

2003

i)

.]‘, .
LI Ay
. 1

LIBRARIES
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICH 48824-1048

This is to certify that the
thesis entitled

MODELING OF DYNAMIC SYSTEMS USING INTERNET
ENGINEERING DESIGN AGENTS

presented by
DREW R. REICHENBACH

has been accepted towards fulfillment
of the requirements for the

Master of Science degree in _Mechanical Engineering

(ol aclel.c

Major Professor’s Slgn

Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

MODELING OF DYNAMIC SYSTEMS USING INTERNET
ENGINEERING DESIGN AGENTS

By

Drew R. Reichenbach

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE

Department of Mechanical Engineering

2003

process
become
are mig
number
Additior
design ay
this requ
global m
imcgralor
ontaineq
mOde“ng
fﬁ\'alidmo
Ompanjey
dany time
Hlﬁlhod for
infonnuliOn

mOdEng m

Wstem Mod,

ABSTRACT

MODELING OF DYNAMIC SYSTEMS USING INTERNET ENGINEERING
DESIGN AGENTS

By
Drew R. Reichenbach

As engineering evolves from largely in-house design, validation, and production
processes to an interlinked network of global designers, manufacturers, and integrators, it
becomes necessary for the engineering processes involved to change as well. Companies
are migrating from being product manufacturers to product integrators, combining a large
number of engineering subsystems designed and manufactured by their supply base.
Additionally, product integrators are coming to rely heavily on those suppliers for the
design and model information required to make their integration a success. Currently,
this requires the time and effort to reformulate and revalidate the subsystem models into a
global model of the product. In addition, suppliers are hesitant to give their models to the
integrators, without binding legal agreements to protect the proprietary information
contained within their subsystem models. The fixed input/output structure the modular
modeling method provides eliminates the need for global model reformulation and
revalidation. The distributed, agent-based architecture of the i-EDA system allows
companies to focus on their core competencies, and to have access to model information
at any time, and from any place. In addition, the synthesis of the two concepts provides a
method for communicating dynamic models in a manner that conceals the proprietary
information contained within them. This work details the implementation of the modular
modeling method within the i-EDA framework to assemble and solve a class of dynamic

system models over the internet. Examples are given from structural mechanics.

Myt
would not be
Myt
my commitie
With

Thanks 10 all

ACKNOWLEDGEMENTS

My thanks go to Dr. Radcliffe. Without his guidance and assistance, this work
would not be possible.

My thanks also go to Dr. Rosenberg and Dr. Sticklen for serving as members of
my committee.

Without the support of my family and friends, I never would have made it this far.

Thanks to all of you.

iii

List ¢
List ¢

Chap

Th
Chapi
Mo
Mo
Mo
Dey

Dey

Dev
Chapre
Simy
Sim,
Tryg,
Mog,
Chapler
APDendj

APpendj

TABLE OF CONTENTS

LSt Of TABIES ...ttt s vi
LSt Of FAGUIES ...eeviiieiieceieteete ettt st see ettt s s se s e e e s saasnasenes vii
Chapter 1. INrOAUCHIONcc.ciiiieiiiicieeieeteeeee ettt et e e s s sse s sa e e nes 1
The 1-EDA SYSIEIM....ciiiiiiieiiiieieeeeeee et et e et e e et e s s st e ae s se e e s e ne e e ae e s maean 2
The Modular Modeling Method.........c..coceeiiiiiniiniinniiniiiiiiineecsrcstcressesneenaees 3
Chapter 2. Theoretical SOIULIONcccccovviiiiiiiiiiiiiiti e 7
Model FOrmulationc.ccooiiiiiiiiiiiiiiiiiiiiintcin et sssae e 7
MOdel CONNECHION..........eiieiiiiieiiceiteeee ettt e ae s sas st st e s s s s sse s saessnaaen 8
Model Connection AlZOTIthMmcccceiiiiiiiiiiiiiiiircee e ssseesans 10
Development of a One-Dimensional Bar Model ..o, 13
Development of a Compound Bar Model...........ccccoiiiiiiiicininninicnicciincneccecceennne 14
Development of a Dynamic Truss Model...........ccoccoviniiiiniiniinninncnniinicncnnecnecnnes 15
Development of a Dynamic Span Model...........cccooiiiiiiiiniiiiiiiiiccniienccccnneene, 19
Chapter 3. Dynamic System Simulation...........cccceeoiiiiiiinieiiiiiieecceeeeceseceeeeneeans 21
Simulation of a One-Dimensional Bar...........cccccocciiviiiiiiininninininiecicccicecneeaee 24
Simulation of @ Compound Barcccoiiiiiiiiieetee et 26
Truss and Span SIMUIAIONcccueviiiiiiiiiictectncceet ettt eees 28
Modeling within the i-EDA SyStemccccciiiiiiiiiimniiniiniecincieienicsesecssesnecsesnnes 29
Chapter 4. CONCIUSION........cociitiiiiiitiiteiteceer et e s eaessa s sassnas 32
Appendix A Query/Response Definitionccccceveeiiiiiiiiiiiiincnccnececeecccneccnee, 35
Appendix B Matlab Codec.cocuiiiiiiiiiiiiiciiictcecectetee et 36

v

List ¢
Cr

Cr

Joii

Pos

Pre!

Rot;
cell:
Soly
App
Cell.
Cell.
Appendi
Appendiy
Moduly
COmb]'m
M'-‘Lhod |

List of Ref,

List of Included Programs.........c..coeiereiiieirinenircntnenereet ettt see s ssesaenneas 36

CreateTIUSS.IM ..ottt s e st e s sne s neesseessae e 37
CreateSPAN.IM.....couiiiiiiiiiniiit ettt st sae e e et e s et ssesae st s b s 39
DynamiCTOINIM c...ceiiiiiiciiee ettt se st s e s sas e e e s sas s e e sene s saeens 41
AddDIMENSION.IM c..ccvviiiiiiiiiiiiiictcete ettt sae st s sa s ae s e enaas 44
AAAPOLY. MMttt et st e et an e e e s a e s n e s se e s aas e saeeneaans 45
JOINMAP.M .ttt b e s 47
POSIMUIICEILIMN ..ottt ne e s se e s ae e s nesaesns 48
PreMUultCellmi... ottt ee et sae st e s e s e ne s 50
RotateDynamiCBar.m..........cccooveioiiiniiriiieniertesieceeecr et ee e ae e saessanesne 51
CII2SEI N ettt ettt s s e ae st s s e e e s se s sae e e e e snesnae e 53
SOIVEDYNAMUICS.IMN ..ottt ettt et et esee s e et a e e s seseneesnesnesnens 54
ApplyBoundaryCond.mcccoiiiiiiiiniiiiiceccceecrtectesecste et seeas 58
CellATTay AdJOINLIN ...ttt srcssessne st sesaeeas 60
CelIAITAYDEE M.ttt sttt ee e ste e e s aae e s ssaessneaessseesssnasssseassssannns 64
Appendix C Dynamic Response Client Documentation...........cccccevveeevueereeneesiueeseersneenns 67
Appendix D Failed Methods for Joining Dynamic System Models..........ccccceevueenuennennee 76
Modular Dynamic System Representationccccecveievieerveeenieeneeeceecnensseeensseeesnnes 76
Combining Modular Dynamic SYStEMS........ccceeuieuerierienirrreenierteseeereeeseeseeseesseessessennns 77
Method Failure.......c.cooiiiiiiiiiiiiiicecc ettt 81
LiSt Of REfEIENCESc.uveiiiiiiiiiiiiiiiiiiectccette ettt e e s e e sae s sn e na s nasens 83

Table |

LIST OF TABLES

Table 1 Properties for the BA1x2 bar model in the i-EDA system

vi

..................................

