JV . . 13.1.} . ..w . - mm“ m, fir... .w. ‘35. . 2. .. . . I. J. u 2 $4. ‘l vita: . .25..“«5 0n... . Manna-uzv‘i‘a .4 9.1....utii. "3...... . ( :5. Sit: ): it...» .7 H ltd..." .1. . far)... Gt. “3 v Iv \uu. , .1ka .w (5.... £1,110). ,. :31...» l J... I 4: . was? . .4 1.. :37 p n. . ..v‘!‘ f d . mm, .35 .11. (.1 .¢ . ggigfiyéidfififiififiww £5. .. .3.).... .w ..s...:.Im: I ..- tflgflwmm: m... . . . . 1. . , 2004 p 775‘6’2‘79 This is to certify that the thesis entitled A MODIFIED “SHIFT-AND-RATIO” METHOD FOR EXTRACTION OF THE EFFECTIVE CHANNEL LENGTH OF DEVICES CONTAINING HALO-IMPLANTS presented by Jorge Walter Argandofia has been accepted towards fulfillment of the requirements for the MS. degree in Electrical and Computer Engineering Major Professor's Signature dam 16; 200“! Date MSU is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/01 c-JCIRC/Datoouepss-sz AMl A MODIFIED “SHIFT-AND-RATIO" METHOD FOR EXTRACTION OF THE EFFECTIVE CHANNEL LENGTH OF DEVICES CONTAINING HALO-IMPLANTS BY Jorge Walter Argandofia A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Electrical and Computer Engineering 2004 AM( T length 0 This is c efiecfive the case method Of a dev the stan ABSTRACT A MODIFIED “SHIFT-AND-RATIO” METHOD FOR EXTRACTION OF THE EFFECTIVE CHANNEL LENGTH OF DEVICES CONTAINING HALO-IMPLANTS By Jorge Walter Argandofia The standard shift and ratio method for extracting the effective channel length of a device does not work properly with devices containing halo-implants. This is due to the fact that this standard method makes the assumption that the effective mobility is not dependent on the channel length of a device, which is not the case for devices containing halo-implants. The modified shift and ratio method proposed takes the effective mobility dependence on the channel length of a device into account, and shows potential for solving the issues that exist with the standard shift and ratio method for devices containing halo-implants. ACKNOWLEDGEMENTS I would like to take this opportunity to thank everyone that aided in the success of this study. First and foremost Dr. Donnie Reinhard is thanked for aiding me with all the work regarding this research. His immeasurable kindness and patience throughout the entire duration of the project helped make my graduate experience a truly enjoyable one. IBM and Mary Weybright are thanked for providing the wafers with test devices, without which none of this would have been possible, as well as providing us with information regarding the devices and spending the time to review our measurement characteristics. Thanks are also due to Dr. Timothy Hogan and Dr. Timothy Grotjohn for giving their time to be members of my committee and giving their personal thoughts on the research. Special thanks are extended to my family and friends for all their help and support. iii TABLE OF CONTENTS LIST OF TABLES ......................................................................................................... vi LIST OF FIGURES ....................................................................................................... vii KEY TO SYMBOLS ..................................................................................................... ix CHAPTER 1 ................................................................................................................... 1 INTRODUCTION .......................................................................................................... 1 1.1 Problem Statement ........................................................................................... l 1.2 Thesis Layout .................................................................................................. 2 CHAPTER 2 ................................................................................................................... 4 BACKGROUND ............................................................................................................ 4 2. 1 Introduction ..................................................................................................... 4 2.2 Extracting the Effective Channel Length .......................................................... 4 2.3 The Standard Shift and Ratio Method .............................................................. 6 2.4 Modified Shift and Ratio Method ................................................................... 11 2.5 SPICE Models ............................................................................................... 13 CHAPTER 3 ................................................................................................................. 14 EXPERIMENTAL METHODS ..................................................................................... 14 3. 1 Introduction ................................................................................................... 14 3.2 Devices .......................................................................................................... 14 3.3 Measurement System ..................................................................................... 19 3.3.1 Overview ............................................................................................... 19 3.3.2 Probes and Probing Station .................................................................... 20 3.3.3 HP-4145B Semiconductor Parameter Analyzer ...................................... 22 3.3.4 HPIB Card and Program ......................................................................... 25 3.4 Data Manipulation ......................................................................................... 26 CHAPTER 4 ................................................................................................................. 28 SHIFT AND RATIO RESULTS ................................................................................... 28 4. 1 Introduction ................................................................................................... 28 4.2 Non-Halo Devices ......................................................................................... 28 4.3 Halo Devices ................................................................................................. 32 CHAPTER 5 ................................................................................................................. 39 SPICE MODELING ...................................................................................................... 39 5.1 Introduction ................................................................................................... 39 5.2 Level 2 Models of Non-Halo Devices ............................................................ 39 5.3 BSIM3 Modeling ........................................................................................... 52 iv CHAPTER 6 ................................................................................................................. 54 CONCLUSION ............................................................................................................. 54 6. 1 Introduction ................................................................................................... 54 6.2 Summary of Results ....................................................................................... 54 6.3 Future Research ............................................................................................. 54 APPENDIX A ............................................................................................................... 58 GWBASIC PROGRAM ................................................................................................ 58 APPENDIX B ............................................................................................................... 65 PROGRAM DETAILS .................................................................................................. 65 APPENDIX C ............................................................................................................... 74 MEASUREMENT DATA ............................................................................................. 74 APPENDIX D ............................................................................................................... 90 DATA MANIPULATION IN EXCEL .......................................................................... 9O BIBLIOGRAPHY ......................................................................................................... 93 LIST OF TABLES Table l. Excerpt of I—V data used when applying the shift and ratio method ................. 29 Table 2. Shift and Ratio Data for Non-Halo Devices ..................................................... 74 Table 3. Shift and Ratio Data for Halo Devices with L=O.42um and L=8.4p.m .............. 79 Table 4. Shift and Ratio Data for Halo Devices with L=O.21p.m and L=8.4um .............. 84 vi LIST OF FIGURES Figure 1. Various channel length parameters [3] .............................................................. 5 Figure 2. Effective channel length vs. mask length for nMOSFET’s [3] .......................... 9 Figure 3. nMOS device with halo implants [6] .............................................................. 10 Figure 4. Picture of wafer provided by IBM .................................................................. 15 Figure 5. 2-Termina1 setup used to obtain I-V measurements ......................................... 16 Figure 6. Plot of Id vs. Vd = Vg using data from setup in Figure 5 ................................ 17 Figure 7. 3-Terminal setup used to obtain I-V data ........................................................ 17 Figure 8. Plot of Id vs. Vd using data from setup in Figure 7 ......................................... 18 Figure 9. Block diagram of equipment setup ................................................................. 20 Figure 10. A picture of the probing station used for I-V measurements .......................... 21 Figure 11. A close-up picture of the probed wafer ......................................................... 22 Figure 12. The HP-414SB Semiconductor Parameter Analyzer ...................................... 23 Figure 13. HP-4145B Source/Monitor Unit Simplified Circuit Diagram [7] .................. 24 Figure 14. Semi-log plot of S-function vs. Vg with Vd = 0.05V .................................... 29 Figure 15. Ratio plot for various 6 ‘shift’ values ............................................................ 31 Figure 16. Semi-log plot of S-function vs. Vg with Vd=0.05V ...................................... 33 Figure 17. Ratio plot for various 6 ‘shift’ values ............................................................ 34 Figure 18. Semi-log plot of S-function vs. Vg with Vd = 0.05V .................................... 35 Figure 19. Ratio plot for various 6 ‘shift’ values ............................................................ 36 Figure 20. Id vs. Vd = Vg for non-halo device, L = 8.4um ........................................... 41 Figure 21. Simulated and measured data using Figure 5 setup ....................................... 43 vii Figure 22. Simulated and measured data using Figure 5 setup ....................................... 44 Figure 23. Simulated and measured data using Figure 7 setup ....................................... 45 Figure 24. Id vs. Vd = Vg for non-halo device, L = 0.21pm .......................................... 47 Figure 25. Simulated and measured data using Figure 5 setup ....................................... 48 Figure 26. Id vs. Vd = Vg for halo device, L = 8.4um ...................................................... 49 Figure 27. Id vs. Vd = V8 for halo device, L = 0.42um .................................................... 50 Figure 28. Id vs. Vd = Vg for halo device, L = 0.2mm .................................................... 51 Figure 29. Threshold voltage vs. channel length for various devices [10] ...................... 52 viii I-eff I-mask I-gate l-met AL 8ox 8S tox KEY TO SYMBOLS Effective channel length Mask length Gate length Metallurgical length Delta L Drain-to-source current Drain-to-source voltage Effective mobility Oxide Capacitance Width Oxide dielectric Semiconductor dielectric Oxide thickness Gate voltage, Gate-to-Source voltage Threshold voltage ix de Rtot Rch S(Vg) r(6,Vg) C MOSFET nMOS D G S SB SMU VFB NA Source drain resistance Total resistance Channel Resistance S function Ratio Mobility change Metal Oxide Semiconductor Field Effect Transistor N-channel Metal Oxide Semiconductor Drain Gate Source Substrate Source/Monitor Unit Channel length modulation Flat Band voltage Boltzmann’s constant Acceptor concentration ¢F ni Vbs HPIB Temperature Fermi potential Intrinsic carrier concentration Bulk-to-source voltage Charge of an electron Hewlett Packard Interface Board xi CHAPTER 1 INTRODUCTION 1.1 Problem Statement Various methods exist to determine the effective channel length of a MOSFET. The effective channel length of a device is of importance to industry for monitoring and modeling purposes. However, with technology changing, current methods can no longer properly extract the effective channel length for certain MOSFET types. Thus new methods are needed in order to determine the effective channel length of these newer devices. The new proposed method described in this paper will be of a modified version of the standard “shift and ratio” method, which is a method that is commonly used due to its accuracy and consistency for extracting the effective channel length. However, this is not the case for devices that contain halo implants. The effective mobility in devices that contain halo implants is different between short and long channel length devices, a difference that normally does not exist when dealing with typical devices. This difference in effective mobility seems to be the main predicament for the shift and ratio method. The proposed shift and ratio method takes this difference into account. 1.2 Thesis Layout A brief background is given on the importance of extracting the effective channel length. The shift and ratio method is described as well as the proposed modified shift and ratio method. The shift and ratio method is thoroughly described with a series of equations that are used in the extraction of the effective channel length. Similarly, the proposed modified shift and ratio method is described with the same set of equations, but taking into account the effects of halo implants, particularly in that the effective mobility is dependent on the channel length of a device. The importance of the extracted effective channel length for modeling purposes is also noted. The types of devices as well as the various setups used to obtain l-V measurements are also described. All the main components and their respective roles to obtain measurements are also described in detail. The results for both the non-halo as well as the halo devices are discussed. The shift and ratio method is first applied to the non-halo devices. The manipulated data is plotted to clearly show how the values needed to apply the shift and ratio method are obtained. For the halo implants we once again apply the shift and ratio method and observe the unphysical results as described by van Meer [1]. The proposed modified shift and ratio method is then applied to these halo devices. The results that are obtained are analyzed and discussed. The modeling work done on the devices is described in detail. The methods used for extraction of parameters for the SPICE models are described. The inability to properly model the short channel length devices using level 2 parameters is discussed, as well as the need of higher-level models. The GWBASIC program used to efficiently obtain l-V measurements is included in Appendix A. Appendix B describes the program coding in detail, such that (if necessary) changes can be made to accommodate other measurements. All the data used for applying the shift and ratio method as well as the modified shift and ratio method is attached in Appendix C. Finally an explanation of how all the calculated values are obtained that are used for applying both methods in the extraction of the effective channel lengths are in Appendix D. Also included are the specific equations used in the Excel files to calculate the values needed. CHAPTER 2 BACKGROUND 2.1 Introduction This chapter provides an overview of material important to this thesis. Section 2.2 notes the importance of knowing Leff, specifically for short channel devices where a small inexactness can make a significant difference in performance. Section 2.3 explains the standard shift and ratio method, which is widely used and considered one of the most accurate and consistent techniques for extracting the effective channel length of a device. Section 2.4 explains a problem that exists with the shift and ratio method when dealing with devices containing halo implants and also gives details of the proposed modified shift and ratio method to take care of devices with halo implants. Modeling with SPICE is discussed in Section 2.5. 