
"l
WI

Wl
[\E‘

—_
_,.__

if

,.V_’

W
WI

_
.
\
_
3

0
0
0

0
1
0
0

THS.

5778026129

This is to certify that the

thesis entitled

LOW ENERGY HARDWARE FOR SENSOR SIGNAL

CALIBRATION AND COMPENSATION

presented by

PRASANNA BALASUNDARAM

has been accepted towards fulfillment

of the requirements for the

Master of degree in Electrical and Computer

Science Engineering

WMVI/Ix
Majbr Professor’s SignatureX‘ '

January 15, 2004

Date

MSU is an Affirmative Action/Equal Opportunity Institution

__————————

LIBRARY

Michigan State

University

k
w
.
-

_
—
-
"
.
—
'
fl
_
r
a
_
-
_

v
-
—
v

—
W
W
“

-
v
—
r
—
v
-
<
-
‘

PMCE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c:/CIRC/DateDuo.p65-p. 15

LOW ENERGY HARDWARE FOR SENSOR SIGNAL CALIBRATION AND

COMPENSATION

By

Prasanna Balasundaram

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

2004

_
_
'
v

1
‘

w

OUI

lerr

non

to 0

sem

Cific

com

the [

enor

crosy

CC” I;

tation

crease

the de

ABSTRACT

LOW ENERGY HARDWARE FOR SENSOR SIGNAL CALIBRATION AND

COMPENSATION

By

Prasanna Balasundaram

When semiconductor sensors transfer signal from one domain to the other, an accurate

output is not reported due to inherent physical properties of sensor materials and the prob—

lems in sensor manufacturing. Non-linearity, offset and cross sensitivity are typical phe-

nomena observed in the sensor outputs, requiring calibration and compensation processes

to obtain meanigful information from the sensors. This thesis makes use of advances in

semiconductor industry to develop a correction engine in the form of an Application Spe-

cific Integrated Circuit (ASIC) that efficiently calibrates and compensates sensor data. The

correction engine uses floating point hardware to perform the error correction prescribed by

the IEEE 1451.2 standard. The configurable correction engine is capable of performing the

error correction operations to suit the energy demands of the battery powered sensor mi-

crosystem, either with high accuracy, or with ultra-low energy expenditure. Energy efficient

cell library, compact multipliers and adders reduce the power consumption in the compu-

tations. Novel value prediction scheme and an efficient rounding mode are employed to in-

crease the effectiveness in spending the energy. The hardware correction engine facilitates

the development of key microsystems for medical, commercial and industrial applications

using simple, low-cost sensors that otherwise would not provide reliable data.

To Michigan State University

iii

ACKNOWLEDGEMENTS

I would like to start by giving my thanks to Dr. Andrew Mason for providing contin-

uous moral support in doing the thesis work. I am greatful to the freedom that he gave

me throughout the thesis work. Without his encouraging words and guidance, I would

not have finished this work. I like to thank Dr. Michael Shanblatt, Dr. Nihar Mahapa—

tra, and Dr. Peixin Zhong for serving the thesis committee in their busy schedule. I like

to thank the department chair person Dr. Satish Udpa, and the graduate co-ordinator Dr.

Donnie Reinhard for their continuing support during the Masters degree program. I like

to thank Mr. Fredrick Hall and other unix administrators for answering my requests im-

mediately, even on holidays. I like to thank Mr. Peter Sernig for clarifying my doubts

and providing tool kit support. His involvement in getting the technical documents from

cadence Sourcelink was very useful in the library development process. Jichun Zhang, Jun-

wei Zhou, and Kartik Vaidyanathan of Advanced Micro Systems and Circuits Lab provided

good encouragement during the last couple of years. I like to thank Matthew Guthaus, Eric

Marsman, and Robert Senger of University of Michigan, who gave technical support when

I was developing the library. I like to thank the comp.cad.cadence usenet group, especially

Andrew Beckett of Cadence Design Systems for providing valueable suggestions when I

faced problems with CAD tools. I like to thank my friends Chandan Reddy, Shankarshna

Madhavan, Arvind Ravisekar, Loganathan Anjaneyulu, Badrinarayanan Kasturi, Mahesh

Arumugam, Narasimhan Swaminathan, Sunder Balakrishnan, Srinivasan Rakhunathan and

many more for encouraging me to do challenging things in life. I learn a lot from them.

Finally, I like to thank my Mom, without her blessings and kind heart, I would not have

written this.

iv

TABLE OF CONTENTS

Page

Abstract ... ii

List of Tables vii

List of Figures viii

Chapters:

1. Introduction 1

1.1 Smart sensors and error correction 1

1.2 Motivation 7

1.3 Goals 9

1.4 Organization 9

2. Standard Cell Library Design 10

2.1 Library Design Flow 11

2.1.1 LEF Generation 11

2.1.2 TLF Generation 14

2.2 Results 19

2.2.1 Combinational Cells 19

2.2.2 Flip-flops 19

2.2.3 System Design 22

3. Floating Point Unit 23

3.1 Integer Operations 23

3.1.1 Adders 23

3.1 .2 Multipliers 24

3.2 Floating Point Operations 24

3.2.1 Multiplication 26

3.2.2 Addition 29

3.3 Implementation 31

4. Calibration and Compensation Engine 33

4.1 Correction Engine Architecture 34

4.2 Correction Engine Operation 35

4.2.1 Clocking 37

4.2.2 Reconfigurability 38

4.2.3 Perturbation Analysis 38

4.2.4 Energy Efficiency 38

4.3 Hardware Sorter 39

4.3.1 Sorting Algorithm 40

4.3.2 Sorter Architecture 40

4.3.3 Sorter Operation 42

5. Conclusion and Future Research 44

5.1 Conclusion 44

5.2 Future Research 45

Appendices:

A. Design Flow Mth AMSAC Library 47

A.1 Using the TLF file 47

A2 Sample TLF file 48

A3 Using the LEF file 51

A.4 Sample LEF file 53

Bibliography 56

vi

LIST OF TABLES

Table Page

2.1 Logical and Physical properties ofcells developed for the correction engine

design...................................... 20

3.1 Floating point values for various exponent and significand combinations. . . 25

3.2 Design results of the modules in the correction engine design. Shown is the

#gates in the module, its area, number of gates in critical path(CP), delay

in critical path, and the power consumption when operating at 40 MHz. . . 32

vii

LIST OF FIGURES

Figure Page

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

3.1

3.2

4.1

4.2

4.3

4.4

4.5

Output of the sensor before (a) and after calibration (b), error surface before

(c) and after calibration (d) [6]......................... 3

Components of an Integrated Sensor Module. 4

Architecture of the central digital controller.................. 7

Segmenting the operational region of sensors [2]. 8

Parameters associated with a cell path [3]. 14

Delay of the Flip-flop for various setup times. 17

Determining Setup time by iterative simulations. 18

Energy expenditure for Flip-Flop operation.Non data-storing edge energy

consumption, usually ignored in literature is included for analysis. 21

Layout of UMSI - Full-Custom design (a), Semi-Custom Design(b). Dras-

tic reduction of design time is experienced in (b) when compared to (a). . . 22

IEEE (a) and custom (b) representation of single precision floating point

quantities. 25

Four rounding modes used in the correction engine design. 28

Architecture of the Correction Engine with microprocessor core and memory. 35

Memory word organization. The powers of the input signals are stored in

the MSB, while the correction coefficient is stored in the 3 LSBs....... 36

Tentative exponent generation with input exponents and correction coeffi-

cient. 37

Architecture of the sorter 41

Functional Simulation of the Sorter 43

viii

[C

CTI

an

eas

don

in s

qua:

InICt

use (

1.1

COVER

quilntii

CHAPTER 1

Introduction

Semiconductor sensors play an important role in measuring a physical quantity for

control applications. They take part in our every day activities and make life easier. The

complexity associated with a sensor may vary from a simple room-temperature control to

advanced motion control in an airplane. Advances in the Micro Electro Mechanical Sys-

tems (MEMS) industry lead us to the age where sensors are downsized to the order of mi-

crometers. Modern sensors acquire information such as temperature, pressure, or humidity

and transform them into another domain, where the information is processed, and suitable

control action is taken to keep the physical quantity under control. The transformed do-

main is usually the electrical domain, since information processing and communication are

easier and flexible using electronic circuits. When the sensors transfer the signal from one

domain to the other, accurate output is not reported due to inherent nature of the problems

in sensor manufacturing. This error must be corrected by proper means to interpret the

quantity of the interest correctly. This thesis focuses on developing an Application Specific

Integrated Circuit (ASIC) capable of performing the error-correction efficiently, making

use of advances in the semiconductor industry.

1.1 Smart sensors and error correction

The era of semiconductor sensors began when the piezoresistivity of silicon was dis-

covered. Consequently, devices such as photodiodes and Hall devices were developed. The

main purpose of these devices is to generate an electric signal proportional to the physical

quantity of interest. A practical sensor usually doesn’t yield an ideal signal transfer curve,

but includes effects such as nonlinearity, offset, and non-unity gain. Commonly, the sensor

signal is not only proportional to the physical quantity of interest, but also sensitive to other

parameters such as temperature. Removing the effects of non-linearity, offset and gain is

known as calibration while removing the effect of other physical quantities like temperature

is known as compensation. These undesired effects should to be removed from the sensor

signal so that the signal produced by the sensor can be interpreted correctly.

Traditionally these errors were corrected by laser trimming discrete components such

as resistors and capacitors in the signal conditioning circuits. This type of error-correction

required individual attention to each sensor; high material and labor costs increased the

price difference between a calibrated and un-calibrated sensor. To reduce the cost of the

error correction, more signal conditioning circuits were integrated with the sensors as the

VLSI technology advanced. Mixed signal designs enabled the amplifiers and other passive

components to become digitally programmable so that the parameters associated with the

components can be modified as desired. The sensors became capable of communicating

the sensor signal to a digital computer and sensor systems became smart once it started

processing the information. Improvements in the semiconductor fabrication and packaging

reduce the cost of the sensors; at the same time the intelligence of the sensors keeps ever

increasing.

The integrated sensor module can be simplified as in Figure 1.2 where the major blocks

include the analog interface, signal conditioning, amplifier, AID converter, and a bus in-

terface to communicate the data to a digital controller. The error-correction procedure can

be performed in any stage after the sensor output is read by the signal conditioning circuit.