Figure

Figure
m
ref

Figure 3
disg
Figure 4
Fgure 5 ,
mod,
Figure 6 A
conne
Figure 7
Figure § ¢
Figure g Th

Figure 1 7,

LIST OF FIGURES

Figure 1 An example of measurement perspective causality for a linear mechanical
system. Black arrows represent forces; white arrows represent velocities. 4
Figure 2 A Modular Modeling Connector (MMC) element for connecting two modular
models of linear mechanical systems. Black arrows represent forces; white arrows
TEPTESENL VEIOCIHIES. ..ceeeeiienieriieeceeeereter ettt ente et et eeae e se et e e sae s e s seeeeeeneans 5
Figure 3 Diagram of a one dimensional discretized bar. Inputs are forces, outputs are
diSPIACEMENLS.covviviiiiiiiiiicct ettt e 13
Figure 4 A compound bar model. Inputs are forces and outputs are displacements 14
Figure 5 A dynamic truss model is composed of three dynamic bar models and three
modular modeling connector elementsccoucvuiiiinininininincc e 16

Figure 6 A span model is composed of two trusses, one bar, and three modular modeling

CONNECLOT ClEMENLS......eceieriiiiiciieetcteteereee ettt st st s eas s b se s ssanes 19
Figure 7 One dimensional bar model............ccccocnniivinininnininiiiiiiciiinicecncsesnenns 25
Figure 8 Constrained compéund bar model.........cocoiiiiiiiiiii 27

Figure 9 The i-EDA system topologyccccceueviiiiiiininiiieiininininincsessesesseseseseenes 29
KFigure 10 The i-EDA dynamic response Client............ccccceevivenenenenininsecncnneseescssessenes 31

vii

En;
facilities. a
no longer d
accurate, ¢d
Along with
dynamic mo
design and n
overhead. co
that strong e
protect the pr,
these lega] ag|
0afull year
mode] mugt b
the globa] ref,
time consumin
the indj\‘idual (

replacemem, su
ag time~lo-max
Mode] betwee
With Caditiong)

A comp)

Modelg and the

Chapter 1. Introduction
Engineering is a global effort. Corporations have design teams, manufacturing
facilities, and a supply base that spans multiple nations. Manufacturers of finished goods
no longer do all of the product design in house but rely on their suppliers for complete,
accurate, cost-effective component designs to integrate into their finished products.
Along with supplying component designs, suppliers are now expected to provide
dynamic models of those systems [Kerr, 2000]. Kerr also states that communicating
design and modeling information between companies requires a great amount of
overhead, cooperation, and trust between corporations. Model communication requires
that strong legal agreements are in place before any information is transmitted in order to
protect the proprietary information contained within the model. Creating and maintaining
these legal agreements can be time consuming — requiring anywhere from a few months
to a full year to establish. Additionally, after model information has been received, the
manodel must be integrated into the existing system model. This process typically requires
t he global reformulation and revalidation of the entire model, which is one of the most
Tixne consuming portions of dynamic model simulation. Additionally, reformulation of
T e individual component models into an assembly model often makes component model
X< placement, substitution, or updating extremely difficult. To reduce design cycle length
=x 1 d time-to-market, a process is needed for communicating reusable dynamic system
T odels between companies that protects the proprietary information and interfaces easily
> ith traditional modeling methods.
A complete solution would allow for the communication of dynamic system

Imodels, and the protection of the proprietary information contained within them.

Commun
example.
assemblic
the ability
communi
final proc
frequentl
protect th
between -
contracty

proprieta

T
deyj 2ned
Mode] gy
The Core
deseripe
Om‘med
Bach i,
Vinyg) p

a ne[“.()l

Communication of models is important because of the global nature of engineering. For
example, an assembly is designed in Detroit for assembly in St. Louis, from sub
assemblies designed in Seattle and built in Mexico from Japanese components. Without
the ability to model the component, sub-assembly, and assembly designs, and to
communicate the model information, the ability to predict the functional behavior of the
final product is greatly reduced. The model information that is communicated, however,
frequently contains information considered proprietary by the supplier. The ability to
protect the proprietary information contained in the models that are communicated
between suppliers and their customers will remove the need for lengthy negotiations and
contracts before any parts have been purchased. Additionally, the protection of
proprietary information will allow manufacturers to test models before any specific
agreements were created. This would increase competition in the marketplace and help

to drive costs down, while increasing the performance and quality of engineered products.

The i-EDA System

The i-EDA system [Radcliffe, Sticklen, and Gosciak, 2002; Gosciak, 2001] is
<designed to be a distributed, component-based system capable of providing both external
T odel and descriptive information without divulging internal proprietary information.
"X he core of the i-EDA system is the design agent. In this work, the term "agent"
<A e scribes one class of agent software; a group of semi-autonomous, stationary, object-
Sriented programs designed to interact with both users and each other over the internet.

X=ach individual design agent represents a real world object and could be considered a
“Virtual product. Agents representing subsystems and components are linked by means of

A network to form larger integrated systems. Agents interact with the user, and with each

[§S]

0l

ol

S\

rey
mo
qui
the
g
ae

fom

other, through a system of strict, predefined queries stored in the global ontology. The
ontology, which interacts as an agent itself, contains the set of standardized queries that
are complete enough to allow compositional modeling. When used with the modular
modeling method, the i-EDA system is capable of assembling and communicating

external system models without divulging the proprietary from which the models were

developed.

The Modular Modeling Method

The modular modeling method [Byam and Radcliffe, 2000; Byam, 1999] is a
systematic, power-based, modeling method that defines strict port causality, eliminating
model reformulation, and enhancing the model validation process. The formulation and
validation of models are the two most time consuming processes in dynamic system
modeling. Traditionally, a model would have to be globally reformulated and then

revalidated for each set of possible model input/output configurations. For smaller
xnodels, the workload is moderate, however for larger models, the amount of overhead
<guickly becomes intractable. The number of possible model configurations is related to
th e input/output selection at each power port. For a power port, the product of the input
<axad output variables must be equal to the power transmitted at that port. Because there
Aaxe two possible configurations for each power port, the number of possible model

T o rmulations (and likewise, required model validations) can be written as
N, =2" (1.1)
“here N, is the total number of possible model formulations, and »n is the number of

Power-ports on the model. In a large model, such as the kinematic model used by

Chrysler during the design of their full-size sedans, there could be as many as 5,500
interconnected components. [Computers in Engineering: Chrysler designs paperless cars,
1998] This means that the Chrysler large car model contained a minimum of
2.138x10*"" possible model input/output configurations.

With the modular modeling method, the number of possible model formulations is
reduced to one. This reduction occurs because of the fixed input/output, or causal,
structure of modular models. The causal structure used by the modular modeling method
is known as measurement perspective causality. [Byam and Radcliffe, 2000; Byam, 1999]
Measurement perspective causality defines the port output as the variable related to the
commonly measured quantity (e.g. linear velocity) and the port input as the variable

typically assumed to be zero for zero power flow across the port (e.g. linear force).

I<—| Al '%——>'f

Figure 1 An example of measurement perspective causality for a linear mechanical system. Black
arrows represent forces; white arrows represent velocities.
I\ easurement perspective causality for a linear mechanical system specifies that the
1 mxputs should all be forces, and the outputs should all be velocities, as shown in Figure 1.
X_i ke all power-based models, the product of the port variables remains power. Work by
L X=®yam, 1999] and [Byam and Radcliffe, 2000] expands on the port causal structures for
ther types of power-based models. Specifying the port causality, however, causes
I odular models to have incompatible input/output structures. For a connection to be
Tmade, the input port of one model must be connected to the output port of another. With
Inodular modeling, however, this is not possible, because the inputs and outputs of both

Inodels are specified and represented by the same variables.

4

The Modular Modeling Connector (MMC) element was introduced by Byam to surmount
this problem. The MMC is designed to provide complementary causality for the
connection of models.

fv

f f

Figure 2 A Modular Modeling Connector (MMC) element for connecting two modular models of

linear mechanical systems. Black arrows represent forces; white arrows represent velocities.

A modular modeling connector (Figure 2 e.g.) is composed of n+1 total power ports. Of

those ports, the first n ports have an input/output structure that compliments

measurement perspective causality. The remaining port has measurement perspective

<ausality and can either be used to connect additional modular models to the port at a

Jater time, or can be condensed out of the model to protect the internal structure of the
xnodel.
Mathematically, the MMC applies a set of constraints on the objects being
< onnected. When two objects are physically attached to each other, the output for each
T odel must be equal at the connection. The first constraint applies that connection by
<=quating the port outputs,
VW=V, ==Yy, =Y, (1.2)

<and can be represented mathematically by equation (1.2) where y, through y, represent

the output from the models being connected and y,. represents the output of the modular

Imodeling connector. Because the presence of the modular modeling connector itself

should have no effect on the system, the connector is considered an ideal element. As an
ideal element, the MMC must conserve power by ensuring that the power flow into the
connector from a model or the external port is equal to the power flow out of the

connector. The second constraint conserves power at the MMC,
n
Zy,-uf =y U, (1.3)
i=l

and can be represented by equation (1.3) where power port pairs y;u; for all n

connected power ports represent the power flow from the models being connected and

y.u.represents the power flow into the modular modeling connector.

Chapter 2. Theoretical Solution

Model Formulation
The formulation of a dynamic model for use in the i-EDA system begins with the
equations of motion for the system written as ordinary differential equations of any order,

N, in the form

N
DA y|= (2.1)
i=0

dr'
where y is the vector of system outputs, u is the vector of system inputs, and A; is a

time-invariant matrix. Many mechanical engineering systems are represented by coupled,
second order, differential equations written as
My +Cy+Ky =u 2.2)
where y and u are defined as in equation (2.1), and M, C, and K are matrices of time-
1 nvariant coefficients related to system parameters — typically mass, damping, and
stiffness for a mechanical system. Equations like those represented by equation (2.2) are
< ommon among lumped-mass systems like Finite Element models.
The model format within the i-EDA system can be found by taking the Laplace
txransform of equation (2.2) and applying zcro initial conditions — similar to the process

For creating the transfer function for a system — which yields

[Ms2 +Cs+ K]Y ~U (2.3)

WWhere s is the Laplace variable, Y and U represent the Laplace transform of the output
Aand input vectors respectively, and all other parameters are as defined in equation (2.2).