2.2 Extracting the Effective Channel Length By design, physical features of a device are prescribed. However, the actual value of these features change as the devices are processed. Particularly, the effective channel length of a MOSFET is a critical parameter. Engineers use it to monitor lithography and etching during process development and manufacturing, and designers who model the l-V characteristics of a device need to know the effective channel length of the device they are modeling. [2] Various terms exist to describe the length of a device, as can be seen in Figure 1 [3]- .— .— ‘— .— «— .— g— .__. §‘— Lmask -—"§ E‘— Lgate ——'>§ | Gate | I I<:_°"'d° Figure 1. Various channel length parameters [3] Lmask is defined as the design gate length on the etch mask. Through lithography and etching processes, Lmask is reproduced on to the wafer, and is defined as Lgate. which may be longer or shorter than Lmask. The distance between the metallurgical junctions of the source and drain is known as Lmet. The effective channel length, Leff, isn't strictly a physical parameter and actually is defined through electrical characteristics of the device. Leff is defined as: Lefl " Lmask - AL (1) where Lmask is an initially designed known value, with some changes known as AL. This AL which is of the order of tens of nanometers, does not really have that much of an effect with large channel length devices. However, with sub-micron channel length devices this small AL can significantly affect the manner in which the device works. Different methods exist in order to “accurately” calculate the effective channel length of a device. The shift and ratio method has become a preferred means that is commonly used. It produces accurate estimates of the effective channel length for traditional devices, but has issues with certain newer devices. Specifically the shift and ratio method has problems with devices containing halo implants. A new proposed method based on the shift and ratio method will also be described for devices containing halo implants. 2.3 The Standard Shift and Ratio Method The standard shift and ratio method is considered one of the most accurate techniques to calculate the effective channel length. Similar to many methods, the shift and ratio method is primarily based on the device current in the linear region [4]. W V " Vt - Vd Ids =#Cox[ L I g 2 S Vds (2) 617 where Ids is the source drain current. Vds is the source drain voltage. W is the width of the device. Leff is the effective channel length of the device. it is the effective mobility. Vt is the threshold voltage of the device. V9 is the applied gate voltage. Cox is the gate oxide capacitance per unit area. As shown by Taur [3], this equation can be modified to include the parasitic source-drain resistance (de). V Le TQ'Rtot'de'l’Rch‘de‘I Vfijv ‘Vd (3) ds ”Coxw( g g s) which can be generalized to the following form which the shift and ratio method is based on. Rt0t(Vg) " de + Leff f (Vg ‘ Vt) (4) where f is a function of the gate overdrive, V9 - V], for all devices. The shift and ratio method continues by taking the derivative of the above equation (4) with respect to V9. This is defined as the S-function 3(V ).thot-L m (5) 8 avg eff avg where de and Leff are assumed to be constant with respect to V9. Using the shift and ratio method requires the use of two devices: one with a long channel and another with a short channel. It is assumed that both devices have the same mobility value such that 6f/6Vg is the same for both devices for a given Vg - Vt. However, the threshold voltage of a short channel device is normally not equal to the threshold of a long channel device. Therefore, in order to solve for the effective channel length of both devices, the S-function of the short channel device is shifted by some 6 along the V9 axis. The ratio between the two is then taken . 50(V8) (6) r(6,Vg) Si(Vg _ a) where the superscript ‘i’ and ‘0' denotes the short and long channel device respectively. The quantity 6 is equal to the threshold voltage difference between the devices (Vto-Vti). The ratio equation (6) then reduces to 0 0 L _ r= f’fl =- Linask AL (7) l l Lefl Lmask - AL Since the mask length of both devices is known, AL can be solved for. Before AL can be determined, however, 6 must be found experimentally. This is done by plotting r(6,Vg) as a function of V9 for various 6 values. The 6 that produces a constant r is determined to be VtO-Vti. Thus, AL is determined by “shifting” V9 by a 6 and documenting the “ratio” of two device S-functions. This method seems to work fine with most types of devices and the results using this method on typical devices is shown by Taur in Figure 2. Shift and Ratio extracted effective channel length vs. mask length for NMOSFET's 0.5 0.4 4 A 0.3 « E 3 I: 3 0.2 . 0.1 4 0 . s . . . . . . . 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Lmask (um) Figure 2. Effective channel length vs. mask length for nMOSFET’s [3] As devices become smaller, halo implants have been included in the fabrication process in order to improve performance. This causes the effective mobility to vary with L, which in turn does not allow one to use the shift and ratio method. One of its primary assumptions is that the effective mobility is the same for both short and long channel devices. To improve the performance of deep submicron devices, ion implantation is commonly used. Ion implantation is the process of introducing dopants into the surfaC [0 MeV er at which tl implantati containing effective n It Wi increases I e”Ough.th mask IEngt meth0d)_ the surface layer of a solid substrate by bombarding the solid with ions in the keV to MeV energy range [5]. The penetration of the dopant is dependent on the rate at which the ion loses its energy. The properties of a device change when ion implantations are introduced. In our particular case, we are dealing with devices containing halo implants (Figure 3) and we note the changes it creates in the effective mobility. \l/ l l°*‘°° l/ I...) C—"ul VHalo p-substrate Figure 3. nMOS device with halo implants [6] It was shown by van Meer [1] that the extracted effective channel length increases for devices with halo implants. When the halo implant doping is high enough, the extracted effective channel length actually becomes greater than the mask length (i.e. negative AL values are obtained using the shift and ratio method). 10 2.4 Modified Shift and Ratio Method The shift and ratio method works well when extracting Leff for most devices, but has problems when dealing with devices containing halo implants. In a previous study for example, the method produced negative AL values and it was concluded that the method produced unphysical results. it is a hypothesis of this thesis that the problem may be due to an assumption made by this method, that the effective mobility of the device is the same for both long and short channel devices, which is not the case for devices with halo implants. Short channel devices with halo implants have a lower effective mobility due to a higher vertical electric field and increased impurity scattering. The new proposed method assumes that the effective mobility of the short channel device is a percentage (less than 100%) of the effective mobility of the larger device. ”short (Vg " Vt) = Clulong (Vg ‘ Vt) (8) where ‘C’ is less than 1. Similar to the shift and ratio method, this modified method also assumes that de is constant with respect to V9. The proposed method follows a similar series of steps as the shift and ratio method. The 8- function for the long channel device is: 0 0 @222 0 deg-Vt) (9) 5 (v8). =L dVg elf dVg while for the short channel device: dRiot _ Leff dflvg ’ Vt! ) (10) Si(V )- 8 dVg C dVg 11 Note that the ‘C’ term is the previous constant mentioned that relates the effective mobilities of the long and short channel devices. As previously done, the ratio between the two devices is taken, where 6 again is equal to the threshold voltage difference between the devices (VtO'Vti). The ratio equation now reduces to 0 0 L L -AL magi-C mask (11) l Leff Lmask-AL An average constant value of r can be extracted by plotting r vs. V9. The mask length values are known, but two unknowns exist, C and AL. Let us consider that C = 0.7 with 0 Lmask T 5w" Li = 200nm mask ALO =- ALi - SOnm Then the value of r using equation 11 would be 23.1. If we were to assume C = 1 which is what is done by the shift and ratio method, with the same two devices previously described, and a measured r value of 23.1, we would calculate AL = - 17nm using equation 7. The exact percent change in effective mobility between the long and short channel device is unknown. Thus the proposed method requires measurements for three devices: one long channel device and two short channel devices with different L values. One then makes the assumption that both short channel devices approximately have the same effective mobility. Then for the second 12 short channel device the ratio equation is. 0 0 L - Mei-flask AL (12> J J _ Lefi Lmask AL where ‘j’ denotes the other short channel device. Now with two equations and two unknowns, one can solve for both C and AL. This proposed method would serve to “more accurately’ estimate the effective channel length of devices containing halo implants. 2.5 SPICE Models The channel length is a primary parameter in SPICE models; small variations in the channel length device can significantly affect its performance, especially when dealing with short channel devices. When creating large circuit models, small inaccuracies that exist in a single device can multiply to create erroneous results. These days with complex devices containing halo implants, high level (BSIM3) SPICE models are necessary in order to accurately simulate them. Obtaining an accurate estimate of the effective channel length can be very useful to engineers creating circuit models. Specific SPICE related issues are discussed further in Chapter 5. 13 CHAPTER 3 EXPERIMENTAL METHODS 3.1 Introduction Chapter 3 describes everything related to obtaining and processing the data needed for this project. Specifically section 3.2 explains the setup of the equipment and goes further into detail by explaining the role of all the equipment pertinent to data extraction. Section 3.3 reviews the various methods used when manipulating data to perform the shift and ratio method as well as the new modified method. 3.2 Devices International Business Machines (IBM) provided eight-inch diameter wafers containing test devices. From these wafers, two particular types of n- channel silicon MOSFET’s were used for this project, devices containing halo- implants and other devices that do not contain halo-implants. First measurements were made on the devices that do not contain the halo-implants, to demonstrate the basic method described by Taur [3] using the shift and ratio method with our experimental setup. As mentioned before the shift and ratio method requires measurements to be made for two devices, a long channel 14 device and a short channel device. The long channel device had gate dimensions of W = 8.4um and L = 8.41m. The short channel device had gate dimensions W = 8.4pm and L = 0.21pm. Note the width of both devices is the same. Figure 4. Picture of wafer provided by IBM For each device, two types of l-V measurements were made. First l-V data was obtained using the setup pictured below in Figure 5. 15 Figure 5. 2-Terminal setup used to obtain l-V measurements In this setup, the drain and gate of the device are connected to the same voltage source and the substrate and source of the device are grounded. Plotting the drain current vs. the voltage allows one to extract some important parameters for the SPICE models, which will be further explained in Chapter 5. Representative data for this device measurement using the setup in Figure 5 is shown in Figure 6. 16 'U H Id vs. Vd = Vg plot for L = 8.4um Non-halo device 1.20E-04 f 1.005-04 / 8.00E-05 / 6.00E-05 / [+L = 8.40m] 4.00E'05 / 2.00E-05 0.00E+00 ”J . f 0 0.5 1 1.5 2 2.5 Vd = Vg Figure 6. Plot of ld vs. Vd = Vg using data from setup in Figure 5 Figure 7. 3-Terminal setup used to obtain l-V data Secondly, measurements were made using the following setup. Here the 17 source and the substrate are grounded. The gate of the device is connected to a step function voltage source. The drain of the device is connected to a sweeping function voltage source. Typically the drain current is plotted vs. the drain voltage for various gate voltages, providing a family of curves. This setup provides data that is used for the shift and ratio method, where the drain voltage is kept small (such that the device stays within the linear region) for various gate voltages. This data is also to be used for comparison with the created SPICE models, to observe how well they compare with the actual data from the devices. Representative data for this device measurement using the setup in Figure 7 is shown in Figure 8. Id vs Vd for L = 8.4um Non-halo device 1.205-04 1.00E‘04 / 8.00E-OS / - Vg = 0.5V 6.005-05 +Vg = 1.0V 13” -ar-Vg = 1.5V 4.00E-05 Vr 2.005-05 +Vg = 2.0V 0.00E+00 Id AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ............... o 0.5 1 1.5 2 2.5 Vd Figure 8. Plot of Id vs. Vd using data from setup in Figure 7 18 Both of the previous two measurements setups are also used for the devices containing halo-implants, but l-V measurements were measured for three devices. Two of them have the same gate dimensions as the devices not containing halo-implants. The third device has dimensions of W = 8.4um and L = 0.42pm, which is the other short channel device that is assumed to have approximately the same effective mobility as the device with L = 0.21pm. The purpose of using three devices is to implement the modified shift and ratio method describe in Section 2.4 3.3 Measurement System 3.3.1 Overview The main components of our setup to obtain l-V measurements, is shown below in Figure 9, in the form of a simplified block diagram. A brief summary of the main components and their respective roles is also discussed. The probes along with the shielded probing station provide protection for the data from outside noise. The HP-414SB is the equipment used to make the I-V measurements. The HPIB card and computer program are used to control the HP-414SB remotely, as well as simplify the setup procedure, and allow for efficient collection of the data. 19 Computer with HPIB card HP 108336 Cable HP-4145B Semiconductor Parameter Analyzer Shielded Coaxial Cables for each —> SMU channel Probe station with probes Figure 9. Block diagram of equipment setup 3.3.2 Probes and Probing Station The wafer used to obtain l-V measurements was placed within a shielded probing station. The Signatone 8-1160 High Frequency Probing System is a general-purpose analytical probe station designed for probing various geometries from 10 mils to 1 micron. It is equipped with a Signatone QuieTemp DC Hot Chuck System model S-1060. The system is capable of conducting measurements in a temperature range from room temperature to 300°C. However, for this study room temperature was used. A set of four multipurpose, high speed, passive, model 10 GGB picoprobes are used with this probing station. The range of operation for those 20 specific picoprobes is dc to 3.5Ghz. Although only do was used here, the probe construction is of advantage for low noise measurement. The probes used have shielded coaxial connections and gold plated tips. The whole system is shielded with a Signatone Light-Tight box model PSDB-1160 to protect the measurements from any noise signals (photoconductive) that may disturb the accuracy of the output measurements. Additionally, electromagnetic shielding was used. Figure 10 shows the probing station and Figure 11 shows a close-up of the probed wafer. Figure 10. A picture of the probing station used for I-V measurements 21 Figure 11. A close-up picture of the probed wafer Furthermore shielded coaxial cables were used to connect each SMU channel from the probe station to the HP-41458. The shielding from the probe to the HP- 4145B helps in keeping the l-V data from being corrupted by other nearby equipment operating. 