1

2

(
1 +

1− t1
2

(
mn+

1 + (−1)c+`t0
2

(m+ n)

))
γ1

To see that Γ(∂Am,n, s) is as claimed, note that

H1(∂Am,n;Z) = 〈γ0, γ1 : (m+ n)γ1 = 0,mnγ1 = −(m+ n)γ0〉 .

Combining this with the following observation; for c and d with cm+ dn = 1, we necessarily

have c(m+n) + (d− c)n = 1 and d(m+n)− (d− c)m = 1. Multiplying these two equations
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gives that −(d− c)2 ·mn+ (cd(m+ n)− c(d− c)m+ d(d− c)n) · (n+m) = 1. Thus,

γ1 = γ1 − (cd(m+ n)− c(d− c)m+ d(d− c)n) · (n+m)γ1

= (1− (cd(m+ n)− c(d− c)m+ d(d− c)n) · (n+m)) γ1

= −(d− c)2 ·mn · γ1

= (d− c)2 · (m+ n) · γ0.

Exchanging γ1 for (d− c)2(m+ n)γ0 in Γ(ξ
J̃m,n

, f∗(s)) gives the result.

Remark 3.2.10. By applying f−1 : ∂Am,n → ∂Bp,q of Theorem 1.2.2, we see that

Γ(f−1
∗ ξ

J̃m,n
, s) = Γ(ξJp,q , s) for some spin structure s ∈ S(∂Bp,q). Indeed, by Proposi-

tion 3.2.9 along with Remark 3.2.1 and Lemma 4.0.13 we have

Γ(f−1
∗ ξ

J̃m,n
, s) = f−1

∗ Γ(ξ
J̃m,n

, f∗(s))

=
p

2

(
(d− c)2 +

1− t1
2

(
1 + (d− c)2

(
mn+

1 + (−1)c+`t0
2

p

)))
f−1
∗ (γ0)

=


p
2

(
(d− c)2 +

1−t1
2

(
1 + (d− c)2

(
mn+

1+(−1)ct0
2 p

)))
nµ0 if ` ∈ 2Z,

p
2

(
(d− c)2 +

1−t1
2

(
1 + (d− c)2

(
mn+

1+(−1)dt0
2 p

)))
mµ0 if ` ∈ 2Z + 1

=
pq

2
µ0 = Γ(ξJp,q , s)

where the case when ` ∈ 2Z + 1 follows from Lemma 4.0.13 by symmetry. It follows from

Theorem 1.1.17 that ξJp,q and f−1
∗ ξ

J̃m,n
are in the same homotopy class and thus, by

Theorem 1.1.16, isotopic. Therefore f−1 gives a contactomorphism from (∂Am,n, ξJ̃m,n
) to

(∂Bp,q, ξJp,q).
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Chapter 4

The Algebraic Details

We have withheld some of the algebraic details used in the previous two chapters. In this

chapter we state and prove these results. We start by giving a definition of the function A,

defined by Yamada, which associates the relatively prime pair (m,n) to a given relatively

prime pair (p − q, q) [59]. Rather than relying on Yamada’s original definition, we provide

a description of A which dovetails with the boundary diffeomorphisms of Chapter 3. The

following lemma gives that definition and proves that it is equivalent to Yamada’s original

definition.

Lemma 4.0.11. Let p − q > q ≥ 1 be relatively prime, and let {ri}`+1
i=−1 and {si}`i=0 be

defined as in Definition 1.2.4. Define sequences {σi}`i=0 and {ρi}`+1
i=−1 by σ0

.
= r` − 1,

σi
.
= s`−i+1 for i ∈ {1, . . . , `}. Recursively define ρi by setting ρ`+1

.
= 1, ρ`

.
= s0, and

setting

ρi = ρi+1σi+1 + ρi+2.

Let m
.
= ρ0 and n

.
= ρ−1. Then for m and n as defined, we have

A(p− q, q) =


(m,n) if ` ∈ 2Z,

(n,m) if ` ∈ 2Z + 1.

