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ABSTRACT

MODELING OF DYNAMIC SYSTEMS USING INTERNET ENGINEERING

DESIGN AGENTS

By

Drew R. Reichenbach

As engineering evolves from largely in-house design, validation, and production

processes to an interlinked network of global designers, manufacturers, and integrators, it

becomes necessary for the engineering processes involved to change as well. Companies

are migrating from being product manufacturers to product integrators, combining a large

number of engineering subsystems designed and manufactured by their supply base.

Additionally, product integrators are coming to rely heavily on those suppliers for the

design and model information required to make their integration a success. Currently,

this requires the time and effort to reformulate and revalidate the subsystem models into a

global model of the product. In addition, suppliers are hesitant to give their models to the

integrators, without binding legal agreements to protect the proprietary information

contained within their subsystem models. The fixed input/output structure the modular

modeling method provides eliminates the need for global model reformulation and

revalidation. The distributed, agent-based architecture of the i-EDA system allows

companies to focus on their core competencies, and to have access to model information

at any time, and from any place. In addition, the synthesis of the two concepts provides a

method for communicating dynamic models in a manner that conceals the proprietary

information contained within them. This work details the implementation of the modular

modeling method within the i-EDA framework to assemble and solve a class of dynamic

system models over the internet. Examples are given from structural mechanics.
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Chapter 1. Introduction

Engineering is a global effort. Corporations have design teams, manufacturing

facilities, and a supply base that spans multiple nations. Manufacturers of finished goods

no longer do all of the product design in house but rely on their suppliers for complete,

accurate, cost-effective component designs to integrate into their finished products.

Along with supplying component designs, suppliers are now expected to provide

dynamic models of those systems [Kern 2000]. Kerr also states that communicating

design and modeling information between companies requires a great amount of

overhead, cooperation, and trust between corporations. Model communication requires

that strong legal agreements are in place before any information is transmitted in order to

protect the proprietary information contained within the model. Creating and maintaining

these legal agreements can be time consuming - requiring anywhere from a few months

to a full year to establish. Additionally, after model information has been received, the

model must be integrated into the existing system model. This process typically requires

the global reformulation and revalidation of the entire model, which is one of the most

time consuming portions of dynamic model simulation. Additionally, reformulation of

the individual component models into an assembly model often makes component model

replacement, substitution, or updating extremely difficult. To reduce design cycle length

and time-to-market, a process is needed for communicating reusable dynamic system

l'Ilodels between companies that protects the proprietary information and interfaces easily

With traditional modeling methods.

A complete solution would allow for the communication of dynamic system

I110dels, and the protection of the proprietary information contained within them.
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Communication of models is important because of the global nature of engineering. For

example, an assembly is designed in Detroit for assembly in St. Louis, from sub

assemblies designed in Seattle and built in Mexico from Japanese components. Without

the ability to model the component, sub-assembly, and assembly designs, and to

communicate the model information, the ability to predict the functional behavior of the

final product is greatly reduced. The model information that is communicated, however,

frequently contains information considered proprietary by the supplier. The ability to

protect the proprietary information contained in the models that are communicated

between suppliers and their customers will remove the need for lengthy negotiations and

contracts before any parts have been purchased. Additionally, the protection of

proprietary information will allow manufacturers to test models before any specific

agreements were created. This would increase competition in the marketplace and help

to drive costs down, while increasing the performance and quality of engineered products.

The i-EDA System

The i—EDA system [Radcliffe, Sticklen, and Gosciak, 2002; Gosciak, 2001] is

designed to be a distributed, component-based system capable of providing both external

model and descriptive information without divulging internal proprietary information.

The core of the i-EDA system is the design agent. In this work, the term "agent"

describes one class of agent software; a group of semi-autonomous, stationary, object-

Oriented programs designed to interact with both users and each other over the internet.

Each individual design agent represents a real world object and could be considered a

Virtual product. Agents representing subsystems and components are linked by means of

a network to form larger integrated systems. Agents interact with the user, and with each
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other, through a system of strict, predefined queries stored in the global ontology. The

ontology, which interacts as an agent itself, contains the set of standardized queries that

are complete enough to allow compositional modeling. When used with the modular

modeling method, the i—EDA system is capable of assembling and communicating

external system models without divulging the proprietary from which the models were

developed.

The Modular Modeling Method

The modular modeling method [Byam and Radcliffe, 2000; Byam, 1999] is a

systematic, power-based, modeling method that defines strict port causality, eliminating

model reformulation, and enhancing the model validation process. The formulation and

validation of models are the two most time consuming processes in dynamic system

modeling. Traditionally, a model would have to be globally reformulated and then

revalidated for each set of possible model input/output configurations. For smaller

models, the workload is moderate, however for larger models, the amount of overhead

quickly becomes intractable. The number of possible model configurations is related to

the input/output selection at each power port. For a power port, the product of the input

and output variables must be equal to the power transmitted at that port. Because there

are two possible configurations for each power port, the number of possible model

formulations (and likewise, required model validations) can be written as

Na = 2" (1.1)

Where Na is the total number of possible model formulations, and n is the number of

'Dower-ports on the model. In a large model, such as the kinematic model used by



Chrysler during the design of their full-size sedans, there could be as many as 5,500

interconnected components. [Computers in Engineering: Chrysler designs paperless cars,

1998] This means that the Chrysler large car model contained a minimum of

2.138X1033“ possible model input/output configurations.

With the modular modeling method, the number of possible model formulations is

reduced to one. This reduction occurs because of the fixed input/output, or causal,

structure of modular models. The causal structure used by the modular modeling method

is known as measurement perspective causality. [Byam and Radcliffe, 2000; Byam, 1999]

Measurement perspective causality defines the port output as the variable related to the

commonly measured quantity (e.g. linear velocity) and the port input as the variable

typically assumed to be zero for zero power flow across the port (e.g. linear force).

f<———— ”/2 IAN—"V2 —>' if
v

 

  

 

      

   

Figure 1 An example of measurement perspective causality for a linear mechanical system. Black

arrows represent forces; white arrows represent velocities.

Measurement perspective causality for a linear mechanical system specifies that the

i Inputs should all be forces, and the outputs should all be velocities, as shown in Figure 1.

Like all power-based models, the product of the port variables remains power. Work by

[Byam, 1999] and [Byam and Radcliffe, 2000] expands on the port causal structures for

Other types of power—based models. Specifying the port causality, however, causes

I'Ilodular models to have incompatible input/output structures. For a connection to be

rnade, the input port of one model must be connected to the output port of another. With

modular modeling, however, this is not possible, because the inputs and outputs of both

models are specified and represented by the same variables.

4



The Modular Modeling Connector (MMC) element was introduced by Byam to surmount

this problem. The MMC is designed to provide complementary causality for the

connection of models.

f v

}:><: )1

Figure 2 A Modular Modeling Connector (MMC) element for connecting two modular models of

linear mechanical systems. Black arrows represent forces; white arrows represent velocities.

A modular modeling connector (Figure 2 e.g.) is composed of n +1 total power ports. Of

those ports, the first it ports have an input/output structure that compliments

measurement perspective causality. The remaining port has measurement perspective

causality and can either be used to connect additional modular models to the port at a

later time, or can be condensed out of the model to protect the internal structure of the

model.

Mathematically, the MMC applies a set of constraints on the objects being

Connected. When two objects are physically attached to each other, the output for each

model must be equal at the connection. The first constraint applies that connection by

e(luating the port outputs,

(1.2)
yl =y2 ="'=.Vn =V

and can be represented mathematically by equation (1.2) where y] through y" represent

the output from the models being connected and yc represents the output of the modular

modeling connector. Because the presence of the modular modeling connector itself



should have no effect on the system. the connector is considered an ideal element. As an

ideal element, the MMC must conserve power by ensuring that the power flow into the

connector from a model or the external port is equal to the power flow out of the

connector. The second constraint conserves power at the MMC,

n

Z .Vil’i = ypuc (1.3)

i =1

and can be represented by equation (1.3) where power port pairs .Viui for all it

connected power ports represent the power flow from the models being connected and

.chc represents the power flow into the modular modeling connector.



Chapter 2. Theoretical Solution

Model Formulation

The formulation of a dynamic model for use in the i-EDA system begins with the

equations of motion for the system written as ordinary differential equations of any order,

N , in the form

N i

d

2A,- —+y =u (2.1)

where y is the vector of system outputs, u is the vector of system inputs, and At is a

time-invariant matrix. Many mechanical engineering systems are represented by coupled,

second order, differential equations written as

My + Cy + Ky = u (2.2)

where y and u are defined as in equation (2.1 ), and M, C, and K are matrices of time-

i nvariant coefficients related to system parameters — typically mass, damping, and

stiffness for a mechanical system. Equations like those represented by equation (2.2) are

Common among lumped-mass systems like Finite Element models.

The model format within the i-EDA system can be found by taking the Laplace

tl‘ansform of equation (2.2) and applying zero initial conditions — similar to the process

for creating the transfer function for a system — which yields

[M33 + Cs + K]Y = U (2.3)

Where 5 is the Laplace variable, Y and U represent the Laplace transform of the output

and input vectors respectively, and all other parameters are as defined in equation (2.2).

The representation in equation (2.3) can also be written as

7



R(s)Y = U (2.4)

where R(s) is defined as

R(s)=[:Ms2 +C5+K] (2.5)

and each entry is a polynomial in terms of the Laplace variable, 5. This model format is

very similar to the dynamic stiffness matrix, Kdyn , used by Genta, [Genta, 1999], and in

the mechanics community. The key difference lies in the form of the assumed solution.

Because of the systems oriented nature of this work, the model form in equations (2.3) ,

(2.4), and (2.5) was selected.

The i-EDA canonical form, as represented by equation (2.4), is preferred to the

representations in either equation (2.1) or equation (2.2), in that it requires a single

network transmission to communicate the information from one agent to another.

Another advantage provided by the i-EDA canonical form is the ability to implement

boundary conditions as part of the solution process. Additionally, the similarity between

the i-EDA canonical form and the model form used to model static systems in i-EDA

[Radcliffe, 2003] provides starting point for developing the algorithms to connect models.

Model Connection

Consider some number, n , of i-EDA models to be connected. Each can

individually be represented in i-EDA canonical form, as shown in equation (2.4). When

5 Oined using modular modeling connectors, they will form a single system, which can

also be written in the i-EDA canonical form. This allows assemblies to be created using

a recursive algorithm, rather than a unique algorithm for assembly. This will be done

through the constraints supplied by the modular modeling connectors.



The first constraint is the output constraint provided by the modular modeling

connector, as shown in equation (1.2). This constraint equates the output from each port

involved in the connection to the external output at that point. This represents the

physical connection between the ports involved in the connection. In such a connection.

the outputs at that point must all be equal.

The second constraint is a statement of the conservation of power that must occur

through the rigid, ideal, modular modeling connector, represented by equation (1.3).

When considered from the assembly coordinate frame, instead of the coordinate frame of

the components, the conservation of power can be written as the conservation of work.

Consider the physical port location where the connection is going to occur. In each case,

the systems are physically connected. In terms of the assembly coordinate frame, the

initial position of the connected ports is constrained to be the same. With this initial

condition, the conservation of power equation, equation (1.3), is equivalent to the

conservation of work which can be written

k k

2W] = 2(ujfj)=ucfc :W(' (2-6)

1' =1 '1:1

Where the work at each port involved in the connection, W. , is summed up and equated

to the external work input to the connection, WC. Combining equations (1.2) and (2.6)

gives the constraint on the input forces, which can be written

It

anfi up

i=1

Where f1- is the force provided by each object involved in the connection and fc is the

external force input into the connector.



Model Connection Algorithm

The computational algorithm for connecting system matrices allows the

connected stiffness matrix, to be constructed without first creating the unconstrained

system matrix. Performing the connection Operations adds component dynamic

stiffnesses in much the same way as a finite element code assembles the global stiffness

matrix from each of the element stiffnesses.

Creation of the assembly dynamic stiffness matrix is performed by inserting the

entries in each object’s dynamic stiffness matrix into the assembly stiffness matrix based

on the values in a connectivity table. The connectivity tables used in this process can

either be connection-based, or object based. Connection-based connectivity tables are

preferred when selecting which object ports will be connected in the assembly. Object-

based connectivity tables are preferred when using a computerized process for the

assembly of dynamic stiffness matrices. Conversion between object-based and

connection-based connectivity tables is possible and allows the port connections to be

described with the connection-based connectivity table and model assembly to be

performed using an object based connectivity table. Consider the connectivity tables for

a two-dimensional truss model. In equation (2.8), below

p— —

133

1234

C1,:13 21 (2.8)
1422

2331

2432  
the rows correspond to the degrees of freedom in the constrained assembly. Each line

lists the object and port pair that are going to be connected at that particular node in the

10





assembly. While equation (2.8) only shows the connection between two objects at each

node in the assembly, an assembly node can contain an infinite number of connections.

For unconnected ports, the row in the connection-based connectivity table will only have

two entries.

In the object-based connectivity table shown in equation (2.9)

0
5
-
D
-

CTO = (2.9)

L
I
I

D
J
-

O
\

-
I
>
-

I
“
)

I
x
.
)

each row corresponds to one of the objects included in the assembly, and the columns are

equivalent to the ports on each object. Each entry in the object-based connectivity table

corresponds to a node in the assembly, repeated node values indicate the connection

between object ports. While equation (2.9) only shows objects with an equal number of

degrees of freedom, an object can have an infinite number of degrees of freedom. An

object with fewer ports than the object with the maximum number of ports will have one

or more empty columns in the object-based connectivity table.

The dynamic stiffness matrix for the assembly can be formed using the

Connectivity table, and the dynamic stiffness matrices for each of the subcomponents,

using the equation

For the kth object. Vi,j

(2.10)

RA,mn = RA,mn + Rkjj

Where RA is the dynamic stiffness matrix for the assembly, Rk is the dynamic stiffness

matrix for thek [h ob'ect, and m and n. are defined usin the ob'ect-based connectivit
J g 1 y

tables as

11



m = CTO,ki (2.11)

n=CTOJ<j (2.12)

where CTO is the object-based connectivity table, and i and j are the indices for the

entries in the object dynamic stiffness matrices. For example, consider an entry from the

first object stiffness matrix. For k = l , i = 3 , and j = 3 equation (2.10) becomes

m = CTOJ3 = 3

n = CTOJ3 = 3 (2.13)

R433 = RA.33 + R1.33 = R133

Consider next an entry from the second object stiffness matrix. For k = 2 , i = l , and

j = 1 equation (2.10) gives

m=CT0,21=3

n =CTO’21 =3 (2.14)

RA,33 = RA,33 +R2,11= R1,33 +R2.11

This corresponds to the results for the element in the third row and third column of the

assembly dynamic stiffness matrix when the equations are assembled according to

equations (1.2) and (1.3). One further example considers and element from the third

Object dynamic stiffness matrix. For k = 3 , i = 1 , and j = 4 the result from equation

(2 -10) becomes

m = CTO,31 = 5

n = CTO,34 = 2 (2.15)

R4.52 = RA,52 + R3.14 = R3,14

which corresponds to the effects of the fifth assembly output on the second assembly

i l'llzbut.