"The representation in equation (2.3) can also be written as

7

R(s)Y=U (2.4)
where R(s) is defined as
R(s)= [Ms2 +Cs + K] (2.5)

and each entry is a polynomial in terms of the Laplace variable, s. This model format is

very similar to the dynamic stiffness matrix, K4y, , used by Genta, [Genta, 1999], and in

the mechanics community. The key difference lies in the form of the assumed solution.
Because of the systems oriented nature of this work, the model form in equations (2.3) ,
(2.4), and (2.5) was selected.

The i-EDA canonical form, as represented by equation (2.4), is preferred to the
representations in either equation (2.1) or equation (2.2), in that it requires a single
network transmission to communicate the information from one agent to another.
Another advantage provided by the i-EDA canonical form is the ability to implement
boundary conditions as part of the solution process. Additionally, the similarity between

the i-EDA canonical form and the model form used to model static systems in i-EDA

[Radcliffe, 2003] provides starting point for developing the algorithms to connect models.

Model Connection

Consider some number, n, of i-EDA models to be connected. Each can
1 nndividually be represented in i-EDA canonical form, as shown in equation (2.4). When
J Oined using modular modeling connectors, they will form a single system, which can
Also be written in the i-EDA canonical form. This allows assemblies to be created using
A recursive algorithm, rather than a unique algorithm for assembly. This will be done

thirough the constraints supplied by the modular modeling connectors.

The first constraint is the output constraint provided by the modular modeling
connector, as shown in equation (1.2). This constraint equates the output from each port
involved in the connection to the external output at that point. This represents the
physical connection between the ports involved in the connection. In such a connection,
the outputs at that point must all be equal.

The second constraint is a statement of the conservation of power that must occur
through the rigid, ideal, modular modeling connector, represented by equation (1.3).
When considered from the assembly coordinate frame, instead of the coordinate frame of
the components, the conservation of power can be written as the conservation of work.
Consider the physical port location where the connection is going to occur. In each case,
the systems are physically connected. In terms of the assembly coordinate frame, the
initial position of the connected ports is constrained to be the same. With this initial
condition, the conservation of power equation, equation (1.3), is equivalent to the

<onservation of work which can be written
k

Z(“jfj)=“cfc =W, (2.6)

k
2Wj=
j=1 j=1

W here the work at each port involved in the connection, W, , is summed up and equated

to the external work input to the connection, W_. Combining equations (1.2) and (2.6)

£1ves the constraint on the input forces, which can be written
k
> fi=fe 2.7)
j=1

‘Where f; is the force provided by each object involved in the connection and f. is the

external force input into the connector.

Model Connection Algorithm

The computational algorithm for connecting system matrices allows the
connected stiffness matrix, to be constructed without first creating the unconstrained
system matrix. Performing the connection operations adds component dynamic
stiffnesses in much the same way as a finite element code assembles the global stiffness
matrix from each of the element stiffnesses.

Creation of the assembly dynamic stiffness matrix is performed by inserting the
entries in each object’s dynamic stiffness matrix into the assembly stiffness matrix based
on the values in a connectivity table. The connectivity tables used in this process can
either be connection-based, or object based. Connection-based connectivity tables are
preferred when selecting which object ports will be connected in the assembly. Object-
based connectivity tables are preferred when using a computerized process for the
assembly of dynamic stiffness matrices. Conversion between object-based and

<onnection-based connectivity tables is possible and allows the port connections to be
described with the connection-based connectivity table and model assembly to be
Performed using an object based connectivity table. Consider the connectivity tables for

a two-dimensional truss model. In equation (2.8), below

] 3 3]
1 2 3 4
CTJ=1 321 (2.8)
1 4 2 2
2 3 3 1
2 4 3 2

the rows correspond to the degrees of freedom in the constrained assembly. Each line

Lists the object and port pair that are going to be connected at that particular node in the

10

assembly. While equation (2.8) only shows the connection between two objects at each
node in the assembly, an assembly node can contain an infinite number of connections.
For unconnected ports, the row in the connection-based connectivity table will only have

two entries.

In the object-based connectivity table shown in equation (2.9)

1 23 4
CTo=[3 4 5 6 (2.9)
56 1 2

each row corresponds to one of the objects included in the assembly, and the columns are

equivalent to the ports on each object. Each entry in the object-based connectivity table

corresponds to a node in the assembly, repeated node values indicate the connection

between object ports. While equation (2.9) only shows objects with an equal number of

degrees of freedom, an object can have an infinite number of degrees of freedom. An
object with fewer ports than the object with the maximum number of ports will have one
©Or more empty columns in the object-based connectivity table.

The dynamic stiffness matrix for the assembly can be formed using the

<onnectivity table, and the dynamic stiffness matrices for each of the subcomponents,

using the equation

For the k™ object, Vi,j

(2.10)
RA,mn =RaAmnt Rk.ij

Where R, is the dynamic stiffness matrix for the assembly, R is the dynamic stiffness

matrix for the k object, and m and n are defined using the object-based connectivity

tables as

11

m = CTgq ;i (2.11)
n=CT0‘kj (2.12)
where CTg is the object-based connectivity table, and i and j are the indices for the

entries in the object dynamic stiffness matrices. For example, consider an entry from the

first object stiffness matrix. For k =1, i =3, and j =3 equation (2.10) becomes
m= CTOJ:; =3
n=CTg 3 =3 (2.13)

Ra33=Ra33+R 33 =R 33
Consider next an entry from the second object stiffness matrix. For k=2, i=1, and
J =1 equation (2.10) gives

m=CTO’2| —_—3
n =CT0.21 =3 (214)
RA33=Rp33+Ry; 1 =Rj33+R;

“This corresponds to the results for the element in the third row and third column of the
assembly dynamic stiffness matrix when the equations are assembled according to
<quations (1.2) and (1.3). One further example considers and element from the third

Object dynamic stiffness matrix. For k =3, i=1,and j =4 the result from equation

C 2 .10) becomes

m= CTO,31 = 5
n= CTO'34 =2 (215)
Raso=Rps0+R314=R3)4

> hich corresponds to the effects of the fifth assembly output on the second assembly

1 Iapout.

Development of a One-Dimensional Bar Model
Developing a one dimensional bar model begins with the discretization of the bar.

Consider the one-dimensional bar in Figure 3 below,

—»Xl — X,

1, w1 s 1

Figure 3 Diagram of a one dimensional discretized bar. Inputs are forces, outputs are displacements.

The inputs to the bar are the applied forces, and are positive in the direction shown. The
outputs from the bar are displacements, and are also positive in the direction shown.

Using either the LaGrange or Newton-Euler method, the equations of motion

—7—)&'1 +CX| —CXo +k.\'l ‘—I\'.X‘?_ = f] (2.16)

m.. . .
— Xy + Xy —cX) Hhyy —kx) = f5 (2.17)

which form the model for the system. Equations (2.16) and (2.17) can also be

xepresented in matrix form as

0 sl [e —efal [*x —k]u]_|A (2.18)
mli, | [=c ¢ x| |-k &k |x2| | £

o N3

"X aking the Laplace transform of equation (2.18) and factoring out the input terms allows
Tl e model to be written in i-EDA canonical form

Ris)Y =F (2.19)
> hhere Y is the Laplace Transform of the vector of system outputs, F is the Laplace

"X xansform of the vector of system inputs, and R(s) is

13

m 2
Ts“+cs+k —cs—k
R(S)= - m o (2.20)
—-cs—k 7s'+cs+k

-

Once the model is in this form, it is ready to be combined with other modular models

within the i-EDA system.

Development of a Compound Bar Model

Development of a compound bar model begins with two one-dimensional bar

models joined with a modular modeling connector.

Figure 4 A compound bar model. Inputs are forces and outputs are displacements

In Figure 4, above, the inputs to the model are forces, and the outputs to the model are
displacements. The positive direction for each is as shown. The first step in creating the
<ompound bar model is to define the connection-based connectivity table. The

<onnection-based connectivity table for a compound bar is shown in equation (2.21),

below.

CTy = (2.21)

N = =
N =
S NN O
S - O

"X Thae object-based connectivity table can be built from the connection-based connectivity

Ca ble. The object-based connectivity table for a compound bar is shown in equation

C=_22).