3.3.3 HP-41458 Semiconductor Parameter Analyzer The HP-414SB Semiconductor Parameter Analyzer and later variations on this model, represent a popular piece of equipment used to obtain l-V data. It is equipped with four programmable Source/Monitor units (SMU's). Each SMU can be set up to function as a voltage source/monitor, current source/monitor, or 22 Figure 12. The HP-41458 Semiconductor Parameter Analyzer common source (ground). A simplified circuit diagram of an SMU is illustrated in Figure 13. 23 Voltage Current Monitor Source - A + V Common Source 0 \mdqsmu out Common Current Source TI - + Figure 13. HP-414SB Source/Monitor Unit Simplified Circuit Diagram [7] The particular model of the HP-4145B we were dealing with used its proprietary operating system that was not compatible with Windows/DOS. Therefore data could not be simply transferred using a diskette. Also setting up the HP-41458 to take measurements is not very simple and takes a bit of time, since large amounts of data was needed. Thus to solve these two issues, a computer program using GWBASIC was created to setup and transfer measured data from the HP-4145B. Another important thing to note about the HP-4145B is that it should be kept on for a good amount of time (+1 hour) before taking any measurements. It was noticed that when the HP-414SB was turned on and then repeated l-V measurements were made on a diode, the data was not consistent. When the 24 HP-41458 was left on overnight and then measurements were made that data was consistent in its repeatability. 3.3.4 HPIB Card and Program The Hewlett Packard Interface Bus (HPIB) card is essentially used for communication with various instruments and particularly in this case to communicate with the HP-414SB. The HPIB card is what allows us to ‘talk' and ‘Iisten’ to the HP-414SB using a computer. What is meant by ‘talking’ is the computer sends information to the HP-4145B, for example how to set up the equipment, how to display the measured data and when to begin to take measurements. ‘Listening’ primarily refers to the transferring of data from the HP-414SB to the computer. Details for how to exactly ‘talk’ and ‘listen‘ to the HP- 41458 are found in Appendix B. The GWBASIC program running under DOS that was written to remotely control the HP-4145B was an essential part of the project to obtain large amounts of l-V data. The program itself is attached as Appendix A, as well as a detailed summary of the program used attached in Appendix B. The program was not completely perfected. It had certain issues that were not resolved due to time restrictions, but still was good enough for extracting the needed data. One of the issues that could not be resolved was the ‘random crashing” of the program. The program would stop at random times and about 1 out of every 10 measurements crashed. Sometimes it would crash when setting up the HP- 41458 and other times when transferring the data from the HP-414SB to the 25 computer. Due to the crashing randomness and time constraints the problem was not looked into with great detail nor resolved. A computer with a better processor and more memory was used but showed no improvement. Even with this problem, using the program was much more efficient that not using it. Another issue that existed was specifically for setting up the stepping function. It was found that the amount of steps per measurement could only be 30 or less. When a number of steps value larger than 30 was entered the HP- 41458 would set the number of steps to 5. While this little annoyance was not resolved it was fine due to the fact the larger the number of data points the program needed to transfer, the more likely chance it would crash. 3.4 Data Manipulation The drain current data required for the shift and ratio method as well as the modified shift and ratio method contains noise even with all the shielding used. Thus a ‘running average’ was used to ‘average out’ random noise in the data. This was done for each gate voltage by adding to its S-function value the S-function value of two voltage steps above and two voltage steps below that particular voltage and then dividing by five to obtain the averaged S-function value. For the shift and ratio method the derivative is needed of the total resistance with respect to the drain voltage to obtain the S-function value for a particular gate voltage. The derivative for a particular voltage was obtained numerically by determining the slope of a line connecting a one data point above 26 and one below this particular point. Excel was used for all data manipulation, i.e. obtaining the running averages, the slopes, and the r values as a function of 6 (see Section 2.3). 27 CHAPTER 4 SHIFT AND RATIO RESULTS 4.1 Introduction Chapter 4 reviews the shift and ratio results obtained in this project. Section 4.2 reviews the results for devices that do not contain halo implants. Using the shift and ratio method as described in Taur’s publication [3] we attempt to find the effective channel length of these particular devices given to us by IBM. Section 4.3 describes the results obtained using both the shift and ratio method and the modified shift and ratio method on devices containing halo implants. 4.2 Non-Halo Devices Once all the necessary l-V data needed is obtained as described in Section 3.2 the data was placed into an Excel file. The r values and the S- functions for both long and short channel devices are calculated for each gate 28 Table 1. Excerpt of l-V data used when applying the shift and ratio method Vd 0.05 0.05 0.05 0.05 0.05 0.05 0.05 V9 0.80 0.81 0.82 0.83 0.84 0.85 0.86 L = .21 Id 2.86E-05 3.14E-05 3.42E-05 3.72E-05 4.02E-05 4.34E—05 4.65E-05 L = 8.4 Id 6.90E-07 7.60E-07 8.31 E-07 9.05E-07 9.83E-07 1.07E-06 1 .1 5E-06 L = .21 Rd 1.75E+03 1.59E+03 1.46E+03 1.34E+03 1.24E+03 1 .1 5E+03 1.07E+03 L = 8.4 Rd 7.25E+04 6.58E+04 6.02E-l-04 5.52E+04 5.09E+04 4.69E+04 4.35E+04 L = .21 Sfunc 1 .67E+04 1 .43E+04 1 .25E+04 1 .08E+04 9.54E+03 8.51 E+03 7.42E+03 L = 8.4 Sfunc 7.28E+05 6.17E+05 5.30E+05 4.64E+05 4.16E+05 3.69E+05 3.18E+05 voltage as described in Section 2.3 and as illustrated in Table 1. Once all the 8- functions are calculated, they are plotted as can be seen in Figure 14 below. For specific information on the methods used to calculate the S-function as well as the ratio r for different 6 shifts refer to Appendix D. 1.00E+09 S-function vs. Vg plot with Vd = 0.05V Non-Halo device 1.00E+08 1.00E+07 1.00E+06 I: g 1.ooe+os c 3 1.005+04 d1 1.00E+02 1.00E+03 «e +L=0.21u +L=8.4u 1.00E+01 1.00E+00 0.2 0.4 0.6 0.8 VII 1.2 1.4 1.6 Figure 14. Semi-log plot of S-function vs. V9 with Vd = 0.05V 29 The short channel device S-function data Si is then shifted by 6 values. Next the ratio between the S-function of the long channel device 80 over the S- function of the short channel device for different 6 shifts in the short channel device is calculated and plotted. For example, to shift Vt for the smaller device, Vti, by -0.01 volts relative to the large device, such that 6=Vt0-Vti =0.01volts (13) we plot using Excel SO(N) and Si(N-1) vs. Vg (N). For each shift of ‘A’ rows, the ratio of S-functions, = fRN) r . SRN+A) (14) is calculated and plotted. Detailed discussion of the spreadsheet manipulation is in Appendix D. The results can be observed in Figure 15. 30 Plot of r vs. Vg for Vd=0.05V Non-Halo device 6.00E+01 5.50E+01 \ \. 5.00E+01 - 'fi w‘. j. 'K// "‘% » no a shift +6 shift -0.01 4.505+01 ~ -—~»—.————— W . ’ ' ‘ +asma+0.01 - . W +ashirt-o.02 4.00E+01 3.SOE+01 ratio :- 3.00E+01 . . - 4 , 0.7 0.8 0.9 1 1.1 1.2 1.3 V9 Figure 15. Ratio plot for various 6 ‘shlft’ values The ratio plotted in Figure 15 shows a positive slope for a 6 shift of +0.01V, a primarily positive slope for no shift, and a primarily negative slope for a 6 shift of -0.01V. The data shows more experimental variation then would be ideally desired. However, it was estimated from this data that a 6 shift of -0.005V gives the closest to zero slope, and that the ratio value for this shift is approximately 45. Since a ratio ‘r’ value of 45 does not equal the geometric mask ratio of 40, the shift and ratio method indicates a non-zero AL. The calculations are as follows. Limask =0.21um 31 0 Lmask = 8.41.012 r a 45 which is obtained from Figure 15 Using these values along with equation 7 we can calculate a AL value using the shift and ratio method a described in Section 2.3. 45 - (0.21pm - AL) - (8.41.071 - AL) => 44 - AL - 45 - 0.21m — 8.4m => AL - 0.0255um - 25.5nm (15) The AL value obtained is a reasonable result. In comparison, Taur obtained a value of about 60nm [3]. A difference is not unexpected since the devices used by Taur had a traditional source and drain, while the devices used in this project are devices with lightly doped drains (LDDs). This is known to cause variations when solving for AL using the shift and ratio method [3]. 4.3 Halo Devices After the data for devices containing the halo implants was obtained, the data was placed into an Excel file and its manipulated as described in Section 3.4 as well as Appendix D. First the S-functions for the devices with gate length L = 0.21pm and L = 8.411m are plotted, as can be seen in Figure 16 below. 32 S-function vs Vg plot for Vd=0.05V Halo device 10000000 1000000 \ 100000 \ 10000 + L=0.21u + L=8.4u 1000 \\ 100 s-function 10 0.4 0.6 0.8 1 1.2 1.4 1.6 V9 Figure 16. Semi-log plot of S-function vs. V9 with Vd=0.05V The short channel device S-function data is then shifted to the left in order to find 6 as described in Section 2.4. Figure 17 shows the plot of r(6,Vg) vs. V9 for different 6 values. 33 50 Ratio r vs. Vg plot for Vd=0.05V Halo device 45 4o ratio r 35 30 25 0.7 0.8 0.9 1 1.1 1.2 V9 1.3 +6 shift -0.10 4 a shift -0.12 +6 shift -0.14 —o— a shift -0.16 +3 shift -0.18 Figure 17. Ratio plot for various 6 ‘shift’ values The ratio plotted in Figure 17 shows a positive slope for a 6 of -0.12 and a primary negative slope for a shift of -0.16. From the plotted data it was estimated that a 6 of 014 gives the closest to zero slope, and that the ratio value for this shift is approximately 37. Since a ratio ‘r’ value of 37 does not equal the geometric mask ratio of 40, the shift and ratio method once again indicates a non-zero AL. Using the above information, we apply the shift and ratio method on these devices containing halo implants. Using equation 7 as well as the following values listed below a AL value is calculated. 1' Lmask = 0.21pm 34 0 ALUUTCIS1L '313.4111172 r a 37 which is obtained from Figure 17 37' (0.21pm -AL) - (8.4m -AL) => (16) 36' AL - 37:021er - 8.4m =9 AL - -0.0175um - —17.5nm The negative AL value that is obtained appears unphysical, however it actually agrees with van Meer’s publication [1] on the issues that exist when applying the shift and ratio method on devices containing halo implants. A negative AL from the shift and ratio is a motivation for the modified shift and ratio method. In order to apply the modified shift and ratio method a second short channel device is required. The S-functions for the devices with gate length L = 0.42pm and L = 8.4um are similarly plotted, as can be seen in Figure 18 below. S-function vs. Vg plot for Vd=0.05V Halo device 10000000 1000000 100000 -+- L=0.42u +L=8.4u S-function 10000 1000 0.4 0.6 0.8 1 1.2 1.4 1.6 V9 Figure 18. Semi-log plot of S-function vs. V9 with Vd = 0.05V 35 The short channel device S-function data is then shifted to the left in order to find 6 as described in Section 2.4. Figure 19 shows the plot of r(6,Vg) vs. V9 for different 6 values. Ratio r vs. Vg plot for Vd=0.05V Halo device 22 ., \ .. V3 [Em/My U 19 - +6 shift -0.08V 6 shift -0.10V ,8 +6 shift -0.12V ,. ,fi / 1“ ratio r 15 0.7 0.8 0.9 1 1.1 1.2 1.3 V0 Figure 19. Ratio plot for various 6 ‘shift’ values The ratio plotted in Figure 19 shows a primarily positive slope for a 6 of .- 0.08 and a primarily negative slope for a shift of -0.12. From the plotted data it was estimated that a 6 of -0.10 gives the closest to zero slope, and that the ratio value for this shift is approximately 18.5. Since a ratio r value of 18.5 does not equal the geometric mask ratio of 20, the shift and ratio method again indicates a non-zero AL. Using the above information, we apply the shift and ratio method on this other pair of devices containing halo implants. Using equation 7 as well 36 as the following values listed below a AL value is calculated. LJ' 0 _ Lmask - 8.411": r 518.5 which is obtained from Figure 19 18.5 ' (0.42pm - AL) -(8.4).1m - AL) = 17.5 - AL -18.5-0.42um - 8.4m = AL = -0.036um a —36nm (17) This negative AL value that is obtain once again agrees with van Meer’s publication [1] on the issues that exist when applying the shift and ratio method on devices containing halo implants. Observing that the application of the shift and ratio method to the two short channel devices along with the long channel device results in unphysical results, the modified shift and ratio method is now applied. For 0.21 pm and 8.4um channel length devices: Li mask =0.21um 0 _ Lmask — 8.41mi r e 37 this value is obtained from Figure 17 For 0.42pm and 8.4um channel length devices: LJ' mask =- 0.42pm 0 Lmask = 8.411111 r 218.5 this value is obtained from Figure 19 37 r»' 3017i; Using these values as well as equations 11 and 12, we obtain two equations and two unknowns: a C- (8.4um—AL) 37 (0.21pm-AL) (18) = .(8.4um—AL) 18.5 C (“MAI“) (19) Dividing equation 18 by 19 reduces the two equations with two unknowns to a single equation that now can be solved for AL. 2 0 _ (0.42pm — AL) ' (0.21m — AL) =>AL=O (20) With a AL = 0, C can now be solved for and yields: C = 0.925. The results are consistent with the initial hypothesis of the long and short channel length devices having a different effective mobility. The results indicate that the modified shift and ratio method does offer the potential to resolve the issue that existed of obtaining negative AL values when applying the standard shift and ratio method. A detailed error analysis of the experimental results has not been performed. However, examination of Figures 17 and 19 indicate an approximate uncertainty in ratio r values of :2%. With this uncertainty one could conservatively consider that our r values could range from 36 to 38 for the L = 0.21mm device and from 18 to 19 for the L = 0.42mm device. Using equations 18 and 19 we find the resulting AL can range from —25nm to +21nm. Note that the small amount of error in the ratio r value can produce significant variation in AL results. A larger amount of measurements can be taken and averaged to reduce the amount of uncertainty that exists. 38 CHAPTER 5 SPICE MODELING 5.1 Introduction The SPICE modeling portion of this work is of a preliminary nature. In this investigation, the process of creating a device model began with a low level SPICE model, level 2, due to its relative simplicity when compared to higher-level models. Level 2 models do not include enough parameters to take into account various effects for short channel devices, however they can produce a useful basis for more advanced models. Section 5.2 discusses our attempts to create level 2 models for the non-halo devices, and the issues that prevent us from creating a reasonable model for the short channel devices at this model level. Furthermore, some key parameters for the halo devices are also extracted and discussed. Section 5.3 explains the need of a higher-level model to properly design a model for the non-halo and halo devices. 5.2 Level 2 Models of Non-Halo Devices In level 2, the DC l-V characteristics are primarily modeled by the equation shown below [8]. 