The transfer curve of the amplifier can be controlled by modifying the passive components

in the circuit to overcome the effects of nonlineraties. This involves using trimmable or

g

Zinc

Output ‘ otmoui

(normalized) ‘7 ‘ ' (normalized)

12] ‘ .- 31.51

. ‘
1J

0.5

0

I -U.5

~1

flag“,
.. “-111 '1'51 . -

_,- -. 05 /' \05 ~ 'w 1

2.3.1.2325: 0_0_5 1 _05 Pressure Temperature 0 0 5 ' L' 0 0'5 P/re2w0

- .1 (normalized) ("O'maI'Zed) ' ' -1 .1 ‘05 (mrmuzod)

(a) (b)

0.5 /

(rnormaIiz d ' I '05 ”New” 0 ~0?\/’.0.5 0 Pressure
e) -1 -1 (normed) (normalized) -1 .1 (normalized)

(C) (d)

Figure 1.1: Output of the sensor before (a) and after calibration (b), error surface before (c)

and after calibration (d) [6].

programmable resistors and capacitors. Their ability to control the calibration and com-

pensation process becomes limited and each sensor needs individual attention, which in-

creases the production cost of the sensor. The calibration and compensation can be done

using programmable amplifiers [13] and Analog to Digital Converters(ADC) [18].

These circuits become very complex and less flexible. Single Chip ASIC with signal

conditioning and error correction [11] and performing the error correction in the sensor

module itself [12] offer a good solution for error correction for an independent sensor, but

these implementations suffer if many sensors are connected in the form of a small network.

Redundant sensors become unavoidable because the compensation of one signal in the

network may require the other sensor data. Hence it forces the error correction to be done

in a centralized place where all the data are processed.

Figure 1.2: Components of an Integrated Sensor Module.

The error correction in a central digital controller in the digital domain offers flexible

and accurate solution. The simplest method of error correction is to build a lookup table

in the memory of the controller. The lookup table method is very fast, it requires huge

memory in the controller and also offers only limited resolution. The other method of

doing the error correction is to fit the sensor transfer curve as a multinomial and evaluate

the multinomial when the sensor signal arrives. Sophisticated techniques such as spline

functions [7] exist to determine the multinomial coefficients using minimal measurements.

Usually these coefficients are expressed as floating point numbers to increase the range of

representable values. Once the multinomial coefficients are determined, the co-efficients

are stored in the non-volatile memory of the sensor. When the sensor is connected to the

network, the non-volatile memory is read for performing error correction. Recalibration of

the sensor can be done by simply rewriting the modified coefficients.

Widespread usage of single chip rnicrocontrollers offer an attractive means for perform-

ing sensor signal calibration and compensation as they provide cost effective means ofcom-

putation. Since many microcontroller cores don’t support floating-point operations needed

to perform the error correction, specific subroutines [5] are written to do the floating-point

operations. The disadvantage in using subroutines method is that the error correction pro-

cess for a single data point takes large amount of time, limiting the sampling rate of the

sensor to a very low value. For example , running on a 2-4 MHz clock, a typical errorcor-

rection routine takes about 4-13 ms [4]. This engages the controller for a longtime that it

wont be able to perform other control applications.

The accuracy of the error correction depends on how well the sensor signal transfer

curve is represented using the multinomial approach. Experiments show that higher the

order of the multinomials, lower the error bounds. But high accuracy comes at the cost of

increasing the processing time needed by the microcontroller. An attractive alternative to

reduce the order of the multinomial and also to decrease the processing time is to segment

the various regions of operation of the sensor and approximate the transfer curve by a lower

order multinomial. In most cases, this doesn’t considerably increase the error. Using sub—

routines to perform the error correction in the micro-controller consumes more energy due

to the overhead when the controller handles interrupts. Hence, by developing a dedicated

hardware that is capable of performing floating-point Operations, the error correction can

be performed with lower energy consumption leading longer battery life.

Since there are many ways to build sensor modules and to communicate with central

digital controllers, many consumer products have appeared in the market. To regulate the

products and to improve the portability of devices, IEEE 1451.2 [2] standardizes the com-

munication between the smart transducer and the microcontroller and also the Trasnducer

Electronic Data Sheet(TEDS). It defines how the data inside the sensor module are orga—

nized for internal programmable control. It also recommends digital error correction of the

sensor signal using the piecewise linear multinomial approach. The standard also encour-

ages that the error correction be perforrned using floating-point operations.

The sensor signal transfer curve is approximated by a multinomial in an n+1 -dimensional

space, where n is the number of parameters the sensor signal data depends upon. For exam-

ple, if a pressure sensor signal depends on the pressure channel data and the temperature

channel data, then it will be equal to 2 and the space formed is a 3-dimensional space.

The pressure and temperature data will form the X and Y-axes while the corrected pressure

data will form the Z-axis. The TEDS allow the independent axes to be segmented into as

many segments as needed to reduce the degrees of the multinomial. For example, if the

pressure and temperature channel spectrum are divided into 2 and 3 segments, then the

entire space will be divided in to 6 region of operation. In each region of operation, the

transfer curve can be a multinomial of an arbitrary degree required. If we assume that the

McroConIroler

*
l
h
e
r
h
t
e
r
f
o
o
e

ISM 4+

BM 9++g I g Q

3 m" E
ISM 4+

Figure 1.3: Architecture of the central digital controller.

actual sensor data depends on the square of the pressure channel data and linearly on the

temperature channel data in a particular region of operation, then the signal transfer curve

will be an expression involving 6 coefficients with all possible combination of pressure

and temperature channel data raised to the powers of 0 through 2 and 0 through 1 respec-

tively. The general expression for correction for a particular region of operation is given as

Y = 23321:? - - ~2?:"8Ci,j...pIX1 - H1]‘[X2 " ”le ' ' ' IXn - Hnlp

1.2 Motivation

The error correction processes in smart sensors accounts for upto 50 % of the cost of the

sensors and consumes more than 30% of the energy spent by the micro-controller. Some-

times the errors due to the nonlineraties and crosssensitivities can change the actual output

from 50% to 75% [6] of the true value. Hence automating the calibration and compensa-

tion process of the sensor and performing sensor signal error correction by utilizing least

amount of resources will lower the cost of sensors and allow them to be used in many more

Segments of X2 X2

segments of 1

X1 Cells

Figure 1.4: Segmenting the operational region of sensors [2].

applications in the future. The piecewise multinomial approach allows the sensor signal to

be corrected irrespective of the nonlinearities and cross dependencies. To maintain the ac-

curacy of the error correction process, it is desirable to do the correction process in floating

point arithmetic. The correction process in an integer computation based microcontroller

involve more energy expenditure due to the overheads in the subroutines and data com-

munication process. Energy savings can be obtained using dedicated hardware to perform

the floating-point operations for sensors that cross dependencies with less than two other

physical quantities. It will be an optimal balance if we design the hardware to perform the

correction upto the 3” order, and upto 4 input signals, and allow software programs to per-

form the correction if the needed order is higher. We can also obtain considerable energy

savings if previously computed values are stored in on chip memory to avoid repeated cal-

culations. If the contribution of a particular co-efficient is very small, energy savings can

be obtained at the cost of slight loss of accuracy. Also for small perturbations in the input

signal, corrections can be obtained with less number of computations by applying Taylor’s

expansion of the multinomial at the operating point.

1.3 Goals

The main goal is to design a reconfigurable correction engine to perform calibration and

compensation of sensor signals using floating-point hardware optimized for low-energy. At

the lowest level, energy savings are considered while designing the library cells like logic

gates and flip-flops [8, 15]. At an interrnidiate level, modules such as adders, multipliers

[l6] and rounding units are optimized for low energy dissipation. At the architectural level,

the required number of computations are optimized using a data analyzer. At the system

level the previously computed values are analyzed for opportunities to reduce the number

of operations. By designing the hardware from device to system level optimizing for energy

savings yields low energy error correction hardware.

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 discusses design flow and

the cell library generation process, Chapter 3 describes design issues in integer adder and

multiplier units and floating-point rounding units , Chapter 4 highlights the top level deisgn

of the correction engine and the hardware sorter, and Chapter 5 summarizes the results

acheived during the project giving directions for future research.

CHAPTER 2

Standard Cell Library Design

As the feature size of integrated circuits (ICs) grow smaller, it enables the designers to

pack more gates in the given area of the chip and acheive more functionality. At the same

time, more burden is placed on the designer to ensure the reliability of the chip. Under-

standing the design flow and the tools used in the design process leads the circuit designer

to make wise choices in the design to give maximum productivity. ASIC technology is

proven to be cost effective for mid-high volume applications. This chapter focuses on the

design flow and the library used in the correction engine design.

Bottom-up and top-down are the two widely used design flows for integrated circuit

design. In the bottom-up design flow, the system is divided into sub-blocks and each mod-

ule is designed considering timing constraints by varying the transistor size. Though this

method gives the maximum efficiency interrns of area and power constraints, this approach

is not very efficient and some time impractical for designs involving thousands of transis-

tors. In the top-down design flow, the functionality of a block is given a priority and it

is expressed in hardware description language such as verilog. Once the design meets the

functionality requirements, the synthesis tool develops a generic implementation and maps

it to the target technology meeting the timing and area constraints. The physical design is

performed by the Auto Place and Route (APR) tool after the synthesis process.

To design an integrated circuit with a specific process technology using the top-down

method, a cell library is needed. The cell library contains information about the tinting

properties (to perform logic synthesis) and physical properties (to perform physical design)

of the cells in the library. An in-house standard cell library was developed for designing

10

the correction engine in AMICSN process for this project. The library contains a complete

set of combinational cells, tristates, latches, and flip-flops, so that any digital design could

be implemented using the top down method. This cell library helps the designer to produce

integreated circuits with high reliability in a short period of time.

2.1 Library Design Flow

In this correction engine design, Silicon Ensemble and Build Gates were used for per-

forming logic synthesis and physical design respectively, since they are a part of the Ca-

dence NCSU Design kit used in Michigan State University. Silicon Ensemble requires

the physical information be represented in a Library Exchange Format (LEF) and Build

Gates require the timing information be represented in Timing Library Format (TLF). This

section explains the LEF and TLF generation processes.

2.1.1 LEF Generation

The LEF file contains information about the metals, vias, and poly layers for each cell

in the library. The LEF file lacks information such as wells, and active layers, that are

not relevant for the cell-based place and routing. Cadence Abstract Generator is used for

Generating LEF file from the layout. A Design Planner Universal eXchange (DPUX) file

containing the technolgy information is created for the Abstract Generator. The Layout

of the cells are given as input for the Abstract Generator to generate the LEF file and the

generated LEF file is verfied by a sample place and route run.

DPUX Generation

The recomended method for generating the DPUX file is to input an existing LEF file

with technology information and ask the Abstract Generator to create this file. But in

11

the absence of the technology LEF file, the information is entered manually reading the

technology file dumped by the Design Framework (deI) environment.