Development ofa One-Dimensional Bar Model

Developing a one dimensional bar model begins with the discretization of the bar.

Consider the one-dimensional bar in Figure 3 below,

     

l'_l"
 

u.

    
%]—> 4:
  4—1

Figure 3 Diagram of a one dimensional discretized bar. Inputs are forces, outputs are displacements.

The inputs to the bar are the applied forces, and are positive in the direction shown. The

outputs from the bar are displacements, and are also positive in the direction shown.

Using either the LaGrange or Newton-Euler method, the equations of motion

m .. . .

7x] + cxl —cx2 + let]

.

m .. . .

—.r2 +cx2 —cx1 + krz —kxl = f2

which form the model for the system. Equations (2.16) and (2.17) can also be

represented in matrix form as

—-tF

.—

C -C Y1

ill. let0
N
I
S

)—

  

0

fl

2

—kx2=fl (2.16)

(2.17)

k 'k ”‘1 = fl (2.18)

1 11111"k k X2 f2

Taking the Laplace transform of equation (2.18) and factoring out the input terms allows

the model to be written in i-EDA canonical form

R(3)Y =F (2.19)

Where Y is the Laplace Transform of the vector of system outputs, F is the Laplace

Transform of the vector of system inputs, and R(s) is

13



m a

:5“+cs+k —cs—k

11(5): - m (2.20)
’7

“—CS—k 7S-+CS+I\'

  :—

Once the model is in this form, it is ready to be combined with other modular models

within the i-EDA system.

Development ofa Compound Bar Model

Development of a compound bar model begins with two one-dimensional bar

models joined with a modular modeling connector.

       

 

 

 

   
 

 

  

 
 

 
  

   

  

Figure 4 A compound bar model. Inputs are forces and outputs are displacements

In Figure 4, above, the inputs to the model are forces, and the outputs to the model are

displacements. The positive direction for each is as shown. The first step in creating the

compound bar model is to define the connection-based connectivity table. The

connection-based connectivity table for a compound bar is shown in equation (2.21),

below.

CTJ = (2.21)

I
\
)

I
'
—

I
'
-

I
\
)
N

'
-
=
-
'

O
N

O

O
t
—
O

The object-based connectivity table can be built from the connection-based connectivity

table. The object-based connectivity table for a compound bar is shown in equation

(2 79),
-bfl

l4



l 7

CTo = 7 3 (2.22)

This connectivity table can then be used with equation (2. 10), and the dynamic stiffness

matrix (found in equation (2.20)) for a one-dimensional bar to assemble the dynamic

stiffness matrix for a compound bar. Applying equation (2. 10) creates the assembly

dynamic stiffness matrix, which is written as

   

r __ _

R1.11 R1,12 0 ch fc,l

R121 R1.22+R2.11 R212 xc,2 = fc,2 (2-23)

0 R221 R222 xc.3 fc,3

where Rij is the entry in the ith row and jth column of the kth object dynamic

stiffness matrix. Substituting in for the appropriate entries gives

p. —

 

%SZ+CIS+
I\'I

'"(CIS‘I'kII
O

_

m + ma 7

ch ch (224)

_(Cls+kl) l o - S- +(‘Il +(2)5+(k1+k2) ”(625+k2) .m: = fc'.2

0 4.4.4,) _W“, f...

  _ - .l

where xcj and fm- are the constrained system‘s outputs and inputs at the ith port

respectively. The constrained system maintains the overall symmetric structure that the

original unconnected i-EDA dynamic stiffness matrices had, and as such, can either be

used in a simulation, or as part of a larger system.

Development ofa Dynamic Truss Model

Creating a truss assembly, as shown in Figure 5, from three bar models follows

the same methodology used for forming a compound bar. In the truss model, three two-
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dimensional bar models are pinned at both ends. The pin joint allows the transmission of

axial and transverse loading to the bar models, without transmitting moments.

   
 

f1~x1 f3~x3

Figure 5 A dynamic truss model is composed of three dynamic bar models and three modular

modeling connector elements

Each bar is placed in the model after being rotated from its original coordinate frame into

the coordinate frame of the assembly. Rotations are always performed in a

counterclockwise direction with the bars’ original horizontal position as the reference

point.

Several modifications must be made to the original one-dimensional bar model

(shown in Figure 3 and equation 2.20) before they can be used to form the truss model.

First, the one-dimensional bar model must be expanded to two-dimensions. Adding an

additional degree of freedom at each port in the transverse direction expands the model

from one, axial, dimension, to the two-dimensions required by the truss model. Some

assumptions are made when expanding the model. The first assumption is that the

transverse displacements are small, compared to the length of the bar, which allows the

model to neglect the any rotation of the bar. The second assumption made is that there
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are no stiffness or damping effects in the transverse direction. With these assumptions,

the one-dimensional bar from equation (2.20) can be expanded to

Tm

—cs-k
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(2.25)

and Ui). are the

The second additional step when forming a truss model is that the bar models need to be

transformed from their original coordinate frame into the coordinate frame of the

assembly. This is done through a rotational transformation matrix [Greenwood, 1988],

T , which is defined as

I cos(6) sin(t9) 0

— sin(t9) cos(t9) 0

0 0 cos(t9)

 0 0
h

0

0

srn(6)

— sin(6) cos t9)_ 

(2.26)

where the rotation matrix, T , is constant for each bar, and the bar’s rotation angle, 6 , is

defined as the angular distance measured counterclockwise from the bars’ original

horizontal position.

The rotation matrix for the second bar with (92 = 120° , for example, is
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cos(l 20) sin(120) 0 0 ' _ " 3 :1

—sin(l20) cos(l20) 0 0 T T O 0 ,

T= , = - ~ (2.27)

0 0 cos(120) sm (1 20) 0 0 —_1 3/2

_ o 0 —sin(120) cos(120)_ 2 2

0 0 ’73 39—1  
The transformation matrix is then applied to the dynamic stiffness matrix for each bar

using

R = TTRT (2.28)
['01

where Rro is the dynamic stiffness matrix for each bar, rotated into the truss coordinate

frame. After the rotation is complete, the connectivity tables for the truss can be

developed. The connection-based and object-based connectivity tables for a truss are

defined in equations (2.8) and (2.9) respectively. These tables can then be used with

equation (2.10) to build the dynamic stiffness matrix for the assembly. Evaluating

equation (2. 10) for each of the three components gives

PR1.“ + R333 R1.12 3‘ R334 R1.13 Rm R331 R332

R121 + R343 R1.22 + R344 R123 R124 R341 R342 7 79

R = R131 R132 R133 + R211 R134 + R212 R113 R214 ("" )

R141 R142 R143 + R221 R144 + R222 R223 R224

R313 R314 R231 R232 R233 + R3.“ R234 + R112

R323 R324 R241 R242 R243 + R321 R244 + R322  
for the dynamic stiffness matrix of the truss. Note that the dynamic stiffness matrix in

equation (2.29) maintains the same symmetry as the original object dynamic stiffness

matrices and can now either be used in a simulation, or in the construction of another

assembly.
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Development ofa Dynamic Span Model

Creating a span assembly follows the same processes used to create both trusses

and compound bars. A span is a two-dimensional object created by using pins to join two

trusses and a bar as shown in Figure 6. Because a span is two-dimensional, the bar model

must be expanded from one-dimension to two-dimensions before it can be used. A span

model has the same joint characteristics as a truss model, allowing the expanded bar

model to be used instead of a beam model.

farts f10,x10

 

 

 

 

Figure 6 A span model is composed of two trusses, one bar, and three modular modeling connector

elements.

In addition, the bar must go through the same rotation process as the bars required

for the truss model. After the bar model has been prepared for use in the span model, the

connectivity tables can be created. Using the connection definitions from Figure 6, the

connection-based connectivity table can be defined as
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The object-based connectivity table can be created from the connection-based

connectivity table shown in equation (2.30). The object-based connectivity table is

shown in equation (2.31 ), below.

123478

CTO=2 3 5 9110 (2.31)

78910

With the object-based connectivity table and equation (2.10), the span model can be

assembled in the same manner as the compound bar and truss models.
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Chapter 3. Dynamic System Simulation

Solving for dynamic system response is an important part of the dynamic

modeling process. A wide variety of tools exist for performing simulations and analyzing

the results. These tools can be put to use on models generated by the i-EDA system, if

the models can be transformed from i-EDA canonical form to a model format, like the

transfer function, that can be solved directly. Transfer functions provide the ratio of

output signal to input signal for a model. The most common form for a transfer function

is

 Y(s) = 0(5) (3.1)

where, for a single input, single output (SISO) system, Y(s) is the system output, U (s)

is the system input, and 0(5) is defined as

n "—2 I

G( )_ ans +a"_lS +"'+alS +00

5 — —1 1 (3.2)

bms"'+bm_,s"' +---+b,s -I-b0

 

with a, and b, as linear, constant coefficients that represent the system behavior. For a

multi-input, multi-output (MIMO) system, the system is written as a matrix, G(s) , where

each entry represents the transfer function from the i-th input to the j-th output.

The i-EDA canonical form

.R(s)Y(s) = U(s) (3.3)

Y(s) = G(s)U(s) (3.4)

where R(s) is the i-EDA dynamic stiffness matrix, G(s) is a matrix of transfer functions,

and U(s)and Y(s) are the vectors of system inputs and outputs respectively. This
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property allows all of the solution and analysis techniques that exist for transfer functions,

as well as many other types of linear, constant-coefficient, input-output systems to be

used on models generated by the i-EDA system.

Boundary conditions must be applied before the system can be inverted.

Inverting the system without applying boundary conditions will result in at least one

eigenvalue of zero, and the simulation will predominantly display the rigid body mode of

the object. The ability to apply boundary conditions as part of the solution process, and

not part of the model formulation process is one advantage that the i-EDA modeling

system has over conventional methods. With an i-EDA model, the boundary conditions

applied can be unique to each situation, and do not require reformulation of the model.

For example, consider the one-dimensional bar model from Figure 3. As it is

shown, the application of a force to either input will result in the translation and vibration

of the bar. To study the vibration response alone, one end of the bar must have a zero

displacement boundary condition applied. For a system with n degrees of freedom, the

unconstrained dynamic stiffness will take the form

R11 R12 Rln

R R R

R(s)= .21 :22 -. :2" (3.5)

_Rnl R112 ' ' ' Rim _  

which, in general, will be full. To constrain this matrix, set the ith output to zero. When

that is done, the constrained matrix will take the form
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I Ru Rl,i—l 0 Rl,i+l R1,):

Ri—IJ Ri-1,i—l 0 Ri—l.i+l Ri—I,n

RConstrained = R131 Ri,i-l 0 Ram Rim (3.6)

Ri+l,l Ri+l,i—I 0 Ri+l,i+l Ri+l,n

Rn,l RnJ—l O Rn,i+l Rn."

Removing the column of zeros from the constrained dynamic stiffness matrix in equation

(3.6) leaves the system of equations ill-formed, with n equations and n —l unknowns.

Additionally, the ith row is now only a function of the remaining variables. The ith row

can then be removed from the system, leaving it as

    

.— 1 — I- —

R1,1 Rl.i—l Rl,i+l Rl,n I Y1 U1

Ri—l,1 Ri—l,i—l Ri—l,i+l Ri—l.n Yr—1 _ Ui—I (3 7)

Ri+l,l Ri+l,i—l Ri+1.i+1 Ri+l.n Yi+l Ui+l

Rn,l RIM—1 Rn,i'+l Rn,n _ Yn _ _ Un A 
If the reaction force at the constraint is desired, the ith equation can be solved to provide

that information after the rest of the system has been solved.

Applying a non-fixed boundary condition is similar to applying a fixed boundary

condition. The primary difference is that instead of removing the ith column, it needs to

be evaluated and subtracted from the input force vector. After performing this operation,

the system of equations will again be ill-formed and require the removal of the ith row in

order to solve the system. A system with a non-fixed boundary condition applied will

take the form
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r -— - r -

R1.1 Rl,i—l Rl,i+l R1,): Y1 U1 ‘ RlJYi

Ri-lJ Ri—l,i—l Ri-l.i+l Ri—l,n Yi-l _ Ui—l "Ri—IJYI' (3 8)

Ri+l,1 "' Ri+l,i—l Ri+1,i+l “‘ Ri+l,n Yi+l U1+1 " Ri+1,iyi

Rn,l Rn,i—l Rn,1'+l RnJi _ Yn _ Un -Rn,iYi J 
Like the fixed boundary condition case, if the reaction force at the ith port is required,

the ith equation can be evaluated after the rest of the system has been solved.

After the boundary conditions have been applied, the system can be inverted. In

general, this requires taking the matrix inverse of a matrix of polynomials. One

definition of the matrix inverse states that

:1:

_,A
=— (3.9)

MI

where A’“ is the adjoint of A , and |A| is the determinant of A [Phillips and Harbor,

2000]. Equation (3.9) proves to be the most useful method for finding the matrix inverse

in this case because it does not rely on inspection, or equating polynomials. After taking

the inverse of the i-EDA dynamic system matrix to find the transfer function for the

system, all of the traditional simulation (Matlab, e.g.) and analysis (eigenvalue analysis,

e.g.) tools can be used with the model.