(−1)`(−c, d) = (| detA`−1|+ (r` − 1)| detA`|, | detA`|)
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where c and d are the unique integers, with 0 < (−1)`+1c, (−1)`d < p, satisfying cm+dn = 1,

and where

Ai =



s1 1

1 −s2 1

1
. . . 1

1 (−1)i+1si


.

Proof. Recall the definition of A(p − q, q), as well as the pair (c, d) in [59]: Set (a0, b0)
.
=

(p− q, q), (m0, n0)
.
= (1, 1), (c0, d0) = (0, 1). If ai > bi,

(ai+1, bi+1)
.
= (ai − bi, bi), (mi+1, ni+1)

.
= (mi + ni, ni), (ci+1, di+1)

.
= (ci, di + ci)

and if ai < bi,

(ai+1, bi+1)
.
= (ai, bi − ai), (mi+1, ni+1)

.
= (mi, ni +mi), (ci+1, di+1)

.
= (ci + di, di).

Then A(p − q, q) .
= (mN , nN ) and −cNmN + dNnN = 1 for N such that aN = bN = 1 -

which exists since (p − q, q) = 1. Since p − q > q, there is a subsequence {(aij , bij )}
`+2
j=1 ⊂

{(ai, bi)}Ni=0 satisfying

(aij , bij ) =


(rj , rj−1), if j ∈ 2Z + 1,

(rj−1, rj), if j ∈ 2Z

for j ∈ {1, . . . , `+ 1}, and i`+2 = N . Furthermore, for these indicies, we have

(mij
, nij ) =


(ρ`−j+1, ρ`−j+2), if j ∈ 2Z + 1,

(ρ`−j+2, ρ`−j+1), if j ∈ 2Z,
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Thus for j = `+ 2 we find that

A(p− q, q) = (mN , nN ) =


(ρ−1, ρ0), if ` ∈ 2Z + 1,

(ρ0, ρ−1), if ` ∈ 2Z.

To see that this gives the claim for (c, d) as well, we note for j ≤ `+ 1, we have

(cij , dij ) =


(
| detAj−2|, | detAj−1|

)
, if j ∈ 2Z + 1,(

| detAj−1|, | detAj−2|
)
, if j ∈ 2Z.

where A−1
.
= 0 and A0

.
= 1. Now, to produce such a subsequence, take i1 = s0 − 1 > 1

(so that ai > q for each i < i1) similarly, take ik+1 = sk + ik for k ≤ ` and take i`+2 =

i`+1 + r` − 1. By definition,

(ai1 , bi1) = (p− q − (s0 − 1)q, q) = (r1, r0).

On the other hand

(mi1
, ni1) = (1 + (s0 − 1), 1) = (ρ`, ρ`+1), (ci1 , di1) = (0, 1 + 0) = (0, 1).

For ik+1 we have (for k < `+ 1),

(aik+1
, bik+1

) =


(rk, rk−1 − skrk), if k ∈ 2Z + 1

(rk−1 − skrk, rk), if k ∈ 2Z
=


(rk, rk+1), if k + 1 ∈ 2Z

(rk+1, rk), if k + 1 ∈ 2Z + 1.
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and (ai`+2
, bi`+2

) = (1, 1). For k ≤ `+ 1,

(mik+1
, nik+1

) =


(ρ`−k+1, ρ`−k+2 + skρ`−k+1), if k ∈ 2Z + 1

(ρ`−k+2 + skρ`−k+1, ρ`−k+1), if k ∈ 2Z

=


(ρ`−k+1, ρ`−k+2 + σ`−k+1ρ`−k+1), if k ∈ 2Z + 1

(ρ`−k+2 + σ`−k+1ρ`−k+1, ρ`−k+1), if k ∈ 2Z

=


(ρ`−k+1, ρ`−k), if k + 1 ∈ 2Z

(ρ`−k, ρ`−k+1), if k + 1 ∈ 2Z + 1.