Layout Generation

The layout for the cells in the library is created in Virtuoso Layout Editor passing the

Design Rule Check (DRC) and Layout Versus Schematic (LVS) tests. Before designing

the layout, the horizontal and vertical pitches (the distance between the center of two metal

strips; the grid spacing is set to the corresponding pitch) of the cells are decided. The

performance of the routing engine is enhanced if the ratio of the horizontal pitch and the

vertical pitch is kept as a simple ratio. For the AMICSN process library, a horizontal

pitch of 8}» (2.4m) and a vertical pitch of 10)» (3pm) are chosen. The following design

considerations are kept in mind when designing the layout.

0 The height and the width of all cells are kept in multiples of the vertical and horizontal

pitch respectively.

0 The offset (the distance by which the boundary of the cell extends beyond the grid)

for the cells are kept at half of the corresponding pitch.

0 Metal 1 and 3 layers are drawn horizontally and Metal 2 is drawn vertically.

o The input and output pins are kept in the intersection of horizontal and vertical grids

to increase the efficiency of the router.

o Text/Pin lables are bound inside the shape pin to avoid exclusion of pins in the ab-

stract generation step.

c Mdth of the power rails are kept as one vertical pitch (3pm).

12

Abstract Generation

The layout of the cells are given as input to the Abstract Generator to create the LEF

file. The following steps are involved in this process.

0 Input Technology: The DPUX file generated before is given as the input for the

Abstract Generator in this step.

0 Input Layout: The layout is exported from the de1 environment in GDSII format

(stream) and imported to the Abstract Generator using a layer map table.

0 Import Logical: The input and output pin information about the cells is given in a

verilog file for the Abstract Generator.

0 Pins Step: The text labels are mapped to the terminal lables in the layout and the

place and route boundary is created.

0 Extract Step: The Abstract Generator probes through the layout and finds the con-

nectivity among the nodes using various layers. Antenna information (capacitance,

inductance and resistance information) about the cells are also created in this step.

0 Verify step: LEF view for the cell is created and a target place and route run is

performed to make sure that the cell can be used by the place and route engine.

0 Export LEF: The LEF file which can be directly used as input for Silicon Ensemble

is exported from the Abstract Generator.

Veryfying LEF File

A verilog netlist using the cells in the library is created and tested with Silicon Ensem-

ble. The density of the design is studied and the layout is modified to improve the output

13

of the APR engine. A row utilization of40% is achieved with the cell library, quite reason-

able for a 3 metal process, though a row utilization of 80-90% is common with a 6 metal

process.

2.1.2 TLF Generation

The timing library format, TLF file represents the input-output characteristics such as

delay and functionality for each cell in the library. The TLF clasifies the cells as combina-

tional cells (the output of the cell depends only on the current inputs of the cell, but not on

the previous outputs), tristates (in addition to logic high and low as in combinational cells,

the output may be floating for these type of cells), latches (level sensitive device which

stores data when write enabled), flip-flops (edge sensitive storage device) etc. Each type of

cell contains some unique characteristics that help the synthesis tool to identify a particular

class of cells and perform the logic synthesis using them. If an input signal applied to a cell

changes its output, the cell has a path (or an arc) from the specific input to the output. The

TLF file summarizes all of the possible paths. A more formal definition of the quantities

involved in the TLF is summarized below with reference to Figure 2.1.

W

7— v :3:iiifiiifiiiii
Cell II

' 10%

Figure 2.1: Parameters associated with a cell path [3].

14

Slew: Time for an input/output signal to rise from V1“ to VH2 (VH2 to VT“ for a

fall transition). Usually VT“ and Vm are set as 10% and 90% of the vdd, and the

input/output signal is approximated to a ramp when measuring this quantity.

Delay: Time difference between the input and output crossing the mid-point in the

transistion (VT).

Setup: The time for which the input signal has to be stable before the clock transition

to ensure prOper storage of data in the flip-flop/latch.

Hold: The time for which the input signal has to be stable after the clock transition

to ensure proper storage of data in the flip-flop/latch.

Recovery: The time after which the asynchronous signal (set/reset) has to be applied

to override the data stored by the clock signal.

Removal: The time before which the asynchronous signal (set/reset) has to be applied

to override the data stored by the clock signal.

Combinational Cells

In a combinational cell, the output state depends on the inputs, and change in an input

can cause its output to change. The output slew and the delay (between input and out-

put) depends on the input slew and the output load. Both the output slew and delay are

represented as two dimensional timing tables (by taking the input slew and output load as

independent axes) in the TLF file for all possible paths in the cell. In addition to that, the

functionality of each pins and the area of the cell are represented in the TLF file. The static

timing analysis (STA) tool uses the TLF file to determine the delay in the a circuit and

hence the worst path in the circuit. Linear interpolation techniques are used by the STA

tool if the output slew and delay information are nor readily available in the tables.

15

Parasitic capacitances as small as 0.001pF are extracted from the layout and a netlist is

created. The timing characteristics are obtained by simulating the cell with various input

slew and output load conditions. Spectre is used for simulating the transistor level circuits

and per] scripts are used for reading the output generated by Spectre and report it to a TLF

file. The scripts developed for this library can identify any combinational gates upto 3

inputs and report all the possible paths for the specified input slew and load conditions.

'Ii'istates

Tristate devices are used in synthesizing bus structures in a design. The tristate devices

differ from the combinational blocks as the output of the tristate devices can be in high

impedance state (Z) in addition to logic high (1) and logic low (0). The timing information

for the output transition from either 1 or O to Z is not critical since a Z output is not driving

any other gates. Hence the timing table is filled with entries as zero. The time for an output

to go from Z to 1 can be no greater than the time for the output to go from 0 to 1. Hence

the worst case time for 0 to 1 and l to 0 is substituted for the change from Z to 1 and Z to

0 respectively.

Latches and Flip-flops

Latches and flip-flops are storage elements that contain additional parameters like setup

and hold times. If they have asynchronous inputs like preset or clear, the recovery and re-

moval times are included in the TLF file. The definition for setup and hold times mentioned

in the Section 2.1.2 were modified slightly to determine those times using simulations. The

delay for the data to get stored in the flip-flop after the rising/falling edge of the clock varies

with the time the clock signal is applied after the data has settled. If the time difference

between the clock edge and the data signal is decreased, the delay for the data to get stored

in the flip-flop increases. The setup time is computed as the minimum time before which

16

the data has to be stable so that the storing delay does not increase beyond 5% of the nor-

mal operational delay. Hence if we determine the time difference between the data and the

clock, such that the delay between the clock and the output is as close as to 105% of the

normal delay time, that becomes the setup time for the transition with specified data and

clock slews. From Figure 2.2, we see that the delay of the gate gradually increases as the

data is moved closer to the clock and the data fails to latch beyond a limit (shown as the

discontinuity).

Relation between setup time and delay

4.5 _

3.5 _

D
e
l
a
y
(
n
s
)

2.5 -

1.5 _

0 0.5 l 1.5 2 2.5

Setup time (ns)

Figure 2.2: Delay of the Flip-flop for various setup times.

Setup time of the flip-flop is determined by performing spice simulations iteratively

on the following basis. The normal storing delay is found by giving enough seperation

17

between the input and the clock signal without violating the setup condition (say 5 ns).

Another simulation is performed with no seperation between the data and the clock signal,

and hence violating the setup condition. Consequent simulations are performed by either

increasing or decreasing the seperation between the data and the clock signal depending

on whether a violation has occurred or not. The increment or decrement in the seperation

is half of the time between a simulation without violation and a simulation with violation.

In Figure 2.3, the setup time converges after 7-8 simulations performed in this manner. A

similar argument is extended for determining hold time also.

Determining Setup time of a Filp—flop

+ Delay time

— Max delay

10‘

8 ..

73

5

E 6 -
i:

4 -

2

AA L.— .. A ..

V - II' '-W L :_ J

o r r 1 L 1 L 1 i r

1 2 3 4 5 6 7 8 9 10 11

Iterations

Figure 2.3: Determining Setup time by iterative simulations.

18

2.2 Results

The developed cell library has an inverter, a tristate inverter, a buffer, 2 and 3 input

NAND, NOR, AND, and OR gates, a 2 input XOR gate, a 2:1 multiplexer, a latch, a

flip-flop with reset and a flip-flop without reset. Five structures were considered for the

flip-flops and two of the most efficient ones are chosen to be included in the library. The

following sections summarize the physical properties of the cells in the library.

2.2.1 Combinational Cells

The Table 2.1 summarizes the logic function, width of the cell, number of transistors,

input/output capacitance, and power consumption for a run at 40 MHz with all possible

input changes.

2.2.2 Flip-flops

Since flip-flops are used extensively in the pipelined microprocessor and data correc-

tion unit, the energy demands of five different flip-flop structures (in-house flip-flop with

and without reset (dff, dffr), push-pull isolation (ppi) flip-flop [8], transmission gate flip-

flop (tgfl), and a regular master-slave flip-flop (rdff)) were thoroughly analyzed (shown

in Figure 2.4), and the two efficient structures were included in the cell library. When a

simulation is performed, the spectre simulator dumps the raw data (the voltage at various

nodes, and the current supplied by the sources in the circuit at each instance of the transient

analysis) to a file. The file is read by a per] script [14] to store the data in arrays. The

current supplied by the source (ivdd) is multiplied by the value of vdd at each instance of

time and integrated over the time period (7}) of the simulation. Thus f vdd * ivdd and

fvdd * ivdd

Ts (2.1)

19

20

T
a
b
l
e

2
.
1
:

L
o
g
i
c
a
l
a
n
d

P
h
y
s
i
c
a
l

p
r
o
p
e
r
t
i
e
s
o
f

c
e
l
l
s
d
e
v
e
l
o
p
e
d

f
o
r
t
h
e
c
o
r
r
e
c
t
i
o
n
e
n
g
i
n
e

d
e
s
i
g
n
.