Simulation ofa One-Dimensional Bar

Consider the one-dimensional bar model shown in Figure 7 below.
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Figure 7 One dimensional bar model

  

 

      

 

Given the mass, stiffness, and damping properties in Table 1, below,

Table 1 Properties for the BAlx2 bar model in the i-EDA system

 

      
, . __‘ _1.6677E+02 4 ‘4

Dampin 2.2143E+O4    

the i-EDA dynamic stiffness matrix for a one dimensional bar from equation (2.20) can

be evaluated to

R(sl : 83.38532 + 2.2143e4s+ 1 .47e8 — 2.2143e4s -1.47e8 k_g (3.10)

—- 2.2143e4s -1.47e8 83.385s2 + 2.2143e4s +1.47e8 S2

The boundary condition for this model shows that the left hand end of the bar (considered

port 1), should be fixed, that is, have zero displacement as an output. Applying this

boundary condition means that the first row and the first column (the entries in R(s)

associated with port 1) are removed from the matrix, resulting in

R(s) = [83.385s2 + 2.214e4s “4782813;g (3.11)
S-

for the system. Now that the boundary conditions have been applied, it is possible to

invert the i-EDA dynamic stiffness matrix to form the transfer function for the system. In

this case, R(s) is a scalar so a matrix inverse is not required. The transfer function for

the system is



1

6(3) = 1

83.3855“ + 2.214645 +1.47C’8

(3.12) 

and can now be solved with existing simulation and analysis methods. Finding the

eigenvalues for equation (3.12) gives

41.3 =—l32.78i1321.1i (3.13)

for the constrained system transfer function eigenvalues. Independently, a model can be

developed for the one—dimensional bar model shown in Figure 7 using a bond graph to

develop the state equations. For the bar model shown, the state equations are

-. O l . 0

"3 = —2k —2c‘ "3 + 2 [1a]
132 v» _ "

m m ‘ m (3.14)

1.41:1: oiljijptoiei

  

which can be evaluated using the properties in Table 1 as

I::I:I-1.7229e6 — 26:55:22] [it] + [1.199; _ 2] [f2 I

1.41:1] oiijgptoitei

(3.15)

Performing an eigenvalue analysis on equation (3.15) results in the eigenvalues

211.2 = —132.78i 1321.1i

for the system. Comparing the eigenvalues given by equations (3.11) and (3.15) shows

that there is no error in the formulation and solution process for a one-dimensional bar.

Simulation ofa Compound Bar

Consider the compound bar model shown in Figure 8 below.



 
  

    

  

            

 

    

Figure 8 Constrained compound bar model

The compound bar model is going to be created from two bars with the mass, stiffness,

and damping values from Table 1. Using these properties, the compound bar model in

equation (2.24) can be evaluated as

83.38552 + 21435 +1.47e8 — 22143s —l.47e8 o

— 221435 —l.47e8 166.7732 +44286s+ 2.94e8 — 22143s —l.47e8 (3- 16)

0 - 221435 — 1.47e8 83.38552 + 22143s +1.47e8

The boundary condition shown in Figure 8, indicates that the left hand end of the

compound bar model (considered port 1) should be fixed. Applying the fixed condition

to equation (3.16) yields

166.7752 +44286s + 2.94e8 — 22143s — 1 .47e8
(3.17)

—22143s—l.47e8 83.38552 +22143s+l.47e8

as the constrained system matrix. Now that the boundary conditions have been applied, it

is possible to invert the dynamic stiffness matrix to form the transfer function for the

system. As shown in equation (3.9), the matrix inverse is formed by taking the adjoint

and dividing by the determinant. The adjoint of the constrained system matrix (equation

3.17) is

83.38552 + 22143s +1.47e8 221433 +1.47e8
, (3.18)

221435 +1.47e8 166.77s - + 4.42863 + 2.94e8

The determinant of the constrained system matrix is



1390634 + 7.3856e6s3 + 4.9521410:2 + 6.51e12s+ 2.1609el6 (3.19)

combining equations (3.18) and (3.19) with equation (3.9) gives us the transfer function

for the system. Performing a transfer function analysis on the transfer function yields the

eigenvalues

41.2 = -226.66il719.9i

, (3.20)
23,4 = -38.889i 71752:

as the unique eigenvalues for the system. Independently, a model can be developed for

the compound bar model shown in Figure 8, using a bond graph to develop the state

equations. Performing an eigenvalue analysis on the state equations yields

4,3 = 226.66: 1719.91'

3.21

43,4 = -38.889i7l7.52i
( )

as the unique eigenvalues for the state space model. Comparing the eigenvalues in

equations (3.20) and (3.21) shows that there is no error in the model formulation.

Truss and Span Simulation

The solution process for dynamic truss and span models, in general, is similar to

the solution process for the compound bar model detailed above. One of the primary

differences in the solution method is the number of boundary conditions that must be

applied to remove the rigid body modes from the system model. Because truss and span

models are two-dimensional, three boundary conditions must be applied to fully constrain

the system and remove the horizontal, vertical, and rotational rigid body modes from the

system. Removing multiple degrees of freedom from a model simply requires applying

the process detailed in equations (3.5) through (3.7) for each degree of freedom that is

removed. After the boundary conditions are applied. the adjoint and the determinant can
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be used to invert the system and find the transfer function, and existing simulation and

analysis methods can be used.

Modeling within the i-EDA system

The i-EDA system, uses a collection of intemet agents to create dynamic system

models. The i-EDA system topology is shown in Figure 9.
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Figure 9 The i-EDA system topology

One of the most important distinctions to make within the i-EDA system is the

capabilities of the various objects. The agent registry and ontology software interacts

with all objects within the i-EDA system, identifying the agent addresses, and the list of

available queries. The individual design agents can be broken into two categories.

Component-level agents are agents which represent objects that are not composed of any

other objects. One example of a component level agent is the one-dimensional bar.
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Assembly-level agents are agents that create assemblies from information

gathered from other agents. To an assembly-level agent, all other agents appear to be

component-level agents, regardless of their actual status. Within each assembly-level

agent, a dynamic stiffness model is assembled using the individual dynamic stiffness

matrices from the components that make up the object, a specified connectivity table, and

the algorithm described by equation (2.10). For example, a truss agent receives a query

for the “Dynamics” of the truss-object that it represents. The truss agent then

immediately sends out a set of sub-queries, including the original “Dynamics” query, to

each of the agents that represent the bars that compose that truss. Upon receiving the

response, the information is used, along with the connectivity table which is built into the

truss agent, to assemble the component dynamic stiffness matrices into the dynamic

stiffness matrix for the truss assembly. A second example of an assembly-level agent is a

span. When a span agent receives the “Dynamics” query, it retrieves information from

the component-level agents for the bar model and from the assembly-level agents for

each of the two truss models. The span model can then be assembled using the dynamic

stiffness matrices retrieved from each of the component objects, the connectivity table

built into the span agent, and the algorithm defined in equation (2.10). One unique

feature of the i-EDA system is the fact that every assembly considers its components as if

they were component-level agents. This allows the system to create models of any shape

and size without a change in the algorithms used to create the models and increases

system’s ability to protect the proprietary information from which the models are built..

Client software provides the ability for users to interact with the i-EDA system.

A client, using information from the global registry and ontology, send queries to agents
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and either display the response to the user, or perform an analysis on the response. Client

software is designed to perform specific functions, either through the actual client

interface, or across the intemet through a web-based interface. One type of client

software queries the different agents for cost, length, weight, and size information, then

displays the agents’ responses to the user. A second type of client software can retrieve

static or dynamic model information, apply boundary conditions, These clients apply

boundary conditions and load cases and then run a simulation and display the results.

The i-EDA Dynamic Response Client, shown in Figure 10, performs the solution

procedure described in by equations (3.5) through (3.9).
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Figure 10 The i-EDA dynamic response client
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Chapter 4. Conclusion

A method for communicating reusable dynamic system models that protects the

proprietary information and interfaces easily with traditional modeling methods was

successfully developed. Combining modular modeling algorithms with the i-EDA

system gives engineers around the world access to dynamic model data around the clock.

Proprietary information is protected by the input/output form of the model, and by the

ability of the i-EDA system to treat every virtual product, whether an assembly or a

component, as unique component. This represents a significant advancement in

modeling technology, because it overcomes the need for a company to create and

maintain a library of models that contains each possible input/output configurataion.

Additionally, it eliminates the need for legal agreements that protect proprietary

information to be put into place before model information is transmitted.

The methods developed in this work, while designed for dynamic system models,

can also be used for assembling linear finite element models. When creating the i-EDA

canonical form, the common matrices used are the mass, damping, and stiffness matrices

for the dynamic system. When considering the method with a finite element model, only

the stiffness matrix would be present. This would allow the system to handle the

assembly of static, and dynamic finite element models, as well as SBA, and many other

types of linear finite element models.

In addition to providing a method for modeling dynamic systems over the internet,

the solution presented introduces many areas for future work. One such area is the

process of model condensation. Model condensation is the removal of input/output ports

that are considered interior (and possibly proprietary) to the model. An example of this is



the third and fourth degrees of freedom in a span model (Figure 6). Removing those

degrees of freedom would reduce the overall size of the span model, and would further

protect the proprietary information of the model. In addition to limiting the size of the

model, condensation of models significantly increases the difficulty associated with

reverse engineering a model.

A second area where there are possibilities for future work is in the creation of

algorithms for limiting system bandwidth to a particular range. One side effect of

maintaining all of the system dynamics for each component involved in an assembly is

the possibility that the frequency bandwidth the system occupies will become quite large.

In many cases, only a very specific bandwidth is of interest to the modeler. For example,

in a large electro-mechanical (or Mechatronic) system, there will be electrical

components which react very quickly and have a time constant measured in milliseconds

or microseconds. There will also be mechanical components, with comparatively large

time constants, measured in seconds, or even minutes. When designing control

algorithms for the assembly, the only time constants under consideration will be related

to the mechanical portions of the system. When compared to the mechanical system, the

electrical system seems to react instantaneously. Because of this, the ability to limit the

bandwidth under consideration will improve the algorithms set forth in this work.

A third area where there are possibilities for future study is in the formulation of

models for use within the i—EDA system. Because the i-EDA dynamic stiffness matrix

can be easily converted into the transfer function of the system, there exists a strong

possibility that the reverse is also true. This would allow companies to formulate models

using existing, proven, techniques. (Note that proper port causality must still be
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maintained). For example, an electrical network model could be formulated using bond

graphs to generate the state equations for the system. The state-equations could then be

transformed into the transfer function for the system and from there into i-EDA canonical

form. If this was the case, companies would be able to use models that currently exist

within their model libraries, instead of creating separate models from scratch.

Additionally, companies would not have to invest in re-educating their model design staff

with new modeling techniques.
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Appendix A Dynamics Query and Response Syntax

Query Syntax: Dynamics+<PN>

Where <PN> is a string representing the component part number.

Response Syntax: { <Dynamics>} <units>

Where <Dynamics> is a string representing the contents of the i-EDA canonical form and

<units> is a string representing the units for the response.

An example is shown below with the control characters (as defined by LabView) shown.

Query:

BB3x6+Dynamics

Response:

\s{\s[\s1777.572000\s157978.197483\s3.5100008+8\s]\s\s[\s-

157978.197483\s—3.510000E+8\s]\s\s;\s\n\s\s\s[\s-157978.197483\s-

3.510000E+8\s]\s\s[\31777.572000\8157978.197483\s3.510000E+8\s]\s\s\s}\sk

g\\(s‘2)\s

The same example is shown again without the control characters shown.

Query:

BB3x6+Dynamics

Response

{ [ 1777.572000 157978.197483 3.51000OE+8 ] [ -157978.197483 -

3.510000E+8 ] ;

[ -1s7978.197483 -3.510000E+8 1 [ 1777.572000 157978.197483

3.510000E+8 ] } kg\\(s*2)

Please note that in this example the response has been wrapped to fit the page width. The

true response has two lines. The first line ends at the line break following the semicolon.

The second line ends following the units.
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Appendix B Matlab Code

List ofIncluded Programs

 

CreateTruss.m Creates Trusses. Primary LabView Truss interface.

 

CreateSpan.m Creates Spans. Primary LabView Span interface.

 

DynamicJoin.m Actually performs the join operation of two or more dynamic

systems.

 

AddDimension.m Transforms a bar from a 1-D object to a 2-D object.

 

 

 

 

addpoly.m Adds two polynomials of unequal length. Pads with zeros.

JoinMap.m Transforms the Connectivity Table from join-based to object-

based.

PostMultCell.m Performs the matrix post-multiply operation with a cell array

and a matrix.

PreMultCell.m Performs the matrix pre-multiply operation with a matrix and a

cell array.

 

RotateDynamicBar.m Transforms the bar dynamics into the coordinate frame of the

assembly.

 

cellZstrm Converts a matlab cell array into a character string

 

SolveDynamics.m Applies boundary conditions, inverts, and solves

 

 

  
ApplyBoundaryCond.m Applies the specified boundary conditions

CellArrayAdjoint.m Takes the adjoint of a cell array

CellArrayDetm Takes the determinant of a cell array  
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CreateTruss.m

function [TrussAscii]=CreateTruss(BlAscii, BZAscii, B3Ascii, Sines, Cosines)

%***************************************************************************

%*

%* Author: Drew R. Reichenbach

%* Date: 04-04-2003

%* Group: i—EDA System Dynamics

%*

%* Function: CreateTruss.

%* Inputs: BlAscii - A

%*

%*

g4

%*

%*

%*

%*

96*

%*

%*

%*

%*

%* Outputs:

%*

%*

%*

%* Purpose:

%*

BZAscii

BBAscii

Sines —

Cosines

m v1.1

vector of ASCII character codes

which, when converted, form the

dynamic bar #1.

vector of ASCII character codes

which, when converted, form the

dynamic bar #2.

vector of ASCII character codes

which, when converted, form the

dynamic bar #3.

A vector of double precision values

directional sines for each bar.

A vector of double precision values equal to the

from LabView

i-EDA string for

from LabView

i-BDA string for

from LabView

i-EDA string for

equal to the

directional cosines for each bar.

TrussAscii - A vector of ASCII character codes to pass to

LabView which, when converted, form the i-EDA

string for the unconstrained dynamic truss.

CreateTrusslargs) is the main program for connecting i-EDA

Dynamic Bar models into an i-EDA dynamic Truss model.

%*

%* Required Matlab Functions:

%* AddDimension.m - Turns l-D bars into 2-D bars.

%* RotateDynamicBar.m - Rotates 2-D Dynamic Bars.

%* DynamicJoin.m - Performs the i-EDA join process on 2 or more

%* dynamic objects.

%* cellZstr.m - Converts cell array objects to character strings.

%*

%* NOTES:

%*

%**************************************************************************

% Declare and Initialize Variables

%===============================:===========================================

%The string for Bar 1

%The string for Bar 2

%The string for Bar 3

BlString=[];

BZString=[];

B3String=[];

Bar11d={};

Bar21d={};

Bar31d={};

I

Bar2={}

Bar3={}

Bar1r={

Bar2r={

%The cell array for Bar

%The cell array for Bar

%The cell array for Bar

Barl={ ; %The cell array for 2D bar

; %The cell array for 2D bar

; %The cell array for 2D bar 3

}; %The cell array for rotated 2D bar 1

}; %The cell array for rotated 2D bar 2

N
H
W
N
H
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Bar3r={}; %The cell array for rotated 2D bar 3

JoinCT=[] %The join based nodal connectivity table

TrussArray={} %The Cell Array of Truss Polynomials

% Convert vectors of ASCII codes to strings

% ...........................................

BlString=char(BlAscii);

BZString=char(BZAscii);

B3String=char(B3Ascii);

% ................................