14

12
Clo=|, | (2.22)

This connectivity table can then be used with equation (2.10), and the dynamic stiffness
matrix (found in equation (2.20)) for a one-dimensional bar to assemble the dynamic
stiffness matrix for a compound bar. Applying equation (2.10) creates the assembly

dynamic stiffness matrix, which is written as

R Ry 1> 0 | xca fel
Rip1 Ripp+Ryy Rogz || Xe2 |=| fe2 (2.23)
0 Ry) Ry | xc3 fe3

where Ry ;; is the entry in the i " row and J t column of the k™ object dynamic

stiffness matrix. Substituting in for the appropriate entries gives

ﬂsz +C|S+k| —("Is+kl) 0 i
2 Yell fc,l (») 74)
Srek) P echelek) k) Jsea || fea|

0 -‘(('2S+k2) mTzsz +(‘25+k2 _"‘(‘.3 fc,}

where x.; and f; are the constrained system’s outputs and inputs at the i th port

respectively. The constrained system maintains the overall symmetric structure that the
original unconnected i-EDA dynamic stiffness matrices had, and as such, can either be

used in a simulation, or as part of a larger system.

Development of a Dynamic Truss Model

Creating a truss assembly, as shown in Figure 5, from three bar models follows

the same methodology used for forming a compound bar. In the truss model, three two-

15

dimensional bar models are pinned at both ends. The pin joint allows the transmission of

axial and transverse loading to the bar models, without transmitting moments.

fi-x1 f3.x3

Figure 5 A dynamic truss model is composed of three dynamic bar models and three modular

modeling connector elements

Each bar is placed in the model after being rotated from its original coordinate frame into
the coordinate frame of the assembly. Rotations are always performed in a
counterclockwise direction with the bars’ original horizontal position as the reference
point.

Several modifications must be made to the original one-dimensional bar model
(shown in Figure 3 and equation 2.20) before they can be used to form the truss model.
First, the one-dimensional bar model must be expanded to two-dimensions. Adding an
additional degree of freedom at each port in the transverse direction expands the model
from one, axial, dimension, to the two-dimensions required by the truss model. Some
assumptions are made when expanding the model. The first assumption is that the
transverse displacements are small, compared to the length of the bar, which allows the

model to neglect the any rotation of the bar. The second assumption made is that there

16

are no stiffness or damping effects in the transverse direction. With these assumptions,

the one-dimensional bar from equation (2.20) can be expanded to

Zsl+estk 0 —es—k 0 o
- m YI,\ Ul.\‘
0 5 s” 0 0 Yl_\- U,
= Y U. (2.25)
—cs—k 0 —s’+cs+k O 2 2%
Y., U,,
0 0 0 25
L 2
where Y, and U, are the axial output and input for the it port,and Y, and U, are the

transverse output and input for the i th port respectively.

The second additional step when forming a truss model is that the bar models need to be
transformed from their original coordinate frame into the coordinate frame of the
assembly. This is done through a rotational transformation matrix [Greenwood, 1988],

T, which is defined as

cos(d) sin(@) 0 0
—sin(@) cos(8) 0 0 5
| o 0 cos(8) sin(8) (2.26)
0 0 —sin(@) cos(9)

where the rotation matrix, T, is constant for each bar, and the bar’s rotation angle, 6, is
defined as the angular distance measured counterclockwise from the bars’ original

horizontal position..

The rotation matrix for the second bar with 8, =120°, for example, is

17

cos(120) sin(120) © 0 B4
- sin(l 20) cos(l 20) 0 0 5 5 0 0
T= . = < < (2.27)
0 0 cos(120) sin(120) o o L B
0 0 -sin(120) cos(120)| 2 2
o o ¥ -l
L 2 2]

The transformation matrix is then applied to the dynamic stiffness matrix for each bar
using

R =T'RT (2.28)
where R, is the dynamic stiffness matrix for each bar, rotated into the truss coordinate

frame. After the rotation is complete, the connectivity tables for the truss can be
developed. The connection-based and object-based connectivity tables for a truss are
defined in equations (2.8) and (2.9) respectively. These tables can then be used with
equation (2.10) to build the dynamic stiffness matrix for the assembly. Evaluating

equation (2.10) for each of the three components gives

R +R333 R +Rs3 Ry3 Riua R33) R332
Ri2i+R343 Riax+R3y Ry >3 Ry R34 Ry 42 229
R= Ry 3 Ry 32 Rizz+Ray Riza+Rap2 R 3 R4 (2.29)
Ry 4 R4 Ri43+Ry21 Riaa+R22 R3 23 Ry 24
Ry 13 R34 R> 3 R 3 Ry33+ Ry Raza+Rs)
R323 R34 Ra 4 Ry 4> Ryy3+R32; Rogy+R32m

for the dynamic stiffness matrix of the truss. Note that the dynamic stiffness matrix in
equation (2.29) maintains the same symmetry as the original object dynamic stiffness
matrices and can now either be used in a simulation, or in the construction of another

assembly.

18

Development of a Dynamic Span Model

Creating a span assembly follows the same processes used to create both trusses
and compound bars. A span is a two-dimensional object created by using pins to join two
trusses and a bar as shown in Figure 6. Because a span is two-dimensional, the bar model
must be expanded from one-dimension to two-dimensions before it can be used. A span
model has the same joint characteristics as a truss model, allowing the expanded bar

model to be used instead of a beam model.

f8.x8 f109x]0
t frx f9.x9
fz,X/ \—76"*6
f1.x f3.%3 fs.xs

Figure 6 A span model is composed of two trusses, one bar, and three modular modeling connector

elements.
In addition, the bar must go through the same rotation process as the bars required
for the truss model. After the bar model has been prepared for use in the span model, the
connectivity tables can be created. Using the connection definitions from Figure 6, the

connection-based connectivity table can be defined as

19

CTy = (2.30)

D N = = NN = = =
A L &N AW A WY —
W W W W O O N VvV O O

W N - 0O © N - O O

H

The object-based connectivity table can be created from the connection-based
connectivity table shown in equation (2.30). The object-based connectivity table is

shown in equation (2.31), below.

1
CTp =|2
;

(2.31)

o W
H
9}
O
S

With the object-based connectivity table and equation (2.10), the span model can be

assembled in the same manner as the compound bar and truss models.

20

Chapter 3. Dynamic System Simulation

Solving for dynamic system response is an important part of the dynamic
modeling process. A wide variety of tools exist for performing simulations and analyzing
the results. These tools can be put to use on models generated by the i-EDA system, if
the models can be transformed from i-EDA canonical form to a model format, like the
transfer function, that can be solved directly. Transfer functions provide the ratio of
output signal to input signal for a model. The most common form for a transfer function
is

=G(S) (3-1)

where, for a single input, single output (SISO) system, Y(s) is the system output, U (s)

is the system input, and G(s) is defined as

n n-2 |
as +a, s ~+--+as +a
G(S) — _n - ! — 1 l 0 (3.2)
b,s" +b, s"" +--+bs +b,
with a, and b, as linear, constant coefficients that represent the system behavior. For a

multi-input, multi-output (MIMO) system, the system is written as a matrix, G(s) , Where

each entry represents the transfer function from the i-th input to the j-th output.
The i-EDA canonical form

R(s)Y(s)=U(s) (3.3)

Y(s) = G(s)U(s) (3.4)
where R(s) is the i-EDA dynamic stiffness matrix, G(s) is a matrix of transfer functions,

and U(s)and Y(s) are the vectors of system inputs and outputs respectively. This

21

property allows all of the solution and analysis techniques that exist for transfer functions,
as well as many other types of linear, constant-coefficient, input-output systems to be
used on models generated by the i-EDA system.

Boundary conditions must be applied before the system can be inverted.
Inverting the system without applying boundary conditions will result in at least one
eigenvalue of zero, and the simulation will predominantly display the rigid body mode of
the object. The ability to apply boundary conditions as part of the solution process, and
not part of the model formulation process is one advantage that the i-EDA modeling
system has over conventional methods. With an i-EDA model, the boundary conditions
applied can be unique to each situation, and do not require reformulation of the model.

For example, consider the one-dimensional bar model from Figure 3. Asitis
shown, the application of a force to either input will result in the translation and vibration
of the bar. To study the vibration response alone, one end of the bar must have a zero
displacement boundary condition applied. For a system with n degrees of freedom, the

unconstrained dynamic stiffness will take the form

Ry Ry Ry,
R(s)=| R Rz o R 35)
_Rnl RnZ Rnn i

th

which, in general, will be full. To constrain this matrix, set the i~ output to zero. When

that is done, the constrained matrix will take the form

22

[Ry Rii.1 0 Ry Ry p
Ri_y, Rijis1 0 Ri_jis Ri_in
RConstrained =| Ril Riici 0 Ry R; (3.6)
Rii1) Ris1i-1 O Rigyiv Ris1n
Rn,l Rn.i—l 0 Rn,i+l Rn.n

Removing the column of zeros from the constrained dynamic stiffness matrix in equation

(3.6) leaves the system of equations ill-formed, with n equations and n —1 unknowns.