C
e
l
l

F
u
n
c
t
i
o
n

v
n
m
h

(
u
m
)

D
e
l
a
y

(
U
S
)

P
o
w
e
r

(
W
W
)

T
r
a
n
s
i
s
t
o
r
s

i
/
p

c
a
p

(
p
F
)

o
/
p

c
a
p

(
p
F
)
 n

o
r
2

n
a
n
d
2

i
n
v

o
r
2

a
n
d
2

m
u
x
2
1

d
f
f
r

fi
l
l

fi
l
l
2

fi
l
l
4

n
a
n
d
3

n
o
r
3

o
r
3

a
n
d
3

b
u
f
l

x
o
r
2

d
l
a
t
c
h

t
i
n
v

d
e
l
a
y

b
u
f
2

n
a
n
d
4

a
n
d
4

o
r
4

fi
l
l
S

p
a
s
s
g
a
t
e

t
i
e
h
i

t
i
e
l
o

 K
A
I
B
)

!
(
A
&
B
)

0
A
)

(A
l
B
)

(
A
&
B
)

(
8
&
3
)
!
(
(
!
S
)
&
A
)

D !
(
A
&
B
&
C
)

!
(
A
H
M
C
)

(
A
I
B
I
C
)

(
A
&
B
&
C
)

(
A
)

(
A
e
B
)

D I
A

A A K
A
&
B
&
C
&
D
)

(
A
&
B
&
C
&
D
)

(
A
I
B
H
H
I
D

A l

 9
.
6

9
.
6

7
.
2

1
2
.
0

1
2
.
0

1
4
.
4

6
2
.
4

2
.
4

4
.
8

9
.
6

1
2
.
0

1
2
.
0

1
4
.
4

1
4
.
4

9
.
6

1
9
.
2

2
4
.
0

1
2
.
0

7
4
.
4

1
4
.
4

2
6
.
4

2
4
.
0

2
4
.
0

1
.
2

1
2
.
0

7
.
2

7
.
2

 0
.
1
6
5

0
.
1
7
6

0
.
1
0
6

0
.
4
1
6

0
.
4
0
9

0
.
1
0
4

1
.
0
2
7

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

0
.
3
7
0

0
.
3
1
9

0
.
5
9
7

0
.
6
2
8

0
.
3
2
7

0
.
5
2
5

0
.
0
0
0

0
.
2
0
8

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

0
.
6
3
4

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

 1
.
7
3
8

1
.
7
1

1

1
.
8
8
1

3
.
0
4
2

3
.
0
3
6

3
.
4
8
1

6
.
6
3
0

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

1
.
7
3
6

1
.
6
7
1

2
.
3
6
3

2
.
4
2
3

3
.
8
6
1

6
.
0
9
6

3
4
.
4
1
3

2
.
7
4
9

1
0
.
0
7
8

4
.
7
8
8

4
.
2
2
8

3
.
6
2
0

3
.
7
6
6

0
.
0
0
0

2
.
0
9
3

0
.
0
0
0

0
.
0
0
0

 4 2

v V

2 2

VVNDOOMOOOOOOOOOVFt—‘OOOV—‘F‘F‘CVNN

 0
.
7
1

1

0
.
7
2
0

0
.
7
2
0

0
.
7
1

1

0
.
7
2
0

1
.
6
9
0

0
.
5
1
9

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

0
.
7
6
2

0
.
7
4
5

0
.
7
4
5

0
.
7
2
8

0
.
8
5
4

2
.
7
3
9

0
.
5
5
2

0
.
5
5
2

2
4
.
8
5
9

0
.
7
2
0

1
.
3
0
6

1
.
3
0
6

1
.
3
0
6

0
.
0
0
0

1
.
4
5
3

0
.
0
0
0

0
.
0
0
0

 1
.
9
7
5

1
.
8
0
8

1
.
8
0
8

1
.
7
7
8

2
.
4
8
9

1
.
5
7
1

1
.
8
5
4

0
.
0
0
0

0
.
0
0
0

0
.
0
0
0

3
.
4
0
5

2
.
9
6
1

1
.
8
3
8

1
.
8
3
8

1
.
3
3
5

1
.
2
4
2

1
.
5
7
1

1
.
5
7
1

1
.
8
0
3

1
.
8
0
3

1
.
5
7
1

2
.
0
6
5

1
.
9
2
6

0
.
0
0
0

1
.
6
9
0

0
.
4
7
7

0
.
3
2
9

and represents the energy and the average power dissipated throughout the simulation.

In order to measure the the energy dissipation for a particular transition (for example,

clk01q01 indicates the clock transition for storing 1 in the flip-flop overwriting the ex-

isting 0) the integration is started when the clock signal crosses the 10% of its complete

swing when rising from 0 V to 3 V and stopped when the incremental energy spent is less

than 1% of the total energy spent during the transition. In literature, usually the falling edge

of a clock transition is ignored for power and energy reports [15] . From the Figure 2.4, we

see that non data-storing edge of the clock also consumes a considerable amount of energy.

Energy Dissipation in Flip-flops

1.6 I I I I I

- c|k01q01

- clk01q10

1-4‘ - clkOIqOO ‘

clk01q11

1 2L - clk10q00 ‘

- - clk10q11 I

1 _ -I

3,

3 0.8 ~ -
Q

C

LIJ

0.6“ r

0.4- -

0.2’
_

0

Figure 2.4: Energy expenditure for Flip«Flop operation.Non data-storing edge energy con-

sumption, usually ignored in literature is included for analysis.

21

2.2.3 System Design

The cell library was used in the top-down design flow of the Universal Micro-Sensor

Interface chip which performs data communication between a sensor node and a central

microcontroller [19]. The first version of the circuit was designed using full-custom design

methodologies while the second version was designed using the cell library. Figure 2.5

shows the layout generated for the bus interface using the fullocuatom design method (a)

and the semi-custom design method (b). The library drastically reduced the design time of

the bus interface design from months to weeks in the semi-custom design. However, it was

achieved only at the loss of the design density. The layout occupied 1 mm x 1mm in the

first version, and it occupied about 1.5 mm x 1 mm in the second version.

3

S

I
I
I
.
.
.

I
I
I
-
I
I
I
I
I

I
I
I

Figure 2.5: Layout of UMSI - Full-Custom design (a), Semi-Custom Design(b). Drastic

reduction of design time is experienced in (b) when compared to (a).

22

CHAPTER 3

Floating Point Unit

A digital computer processes either a logical 0 and 1 through its arithmetic and logic

units. Integers other than 0 and 1 are represented in a string of 0’s and 1’s of a specified

length. The integer representation can accommmodate 2" (n-bits wide) discrete value in its

spectrum. Floating point representation is used to represent the values between the integer

values. Though the floating point quantities also can represent only 2" discrete values

(some times even fewer dicsrete values), the spectrum is very broad when compared to the

integer representation. Floating point arithmetic operations can be carried out using integer

arithmetic units, but with little modifications to the inputs such as alignment according to

their exponents and post-processing the outputs such as normalization and rounding. This

chapter discusses integer addition/multiplication units and floating point units used in the

correction engine.

3.1 Integer Operations

In order to perform the floating point computations for the calibration and compen-

sation engine, unsigned integer adders and multipliers are used. In this section a variety

of adder/multiplier structures are studied and a suitable architecture is identified for the

implementation.

3.1.1 Adders

The following adder structures were considered for the project: a ripple—carry adder, a

carry-save adder, a carry-lookahead adder, and a manchester carry chain adder. The adders

23

are compared for the delay, area and energy dissipation. Since the ripple carry adder turned

out to be the adder with least energy dissipation, it was chosen for the project.

3.1.2 Multipliers

A variety of multipliers are considered for the project including an array multiplier,

booth encoded multiplier, and a Wallace tree multiplier with carry-save adder and ripple-

carry adder as final adders. Since the Wallace tree multiplier with ripple-carry adder is the

efficient structure in terms of energy, it was chosen for the multiplier.

3.2 Floating Point Operations

IEEE standard for Smart Transducer Interface for Sensors and Actuators [2] recom-

mends that sensor signal processing be performed in floating point precision. A single

precision floating point number is represented using 24 bits according to the IEEE floating

point standards [1]. In Figure 3.1, the f[22 : 0] represents the fraction bits (also known

as significand), e[30 : 23] represents the exponent bit and the leading s bit represents the

sign of the number. Table 3.1 summarizes the value of the represented number for all the

values of the fraction, exponent and the sign bits [9]. If the given floating point number is

a normal number, then the significand will be greater than or equal to 1 and less than 2 due

to the implicit presence of a leading 1. This is represented as [1, 2) in symbolic notations.

However, denonnalized numbers can have significands greater than 0 and less than 1 and

hence represented in the interval [0,1). The value of 127 (known as bias) is always added

to the exponent in the IEEE representation to represent the negative exponents in unsigned

representation. Sensor outputs usually contain noise in the sample that limit data precision

to around 12 bits. Thus a precision of 24 bits in significand is not necessary for doing the

correction engine operations, hence the significand width is reduced to 16 bits, deviating

24

Table 3.1: Floating point values for various exponent and significand combinations.

Bit Pattern Value

0 < e < 255 (—1)‘ * 2‘”127 * 1.f (normal numbers)

e = 0;f ¢ 0 (—1)‘ at: 2’128 * 0.f (denormal numbers)

e=0;f=0 (—1)‘*0(signedzero)

e=255;f=0 (—1)‘*oo(infinity)

e = 255; f aé O NAN (Not-a-Number)

from the IEEE floating point standards. Figure 3.1 shows the floating point representation

used in the correction engine design.

s [e[30:23]l f[22:0]

S e[22:i 5] I f[1410] J

(a) (b) ’

Figure 3.1: IEEE (a) and custom (b) representation of single precision floating point quan-

tities.

The advantages of using floating point computation over integer computation are as

follows:

0 The floating point number has wider range of numbers that can be represented using

the specified number of bits

0 IEEE floating point representation handles exceptions precisely and degradation of

tiny numbers is handled gracefully

25

o The exponent can be used as an indication of the magnitude of the represented num-

ber; before performing the actual multiplication and addition processes, the mag-

nitude of the results can be predicted. This is used for isolating quantities of least

significance to conserve energy while performing the computations.

3.2.1 Multiplication

The floating point inputs represented by (sl,el, f1) and (32,e2, f2) are multiplied to

form the result (s,e,f). The output is computed by s = 31 EBSZ; e = e1 +e2 and f = fl -f2.

The significands of the normal and denorrnal numbers are in the range of [1, 2) and [0,1)

respectively. Hence the product can be in the range of [0,4) which has to be rounded to the

range [0, 2). The following sections describe the steps taken to perform the multiplication

operation.

Pre-normalization

The leading bit of the significand is not stored anywhere in the number and is said to

be implicit. In the pre-normalization stage, the packed input number is unpacked to form

the explicit significand for multilpication. A tentative exponent of the result is generated

by summing the exponents of the inputs. Since the bias gets added twice in the addition

process, the bias is subtracted once from the tentative exponent. If the the result is too large

to be represented using the given single precision point, an exception is set in this stage to

handle the overflow of the product.

Significand Multiplication

The 16-bit input significands are multiplied using the unsigned integer multiplier to

produce the 32-bit product and the 32-bit result is rounded to 16 bits in the rounding stage.

26

Rounding

ince the multiplication result is 32 bits, it is more precise than the result that will be

represented by the 16 bits. The process of converting the higher precision significand to a

lower precision representable significand is defined as rounding. In other words, rounding

is the process in which the higher order 16 bits are modified to represent the lower order 16

bits at the cost of accuracy. The result can take either the value of the higher order 16 bits

(a) or the higher order 16 bits + 1 atp (b) where atp is the least representable quantity for

the given bit width. Whether the result takes the value of a or b depends on how close the

32 bit precise result is located between a and b and the rounding mode.