% Convert strings to Cell Arrays

% ................................

Barlld=eval(BlString);

Bar21d=eval(BZString);

Bar31d=eva1(B3String);

% _____________________________

% Turn 1-D bars into 2-D bars

% .............................

Bar1=AddDimension(Barlld);

Bar2=AddDimension(Bar21d);

Bar3=AddDimension(Bar31d);

% .....................

% Rotate the 2-D Bars

% .....................

Bar1r=RotateDynamicBar(Barl, Sines(1), Cosines(1));

Bar2r=RotateDynamicBar(Bar2, Sines(2), Cosines(2));

Bar3r=RotateDynamicBar(Bar3, Sines(3), Cosines(3));

% ..........................................

% Create the Join—Based Connectivity Table

% ..........................................

JoinCT = [ 1 1 3 3; %Bar 1, DOF 1 to Bar 3, DOF 3

1 2 3 4; %Bar 1, DOF 2 to Bar 3, DOF 4

1 3 2 1; %Bar 1, DOF 3 to Bar 2, DOF 1

l 4 2 2; %Bar 1, DOF 4 to Bar 2, DOF 2

2 3 3 1, %Bar 2, DOF 3 to Bar 3, DOF l

l 4 3 2]; %Bar 2, DOF 4 to Bar 3, DOF 2

g ____________________

% Assemble The Truss

% ....................

TrussArray=DynamicJoin(JoinCT, Barlr, Bar2r, Bar3r);

% ____________________________________

% Convert the Cell Array to a String

g ....................................

TrussString=cellZstr(TrussArray);

% .............................................
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% Convert the String to ASCII Character codes

% .............................................

TrussAscii=double(TrussString)

%***************************************************************************

%* End Of Program *

%* *

%* Last Update: 04-09-2003 *

96* *

%* v1.1: Corrected the connectivity table to reflect proper node *

%* numbering. *

%* v1.0: creation version *

°6* at

*%**************************************************************************

CreateSpan.m

function [SpanAscii]=CreateSpan(TlAscii, T2Ascii, B3Ascii)

%**************************************‘k************************************

%* *

%* Author: Drew R. Reichenbach *

%* Date: 04-07—2003 *

%* Group: i-EDA System Dynamics *

%* *

%* Function: CreateSpan.m v1.1 *

%* Inputs: T1Ascii — A vector of ASCII character codes from LabView *

%* which, when converted, form the i-EDA string for *

%* dynamic truss #1. *

%* T2Ascii - A vector of ASCII character codes from LabView *

%* which, when converted, form the i-EDA string for *

%* dynamic truss #2. *

%* B3Ascii - A vector of ASCII character codes from LabView *

%* which, when converted, form the i-EDA string for *

%* the dynamic bar. *

%* Outputs: SpanAscii ~ A vector of ASCII character codes to pass to *

%* LabView which, when converted, form the i-EDA *

%* string for the unconstrained dynamic span. *

%* 'k

%* Purpose: CreateSpan(args) is the main program for connecting i-EDA *

%* Dynamic Truss and Bar models into an i-EDA dynamic Span *

%* model. *

%* 'k

%* Required Matlab Functions: *

%* AddDimension.m - Turns 1—D bars into 2-D bars. *

%* RotateDynamicBar.m - Rotates 2-D Dynamic Bars. *

%* DynamicJoin.m - Performs the i—EDA join process on 2 or more *

%* dynamic objects. *

%* cellZstr.m - Converts cell array objects to character strings. *

%* *

%* NOTES: *

%*
*

*%**************************************************************************

%=====================================:=====================================

% Declare and Initialize Variables

%===========================================================================
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Tlstring=[]; %The string for Truss 1

T28tring=[]; %The string for Truss 2

B3String=[]; %The string for the Bar

Bar31d={}; %The cell array for the Bar

Trussl={}; %The cell array for 2D Truss 1

Truss2={}; %The cell array for 2D Truss 2

Bar3={}; %The cell array for the 2D Bar

JoinCT=[] %The join based nodal connectivity table

SpanArray={} %The Cell Array of Truss Polynomials

%=====================================================================22:22:

% Main Program

T18tring=char(TlAscii);

T28tring=char(T2Ascii);

B3String=char(B3Ascii);

% ................................

% Convert strings to Cell Arrays

% ................................

Bar31d=eva1(BBString);

Trussl=eval(TIString);

TrussZ=eval<T2String);

% __________________________________

% Turn the 1-D bar into a 2-D bars

% ..................................

Bar3=AddDimension(Bar31d);

% .....................

% Rotate the 2-D Bars

% _____________________

%No rotation required to build a span.

% __________________________________________

% Create the Join—Based Connectivity Table

% ..........................................

JoinCT = [ 1 1 O 0 ; %Truss 1, DOF 1 is unconnected

1 2 0 O ; %Truss 1, DOF 2 is unconnected

1 3 2 1 ; %Truss 1, DOF 3 to Truss 2, DOF 1

1 4 2 2 ; %Truss 1, DOF 4 to Truss 2, DOF 1

2 3 O O ; %Truss 2, DOF 3 is unconnected

2 4 O O ; %Truss 2, DOF 4 is unconnected

1 5 3 l ; %Truss 1, DOF 5 to Bar 3, DOF l

l 6 3 2 ; %Truss 1, DOF 6 to Bar 3, DOF 2

2 5 3 3 ; %Truss 2, DOF 5 to Bar 3, DOF 3

2 6 3 4 ]; %Truss 2, DOF 6 to Bar 3, DOF 4

g ....................

% Assemble The Truss

% ....................

SpanArray=DynamicJoin(JoinCT, Trussl, TrussZ, Bar3);
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g ____________________________________

% Convert the Cell Array to a String

% ____________________________________

SpanString:cellZstr(SpanArray);

% _____________________________________________

% Convert the String to ASCII Character codes

6 _____________________________________________

SpanAscii=double(SpanString)

%******************************************'k*~k*'k****************************

%* End Of Program *

96*
'k

%* Last Update: 04—09-2003 *

%*
*

%* v1.1: Fixed a variable reference error. *

%* v1.0: creation version *

35*
*

i%*************************************************************************'k

DynamicJoin.m

function [CellOut] = DynamicJoin(JoinCT, Celll, Cellz, varargin)

%***************************************************************************

%* *

%* Author: Drew R. Reichenbach *

%* Date: 2-21-2003 *

%* Group: i-EDA System Dynamics *

%* *

%* Function: DynamicJoin.m v1.2 *

%* Inputs: JoinCT - A matrix containing the Join-based nodal *

%* connectivity table. *

%* Celll - A cell array of Laplace Domain Parameters for the *

%* first Dynamic System *

%* Ce112 - A cell array of Laplace Domain Parameters for the *

%* second Dynamic System. *

%* varargin - A cell array of any additional cell arrays for *

%* extending the capability of the Dynamic Join *

%* function beyond a single join operation. The *

%* number of arguments will be checked vs. the *

%* number of matrices handed to the Dynamic Join *

%* function; a mismatch will trigger an error and *

%* will end the join process. *

%* Outputs: CellOut - A cell array of Laplace Domain Parameters for *

%* the output composite Dynamic System. *

%* 'k

%* Purpose: DynamicJoin(JoinCT, Celll, CellZ, varargin) performs the *

%* join proceedure on at least two dynamic systems as *

%* specified in the JoinCT nodal connectivity table. *

%* DynamicJoin will generate an error message if the number *

%* of input cell arrays does not match the number of systems *

%* indicated in the connectivity table. *

%* *

%* Required Matlab Functions: *

%* JoinMap(JoinConnect) — converts modular modeling connector *
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%* data from a join-based system to an object based system. *

%* addpoly(Polyl,Poly2) - Adds two vectors representing *

%* polynomials in cannonical form, independant of polynomial *

%* order. *

%* 'k

%* NOTES: Join Based Nodal Connectivity Tables: *

%* A connection based nodal connectivity table has each row *

%* defining the connections. For example, the JoinConnect *

%* matrix *

%* JoinConnect = [ 1 1 2 2 ; *

%* l 3 2 3 ; *

%* l 2 2 1 ] *

%* defines a physical system where *

%* join 1 (row 1):(component#1, port#1) & (component#2, port#2) *

%* join 2 (row 2):(component#l, port#3) & (component#2, port#3) *

%* join 3 (row 3):(component#l, port#2) & (component#2, port#1) *

%* note that unconnected ports still need to have a row in the *

%* connectivity table. For example, the physical system where *

%* join 1 (row l):(component#1, port#1) is unconnected *

%* join 2 (row 2):(component#1, port#2) & (component#2, port#1) *

%* join 3 (row 3):(component#2, port#2) is unconnected *

%* would be defined by the JoinConnect matrix *

%* JoinConnect = [ 1 1 0 O ; *

%* l 2 2 l ; *

%* 2 2 0 0 ] *

%* and could be the coupling of two 1-D bars (see BarJoinlD.m) *

%* iv

*%***********************************************************************t**

%The Process:

% Error Check Input (done)

% Repackage Input (done)

% Convert Connectivity Table (done)

% Process Join Process based on ObjectCT.

% Update process for "cell array of cell arrays"

% End.

%===========================================================================

% Declare and Initialize Variables

95===========================================================================

ObjectCT=[]; %The Object Based Nodal Connectivity Table

i=[]; %Iteration variable

j=[]; %Iteration variable

temp=[]; %Temporary Variable

InptArgs=[]; %The total number of input arguments containing cell arrays

NumObj=[]; %The number of object present in the Connectivity Table

ErrMsg=[]; %An Error Message variable

DynArray=[]; %A Cell Array of the Dynamic Cell Arrays

%===========================================================================

% Error Check Input

%===========================================================================

InptArgs=nargin-l; %find the total number of input cell arrays

NumObj=max(max(JoinCT(:,1:2:size(JoinCT,2)))); %find largest obj # in inpt

if InptArgs ~= NumObj %if # of Input Cell arrays is not = to Obj # from CT

ErrMsg=['Number of Input Cell arrays does not match number of objects'];
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ErrMsg=[ErrMsg, ‘ in connectivity table.'];

error(ErrMsg); %Display an error message

end

%====================::===222::==================================::==:======

% Repackage Input

%============================================================2==============

DynArray=cell(1,1nptArgs); %Create an empty array of proper size

for i=1:InptArgs %Loop through all input cell arrays

switch i

case 1

DynArray{i}=Ce111; %Put Celll in first cell

case 2

DynArray{i}=Ce112; %Put Cell2 in second cell

otherwise

DynArray{i}=varargin{(i-2)}; %Put cells from varargin in cells 3 to n

end

end

95============================================:==============================

% Define Nodal Connectivity

%===========================================================================

% ..........................................................................

% Convert Join Based Connectivity Table to Object-based Connectivity Table

% ..........................................................................

ObjectCT=JoinMap(JoinCT)

%======================================================:=:=:=2:=============

% Main Program

% The size of the output matrix is equal to the number of ports in the

% assembly. This is equal to the number of rows in the join—based

% nodal connectivity table.

CellOut=cell(size(JoinCT,1)) %Define the empty output cell array

% ..............................

% Initialize Output Cell Array

% ..............................

for i=1:size(CellOut,1) %Loop over the rows

for j=1:size(CellOut,2) %Loop over the columns

CellOut{i,j}=[0]; %insert zero polynomials into every cell

end

end

% .........................................................

% Generate the output cell array, one component at a time

% .........................................................

for i=1:(size(ObjectCT,1)) %Loop over each object (row in ObjectCT)

NumPorts=length(find(ObjectCT(i,:))); %The Number of Input Object Ports

%is equal to the number of

%Non-Zero columns in ObjectCT

for j=1:NumPorts %Loop over each row in the result

for k=1zNumPorts %Loop over each column in the result

CellOut{ObjectCT(i,j),ObjectCT(i,k)}=...
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addpoly(CellOut{ObjectCT(i,j),ObjectCT(i,k)},DynArray{i}{j,k});

%Add the jth row, kth column from the ith object to the output

end

end

end

%***************************************************************************

%* End Of Program *

%* i

%* Last Update: 04-09-2003 *

gt *

%* v1.2: corrected array indexing problem for systems with components *

%* that have less than the maximum number of ports. *

%* v1.1: corrected issue with output array initialization *

%* v1.0: creation version (iteration on BarJoinlD.m) *

%* i

*%*********************************‘k'k***************************************

AddDimension.m

function [Dynamic2D]=AddDimension(Dynamich)

%******‘k‘k*‘k'k****************************************************************

%*

%* Author: Drew R. Reichenbach

%* Date: 04-04-2003

%* Group: i-EDA System Dynamics

*

'k

*

*

96* 'k

%* Function: AddDimension.m v1.0 *

%* Inputs: Dynamich - An i-EDA cell array containing the dynamics of a *

%* one dimensional bar model. *

%* Outputs: Dynamic2D - An i-EDA cell array containing the dynamics of a *

%* two dimensional bar model. *

%* 1|:

%* Purpose: AddDimension<Dynamic1D) converts a standard one *

%* dimensional bar model into a two dimensional bar model. *

%* This is done by adding rows and columns on to the orginal *

%* cell array. The vector of inputs goes from [x1 x2] to *

%* [x1 y1 x2 y2]. The y-direction ports have only inertial *

%* dynamics at this time. *

%* *

%* Required Matlab Functions: *

%* *

%* NOTES: Output array should take the form: *

%* [[ (m/2)s*2+k o -k 0 ] *

%* [ o (m/2)s‘2 o o ] *

%* [ -k 0 (m/2)s‘2+k O ] *

%* [ o o o (m/2)s*2 1] *

35*
*

*%**************************************************************************

%===========================================================================

% Declare and Initialize Variables

%===========================================================:===============

BarMass=[]; %The mass of the dynamic bar

Dynamic2D={}; %The output cell array
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MassVector=[]; %The vector representing the x" term for y-dir dynamics

6===========================================================================

% Main Program

%===========================================================================

% ________________________________________

% Retrieve the mass from the dynamic bar

% ........................................

BarMass=Dynamic1D{1,1}(l); %The mass is the first element stored in the

% first cell.

MassVector=[BarMass, 0, 0]; %Create the polynomial for inertia—only effects

% _________________________

% Create the output array

% .........................