39 F“ U. .t~";. I ' V [Vgs’VFB‘2'|¢Fl"% 'Vds eoxf W 1 Idsgu- )( )4 3 3 > (21) tax Lefir l-U'Vds 2 - ” 1 -§.x[vd_, -Vbs +2°|¢FI]2 -(Vbs)+2'|¢F|2 L In this expression, kT N |¢Fl-—ln(—A-). (22) q "i ’2 . . . N X = as q A ' 10x 1 (23) 50x and 0 accounts for channel length modulation. Thus, for a given semiconductor and temperature, one provides geometric information (W, L, 10x) and processing parameters (NA, VFB or Vt). In order to extract parameters to create a level 2 SPICE model for the non-halo devices we first obtain l-V measurement data. The data is obtained using the 2-terminal measurement setup described in Section 3.2 and seen in Figure 5. First for the long channel length device we plot the square root of the drain current (Id) vs. its respective gate/drain voltage (Vd = V9). The results are plotted in Figure 20. A straight line along the curve is then drawn to approximately find where the line intersects the Vd = V9 axis. For the long channel non-halo device, the line intersects at approximately 0.6775 volts; this value is defined as the threshold voltage for this particular device. 40 sqrt(Id) vs. Vd=Vg plot for L = 8.41.1 Non-halo device 1.205-02 1.005-02 8.ooe-03~—— --——~ _ —. —_—--__._____fl __ '_ A 4 5005-03 4.005-03 2.005-03 / o.ooe+004_———-/ . o 0.5 / 1 1.5 2 2.5 Vd=Vg squad) Figure 20. Id vs. Vd = V9 for non-halo device, L = 8.4p.m The slope of this line used to find the threshold voltage is also used to determine [.1 / tax. as seen from the SPICE level 1 equation, (Pile; V _V,)2=A1/73- L121. (24) We were informed by IBM that the non-halo devices were thick oxide devices with 10x = 5.8nm. This allowed us to calculate the effective mobility, 11, using the above equation to obtain the following result: /M = 8.09110“3 =5 )1 = 221cm2/V ~ 3 (25) 2' tax ln level 2, the NFS parameter is used to model sub-threshold current. 41 Changes were made to this parameter until the SPICE model and actual data agreed. A value of 3.7 x 1012 cm.2 was chosen for NFS. The channel mobility is smaller than the bulk material because of increased scattering at the Si/Si02 interface and is approximately half the bulk mobility [9]. Thus using this mobility value, if taken to be half the bulk mobility, would indicate a substrate doping of approximately 4 x 1017 cm'2. However, modeling results show that this value was too high, and changes were made to this parameter until the simulation data matched the experimental data. A final NSUB value of 2 x 1016cm'3 was chosen. In actuality, the device is formed in an n-type well, with a higher concentration near the surface (which determines u) and a lower concentration at depth (which effects 01:). Using all the parameters described above, the final SPICE model used was: PSPICE NFTK MOSFET L = 8.4 vs1 1 0 2 M1 1 1 0 0 N84 .00 vs1 0.02 2 .02 .MODEL N84 NMOS(LEVEL=2 L=8.4u W=8.4u VTO=0.6775 uo=221 +TOX=5.8n NFS=3.7e12 NSUB=2e16) .PRINT DC lD(M1) .PROBE .END The results of the model compared to the actual 2 terminal l-V data are shown in 42 Figure 21 (linear scale) and Figure 22 (semi-logarithmic scale). Excellent agreement is observed for both low and high currents. Id 1.20E-04 1.00E-04 8.005-05 0.00E-05 4.00E-05 2.00E-05 0.00E+00 I 23‘ Id vs Vd I Vg plot of measured and modeled data for L 8 8.4um Non-halo device '2” .1 .2 '5. o1 .1 .1 H If H Irv! fl. I1 01 .1‘ d" .1- d '1 '1 fl. :4 4" .t‘ v: .1: .zi‘u .g'r“ 332‘ 0. .“ 1 —--v':.:"'":f 0 0 5 1 1 5 2 Vd I Vg 2.5 +exp L = 8.4u ‘ sim L = 8.4u Figure 21. Simulated and measured data using Figure 5 setup (Linear Scale) 43 Id vs Vd=Vg plot of measured and modeled data for L=8.4u Non-halo device 0 0.5 1 1.5 2 2.5 1 .00E-03 ‘ L ‘ ‘ 1.00E-04 "" M- 100505 ##3/ 1005-06 / --9— exp L=8.4u Id ~-+ ~ sim L=8.4u 1 .00E-07 1.00E-08 p 1.00E—09 Vd-Vg Figure 22. Simulated and measured data using Figure 5 setup (Semi-log Scale) Family of curve measurements and modeling were also made using the 3- terrninal setup described in section 3.2 and seen in Figure 7. A SPICE model was created using the same parameters used for the previous model. PSPICE NFTK MOSFET L = 8.4 V81 1 0 2 V82 2 0 2 M1 1 2 0 0 N84 .DC VS1 0.02 2 .02 .STEP V82 0.5V 2V .5V .MODEL N84A NMOS(LEVEL=2 L=8.4u W=8.4u VTO=0.6775 UO=221 +TOX=5.8n NFS=3.7e12 NSUB=2e16) .PRINT DC lD(M1) .PROBE .END For the family of curves configuration, where V9 .4 Vd, the simulation data from the SPICE model does not match the measured data as well as when V9 is constrained to equal Vd in the two terminal case. The modeling vs. experimental result is shown in the Figure 23. Id vs Vd plot for L I 8.4u Non-Halo device 1.20E-04 ‘ DOE.“ fl 8.00E-05 __._ V9 3 5v +Vg at 1V +Vg = 1.5V 6.00E-05 " V9 = 2v + sim Vg=.5 + sim V9=1 sim V9215 —- sim V982 4.00E-05 - 2.00E-05 - 2.5 Figure 23. Simulated and measured data using Figure 7 setup 45 Here, one sees that the simulation and experimental agree well in saturation, where (V9 - Vd) < Vt. However, in the linear region where (Vg — Vd) > Vt, the simulation produces a smaller current than actually measured. We then similarly extracted the threshold voltage of the short channel length device to create a SPICE model of this device. Using the same technique described above, a threshold voltage, Vt = 0.593 V is obtained. Note that the difference in extrapolated threshold voltages is about 0.1 volts, and recall that the 6 shift found for the non-halo devices was only 0.005 volts in Section 4.2. In principal, one would expect to find the same result from both methods for finding 6, as for example observed by Taur. The difference may again be due to the fact that different 46 Sqrt(ld) vs. Vd = Vg plot for L = 0.21u Non-halo devices 6.005-02 5.005-02 / A 4.005‘02 // 3.006-02 F+~L==0210 Sqftfld) 2.006-02 1.00E-02 0.00900 14 . . - 0 07] 1 1.5 2 2.5 Vd=Vg Figure 24. Id vs. Vd = V9 for non-halo device, L = 0.21pm devices were used in comparison to Taur’s. The devices we used had lightly doped drains (LDDs), which is known to create issues for the extraction of the effective channel length of devices [3]. One may also observe drain-to-source electric field dependent mobility in Figure 24, at higher drain voltages. Using these values another SPICE model was created for the short channel device. PSPICE NFT K MOSFET L = .21 V81 1 0 2 M1 1 1 0 0 N21 .DC V81 .02 2 .02 47 r“... .MODEL N21 NMOS(LEVEL=2 L=.21u W=8.4u VTO=0.593 UO=221 +TOX=5.8n NFS=3.7e12 NSUB=2e16) .PROBE .PRINT DC ID(M1) .END As might be anticipated, this SPICE model did not correlate well at all with the measured short channel data. The AL value was then taken into account, but not much of an improvement at all was noticed. The comparison of the simulation data with the actual data is plotted below in Figure 25 with a linear scale. Id vs Vd I Vg plot of measured and modeled data for L 8 0.21 um Non-Halo device 1.20E-02 1.00E-02 I / 6.00E-03 2 / + exp L = 0.210 +sim L = 0.21u 4.00an 2.00E-03 0.00E+00 -2.00E-03 , Vd I Vg Figure 25. Simulated and measured data using Figure 5 setup Many short channel length attributes cannot be modeled properly with low-level 48 SPICE models and the results show that higher-level models would be necessary to accurately model these devices. Although SPICE modeling was not performed with the halo devices, the measured data to be compared against simulation is presented here. The threshold voltages for all three of the halo devices were extracted as described previously in this section. Figure 26 shows the square root of the drain current vs. gate voltage for the long channel device. Sqrt(ld) vs Vg-Vd plot for L I 8.4a Halo device 1.60E-02 [I 1 .40E-02 / 1 .20E~02 / 1 .00E-02 / wow 4.00503 / 2.001503 o.ooe+0o ..J . . . 0 As 1 1.5 2 2.5 Vd-Vg sqrttldl 6.00E-03 Figure 26. Id vs. Vd = V9 for halo device, L = 8.4p.m A threshold voltage of, Vt = 0.5 V is extracted from the Figure 26. This value along with the threshold voltage of both of the short channel devices allows us to analyze the 6 shift value we obtained by performing the modified shift and 49 ratio method. Figure 27 plots the drain current vs. the gate and drain voltage for the device with L = 0.4Zum. Sqrt(ld) vs Vd-Vg plot for L I 0.42u Halo device 6.00E-02 5005-02 1 4005-02 / 3...... / 2005-02 / / 0 0.5 1 1.5 2 2.5 vu-va sordid) 1.00E-02 0.00E +00 Figure 27. Id vs. Vd = V9 for halo device, L = 0.42pm A threshold voltage of 0.54 V was extracted from Figure 27, which would indicate Vto — Vti = -0.04 V. However, the 6 needed to find a constant ratio r value was of -0.1 V which, as was the case for the non-halo devices, different than the plot extraction using the shift and ratio method. Similarly for the short channel device with L = 0.21pm, a threshold voltage value of Vt = 0.58 V was extracted from the Figure 28. 50 Sqrt(ld) vs Vd-Vg plot for L I 0.21u Halo device 7.00E-02 6.00E-02 J 1 5005-02 // -1 4.005-02 // 3.005-02 / / _, 1.00E-02 / 0.005+00 —/ “MINI Figure 28. Id vs. Vd = V9 for halo device, L = 0.21pm The expected 6 = Vto - Vti = -0.08 value once again does not match the actual 6 (-0.14V) shift required to obtain a constant ratio r value. It appears that the 6 shift value does not necessarily have to be the difference in extrapolated threshold voltages for devices containing halo implants. We also note for the devices containing halo implants that the short channel devices have a larger threshold voltage when compared to the threshold voltage of the long channel device. Furthermore, publications found online state the large increase in threshold voltage for short channel devices containing halo implants [10]. Figure 29 shows a comparison of threshold voltage from that source as a function of the channel length, for devices with no halo, halo, and 51 strong halo implants. 0.45 .. WM“ 3‘. strong halo 0.351» a $.36“ E 0.25 I 55"." €945.11. “a.“ 5 .. ,‘N‘ .1‘111. ""°‘" 0.15.. i“, . no halo 0.05 .. v ‘IAJ : v v t 1 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Le(un0 Figure 29. Threshold voltage vs. channel length for various devices [10] From the previous level 2 SPICE models one can conclude that higher- level models are needed to properly model these devices, which are not typical. According to the SPICE manual, BSIM3 models are known to be able to model major effects in deep-submicrometer MOSFET’s, including nonuniform doping. 5.3 BSIM3 Modeling In order to properly model the short channel devices along with the devices containing halo implants a higher level SPICE model is needed. The BSIM3 model has the ability to incorporate many of the features found in the 52 devices in this study, such as with lightly doped drains (LDDs) and halo implants. The BSIM3 model also includes many parameters that can model many of the short channel effects that exist. Unfortunately, due to the limited amount of time and the high degree of complexity these models can reach, BSIM3 models for the devices we used were not created in this investigation. 53 CHAPTER 6 CONCLUSION 6.1 Introduction Chapter 6 wraps up the thesis. Section 6.2 describes what has been accomplished and what the results mean. Section 6.3 suggests the possibilities in terms of future work with this modified shift and ratio method. 6.2 Summary of Results The modified shift and ratio method seems to have provided some fair results. Even though a AL value of zero was found, a C value less than one was also found. This value of C represents that the effective mobility in the short channel device is indeed smaller than in the long channel device. Also when initially applying the shift and ratio method to the devices containing halo implants, we obtained unphysical negative AL values, but when applying the modified shift and ratio, we obtain a more physically realistic result. 6.3 Future Research The results obtained with work done with the devices provided shows that the modified shift and ratio method may work for devices containing halo implants. To further verify the results obtained, an SEM cross-section of the 54 devices measured would give insight to how accurate the results obtained were. From that point on one could improve the modified shift and ratio method depending on how close the extracted effective channel length is to the actual length of the device. Work can also be continued on the modeling of the devices for both the halo and non-halo devices. From the results obtained from the modeling it is a clear assessment that higher-level models will be needed to not only properly model the devices containing halo implants, but also to model the short channel length devices with lightly doped drains. 55 APPENDICES 56 APPENDIX A GWBASIC PROGRAM 57 5 I 10 1 5 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 1 05 1 10 1 15 120 125 1 30 135 140 145 150 1 55 160 165 170 1 75 180 1 85 1 90 195 200 205 210 21 5 220 222 225 Copyright Hewlett-Packard 1984, 1985, 1989 ‘ Set up program for MS-DOS HP-IB l/O Library ' For use independent of the PC instrument bus system DEF SEG DATA &H32CD, &HOOCB DIM GETDS%(2) READ GETDS%(O): READ GETDS%(1) ADDR% = VARPTR(GETDS%(0)) CALL ADDR% CLEAR ,&HFC00 l=&HFCOO ‘ PCIB.DIR$ represents the directory where the library files ‘ are located ‘ PCIB is an environment variable which should be set from MS-DOS ‘ i.e. A:> SET PCIB=A:\LIB ' If there is insufficient environment space a direct assignment ' can be made here, i.e ' PCIB.DIR$ = "A:\LlB“ ' Using the environment variable is the preferred method PCIB.DIR$ = ENVIRON$("PCIB") l$ = PCIB.DIR$ + "\IBHPIBLIB“ BLOAD l$,&HFC00 CALL 10%) PCIB.SEG = 1% ' Define entry points for setup routines DEF SEG = PCIB.SEG IOABORT = 3 IOCLEAR = 6 IOCONTROL = 9 IODMA = 12 IOENTER = 15 IOENTERA = 18 IOENTERAB = 21 IOENTERB = 24 IOENTERS = 27 IOEOI = 30 IOEOL = 33 IOFASTOUT = 36 IOGETTERM = 39 58 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 31 0 31 5 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 41 0 41 5 420 425 430 435 440 445 450 455 IOLLOCKOUT = 42 IOLOCAL = 45 IOMATCH = 48 IOOUTPUT = 51 IOOUTPUTA = 54 IOOUTPUTAB = 57 IOOUTPUTB = 60 IOOUTPUTS = 63 IOPEN = 66 IOPPOLL = 69 IOPPOLLC = 72 IOPPOLLU =75 IOREMOTE =78 IORESET = 81 IOSEND = 84 IOSPOLL = 87 IOSTATUS = 90 IOTIMEOUT =93 IOTRIGGER =96 DEF.ERR =99 ' Establish error variables and ON ERROR branching PCIB.ERR$ = STRING$(64,32) : PCIB.ERR = 0 PCIB.NAME$ = STRING$(16,32) : PClB.GLBERR = 0 CALL DEF.ERR(PCIB.ERR,PCIB.ERR$,PCIB.NAME$,PCIB.GLBERR) PCIB.BASERR = 255 ON ERROR GOTO 395 GOTO 460 ’ Error handling routine lF ERR=PCIB.BASERR THEN GOTO 410 PRINT "BASIC error #";ERR;" occurred in line ";ERL STOP TMPERR = PCIB.ERR IF TMPERR = 0 THEN TMPERR = PClB.GLBERR PRINT "HPIB error #”;TMPERR;“ detected at line ";ERL PRINT "Error: ";PCIB.ERR$ STOP ' COMMON declarations are needed if your program is going to chain ' to other programs. When chaining, be sure to call DEF.ERR as ' well upon entering the chained-to program 59 460 COMMON PCIB.DIR$,PCIB.SEG 465 COMMON DEF.ERR,PCIB.BASERR,PCIB.ERR,PCIB.ERR$,PCIB.NAME$,PCIB.GLBERR 470 COMMON IOABORT,IOCLEAR,IOCONTROL,IOENTER,IOENTERA,IOENTERS,IOEOI,IOE OL,IOGETTERM,IOLLOCKOUTJOLOCAL,IOMATCH,IOOUTPUTJOOUTPUTA,l OOUTPUTS 475 COMMON IOPPOLLJOPPOLLC,IOPPOLLU,IOREMOTE,IORESET,IOSEND,IOSPOLL,IOS TATUS,|OTIMEOUT,IOTRIGGERJODMAJOPEN,IOENTERB,IOENTERAB,IOO UTPUTBJOOUTPUTAB,IOFASTOUT 480 ‘ 485 FALSE = 0 490 TRUE = NOT FALSE 495 NOERR = 0 500 EUNKNOWN = 100001! 505 ESEL = 100002! 510 ERANGE = 100003! 515 ETIME = 100004! 520 ECTRL = 100005! 525 EPASS = 100006! 530 ENUM = 100007! 535 EADDR = 100008! 