In order to round the result to 16 bits, the 17'” bit (rounding bit) is examined. If the

rounding bit is a 0, then the result takes the value of a, since the precise significand is closer

to a rather than b. If the rounding bit is a l, and at least one of the bits from 18 to 32 is

one (the bits are 0Red together to make the sticky bit and used for decision making as the

position of the 1 in bits 18 to 32 really does not change the decision making), then the result

is rounded to the higher magnitude b. However if the rounding bit is 1 and the sticky bit is

0, then the 32 bit precise significand lies exactly between a and b, and the result is chosen

to be either a or b depending on the rounding mode of operation. The IEEE floating point

standard supports 4 rounding modes. The four rounding modes are explained in Figure 3.2

In each of the rounding mode, the result is chosen as follows:

0 Even: Since the significands a and b are a atp apart, one of them will be an even and

the other will be odd. The even number among a and b is chosen as the result.

0 +00: The significand closer to +00 is chosen as the result. This depends on the sign

of the floating point product. If the sign of the floationg point result is positive, then

27

b is chosen as the result, since b is closer to +00. If the sign is negative, then a is

chosen as the result as a is closer to +00.

0 —00: The significand closer to —00 is chosen as the result in this rounding mode. That

is, if the sign of the product is positive, a will be chosen as the result and if the sign

is negative, b is chosen as the result.

0 Zero: the significand closer to 0 is chosen as the result. Since a is closer to zero, a is

chosen as the result in this mode irrespective of its sign.

EVEN +|NFTY -|NFTY ZERO

+ A + [t +41 +A

b— b—— T b— b——

0

- v ' v WI WV
Figure 3.2: Four rounding modes used in the correction engine design.

If the value of the significand a is the largest one represented using 16 bits, then in-

crementing it by an ulp will produce a carry. In that case, the exponent is incremented

and the result is chosen to be all zeroes. The process of chosing between the significands

28

a and b is defined as significand - rounding and incrementing the exponent is defined as

post -— normalization. During the post-normalization process, if incrementing the exponent

results in a carry, it is impossible to represent the result in the described precision and the

hence overflow occurs. The overflow can occur in all rounding modes except for Zero, as

the significand and the exponent are never incremented, which avoids exponent overflow.

As mentioned previously, if the input significands are in [0, 2), then the product of those

two significands may be in [0, 4) and rounding is the process to represent the significand in

[0, 2). If the product is in [2,4), it is adjusted to be in [0,2) by incrementing the exponent

and shifting the imaginary floating point to the left before examining the rounding bit and

proceeding to the significand rounding process. If the product of the multiplier is in [2,4),

the most significant 16 bits are considered as a and the rounding is carried out with 17’”

bit as rounding bit and the 0Red value from bits 18 through 32 as sticky bit. If the product

itself is in [0, 2), the most significand bit of the product is ignored and the next 16 bits are

treated as a. The 18th bit becomes the rounding bit and ored value from bits 19 through 32

becomes the sticky bit.

3.2.2 Addition

The multiplication operation is canied out by calculating the 32 bit result and then

rounding it to 16 bits. But, the addition process can be performed with a 16-bit adder itself.

The addition process is a little more complicated than the multiplication operation as the

addition operation may turn out to be a subtraction depending on the sign of the operands.

When the inputs are known, the smaller operand is identified by comparing the exponents

and shifting the smaller operand to the right, such that both the inputs have equal exponents.

Then the addition is performed using a 16 bit adder and the result is post-normalized to

29

form the final result. The following sections elaborate the floating ponit addition process

employed in the design of correction engine.

Pre-normalization

In this stage, the packed floating point operands are processed and sent to the adder

unit for addition. The operands are swapped such that the exponent difference between

the operands are not negative. The significand of the second operand is complemented if

the two operands differ in their signs. The second operand is shifted to the right by the

exponent difference positions preserving the sign. The bit adjacent to the lsb is assigned as

guard bit, the bit adjacent to the guard bit is assigned as round bit and the rest of the bits

are 0Red together to form the sticky bit.

Significand Addition

The significands produced in the pre-normalization are added using a 16-bit adder to

produce the sum and carry in this stage.

Rounding

Different rounding procedures are canied out depending on the input operands and the

result.

0 In the pre-normalization process, the operands are compared only for exponents (to

find which operand is large and to shift the smaller operand’s significand to the right).

If the two operands have the same exponent and their signs are different, then the

result produced will be exact and the result will contain leading zeroes. The result is

shifted to the left till the msb of the result is l, or the exponent become 0 giving rise

to a de-normalized quantity.

30

o If the operands are of the same sign and no carry is produced during the addition

process, the significand is rounded with the guard bit as the new round bit and the

round and sticky bits are 0Red to make the new sticky bit. If the significand overflow

results, the exponent is incremented. If an exponent overflow occurs, appropriate

overflow/infinity flags are set depending on the rounding mode.

0 If the operands are of the same sign and a carry is produced in the addition process,

the exponent is incremented and the significand - rounding is carried out with the

lsb of the sum as the new round bit and the guard, round and sticky bits are 0Red to-

gether to make the new sticky bit. Abnormal activities such as overflow are detected

and proper flags are set during the significand — rounding.

o If the operands are of different signs, a carry is produced in the adder and the msb of

the sum is 0, the carry is discarded and the gurad bit is included in the significand

and the significand — rounding is carried out with the actual round, guard and sticky

bits.

3.3 Implementation

Both the multiplier and the adder are implemented in three pipeline stages. The first

stage performs the pre-normalization, the second stage performs the actual multiplica-

tion/add operation. The third stage performs the rounding operation. These stages initiate

the operations at the rising edge of the clock and write the data in the internal registers

which act as the input for the next stage. To avoid the spurious computations, each block is

enabled by the previous stage. The floating point multipliers and adders were verfied with

test vectors. The verification is canied out with the help of NC-Verilog simulator. Number

of gates in each stage and the length of the critical path is listed in Table 3.2 summarizes

the number of gates in each of the floating point multiplier/adder stages, the area of the

31

design , the number of gates in the critical path and the critical path delay. Since the critical

path delay for the multiplier is 21.2 ns, it limits the clock frequency to around 40 MHz.

Table 3.2: Design results of the modules in the correction engine design. Shown is the

#gates in the module, its area, number of gates in critical path(CP), delay in critical path,

and the power consumption when Operating at 40 MHz.

Block #Gates Area (um x um) CP CP delay (ns) Power (mW)

Exp Predictor 999 49 19.02 2.417

Mul-Pre-norm 351 688.8 x 668.4 21 8.02 0.835

Multiplier 4293 1951 x 1951 30 21.2 10.216

Mul-Rounding 867 1015 x 1017 30 16.25 2.039

Add-Pre-norm 1303 1149 x 1127 28 14.96 2.670

Adder 358 702 x 702 16 6.43 0.801

Add-Rounding 1595 1394 x 1370 24 14.71 4.116

32

CHAPTER 4

Calibration and Compensation Engine

The calibration and compensation engine (correction engine for brevity) performs the

error correction of sensor signal prescribed by the IEEE standards [2] using floating point

hardware. Essentially the error correction is the process of evaluating the multinomial

shown in Equation 4.1.

Y = 2032i? - - -2,’ii’3c.-,,~...,.IXI — HrI‘IXé — H211? . - Ix}. — mi" (4.1)

For example, in a given region of operation, the correction equation might be like Equation

4.2.

Y =Cooo+Crzo-[X1'-IL11]-[Xé—1‘12]2+Czrz.-[X1'--1L11]2-[Xi-Hz]-[X3'-1L13]3+Co3o-[Xi-H2]3

(4.2)

X1’ ,X5, and X3’ are input signals like pressure channel data and temperature channel data,

H1,H2, and H3 are the offset values for the given channel, and C000,C120,C213, and C030

are the gain coefficients. D(1),D(2), and 0(3) take values of 2, 2, and 3, the maximum

order a particular signal is raised to. The offset values are subtracted from the input signals,

raised to appropriate powers, multiplied with other signals, and multiplied with the constant

coefficient to form the partial sum term. The partial sum terms are accumulated to form the

final output Y.

When the signals from the sensors arrive at the microcontroller, the microcontroller

converts the sampled digital signal to a floating point value, compensates for the offset

values and initiates the error correction operation (let us assume that the signals compen-

sated with offsets are X1,X2,X3 for simplicity). The correction engine performs the error

33

correction operation using its hardware resources and report the corrected signal to the mi-

crocontroller. The correction engine employs value prediction schemes to perform the error

correction operation with high accuracy or with low energy expenditure, trading off one for

the other. The architecture and the operation of the correction engine and the hardware

sorter is explained in this chapter.

4.1 Correction Engine Architecture

The blocks of the correction engine and their connectivity is shown in Figure 4.1. The

microprocessor core directly interacts with the shared memory and stores the necessary

values to perform the calibration. The shared memory is 32-bits wide. The calibration

coefficients are stored in this 32-bit memory location (shown in Figure 4.2). The lower 24

bits hold the calibration coefficient. The upper 8 bits are divided into 4 banks, each of 2

bits wide to store the orders of X1,X2,X3, and X4 respectively. This limits the upper bound

for the number of independent signals to 4 and their corresponding orders to 3.

The controller reads the memory location where the first calibration coefficient is

stored and computes the exponent of the partial sum (like C213.X12-X2-X33) using the ex-

ponents of the input signals. This exponent is tentative, as it might be modified during the

rounding in the multiplication process (Section 3.2.1). This tentative exponent is calculated

for all the partial sum terms and fed to the sorter to arrange them in ascending order. The

partial sum terms are evaluated starting from the lowest tentative exponent for evaluation.

In order to evaluate the partial sum, inner porducts (like X12, X3?) and cross products (like

((X12 ~X2) x33)) are required. These values are computed using the pre-normalization, mul-

tiplier and rounding blocks of the floating point multiplier and and stored in the memory.

Consequtively, the partial sum is evaluated and passed to the accumulator which is reset at

the beginning of the multinomial evaluation. Evaluating the partial sum starting from the

34

occumulotortO)

pre

norm

Figure 4.1: Architecture of the Correction Engine with microprocessor core and memory.

term of least significance avoids the tiny number to disappear in the floating point addition

process (For example, if we want to add the numbers 10, 0.8, and 0.9 using the floating

point adder, which is of 2 digits wide, accumulation starting from 10 will yield a result of

10 as the tiny quantities are lost when the operands are aligned. However if the accumu-

lation is started from 0.8, 0.9, and followed by 10, the result will be 11, a more accurate

result).