Dynamic2D=cell(4,4); %Create an empty output array of the proper size

for i=l:4 %loop over the rows

for j=1:4 %1oop over the columns

if (i== ) %selects diagonal elements

if mod(i,2)==0 %selects even diagonals

Dynamic2D{i,j}=MassVector; %Inertia—only vector on even diag.

else

Dynamic2D{i,j}=Dynamic1D{1,1}; %Inertia + stiffness on odd diag

end

elseif (i==1 & j== ) I (i==3 & j==1) %select -k elements

Dynamic2D{i,j}=Dynamic1D{1,2};

else

Dynamic2D{i,j}=[O]; %Put zeros everywhere else

end

end

end

%****************************************i**********************************

%* End Of Program *

%*
'k

%* Last Update: 04-04-2003 *

35*
9:

%* v1.0: creation version *

35*
t

*%**************************************************************************

addpoly.m

function [PolyOut]=addpoly(Poly1,Poly2)

%******************************************i*****************i**************

%* t

%* Author: Drew R. Reichenbach *

%* Date: 02-19-2003 *

%* Group: i-EDA System Dynamics *

%* t

%* Function: addpoly.m v1.0 *

%* Inputs: Polyl — The first of two polynomials in vector form. The *

%* polynomial should be in decreasing powers of x, *

%* with the largest power of x first.(cannonical form) *
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%* Poly2 - The second of two polynomials in vector form. The *

%* polynomial should be in decreasing powers of x, *

%* with the largest power of x first.(cannonical form) *

%* Outputs: PolyOut - The polynomial obtained when the two input *

%* polynomials are added togeather. The polynomial *

%* is in decreasing powers of x, with the largest *

%* power of x first. (cannonical form) *

%* 'k

%* Purpose: addpoly(Polyl,Poly2) adds two single variable polynomials of *

%* unknown length. The polynomials should be stored as *

%* vectors of coefficients of decreasing powers of the *

%* independant variable. 2x+3 would be [2 3]. *

96* t

%* Required Matlab Functions: *

95* *

%* NOTES: *

96* t

*96**************************************************************************

‘06===========================================================================

% Declare and Initialize Variables

%===========================================================================

Order1=[]; %The order of the first polynomial

Order2=[]; %The order of the second polynomial

Pad=[]; %The pad (of zeros) to adjust the length of the smaller polynomial

PolyOut=[]; %The output polynomial

%=============================================================2=============

% Main Program

Order1=size(Poly1,2);

Order2=size<Poly2,2);

% .....................................

% Pad the smaller polynomial then add

5 .....................................

if Orderl > Order2 %The first polynomial is larger

Pad=zeros(1,(Order1-Order2)); %Create the Pad

Poly2=[Pad, Poly2]; %Pad the smaller polynomial

PolyOut=Poly1+Poly2; %Add the polynomials

elseif Order2 > Orderl %The second polynomial is larger

Pad=zeros(1, (Order2-Order1)); %Create the Pad

Poly1=[Pad, Polyl]; %Pad the smaller polynomial

PolyOut=Poly1+Poly2; %Add the polynomials

else %The polynomials are equal in size

PolyOut=Poly1+Poly2; %Add the polynomials

end

%**i************************************************************************

%* End Of Program *

%*
t

%* Last Update: 02—19-2003 *

%*
t
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%* v1.0: creation version *

96*
*

%***************************************************************************

JoinMap.m

function ObjectConnect=JoinMap(JoinConnect)

%**********************************************i****************************

95* 'k

%* Author: Clark J. Radcliffe *

35* Date: 05-14-2002 *

%* Group: i-EDA System Dynamics *

96* i

%* Function: JoinMap.m v 1.1 *

%* Inputs: JoinConnect - A Join—Centric Nodal Connectivity Table (see *

%* notes for details). *

%* Outputs: ObjectConnect - An Object-Centric Nodal Connectivity Table *

%* (see nodes for details). *

96* t

%* Purpose: JoinMap(JoinConnect) converts from the join-based nodal *

%* nodal connectivity table that is easily understood by users *

%* to the object based nodal connectivity table which is more *

%* practical for programming. *

%* t

%* Required Matlab Functions: *

%* *

%* NOTES: Join Based Nodal Connectivity Tables: *

%* A connection based nodal connectivity table has each row *

%* defining the connections. For example, the JoinConnect *

%* matrix *

%* JoinConnect = [ 1 1 2 2 ; *

96* l 3 2 3 ; *

35* l 2 2 1 ] *

%* defines a physical system where *

%* join 1 (row 1):(component#1, port#l) & (component#2, port#2) *

%* join 2 (row 2):(component#l, port#3) & (component#2, port#3) *

%* join 3 (row 3):(component#l, port#2) & (component#2, port#1) *

%* i

%* Object Based Nodal Connectivity Tables: *

%* An object based nodal connectivity table has each row *

%* correspoding to a component, and each column corresponds to an *

%* object's port. For example, the JoinConnect Matrix above *

%* would convert to the ObjectConnect Matrix *

%* ObjectConnect = [ 1 3 2 ; *

96* 3 l 2 ] *

%* which is the equivalent of saying that *

%* For component #1: port1=>joinl, port2=>join3, port3=>join2 *

%* For component #2: port1=>join3, port2=>join1, port3=>join2 *

%* *

*%********************************'k*‘k***************************************

%===========================================================================

% Declare and Initialize Variables

%===========================================================================

MaxComp=[]; %The largest component number

MaxDOF=[]; %The largest component port #
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ObjectConnect=[]; %The object based nodal connectivity table

%====================:=:===:========================:=======================

% Main Program

% Find the number of components and DOF involved

% ................................................

MaxComp=max(max(JoinConnect(:,1:2:size(JoinConnect,2))));

MaxDOF=max(max(JoinConnect(:,2:2:size(JoinConnect,2))));

46 ———————————————————————————————————

% Create the empty resultant matrix

% ...................................

ObjectConnect=zeros(MaxComp,MaxDOF);

% ................................................................

% Compute Object based connectivity from Join based connectivity

% ................................................................

for i=1:size(JoinConnect,1) %Loop over list of connections

for j=1:(size(JoinConnect,2)/2) %Loop over ports in connection

a=(2*j)-1;

CJ=JoinConnect(i,a:a+1);

if CJ(1)~=0

ObjectConnect<CJ(1),CJ(2))=i;

end

end

end

%***************************************************************************

%* End Of Program *

35*
t

%* Last Update: 02-19-2003 *

%*
t

%* v1.1: Reformatted Header and Comment Information (D.R.R) *

%* v1.0: Creation Version (C.J.R.) *

%*
i

*%**************************************************************************

PostMultCell.m

function [ArrayOut]=PostMultCell(CellArray, Matrix)

%******************‘kt*******************************************************

%* *

%* Author: Drew R. Reichenbach *

%* Date: 04-04-2003 *

%* Group: i-EDA System Dynamics *

%* *

%* Function: PostMultCell.m v1.0 *

%* Inputs: CellArray - A NxM Cell Array of numeric values. Cell *

%* contents are 1-dimensional numeric arrays. *

%* Matrix - A MxM square matrix of scalar values. *

%* Outputs: ArrayOut - A NxM Cell array that has been through the matrix *

%* multiply operation. Post-multiplication ONLY. *

%* *
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%* Purpose: PostMultCell(Matrix, CellArray) performs the matrix *

%* post-multiplication operation on a 2-dimensional scalar *

%* matrix and a 2-dimensional cell array of l-dimensional *

%* numeric arrays which represent polynomial coefficients. *

%* «k

%* Required Matlab Functions: *

%* addpoly.m — Adds polynomials of non-similar order. *

%* *

%* NOTES: *

%* 'k

*%******************'k*******************************************************

%===========================================================================

% Declare and Initialize Variables

%===========================================================================

N=[]; %The number of rows in the input cell array

M=[]; %The number of columns in the input cell array

temp1=[]; %A temporary variable

temp2=[]; %A second temporary variable

CellOut={}; %The output cell array

tempvect=[]; %A temporary vector (one row of Matrix)

%===================2:::====:=:=================:::===:=====================

% Main Program

% ________________________________________

% Check matrix size, create output array

% ........................................

[temp1, temp2]=size(Matrix);

if temp1~=M | temp2~=M %Error Check Input

error('Matrix and Cell Array Inner Dimensions do not match');

end

ArrayOut=cell(size(CellArray)); %Create output array

% ____________________________________

% Perform Matrix Post—multiplication

% ....................................

for i=1:N %Loop over output array rows

for j=1:M %Loop over output array columns

tempvect=[0];

for k=1:N %Loop over the elements to be added

tempvectzaddpoly(tempvect,(CellArray{i,k}*Matrix(k,j)));

end

ArrayOut{i,j}=tempvect;

end

end

%********************************************‘k******************************

%* End Of Program *

%*
a:
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%* Last Update: 04—04-2003

%*

%* v1.0: creation version

%*

%**************************************************************************

PreMultCell.m

function [ArrayOut]=PreMultCell(Matrix, CellArray)

*

*

*

*

'k

%************************************************i'**************************

%*

%* Author: Drew R. Reichenbach

%* Date: 04-04-2003

%* Group: i-EDA System Dynamics

%*

%* Function: PreMultCell.m v1.0

%* Inputs: Matrix - A NxN square matrix of scalar values.

%* CellArray - A NxM Cell Array of numeric values.

%* contents are 1-dimensional numeric arrays.

%* Outputs: ArrayOut - A NxM Cell array that has been through the matrix

%* multiply operation. Pre-multiplication ONLY.

%*

%* Purpose: PreMultCell(Matrix, CellArray) performs the matrix

%* pre-multiplication operation on a 2-dimensional scalar

%* matrix and a 2-dimensional cell array of l-dimensional

%* numeric arrays which represent polynomial coefficients.

%*

%* Required Matlab Functions:

%* addpoly.m - Adds polynomials of non—similar order.

96*

%* NOTES:

%*

%***************it*********************************************************

%==================:====:=:==:=:====:z:=========================

% Declare and Initialize Variables

%===============================================================

N=[]; %The number of rows in the input cell array

M=[]; %The number of columns in the input cell array

templ=[]; %A temporary variable

temp2=[]; %A second temporary variable

CellOut={}: %The output cell array

tempvect=[]; %A temporary vector (one row of Matrix)

%=========================2:222:=================:==============

% Main Program

% Identify the size of the cell array

% .....................................

[N, M] = size(CellArray);

% ________________________________________

% Check matrix size, create output array

% ........................................
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[temp1, temp2]=size(Matrix);

if temp1~=N | temp2~=N %Error Check Input

error('Matrix and Cell Array Inner Dimensions do not match');

end

ArrayOut=cell(size(CellArray)); %Create output array

% _______________________________________________

% Perform Matrix Pre-multiplication

% ...............................................

for i=1:N %Loop over output array rows

for j=1: M %Loop over output array columns

tempvect=[0];

for k

te

end

=1:N %Loop over the elements to be added

mpvect=addpoly(tempvect,(Matrix(i,k)*CellArray{k,j}));

ArrayOut{i,j}=tempvect;

end

end

%**************************************'k************************************

%* End Of Program

%*

%*

%*

%*

96*

%**************************************************************************

Last Upd

v1.0: C

ate: 04—04-2003

reation version

RotateDynamicBar.m

function [RotatedBar]=RotateDynamicBar(Bar, Sine, Cosine)

%***************************************************************************

95*

%*

%*

35*

%*

96*

95*

%*

%*

%*

%*

96*

%*

96*

%*

%*

%*

95*

3:1:

%*

g1

%*

95*

Author:

Date:

Group:

Function:

Inputs:

Outputs:

Purpose:

Required

Drew R. Reichenbach

04-04-2003

i-EDA System Dynamics

RotateDynamicBar.m v1.1

Bar - A Cell array containing the vectors of polynomial

coefficients that make up a two dimensional i-EDA

dynamic bar model.

Sine - A floating point value that represents the sine of the

angle to which the bar must be rotated.

Cosine - A floating point value that represents the cosine of

angle to which the bar must be rotated.

RotatedBar - A Cell array containing the vectors of

polynomial coefficients that make up a two

dimensional i-EDA dynamic bar model after it

has been rotated.

RotateDynamicBar(args) uses the directional sine and cosine

to rotate the model of a dynamic bar so that it can be used

in either a dynamic truss or a dynamic span.

Matlab Functions:
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%* PreMultCell.m - Performs the matrix pre-multiply operation *

%* with a NxN numeric matrix and a NxM cell array of numeric *

%* vectors. *

%* PostMultCell.m - Performs the matrix post-multiply operation *

%* with a NxM cell array of numeric vectors and a MxM numeric *

%* matrix. *

%* ~k

%* NOTES: *

%* *

%*************'k****‘k'k*****************************i'*************************

3;:===================================2::=:===::========:==::===::===========

% Declare and Initialize Variables

5=====:==========================:==:::=========::::::::=:::::::::::=:==::::

T=[]; %The rotational matrix, T

HalfRot={}; %The half rotated cell array (pre multiplied by T')

M=[]; %The Number of rows in the input cell array

N=[]; %The Number of columns in the input cell array

DirtyVect=[]; %The vector which may have leading zeros

CleanVect=[]; %The vector which does not have leading zeros

‘6:===============:::::==::::=:::=:=:==::::=::::::===========================

% Main Program

%=============================22:2:=========================================

% _______________________________________________

% Define the Two Dimensional rotation matrix, T

% ...............................................

T=[ Cosine Sine 0 0 ;

-1*Sine Cosine 0 0 ;

0 0 Cosine Sine ;

0 0 -l*Sine Cosine ];

% __________________________________________

% To rotate the dynamics, use T'*R*T

% Done in two steps: Pre-multiply by T'

% then Post-multiply by T

% ..........................................

%perform the first part of the rotation

HalfRot=PreMultCell(T',Bar);

%perform the second part of the rotation

RotatedBar=PostMultCell(HalfRot,T);

% .....................................

% Remove any incidental leading zeros

% .....................................