Additionally, the i ! row is now only a function of the remaining variables. The i h row
can then be removed from the system, leaving it as
R, Rt Riiw Rin [7 U
Ri_1, Ri_1i-1 Riopiv1 Riin || Yicy | _|Uic (3.7)
Rivin - Rivnict Rivin Rivin | Y | |Uin
L Rn,l Rn.i—l Rn.i+l Rn.n L Yn i Un i

If the reaction force at the constraint is desired, the i equation can be solved to provide
that information after the rest of the system has been solved.

Applying a non-fixed boundary condition is similar to applying a fixed boundary

condition. The primary difference is that instead of removing the i th column, it needs to

be evaluated and subtracted from the input force vector. After performing this operation,

the system of equations will again be ill-formed and require the removal of the i"™ row in
order to solve the system. A system with a non-fixed boundary condition applied will

take the form

23

Ry - Ry Ry - Ry, |4 I U -Ry;Y;

Ri_iy + Ricpict Ricpivn = Ricpn | Yia || Uic —RiciY; (3.8)
Rivip - Risnict Rignivt 0 Riytn [Y | | Ui —RiriYi
i Rn,l Rn.i-l Rn,i+] Rn.n i Yn) Un -Rn,iYi]

Like the fixed boundary condition case, if the reaction force at the i th port is required,

the i equation can be evaluated after the rest of the system has been solved.
After the boundary conditions have been applied, the system can be inverted. In
general, this requires taking the matrix inverse of a matrix of polynomials. One

definition of the matrix inverse states that

*

4 A

== (3.9)
A

where A" is the adjoint of A, and |A| is the determinant of A [Phillips and Harbor,

2000]. Equation (3.9) provés to be the most useful method for finding the matrix inverse
in this case because it does not rely on inspection, or equating polynomials. After taking
the inverse of the i-EDA dynamic system matrix to find the transfer function for the
system, all of the traditional simulation (Matlab, e.g.) and analysis (eigenvalue analysis,

e.g.) tools can be used with the model.

Simulation of a One-Dimensional Bar

Consider the one-dimensional bar model shown in Figure 7 below.

24

—»x, —.xz

Figure 7 One dimensional bar model

PI7777777

Given the mass, stiffness, and damping properties in Table 1, below,

Table 1 Properties for the BA1x2 bar model in the i-EDA system

'Va_flue
1.6677E+02[kg

Stiffness | 1.4700E+08|N/m
Dampin 2.2143E+04 kg/s

the i-EDA dynamic stiffness matrix for a one dimensional bar from equation (2.20) can

be evaluated to

-2.2143e45s-1.47€8 83.385s° +2.2143¢45+1.47¢8

2
S

2 .
R(s)= [83.385s“ +22143e45+147e8 —2.2143e45—147¢8 }k_g (3.10)

The boundary condition for this model shows that the left hand end of the bar (considered
port 1), should be fixed, that is, have zero displacement as an output. Applying this
boundary condition means that the first row and the first column (the entries in R(s)

associated with port 1) are removed from the matrix, resulting in

R(s)= [83.38552 + 2.2 14e45 + 1.47¢8]<E (3.11)
;2

for the system. Now that the boundary conditions have been applied, it is possible to

invert the i-EDA dynamic stiffness matrix to form the transfer function for the system. In
this case, R(s) is a scalar so a matrix inverse is not required. The transfer function for

the system is

1

G(s)= 5
83.385s +2.214e4s +1.47¢8

(3.12)

and can now be solved with existing simulation and analysis methods. Finding the
eigenvalues for equation (3.12) gives

Aip ==132.78+1321.1i (3.13)
for the constrained system transfer function eigenvalues. Independently, a model can be
developed for the one-dimensional bar model shown in Figure 7 using a bond graph to
develop the state equations. For the bar model shown, the state equations are

. o 1]r..71[o
['f2]= 2% —2¢ ["Z}L 2 |[F,]
Vo Vs e

m m B m (3.14)

bbb o] % |+ble]

which can be evaluated using the properties in Table | as

[:j) {— I .7(6)29e6 - 2.6;556’2} [:: } * L, 199(;(, _ 2} 3
b o] |+ bl

(3.15)

Performing an eigenvalue analysis on equation (3.15) results in the eigenvalues
Ap =-132.78+1321.1i
for the system. Comparing the eigenvalues given by equations (3.11) and (3.15) shows

that there is no error in the formulation and solution process for a one-dimensional bar.

Simulation of a Compound Bar

Consider the compound bar model shown in Figure 8 below.

Figure 8 Constrained compound bar model
The compound bar model is going to be created from two bars with the mass, stiffness,

and damping values from Table 1. Using these properties, the compound bar model in

equation (2.24) can be evaluated as

83.3855° +22143s +1.47¢8 —22143s—-1.47¢8 0
—22143s-1.47¢8 166.77s> +44286s + 2.94¢8 —22143s-1.47¢8 (3.16)
0 —221435-1.47¢8 83.385s +22143s+1.47¢8

The boundary condition shown in Figure 8, indicates that the left hand end of the
compound bar model (considered port 1) should be fixed. Applying the fixed condition

to equation (3.16) yields

166.7752 + 442865 + 2.94¢8 221435 —1.47¢8

: (3.17)
~221435—1.47¢8 8338552 +221435s+1.47¢8

as the constrained system matrix. Now that the boundary conditions have been applied, it
is possible to invert the dynamic stiffness matrix to form the transfer function for the
system. As shown in equation (3.9), the matrix inverse is formed by taking the adjoint
and dividing by the determinant. The adjoint of the constrained system matrix (equation

3.17)is

83.385s% + 221435 +1.47¢8 221435 +1.47€8

- (3.18)
221435 +1.47¢8 166.7757 +4.42865 +2.94¢8

The determinant of the constrained system matrix is

27

13906s* +7.3856¢65° +4.9521¢105° + 6.5 11 25+ 2.1609¢16 (3.19)
combining equations (3.18) and (3.19) with equation (3.9) gives us the transfer function
for the system. Performing a transfer function analysis on the transfer function yields the

eigenvalues

Ap =-226.66+1719.9i

3.20
A3 4 =-38.889%717.52i (3.20)

as the unique eigenvalues for the system. Independently, a model can be developed for
the compound bar model shown in Figure 8, using a bond graph to develop the state
equations. Performing an eigenvalue analysis on the state equations yields

A > =-226.66£1719.9i

3.21
A4 =-38.889%717.52i (3.21)

as the unique eigenvalues for the state space model. Comparing the eigenvalues in

equations (3.20) and (3.21) shows that there is no error in the model formulation.

Truss and Span Simulation

The solution process for dynamic truss and span models, in general, is similar to
the solution process for the compound bar model detailed above. One of the primary
differences in the solution method is the number of boundary conditions that must be
applied to remove the rigid body modes from the system model. Because truss and span
models are two-dimensional, three boundary conditions must be applied to fully constrain
the system and remove the horizontal, vertical, and rotational rigid body modes from the
system. Removing multiple degrees of freedom from a model simply requires applying
the process detailed in equations (3.5) through (3.7) for each degree of freedom that is

removed. After the boundary conditions are applied, the adjoint and the determinant can

28

be used to invert the system and find the transfer function, and existing simulation and

analysis methods can be used.

Modeling within the i-EDA system

The i-EDA system, uses a collection of internet agents to create dynamic system

models. The i-EDA system topology is shown in Figure 9.

Agent Design Design
Query Registry Agent #2 Agent #3
Software Software Software Software
Network
Design
Agent #1 Global
Ontology
Software
E Design | i Design i
I Agent #2 ' i Agent#3 |
1 Software ‘ \ Software !

Cmw------

Figure 9 The i-EDA system topology

One of the most important distinctions to make within the i-EDA system is the
capabilities of the various objects. The agent registry and ontology software interacts
with all objects within the i-EDA system, identifying the agent addresses, and the list of
available queries. The individual design agents can be broken into two categories.
Component-level agents are agents which represent objects that are not composed of any

other objects. One example of a component level agent is the one-dimensional bar.