4.2 Correction Engine Operation

When the inputs from the sensors arrive, the region of operation in the sensor signal

tranfer curve is determined by the microcontroller, and the error-correction coefficients are

stored in the shared memory. The controller reads the first correction coefficient and the

order of the input signals. The controller has a 4-input multiplexer for each input signal.

35

22272, 24

A

trails am...

Figure 4.2: Memory word organization. The powers of the input signals are stored in the

MSB, while the correction coefficient is stored in the 3 LSBs.

The input signals for the multiplexer are 0, ex, (exponent of the input signal X1), 2 at ex, (left

shifted once from 8X1). and 3 * ex, (obtained by adding ex, and 2 at: ext); the select signal is

the order of the input signal (0(X1)). The outputs of all four of the multiplexers are fed

to a 5-input adder, where the other input comes from the exponent term of the coefficient,

to form the tentative exponent of the partial sum term (Figure 4.3). The sign of the partial

sum term is determined by evaluating sx, EB sx2 EB sx3 EB sx3 However
69 Scam)0(X2)0(X2)0(X2)’

the sign evaluated here is used only to set an appropriate :1:00 flag during the overflow at

any stage of the shift or addition process.

The exponent of the partial sum terms are computed one by one at each clock cycle.

Reading a value of a constant (0(X1m4) = 0) indicates that the multinomial does not have

any more terms to evaluate. The output of the tentative exponents are fed to the hardware

sorter, which accepts all the inputs given in consecutive clock cycles. After getting the

signal that the multinomial has reached a constant term, the sorter starts giving its output

starting from the term of least significance. Inner porducts (like X{2, X3) and cross products

(like ((X,2 -X2) -X§)) are evelauated folloewd by the partial sum term itself (like cm X?-

X2 -X33‘). Once the first partial sum is evaluated, it is fed to the adder (pre-normalize, add,

and rounding stages) in the consecutive cycles. The other input for the adder comes from

the accumulator of the correction engine.

36

0

x1 '

2*xr
3*xr

32:\ orxn
m—~
390'—

00(2) EICXIW "a". :i

£3:\

338 (Ira

0001’
3.

00(4)

Figure 4.3: Tentative exponent generation with input exponents and correction coefficient.

4.2.1 Clocking

The clocking scheme for various blocks is an interesting one, as not all the blocks

produce and consume data on consecutive cycles. Once the sorter produces an output about

which partial sum term is to be evaluated first, the necessasy inner and cross products are

generated to evaluate the complete partial sum term. During this computation phase, the

sorter as well as the adder blocks are not clocked. If there is a data dependency, the Once

a partial sum term is evaluated completely, the sorter is clocked to produce the next partial

sum term and at the same time, the adder pre-normalize block is clocked. The add and

rounding blocks are clocked in the consucutive cycles from the adder pre-norrnalize block

is clocked, to complete the accumulation. The internal flip-flops holds the data values if

the stages are not clocked.

37

4.2.2 Reconfigurability

The data correction unit is capable of adapting itself to a variety of operations in ad-

dition the error correction operation. It can be programmed to work as a dedicated inte-

ger/floating point multiply and accumulate unit without clocking the hardware sorter unit.

It can adapt to a new rounding scheme where the rounding bit is forced to zero bypass-

ing the entire post normalization blocks and complete with computations in fewer clock

cycles. The microcontroller can take control of all hardware resources to operate as a

general-purpose floating-point co-processor to perform filtering operations and data fusion

algorithms.

4.2.3 Perturbation Analysis

Incremental theorem for functions [17] describe about the output of a function if there

is a small change in the inputs. If Y = f(X1,X2), and there is a change AX] = X1 -Xlo in

the input X1, then the output is given by Y = Yo + £6 -AX1 if the perturbation in the input

AX1 is small. If one of the inputs change slightly during the operation, this principle can be

used to compute the change in the output rather than computing the output again. Software

assistance is needed for calculating the perturbation of the input signal and in detennining

whether the approximation is close enough to the actual output.

4.2.4 Energy Efficiency

Since the operating frequency of the correction engine is limited to 40 MHz, the power

measurements are taken by simulating the design at 40 MHz. All possible input com-

binations are applied to each cell in the library, and the power dissipation is calculated.

The number of times a particular gate is used, is counted and multiplied with the power

38

consumption. Performing this calculation for all the cells in the library, yielded the typ-

ical power consumption. The correction engine takes about 28 clock cycles to complete

the multinomial shown if Equation 4.2, and consume about 4.47 n] from the battery. it is

assumed that the leakage power is very small when compared to the switching power.

The effect of having the hardware sorter comes to play, when the correction equation

contain many partial sum terms. The hardware sorter reduces the number of computations

in the multinomial by making a trade off in accuracy, and improves the energy efficiency

of the correction engine. Usually, the data precision and speed performance are not of

utmost importance in the sensor based battery powered system applications, when com-

pared to the energy demands of the system. Hence this method will be an effective one,

when compared to the general purpose floating point hardware units, where data accuracy

is not compromised, and a certain level of performance is guaranteed. Most of the appli-

cation specific controllers in sensor based microsystems support floating point operations

in software rather than in hardware. These routine-driven softwares have computational

and communication overheads in the correction engine process making them unfriendly

for a system, which predominantely wants to stay in sleep mode to save battery life. This

reconfigurable correction engine, as a single system meets the requirements of both high

accuracy and low energy demands (not simultaneously though), making it an unique prod-

uct in the growing environmental and bio sensor microsystems.

4.3 Hardware Sorter

The significance of a particular partial sum term in the error correction multinomial is

approximately estimated from the exponent value of the input signals and the correction

coefficient. The partial sum terms are rearranged in ascending order of their significane

and evaluated and accumulated to form the final sum. This avoids the the error due to

39

alignments in the floating point addition operation. However, if the accumulation is started

from the term of most significance, a coarse result can be achieved in fewer computations

saving time and energy involved in the floating point computation scheme. Arranging the

partial sum terms in an order is sorter is necessary to produce accurate or faster results. For

the correction engine design, a hardware sorter working on the principle of assigning ranks

to integers on the fly is developed. The following sections describe the algorithm and the

working principle of the sorter.

4.3.1 Sorting Algorithm

In this scheme, each incoming integer is associated with a rank, which determines its

position in a set of integers. When a new integer arrives to the network, it does not have a

rank. The rank of the new integer among the existing integers is determined by comparing

it against all the existing integers. Then rank of all the integers whose rank is greater or

equal to the incoming integer is incremented to maintain the uniqueness of the rank. If the

integers are called in the order of their ranks, a sorted list is produced. In this methodology,

swapping the integers inside the network is avoided, the main contributor of increased pro-

cessing time and energy dissipation. The disadvantage of the sorter is that the input/output

are given/taken once in a clock cycle(i.e. it takes n clock cycles to sort n integers). How-

ever, since input for the sorter comes from the exponent predictor block and the output is

fed to the Data Control block, all working in a pipeline, the designed sorter fits well for the

correction engine design.

4.3.2 Sorter Architecture

The sorter (shown in Figure 4.4) is capable of sorting sixteen 8-bit wide unsigned

integers given one integer in a clock cycle. It has sixteen 8-bit registers to store the integers

and a comparator associated with each integer. The comparators compare the existing

40

integers with the incoming integer and produce a 0 if the existing integer is smaller than

the incoming integer else it produces a 1. If we count the 0’s from all the comparators, it

determines the rank of the incoming integer. The result of all the comparators are stored

in a 16-bit register, which has a special property that the result of any comparator can

be stored in any bit position. The bit position of the comparator’s result is determined

the rank of the existing integer stored in the 4»bit index register. With this arrangement,

the rank determination problem is reduced to a lead zero detection problem. The sorter

has a lead zero detector for determining the rank of the incoming integer. Once the lead

zeroes are detected and storeed as the rank for the incoming integer, the rank is compared

against all the existing integer’s ranks. The ranks higher than the incoming integer’s rank

are incremented. Hence the new integer is inserted in the array of ordered integers. Each

integer has a data valid bit associated with it, so that the comparision is performed only

when there data valid bit is enabled.

reg_0 0111111 reg_n

dafo_ln 8%“ :3

[111m

ronk_0 ronk_n

decoder o o o deccz—ér]

..
compore_register

Figure 4.4: Architecture of the sorter

41

4.3.3 Sorter Operation

The sorter is initialized by setting the inputht signal (Figure 4.5) which resets the

storejndex counter. In consecutive clock cycles, the storejndex is incremented. Each time

an integer arrives to the network, the incoming integer is stored in the register indicated by

the contents of the storejndex. The same integer is also stored in the datajn register to

compare it with the already existing integers. The regjndex associated with the first integer

is assigned to 0 (4’b0000 as the regjndex is 4-bit wide) and the data.valid bit associated

with that register is set, so that the result of the compare operation is stored in the 0‘”

oposition in the compareJeg.

When the next integer arrives, the incoming integer is stored in the next register. The

new integer is compared with the already existing integer. If the new integer is bigger than

the old integer, the comparator will produce a 0. The leading zeros in the compareJeg is

counted by the lead zero detection network. Since the leading zeros(1) is greater than the

regjndex of the first integer, it is not modified this time. The leading zeros is stored in the

regjndex of the second integer.

If a number in between the first and the second integer arrives to the network, the third

integer is stored in the 3"! register. The already existing integers are compared against the

incoming integer. The comparator result of the first and second integers goes to the 0’”

and 1" bit positions. This time also the leading zeros in the compareJeg will be counted

as 1 and the regjndexes with entries greater than or equal to the leading zeros will be

incremented. Hence the reg-index of the first integer will not be incremented while the

regjndex of the second integer will be incremented. The leading zeros will be stored in

the regjndex of the third integer. Now if the integers are recalled by regjndex values, they

will be sorted in ascending order. The sorter was tested with a typical input pattern and the

functional simulation is shown in Figure 4.5.