540 COMMON FALSE, TRUE, NOERR, EUNKNOWN, ESEL, ERANGE, ETIME, ECTRL, EPASS, ENUM, EADDR 545 ‘ 550 ‘ End Program Set-up 555 ‘ User program can begin anywhere past this point 1000 O***********************ii**************************** 1010 ' Connect to HP414SB, Begin Remote control 1020 O***************************************************** 1030 OPTION BASE 1 1040 INFO$ = SPACE$(13) 1050 DINFO = 20 1060 CODES$ = SPACE$(50) 1070 ISC=7 : PARA=17 1080 HP4145B = ISC * 100 + PARA 1090 CALL IORESET (ISC) 1100 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 1110 TIMEOUT = 5 1120 CALL IOTIMEOUT (ISC, TIMEOUT) 1130 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 1140 CALL IOCLEAR (ISC) 1150 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 1160 CALL IOREMOTE (ISC) 1170 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 4000 |********************* 3 terminal MOS measurement *********************** 401 0 4020 4030 4040 CLS : LOCATE 5, 15 PRINT "This program will perform a 3 terminal MOS measurement!" CLS : LOCATE 6, 15 PRINT ”Perform the following connections before beginning measurementsz" 4050 4060 4070 4080 4090 4100 4110 4111 4112 4120 4130 4140 4150 4180 4190 4200 4210 4230 4240 PRINT "" LOCATE 8, 20 PRINT "- Connect the Source to SMU1 " LOCATE 9, 20 PRINT "- Connect the Gate to SMU2“ LOCATE 10, 20 PRINT “- Connect the Drain to SMU3" LOCATE 11, 20 PRINT "- Connect the Substrate to SMU4" LOCATE 15, 15 PRINT ”Once finished choose one of the options below" LOCATE 16, 20 PRINT " B - To Begin taking measurements” LOCATE 17, 20 PRINT " Q - To QUIT program " INPUT" ENTER LETTER OF YOUR CHOICE: "; B$ IF B$ = ”B" OR 33 = "b” THEN CLS : GOTO 4300 IF B$ = "Q" OR B$ = "q" THEN GOTO 9000 GOTO 4200 4300 l********************* HP41453B Setup *********************** 4310 INPUT ”Give filename where data will be stored ";FPUT$ 4320 FPUT$=FPUT$+”.DA " 4330 INPUT "Start drain voltage (V): ";SVD 4340 INPUT "End drain voltage (V): ";EVD 4350 INPUT ”Drain voltage step (V): ”;VDSTEP 4360 INPUT ”Start gate voltage (V): ";SVG 4370 INPUT "Step gate voltage (V): ";VGSTEP 4380 INPUT ”Number of steps for gate voltage: ”;NUMSTEPS 4390 NDAT=(ABS(EVD-SVD)NDSTEP)+1 4400 GOSUB 8000 441 0 4420 4430 4440 4450 4460 4470 4480 4490 ‘lnitialize data file CLS PRINT “" PRINT "" P RI NT ll******************************************************N PRINT " Setting Up HP414SB - Measurements will begin shortly " PRINT II******************************************************N PRINT "" I****** Setting up 41458 ****** CODES$="IT1 CA1 DRO BC“ : GOSUB 8500 61 4500 451 0 4520 4530 4540 4550 CODES$=”DE CH1,’VS','IS’,3,3” : GOSUB 8500 CODES$=”CH2,'VG','IG’,1 ,2" : GOSUB 8500 CODES$="CH3,'VD','ID',1,1": GOSUB 8500 CODES$="CH4,'VSB','ISB',3,3": GOSUB 8500 CODES$="VS1;V82;VM1;VM2": GOSUB 8500 CODES$="SS VR1 ,"+STR$(SVD)+","+STR$(EVD)+","+STR$(VDSTEP)+",.1": GOSUB 8500 4560 CODES$="VP "+STR$(SVG)+",”+STR$(VGSTEP)+","+STR$(NUMSTEPS)+",.1"z GOSUB 8500 4570 8500 4580 4590 4600 4610 4620 4630 4640 4650 4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 CODES$="SM DM1 XN 'VD',1,"+STR$(SVD)+","+STR$(EVD): GOSUB CODES$="YA 'ID‘,1,0,.1": GOSUB 8500 CODES$=”MD ME1": GOSUB 8500 INPUT ”Press F once HP4145B has finished taking measurements”; F$ IF F$ = ”F" OR F$ = "f" THEN CLS : GOTO 4630 GOTO 4600 PRINT "" PRINT N******************************************H PRINT " Transferring and Saving Data to Computer" PRINT II******************************************fl PRINT "" CODES$="DO 'ID'” : GOSUB 8500 FOR M=1 TO NUMSTEPS FOR N=1 TO NDAT GOSUB 8700 'GET DATA OPEN FPUT$ FOR APPEND AS #1 VDrain = SVD+(VDSTEP*N)—VDSTEP VGate = SVG+VGSTEP*M-VGSTEP PRINT VDrain VGate INFO$ PRINT #1, VDrain, VGate, mid$(lNFO$,2,12) CLOSE(1) NEXT N NEXT M 4800 GOTO 8800 8000 1****************** 'NlT'AL'ZE DATA FILE ******************** 8010 OPEN FPUT$ FOR APPEND AS #1 8020 PRINT #1 ’I'D/o***************************************************** 8030 ‘** PRINT #1 ,“% SAMPLE: "; SAMPLES 8040 PRINT #1 ,"IV measurement using HP4145B and probe station“ 8130 CLOSE(1) 8140 RETURN 8300 l****************** CLOSE DATA FILE ******************** 8310 OPEN FPUT$ FOR APPEND AS #1 8320 CLOSE(1) 8330 RETURN 62 8500 I******************** Talk to HP41458 ************************** 8510 LENGTH=LEN(CODES$) 8520 CALL IOOUTPUTS(HP414SB,CODES$,LENGTH) 8530 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 8540 RETURN 8700 1******************** Listen to HP41458 ************************ 8710 CALL IOENTERS(HP4145B,INFO$,DINFO,ACINFO) 8720 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 8730 RETURN 8800 I******t************** DATA READ DONE ************************ 8810 GOSUB 8300 8820 PRINT '"' 8830 PRINT n**********taeeat-ktteteeen 8840 PRINT " Data Transfer Complete " 8850 PRINT IO************************H 8860 PRINT '"' 8870 INPUT "Press W once you have finished viewing data from HP414SB“; H$ 8880 GOTO 1000 9000 END 63 APPENDIX B PROGRAM DETAILS In order to efficiently extract large amounts data from the provided wafers 3 program had to be written that would interact with the HP-414SB Semiconductor Parameter Analyzer. This particular HP—4145B was also an older model, which saved all the data in its own format, which is not compatible with a PC. The program used was created using GWBASIC code [11]. After installing the HPIB card software, a file (SETUP.BAS) is available that contains the initializing/set-up code. This code is to be used at the beginning of every program written, and runs from lines 5->555. These lines of codes should not be changed, at line 1000 the user’s program begins. Note that the ‘ is used to make comments in the program. At line 1030 the code sets the array base to 1, so that numbering of the array elements begins at 1 instead of 0. Variables are also defined, particularly the variables CODES$ and INFO$. These are actually string variables of lengths 50 and 13 respectively, that are used to send information to setup the HP-4145B and used to transfer the data from the HP-414SB to the computer respectively. At line 1050, DINFO is defined as a value that is used in other commands in the program and it specifies the maximum number of elements to be read. Then in the program one has to define the Interface select code (ISC) and Parameter Address (PARA). These values are manually set on the card by switches or jumpers and on the HP- 41453 by back panel switches respectively. Whatever values are selected must be defined in the program. Using the ISC and PARA, a new variable, ‘HP4145B' is defined. This value is used in various commands that talk and listen to the HP- 4145B. Line 1090 sets the interface to its default configuration. The next line is 65 an error checking line that appears after every library command, which goes to an error handling routine in the setup code. The next pair of lines (1110->1120) defines a system timeout of 5 seconds in the event of a communication problem. Line 1140 puts the HP-4145B into a device dependent state and line 1160 sets the device in Remote. Both of these states are necessary for computer control of the instrument. The program then prints out on the screen a set of instructions for the setup (lines 4000 -> 4240) of the probes (SMU's). The screen is first cleared using the CLS command, then the cursor is located to a particular point on the screen using the LOCATE command. The PRINT command prints out text on the screen. Then the program is stopped giving the user time to setup the probes and also the option to continue or quit. A pair of if/then statements observe and perform the choice of the user. For this particular program, SMU1 is the source, SMU2 is the gate, SMU3 is the drain, and SMU4 is the substrate. Next a user interface is created such that the user can enter the voltage values (lines 4300->4400) for the desired current measurements. First the user is asked to give a filename (less than or equal to 8 characters) to store the obtained data. Then the range of voltage values for the drain and gate is requested. All these values are stored in variables that are then used to setup the HP-414SB. Before the setup begins though, the program goes to a subroutine that initializes and creates the data file. This occurs at lines 8000-> 8140. Once finished with the subroutine, the program returns to setting up the HP-41458. 66 First a subroutine is needed that will communicate to the HP-414SB what type of source each probe will represent, over what range each source will vary, as well as data display options. This subroutine is lines 8500-8540 in the program. The subroutine sends the ‘CODESS’ string to the HP-414SB and sets up the HP-4145B just as one would normally do manually. The ‘CODES$’ string is first defined using program codes found in the HP-414SB manual [7]. Then the information is sent to the HP-414SB, using the IOOUTPUTS command. This occurs multiple times until the setup of the HP-4145B is complete. First the method to take measurements is defined, also known as the Integration Time, where 3 choices are available. IT1: short, lT2: medium, IT3: long. This determines how long it takes the HP-414SB to take measurements, and the longer the time the more accurate the measurement. Auto calibration is turned on with code ‘CA1' and data ready service request is turned off with code ‘DRO’. The HPIB data output buffer must also be cleared before performing data output from the HP-414SB. This is accomplished by sending a ‘BC’ code. In the program these can be seen in line 4490. 4490 CODES$=”IT1 CA1 DRO BC” : GOSUB 8500 The channel definition page defines the connections that are being used (in this case) to probe the wafer. The probe station has 4 connections (SMU’s) and each one of these must be defined, and for this program the source is defined as follows: 4500 CODES$="DE CH1,‘VS‘,'|S‘,3,3“ : GOSUB 8500 DE: Defines that you want to setup the channel definition page 67 CH1: This is the connection we are setting up, in this case SMU1. VS: Names the source voltage as VS. IS: Names the source current as IS. 3 (first): This defines that SMU1 is COM, i.e. the common, or ground connection. 3 (second): This defines that SMU1 is a constant function. The gate is then defined as follows: 4510 CODES$=“CH2,‘VG','IG',1 ,2" : GOSUB 8500 CH2: This is the connection we are setting up, SMU2. VG: Names the gate voltage as VG. IG: Names the gate current as IG. 1: This defines that SMU2 is a voltage source. 2: This defines that SMU2 is a step function variable (On the HP-414SB display screen, VAR2 is used for step functions). The drain is then defined as follows: 4520 CODES$="CH3,'VD','ID',1,1“: GOSUB 8500 CH3: This is the connection we are setting up, SMU3. VD: Names the drain voltage as VD. ID: Names the drain current as ID. 1 (first): This defines that SMU3 is a voltage source. 1 (second): This defines that SMU3 is a sweep variable function (On the HP- 4145B display screen, VAR1 is used for sweep functions). 68 The substrate is then defined as follows: 4530 CODES$=”CH4,'VSB','ISB',3,3": GOSUB 8500 CH4: This is the connection we are setting up, SMU4. VSB: Names the substrate voltage as VSB. ISB: Names the substrate current as ISB. 3 (first): This defines that SMU4 is COM. 3 (second): This defines that SMU4 is a constant function. Line 4540 turns off the other 4 SMU channels, which are not used: (VS1,VS2,VM1,VM2) 4540 CODES$="VSI ;VSZ;VM1;VM2": GOSUB 8500 Then the source setup page for this particular case allows the user to define the gate and drain voltages to be used to take current measurements. The program first sets the drain voltage up as follows: 4550 CODES$="SS VR1 ,“+STR$(SVD)+","+STR$(EVD)+","+STR$(VDSTEP)+",.1" GOSUB 8500 SS: Defines you want to setup the source setup page VR1: This defines VAR1 to be a voltage source with a linear sweep. (VR2 would be a log 10 sweep) +STR$(SVD)+: Defines the start value, which was previously defined by the user and stored as variable SVD. +STR$(EVD)+: Defines the stop value, which was previously defined by the user and stored as variable EVD. 69 +STR$(VDSTEP)+: Defines the step value, which was previously defined by the user and stored as variable VDSTEP. .1: defines the current compliance value in amperes. The gate voltage is setup as follows: 4560 CODES$="VP "+STR$(SVG)+","+STR$(VGSTEP)+","+STR$(NUMSTEPS)+",.1": GOSUB 8500 VP: This defines VAR2 to be a voltage source. VAR2 is a step function. +STR$(SVG)+: Defines the start value, which was previously defined by the user and stored as variable SVG. +STR$(VGSTEP)+: Defines the step value, which was previously defined by the user and stored as variable VGSTEP. +STR$(NUMSTEPS)+: Defines the number of steps to be taken, which was previously defined by the user and stored as variable NUMSTEPS. .1: defines the current compliance value in amperes. Then the measurement and display mode setup page is defined using some of the previously values defined by the user. 4570 CODES$="SM DM1 XN ’VD',1,"+STR$(SVD)+","+STR$(EVD): GOSUB 8500 SM: Defines you want to setup the measurement and display mode setup page DM1: Defines that we want to display the data in graphics form. (DM2 would display in list form) XN: Defines that you want to setup the x-axis 7O VD: Defines that we want the x-axis to be the drain voltage 1: Define the x-axis to have a linear scale (2 would indicates log scale) +STR$(SVD)+: minimum value for the x-axis +STR$(EVD): maximum value for the x-axis The y-axis is then setup is the next line of the program: 4580 CODES$="YA 'ID',1,0,.1": GOSUB 8500 YA: Defines that you want to setup the y-axis ID: Defines that we want the y-axis to be the drain current 1: Define the y-axis to have a linear scale 0: minimum value for the y-axis .1: maximum value for the y-axis Then to begin to take measurements, measurement codes are used: 4590 CODES$="MD ME1": GOSUB 8500 MD: Defines that you will be defining measurement codes ME1: Defines that a single measurement is to be taken. Other options allow multiple runs to be taken and averaged. Once the previous line runs, the measurements begin to be taken. When the HP-414SB is taking measurements, a red LED on the front panel lights up, and once finished, this LED shuts off. The user should not make keyboard entries until this LED turns off. Once the light shuts off, the user should then continue running the program by entering ‘F’ as requested by the program, this 71 allows the data needs to be transferred to the computer, which is done by putting the data into the ‘Data Output Channel’ using the following program codes: 4680 CODES$=”DO 'ID'” : GOSUB 8500 DO: Defines what to put into the Data Output Channel ID: Tells the HP-4145B to put the drain current data into the Data Output Channel Then a nested ‘for’ loop is created to transfer the drain current data with respect to a specific drain and gate voltage. A subroutine within the nested ‘for’ loop transfers the data into the Data Output Channel to the computer in the INFO$ string. 8710 CALL IOENTERS(HP414SB,INFO$,DINFO,ACINFO) 8720 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR 8730 RETURN This string is then copied onto the data file along with its respective drain and gate voltage. This is repeated until the nested ‘for’ loop ends, when all the values measured are transferred. For further reference on can check both the HP-4145B instruction manual as well as the HP-IB Command Library. 72 APPENDIX C MEASUREMENT DATA 73 N0+mmmd N0+meN N0+mmm.v N0+wv F .v N0+m0N.m N0+mmoé N0+m~0.m N0+m _. F. P Fo+Mm0€ 00+MNO. v FOIwmn. w NOIMVNd N0.MNN.N Nolm {.0 moflmmd N0-mv_.. _. N01wmmd Nolmomd reflecN F0-m0N.¢ 5-th0 wolmwmd 00+MNN. _. 00.4me. _. 00+w00N 00+mw v.0 00+mo0é 00+m000 N0... 5.5 u 3.. 5:0 u 5:» 0 oz 3.... 5.5 u N0.+ #25 0 23¢ N0+mmmN N0+mnmN N0+wvmd No+wmv.m N0+mnm.m No+mm v.0 N0+wvo. _. F0+wvmé 00+m00.m 09$ 9 P. F N01w§0 N0-m0N.0 NQmmmd Nolwmofi N0.w00. —. Nolwmnd N0-mon.o wolmva ..0.m0v.m wolmhmd 5&500 00+mmm. _. 00+m~0€ 00+m Ké 00+mmm.m 00+m 36 00+mmvd 00+MNON can”. N0+womN N0+mmoN N0+mNNd N0+wNON N0+w00N N0+mn0. v _.0+mNN.0 00+mm0.v 00+mvo.m v0-9.0.0 qumsd N0.m 5N Elms... N0.m0N.0 Notm Fm...“ Nomad wotw F0... F01mmo.m 5000.0 v01w~ v.0 00+mom€ 00+MO0N 00+mom._. 00+M0fim 00+mmm.v 00+m¢md 09.98. F 00+mv0. v 28¢ N0+wNNN N0+wNNN N0+M0\.. .. N0+momN N0+wsfi _. News. w w0+mowd 00+mmm.m 00+m 3.0 00+m ..m. _. woimmmfi N01mde 3&0 fr 5&0 _.._. Stun v.0 N0.m00.m ammo. _. Foummmd 5&va 00+wmw. _. 00+mN0. w 00+mv0N 00+m0vN 00+Mm0.0 00+m EN 00+m3.m 00+mmn. w volwvvd 23¢ N0+m0v. P N0+mh0é N0+wv0._. N0+m00€ N0+m00. w F0+w0v0 F0+wmmd 00+w0 v.0 00+mmo.m 00+mon€ 00+mNmé F01mmN.m F01m0N. _. F0-MNm. w Fo.mmm.m ..01mNN.m w01wmm. r w01mmvd ..0.mom.m 00+m00... 00+m00. F 00+wv0. F 00+movN 00...mnm.»4 00+m _. v.0 00+mmoN 00+mo0. v 5.9.0.0 0.03— .. F+mNfi0 N _.+m00.w F 75006. _. _.+m ..mN N 7650.0 _. :w 5.0 N «+906 N 7500... 0 w+m00N 0 tweed _. 7&3; .. tug... 00+wmm. _. 00+momK 00+m KN 0 immoé 0 F+wVN.—. 00+w05N 00+m00.v 21mm... _. 0 IMNmé 001$me 00+mnoé 00+mN0.m 00+mm fiv 00+m0Nd 0 w+w0wN 00+va.m 001$th 00.5000 256 as»; 00+mo0N 00+m00N 00.6th 00+Mmmd 00+wvm.m 00+wNNd 0 TEX“... 0 run —..m 0 7&de N Immmé _. w+mmN.m N ImmoN 0 7&me —. w+wnN.m 0 _.+MN¢.0 0 w+wN0.m 0 :mmoN 0 Ewen... 00+m008 00+mNm.v 00+momd 00+MNvd 00+wmh. w 00+mm _..v 00+wmm. w 00+MVN. _. 00+w00.v 00+mvm.v 0 P+m0N._. 0 ImmvN 0:30 N. u ._ 00+mo0.0 00+wmv. w- 0 w+moN. .3 00+wN0.0- 0 Tame. T 0 F+m00.n- 0 7594.0- 00+m00.m 002mg.” 001$va 00+mmm.v 00+m EV. _. 00+w0v. w 00+mmv. _. 00+mvv. F mo+wom. _. 00+mmm. _. 00+me. _. 00+m0N. _. 00+wmm. F 00+wmm. _. 00+mN0. v 00+mtx _. 00+MNm. v 00+mwm. _. 00+m woé 00+mnn. F 00+MNON 00+mvw. P 00+mh0. P 00+MNON um 0.0 u .— 00+wv0. w 00+mmm. _. 00.500. _. 00+mmm. _. 00+mmNN 001$va 00+mmm.m 00+wmo.m 00+wmo. _. 00+wmvN 0 F+m0N.m 00+mmo.v. 00+m0501 00+mmmd- 00+wm _. .N- 00+mmw. F- 00+MNV. T 00+w0N. w- 00+w —. _.. _.- 00+mN P. r- mom—No. ..1 00+MN001 00+wmmd- 00+m000- 00+Mmmd- 00+mhmd. 00.58.01 001.95. T 00+M00. _.- 00+mom. T 00+mwm. —... UK N. u I. 8058 281.502 .8 53 0:8. 