29

Assembly-level agents are agents that create assemblies from information
gathered from other agents. To an assembly-level agent, all other agents appear to be
component-level agents, regardless of their actual status. Within each assembly-level
agent, a dynamic stiffness model is assembled using the individual dynamic stiffness
matrices from the components that make up the object, a specified connectivity table, and
the algorithm described by equation (2.10). For example, a truss agent receives a query
for the “Dynamics” of the truss-object that it represents. The truss agent then
immediately sends out a set of sub-queries, including the original “Dynamics” query, to
each of the agents that represent the bars that compose that truss. Upon receiving the
response, the information is used, along with the connectivity table which is built into the
truss agent, to assemble the component dynamic stiffness matrices into the dynamic
stiffness matrix for the truss assembly. A second example of an assembly-level agent is a
span. When a span agent receives the “Dynamics” query, it retrieves information from
the component-level agents for the bar model and from the assembly-level agents for
each of the two truss models. The span model can then be assembled using the dynamic
stiffness matrices retrieved from each of the component objects, the connectivity table
built into the span agent, and the algorithm defined in equation (2.10). One unique
feature of the i-EDA system is the fact that every assembly considers its components as if
they were component-level agents. This allows the system to create models of any shape
and size without a change in the algorithms used to create the models and increases
system’s ability to protect the proprietary information from which the models are built..

Client software provides the ability for users to interact with the i-EDA system.

A client, using information from the global registry and ontology, send queries to agents

30

and either display the response to the user, or perform an analysis on the response. Client
software is designed to perform specific functions, either through the actual client
interface, or across the internet through a web-based interface. One type of client
software queries the different agents for cost, length, weight, and size information, then
displays the agents’ responses to the user. A second type of client software can retrieve
static or dynamic model information, apply boundary conditions, These clients apply
boundary conditions and load cases and then run a simulation and display the results.

The i-EDA Dynamic Response Client, shown in Figure 10, performs the solution

procedure described in by equations (3.5) through (3.9).

i-EDA

Internet Engineering Design Agents

Dynamic Response Client

0E+0-,

)

Eigenvaiues 7 ° -1E-5-

-133-1321 i *
Mo o 25

33 s < :

' § 365

3

Time Step (5) 4ES-

'.
e .

_Simuiation Lenth (s) {

:3 8E-2 6E-5-, ' ' ' ' ' ' 1 '
3 0.00 001 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time (s)

_Agent Force (N) Smulation Type '
4 & & GO
7 }-5000 £ Step ' ‘

Structural Boundary Conditions & Force Location

Bar: Left End (x) fixed, Force and Output
on Right End (DOF #2),

Figure 10 The i-EDA dynamic response client

31

Chapter 4. Conclusion

A method for communicating reusable dynamic system models that protects the
proprietary information and interfaces easily with traditional modeling methods was
successfully developed. Combining modular modeling algorithms with the i-EDA
system gives engineers around the world access to dynamic model data around the clock.
Proprietary information is protected by the input/output form of the model, and by the
ability of the i-EDA system to treat every virtual product, whether an assembly or a
component, as unique component. This represents a significant advancement in
modeling technology, because it overcomes the need for a company to create and
maintain a library of models that contains each possible input/output configurataion.
Additionally, it eliminates the need for legal agreements that protect proprietary
information to be put into place before model information is transmitted.

The methods developed in this work, while designed for dynamic system models,
can also be used for assembling linear finite element models. When creating the i-EDA
canonical form, the common matrices used are the mass, damping, and stiffness matrices
for the dynamic system. When considering the method with a finite element model, only
the stiffness matrix would be present. This would allow the system to handle the
assembly of static, and dynamic finite element models, as well as SEA, and many other
types of linear finite element models.

In addition to providing a method for modeling dynamic systems over the internet,
the solution presented introduces many areas for future work. One such area is the
process of model condensation. Model condensation is the removal of input/output ports

that are considered interior (and possibly proprietary) to the model. An example of this is

the third and fourth degrees of freedom in a span model (Figure 6). Removing those
degrees of freedom would reduce the overall size of the span model, and would further
protect the proprietary information of the model. In addition to limiting the size of the
model, condensation of models significantly increases the difficulty associated with
reverse engineering a model.

A second area where there are possibilities for future work is in the creation of
algorithms for limiting system bandwidth to a particular range. One side effect of
maintaining all of the system dynamics for each component involved in an assembly is
the possibility that the frequency bandwidth the system occupies will become quite large.
In many cases, only a very specific bandwidth is of interest to the modeler. For example,
in a large electro-mechanical (or Mechatronic) system, there will be electrical
components which react very quickly and have a time constant measured in milliseconds
or microseconds. There will also be mechanical components, with comparatively large
time constants, measured in seconds, or even minutes. When designing control
algorithms for the assembly, the only time constants under consideration will be related
to the mechanical portions of the system. When compared to the mechanical system, the
electrical system seems to react instantaneously. Because of this, the ability to limit the
bandwidth under consideration will improve the algorithms set forth in this work.

A third area where there are possibilities for future study is in the formulation of
models for use within the i-EDA system. Because the i-EDA dynamic stiffness matrix
can be easily converted into the transfer function of the system, there exists a strong
possibility that the reverse is also true. This would allow companies to formulate models

using existing, proven, techniques. (Note that proper port causality must still be

33

maintained). For example, an electrical network model could be formulated using bond
graphs to generate the state equations for the system. The state-equations could then be
transformed into the transfer function for the system and from there into i-EDA canonical
form. If this was the case, companies would be able to use models that currently exist
within their model libraries, instead of creating separate models from scratch.
Additionally, companies would not have to invest in re-educating their model design staff

with new modeling techniques.

34

Appendix A Dynamics Query and Response Syntax
Query Syntax: Dynamics+<PN>
Where <PN> is a string representing the component part number.
Response Syntax: { <Dynamics>} <units>
Where <Dynamics> is a string representing the contents of the i-EDA canonical form and
<units> is a string representing the units for the response.
An example is shown below with the control characters (as defined by LabView) shown.

Query:

BB3x6+Dynamics
Response:

\s{\s[\s1777.572000\5157978.197483\s3.510000E+8\s] \s\s[\s-
157978.197483\s-3.510000E+8\s] \s\s;\s\n\s\s\s[\s-157978.197483\s-
3.510000E+8\s]\s\s[\s1777.572000\s157978.197483\s3.510000E+8\s] \s\s\s}\sk
g\ (s"2)\s

The same example is shown again without the control characters shown.

Query:
BB3x6+Dynamics
Response
{ [1777.572000 157978.197483 3.510000E+8] [-157978.197483 -
3.510000E+8] ;
[-157978.197483 -3.510000E+8] [1777.572000 157978.197483

3.510000E+8] } kg\\ (s"2)

Please note that in this example the response has been wrapped to fit the page width. The
true response has two lines. The first line ends at the line break following the semicolon.

The second line ends following the units.

35

Appendix B Matlab Code

List of Included Programs

CreateTruss.m

Creates Trusses. Primary LabView Truss interface.

CreateSpan.m

Creates Spans. Primary LabView Span interface.

DynamicJoin.m

Actually performs the join operation of two or more dynamic

systems.

AddDimension.m

Transforms a bar from a 1-D object to a 2-D object.

addpoly.m Adds two polynomials of unequal length. Pads with zeros.

JoinMap.m Transforms the Connectivity Table from join-based to object-
based.

PostMultCell.m Performs the matrix post-multiply operation with a cell array
and a matrix.

PreMultCell.m Performs the matrix pre-multiply operation with a matrix and a

cell array.

RotateDynamicBar.m

Transforms the bar dynamics into the coordinate frame of the

assembly.

cell2str.m

Converts a matlab cell array into a character string

SolveDynamics.m

Applies boundary conditions, inverts, and solves

ApplyBoundaryCond.m | Applies the specified boundary conditions
CellArrayAdjoint.m Takes the adjoint of a cell array
CellArrayDet.m Takes the determinant of a cell array

36

CreateTruss.m

function [TrussAscii]=CreateTruss (BlAscii,

B3Ascii, Sines, Cosines)

%*************t***t**i****'k********i********i*t**t***t******t***t*it****ﬁ**t

%i

%$* Author: Drew R. Reichenbach
g* Date: 04-04-2003

$* Group: i-EDA System Dynamics
%i

%$* Function: CreateTruss.m vl.1

§* Inputs: BlAscii - A vector of ASCII character codes
g which, when converted,

from LabView
i-EDA string for

§*

dynamic bar #1.

F* B2Ascii - vector of ASCII character codes from LabView

§* which, when converted, form the i-EDA string for
$* dynamic bar #2.

§* B3Ascii - vector of ASCII character codes from LabView

§* which, when converted, form the i-EDA string for
$* dynamic bar #3.

$* Sines - A vector of double precision values equal to the

$* directional sines for each bar.

§* Cosines - A vector of double precision values equal to the
$* directional cosines for each bar.

$* Outputs: TrussAscii - A vector of ASCII character codes to pass to

§* LabView which, when converted, form the i-EDA
g string for the unconstrained dynamic truss.
&>

$* Purpose: CreateTruss(args) is the main program for connecting i-EDA
$* Dynamic Bar models into an i-EDA dynamic Truss model.

g*

$* Required Matlab Functions:

§* AddDimension.m - Turns 1-D bars into 2-D bars.