Finally notice that

detAi = (−1)i+1si detAi−1 − detAi−2

and that the sign of Ai coincides with the sign of sin(πi/2)+cos(πi/2) giving that | detAi| =

si|Ai−1|+ |Ai−2|. Therefore,

(cik+1
, dik+1

) =


(| detAk−2|+ sk| detAk−1|, | detAk−1|) , if k ∈ 2Z + 1

(| detAk−1|, | detAk−2|+ sk| detAk−1|) , if k ∈ 2Z

=


(| detAk|, | detAk−1|) , if k + 1 ∈ 2Z

(| detAk−1|, | detAk|) , if k + 1 ∈ 2Z + 1.

When passing to k = `+ 2, we have

(ci`+2
, di`+2

) =


(| detA`|, | detA`−1|+ (r` − 1)| detA`|) , if ` ∈ 2Z + 1,

(| detA`−1|+ (r` − 1)| detA`|, | detA`−1|) , if j ∈ 2Z.

Giving that (−1)`+1 (| detA`−1|+ (r` − 1)|)m+ (−1)`| detA`|n = 1.
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In general, c and d satisfying cm+dn = 1 are far from unique. However, specifying them

as in Lemma 4.0.11, (which are equivalent to the coefficients s and t that Yamada defines

originally [59]) is crucial, since, as constructed:

Lemma 4.0.12 ( [59], Lemma 2.5). Suppose that A(p−q, q) = (m,n). If c and d are defined

as in Lemma 4.0.11, giving that cm+ dn = 1, then d− c = q.

Notice that if A(p− q, q) = (n,m), then we clearly have c−d = q instead. Lemma 4.0.12

allows us to simplify the quantity f−1
∗ Γ(ξ

J̃m,n
, f∗(s)) of Proposition 3.2.9. We only consider

the case when ` ∈ 2Z (giving that A(p − q, q) = (m,n)) since the case when ` ∈ 2Z + 1 is

symmetric by exchanging m↔ n and c↔ d.

Lemma 4.0.13. Suppose that A(p− q, q) = (m,n), and that cm+ dn = 1 so that d− c = q,

then for (t0, t1) ∈ Z/2Z× Z/2Z, we have

p

2

(
q2 +

1− t1
2

(
1 + q2

(
mn+

1 + (−1)ct0
2

p

)))
n =

pq

2

in Z/p2Z whenever p ∈ 2Z + 1 or when p ∈ 2Z and (t0, t1) = (1,−1).

Proof. Recall that m+ n = p and that qn = 1− cp. Thus, in Z/p2Z

p

2

(
q(1− cp) +

1− t1
2

(
n+m(1− cp)2 +

1 + (−1)ct0
2

q(1− cp)p
))

=
pq

2
+
p2

2

(
−cq +

1− t1
2

(
1− 2c+ pc2 +

1 + (−1)ct0
2

q

))
=
pq

2
+
p2

2

(
−cq +

1− t1
2

(
1 +

1 + (−1)ct0
2

q

))
.

If p ∈ 2Z + 1, then Z/p2Z lacks 2-torsion so that p2/2 = 0. Suppose that p ∈ 2Z and that
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(t0, t1) = (1,−1), then the above reduces to

pq

2
+
p2

2

(
−cq + 1 +

1 + (−1)c

2
q

)
=
pq

2

since in this case, q ∈ 2Z + 1 and the quantity −cq + 1 +
1+(−1)c

2 q is necessarily even.

The following result is used to independently verify that ∂Bp,q = L(p2, pq − 1). To that

end, we inductively build the linear plumbing of Figure 3.6 from the middle out. Furthermore,

we choose signs on the weights so that −s0 ends up on the left. Since, a posteriori, we have

[−s0, s1, . . . ,±r`, 1,∓r`, . . . ,−s1, s0] =
detQS`+1

detQ
S−
`

=
(−1)`r2

−1

(−1)` (1− r−1r0)
=
−p2

pq − 1

where we use that if [c1, . . . , cn] = −p/q then −p/q = detCn/ detCn−1 for the matrices Ci

defined in Lemma 1.1.2.