25 55m .u use» NTNmNd Eummvd- NYMmfiY NTMONd- NTmood- m Twomdi NTva. T :ImmN.—. Eamov... 31mm _.._. :Iwowé 3-9.0.0 Sawmvd :Imov.m Ewmhvd _._.-mmm.m :flmoé :-w00.v :uwwmd Sumofim :flmNé Sumo—am FFIMOVN Samed 3&2...” E.-MN_..0 :IMNQN ..Tmqu EHMNNN I.-m00.N :mwwN u. 0.0 u 4 owuwmné 07wofim 305.0 0P1w00N ovummwN OTmONF OTNNNé :Imwmd 51mkwé :ImooN NTmmm.—. ..TMVN. w- Nwlmmhdt :Im ..v. F. :IMmMNI :fimmN- Eamde- 3000.0- 31w 5.? :Immv.v. Eammmé. FTMmNd- :ImMN.m- 3000.0- :Iwmrfi- :mmNd- anoodl :Imvséu :Im00.v. 5-90.0- Zamora"- 2 N. u .— 88 88 8.0 Rd 88 mud cud mud «No 3o 88 who 25 2.0 28 98 Ed 25 N8 :8 2.0 mod 88 5o 88 8.0 :3 mod Nod 5.0 So a> 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 no.0 00.0 00.0 00.0 u> 74 F0+050.0 N0+0N0. F N00000. F N0+0 F F. F N0+00 F. F N0+00N. F N0+0VN. F N0+05N. F N0+00N. F N000 F0. F N0+000. F N00050. F N0+00v. F N0+05v. F N0+00v. F N00000. F N000 F0. F N0+05N. F N0+05N. F N0+0N0. F N000 F0. F N00000. F N0+000.N N0+000.0 N0+000.v 0000 F06 00.0006 000.0000 000.0000 00+0 F F6 00+000. F 00+0VN. F N0+00¢.0 N0+0¢0.0 N0+005.0 N0+00N.¢ N0.- 5:0 .9 F0.- 5:0 0 5:9 u 02 F0.... £30 U N0.+ 530 u can”. F0+0N0.5 F0+00N.0 F0+000.0 F0+0 F0.0 F0000 F.0 F0+000.0 F0+000.0 F0+000.0 N0+0 F0. F N0+0N0. F N00000. F N00000. F N0+00F. F N0+00F. F N0+0 F F. F N00000. F N0+000. F F000 F5.0 F0+000.0 N000 F0. F N0+00F. F N0+00v. F N0+000. F N0+005.N N0+050.0 000.0050 000.0050 00+00F.0 000.00F.v 00+000.0 00+000. F N0+0N0.0 N0+000.N N0+050.N N0+0¢5.N N0+00F.0 0301 F0+000.0 F000 00 F0+005.0 F0+050.0 F0+00N.5 F0+0Nv.5 F0+0v0.5 F0+0N5.5 F0+0Fa0.5 F0+000.5 F0+000.5 F0000 F.0 F0+00v.0 F0+000.0 F0+000.0 F0+000.0 F0+000.5 F0+00v.5 F0+050.5 F0+000.5 F0+0 F0.0 N000 F F. F N0+00v. F N0+00 F.N N000 F0.N 00+000.N 00+000.N 00+050.0 000.0000 00+000.N 00+0 FN. F N0+000.5 N0+000.N N00000. F N0+000.N N0+0N0.N 03 3.03.0 5+0 0 0.0 608.0 8000.0 3+0 00.0 8000.0 8000.0 3.08.0 3.08.0 8000.0 3000.0 50 F 0.0 Fo+m-0 F0.-000.0 F0.-000.0 F0.-000.0 6.09.0 6030.0 8.08.0 5.08.0 3000.0 302.0 3000.0 800 E ~o+m 00.0 «0030 8.00 F.N 00.00 F.N 8+0 EN 80000 8.0003 ~o+m 3.0 «0000.0 «0003 «0.003 «0+0 P: 0:01 5.0.0.0 F0+000.0 F0+0¢0.v F000? F .v F0+00N.v F0+0004~ F0+00v.¢ F0+0 F06 F0+050.v 50000.? F0+050.v F0+000é F0+005.¢ F000 F0.v F0+000.¢ F0+000.0 F0+000.0 F000 F5.v F0+0v¢é F0+000.v F0+000.¢ F0+05v.v F0+000.0 F0+0 F10 F0+000.0 N0+0NN. F N0+0 F0. F 00+000. F 00+000. F 00+0¢N.N 000000. F 00+00v. F N0+0 F F.5 N0+00 F .v N00000. F N0000N. F 0301 50+000. F 50+0N5. F 50+00N.N 50+000.N 50+005.0 500.0006 50+0 F0.0 50+005.0 00.0 F F. F 000050.. F 0000 F0. F 00+00V.N 00+000.0 000.0006 00+0VN.0 00+00F.0 0000 F00 000000. F 000000. F 00+0N0. F 0000 F5.N 0000 F00 000.0000 0 F00 FN. F 0 F+05N.N 0F+00v€ 0 F+000.5 NF+0V0. F F F0030 N F+00N.N F F0030 0F+000.5 0 F+000.N 0F+0vF.0 F F+000.v F F+000.0 0:3” v.0 u -_ 00.00 F .N 00+005.N 00003.0 00+00 F.v 00+000.0 0000 F00 0000000 00000 F. F 00.03. F 000000. F 00+00¢.N 000.00 F.0 00+000.v 00+00N.0 000.0000 0000000 50000 F. F 50000. F 50+0N0.N 50+050.N 5000 F00 500.0006 500.0000 500.0 0.5 00+000. F 00+000. F 000005. F 00+000.N 00000 F .0 00+000.v 00000.0 00.0 50 0000000 00.00 F. F 000.0 F0. F 0000 Fv.N OCH—hm FN. n A 00+00 F .0 000.0505 000.0000 00+0NN. F 00+000. F 000050. F 00+0v0.N 00+00N.0 00+00N.v 000.0N0.0 00+00N.5 00+0v0.0 500.0 FN. F 500000. F 50+0N F.N 50+0¢0.N 50+0¢5.0 50+0¢5é 500.0000 50+000.5 500.0050 00+00N. F 000.005. F 00.0 F0.N 00+00F.v 00+0VF.5 00+000. F 000.0N F .N 0F+000.v 9.00 F. F- 000.000.0- 00+000.¢- 000.000.?- 00+000.v- 00+000.0- 0 F0050. F- um 0.0 -I. .- 3000 F. F #00001 F 3.005. F 3+050.N 3+000.N 30.00 F .0 30000.0 #000004. #0000 F0 30055.5 30000.0 00+00N. F 0000 F0. F 000.050.N 00+050.N 0000010 00+00v€ 00+0N0.0 000.000 .5 00+000.0 00+00N. F 000.000. F 00+00N.N 00+000.N 000.0050 000.0006 000.0010 00+00¢.0 50+0N F. F 50000? F 50+000. F 50+0N0.N 500.0500 50+00Né 50+0N0.0 5000 F0 .5 fix FN. u A 00000.0 000N0.0 0000 F0 00-00 F.v 0000N.0 0900.N 00050. F 000N0. F 0005 F.F 00000.0 000N0.0 00000.0 0000 F6 0003.0 00000.N 00005.F 000v0. F 00000. F 0 F00v.0 0F0v0.0 0F0vF.0 07000.0 0F000.N 0FON0. F 0FO0N.F F F0005 F F0000 F F000.N NFO0N.F NFO0N.Y NF000.0- F F000. F- F F00 F. F- F F00 F. F- NF000.0- NF000.0- u. v.0 n .— 000N0.v 00000.0 00.03.N 000 Fv.N 00000. F 00000. F 0000N. F 000N0. F 5000 F0 5003.0 50050.0 50000.0 5000 F .0 500 FYN 50050. F 50001 F 500N F. F 00000.0 000N0.0 00050.0 00000.0 00000.N 0005N.N 000005. F 000N0. F 00000. F 000 F5.5 00000.0 0005v.v 00000.0 000 F0.N 000 F0. F 00001 F 0005 F. F 0 F0000 0 F0000 2 FN. I A 00.0 00.0 00.0 00.0 ~00 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 «0.0 00.0 00.0 00.0 00.0 0.0.0 000 00.0 3.0 00.0 «0.0 3.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 ~00 00.0 0> 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 u> 75 F0+0656 F000656 F0+0056 30005.6 30050.6 30000.6 F000 30 30000.0 30000.0 30000.0 30000.0 F0000F.0 F0006F.0 F0+05F.0 F0006N.0 F0+060.0 30066.0 30056.0 F0+000.0 30000.0 30060.0 30065.0 30050.0 F000N0.0 F0000F.0 30050.0 30000.0 30005.0 F000N0.5 F0000N.5 30050.5 F0+000.5 F0000N.0 30000.0 F0+000.0 30006.0 N0.- 5:0 a Sr 5:0 0 5:» u oz 30. 5:0 U N0.+ 5:0 .0 03am F000N66 F0+0066 300066 3.0066 300506 300006 F000 F06 F0+0N06 300006 F0+0006 F000N06 F000N06 30000.6 F0+0006 300056 300056 F0+0006 300006 3.0006 F0+0 F06 300006 F000 30 F0+00 F.0 F000 FN.0 F000N0.0 30066.0 30000.0 30065.0 3.0 0.0 F0+0 F F.0 F000N0.0 F0+000.0 30000.0 30000.5 30000.5 3.0005 0.000 F000NF6 F000NF6 F0+05F6 F000 FN6 F0+0 FN6 F0000N6 F0000N6 F0000N6 F000 FN6 F0000N6 F0+00F6 F0005F6 F0005F6 F0000F6 F000 FN6 F0000N6 F0000N6 F0+0006 F0+0006 300006 F000 F06 F0+0006 F000N66 300066 300606 F0+0006 300656 300606 300006 F0000F.0 F0000N.0 F0+006.0 30000.0 30005.0 30000.0 F000NF.0 0:01 30000.0 30060.0 30050.0 F000 30 30000.0 30000.0 30000.0 30000.0 30000.0 30000.0 F0+0 0.0 30055.0 30005.0 30065.0 F0+065.0 30065.0 F0+055.0 30005.0 F0+005.0 30055.0 30005.0 30005.0 30005.0 30000.0 30000.0 F0+050.0 30000.0 30000.0 F0+0006 F0000 F6 F0006N6 300006 3.0066 300006 300006 300056 0.3m— F000N0.0 F0+000 .0 F000 00 30000.0 F0+000.0 F0+000.0 F0+000.0 30000.0 30000.0 F0+006.0 30056.0 30066.0 30006.0 30050.0 F0+000.0 F000N0.0 F000N0.0 F0+060.0 30000.0 F000 00 F0000N.0 F0+00N.0 F0006N.0 F0006N.0 F0+00N.0 F0005N.0 F0000N.0 F000 F00 F0+060.0 30000.0 F0+006.0 F0+006.0 30000.0 30060.0 F0+005.0 30005.0 23¢ 3+0 F0.5 6000N6.5 30000.0 6000N0.0 3.0660 00+0N0. F 0000N F. F 00006N. F 000000. F 000006. F 00.000. F 00+005. F 000050. F 0000 FN.N 000006.N 000055.N 00000 F .0 0000000 00+00 F6 0000606 00+000.0 00005 F .0 00+00N.5 0000500 00+0N0. F 0000 FN. F 000066. F 000005. F 00000 F .N 0000N0.N 00006N.0 00+0006 0000500 0000000 00+00 F .0 50003. F new—am 6.0 I 4 00+055. F 00.055. F 0000N0. F 00+000.N 00+00N.N 000006.N 000000.N 000000.N 00000 F .0 0000060 0000000 00000N6 00+0N56 00005N.0 00+000.0 0000000 0000N6.5 00+0 F0.0 0000600 3+000. F 60000N. F 30006. F 600050. F 3+0N0. F 3+0NN.N 600000.N 6000 F F.0 30050.0 6000006 6000 FN.0 30000.0 30000.5 3+05 F .0 00+00 F. F 000000. F 000000. F ”can FN. u -_ 600000. F 60.0 F0.N 600000.N 60005 F.N 3+00N.N 30000.N 600006.N 600000.N 3+0 F5.N 3+000.N 3.0000 3005 F0 30000.0 30000.0 30000.0 30000.6 3+0006 3+0006 30000.0 6000N0.0 3+0N0.0 30000.0 3+00N.5 3.03.0 3+050.0 0000 F0. F 00+06F. F 000000. F 00+006. F 00+0N5. F 0000 F0.N 000050.N 0000N0.N 00+000.0 00000 F6 00+0N0.0 um 6.0 u .— N000006 N0000 F .0 N00060.0 N00060 .0 N0+005.0 N0+000.0 N0006N.0 N0+0N0 .0 N000N0.0 N0+00 F .5 N000 F0 .5 N0+0N0.5 N00050.0 N00000.0 N000N6.0 00+000. F 000050. F 00000 F . F 00+06N. F 00+060. F 00+006. F 000000. F 00+005. F 00+000. F 00000 F .N 00+050.N 00+000.N 00+000.N 00+000.0 0000000 00.0066 0000N F .0 0000000 00+000.0 0000 FN.0 00+065.0 um FN. u -_ 00000.N 00006.N 00006.N 000 F0.N 000 FN.N 000N F .N 00000.N 00060. F 00000. F 00005. F 00050. F 00000. F 00006. F 00006. F 000N0. F 0000N. F 0000 F. F 00050. F 50000.0 50000.0 500 F0 .0 50000.5 50000.0 500NN.0 50000.0 500006 50000.6 50000.0 50000.0 50000.N 50006.N 500 F F.N 50055. F 50006. F 500NN. F 00000.0 U. 6.0 n 4 60000. F 00005.0 00050.0 00000.0 00000.0 00000.0 000N0.0 00050.5 00060.5 00000.5 00000.0 000 00 00000.0 00060.0 000 F0.0 000006 00000.6 00060.6 000N06 000N5.0 000N6.0 0006 F .0 00-000.N 00000 .N 00000.N 000 F F.N 00000. F 00050. F 00006. F 00000. F 0000 F. F 00005.0 00006.0 0000 F .5 00000.0 0006 F .0 3 FN. u -_ ~04 00.. 00. 0 00.0 000 B0 000 00.0 00.0 00.0 ~00 00.0 000 00.0 00.0 0.0 00.0 00.0 00.0 00.0 ~00 .00 00.0 00.0 00.0 :0 00.0 00.0 E0 2.0 ~00 E0 000 00.0 000 0.00 0> 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 D> 76 F0+000.6 F0+000.6 F000606 F000606 F0+0506 F0+000.6 F0+000.6 F0+0506 F000606 F0+000.6 F0+0506 F0+0 F06 F000 F06 F0+000.6 F0+000.6 F0+000.6 F0+0 F06 F0+000.6 F0+000.6 F0+0 F06 F000 F06 F0+000.6 F0+000.6 F0+000.6 F0+000.0 F000 50 F0+000.6 F0+000.6 F0+000.6 F000506 F0+000.6 F0+000.6 F000506 F0+000.6 F0+0506 F000606 «0... 5:0 0 F0.- 5:0 U 5:0 .0 oz 3.0. 5:0 0 «0.... 5:0 0 03 F0+0056 F0+0056 F0+0056 F000056 F000056 F0+0 F06 F000056 F000056 F0+0 F56 F000056 F0+0056 F000 F56 F000 F56 F0+0056 F000N56 F000506 F0+000.6 F000056 F0+000.6 F000506 F0+0 F56 F0+0 F56 F0+000.6 F000N56 F000056 F000056 F0+0 F56 F000506 F0+000.6 F0+000.6 F0+0N06 F0+000.6 F0+000.6 F0+0506 F0+000.6 F0+006.6 F0+000 .6 F0+000.6 F00000 .6 F0+000.6 F0+000.6 F0+0506 F000 F06 F0+000 .6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F000606 F0+000.6 F0+006.6 F0+006.6 F0+006.6 F0+006.6 F0+066.6 F0+0566 F0+000.6 F000566 F000566 F0+006.6 F0+006.6 F000566 F0+066.6 F0+000.6 F0.—0606 F0+000.6 F0+000.6 F000606 F0+000.6 F0+000.6 F0000F6 F0000F6 23¢ F000 F66 F0+006.6 F0+006.6 F0+006.6 F0+006.6 F0+000.6 F0+006.6 F0+000.6 F0+000.6 F0+006.6 F0+000.6 F000506 F0+000.6 F0+000.6 F000N06 F0000N6 F0005N6 F0+000.6 F0+05N6 F0+000.6 F0+00N6 F0005N6 F0+000.6 F0000N6 F0006N6 F0006N6 F000 F06 F0+05 F .6 F0+06F6 F000 F F6 F0+000.6 F000506 F000506 F0+000.6 50000.0 F0+000.0 033— F0+000.6 F0+000.6 F0+00N6 F0+000.6 F000 F06 F0+000.6 F000606 F0005N6 F0+000.6 F0+000.6 F0+000.6 F000 F06 F0+000.6 F0000F6 F0000F6 F000NF6 F0000F6 F0+000.6 F0+000.6 F0+000.6 F000506 F0+000.6 F000506 F0+000.6 F000 F06 F000 F06 F0+000.6 50000.0 F00060.0 F000N0.0 F00050.0 F0+000.0 F0+0N00 F00005.0 F0+000.0 50000.0 0301 60+000. F 600000. F 600006. F 600006. F 60.006. F 60+000. F 60+0 F0. F 600060. F 600000. F 600005. F 60+0 F0. F 600000. F 600.050. F 60+000. F 60006 F .N 600.0500 600.0 F0.N 600.0 F60 6000500 690500 6000050 60+000.0 6000 F F.0 60000N.0 60+006.0 6000600 60+000.0 6000006 6000006 60+0006 60+0606 60005 F.0 6000060 60+005.0 60+000.0 60+050.0 0.52” 6.0 I J 00+005.N 00+000.0 00+000.0 00+000.0 00+00 F .0 00+000.0 N00056.0 N00000.0 N00005.0 00+000.0 0000006 N000006 N000 F06 N00000 .6 0000556 00+0506 00+000.0 0000060 0000 00 00.0500 N00000 .0 00+006.0 00+000.0 0000605 N00000.5 N0006 F .0 00+000.0 «00000.0 00+000.0 00+060. F 00+000. F 00006 F . F 000000. F 000000. F 000006. F 000000. F 0:3” FN. I ..— 0000060 00+000.0 00+000.0 0000 F00 00+000.0 00000 F .0 00+000.0 0000N6.0 00+000.0 0000050 00+000.0 600.0 F0. F 600.000. F 60+000. F 600050. F 600.000. F 6000N F. F 60+06F. F 600.00 F. F 60000 F. F 6000NN. F 60000N. F 60000N. F 6000 F0. F 600060. F 60+000. F 600006. F 600006. F 600.000. F 600.060. F 600.000. F 600000. F 600000. F 600065. F 60+000. F 600050. F um 6.0 I 4 0000060 N000N0N 00+000.0 00+000.0 N0+0 F0.N 0000600 00+000.0 N000 F5.N 0000050 0000050 00+000.0 0000500 ~0+0 F0.N N00000.N N0+000.0 00+000.0 00.00 F .0 00+00 F .0 N000 FN.0 00+000.0 N0+000.0 N00000.0 0000060 N00000.0 N00000.0 00+000.0 N00055.0 00+000.0 00+000.0 0000006 00000 F6 N0+05N6 0000006 No.0 F06 00+0006 N0+0006 tw— FN. I A 00000.0 00000.0 00005.0 00000.0 00000.0 00006.0 00006.0 000 0.0 00.0NN.0 0000 F .0 00060.0 00060.6 00000.6 00005.6 00050.6 00050.6 00006.6 00000.6 000006 000006 0000 F .6 000 F06 00.0 00 00000.0 000N5.0 00000.0 00000.0 00066.0 00060.0 00000.0 0000 F .0 00000.0 00050.0 000500 00055.0 00000.0 3 6.0 I .— 600 F0.N 60000. F 60000. F 60060. F 60000. F 60000. F 60050. F 60060. F 600N0. F 60000. F 60055. F 60005. F 60005. F 60000. F 60050. F 60060. F 600 F0. F 60000. F 60000. F 60000. F 60000. F 60056. F 60006. F 60006. F 60000. F 60000. F 60000. F 60000. F 6005N. F 6006N. F 60000. F 6005 F. F 6006F. F 600 F F. F 60050. F 60060. F U. FN. n .— GMPNC‘O N‘JC‘OCOOO (ONO NNN ...38883 FPv-Q-I-v-I-F 00. F 6N. F 0N.F NN.F FN.F N.F 0F.F 0F.F 5F.F 0F 0F. 6F. 0F. NF. FF. 00. 00. 033335 >1-1-1-r-r- F F F F F F F F 00.0 00.0 00.0 00.0 00.0 0 O. 0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 a) 77 wo+wsmé Fo+wvmé wo+mvofi Fo+momé wo+mvmé Fo+w~mé Fo+mmmé wo+wvwé 21$ 3.? «6... 55m 0 3.. 53m U #3» fl oz 3.... 5.5 U N9... Saw a 0.3m. 5+an€ Po+mmwé Fo+momé vo+w Fwd wo+wofiv wo+mmfiv Fo+mmoé wo+m~oé remand. Po+wmfiv can”. wo+mmmé wo+mmoé vo+wmfiv Fo+whoé wo+wvoé wo+Mmoé Fo+momé wo+mvmé wo+m 56 Fo+mo®é wo+momé 03¢"— Fo+mmmé Fo+mvoé wo+momé Fo+m $6 Po+mom.v wo+mNYv Po+m 31‘ wo+mm¢é wo+mmvé vo+m$xv 035m. wo+wm¢é Fo+mm¢é 21mg;q wo+mhmé we...mm~u.¢q wo+m~.m.v Fo+wom.v Fo+mhmé wo+wmwé can”. mo+m Sud mo+m Chm mo+mmmd mo+mmmd mo+mmmd mo+momd vo+m 5;. 3+mho€ 3+mwo._. 3+mmwé 3+w2... SYNC; 3+mv~€ 2.55 v.» n .— No+mwmé No+moo.m «9&8... No+m3.w No+mhod No+moo.N No+mm F.N No+mwmd mo+mmv.m No+va.N No+momN No+momN No+wNmN "up—am vN. n .- mo+mmm.o mo+w¢oK mc+mw F K mo+mNNK mo+w Fm.» mo+mo¢K mo+woms mo+mooK mo+m E.» mo+meK mo+m~mK mo+mvod mo+mm P .w no+m~Nd 3. vi u .— No+mm F.N No+mm P .N No+mNNN No+mVNN N0+MmNN No+meN No+momN No+mmmN No+meN No+wmm.N No+mmmN No+w 3N No+m¢vd No+mmed Um. 3. n .— Smm F K mode _. K commas mommmd oomvwd moflmfio moflowd ooflwmd oo-mo¢.m 8mo¢6 monm wmd oomwmd ooflmwd oo.mvo.o u. v.» u A amend “5&me XYNQNN vo-mv~.~ XVNNNN vo..wom.N vo.mmfi~ vo.mm...~ SYMEN amwwd $mwod vo.mno.~ $mmod vommod U. ..N. u ._ mm. P 3.. 8e 3. v we. r S. P me. P m: 3. F 9. F me. P 3. F o: 8.? u> mod mod mod mod mod mod mod mod mod mod mod mod mod mod u> 78 Fo+mvm.m Fo+mmN.m Fo+w Fwd Fo+m Fwd Fo+mm F.m No+m FN.N mo+mo F. F mo+mmo. F mo+mmN F No+momd No+mww.o No+mmNN No+m Fm. F F0+me. F 8+wx-oé 8+meN oo+wofi F Fo-w Fwd Fo-wmw.m Fo-mvwd Fo-mmF. F No-womfl No-wN©K No-muvd NO-NNOé Nay-wad No-mm F6 No-m FNm NF: E...» U Sr 5..» U war Es» U 033. Satan; .25 613.9%. 5.; 8038 2a: .8 83 2.3. .23 £5 .m 29¢ Fo+who.m Fo+mva Fo+wmo.m Fo+wom.m Fo+wmo.m No+me. F No+mmmd No+wmm.m No+mmoK No+wm F.m No+m¢©d No+mom. F Fo+momd oo+momK oo+m FmN oo+wNm. F Fo-mwed Fo-wmo.m Fo-wvm. F No-mmm.m No-MFVN. No-mmw. F No-MONN No-mmo.m No-m Fwd No-w FN.Fq No-mmNK Fo-mmm. F can”. Fo+wmm. F Fo+w Fm. F Fo+mo\-. F Fo+wmm. F Fo+mvwd Fo+mmm.o No+mmm.m No+wv F.m No+wmfim No+mmmN No+mvmd Fo+mmmd Fo+m F F6 oo+mom.v 0?..va F Fo-wVFh Fo-wm©.N Fo-mmN. F No-mmm.m No-m Fm. F mo-wva moflmmd No-mwm. F NO-MfiQm No-mm F .0 Fo-MFm. F Fo-mom.m Fo-mmmd 25¢ mo+mmfim 2?me F 8.63.. F mo+wvmd mo+mmm.m mo+Mmfim o F+w Fv. F c F+mmmd F F+m\.m.m F F+wwm. F F TEE-é o F+mnmd mo+mwmd mo+w FN.N mo+mmm.v mo+mo F.m mo+wmmd 21¢me mo+mmod mom—o F. F mo+mmv.~ 8.7%“th oo+mom.m mo+mtx~ o F+m~v. F o F+mmm. F mo+wv~.m mot-.506 . mo+mhoé mo+Mmme 255 Q.» n -_ mo+wom.m wo+momd mo+woF.F mo+m©N. F mo+m Fm.F mo+wwm.F mo+whfim mo...m..NF.F~ mo+mhos o F+wmm.F o F+mmfiN o F+wmv.m F F+mmNF F F+wmo.m F F+m3wm F F+wmm.F o F+wwv.m o F+mvm.F OF...mmo.Fq oF+mwo.F mo+mv~d offload F F+w Fmd F F+mcm.m F F+m¢FK F F+mom.F oF+m F0.» 0 F+mm®.N mo+wmmd no+m\-m.¢ 0.53“ «v. u ._ ho+m F Fé ho+wvo.m so+womd ~o+wmmfi mo+who. F wo+mom. F wo+m-.~ mo+wmm.v 2?me F o F+wmo. F- mo+wwN. F- mo+mmh.n- mo+wvo.®- mo+mFuo.©- wo+wom.m- wo+moo.m- wo+mwm.v- wo+mmm.v- mo+mo¢.v- mo+woo.m- wo+m~o.v- wo+w Fwd- wo+w Fwd- mo+wmv.F1 mo+wNo.v- wag-mum.” wo+w©o.®- mo+wNN.®- wo+wN\-.m- wo+mm~.m- mo+wmo.m- Um V.» n A Fo+mom. F ho+m F0.N no+m Fwd ho+m Fm.FV ho+mm F .0 ho+wmmfi mo+m Fo. F mo+wvm. F 27me F mo+mmNN wo+mNQv mo+mmmd mo+wm F. F mo+w Fvé mo+moo.m- mo+mwN.N- mo+mom. F- mo+mwm. F- mo+wm®. F- mo+wmm.m- mo+mhw. F- mo+w FN.N- mo+wwo.m- oF+mwN. F- mo+m-h¢ 22¢th mo+mmm. F mo+m¢F. F mo+m~md mo+mm¢d wo+mwmd Um NU. u -_ mo-wNN. F oF-m Fwd .oF-mnod oF-m Fwd oF-mwo.v oF-wNm.m oF-mmNN oF-woFF F F-wmm.m NF-wmm.v- F F-m Fad- F F-mSVd- F F-mmN.m- F Tmmwd- F F-woF.m- F Tmmwd- oF-mmo. F- o F-mmo. F- o F-va. F- cF-moo. F- o F-mmo. F- o F-w F F. F- o F-w F F. F- oF-mmF. F- o F-mcm. F- F F-mmwd- F F-w Fm.»