$* RotateDynamicBar.m - Rotates 2-D Dynamic Bars.

§* DynamicJoin.m - Performs the i-EDA join process on 2 or more

§* dynamic objects.

§* cell2str.m - Converts cell array objects to character strings.

$*

$* NOTES:

g *

*

* % % % % % % % * % % ¥ * % * * ¥ % % * * * * * * % F ¥ * * * * *» »

%i*it*i****iit**************t***-ﬁ**tt*t*t*i****i*******ti**iifiﬁit**ﬁ**ﬁ****

B1String=[(]; %The string for Bar 1

B2String=[]; %The string for Ba

r 2

B3String=[(]; %The string for Bar 3

Barlld={}; %The cell array for
Bar21d={}; $%The cell array for
Bar3ld={}; %The cell array for
Barl={}; %The cell array for 2D
Bar2={}; %The cell array for 2D
Bar3={}; %The cell array for 2D
Barlr={

Bar2r={

Bar
Bar
Bar
bar
bar
bar

N =W

3

}: %The cell array for rotated 2D bar 1
}; %The cell array for rotated 2D bar 2

Bar3r={}; %The cell array for rotated 2D bar 3
JoinCT=(] %The join based nodal connectivity table
TrussArray={} %The Cell Array of Truss Polynomials

BlString=char (BlAscii) ;
B2String=char (B2Ascii) ;
B3String=char (B3Ascii) ;

Barlld=eval (B1String) ;
Bar21ld=eval (B2String) ;
Bar3ld=eval (B3String) ;

Barl=AddDimension(Barl1d) ;
Bar2=AddDimension (Bar21d) ;
Bar3=AddDimension(Bar31d) ;

Barlr=RotateDynamicBar (Barl, Sines(1l), Cosines(1l));
Bar2r=RotateDynamicBar (Bar2, Sines(2), Cosines(2));
Bar3r=RotateDynamicBar (Bar3, Sines(3), Cosines(3));

e e e m e e e e e e e cmc e

% Create the Join-Based Connectivity Table

g g

JoinCT = [1 1 3 3; $Bar 1, DOF 1 to Bar 3, DOF 3
123 4; $Bar 1, DOF 2 to Bar 3, DOF 4
13 21; $Bar 1, DOF 3 to Bar 2, DOF 1
142 2; $Bar 1, DOF 4 to Bar 2, DOF 2
2331; $Bar 2, DOF 3 to Bar 3, DOF 1
14 3 2]; %Bar 2, DOF 4 to Bar 3, DOF 2

fo-mmm e e e e e

% Assemble The Truss

e

% Convert the String to ASCII Character codes

TrussAscii=double (TrussString)

%*****************i*****ﬁ************************ii*************t*****i**i**

$* End Of Program *
§* *
$* Last Update: 04-09-2003 *
¥ *
$* vl1.1l: Corrected the connectivity table to reflect proper node *
$* numbering. *
$* v1.0: creation version *
$* *

*

%*ﬁ********i********i********************************i*t**ﬁ****************

CreateSpan.m

function [SpanAscii]=CreateSpan(TlAscii, T2Ascii, B3Ascii)
%**i*********ﬁ****t****i******************i***i***t***t*t***t*'k***********ﬁ*

%* *
$* Author: Drew R. Reichenbach *
§* Date: 04-07-2003 *
$* Group: i-EDA System Dynamics *
%* *
$* Function: CreateSpan.m vl1l.1 *
g* Inputs: TlAscii - A vector of ASCII character codes from LabView *
$* which, when converted, form the i-EDA string for *
g* dynamic truss #1. *
§* T2Ascii - A vector of ASCII character codes from LabView *
$* which, when converted, form the i-EDA string for *
§* dynamic truss #2. *
$* B3Ascii - A vector of ASCII character codes from LabView *
§* which, when converted, form the i-EDA string for *
§* the dynamic bar. *
$* Outputs: SpanAscii - A vector of ASCII character codes to pass to *
§* LabView which, when converted, form the i-EDA *
$* string for the unconstrained dynamic span. *
%* *
$* Purpose: CreateSpan(args) is the main program for connecting i-EDA *
E* Dynamic Truss and Bar models into an i-EDA dynamic Span *
§* model. *
%* *
$* Required Matlab Functions: *
§* AddDimension.m - Turns 1-D bars into 2-D bars. *
§* RotateDynamicBar.m - Rotates 2-D Dynamic Bars. *
§* DynamicJoin.m - Performs the i-EDA join process on 2 or more *
$* dynamic objects. *
§* cell2str.m - Converts cell array objects to character strings. *
$* *
%$* NOTES: *
%* *

%i*t*t****ﬁ***i********i********************it*tiiti*tﬁ**i**t***************

T1String=[]; %The string for Truss 1

T2String=[]; %The string for Truss 2

B3String=[]; %The string for the Bar

Bar31d={}; %The cell array for the Bar

Trussl={}; %The cell array for 2D Truss 1
Truss2={}; $%The cell array for 2D Truss 2

Bar3={}; %The cell array for the 2D Bar

JoinCT=[] %The join based nodal connectivity table
SpanArray={} %The Cell Array of Truss Polynomials

T1String=char (T1lAscii);
T2String=char (T2Ascii) ;
B3String=char (B3Ascii) ;

Bar3ld=eval (B3String) ;
Trussl=eval (T1String) ;
Truss2=eval (T2String) ;

e e

% Create the Join-Based Connectivity Table

e g g g g

JoinCT = [110 0 ; $Truss 1, DOF 1 is unconnected
1200 ; $Truss 1, DOF 2 is unconnected
1321; $Truss 1, DOF 3 to Truss 2, DOF 1
1422 ; $Truss 1, DOF 4 to Truss 2, DOF 1
2300 ; $Truss 2, DOF 3 is unconnected
2400 ; $Truss 2, DOF 4 is unconnected
1531; $Truss 1, DOF 5 to Bar 3, DOF 1
1632 ; $Truss 1, DOF 6 to Bar 3, DOF 2
2533 ; $Truss 2, DOF 5 to Bar 3, DOF 3
2 6 341]; $%Truss 2, DOF 6 to Bar 3, DOF 4

§ o mmmmmmmmmmmmmeeeeea

% Assemble The Truss

§ o e memmmeeo -

SpanArray=DynamicJoin (JoinCT, Trussl, Truss2, Bar3);

40

SpanAscii=double (SpanString)

%********ﬁ**t******************************i*****************************i**

$* End Of Program *
§* *
%$* Last Update: 04-09-2003 *
g *
$* vl.1: Fixed a variable reference error. *
%* v1.0: creation version *
§* *

*

%*i*******t*******i*i*******************i*i***********it****i***********i**

DynamicJoin.m

function [CellOut] = DynamicJoin(JoinCT, Celll, Cell2, varargin)

%***********ﬁ************i*******i********'k*'k********i*****tt*t***i*********

%* *
%$* Author: Drew R. Reichenbach *
$* Date: 2-21-2003 *
$* Group: i-EDA System Dynamics *
$* *
$* Function: DynamicJoin.m v1.2 *
$* Inputs: JoinCT - A matrix containing the Join-based nodal *
$* connectivity table. *
§* Celll - A cell array of Laplace Domain Parameters for the *
$* first Dynamic System *
* Cell2 - A cell array of Laplace Domain Parameters for the *
$* second Dynamic System. *
$* varargin - A cell array of any additional cell arrays for *
$* extending the capability of the Dynamic Join *
b* function beyond a single join operation. The *
B+ number of arguments will be checked vs. the *
E* number of matrices handed to the Dynamic Join *
$* function; a mismatch will trigger an error and *
$* will end the join process. *
$* Outputs: CellOut - A cell array of Laplace Domain Parameters for *
$* the output composite Dynamic System. *
§* *
$* Purpose: DynamicJoin(JoinCT, Celll, Cell2, varargin) performs the *
G join proceedure on at least two dynamic systems as *
$* specified in the JoinCT nodal connectivity table. *
§* DynamicJoin will generate an error message if the number *
> of input cell arrays does not match the number of systems *
$* indicated in the connectivity table. *
%i *
%$* Required Matlab Functions: *
§* JoinMap (JoinConnect) - converts modular modeling connector *

41

§* data from a join-based system to an object based system.

§* addpoly (Polyl, Poly2) - Adds two vectors representing

t* polynomials in cannonical form, independant of polynomial
§* order.