Lemma 4.0.14. Define {ri}`+2
i=−1 and {si}`+1

i=0 as in Definition 1.2.4, let Si be the 4-manifold

given by plumbing D2-bundles over S2 according to the weighted graph in Figure 4.1. Let

1(−
1)
` r `

(−
1)
`+

1 r `

(−
1)
`−

1 s `

(−
1)
` s `

(−
1)
`−
i+

1 s `+
2−
i

(−
1)
`−
i s `+

1−
i

(−
1)
`−
i s `+

2−
i

(−
1)
`+

1−
i s `+

1−
i

Figure 4.1: The 4-manifold Si.

S+
i be the 4-manifold obtained by plumbing an Euler class (−1)`−i−1s`−i disk bundle to the

Euler class (−1)`−is`+1−i disk bundle in Si. Let S−i be the 4-manifold obtained by plumbing

an Euler class (−1)`−is`−i disk bundle to the Euler class (−1)`+1−is`+1−i disk bundle in
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Si. Then the intersection forms of Si and S±i satisfy

detQSi = (−1)i+1r2
`−i, detQ

S+
i

= (−1)`
(
r`−i−1r`−i + (−1)`+i

)
,

detQ
S−i

= (−1)`
(

(−1)`+i − r`−i−1r`−i
)
.

Proof. Induct on i by noting that

detQ
S±i

= (−1)`−i−(1±1)/2s`−i detQSi − detQ
S∓i−1

,

detQSi+1
= (−1)`−i−1s`−i detQ

S−i
+ (−1)`−i+1s`−i detQ

S−i−1
+ detQSi−1

,

as well as the fact that, by definition, rk = rk+1sk+1 + rk+2.

Lemma 1.1.2 requires that we understand certain determinants arising from the intersec-

tion form of a given linear plumbing. We calculate those determinants here - they are used

to to measure the obstruction to a certain spinC-structures extending across Bp,q as well as

to express the generator, γ0, of H1(∂Am,n) in terms of µ0 ∈ H1(∂Bp,q).

Lemma 4.0.15. Let {ρi}`+2
i=−1 and {σi}`+1

i=0 be as defined in Definition 1.2.4, (associated to

n and m) then for each i ≤ `+ 1 we have

det



−ρ` 1

1 σ` 1

1
. . . 1

1 (−1)`+1−iσ`+1−i


= −

(
sin
(π

2
i
)

+ cos
(π

2
i
))

ρ`−i.

Proof. Induct on i, using that ρ`+1 = 1 and that ρ`−i = ρ`−i+1σ`−i+1 + ρ`−i+2.
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Lemma 4.0.16. Fix integers c0 ∈ [0, s0− 1], ci ∈ [0, si] for 1 ≤ i ≤ ` and c`+1 ∈ [0, r`− 1].

Then for each k < `+ 1 the following inequalities hold

1− ρ
`−2

⌊
k+1

2

⌋
+1
≤

k∑
i=0

(−1)iciρ`−i+1 ≤ −1 + ρ
`−
⌊
k
2

⌋,
−p < 1− ρ0 ≤ (−1)`+1

`+1∑
i=0

(−1)iciρ`−i+1 ≤ ρ−1 + 2ρ0 − 1 < 2p.

Consequently,
∑`+1
i=0(−1)iciρ`−i+1 = 0 if and only if each ci = 0.

Proof. First, assume the inequalities; note c0ρ`+1 = 0 if and only if c0 = 0. By way

of induction, suppose the only solution to
∑k
i=0(−1)iciρ`−i+1 = 0 is the trivial solution.