- F F-mvod- F F-mvfim- F F-mo¢.m- F Tmmmd- U. Q.» .I- A mo-mmod mo-mNm. F mo-wmm. F mo-mvo. F o F-MF F.w o F-mmmd o F-wmm.v o F-mvnd o F-wmfim o F-wmw. F o F-mmo. F F F-m Fod F F-mmm.v F F-quF. F F F-woo. F- F F-momN- F F-wvoN- F F-mm F.m- F F-mmo.m- F F-mmoN- F memd- F F-mhmd- F THE. F- N Tmood- F F-moo. F F F-wmm. F F memd F F-wnm.w F F-mNo.m F F-wmm.m F F-mNo.m U. NV. n A and mud mud FN.0 owd mud vmd mud NNd FN.0 omd mFd mFd hFd 0 F6 m F6 36 .mFd NFd F F.o 26 mod mod no.0 mod mod v0.0 no.0 No.0 Fod cod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod U> 79 Fo+mth F0+w Fn.N Fo+mnn.N Fo+wNo.N Fo+mvfiN Fo+mno.N Fo+wvo.N Fo+wNo.o Fo+wNF.m Fo+woN.o Fo+woN.o Fo+moFt0 F0+won.m Fo+wn\-.n Fo+wn0.m Fo+mnF.¢ Fo+wmm€ Fo+mnn€ Fo+moo.v Fo+mvo.n Fo+moN.n Fo+m Fn.n Fo+man Fo+moo.n Fo+w0Nn Fo+wwvn Fo+w Foo Fo+wN0.n Fo+vaK Fo+mhmfi Fo+mnmzh Fo+wnfih Fo+va.o Fo+wv\-.\- Fo+mno.n Fo+w0F.n NF: Eco U can”. Fo+mo0. F Fo+woo. F Fo+m F0.N Fo+wvo.N Fo+wF F.N Fo+woF.N Fo+mNN.N Fo+wnN.N F0+m0N.N Fo+mom.N Fo+whnd Fo+wv¢N Fo+w Fn.N Fo+m0n.N Fo+mnn.N Fo+mnnd Fo+mvod Fo+wvo.N Fo+mvo.m Fo+wn F.0 Fo+moN.m Fo+w¢md Fo+m Fv.m F0+wvnd Fo+mon.m Fo+wn~..m Fo+mood Fo+moo.m Fo+mmoé Fo+m¢F.¢ Fo+woF.¢ Fo+wNm.v Fo+wnn.v Fo+wom.v Fo+wmo.0 Fo+mov.m 0F.- 5:0 U 0:01 Fo+mnn. F Fo+mnn. F Fo+mnn. F Fo+mnn. F Fo+mon. F Fo+mmn. F Fo+mmn. F Fo+w¢n. F Fo+wnn. F F0+mnn. F Fo+mnn. F Fo+won. F Fo+won. F Fo+m FN. F F0+mvfi F 5+th F Fo+woo. F Fo+mvo. F Fo+woo. F Fo+w F0. F Fo+mvo. F Fo+who. F Fo+m00. F Fo+mno.N Fo+m F F.N Fo+va.N Fo+wn F.N Fo+moF.N Fo+mnN.N Fo+m F0.N Fo+w0N.N Fo+on.N Fo+w Fn.N Fo+mh0.N Fo+wNF.N Fo+moo. F 00: 5:0 U 030m— no+m00. F no+mv~.N no+whn.N no+wnod no+w0¢n no+moo.v no+w Fo.n no+woo.n no+w¢0.o no+w00K no+mnn.o 00+mh F. F no+w$V. F no+woo. F no+mnN.N ©o+mmo.N no+mhnd ®o+mo\-.v no+m¢on no+w¢oo bo+wno. F ho+on F ho+wno. F ho+mnFtN ho+mom.m ho+woné ho+wnmn ho+mmmn oo+moo. F oo+wmn. F oo+w0N.N oo+mnmd oo+mnn.m oo+woNn oo+mmo.o oo+mnm.o OCH—hm 1.0 I .- ¢0+m0 F .v ¢o+mhoé vo+woo.n 3+mvofi vo+wvn.o no+wno. F no+m Fm. F no+mNn. F no+mmo.N no+mon.N no+mom.m no+w FN.? no+m¢vn no+mn F K no+m3v.o no+wNN. F 00+MNO. F no+va.N ®o+mno.N ®o+wmon no+w F F .n no+mmon no+w0Nd ho+MoN. F ho+mvn. F ho+m0NN ho+mNod ho+wno€ ho+womn no+mNNN ho+wnmd 00;.an F oo+mo\-. F oo+wnm.N oo+wno.o oo+mh F .v 0F.—am NV. I .— vo+whod vo+moo.m 3+mmod vo+mon.m ¢o+w F0...." ¢o+mowé vo+m FNV vo+m0Nn 3+moon 3+m an vo+w0¢fi vo+m no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U> 80 Fo+mvo.N Fo+wmo.N Fo+wno.N Fo+wno.N F0+M00. F Fo+wvo. F Fo+m¢0.F 5.7va F Fo+mn0. F Fo+wNo.N Fo+w00.N Fo+wwo.N Fo+who.N Fo+who.N Fo+mno.N Fo+wvo.N Fo+wno.N Fo+m©0.N Fo+moo.N Fo+woF.N Fo+w0F.N Fo+w¢F.N Fo+wnF.N Fo+wnF.N Fo+woF.N F0+w0F.N Fo+w0F.N Fo+woN.N F0+MNN.N Fo+wnN.N Fo+th.N Fo+m00.N Fo+m.V0.N Fo+whod Fo+wo¢.N Fo+w0¢aN NF: 53¢ U 0F.- «F.F—n U 00: FE? U can". Fo+moo.F Fo+mho.F Fo+woo. F Fo+mnN F Fo+mn§ F Fo+whN F Fo+mnfi F Fo+wN0. F Fo+mo0.F Fo+mho. F F0+w00. F Fo+mho. F Fo+who.F Fo+mvo. F F0+wN0. F Fo+mN0. F Fo+wN0. F Fo+wNo. F Fo+mv0. F Fo+wn0. F Fo+wno. F Fo+mno. F Fo+mh0. F Fo+mno. F Fo+woo. F F0+MNO. F Fo+whm. F F0+MNO. F Fo+m00. F F0+m00. F Fo+w00. F Fo+w F0. F Fo+mmo. F Fo+wv0. F Fo+mv0. F F0+M00. F can”. Fo+wnn. F Fo+w0n. F Fo+won. F Fo+w0n. F Fo+won. F Fo+wnn. F Fo+w FN. F Fo+w00. F Fo+won. F Fo+mon. F F0+m...n. F Fo+wnn. F Fo+wnn. F Fo+w¢n. F Fo+m F0. F Fo+mo0. F Fo+w F0. F Fo+m F0. F F0+m Fn. F Fo+m F0. F F0+MNn. F Fo+mon. F Fo+mon. F Fo+w0n. F Fo+mon. F F0+m0n. F Fo+won. F F0+mon. F F0+MNn. F Fo+mhn. F Fo+whn. F Fo+mnn. F Fo+mnn. F Fo+mnn. F Fo+wnn. F F0+Mnn. F GUM”. .5...on F vo+mmn. F vo+mnn. F vo+mth F vo+mho. F vo+mN0. F wo+m00.m vo+m0 F .N vo+wnN.N vo+m¢m.~ vo+m Fn.N vo+mnn.N 3+woo.N 3+mnoN ¢o+m00.m .Vo+m0 F .0 vo+whmn vo+mwhn vo+mmo.v vo+wnN..V vo+mvn.v ¢o+mooé vo+w0N.n vo+whn.n vo+wo F .n ¢o+wohn vo+w FN.N vo+w F0.N vo+movn 3+m Foo no+w.Vo. F no+mn F. F n0+m.nN. F no+wov. F no+m0n. F no+m0§ F 00.35.“ v.0 u -. mo+mmm. F 000mg. F mo+m Fn. F mo+wnn. F mo+mon. F mo+wN0. F 00+MNO. F mo+mNo.N mo+vaN mo+m F0.N 00+mmvd mo+mo0N 00+wno.N mo+wno.m 00+m0N.m mo+won.m mo+mh00 00+m FN..V mo+mhn.v mo+mn0.v mo+wNv.n mo+mno.n mo+wmnn mo+wv0N mo+mvoo mo+wNo.o vo+w Fo. F ¢0+va. F vo+w0N. F 3+wnv. F 3+mnn. F 3+moo. F 3+m0NN 3+wvn.N 3+mnmN vo+m0v.m 023m NV. u 1. oo+mn0N mo+woo.o mo+mh F0 mo+mmmo mo+wNn.0 mo+w FN.0 00+m F00 oo+mNF.o mo+mfim.0 mo+mhno mo+w F00 vo+m F0. F vo+wmo. F 3+m00. F vo+woo. F vo+m0 F. F vo+mnF. F vo+m0F. F 3+mmN. F vo+th. F 3+mwm. F vo+wno. F vo+m Fv. F vo+m§x F 3+mmn. F vo+won. F vo+wnn. F 3+mwh. F vo+mN0. F 3+w Fm. F 3+m F0.N Vo+wNF.N vo+mv~d vo+mhmd vo+mNnN 3+MO0N Um. v.0 u -. No+whn.n N0+w FNn No+w00.n No+m Fo.n No+mh F.0 N0+wnmn No+w0nn No+w0hn No+w¢0.n No+wo F.N. No+wovK No+wvnK No+wN08 No+wNN.o No+mmn.0 News-0.0 No+mnN.0 No+mnn.0 mo+w F0. F 00+w00. F mo+m F F. F no+w0 F. F mo+m0N. F mo+wom. F mo+mnm. F mo+mn¢. F mo+wnn. F mo+wnn. F 00+moh. F mo+wN0. F 00+MNON no+mnNN oo+mnV.N mo+mond mo+w00.N mo+w0N.m Um. NV. u -. no-mx-mn no-mnmn no-wN F .0 no-woo.n oo-mnon no-mvun no-m Fn.n no-movn no-wnmn no-mNNn no-wo F .n no-mnoé no-mmo.v no-mofiv no-mhné no-mgé no-mwoé no-wo F .F... 00-m00.v no-wmod no-mood no-whnd no-wmn.m no-wovd no-whwd no-mv F .0 no-m Foo no-mooN no-mnhd no-mwnd no-movd no-mnmd no-NVNN no-m F F.N oo-moo. F no-wno. F U. v.0 n -. nonmomo no-wnho no-mfino no-Mmmd no-m F F.0 no-wQQK no-mnoK no-mmvfi. no-w FN.N no-woon no-wnkn no-mvnn no-wNmn no-Nood no-mnon no-wvnn no-m Fvn no-mo F .n no-mnmé no-wmhé no-m Fné no-mow.¢ no-mhoé no-mnod no-mvnd no-wmvd no-mNN.0 no-w F00 no-w F0.N no-m F0.N no-w FUN no-MNNN no-mvoN no-wno. F no-mmn. F no-mwn. F U. NV. fl .— 00F F0.F 00. F 00.0 00.0 0.0.0 00.0 00.0 3.0 00.0 «0.0 5.0 00.0 00.0 000 0.0.0 000 00.0 30.0 00.0 ~00 5.0 00.0 2.0 2.0 :0 00.0 who 3.0 2.0 2.0 {.0 2.0 00.0 00.0 0.0 0> no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U> 81 Fo+mno. F Fo+wh0. F Fo+m F0.N Fo+w F0.N Fo+woo.N Fo+moo.N Fo+w00. F Fo+w00. F F0+wh0. F F0+m00. F Fo+w F0.N Fo+mho. F F0+wn0. F Fo+moo. F Fo+w F0.N Fo+mN0.N Fo+m3.N Fo+mno.N Fo+mno.N Fo+mmo.N Fo+w F0.N Fo+w F0.N Fo+m00. F Fo+m00. F Fo+m F0.N Fo+w F0.N F0+m00. F F0+w¢od F0+wn0.N Fo+w F0.N Fo+w00.N Fo+wno.N Fo+w¢o.N F0+w F0.N Fo+m¢o.N NF: 5:» U 0F.- 5:» U 00: 5:» U 0301 Fo+m F0. F Fo+w00. F Fo+w00. F Fo+w00. F Fo+m00. F Fo+w00. F Fo+mbo. F Fo+w00. F Fo+wno. F Fo+wn0. F Fo+m¢0. F Fo+w00. F Fo+m F0.F Fo+w-0. F Fo+m00. F Fo+m F0. F Fo+woo. F Fo+m00. F Fo+m00. F Fo+w F0. F 3+wa F Fo+mno. F Fo+mn0. F F0+who. F Fo+mn0. F Fo+w00. F Fo+m00. F Fo+m00. F Fo+m00. F Fo+mko. F Fo+mn0. F Fo+m00. F Fo+who. F Fo+m00. F Fo+wh0. F Fo+m00. F 0.3m. Fo+mN0. F Fo+woh. F Fo+whfi F Fo+w0\-. F Fo+mnfi F Fo+w0h. F Fo+mnh. F 3+va F F0+MNN. F Fo+w¢h. F Fo+mofi F Fo+w F0.F Fo+m F0. F Fo+mofi F Fo+mn~u F Fo+mnh. F Fo+mv~u F Fo+mnh. F Fo+mofi F Fo+mnfi F Fo+mVN F Fo+wvfi F Fo+mvN F Fo+wm~u F Fo+mn\-. F Fo+m\-\-. F Fo+mvN F Fo+mNN F 5...me F Fo+w FN. F F0+won. F Fo+m F». F Fo+mE-. F Fo+wv~u F Fo+m0N F Fo+w¢fi F czar. mo+whmé mo+moo.v 00+mhh€ mo+wn~n¢ mo+w00.n mo+mnm.n mo+mov.n no+whvn mo+wNn.n mo+wh§n mo+wnNn 00+m FN.0 00+wnnn mo+mnmn mo+m Fn.n mo+wovn mo+moNK 00+MNOK 00+MO0K mo+wnofi 00+won.o mo+wnfio mo+whfi0 mo+mo F .0 00+wn0.0 mo+w00.0 vo+wNo. F vo+moo. F vo+w00. F .vo...mo F. F vo+me. F vo+va. F vo+m-N. F ¢o+w00. F vo+w0v. F vo+m\-.V. F "VF—am v.0 n ... No+moN.m No+wNm.m No+w0n.m No+wom.m No+wvn.0 No+mohd No+mn~uo N0+mho.v No+m F Fé No+m0N..V No+mhné No+mon..u No+wwo.v No+va.n No+woo.n No+m0Nn No+mnv.n No+w¢0.n No+moNn No+mno.n No+mmnn No+mhfin No+wmofi No+mvw.h No+w00.\- N0+wno.\- No+w0 F .0 No+wnn.0 No+moo.o No+mh¢d 000mb F. F 00+m0N. F oo+moo. F 00...va . F mo+moN . F 00+NNN. F 09.3%” N1. n -. mo+mofiv mo+wv0.v mo+m00.v mo+wmoé mo+moo.v mo+wmo.n mo+mmo.n mo+va.n oo+m0N.n oo+mnN.n 00+w Fn.n 00+m00.n mo+m3n mo+m Fn.n mo+m0n.n mo+m¢nn mo+m FNn mo+m0Nn mo+mhnn mo+wv0.n 00+MN00 oo+m F Fn mo+m0Nn mo+mown 00+m000 mo+movn mo+monn 00+mmnn 00+mo0.0 oo+w Fn.n mo+mmoN mo+wn F K mo+mnwfi 00+m FvK mo+wnnK 00+mohfi Um v.0 n -. No+m¢F.0 No+mh F .0 No+m FN.0 No+mvmd No+w\-N.o No+w Fn.n No+wnm.0 No+m00.m No+mmvn No+mbvd No+m Fn.n No+wnn.0 No+mon.m No+mnn.m No+m FN.0 No+mnfim No+m Fn.n No+whoo No+mmm.m No+m00.m No+mno..w No+m F F.v No+wo F ..V No+wnN.v No+mmm.¢ No+m FYV No+mowé No+wnné No+mnn..v No+mnhé No+m¢0sv No+w00..v No+m00.n No+mow.n No+m Fn.n No+mvv.n Um NV. n -. no-mvo. F no-mmo. F no-mNo. F no-m F0. F no-moo. F no-wmo.0 no-mwoo no-mmfio no-mwnd no-mNn.0 no-m F10 no-womo no-mo F .0 00-m00.0 no-moo.o no-mnod no-mnx-o no-mvno no-mwnd no-w F10 no-momo no-woF.0 no-mnod no-wnofi oo-wmofi no-m FN.N no-monK no-movfi no-mnMK oo-MVNK no-wNFK no-momn no-moon no-mnhn no-mmnn no-wown U. v.0 u -. vo-won. F vo-won. F .Vo-wnn. F vo-wvn. F Vo-wmn. F Vo-m Fn.F Vo-wov. F Vo-wov. F .Vo-mnfi. F vo-ms. F #9me F vo-mov. F 0.0-mom. F vo-whm. F wo-wnm. F .Vo-wmo. F vo-m F0.F vo-wmm. F .Vo-th. F Vo-wnw. F vo-mVN. F vo-wNN. F g-wom. F vo-moF. F Vo-mnF. F vo-mmFF vo-mNF. F vo-mmo. F Vo-mho. F wo-mno. F vo-mmo. F vo-moo. F no-wmoo no-mwnd no-m de no-moF.0 U. NV. l A .wwtwttvtttwwwwmmwwmwnnnn m mono OFNMVDONQQO m uoaqqoqg FN vnohoooFngmmhm no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U) M NF.- FF...» U 0F.. .2...» U 00: 5:» U 25¢ F0+MNO. F 23¢ F0+w05. F F0+mtu F Fo+w00. F 23¢ 00+MON.0 00+wh0.0 00+MON.0 00+M0¢.0 00+M0n.0 00+m0§0 00+wnn.0 00+w00.0 00+mooé 0o+wn0.0 00+m F00 0o+mvn..~ 0o+m Fn.F. 09.3% 1.0 n -. N0+mNN.N No+w00N No+m Fwd N0+m FUN No+mnvd No+m FUN No+m0nd No+mnfiw No+m F0.N No+mN0.N No+mh0.N No+mNo.0 No+w0~.0 ave—aw NV. u -. 00+w0N.v 00+m0N.v 0o+m00.v 00+mn0é 0o+w00é 0o+m0vé 0o+mnvé 0o+w0n.v 00+wvn.¢ 00+m0n.v 00+mwné 00+wnn.v 0o+won€ 00+mnfi¢ U¢ v.0 u A No+m.C-.N No+mofim No+w F0.N N0+w00N No+mood No+m00N No+m F0.N No+m00.N No+w00.N No+w00.N No+wwo.0 No+wvo.0 No+m~0.0 No+m0 F .0 U¢ NV. u -. no-MNFF no-wnFF no-wnF.F no-wn F.F no-va. F no-w0 F. F no-mm F.F no-w F F. F no-mo F. F no-moo. F no-mmo. F no-Mno. F no-mno. F no-mno. F U. ‘0 u -. vo-w F0. F vo-moh. F vo-wnh. F .Vo-wnh. F Vo-mnh. F Vo-m0b. F vo-wwh. F Vo-m FN.F vo-won. F wo-MNQ F vo-wnn. F vo-wwnF Vo-w0n. F vo-m F0. F U. NV. n -. «0. F F0.F 00. F 9.. F 9.. F S. F 00. F 03 3F SF 9.. F F... F 00. F 00. F 0> no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U> 83 No+mm F .N No+m F F.N No+mnN.N N0+M0nN No+m_0\-.0 No+wno.0 0o+w0~é 0o+mn0.v 00+mm~n 0o+woo.v 00+wn0N 00.0w» F. F No+mooN F0+m¢0.n Fo+w00. F oo+mv0.0 00+mx-Nn 00+mhn.0 oo+w0n.N oo+w F0. F Fo-MON.0 Fo-mvofi oo+mn0. F oo+wnv. F 00+M00. F Fo-mown F0-w0~.0 No-mw0.0 0F.- £30 U 0F.. .5...» U 1F: 5...» U NF: 5:0 U 3: 5:0 U 23¢ ~0+MON. F No+m0 F. F N0+w0N. F No+m3~. F No+w00N No+w00.n 00+w00.N 00+m0vd 00+m00.w 00+wNN.N 0o+m0n. F «0.09.0.0 N0+mv0..V Fo+mn0.0 oo+wvw.0 oo+m~o.n 00+m FN.0 00+m00N 00+MOV. F 5.90.0 Fo-w00é Fo-wnN.0 Fo-mmon Fo-wnmn Fo-wond Fo-wuo. F No-van mo-w Fn. F 23¢ F0+M00.0 Fo+w00.n Fo+mv0N F0+M00.0 ~0+mn F. F No+mv0N 0o+w0¢. F 00+mn0. F 00+M00. F 00+mnN. F No+mn F.0 No+w0\-.0 No+mnNN Fo+m0N F oo+wn¢.n 00+w00N 00+w00.N 00+w F F. F Fo-mn0.0 Fo-m00.0 Fo-mhm. F Fo-mmF. F Fo-mnn. F No-wvwd No-wv0.¢ No-wwm. F No-mmn. F 00-w0 F .0 23¢ F0+mn0.0 Fo+w FN.0 Fo+wn0.0 F0+m Fné Fo+mnv0 ~0+MFn. F No+w0~.0 ~0+MO0K No+m Fv.0 No+m0 F <- No+w00.n No+mn F.N No+m00. F Fo+w F0. F oo+m~.0.0 oo+wnn. F Fo-mv0.0 Fo-van F0-m0 F .0 Fo-mne. F No-mvon No-wnm. F No-mnvd No-wwv. F No-w00. F No-wvo. F 0o-mou.0 0o-w05K 23¢ Fo+m0 F .N Fo+m~o.N F0+w0 F .N F0+mmvN Fo+mo0.0 Fo+w F00 No+mwfiv No+m00.v N0+mvmn No+m00.v No+w F0.0 No+wnN. F Fo+mnv.\- oo+m00.n oo+m\-V. F Fo-mNNK Fo-w~.v.F~ Fo-wx-o. F No-m00K No-MFNN 0o-wcmfi 0o-mv0.0 0o-wNnN 0o-mno.0 00-m0~.0 000050 00.90. F No-mNN. F 23¢ 00+mnfi0 00+wno. F 000mg. F 00+wFaNN 00+wnn.0 00+mnh.n 0 F+m Fv. F 0 F+w0N.0 F F+m\-0.n F F+m00. F F tux-NV 0 F+mn0.0 00+w00.0 00+m FN.N 00+wn0.v 00+mo F .0 00+w00.N 00+w00d 00+m00.N 00+wo F. F 00+w0vd 00+wNv.n 00+w00.0 00+wnvd o F+wNv. F 0 F+mm0. F 00+m¢~.n 00+w00.v 00+m\-0.¢ 00+MOY0 0:30 «.0 u -_ 0o+m~0K 00+mn0.0 00+mmm. F 00+m Fm. F 00+w00N 00+mnn.0 00+m~0.n 00+m~fis 0 F+M00. F o F+m00.N 0 F+w~0K F F+m Fn.N F F+m Fné N F+m~N. F F F+M0 F.0 N F+mvN. F F F+w0nK F F+MNO. F F F+w0N.0 o F+m3.n 0 F+mtx~ F F+m FN. F o F+m0~.v 0 F+w F0. F 0 F+m0N. F 00+m00.n 00+m\-N.0 00+m0n.N 00+m00.0 00+m~0€ 0:30 FN. u A ho+m F F.F. ho+m¢0n ho+mom.0 no+MO0N 00+mno. F 00+won. F 00+mNN.N 0o+w00.v 00+m0v. F 0 F+w00. F- 00+M0~. F- 00.505.5- 00+wvon- 00+m00.0- 00+m0n.n- 00+mno.n- 00+w00.v- 00+w0n.v- 00+mov..1 00+moo.n- 00+m~0.¢- 00+m Fn.v- 00+m Fn.¢- 00+M0v.v- 00+m~0.v- 00+mNNK- 00+w00.0- 00+mNN.n- 00+m~n.n- 00+m0~.n- 00+M0o.n- U¢ v.0 n -. 8&8.~ 8&3...” 3&8;q 84.800 3&8.» 8&8. F 8& F0. F 8&8.“ 8&8.0 8& F06 8&80 8&8. F 8&8.0 0 2.8 F. F 0F&0F.0 0F&00.~ 8&80 8&0; 8&8.N 8&3. F 8&8.0 8&8.N 8&8. F 8& FN. F 8&8. F 8&80 8&80 8&060 8&8. F 8&3. F 8&0 F. F 3. FN. a ._ mo-mNN. F oF-w F00 oF-wnod 0F-m F00 oF-m0né oF-wN0.0 oF-mnN.N 0F-w0F.F F F-w00.0 NF-mn0.¢- F F-m F00- F F-wSVn- F F-w0N.0- F F-mwmd- F F-moF.0- F F-w00.0- oF-m00. F- oF-wmo. F- o F-quF. F- oF-moo. F- oF-wwo. F- o F-w F F. F- 0 F-m F F. F- oF-M0 F. F- oF-mvw. F- F F-w00.0- F F-w Fn.n- F Twad- F F-wvnd- F F-w0¢.0- F F-wn0.0- U. v.0 n -_ £00.05 000 530.0%. 0:; 08300 0.0... .8 $00 003. 00.... £00 .0 20$ mo-w F0.F 00-m FF..F mo-moF. F 0F-mh00 o F-mhmn 0F-whné 0F-w F0.0 0F-MNNN 0F-mvn.F oF-mwoF F F-mt-n F F-mnn.N NF-mon.0 NF-mnn.v NF-monF NF-mn F.N NF-mohN NF-wn F.n F F-w00.F F F-mmF.0 FF-wo0.F FF-m0VN F F-m0v0 F F-w0F.v FF-M0hé F F-w0F.n FF-wswn F F-wnFn FF-moon F F-w F0.F~ F F-wnn.v U. FN. u -. 00.0 00.0 000 R0 000 00.0 00.0 00.0 ~00 FN.0 00.0 2.0 8.0 :0 2.0 0F.0 3.0 0F.0 NF.0 F F0 30 00.0 000 0.0.0 000 00.0 3.0 00.0 «0.0 F00 00.0 0> no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U> 84 F0+000.n F0+00 F .0 5+0 F0 .0 F0+06n .0 F0+000.0 F0+000.5 F0+00n.5 F0+000.5 F0+00 F .0 3.0560 5.00000 F0+000.0 F0+000.0 00+000. F 00+00 F. F 00+000. F 00.050. F 00+000. F 00+006. F 00+00n. F 00+050. F 00.005. F 00+050. F 00+000.0 0o+00 F .0 09060.0 00+000.0 09006.0 00+000.0 00+005.0 00+005.0 00+0 F0.0 00+000.0 00+050.0 00+000.0 00+006.0 0F.- 5:0 U 0F.- 5.3 U 6F.- c...» U 0...- E...» U 0F.- .2...» U 23¢ F0+000.6 F0+000.6 F0+0no.n F0+05 F.n Fo+0 F6.n F0+0n0.n F0+000.n 500500 5000 F .0 F0+0n0.0 F0+00n.0 F0+0o0.0 F0+00 F .5 F0+066.5 F0+000.5 F0+000.0 F0..0 F0.0 F0+00o.0 F0+00n.0 00..0 F0. F 00+000. F 0o+0 F F. F 00+00 F. F 00+000. F 00+000. F 00+060. F 00+050. F 00+006. F 00+006. F 00+0nn. F 00+000. F 00+000. F 00+005. F 00+000. F 00..0 Fn. F 00+000. F 23¢ 5.0 0.0 F0+000.0 F0+000.0 F0+000.6 F0+05 F6 F0..0 F06 F0+000.6 F0+0566 F0+000.6 Fo+0 F06 F0+000.6 F0+000.6 F0+000.6 F0+00F.n F0+000.n F0+006.n F0+050.n F0+000.n 500 F F.0 F0+0n0.0 F0+00n.0 F0+005.0 Fo+0 3.5 300005 F0+000.5 Fo..0 05 30060.5 F0+000.0 F0+00n.0 F0+000.0 F0+050.0 Fo+0 F6.0 Fo+0 00 30006.0 F0+0on.0 F0+000.5 23¢ F0+00o.0 F0+0no.0 F0+0n0.0 F0+05o.0 F0+00 F .0 F0+000.0 Fo+060.0 F0+0n00 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+050.0 F0+006.0 F0+006.0 Fo+mnn.0 300 0.0 F0+0o5.0 F0+005.0 F0+000.0 F0+000.0 F0+000.6 F0+06F6 F0+0506 F0+006.6 F0+000.6 F0+000.6 F0+0506 F0+0506 F0+000.n F0+000.6 F0+000.n F0+05n.n F0+000.n F0+0056 F0+000.6 23¢ F0+000.0 F0+000.0 Fo+0 F0.0 3.0000 3.0000 F0+000.0 F0+000.0 F0..0 F0.0 F0+000.0 F0+0n0.0 F0+000.0 F0+000.0 F0+000.0 Fo+0 F0.0 F0+000.0 F0+000.0 F0+060.0 F0+050.0 F0+000.0 F0+000.0 F0+0n0.0 F0+050.0 F0+006.0 500060 3.0000 F0+00n.0 F0+00n.0 F0+000.0 F0+065.0 F0+000.0 300000 5.0080 F0+00 F .0 F0+000.0 F0+000.0 F0+000.0 23¢ 00+000. F 09060.0 no+05n.0 00+000.0 09006.0 no+0oo6 no+0 Fo.n no+000.n n0+060.0 09000.5 no+0n0.0 00+05 F. F 00+066.F 00+000. F 00+0n0.0 00+000.0 09050.0 09005.6 00+060.0 09060.0 50+000.F 5o+006.F 50.000. F 59006.0 59000.0 50+0006 5o+0n0.0 5o+000.0 00+000. F 00+00n. F 00+000.0 00+000.0 00+000.0 00+005.n 00+000.0 00+000.0 0:30 6.0 a -. 60+0 F06 6o..0 F0.n 60+000.0 60+00 F .0 no+0 F0. F no+000. F 00+000. F 00+000.0 n0+000.0 n0+006.0 no+0on6 no+000.n 09005.5 00+000. F 0o+000 . F 09.005. F 00+000.0 00+05 F .0 00+00 F .6 0o+0 F0.n 0o+0nn.5 50+0oo. F 50+060. F 5o+005. F 59006.0 50+000.0 50+0506 50+000.n 50+0 F0.5 00+060. F 00+006. F 00+000. F 00.0060 00+00F.0 00.00 F 6 09.0650 0:2” .0. n J 60+050.0 60+000.0 60+000.0 69000 .0 69.0 50 69.0006 690 F56 60+000.0 690000 60.0 00 69006.5 60+06n.0 60+000.0 no+06F. F no+060. F 00+000. F no..0 F0. F 00+000.0 no+0n0.0 00+000.0 09.0066 000.0600 00+000.5 00+050.0 00+000. F 00+000. F 00+06 F .0 00+050.0 00+005.0 00+000.0 00+060.0 090060 59000. F 50+050. F 59006.0 5o+000.0 U¢ 6.0 n -. 09050.0 00+06n .0 00+00 F .6 0o+0n06 0o+0n5.n 00+000.0 00+000.0 690 F0. F 60+0n0. F 60+0nn. F 60+060. F 60+0n6.0 60.00 F .0 60+0006 60+00 F .n 69005.0 60+065.0 no+0n F. F no+0 Fn. F 00+000. F 00+000.0 no+0on.0 no+060.6 no+05 F .0 00+000.0 00.00 F . F 00+056. F 00+000. F 00+000.0 00+056.0 00.0006 00+000.0 00.0 F6.0 5o+00F. F 50+056. F 50.000. F U¢ F0. u .— 00.03..F 00.003 00.0F0F 00.003 00.003 00.00: 00.003 00.0000 00.0000 00-0000 00.0000 00.0000 3.0.00.0 00-0.00... 