[M,N]=size(RotatedBar); %determine the size of the array

for i=1:M %Loop over the rows

for j=1:N %Loop over the columns

DirtyVect=RotatedBar{i,j};

if isempty(find(DirtyVect)) %If the vector has no Non-Zero entries

CleanVect=[0]; %Store a single zero
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else %Otherwise

CleanVect=DirtyVect(min(find(DirtyVect)):length(DirtyVect));

%Store the input vector from the first non-zero entry to

% the last element in the vector

end

RotatedBar{i,j}=CleanVect; %Put the cleaned vector back in the cell

end

end

%*************************************************i'*************************

%* End Of Program *

%* ~k

%* Last Update: 04-09-2003 *

96* t

%* v1.1: Added code to remove leading zeros from entries that only *

%* stiffnesses, but were padded due to the matrix multiply *

%* operation. *

%* v1.0: creation version *

%* t

i%******************************************i'*******************************

cell25tr.m

function [StrOut] = cellZstr(CellIn)

%***************************************************************************

%* t

%* Author: Drew R. Reichenbach *

%* Date: 11-24-2002 *

%* Group: i-EDA System Dynamics *

%* ~k

%* Function: cell2str.m v1.1 *

%* Inputs: CellIn - A cell array of unknown size that is to be converted *

%* Outputs: StrOut - A single string which can be reconverted to a cell *

%* array with the command str2num *

%* *

%* Purpose: cell2str(CellIn) takes a cell array of unknown size (2D only) *

%* and converts it into a string. The string includes all *

%* of the required brackets to be easily reconverted into a *

%* cell array using the str2num() function. *

95* 'k

%* Required Matlab Functions: *

%* size() - finds the n-dimensional size of the input args. *

%* sprintf(format,arg) - converts arg into a string array using *

%* the format string. *

%* t

%* NOTES: cellZstr was designed to produce an output string properly *

%* formatted for use within the i-EDA Dynamic System *

%* models. The formatting can be adjusted by changing *

%* format string, according to the information found in *

%* the Matlab help file for sprintf.m *

%* *

%***************~k***********************************************************

%===========================================================================

% Declare and Initialize Variables

%===========================================================================
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i = [1; %Row Dimension Counter

j = [1; %Column Dimension Counter

format = ['%E ']; %Format the output string to have Exponential Notation

StrOut = [1; %The Output String (begins empty)

CellRow = I]; %The Number of rows in the Cell Array

CellCol = []; %The Number of columns in the Cell Array

%====================:=========—_-==_-_=========================================

% Main Program

% Determine the size of the input cell array

6 ___________________________________________

[CellRow,CellCol] = size(CellIn);

% ______________________________________________________

% Create the output string by looping through each cell

6 ......................................................

StrOut = ['{']; %Begin the string with the cell array curly brace

for i=1:CellRow %Loop Through the Array Rows

for j=1:CellCol %Loop Through the Array Columns

StrOut=[StrOut,' [ ',sprintf(format,CellIn{i,j}),'] '];

%Append the contents of the (i,j)th cell to the string

end

StrOut=[StrOut,' ; ']; %End the ith row with a semi-colon

end

StrOut=[StrOut,‘ }']; %Close the string with the cell array curly brace

%***************************************************************************

%* End Of Program *

%*
v:

%* Last Update: 12-05-2002 *

35*
*

%* v1.1: added a space to the format string to correct format error *

%* v1.0: creation version *

%* ' *

*%*********************‘k****************************************************

SolveDynamics.m

function [Solution,TimeVector,1amda]=SolveDynamics(SYSAscii, InputDOF,

OutputDOF, FixedDOF, ITypeAscii, IValue,dt,Tsim)

%*******************************************************************1”.***‘k**

%* *

%* Author: Drew R. Reichenbach *

%* Date: 04/11/2003 *

%* Group: i-EDA System Dynamics *

95* *

%* Function: Solvedynamics.m v1.0 *

%* Inputs: SYSAscii - A Vector of ASCII character codes that contain *

%* the dynamics for the system being solved. *

%* InputDOF - A double precicion value that specifies which DOF *

%* will have the input applied to it *

%* OutputDOF - A double precision value that specifies which DOF *

%* the output will be recorded for. *
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%* FixedDOF - A vector of integer vauses that specify which DOF *

%* are going to be fixed (Boundary Conditions) *

%* ITypeAscii - An Optional input equal to: A vector of ASCII *

%* character codes that convert to a string to *

%* specify what type of input is being applied. *

%* Current Options are: Impulse and Step. Default *

%* value is step. *

%* IValue - An optional input equal to a vector of applied input *

%* magnitudes. Default value is unity. *

%* dt - The time step for running the simulation. *

%* Tsim - The final simulation time. *

%* Outputs: Solution - A Nx1 vector of double precicion values that are *

%* the result of system simulation. *

%* TimeVector - A le vector of double precision values that are *

%* the time at which each Solution entry occurs. *

%* EigV — A complex vector containing the eigenvalues for the *

%* constrained system. *

%* t

%* Purpose: SolveDynamics(args) solves the i-EDA dynamics problem. *

%* Inputs are applied at a specified location and outputs *

%* are measured at the specified location. Boundary *

%* conditions are applied before inverting the system. *

%* t

%* Required Matlab Functions: *

%* CellArrayDet.m - Determinant of a cell array. Recursive. *

%* CellArrayAdjoint.m - Adjoint of a cell array. *

%* ApplyBoundaryCond.m — Applies fixed boundary conditions *

%* t

%* NOTES: Simulation times are user specified, because eigenvalue *

%* analysis was not working properly. *

%* i

*%********************************'k************i****************************

5:========:===========================================:=:======:============

% Declare and Initialize Variables

§===========================================================================

SYSunConst={}; %The input system in cell array form

SYS={}: %The constrained system

IType=[]; %A String that represents the type of input to apply to SYS

idof=[]; %The vector of inputs adjusted to fit the constrained system

odof=[]; %The vector of outputs adjusted to fit the constrained system

NUM={}; %A Cell array of Transfer Function Numerator Polynomials

CharPoly=[]; %The system characteristic polynomial

DEN={}; %A Cell array of Transfer Function Denominator Polynomials

TFSYS=[]; %A TE object (LTI OBJECT) for the constrained system

lamda=[]; %The constrained system eigenvalues

sigma=[]; %The real part of the eigenvalues

omega=[]; %The imaginary part of the eigenvalues

TimeVector=[]: %The simulation time vector

U=[]; %A matrix of forcing functions for LSIM

Y=[]; %A full fledged output matrix from LSIM

Solution=[]; %The parsed output vector.

%=================================2=========================================

% Main Program

6::=========================================================================
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g __________________________________

% Apply default value if necessary

% __________________________________

if nargin < 5

ITypeAscii=double(['Step']); %Default Value for IType is Step response

end

if nargin < 6

for i=1:length(InputDOF)

IValue(i)=1; %Default value for IValue is unity

end

end

% ________________________________________________

% Convert the ASCII vectors to character strings

6 ................................................

SYSunConst=eval(char(SYSAscii)); %convert the input system to a cell array

IType=char(ITypeAscii); %Convert the input type to a string

95 _______________________

% Error Check the input

% .......................

if nargin < 4

error('Not Enough Input Argumentsl');

elseif size(SYSunConst,l)~=size(SYSunConst,2)

error('Input System Is Not Square');

elseif size(SYSunConst,1) <= length(FixedDOF)

error('The system has no unconstrained DOF');

end

% .................................................

% Constrain the system and adjust the i/o vectors

6 —————————————————————————————————————————————————

[SYS,idof,odof]=ApplyBoundaryCond(SYSunConst,InputDOF,OutputDOF,FixedDOF);

% ______________________________________

% Invert the system into Y=G(s)*U form

% ......................................

switch size(SYS,1)

case 1

%After constraint, the system is SISO

NUM=[l]:

DEN=SYS{1,1};

otherwise

%After constraint, the system is MIMO

NUM=CellArrayAdjoint(SYS);

CharPoly=CellArrayDet(SYS);

%Fill the DEN cell array with the Determinant

DEN=cell(size(NUM));

for i=1:size(NUM,1)

for j=1:size(NUM,2)

DEN{i,j}=CharPoly;

end

end

end

% .............................................

 



% Create the Transfer Function for the system

TFSYS=tf(NUM,DEN);

6 ..........................................

% Create the Time Vector for use with LSIM

% ..........................................

clear i %clear i for use as the imaginary operator

1amda=eig(TFSYS)'; %find the eigenvalues

dt

Tsim

%Calculate Simulation Time

TimeVector=0zdt:Tsim;

% _____________________________________

% Prepare U(t), the LSIM input vector

% _____________________________________

U=zeros(length(TimeVector),size(SYS,1)); %initialize the forcing function

%insert the forcing values (from IValue)

for i=1:length(idof) %loop over the input degrees of freedom

switch IType

case 'Step'

U(:,idof(i))=IValue(i); %create a step input on the idof(i)th input

case 'Impulse'

U(1,idof(i))=IValue(i); %create an impulse input on the idof(i)th

%input

otherwise

error(['Input Type ',IType,' is not defined'])

end

end

% ____________________

% Run the Simulation

% ....................

Y=lsim(TFSYS,U,TimeVector);

6 _____________________________________________________________

% Parse the output vector to only include the desired columns

% .............................................................

Solution=zeros(length(TimeVector),length(odof));

%initialize the output vector to be TxODOF

for i=1:length(odof)

Solution(:,i)=Y(:,Odof(i));

end

Solution=Solution';

%*************************************************************************i*

%* End Of Program

%*

%* Last Update: 04-11-2003

95*

%* v1.0: creation version

%*
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%***************************************************************************

ApplyBoundaryCond.m

function

[SYSOut,InputDOFOut,OutputDOFOut]=ApplyBoundaryCond(SYS,InputDOF,OutputDOF,Fixe

dDOF)

%***************************************************************************

96* at

%* Author: Drew R. Reichenbach *

%* Date: 04-12-2003 *

%* Group: i-EDA System Dynamics *

96* 'k

%* Function: ApplyBoundaryCond.m v1.0 *

%* Inputs: SYS - A NxN Cell Array of vectors. Each Vector contains the *

%* coefficients to a polynomial in terms of s that *

%* represents the system dynamics from the i-th output to *

%* the j-th input. R(s), inverse of TF, G(s). *

%* InputDOF - A vector of integers that list the DOF to which an *

%* input is going to be applied. *

%* OutputDOF — A vector of integers that lists the DOF at which *

%* the output is going to be measured. *

%* FixedDOF - A vector of integers that lists the DOF at which a *

%* fixed boundary condition (output==0) is going to *

%* be applied. *

%* Outputs: SYSOut - A MxM Cell Array of vectors obtained by removing the *

%* rows and columns for the DOF that are fixed. *

%* InputDOFOut - A vector of integers that list the DOF of the *

%* constrained system (SYSOut) to which an input *

%* is going to be applied. *

%* OutputDOFOut - A vector of integers that lists the DOF of the *

%* constrained system (SYSOut) at which the *

%* output is going to be measured. *

95* 'k

%* Purpose: ApplyBoundaryCond(args) performs several tasks related to the *

%* related to the application of the fixed boundary condition *

%* to a model written in the i-EDA cannonical form. First, the *

%* function removes the rows and columns of the R(s) array that *

%* correspond to the DOF which are being fixed. Then, the *

%* vectors that correspond to the input and output DOF are *

%* adjusted to be in terms of the DOF of the output constrained *

%* system. *

%* 'k

%* Required Matlab Functions: *

%* t

%* NOTES: *

%* *

%***********************‘ki'i'************************'k************************

%===========================================================================

% Declare and Initialize Variables

%===========================================================================

N=[]; %The size of the unconstrained system

RemainDOF=[]; %The DOF remaining after boundary conditions are applied

trash=[]; %A variable for storing data that does not need to be used

58

 



%:==========================================================================

5 Main Program

if size(SYS,1)~=size(SYS,2)

%if the number of rows and columns are not the same

%the input system is not square, and cannot be solved.

error(‘Input System Array is not square')

elseif size(SYS,1) < length(FixedDOF)+length(InputDOF)

%if the number of DOF in the input system is less

%than the number of DOF to be fixed and the number of inputs applied

%then the system cannot be solved (no inputs).

error('No Unconstrained DOF Remain. Decrease the number of Fixed DOF');

end

6 --------------------------------

% Form the Transformation Vector

‘ ————————————————————————————————

N=size(SYS,1); %find the size of the unconstrained system

RemainDOF=(1:N); %Before BC application, all DOF are present

3; _______________________________________________________

% Replace the Fixed DOF with zeros in the vector of DOF

% _______________________________________________________

for i=1:length(FixedDOF) %loop over the elements of the FixedDOF vector

RemainDOF(FixedDOF(i))=0; %put a zero in place of the fixed DOF

end

% _________________________________________

% Find the vector of DOF that will remain

‘6 —————————————————————————————————————————

[trash,RemainDOF]=find(RemainDOF);

% ...............................................

% Remove the FixedDOF rows and columns from SYS

% _______________________________________________

M=1ength(RemainDOF); %find the size of the constrained array

SYSOut=cell(M,M); %initialize the constrained array

for i=1:M %loop over output array rows

I=RemainDOF(i); %relate the output and input array rows

for j=1:M %loop over output array columns

J=RemainDOF(j); %relate the output and input array columns

%fill the constrained array cell by cell.

SYSOut{i,j}=SYS{I,J}; %build the output array

end

end

% .............................................................

% Adjust the Input DOF matrix to account for the missing DOF

% Adjust the Output DOF matrix to accound for the missing DOF

% .............................................................

InputDOFOut=InputDOF; %Initialize InputDOFOut

OutputDOFOut=OutputDOF; %Initialize OutputDOFOut
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for i=1:length(FixedDOF)

%Adjust Input DOF

for j=1:length(InputDOF)

if FixedDOF(i) < InputDOF(j)

InputDOFOut(j)=InputDOFOut(j)-1;

end

end

%Adjust Output DOF

for k=1:length(OutputDOF)

if FixedDOF(i) < OutputDOF(k)

OutputDOFOut(k)=OutputDOFOut(k)-1;

end

end

end

%*************************************************************************i*

%* End Of Program *

%*
i

%* Last Update: 04—12—2003 *

35*
i

%* v1.0: creation version *

96*
i

*%**************************************************************************

CellArrayAdjoint.m

function [CellAdjOut]=CellArrayAdjoint(InputArray)

%*********************************'k*****************************************

%*

%* Author: Drew R. Reichenbach

%* Date: 04/11/2003

%* Group: i-EDA System Dynamics

%*

%* Function: CellArrayAdjoint.m v1.0

%* Inputs: InputArray - A Cell Array of numeric vectors. Each vector

%* contains the coeficients of polynomials in

%* decreasing order.

%* Outputs: CellDet - A Cell Array containing the Adjoint of the Input

%* Cell Array. Each entry is a vector containing

%* the coeficients of polynomials in decreasing

%* order.

%*

%* Purpose: CellArrayAdjoint(args) takes the Adjoint of an input cell

%* array. The Adjoint definition used is the transpose of the

%* matrix of cofactors. (see notes for ref).

%*

%* Required Matlab Functions:

%* CellArrayDet.m - Determinant of a cell array. Recursive.

%*

%* NOTES: Adjoint definition taken from:

%* Phillips, Charles L. and Harbor, Royce D., 2000, "Feedback Control

I
'
fi
fl
h
fl
'
*
fi
fi
fi
fi
fi
‘
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fi
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fi
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fi
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fi
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fi
t

%* Systems", Fourth Edition, Prentice Hall, Upper Saddle River, NJ.

%* Pg. 630.