Any purported nontrivial solution to
∑k+1
i=0 (−1)iciρ`−i+1 = 0, has ck+1 > 0 by induction;

however,

ck+1ρ`−k > ρ`−k − 1 ≥ (−1)k
k∑
i=0

(−1)iciρ`−i+1,

contradicting
∑k+1
i=0 (−1)iciρ`−i+1 = 0. The lower bounds follow by noting that the sum

minimizes by taking ci’s maximal for odd indicies and zero otherwise: when k < `+ 1,

k∑
i=0

(−1)iciρ`−i+1 ≥

⌊
k+1

2

⌋∑
i=1

−c2i−1ρ`−2i+2

≥

⌊
k+1

2

⌋∑
i=1

−σ`−2i+2ρ`−2i+2

=

⌊
k+1

2

⌋∑
i=1

(ρ`−2i+3 − ρ`−2i+1) = ρ`+1 − ρ`−2
⌊
k+1

2

⌋
+1

here we use that si = σ`−i+1 and that ρi+1σi+1 = ρi− ρi+2. The arguments are similar for

the upper bounds and those when k = `+ 1.
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Corollary 4.0.17. For ci’s as in Lemma 4.0.16, there are exactly two solutions to

`+1∑
i=0

(−1)iciρ`−i+1 ≡ 0 mod p.

Proof. By Lemma 4.0.16,
∣∣∣∑`+1

i=0(−1)iciρ`−i+1

∣∣∣ < 2p, therefore, we only need to consider

solutions with
∑`+1
i=0(−1)iciρ`−i+1 ∈ {0,±p}. Notice, the last inequality in Lemma 4.0.16

implies that if there is a solution summing to ±p then there isn’t one summing to ∓p. Lemma

4.0.16 also gives that there is exactly one solution summing to zero. Note that choosing the

ci’s maximal gives

`+1∑
i=0

(−1)icmax
i ρ`−i+1 = s0 − 1 +

∑̀
i=1

(−1)isiρ`−i+1 + (−1)`+1(r` − 1)ρ0 = (−1)`+1p.

This solution is necessarily unique; whenever
∑`+1
i=0(−1)iciρ`−i+1 = (−1)`+1p, we have that

`+1∑
i=1

(−1)i(cmax
i − ci)ρ`−i+1 = 0,

forcing each ci = cmax
i . Therefore, there are exactly two solutions: cmin ≡ 0 and cmax.

Corollary 4.0.18. Let γ0, η±1 each be meridians indicated in Figure 4.2. Then, fixing

γ0η
(−1)`

η
(−1)`+1

1−σ
0
− 1

σ 0
+

1

σ 1 −σ
1

(−
1)
`−
i σ `

(−
1)
` ρ `

(−
1)
` σ `

(−
1)
`+

1 ρ `

Figure 4.2: Expressing γ0 in terms of a “preferred” generator, η−1, for the lens space ∂Am,n.
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orientations so all linking is non-negative, we have

−
(

sin
(π

2
`
)

+ cos
(π

2
`
))

m · η
(−1)`

= γ0 = −
(

sin
(π

2
`
)

+ cos
(π

2
`
))

n · η
(−1)`+1 .

Proof. This follows immediately from Lemma 1.1.2 and Lemma 4.0.15.
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Appendix

An Example

For the benefit of the reader, we work out the major arguments of Propositions 2.2.1,

3.1.1 and 3.1.6 on the rational balls B8,3 and A3,5. To begin, with note that for p = 8 and

q = 3 we find sequences {ri}`+1
i=−1 and {si}`i=0 as in Definition 1.2.4:

r−1 = 8, r0 = 3, r1 = 2, r2 = 1, s0 = 2, s1 = 1.

Therefore, ` = 1 in this example. According to Lemma 4.0.11, we can find A(p − q, q) =

A(5, 3) = (n,m) by constructing sequences {ρi}2i=−1 and {σ0, σ1} where σ0 = r` − 1 = 1,

σ1 = s1 = 1, ρ2 = 1, ρ1 = s0 = 2 so that:

m = ρ0 = ρ1σ1 + ρ2 = 3,

n = ρ−1 = ρ0σ0 + ρ1 = 5.