00-0000 8.0.2.0 00-0000 00.000 00.00: 00.003 00.00: 00-0000 00.0000 00.0000 00.0. F F... 00-020 09000.0 00.005 00.003 00.0000 00.050 00.0000 00.0000 00.0000 00.0000 00.000. F .0. 10.4 no-000. F 000 F6. F 000 F0. F no-00o. F 00005.0 00050.5 000 5.0 00000.6 00000.6 00000.0 0o-00n.0 00060.0 00-000. F 00000. F 50000.0 50066.5 50005.0 50000.6 50000.0 50000.0 50000. F 50006. F 50000. F 0000 F .0 0000 F0 0o-00n6 000 F6.0 00000.0 00000. F 00066. F 00050. F 00050.5 00000.0 00006.6 00000.0 00000.0 U. F0. n -. 00.0 00.0 00.0 00.0 0.0 00.0 00.0 00.0 50.0 00.0 00.0 60.0 00.0 0n.0 no 000 06.0 06.0 56.0 06.0 n6.o 0.0.0 000 F00 00.0 00.0 00.0 00.0 00.0 00.0 3.0 00.0 00.0 F00 0> 00.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 00.0 00.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 00.0 00.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 no.0 U> 85 F0+000.6 F0+000.6 F0+006.6 F0+006.6 F0+006.6 F0+006.6 F00000 .6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F00000 .6 F00000 .6 F00000 .6 F0+000.6 F000 F06 F0+000.6 F0+000.6 F000656 F0+0056 F000056 F000606 F0+000.6 F0+000.6 F000 30 F0+000.0 F0000 F .0 F0+060.0 F0+000.6 F0+000.0 F0000 F .0 F0+050.0 F00000 .0 300050 F0+000.0 0.... 5..» U 0.... 3...» U 0.30 F0+000.6 F0+000.6 F0+000.6 F0+0606 F0+000.6 F0000F6 F0+00F6 F0+000.6 F0000 F6 F0000F6 F0+0 F F6 F0000F6 F0+06F6 F0000F6 F0+000.6 F0+000.6 F0+000.6 F0+00F6 F0006F6 F0005 F.6 F0000F6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F0+000.6 F0000 F6 F0+000.6 F0+000.6 F0+000.6 F0+006.6 F0+000.6 F0+000.6 F000 F56 F0+0056 0.03. 3.0050 F0+000.0 F0+050.0 F000 F5.0 50005.0 30005.0 F0+005.0 F0+005.0 F00005.0 F0+005.0 F000 F5.0 F00005.0 F0+0 F5.0 F0+050.0 F0+000.0 F000 00 F0+000.0 F000 00 F0+000.0 F0+000.0 F0+000.0 F0+050.0 30005.0 50005.0 F0+0 F0.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F00005.0 F00005.0 F0+005.0 F0+000.0 F0+060.0 F0+050.0 6F.- 8....» U 0F... 5:» U 0—... 5:0 U 0.51 F0+000.0 F0+000.0 F0+050.0 F0+000.0 F0+050.0 50006.0 F0+050.0 F0+060.0 F0+000.0 F0+000.0 F0+000.0 F000 00 F0+000.0 F0+000.0 F0+000.0 F0+00F.0 F0+05 F.0 F0000F.0 F0005 F.0 F0000 F.0 F0+000.0 F0000 F.0 F0+000.0 F000 30 F000 30 F0+000.0 F0+000.0 F0+060.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+050.0 F0+000.0 2000 F0000F.0 F0+060.0 F0+000.0 F0+000.0 F0+060.0 F0+000.0 F0+060.0 F0+000.0 F0+0 F0.0 F0+000.0 F0+000.0 F0+000.0 F0+0 F0.0 F0+000.0 F0+000.0 F0+005.0 50055.0 50005.0 F0+055.0 F00055.0 F0+000.0 F0+000.0 F0+050.0 F0+000.0 F0+000.0 F0+000.0 F0+000.0 F0+050.0 F0+000.0 F0+060.0 F0+0 F0.N F0+006.0 30056.0 50066.0 F000 F6.0 F0+000.0 0.30 600006. F 600000. F 60+000. F 60+055. F 600050. F 600.000. F 60+000.0 60+00 F.0 60+000.0 6000600 6000 F0.N 60+000.0 60+000.0 60+000.0 60+000.0 60.00 F.0 6000500 6000050 60+0006 6000006 60+0606 600.0006 60+000.0 6000500 60+00F.0 6000050 6000 F0.5 6000 F0.5 6000060 60.0 F0.0 00+060. F 000.00 F. F 000000. F 000006. F 000000. F 000005. F 0.53” 6.0 u .. 0000 F6.0 0000600 00+000.0 000000. F 000000. F 00005 F. F 00+000. F 000060. F 000.006. F 00+000. F 000060. F 000.005. F 00+000.0 00+050.0 0000 F0.N 00+000.0 00+005.0 00+000.0 00+000.0 00+000.0 0000006 0000006 0000 F F.0 00+005.0 00+000.0 0000065 0000 F6.0 0000 F00 60+0 F F. F 600000. F 600006. F 60+005. F 60+000.0 6000560 6000600 60+000.0 068” F0. n .. 00+000.5 00+000.0 00005F.0 00+000.0 00+000.0 0000 F50 0000 F00 00+00F.0 0000600 0000500 0000 F00 60+0 F0. F 60+000. F 60+000. F 60+000. F 60000 F. F 600.00 F. F 60000 F. F 600000. F 600050. F 60+000. F 60+000. F 6000 F6. F 600056. F 600000. F 600.000. F 600000. F 600065. F 600000. F 6000 F0. F 60+0 F0.0 60000F.0 60+060.0 6000500 60+000.0 60+000.0 UM. 6.0 u .. 00+000.0 0000600 0000060 00+000.0 00+060.0 00+005.0 0000500 0000006 00006F6 00+0006 0000666 000.0 F06 0000006 00+000.0 00+000.0 00+000.0 00+005.0 0000500 00+000.0 00+005.0 00000 F .5 00+000.5 00+000.0 00+000.0 00+000.0 00+000.0 00+050.F 00000F. F 000000. F 000000.F 000000.F 000000. F 000050. F 00+000.0 00+000.0 00+000.0 Um. F0. a .. 00050.0 00000.0 0000F.0 00000.0 00050.0 00065.0 000 00 00006.0 00000.0 00000.0 00020 00000.6 00000.6 000056 000506 000666 000006 0000F6 00000.6 00000.0 00000.0 00050.0 00000.0 00006.0 00050.0 0006F.0 000 50 00000.0 00005.0 00000.0 00006.0 00000.0 00060.0 00.0 F F.0 00000. F 00000. F U. 6.0 n .. 60060. F 60000. F 60006. F 60006. F 60000. F 60000. F 60000. F 60000. F 60.0 F0. F 60-05 F. F 6000 F. F 60.000. F 60060. F 00000.0 00006.0 00000.0 00000.0 00000.0 00000.5 000 F6.5 00.0 F0.5 00-0 0.0 000 00 00000.0 00066.0 00000.0 00000.6 00000.6 00050.0 00000.0 00000.0 00000.0 00000.0 00000.0 0000 F .0 00.050. F U. F0. u .. 00.0 00.0 00.. 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 2.0 00.0 00.0 E0 00.0 00.0 {.0 00.0 00.0 00.0 00.0 0> 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 U> 86 wo+wowé 3.7mm _. .v wo+wo F .V wo+mmwé Po+womé Po+wwm.v wo+wvv.v wo+mofiv Fo+mmwé Po+wmwé Fo+mwwé Po+wwmé Fo+mmmé wo+mmw.v wo+wNN.v wo+mmNé Po+mowéq wo+wNN.v wo+mmmé vo+m 54V Fo+wowé wo+mwwé 3+th€ vo+mfimé 5.7m wmé Fo+wmm€ Po+mmm.v Po+mov€ wo+mnvé 2... E...» .v 0.... 5:0 a 030m— Po+wnmd wo+mmm.m ro+mmmd Fo+mmm.m wo+m©m.m wo+mmmd Fo+wooé ro+mooé vo+womd Fo+mmmd wo+w®qm vo+wmmd vo+mwmd vo+m¢oé wo+mNo.v wo+m~md Fo+wmmd wo+m®m.m wo+wwm.m wo+mmm.m wo+wmmgm wo+w®md vo+m¢md wo+wmmd eo+wmmd Fo+mmmd Fo+whmd Erma—av Fo+ww F6 Fc+mvo€ Fo+wmo.v 0301 Po+wm0d Fo+mhod Po+wofim wo+mNNm Fo+mmfim Fo+wvfim wo+mmwd wo+mNfim Po+whfim Fo+mhfim Fo+wmod Po+wmo.m Fo+wmfim Fo+mofim ..o+mww.m Po+wmfim wo+mwfim wo+m Fn.n wo+w Cum wo+mmfim Po+wofim wo+MNQm wo+mmmd 3+mn9m wo+whod wo+mmod wo+m®od wo+wmod wo+mem ..o+mo~..m wo+wmfim wo+mem wo+mmfim 3... 53¢ a NF; 5:0 0 Sn. 5:» a 030m— wo+mmvd Fo+wv¢.m wo+mmmd ..o+w~m.m vo+wmm.m 23¢de Fo+mh¢d vo+wmwd Fo+whvd Fo+w Fn.n Fo+whmd Po+wmmd Po+wm¢d ..o+mo¢.m wo+wmvd wo+mmvd Fo+wov.m Fo+womd wo+mmm.m wo+wom.m wo+mm¢.m wo+mmvd wo+mmv.m wo+movd wo+wmvd po+mN¢d remand Fo+mmvd wo+mm¢d wo+mmm.m Fo+ww¢d wo+wom.m Fo+mmvd Fc+movd vo+m 3.0 033. wo+mmm.m wo+momd wo+womd wo+mmmd Fo+wmmd Fo+mmmd wo+wmmd wo+whwd wo+mmwd 99¢de Po+momd Fo+mom.m Po+mmmd Fo+m Fwd 21¢de ..o+mm~.m Fo+wow.m wo+med wo+w 5.0 wo+wwmd wo+mNN.m wo+mmfim Fatwa—um wo+ww F .m wo+mm_..m Fo+mo—..n wo+wmw.m Fo+mmw.m 5.7mm rd Fo+wmvd Fo+mm _. .m 99mm...” Po+wofim wo+wm _‘ .m Po+mo—..m 21¢de 0.31 «9656 mom—8+ 8.62.6 mo+mm~é mo+mmo.m woman...“ mo+wov.m mo+mntm 8&3...“ mo+mtnm mo+wm~d mo+m FN.0 mo+mmm.o moimmd mo+w 5.0 mo+mmvé mo+mm~fi mo+mmms 8&8.» SEEK 8&8.» 8.59.5 mo+mtum mom—w; mo+wmmd moflmwd 3+mmo. F 3+mmo. F 3&8. P 3+wm P. P 3+mm~é 3+wvm. F SEN; 3+mom. P 3.591 3&3... 2.2m to u ._ No+mmh€ No+w©w. e No+wvoN No+wmm. F No+wm _..N No+m0N.N No+mowd No+m3wm No+w3~N No+w3xN No+mva No+mv~hN No+mowd No+momN NO+MNQN No+w «Cd No+mmm.m No+m¢md No+mvmd No+mom.m No+mvmd mo+momd No+m®—..v No+wmm.v No+mNm.v No+mNm.v No+mhmé No+mnod No+mm¢fi No+wNm.m No+mm F .0 No+mmNd No+mmfio No+mo w .h No+m 5.5 «0.53.» 022m 3. u .— mo+mmfiv mo+wvm.v mo+mmw.v mo+wmm.v mo+mwmé mo+mmo.m mo+mmo.m mo+mvwd mo+wow.m mo+MmNm mo+w Fn.n mo+wmm.m mo+w3d mo+w E6 «Armand mo+m¢o.m mo+w Fn.n mo+mm~um mo+mhm.m mo+wvm.m mo+mmod mo+m w _..o mo+Mo~d mo+wmwd mo+wwmd mo+mw¢d mo+wmm.o mo+mmmd no+mow.® mo+m rmé gimme.» mo+mm PK mo+thK mo+m 3.x. mo+wmmfi mo+monfi um— vd n .— No+w 5. P N0+wNm. P No+wvw. F No+mom€ No+wmm._. No+m Pmé No+wmm. w No+mmm.F No+wmm. —. No+moo.N No+wNo.N No+mmoN No+mwod No+m F —..N No+mv—..N No+mb flu No+m0N.N No+meN No+thN No+mom.N No+mva No+mme No+mN¢N No+mov.N No+m 5N No+mmmN No+mooN No+mmoN No+moNN No+mm~uw No+mwmd No+wwmd No+wmm.N No+wNo.m No+mmo.m N0+mh fim um wN. n .— mo.wvo. _. moflmo. w mo.m~o. F mom 5... mofloo. w moflmmd 8mmmd gwwsd wo.m~m.a moflwmd 09w Sta Smomd moumm Pd ®9wmod oo.mmm.m mo.mow.w amend 8&3.» Smwmd oo..m 36 mouwomd awed oo.moo.m momma.» mqwmwfi moum E.» monmomfi aunts momma.» swfiwfi ecumN—uh oo.mmm.m oonmwmd oqmmhd oo.m~m.o summed U— Qd I A womxkd awvfiw 5m KN amwod commod «6&me awmmd amomd awmmd voumomd awhvd XYNVVN SYN 3N wouwhmd amend vonw 5d voumhmd awfiwd voumomd vows rd XwiFN vouwo F .N awhod XYNMQN XVNOON vows. w amumé ammo. w voummmé voum Fn.F combs; commKé amen... voummmé vonwww. F amwm. r U. FN. u .— EWQNQ PFPPPPPPPF 0301-0100 «@000 ”VIOCDNQ NNNNN“! FFFPFP $4 8; 8; a: 3; u: 9; 3; 3; 9; fl; :4 2; 84 8; B; 8; 8; 3; 8; u> mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mod mo. no.0 mod mod no.0 mod mod mod mod fi> 87 2... 5:0 v or... £3» a 3.... 5:» u NP... 5...» u Sn. 5:» u can”. 0:3. 0:0”. 23¢ mo+MmN.m mo+wnmd mo+mwwd mo+mwvd mo+mnod mo+mm~um mo+mmfim mo+wmwd mo+mmo.v mo+wmm.m mo+m 5d mo+mvmé ro+wmwd mo+m $6 033. 2:5 tan; No+th€ No+mmm._. No+wNm.F No+mhmé Newt”... mo+mmv._. No+w Fm... No+mmv€ No+mom._. No+moo._. No+mtuw No+mNNF No+m~k€ OCH—hm «N. u 4 mo+mow.v mo+mmN.¢ mo+mmm.v mo+mom.v mo+mmm.v mo+mmv.v mo+mnvé mo+wom.v mo+mvm1v mo+mmm.v mo+wwo.v mo+mo®.v mo+mo\..v mo+mmfiv by. v.» u .— No+wom€ No+m 5.? No+wN®€ No+m¢o._. No+mmm€ No+m®m._. No+wwmé No+mmm.—. No+m FN.F No+wNNw No+m¢hé No+mm~€ No+m~ké No+wmfiw um FN. u .— mo-m\. F. F mth P. F mo..mo F.F moflm _..w mo.m3.w moflm _.._. moflm P... mofl _‘ F... memo F.F moflmo... momma. F mouwho. P mo.mmo. P momma. _. U. vd u .— amm F.n 5m _. F.n vo.mmo.n ammofi voummod 3m Pod 39¢me voumomd vo.mnaN awomN voflmmd gummd "6&me XYNOQN u. FN. u .— mm. P B. r om. F 3. F 3. F 5.. F 9.. P me. F 3. F 9.. P me. P S. F ow. F 8. F a> mod mod mod mod mod mod mod mod mod mod mod mod mod mod u> 88 APPENDIX D DATA MANIPULATION IN EXCEL 89 This appendix describes how the different values needed for applying the shift and ratio method were determined. They are described in terms of the columns and rows as well as the equations used in the Excel file. The resistance (Rd) values for the short channel gate length device (column 5) are calculated in the Excel files by dividing the first column (Vd) by the drain current (column 3) for all gate voltages. Thus the Nth entry for the resistance value would use the following equation. Vd(N) R N -— 26 d() IAN) ( ) The resistance of the long channel device is calculated similarly by using the drain current values in column 4. The S-function (Sfunc) for the short channel device (column 7) is calculated in the Excel file by taking the difference between the resistance values for the short channel device (column 5) divided by the difference in gate voltages (column 2) for the respective resistance values. The absolute value of this division gives the S-function value. The Nth entry for the S-function uses the equation below. Si(N) - ab {Rd(N—1)—Rd(N+l) (27) Vg(N -l) - Vg(N +1) The S-function for the long channel device (column 8) is calculated similarly using the resistance values from column 6. The different ratio values are calculated by dividing the running average of the S-function of the long channel device (column 8) by the running average of the S-function of the short channel device (column 7). The Nth entry for the ratio for a defined ‘d’ shift value is calculated using the equation below. 90 a SON—2,SO N-l, r(N,6)- verage( ( ) ( )SO(N),S0(N+1),SO(N+2)) (23) average(s‘ (N - 2 — 6),Si (N — 1 - 6),Si (N -6),Si(N +1— 6),Si(N + 2 — 5)) 91 BIBLIOGRAPHY 92 [1] H. van Meer, K. Henson, J-H Lyu, M. Rosmeulen, S. Kubicek, N. Collaert, and K. de Meyer, “Limitations of shift and ratio based Len extraction techniques for MOS transistors with halo or pocket implants,” IEEE Electron Device Letters, vol. 21, pp. 133-136, March (2000) [2] K. K. Ng and J. R. Brews, “Measuring the Effective Channel Length of MOSFETs,” IEEE Circuits and Devices, November, pp. 33-38 November (1990) [3] Y. Taur, “MOSFET channel length: extraction and interpretation,” IEEE Transactions on Electron Devices, vol. 47 pp. 160-170, January (2000) [4] Y. Taur, D. S. Zicherman, D. R. Lombardi, P. J. Restle, C. H. Hsu, H. l. Hanafi, M. R. Wordeman, B. Davari, and G. G. Shahidi, “A new shift and ratio method for MOSF ET channel length extraction,” IEEE Electron Device Letters, vol. 13, pp. 267-269, May (1992) [5] J. W. Mayer, L. Eriksson, and J. A. Davies, “Ion Implantation in Semiconductors,” Academic Press Inc, NY, 1970 [6] K. Miyashita, H. Yoshimura, M. Takayanagi, M. Fujiwara, K. Adachi, T. Nakayama, and Y. Toyoshima, “Optimized Halo Structure for 80nm Physical Gate CMOS Technology with Indium and Antimony Highly Angled Ion Implantation,” IEDM, pp. 645-648, (1999) [7] Hewlett-Packard, “Operation and Service Manual Model 41458 Semiconductor Parameter Analyzer,” Yokogawa-Hewlett-Packard, September (1986) [8] K.-S. Yeo, S. S. Rofail, and W.-L. Goh, “CMOS/BiCMOS ULSl Low Voltage, Low Power,” Prentice Hall, NJ, 2002 [9] H. C. Casey, “Devices for Integrated Circuits’ Silicon and lll-V Compound Semiconductors,” John Wiley, NY, pp. 349, (1999) [10] S. Thompson, P. Packan, and M. Bohr, “ MOS Scaling: Transistor Challenges for the 21St Century, “ Intel Technology Journal, Q3 (1998) [11] Hewlett-Packard Co, “HP-IB Command Library for MS-DOS,” Hewlett- Packard, Edition 2, June (1986) [12] K. Ahmed, |. De, C. Osbum, J. Wortman, and J. Hauser, “Limitations of the Modified Shift-and-Ratio Technique for Extraction of the Bias Dependence of Left and de of LDD MOSFET’s,” IEEE Transactions on Electron Devices, vol. 47, pp. 891-893, April (2000) 93 [13] B. Cretu, T. Boutchacha, G. Ghibaudo, and F. Balestra, “New ratio method for effective channel length and threshold voltage extraction in M08 transistors,“ Electronics Letters, vol. 37, pp. 717-719, May (2001) [14] J. Y.-C. Sun, M. R. Wordeman, and S. E. Laux, “On the Accuracy of Channel Length Characterization of LDD MOSFET’s,” IEEE Transactions on Electron Devices, vol. ED-33, pp. 1556-1562, October (1986) [15] B. Yu, H. Wang, 0. Milic, Q. Xiang, W. Wang, J. X. An, and MR. Lin, “50nm Gate-length CMOS transistor with Super-Halo: design, process, and reliability,” IEDM, pp.653-656, (1999) [16] Y. Taur, C. H. Warm, and D. J. Frank, “25nm CMOS design considerations,” IEDM, pp. 789-792, (1998) [17] T. B. Hook, S. Biesemans, and J. Slinkman, “The dependence of channel length on channel width in narrow-channel CMOS devices for 0.35-0.13 mm technologies,” IEEE Electron Device Letters, vol. 21, pp. 85-87, February (2000) [18] J.-C. Guo, S. S.-S. Chung, and C. C.-H. Hsu, “A new approach to determine the effective channel length and the drain-and-source series resistance of miniaturized MOSFET’s,” IEEE Transactions on Electron Devices, vol. 41, pp. 1811-1818, October (1994) [19] B. J. Sheu and P. K. Ko, “A capacitance method to determine channel lengths for conventional and LDD MOSFET’s,” IEEE Electron Device Letters, vol. EDL-5, pp. 491-493, November (1984) [20] Y. Taur, 8. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High performance 0.1mm CMOS devices with 1.5 V Power Supply,” IEDM, pp. 127-130, (1993) [21] Y. Taur, Y.-J. Mii, R. Logan, H.-S. Wong, “On ‘effective channel length’ in 0.1-mm MOSFET’s,” IEEE Electron Device Letters, vol. 16, pp. 136-138, April (1995) [22] M. S. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE Electron Device Letters, vol. 22, pp. 293-295, June (2001) [23] G. Niu, J. D. Cressler, S. J. Mathew, and S. Subbanna, “A channel resistance derivative method for effective channel length extraction in LDD MOSFET’s,” IEEE Transactions on Electron Devices, vol. 47, pp. 648-650, March (2000) 94 [24] S. M. Sze, “High-Speed Semiconductor Devices,” John Wiley and Sons, Inc., NY, 1990 [25] G. Carter and W. A. Grant, “Ion Implantation of Semiconductors,” Halsted Press, NY, 1976 [26] G. Niu, J. D. Cressler, S. J. Mathew, and S. Subbanna, “A total resistance slope-based effective channel mobility extraction method for deep sub- micrometer CMOS technology,” IEEE Transactions on Electron Devices, vol. 46, pp. 1912-1914, September (1999) [27] S. Biesemans, M. Hendriks, S. Kubicek, and K. de Meyer, “Practical accuracy analysis of some existing effective channel length and series resistance extraction methods for MOSFET’s,” IEEE Transactions on Electron Devices, vol. 45, pp. 1301-1316, June (1998) [28] P. C. Liu and H. Lin, “Measuring and characterizing sub-micron short channel LDD MOSFETs” [29] X. Zhou and K. Y. Lim, “Experimental determination of electrical, metallurgical, and physical gate lengths of submicron MOSFET’s” [30] K. Y. Lim and X. Zhou, “A physically-based semi-empirical series resistance model for deep-submicron MOSFET l-V modeling,” IEEE Transactions on Electron Devices, vol. 47, pp. 1300-1302, June (2000) [31] P. Antognetti and G. Massobrio, “Semiconductor Device Modeling with SPICE,” McGraw-Hill, New York, 1988 95 lillillilllillliliflll[gill