42

43

Figure 4.5 Functional Simulation of the Sorter

F
u
n
c
t
i
o
n
a
l
S
i
m
u
l
a
t
i
o
n
o
f
t
h
e
S
o
r
t
e
r

P
r
u
u
l
u
K
i
l
n
"
B
c
l
u
u
n
d
a
r
n
m

[
C
u
r
s
o
r
z

=
0

n
s

.
4
0

.
6
0

.
8
0

.
1
0
0

C
u
r
s
o
r
l

=
2
3
5
(
0
)

n
s

T
i
m
e
A

=
2
3
5
(
0
)

n
s
l

.
1
2
0

.
1
4
0

.
1
6
0

.
1
8
0

.
2
0
0

2
3
5

n
s

G
r
o
u
p
:

A

d
a
t
a
_
o
u
t
[
7
:
0
]

=
“
2
0
1
1
1
2
7
1
1
0
1
1
7
5

1
6
1

I
3
5

I
1
4

s
t
o
r
e
_
i
n
d
e
x
l
3
:
0
1

=
I
1

1
2

1
3
‘
1
4

I
s

I
5

I
7

1
8

I
9

l
o
a
d
_
i
n
d
e
x
(
3
:
0
]

=

1
8

1
7

1
6

1
5

1
4

1
3

1
2

[
1

1
0

1
1
5
1
1
4
1
"

1
d
z
l
3
:
0
]
=
'
h
4
1
1
x

2
0

I
1

1
3

I
5

1
1

1
0

I
4
 l
l

r
e
g
_
i
n
d
e
x
_
0
[
3
:
0
]

=
'
h

s
l
l
e
o

I
1

I
2

1
3

I
4
L

I

r
e
g
_
i
n
d
e
x
_
1
1
3
:
0
]

=
'
h
1
”
x

1
0

1
1

r
e
g
_
i
n
d
e
x
_
2
[
3
:
0
]

=
'
h

3
g

1
1

1
2

B

d
a
t
a
_
i
n
d
e
x
_
0
[
7
:
0
]

=
’
d

1
0
1

_
x

5
1
0
1

d
a
t
a
_
i
n
d
e
x
_
1
[
7
:
0
]

=
'
d

3
5

'

d
a
t
a
_
i
n
d
e
x
_
2
[
7
:
0
]

=
,
d

5
1

c
o
m
p
a
r
e
_
r
e
g
_
0

=
O

c
o
m
p
a
r
e
_
r
e
g
_
1

=

c
o
m
p
a
r
e
_
r
e
g
_
2

=

d
a
t
a
_
i
n
[
7
:
0
1

=
'
d

7

o
u
t
p
u
t
_
r
s
t

=

o
u
t
p
u
t
_
o
r
d
e
r

=

0 O 5
m

i
n
p
u
t
_
r
s
t

=
0 0 1

c
l
k

=
O

 primer! on WedM
2
0
2
3
:
3
2
1
7
2
0
0
8

m
m
w
e
u
m
c
u
m
m
m
n
m
.

CHAPTER 5

Conclusion and Future Research

5.1 Conclusion

A correction engine capable of performing sensor signal calibration and compensation

was implemented in a top-down design process using a custom library. Energy efficiency

was given a priority right from the early design stages. The design and report generation

were performed with the help of powerful perl scripts, which required least amount of

manual interventions.

Energy/Power savings in the correction engine design are obtained in the following

ways:

0 An optimized cell library of about 25 cells was developed to meet the low energy

constraints. For example, since flip flops are used extensively in the pipelined mi-

croprocessor and data correction unit, the energy demands of five different flip-flop

structures (in-house flip-flop with and without reset, push-pull isolation flip-flop,

transmission gate flip-flop and a regular master-slave flip-flop) were thoroughly ana-

lyzed and the two most efficient structures were included in the cell library.

0 Efficient multipliers and adders are used to perform the integer multiplication and

addition process.

0 The expoenent term of the floating point quantity is exploited to order the partial sum

terms even before the multiplication and addition process. This novel method saves

energy in computing the small terms in the multinomial which does not contribute to

44

5.2

the final result. When the accuracy is of a concern, the accumulation can be started

from the term of least significance even avoiding the error arising in the floating point

alignment process. Thus the correction engine design meets the requirements of both

the ends. Predicting the magnitiude of the data using the exponents of floating point

values is an unique contribution to the scientific community.

The design can adapt to a novel rounding scheme which forces the rounding bit to 0

and gains a clock cycle by shutting down an entire rounding block. This is an unusual

way of gaining performance for the scientific community.

Assigning ranks on the fly algorithm was used to re-order the terms in the multi-

nomial according to their significance. The data movements in the sorter are kept

to a minimum (no swapping between the contents of registers) to keep the energy

dissipation under control.

Perturbation calculations which minimize the order of the sum terms in the multi-

nomial helps high order equations to be evaluated using hardware without software

interventions contribute further to the low energy objective.

Future Research

The interactions between the microcontroller and the correction engine can be well

studied and optimized.

Moving to a technology with more interconnect metal layers and smaller feature size

Silicon on Insulator technologies will give designs of high densities and can further

contribute to the low energy objective.

45

0 Formal verification techiniques and Design for Test techniques will improve the re-

liability of the design process and identify the faults in the circuit and checking the

consistency of the design in avrious stages of the design flow.

0 Content Adressable Memory [10] locations for storing inner and cross products for

a particular partial sum term in the multinomial would reduce evaluating the same

terms twice.

0 Right now, more burden is placed on the hardware to resolve the hazards and to

schedule the resources. The load can be moved to the compiler to avoid the stall

cycles in the operation.

46

APPENDIX A

Design Flow With AMSAC Library

The cell library has a Timimg Library Format (TLF) file to help the synthesis tool to

perform logic synthesis, and an LEF file to perform the physical design. Both TLF and the

LEF file can be segmented into two sections. In the first section, information pertaining to

all the cells in the library is provided, and in the second section, information pertaining to

a cell is given. New cells can be added to the library with little or no changes to the rest of

the cells. A portion of the TLF file and the LEF file is provided in this appendix to get an

insight in the library development process.

A.1 Using the TLF file

Ambit Buildgates can be invoked in any workstation in MSU by running these com-

mands in a console/xterm window: source .8 SOFT/spr40 , followed by ac_shell -gui&

(these commands are subjected to change, and contact the CAD support/unixadmin if case

of any problems).

0 The TLF file can be read by Ambit Buildgates using the command read_tlf am-

sachb.tlf (in ac-shell prompt) by keeping the amsachb.tlfin the Ambit Buildgates

running directory.

0 The verilog source file can be read using the command read_verilog test.v.

0 After setting the timing constraints, a generic design can be designed using the com-

mand do_build_generic -all . Then the generic design can be mapped to the library

using by running do.optimize in the ac-shell prompt.

47

o A gatelevel netlist in verilog format can be obtained from Ambit Buildgates by ex-

ecuting write-verilog -hier test.vg. This completes our synthesis process and the

gatelevel netlist can be fed as input to the physical design tool.

A.2 Sample TLF file

/* Library for Synthesis --

Copyright reserved by Advanced Micro Systems and Circuits Laboratory

Michigan State University

Author: Prasanna Balasundaram

This file will be used for synthesis using Ambit Build Gates.

Version: 1.02 11/03/2003

-Added the load capacitance of the gates which read zero before;

if the cap values are 6+ digits, it was written from the netlist directly

else it was added from the thesis report.

Version: 1.01 Date Unknown

-All cells in the library are recognized by the synthesis tool.

-synthesized netlist functionally matches the source.

*/

header('

library("amsac_lib")

date("Tue Feb 25 11:15:35 2003")

vendor("Michigan State University AMSAC Lab")

environment("com1c_tt_n-n")

technology("AMIC5N 0.3um")

version("1.02")

t1f_version("4.3")

)

Properties (

temperature(25)

voltage(3.0)

/* multipliers and k-factors */

proc_mult(1.0)

temp_mult(1.0)

48

volt_mu1t(1.0)

/* threshold definitions */

table_input_threshold (0.5)

table_output_threshold (0.5)

tab1e_transition_start (0.1)

tab1e_transition_end (0.9)

// for_cell(seq for_pin(input slew_1imit(warn(2.0) error(2.0))))

// for_cell(comb for_pin(input slew_limit(warn(2.0) error(2.0))))

/* defaults */

load_limit(100.0) /* max output load */

)

/* additional header data */

/* end of header section */

/* -—- -- — */

cell (nand2

/* cell properties */

/* constraint models */

/* timing models */

timing_model (td_a10_y01_b1

(spline (input_slew_axis 0.1 0.2 0.5 1 2)

(load_axis 0 1 2 5 10) (

(0.1222 0.1337 0.1343 0.1617 0.1430)

(0.1361 0.1429 0.1429 0.2113 0.1835)

(0.1996 0.2084 0.1978 0.2129 0.2509)

0

0

(0.3292 0.2655 0.3752 0.2848 .4019)

(0.3042 0.3046 0.3093 0.3701 .5635)

)))

timing_mode1 (td_b10_y01-a1

(spline (input_slew_axis 0.1 0.2 0.5 1 2)

(load_axis 0 1 2 5 10) (

(0.1085 0.0893 0.0969 0.1354 0.1427)

(0.1285 0.1243 0.1309 0.1493 0.1777)

(0.1473 0.1504 0.1539 0.2143 0.2463)

(0.2005 0.2223 0.3214 0.3332 0.3019)

(0.3478 0.2562 0.3107 0.3903 0.4563)

)))

timing_model (td_a01_y10_b1

(spline (input_slew_axis 0.1 0.2 0.5 1 2)

(load_axis 0 1 2 5 10) (

49

(0.2064 0.2586 0.2580 0.2563

(0.2216 0.2129 0.2363 0.2916

(0.2783 0.2941 0.3120 0.3527

(0.3127 0.3412 0.3309 0.4188

(0.4270 0.3475 0.3460 0.4755

)))

timing_mode1 (td_bOi_y10_a1

(spline (input_slew_axis 0.1

(load_axis 0 1 2 5 10) (

(0.1851 0.2189 0.2151 0.2682

(0.2477 0.2350 0.2297 0.2719

(0.3199 0.3340 0.3446 0.3898

(0.4322 0.4413 0.4512 0.5526

(0.4697 0.4872 0.5068 0.6789

)))

timing_model (ts_a10_y01_b1

(spline (input_slew_axis 0.1

(load_axis 0 1 2 5 10) (

(0.1554 0.1535 0.1576 0.2070

(0.1733 0.1669 0.1735 0.2198

(0.2529 0.2584 0.2791 0.2998

(0.3655 0.4362 0.3833 0.4058

(0.4756 0.4764 0.6707 0.5750

)))

timing_mode1 (ts_b10_y01_a1

(spline (input_slew-axis 0.1

(load_axis 0 1 2 5 10) (

(0.0973 0.1421 0.1538 0.1502

(0.1420 0.1521 0.1658 0.2124

(0.2311 0.2463 0.2588 0.2917

(0.2909 0.3753 0.3406 0.3748

(0.5166 0.5321 0.5135 0.6225

)))

timing_mode1 (ts_a01_y10_b1

(spline (input_slew_axis 0.1

(load_axis 0 1 2 5 10) (

(0.3012 0.3316 0.3519 0.4498

(0.2817 0.3222 0.3518 0.4358

(0.3436 0.3455 0.3574 0.4121

(0.4183 0.4128 0.4623 0.4862

(0.4866 0.5302 0.5542 0.6594

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.3498)