%*
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%*************************************************************************ink

‘6===========================================================================

% Declare and Initialize Variables

%===========================================================================

M=[]; %Number of rows in the input array

N=[]; %Number of columns in the input array

Minor={}; %The minor array

m=[]; %The size of the minor array

% Find the size of the input array

35 __________________________________

[M,N]=size(InputArray);

% _______________________

% Error Check the Input

end

CellAdjOut=cell(M,M); %Initialize the output array

for I=1:M %Loop over the input array rows

for J=1:M %Loop over the input array columns

m=M-1; %Define the size of the minor

Minor=cell(m,m); %Initialize the minor

5 .......................................

% Each entry must be put into the minor

% one by one, because they are cells

% .......................................

for i=1:m %Loop over the minor rows

for j=1:m %Loop over the minor columns

3; ______________________________________________

% The row and column being removed from the

% input matrix to form the minor determines

% how the indexing to form the minor must go

ifI==l&J==

%The First Row and the First Column is removed

Minor{i,j}=InputArray{i+1,j+1};

elseif I == 1 & J z:

%The First Row and the Last Column is removed

Minor{i,j}=InputArray{i+1,j};
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elseif I == 1 & J > 1 & J < M

%The First Row and the Middle Columns are removed

if j < J

%The Columns to the left of the removed column

Minor{i,j}=InputArray{i+l,j};

elseif j >= J

%The Columns to the right of the removed column

Minor{i,j}=InputArray{i+l,j+l}i

else

error('I==1, J~=(1|M) Minor Failure');

end

elseif I z: M & J ==

%The Last Row and The First Column is removed

Minor{i,j}=InputArray{i,j+1};

elseif I == M & J == M

%The Last Row and The Last Column is removed

Minor{i,j}=InputArray{i,j};

elseif I == M & J > 1 & J < M

%The Last Row and the Middle Columns are removed

if j < J

%The Columns to the left of the removed column

Minor{i,j}=InputArray{i,j};

elseif j >= J

%The columns to the right of the removed column

Minor{i,j}=InputArray{i,j+l};

else

error('I==M, J~(1|M) Minor Failure');

end

elseif I > 1 & I < M & J ==

%The Middle Rows and the First Column are removed

if i < I

%The rows above the removed row

Minor{i,j}=InputArray{i,j+1};

elseif i >= I

%The rows below the removed row

Minor{i,j}=InputArray{i+1,j+1};

else

error('I~=(1|M), J==1 Minor Failure');

end

elseif I > 1 & I < M & J ==

%The Middle Rows and the Last Column are removed

if i < I

%The Rows above the removed row

Minor{i,j}=InputArray{i,j};

elseif i >= I

%The rows below the removed row

Minor{i,j}=InputArray{i+l,j}

else

error('I~=(1|M), J==M Minor Failure');

end

elseif I > 1 & I < M & J > 1 & J < M
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end

%The Middle Rows and the Middle Columns are removed

6 ———————————————————————————————————————————

% This entry goes quadrant by quadrant. The

% quadrants are defined as:

%

of ___________

% | Ql | Q2 |

% ----- R -----

% |Q3|Q4|

ifi<I&j<J

%The entries in Quadrant l

Minor{i,j}=InputArray{i,j};

elseif i < I & j >= J

%The entries in Quadrant 2

Minor{i,j}=InputArray{i,j+l};

elseif i >= I & j < J

%The entries in Quadrant 3

Minor{i,j}=InputArray{i+1,j};

elseif i >= I & j >= J

%The entries in Quadrant 4

Minor{i,j}=InputArray{i+1,j+1};

else

error('I~=(1|M), J~=(1|M) Minor Failure');

end

else

error('Minor Indexing Failure. Case does not exist.');

end

%This is the End of the indexing into the minor array

end

end

Cofactor=(((—1)‘(I+J))*CellArrayDet(Minor));

% .......................................................

% The cofactor is the signed determinant

% _______________________________________________________

%REM this used to state that the cofactor required convolution

% that statement was false. (see Phillips & Harbor)

.6 ——————————————————————————————————————————————————————————

% The Adjoint is the transpose of the cofactors, therefore

% the I,Jth cofactor goes in the J,Ith position in the

% adjoint output array

% ..........................................................

CellAdjOut{J,I}=Cofactor;

63



end

%**********************************************~k****************************

%* End Of Program *

°6*
*

%* Last Update: 04-11—2003 *

%* *

%* v1.0: creation version *

%*
i-

*%***************************************'k**********************************

CellArrayDet.m

function [CellDetOut]=CellArrayDet(InputArray)

%***************************************************************************

%* *

%* Author: Drew R. Reichenbach *

%* Date: 04/11/2003 *

%* Group: i-EDA System Dynamics *

95* *

%* Function: CellArrayDet.m v2.1 *

%* Inputs: InputArray - A Cell Array of numeric vectors. Each vector *

%* contains the coeficients of polynomials in *

%* decreasing order. *

%* Outputs: CellDet - A vector containing the coerficients of the *

%* characteristic polynomial for the input array. *

%* *-

%* Purpose: CellArrayDet(args) takes the determinant of a cell array of *

%* unspecified size. This function is recursive, so large *

%* input arrays could take a while to solve. *

%i‘ *

%* Required Matlab Functions: *

%* addpoly.m - adds vectors (polynomials) of dissimilar length *

%* *

%* NOTES: This function is recursive in nature. This means that large *

%* input arrays could take some time to solve. *

%* A 7x7 determinant solves in less than a second. 2521 calls *

%* A 10x10 determinant requires over 2 minutes. 1814401 calls *

96* «k

*°.6**************************************************************************

%===========================================================================

% Declare and Initialize Variables

fi==================:=================:===========:==========================

M=[]; %Number of rows in the input array

N=[]; %Number of columns in the input array

CellDet=[]; %Output Vector (perhaps with leading zeros)

Minor={}; %The minor array

m=[]; %The size of the minor array

CellDetOut=[]; %Output Vector (no leading zeros)

6::=========================================================================

% Main Program

%===========================================================================
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g __________________________________

% Find the size of the input array

% ..................................

[M,N]=size(InputArray);

error('Input Array Must Be Square');

end

% ______________________

% Take The Determinant

% ......................

switch M %Chose the determinant method based on the input array size

case 1 %For a 1x1 input array

CellDet=InputArray{1,1}; %the determinant is the cell contents

case 2 %For a 2x2 input array

CellDet=addpoly(conv(InputArray{l,1},InputArray{2,2}),...

(—1)*conv(InputArray{2,1},InputArray{1,2}));

%Take the determinant by hand

%Note: The 2x2 case is done by hand to improve computational speed

% And to reduce the number of recursive function calls.

otherwise %For 3x3 to MxM arrays

CellDet=[O]; %Initialize the Output

for J=1:M %Loop along the first row of the input array

m=M-1; %The size of the minor array is M-lxM-l

Minor=ce11(m,m); %Create the Minor Array

5 .........................................

% Identify the entries in the Minor Array

% .........................................

for i=1:m %Loop along the rows of the minor array

for j=1:m %Loop along the columns of the minor array

switch J %Minor entry selection based on column removed

case 1 %First column removed

Minor{i,j}=InputArray{i+1,j+1};

case M %Last column removed

Minor{i,j}=InputArray{i+1,j};

otherwise %Remaining columns

if j <= J-l %for the first half

Minor{i,j}=InputArray{i+1,j};

elseif j >= J %for the second half

Minor{i,j}=InputArray{i+1,j+1};

else

error('The Minor Filling Function Failed');

end

end

% Take the Determinant as the sum of the product of the entry

% and its cofactor (signed minor)
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6 _____________________________________________________________

CofactorProdzconv(InputArray{1,J},((-1)‘(1+J))*CellArrayDet(Minor));

CellDet=addpoly(CellDet, CofactorProd);

end

end

% _________________________________

% Strip Uninportant Leading Zeros

% .................................

if isempty(find(CellDet)) %No Non-Zero Entries

CellDetOut=[O]; %Output a single zero

else

CellDetOut=CellDet(min(find(CellDet)):length(CellDet));

%Output the input vector from the first non—zero entry to

% The last element in the vector

end

96***************************************************************************

%* End Of Program *

%*
*

%* Last Update: 04-11-2003 *

%*
*

%* v2.1: Added code to strip leading zeros from output vector *

%* v2.0: updated to handle cell arrays of vectors. *

%* v1.0: creation version (replication of matrix determinant) *

35*
t

*95**************************************************************************
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Appendix C Dynamic Response Client Documentation

IEDADynamicsWebClient.vi

IEDADynamicsWebClient.vi is an interface for the i-EDA system. The program sends the

dynamics query to the specified agent, and retrieves the dynamic stiffness matrix as a response.

The client then applies boundary conditions, inverts to find the transfer function, and solves for

the time response. Most of the computation is performed using Matlab.

Connector Pane

 

Dyn

Client.
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Front Panel



Go Button

 

Force (N)

 

Time Step (3)

 

Simulation Lenth (3)

Structural Boundary Conditions 8: Force Location

Retrieving Stiffness

Simulation Type

DT r Computing Deflection

Select Agent

Time Response

git-mi} EigenValues
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‘* Numerlc

69



70

 

R
e
-

i
s
t
r

 

P
o
r
t

  

 

  

 

 

 

 

 

 

 

 

 
  

 
fi
l
fi
l
fl
l
fl
l
fi
l
fi
l
l
fi
l
i
fi
l
fi
l
fi
'
f
g

 
Z
y
s
'
é
fl
é
m
-
E
-
i
fi
fl
i
-
fi

 

Block Diagram



 
  

.
.
_
-

g

.
.
J
3
1
'

‘
.
I
:

a
‘

‘
I

.
'

‘
'
l

A
I

y
a

I
,

,
I
4

'
‘
.
_
n
’

—
-
r

p
u

 
 
 

 
 
 

 

f
5
2j
u
a
f

.
i
v

E
l
l

’
.
l
i
p
l
p
?
'
-
J
.
l
«
W

.
4
.
.
.

5
"
.
”

I
L
]
!

I
-

‘
_
l
v
'
s

'
I
‘
“
"
v
-
.
:

“
f
.
.
—



71

 
 

 

 
 
 
 
 
 

A
.

,
:s

-
,-

«
.

_.
;

,-
_

,
.

z
“

_n
-p

-
-.

\
-.
.<

._
~.

e
.1

.
;
;

_
‘
_
.
'

9
:

:‘
~;

“
x

i;
.;

,
1.

»;
9
.
;

':
-.
;.

;.
:.

m
;

y
.

e.
:;

.,
.

1.
72
3

:
3
:

.0
;-

.‘
-.

\-
g.

'.
,-
'
1
»
.
.
.

I
-
;
I

;
-
.
-
.
.
~
,
.
.
I
~
.

I
.
c
l
-
,
.
:
-
l
.
.
.
.
'
.
.
_
'
.
-
e
_
.
I

.
‘
l

_
.
:
.
'
.
:
-

'
Q
-
l
‘
i
‘
o
'

a
l
e
s
l
-
o
p
'
x
e
'
é
-
'
.
:
.
-
,
"
:
.
-
g
.
'
-
'
-
‘

;
'
3
»
-
i
.
€
-
.
‘
f
f
e
.
.
é
'
-
:
4
~
'
.
r
'
i
"
.
;
.
\
'
.
.
-
"
\
l
a
i
r
-
4
'
1
}
.

:-
'
3
.
.
.
“

'
.
'
-
:
-
:
'
-
.
'
<

'
z
‘
x
'
-
:
-
:
>
'
:
-
r
:
'
-
.
3
:
-
'
-
;
z
'
.
-
T
.
'
e
'
>
’
=
'
v
.
'
-
'

 
 

 L
n
i
t
i
a
l
i
z
e
C
o
n
t
r
o
l
s
b
y
r
e
a
d
i
n
g
A
g
e
n
t
a
n
d
Q
u
e
r
y
d
a
t
a
b
a
s
e
s
]

 
 

 

 

 

 
 

T
h
i
s
s
e
t
s
u
p
t
h
e
"
A
g
e
n
t
"
s
e
l
e
c
t
o
r

c
o
n
t
r
o
l
w
i
t
h
a

li
st

o
f
v
a
l
i
d
a
g
e
n
t
s

f

f
r
o
m
t
h
e
R
e
g
i
s
t
r
y
a
g
e
n
t

u
s
i
n
g

"

t
h
e
A
g
e
n
t
C
o
n
t
r
o
l
P
r
o
p
e
r
t
y

"
S
t
r
i
n
g
s
[
]
"

A
e
n
t

E
l
.
_

.
1
.

'
-
-
-
-

~
"
S
t
r
i
n
g
s
[
]

:
3
“

.
.
,

_
_
_
_
_
_
_
_
_
_

75
h

[
m
m

w
c
u
t
?
!

I
n

 
 

 
 

 

 

  
 

 
 

 

 
 

 

 
 

 
 

 

 

‘ " ~ .';'.:r.\.':‘.h)e-L-é.-‘/

 

 

 

 
 

 

:xwe-\v-‘\».-/-‘. H,“

 
 

 
 
 

 

 
 

 

 
 

 

 

v1 inc-nu, .-

 

 

 
 
 
 
 

 

\' .g- .w'ncaa-Ayg

 

 

‘.x,r,\-(-‘r§v.'( _n-.-. -.'r -.- -,- e _--.-

 

 
 

’-;{eXebNNMW\BIWWdAn-evx ,,';.;,,;‘,e.;.~._., '.-.' v.’

    

 

h
i
s
s
e
t
s
u
p
t
h
e

Q
u
e
r
y
"
s
e
l
e
c
t
o
r
c
o
n
t
r
o
l
w
i
t
h
a

l
i
s
t
o
f

a
l
i
d
q
u
e
r
i
e
s
f
r
o
m
t
h
e
q
u
e
r
y
O
n
t
o
l
o
g
y
a
g
e
n
t
u
s
i
n
g
t
h
e

'

o
u
e
r
y
C
o
n
t
r
o
l
P
r
o
p
e
r
t
y
"
S
t
r
i
n
g
s
[
]
“

 
 
 

 
 

-":-;~',- ‘ e ._. ._

 
 
 

 
:
3
?

"
'

‘-
‘-

V
.
‘

‘>
‘I

n‘
F7
."

.
‘

-
'
-

~
c.
’

'-
:-
:

.-
3
3
"

'-
'-
‘

"'
"‘
-

-:
«"

-
\.
-:

1‘
9-

‘I
T-

:2
"!

s‘
.

"
~

7
“

'
0

2
6
"

.
"

i
f

r
-
;
a

0
-
2

’r
.