Theorem 1.2.1, as well as Corollary 1.2.3, shows that B8,3 ≈ A3,5. Figure A.1 illustrates

the necessary isotopies, defined in the proof of Proposition 2.2.1, to realize A3,5 as a Stein

domain. Figure A.2 illustrates the boundary diffeomorphism from ∂B8,3 to a linear plumbing.

Figure A.3 illustrates the boundary diffeomorphism from that linear plumbing to ∂A3,5.
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A3,5 15 −1

−1 −1

−1

i. ii.

iii. iv.

v.

Figure A.1: The Isotpies of Proposition 2.2.1: i. A3,5; ii. Slide the attaching circle K of the 2-
handle once under the 1-handle; iii. Drag K over the 1-handle once. The shaded ribbon now
represents the track of the isotopy needed to drag K over the 1-handle σ0+2 = 3 more times;
iv. Cancel the negative twist with positive twist at the ends of the shaded band; v. Pass to
two ball notation and put K in Legendrian position. Notice that tb(K) = 8 − 7 − 1 = 0.

This is the Stein structure (A3,5, J̃3,5).
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Figure A.2: The boundary diffeomorphisms of Proposition 3.1.1: i. B8,3; ii. Isotope the
attaching circle K by viewing K as a band of three strands traversing the 1-handle twice
(with two strands traversing a third time); iii. Surger the 1-handle and unwind the two full
twists by introducing a canceling pair. iv. Isotope the attaching circle of the 5-framed knot
K by viewing K as a band of two strands traversing the 1-handle once (with one strands
traversing an additional time); v. Again, surger the 1-handle and unwind the full twist
by introducing a canceling pair. Slide the (blue) −2 framed 2-handle under the 1-handle.
vi. Isotope the attaching circle of the rightmost 1-framed knot K; vii. Again, surger the
1-handle and unwind the two full twists by introducing a canceling pair. viii. Slide the −1
framed 2-handle under the 1-handle. ix. Surger the 1-handle and blow-down. This is the
linear plumbing of Corollary 3.1.3 - showing directly that ∂B8,3 ≈ L(64, 23).
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A3,5 15
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Figure A.3: The (inverse) boundary diffeomorphisms of Proposition 3.1.6: Working from
xi. - i.: xi. A3,5; x. Isotope the attaching circle K by first viewing the leftmost three
strands as winding around the 1-handle twice with two strands winding a third time; ix.
Surger the 1-handle and introduce a canceling pair of 1- and 2-handles to unwind the full
twist; viii. Slide the (red) 2-handle under the 1-handle; vii. Blow-up once; vi. Isotope the
6-framed 2-handle by viewing it as two strands passing over the 1-handle once (with one
strand passing over an additional time); v. Surger the 1-handle and unwind the full twist
through the introduction of a canceling pair of 1- and 2-handles; iv. Isotope the rightmost
2-framed 2-handle; iii. Surger and unwind the two full twists through the introduction of a
canceling pair; ii. Slide the (blue) −2 framed 2-handle over the 0-framed 2handle and slide
the large −1 framed 2-handle under the 1-handle; i. Canceling the 1-handle gives the linear
plumbing of Figure A.2.
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Math. Res. Lett., 12 (2005), pp. 701–712.

[50] O. Plamenevskaya and J. Van Horn-Morris, Planar open books, monodromy
factorizations and symplectic fillings, Geom. Topol., 14 (2010), pp. 2077–2101.

[51] L. P. Roberts, Rational blow-downs in Heegaard-Floer homology, Commun. Contemp.
Math., 10 (2008), pp. 491–522.

[52] D. Rolfsen, Knots and links, vol. 7 of Mathematics Lecture Series, Publish or Perish,
Inc., Houston, TX, 1990. Corrected reprint of the 1976 original.

81



[53] S. Schönenberger, Determining symplectic fillings from planar open books, J. Sym-
plectic Geom., 5 (2007), pp. 19–41.
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