.3588)

.3823)

.4606)

.5042)

.2 0.5 1 2)

.3423)

.3727)

.4677)

.6302)

.8177)

.2 0.5 1 2)

.2758)

.2642)

.3282)

.4772)

.6333)

.2 0.5 1 2)

.2103)

.2595)

.2784)

.4284)

.6190)

.2 0.5 1 2)

.4909)

.5818)

.5444)

.5995)

.7938)

50

)))

timing_model (ts_b01_y10_a1

(spline (input_slew_axis 0.1 0.2 0.5 1 2)

(load_axis 0 1 2 5 10) (

(0.2913 0.3165 0.3539 0.4473 0.5960)

(0.2817 0.3239 0.3446 0.3696 0.5802)

(0.3448 0.3523 0.3788 0.4842 0.6753)

(0.4516 0.4548 0.4933 0.5644 0.6153)

(0.6158 0.6389 0.6183 0.7345 0.9436)

)))

pin(A pintype(input) capacitance(0.719819993816823))

pin(B pintype(input) capacitance(0.719819993816823))

pin(Y pintype(output) capacitance(1.80803994797362) Function(!(A\&B))

/* path definitions */

Path(A => Y 10 01 Delay(td_a10_y01_b1) Slew(ts_a10_y01_b1))

Path(A > Y 01 10 Delay(td_a01_y10_b1) Slew(ts_a01_y10-b1))

Path(B > v 1o 01 Delay(td_b10_y01_a1) Slew(ts_b10_y01_a1))

Path(B => Y 01 10 Delay(td_b01_y10_a1) S1ew(ts_b01_y10_a1))

A.3 Using the LEF file

Envisia Silicon Ensemble can be started from any workstation by running the following

commands in the console/xterm window: source $SOFT/dsmse53 , source $SOFT/ic446

and sedsm -m=96.

o In the command prompt of the Silicon Ensemble, the LEF file is imported to the

database using INPUTLEFFILENAME ”amsachbJef” REPORTFILE ”importlef. rpt”;

0 Special variables are set using the following commands:

SE7"VAJIHVPTIIVGH5HHDCZIMDWHERJVEH"”vddV”;

SET VAR INPUT. VERILOG.GROUND.NET ”gnd!”;

51

SET VAR INPUTVERILOGLOGICLNET "vdd.’”.'

SET VAR INPUTVERILOG.LOGIC.0.NET ”gnd! ”.'

SET VAR INPUT.VERILOGSPECIALNETS ”vdd! gnd! clk".'.

A sample verilog file with all the cells in the library is created and imported to the

database. These files need not have functional descriptions, but should have match-

ing pins with the LEF. INPUT VERILOG FILE ”../verilog/amsac_lib.v” LIB ”ver-

ilogJib”

The design (synthesized gate level netlist) is imported to the Silicon Ensemble by

executing INPUT VERILOG F1115 ”test.vg” LIB ”cds-vbin” REFLIB ”veriloglib ”

DESIGN ”cds-vbin.name.of_the.top_module:hd ” ,' .

Floorplanning is performed by the command: FINIT FLOOR rowu 0.35 rowsp 6000

blockhalo 2000 a I xio 30000 yio 30000

IOPLACE AUTOMATIC STYLE EVEN ; places the pins along the periphery in ran-

dom. The 10 constraint file can be modified to place the pins in the desired locations.

If the design is not constrained much, running the commands QPLACENOCONFIG

; and WROUTE NOCONFIG ,' should complete the place and route process.

The design can be exported in the LEF, GDSH and DEF (Design Exchange Format)

formats using the following commands:

OUTPUT GDSII MAPFILE amsachb.map FILE test.gdsZ ;

OUTPUTDEF FILENAME ”test.def’ ;

OUTPUTLEFBLOCKFILENAME ”test.lef” MACRONAMEname-0f_the_top_module

52

o The design can be imported to deI by importing the DEF, followed by importing the

GDSH by keeping the layout view open. The source netlist for the Silicon Ensemble

can be imported to a schematic and the LVS can be performed here.

A.4 Sample LEF file

VERSION 5.3 ;

NAMESCASESENSITIVE ON ;

BUSBITCHARS "[]" ;

DIVIDERCHAR "/" ;

UNITS

DATABASE MICRONS 1000 ;

END UNITS

LAYER nwell

TYPE VIRTUAL ;

END nwell

LAYER active

TYPE MASTERSLICE ;

END active

LAYER poly

TYPE MASTERSLICE ;

END poly

LAYER cc

TYPE CUT ;

SPACING 0.9 ;

END cc

LAYER metall

TYPE ROUTING ;

DIRECTION HORIZONTAL ;

PITCH 3 ;

WIDTH 0.9 ;

SPACING 0.9 ;

RESISTANCE RPERSQ 0 ;

CAPACITANCE CPERSQDIST 0 ;

CURRENTDEN 0 ;

END metall

53

LAYER via

TYPE CUT ;

SPACING 0.9 ;

END via

LAYER metal2

TYPE ROUTING ;

DIRECTION VERTICAL ;

PITCH 2.4 ;

WIDTH 0.9 ;

SPACING 0.9 ;

RESISTANCE RPERSQ 0 ;

CAPACITANCE CPERSQDIST 0 ;

CURRENTDEN 0 ;

END metal2

MACRO nand2

CLASS CORE ;

FOREIGN nand2 0.000 0.000 ;

ORIGIN 0.000 0.000 ;

SIZE 9.600 BY 21.000 ;

SYMMETRY X Y ;

SITE CoreSite ;

PIN A

DIRECTION INPUT ;

PORT

LAYER metall ;

RECT 1.800 8.400 3.300 9.600 ;

END

END A

PIN gnd!

DIRECTION INOUT ;

USE GROUND ;

SHAPE ABUTMENT ;

PORT

LAYER metall ;

RECT 1.800 0.000 3.000 5.100 ;

RECT 0.000 0.000 9.600 3.000 ;

END

END gnd!

PIN B

DIRECTION INPUT ;

PORT

54

LAYER meta11 ;

RECT 6.300 11.400 7.800 12.600 ;

END

END B

PIN vdd!

DIRECTION INOUT ;

USE POWER ;

SHAPE ABUTMENT ;

PORT

LAYER metal1 ;

RECT 1.800 14.250 3.000 21.000 ;

RECT 6.600 14.250 7.800 21.000 ;

RECT 0.000 18.000 9.600 21.000 ;

END

END vdd!

PIN Y

DIRECTION OUTPUT ;

PORT

LAYER metall ;

RECT 4.200 3.900 5.400 16.950 ;

RECT 4.200 3.900 7 800 5.100 ;

END

END Y

END nand2

END LIBRARY

55

BIBLIOGRAPHY

[1] IEEE Standardfor Binary Floating-PointArithmeticANSI/IEEE Std 754. IEEE Press,

1985.

[2] IEEE Standardfor a Smart Transducer Interfacefor Sensors and Actuators - Trans-

ducer to Microprocessor Communication Protocols and Transducer Electronic Data

Sheet (TEDS) Formats. IEEE Press, 1997.

[3] Cadence Design Systems. Timing Library Format Reference, October 2000.

[4] A.V. Chavan. An integrated high resolution barometric pressure sensing system.

Technical Report SSEL-313, University of Michigan, 2000.

[5] Yoshikoru Yoshii et al. Integrated software calibrated cmos pressure sensor with men,

a/d converter, d/a converter, digital communications port, signal conditioning circuit

and temperature sensor. In Proceedings ofTransducers, 1997.

[6] KB Lyahou, G. van der Horn, and J.H. Huijsing. ,A noniterative polynomial 2-d

calibration method implemented in a microcontroller. IEEE Transactions on Instru-

mentation and Measurement, 46(4):752—757, 1997.

[7] O. Machul, D. Hammerschmidt, W. Brockherde, and BJ. Hosticka. A smart pressure

transducer with on-chip readout, calibration and nonlinear temperature compensation

based on spline-functions. In IEEE Integrated Solid-State Circuits Conference, pages

198—199, San Francisco, 1997.

[8] D. Markovic, B. Nikolic, and lR.W. Brodersen. Analysis and design of low-energy

flip-flops. In Proceedings ofthe IEEE/ACM International Symposium on Low Power

Electronics and Design, ISLPED’OI, pages 52-55, Huntington Beach, CA, August

6-7. 2001.

[9] S. Microsystems. Numerical computations guide, 1991.

[10] H. Miyatake, M. Tanaka, and Y. Mori. A design for high-speed low-power cmos fully

parallel content-addressable memory macros. IEEE Journal of Solid-State Circuits,

36(6):956—968, June 2001.

[11] M.L.Dunbar. Single chip asics for smart sensor signal conditioning. In Proceedings

of WESCON.

[12] M. Mozek, D. Vrtacnik, D. Resnik, U. Aljancic, M. Cvar, and S. Amon. Calibration

and error correction algorithms for smart pressure sensors. In IEEE MELECON,

Cairo, Egypt, May 7-9 2002.

56

[13] G. C.M. Meijer P.C. de Jong. A high—temperature electronic system for pressure—

transducers. IEEE Transactions on Instrumentation and Measurement, 49(2):365 -

370, April 2000.

[14] R.L. Schwartz and T. Christiansen. Learning Perl,. O’Reilly and Associates, Novem-

ber 1993.

[15] V. Stojanovic and V. Oklobdzija. Comparative analysis of master-slave latches and

flip-flops for high-performance and low-power systems. IEEE Journal Solid-State

Circuits, 34(4):536—548, April 1999.

[16] E. Swartzlander T. Callaway. Power-delay characteristics of cmos multipliers. In 13th

IEEE Symposium on ComputerArithmetic, Asilomar, CalifomiaUSA, July 6-9 1997.

[17] G. Thomas and R. Finney. Calculus and Analytic Geometry. Addison-Wesley, 9th

edition, 1996.

[18] H.K. Trieu, M. Knier, O. Kiister, H. Kappert, M. Schmidt, and W. Mokwa. Monolithic

integrated surface micromachined pressure sensors with analog on-chip linearization

and temperature compensation. In The Thirteenth Annual International Conference

on Micro Electro Mechanical Systems, volume 13, pages 547-550, Piscataway,NJ,

2000.

[19] J. Zhang, J. Zhou, P. Balasundaram, and A. Mason. A highly programmable sen-

sor network interface with multiple sensor reaout circuits. In Proceedings of IEEE

Sensors 2003, Toronto, Canada, Oct 22-24 2003.

57

 llHIlllllllllllllllllIHllllllllllllllllllllllllllllll
3 1293 02504 5810