'
9
'

fa
"
M

a
r
e

7
"

w
:

{
:
0

"
I
"

,
-
;

v
.
-

-:
-'
..
:

P
n

f
g
r
"
:
r
-
P
r
-
‘
i
|
§
:
;
'
e
,
'
>
.
:
I
-
.
e
-
.
l
i
n
l
p
i
l
e
-
1
:
.
l
o
n
e
-
I

-‘
__

..
;.
l
a
p
-
p
p
.
”
s
i
m
p
l
e
-
i
s
l
e
t
»
-
l
p
g
l
n
e

l
o
g
-
i
.
I
.
.
;
.
_
I
.
:
e
I
,
~
¢
I
,
.
9
.
g
~
l
.
-
.
-
u
.
}
.
4
_
_
_
.

,
:
g
l
_
,
I
t
a
l

3
.
)
»
)
.
.
é
-
5
f
/
l
'
k
.
§
?
.
fi
-
_
.
;
r
5
.
x
.
e
:
.
f
s
>
l
.
c
,
?
_
.
§
o
<
-
3
§
'
g
g
-

w
a
i
f
-
g
p
o
g
.

I

   



 

 

 

     

 

   

  

 

 

 

     

 

 

 

  
 

 

  
   

  

   

 

 

  
2.x I’: I:

N
0
6
6
}

genesis-wenroe-ensueue-e-fine-e-e-a-sha-aeen 0m 4] v 29'"ye-sue.-s-a-e-s-e-s-e-a-s-e-e-efa-E-e-g
a". . I 0 \- ‘

g; fi‘ to; g

1% [Wait for Go button PUSH

g

L. gig-SIEIRISUE-55m1Ik-FIE’2IEISIB-E‘s" If; L

é ‘I After Go. .. g l

3; Zero Time Response Display ‘ i

§ Zero EigenValues L-

. i
i; .' elect A-ent r779:

g Time Response] r. '

e, a? I- 2? ,
1;: Value

] "sates_Ieraijr-itt—eqai-e-e-augments-en.seated-j: I

k t

15‘:

3'

saith-e.-see-eminen-a-eieia-‘e-e-eie-‘a-eie-shit-airfie-eds-s-e-s-ewas-em-sw-s-s-e-nave-non?

going.gufilfilfiifi'fiam:|flifi!fi!§l§ifiFifi-L;

 

Malt for Go Button]

h

 

[romp Addresfl  

[Strip off the units]

.3

 

ndD namics er andY Q0 Y

ecieve Dynamics String
  

 

etrieving

Stiffness 
  

 

tructural

Boundary

Condition

 

   

    



 

 

 

 

”Ml .

Stiffness Matrix Retrieval Done] LEW i'gi'gzg’gu'ea'lz' 'ga’fa'xutg'»; LU) DefaUIt v} n’.'-a'-'.'~;.'~>'--.".'-'.’-a'-.".'.'T'.".'-'.'he";

 

glfilfi!EiIii!fi!§!flil§l!l§l!l!lll§léllHIE
’ I

 

 

 

{use-smmuses-sna—e-ea-l-a-s-e-emay, 2 [0. _4] v iii

l

 

 

 
 

 
 

 

 

 

      
 

  
 

i ,_. [Step Response] .

g uimulation Type] g {E
‘9 “-3 55 if .

3 E35; .3; p

f etrieying Stiffness] f; 3'

s? I !? 5.3 l 3'

i Walue 33 . i-

Select the proper input depending on

33 the simulation type i: j

'3‘ . y

l 3

a aaaaaaaaaaaaaaaaaaaa '144'44‘aaaaaaaaa '4‘44'441'4'44444444 11141.1:

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

gfiifipalfiefinflne!§!%!§!§!fi-§!§!§I§-§IRefiieefilfil§IE!§-§!§i§!§93i§!§Ifi-Eefiifiafilfilfi-fl-filfiefiifi-fie

.. rrrrr.r'.v.r,r,r.rlr f.’r.f,r,'rrr.7.r'r.'.'ff.'.r

a 44444444444444444444 *lllllllll 'A’Jal‘J'J.

' I

l

A

.I

‘4

t

'4

n

l

l

a

I

fipulse Reponse]

  

W
X
W
J
M
»

 

 

 rpm 133:!

 

Select the proper input depending on

the simulation type  
 

44444444444444444444444444444444444444444444444444444444444444444444

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

73

 



 

   

List of

  



     

 

  

  

     

  

    

 

  

  

I'll-i!!!Ilklfllllilillillilfl: 301-4] v li!"flllillllflilIEIEFII§9IIIIIIEli-I'll!-
IZE Igniting-Hi!- .

T if;

5. ft. om-utin- Deflection -
“mua ion ,. .

‘ .. .. TF ,T .6 --fl 5 ] m

 
om-ute Deflection Here" naMiCS Strin- -

 

 

 
 

I 0 Default ' .

Set no and Boundary ’ 'pt'z ,HMATLAB Script]

Conditions . ""T‘"

__ onset the path L 4:]

. : hf ath “C:\serverfile512-20-2003i- “ 5 p-..

-- Pat r. ,, e .
I Omtocation EDA_FIIesti-EDA Source FilesiMatlab Code)

':°/oRun the function ‘ ‘ ~13

ixed Nodes ' [SoLTime,EigVal]=SolveDynamics(SYS,idof, ]

odof,fdof,IType,IVal,dt,Tsim) gm ,3 .4:
 

- - - ed Load Location

El}

     

 

  
1t

fi—I'JIJI‘III‘I [1ir-llllllll uuuu uU‘u,U11u'!I‘ll‘lrlln‘llll‘lllilllli}lllillllllllellIlv‘llll’II-‘dlgil‘ll’l  
 

'""""""“—1 :11"

Set HO and Boundary Set HO and Boundary

Conditions Conditions

Out-ut Location Out-ut Location

ail

1-

an a i]

‘- - Ilied Load Location  
List of SubVIs

‘Lp Beep.vi

C:\Program Files\National Instruments\LabVlEW 6.1\vi.|ib\P|atform\system.llb\Beep.vi

mm InternalClient.vi

C:\server files\2-20-2003 i-EDA_Files\i-EDA Source Files\lEDAUtilities.llb\lnternalClient.vi

74



History

'lEDAD‘z‘

Cunent?

Position

 

 

 



History

“lEDADynamicsWebClient.vi History"

Current Revision: 156

Position in Hierarchy

 

 

 

so» 23::
-. ' int   
 

  

 

Error

?!+
 

  
BldHlp

Path Q

   

 

 

75



ldtnlii

model

model

modu

equati

transf

and tl

Wher

and



Appendix D Failed Methods for Joining Dynamic System Models

Modular Dynamic System Representation

One of the primary goals of a modular model is for each model to have an

identical input-output topology; both in the model and in the equations that constitute the

model. This allows models (and equations) to be combined with ease; requiring no

model reformulation before it can be combined into a larger model. The equation

modularity also provides system anonymity, as composite systems will have the same

equation representation as a smaller, component level system. Beginning with the

transfer function representation of the state space system

Y(s) _ cTadngI — A]B
  

U(g)‘ lsl—Al I” “l

and then rearranging and substituting to get the form

G(s)Y(s) = H(s)U(s) (2)

where

G(s)={detls1 — Al}! (3)

and

H(s) = {cladj[sl — A13 + (det[sI — A] )D} (4)

Assuming an elegant solution that uses this form can be found, finding the adjoint and the

determinant of the system matrices need only happen at the most simplistic (component)

level of the model.
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Combining Modular Dynamic Systems

Combining modular dynamic systems stored in the form of (2), a modular

connector, or “Jpin” is required. These Join elements constrain the inputs and outputs at

the connected ports with zero power flow. Before the modular joint can be applied, some

manipulation of the system must take place.

Beginning with the form:

G(s)Y(s) = H(s)U(s) (5)

where

G(s) = D(s)I,..,, (6)

Y(s) = Y(s),,.. (7)

H(s)= [CTadj(sI —A)B+det(sl —A)D]W (8)

and

U(s) = U(s),,.l (9)

This arranges the transfer functions into a system of n equations. In this system, there

are going to be external input-output pairs that are only affected by the system, and by

boundary conditions. The system will also contain a number of internal input-output

pairs that are affected by the original system and by the system being joined to it. A

generic system, having n input-output pairs, with m internal input-output pairs, will

have a total of p = (n - m) external input-output pairs. The i‘h equation for that system

will take the form

P n n

Zginj + 281'ka =ihijUj + 2171ka (10)

j=| L j=l'=p+l k=p+l
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where Y}. is the external outputs, Wk are the internal outputs. U j are the external inputs,

and Vk are the internal inputs. The ith equation for a second system of 1 equations, with

m internal input-output pairs, and q = (I — m) external input-output pairs would be

q I e I

23inle Zgikwk =:h0U1+ Zhikvk (H)
j=l k=q+l j=l k=q+l

If the systems being joined are both considered in this fashion, there will be n +1 total

equations in the composite system, before the constraints are applied. The systems can

now be joined in the modular modeling fashion. [Byam, 1999; Byam and Radcliffe,

2000]. According to the modular modeling philosophy, the constraints on the system (in

the form of the modular modeling connector, or join) are now applied. Joins apply two

constraints that connect modular subsystems into modular composite systems while

conserving power. Consider the effects of a single join operation on the composite

system. The join will connect the ath port on the first system to the bth port on the second

system. The ith equation of each system can now be written as

0-1 It a-l n

Zgld‘jYLj + gl.ian.a + £81.21- Yl.j = ZhleUlJ + huan + Zhl.ikUl.k (123)

j=l k=a+l j=l k=a+l

b—l 1 b—l I

Z g2.1jY2.j + gZ.ibW2.b + 2 82a Y2.k = ZthJj Y2.) + h2.ibV2.b + Zh2.ikU2.k (12b)

1:'=1 k=b+l k=b+l\
.

The first constraint forces the subsystem internal outputs to have equal values and creates

a new external output. This constraint is written as

Wu :W2.j = Y3.k (13)

for the composite system. This allows us to write the composite system as

0‘1 n a—l n

2 glniin-j + glJa Y3.c + Z 3le Ytk = ZhleULj + hl.iavl.a + Z hlJL-VIJ: (143)

lj=l k=a+l j=l '=a+l
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b-l 1 b-l I

282.1} Y1; + 82.:‘17Y3.c + 281.1- Y2.k = 2172.0 Y2.j + h2.ibV2.b + ZhZJk V2.k (14b)

j=l j=lk=b+l k=b+1

which is in terms of only external outputs. The second join constraint is a net power

constraint. This constraint conserves the power output from each subsystem and from the

newly created external input-output pair (provided by the join). This constraint is written

as

VIJWIJ + V2.sz.j = U3.kY3.k (15)

for the composite system. From (13) it is known that the internal outputs W“. and W1].

are forced to equal the newly created external output. Combining this with the power

conservation of (15), and canceling the output terms gives

Vu + V2,} = U3.k (16)

which is the second constraint equation. This constraint equation requires the linear

combination of the equations representing each of the original systems. For the

combination of two systems, of n and 1 equations respectively, there are a total of n(1)

possible combinations. However, of those combinations, only (n + l)—l are unique. The

remaining equations can all be found through a linear combination of the unique

equations. Restrictions on the selection of equations do exist, and mandate that each

equation in each set must be used at least once. Furthermore, the equations from the two

systems, once selected, must be multiplied through by the term scaling the internal input

from the Opposite system as shown in ( l7a)-(17b).

k=a+l k=a+l

a—l n a—l n

h2.b[zgl.inLj + 8m Y3.c + 2 gm YIJ: ] = h2.b[zhl.ile.j + hl.iuvl.a + Elba-Um] (173)

j=l j=l
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b-l I b—l I

hl.u[z 81y Y1} + «€2.11;ch + 2 82.17.- Y2.k J = hm [2117101124 + h2.ibVZ.b + 2,1111:sz J (17b)

j=l j=k=b+l k=b+l

After this, the system equations can then be combined to form

a-—-l b-l

Zh2,bgl.inl,j + Zhl.a82.ij2.j +(172,b81.ia + hl.ag2.ib 3.(‘ +

°=1 '=11 1
(18a)

n I

Zh2.bgl.ile.k + Zhl.a82.ikY2.k

k:a+l k=b+l

a—l b—l

Zh2,bhl.ile.j + Zh1.ah2.sz2.j + h2.bhl.avl.a +

'=1 '=1 .

J J (18b)

n I

hl.ah2.bV2.b + Zh2.bhl,ikUl.k + Zhl,ah2.ikU 2.1.-

k=a+l k=b+l

Where (18a) and (18b) are the left and right-hand sides of the composite system equation

respectively. Then, applying (16) to (18a—b) gives

a-l b-l

Zh2,bgl,inl,j + Zhl,a32,in2.j + (h2,bgl,ia + hl,a82,ib )73,c +

'=1 '=1

J J (19a)
n I

Zh2.bgl.ikyl,k + Zhl,a82,ikY2,k

k=a+l k=b+l

a-l b—l

Zh2,bhl,ijU1, j + zh1,a’?2,ijU 2. j + hl.ah2,bU3,c +
.=] "=1

J J (19b)
n I

Zh2,bhl,ikUl,k + Zhl,ahz,ikU 2,1.-

k=a+l k=b+l

where (l9a-b) once again represent the right and left hand sides respectively.

Renumbering the system equations to match with the external ports on the composite

system gives it the form

n+1- n+I—l1

2 83.1; Y3.j = Z hm,- (20)

j=l j=l
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Which is exactly the form shown in (10) and (l l ), if there are no more joins to be

performed.

Method Failure

The primary weakness in this method is its dependence on the combination of

equations to combine joined internal inputs into the external input at the join. The

formulation described above depends on the presence of zeros in the H(s) matrix. In

general, H(s) is not sparse, and no combination of rows can occur. For example, consider

  

the system:

Phi.“ hlJZ hl.l3 hl.l4 _-

h a h a. h . h ,
[G(S)][y] : l-l 1. LJ l._4 [u]

hf! ll hl 12 hill hi! [4

_h2.21 [12.22 h2.23 h2.24_ (21)

To join the third port from the first system to the second port from the second system

(like putting the final join into the truss from three bar models), it requires that the first

(or second) equation be equal to the third (or fourth) equation on the input to be joined.

Performing the proper cross-multiplication (like described above) gives:

h2.12h1.n“1 + h2.12h1.12u2 + h2.izh1.i3“3 + h2.12h1.14”4 (2°)

hl.l3h2.llul + h1.13h2.|2“2 + h1.13h2.i3“3 + h1.13h2.14“4

In order to properly apply the input constraints, the multipliers on u2 and u 3 must be

equal. Given these two equations, and the constraint equations, there is no way for these

equations to be joined in the method required by modular modeling.

It should also be noted that the same logic applies to the failure of the method

when a Transfer Function is used instead of the split Transfer function.
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Additionally, direct application of Byam’s methodology using state space systems

does not allow proprietary information to be protected, because the join-history of the

entire system must be included in the constraint equation.
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