§*

%* NOTES: Join Based Nodal Connectivity Tables:

§* A connection based nodal connectivity table has each row

> defining the connections. For example, the JoinConnect

§* matrix

§* JoinConnect = [112 2 ;

> 1323;

$* 1221

> defines a physical system where

$* join 1 (row 1): (component#l, port#l) & (component#2, port#2)
$* join 2 (row 2):(component#l, port#3) & (component#2, port#3)
§* join 3 (row 3):(component#l, port#2) & (component#2, port#l)
§* note that unconnected ports still need to have a row in the

£ connectivity table. For example, the physical system where

§* join 1 (row 1):(component#l, port#l) is unconnected

$* join 2 (row 2):(component#l, port#2) & (component#2, port#l)
§* join 3 (row 3): (component#2, port#2) is unconnected

$* would be defined by the JoinConnect matrix

§* JoinConnect = [11 0 0 ;

$* 1221;

§* 22001

%> and could be the coupling of two 1-D bars (see BarJoinlD.m)

§*

%****t***ti**********i*****ﬁ*****ﬁ**t****i*****i***ﬁi*******ﬁ*ti***t**i*i*i

$The Process:

% Error Check Input (done)

% Repackage Input (done)

% Convert Connectivity Table (done)

% Process Join Process based on ObjectCT.

% Update process for "cell array of cell arrays"

% End.
§======================-==========Z==C=====S=Z==Z=Z=S=S=S=S==Z=SS=SSSSZ=TZT=S=S=======

% Declare and Initialize Variables

ObjectCT=[]; %The Object Based Nodal Connectivity Table

i=[); %Iteration variable

j=[); $Iteration variable

temp=[]; %Temporary Variable

InptArgs=[]; %The total number of input arguments containing cell arrays
NumObj=[]; %The number of object present in the Connectivity Table
ErrMsg=[]; %An Error Message variable

DynArray=[(]; %A Cell Array of the Dynamic Cell Arrays

InptArgs=nargin-1; %find the total number of input cell arrays

NumObj=max (max (JoinCT(:,1:2:size(JoinCT,2)))); %$find largest obj # in inpt
if InptArgs ~= NumObj %if # of Input Cell arrays is not = to Obj # from CT
ErrMsg=['Number of Input Cell arrays does not match number of objects'];

42

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ErrMsg=[ErrMsg, ' in connectivity table.'];
error (ErrMsg); %Display an error message
end

DynArray=cell (1, InptArgs); %Create an empty array of proper size
for i=1:InptArgs $%Loop through all input cell arrays

switch i
case 1
DynArray{i}=Celll; $%Put Celll in first cell
case 2
DynArray{i}=Cell2; $%Put Cell2 in second cell
otherwise
DynArray{i}=varargin{(i-2)}; %Put cells from varargin in cells 3 to n
end
end
§====================================S===========S==S=S===S==SS=S===S==S==S=========
% Define Nodal Connectivity
§=====c===—==—c==c===—================================s===s======s==========s====
8 o o o o e e e e e e e e mmmme—ccecaeaa

% The size of the output matrix is equal to the number of ports in the
% assembly. This is equal to the number of rows in the join-based
% nodal connectivity table.

CellOut=cell(size(JoinCT,1)) %Define the empty output cell array

for i=1:size(CellOut,1l) $Loop over the rows
for j=1l:size(CellOut,2) %Loop over the columns
Cellout{i,j}=[0]; $%insert zero polynomials into every cell
end
end

for i=1:(size(ObjectCT, 1)) $Loop over each object (row in ObjectCT)
NumPorts=length(find (ObjectCT(i,:))); %The Number of Input Object Ports
$is equal to the number of
$Non-Zero columns in ObjectCT
for j=1:NumPorts $Loop over each row in the result
for k=1:NumPorts $Loop over each column in the result
Cellout{ObjectCT(i,j),ObjectCT (i, k)}=...

43

addpoly (CellOut {ObjectCT (i, j),ObjectCT(i,k)},DynArray{i}{j.k});
$Add the jth row, kth column from the ith object to the output
end
end
end

%********'h************************'k*****'l'********‘k*******ﬁ*********iﬁi*****t

%$* vl1.1: corrected issue with output array initialization
$* v1.0: creation version (iteration on BarJoinlD.m)
$*

%t***i****t**************************t**t*t***********i***********i*******i

$* End Of Program *
§* *
$* Last Update: 04-09-2003 *
%* *
%* v1.2: corrected array indexing problem for systems with components *
$* that have less than the maximum number of ports. *
*
*
*
*

AddDimension.m

function [Dynamic2D]=AddDimension (DynamiclD)

%*********t************t*i*'k***t**t******t**t******t*t***t*********t*tﬁ*t***

g * *
%$* Author: Drew R. Reichenbach *
G* Date: 04-04-2003 *
$* Group: i-EDA System Dynamics *
& * *
$* Function: AddDimension.m v1.0 *
* Inputs: DynamiclD - An i-EDA cell array containing the dynamics of a *
$* one dimensional bar model. *
$* Outputs: Dynamic2D - An i-EDA cell array containing the dynamics of a *
$* two dimensional bar model. *
%* *
$* Purpose: AddDimension(DynamiclD) converts a standard one *
$* dimensional bar model into a two dimensional bar model. *
% This is done by adding rows and columns on to the orginal *
$* cell array. The vector of inputs goes from [x1 x2] to *
%* [x1 y1 x2 y2]. The y-direction ports have only inertial *
* dynamics at this time. *
%* *
$* Required Matlab Functions: *
%* *
%$* NOTES: Output array should take the form: *
§* [(m/2)s”2+k 0 -k 0] *
§* [0 (m/2)s”2 0 0] *
§* [-k 0 (m/2)s"2+k 0] *
$* [0 0 0 (m/2)s*2]] *
$* *
%*********t**********t*******************i************it*t***t****ﬁt*****’k**

BarMass=[]; %The mass of the dynamic bar
Dynamic2D={}; %The output cell array

44

MassVector=[]; %The vector representing the x'' term for y-dir dynamics

BarMass=Dynamic1D{1,1}(1); $The mass is the first element stored in the
$ first cell.
MassVector=[BarMass, 0, 0]; $%Create the polynomial for inertia-only effects

g e e e e memmememeo -
% Create the output array
2
Dynamic2D=cell (4,4) ; $Create an empty output array of the proper size

for i=1:4 %loop over the rows
for j=1:4 %loop over the columns
if (i==j) %selects diagonal elements
if mod(i,2)==0 $selects even diagonals
Dynamic2D{i,j}=MassVector; %Inertia-only vector on even diag.
else
Dynamic2D{i,j}=Dynamic1D{1,1}; $%Inertia + stiffness on odd diag
end
elseif (i==1 & j==3) | (i==3 & j==1) %select -k elements
Dynamic2D{i, j}=Dynamic1D{1,2};
else
Dynamic2D{i,j}=1[0]; %Put zeros everywhere else
end
end
end

%i****iﬁtiit*i**ti*ti**ﬁi*iti*i*****t***ﬁi*ﬁ*i*tii*i*ﬁ*****i***tt**ttﬁit*ti*

$* End Of Program *
§* *
$* Last Update: 04-04-2003 *
g * *
$* v1.0: creation version *
§* *

*

%i*i***i*****t*ﬁ**t***t*i*i*******i*******i*f*ti**ﬁi***it****tﬁ**i**i*tﬁtt*
addpoly.m

function [PolyOut]=addpoly(Polyl, Poly2)

%****'ﬁ**i****i***i****t*******i*******ﬁ*ﬁ***iﬁ*i*******tti***ii*i***tttt*t**

%* *
%$* Author: Drew R. Reichenbach *
$* Date: 02-19-2003 *
$* Group: i-EDA System Dynamics *
$* *
$* Function: addpoly.m v1.0 *
$* Inputs: Polyl - The first of two polynomials in vector form. The *
§* polynomial should be in decreasing powers of x, *
§* with the largest power of x first. (cannonical form) *

45

§* Poly2 - The second of two polynomials in vector form. The *
§* polynomial should be in decreasing powers of x, *
§* with the largest power of x first. (cannonical form) *
$* Outputs: PolyOut - The polynomial obtained when the two input *
s polynomials are added togeather. The polynomial *
$* is in decreasing powers of x, with the largest *
$* power of x first. (cannonical form) *
%* *
%$* Purpose: addpoly(Polyl,Poly2) adds two single variable polynomials of *
G* unknown length. The polynomials should be stored as *
$* vectors of coefficients of decreasing powers of the *
$* independant variable. 2x+3 would be [2 3]. *
% * *
%$* Required Matlab Functions: *
* *
%* NOTES: *
$* *

*

%****************t******i**********************************ﬁ**ﬁ*****t*i****

%===
$ Declare and Initialize Variables
%===:=================
Orderl=[]; %The order of the first polynomial

Order2=[]; %The order of the second polynomial
Pad=[]; %The pad (of zeros) to adjust the length of the smaller polynomial
PolyOut=[]; %The output polynomial

Orderl=size (Polyl,2);
Order2=size(Poly2,2);

| R e

% Pad the smaller polynomial then add

R

if Orderl > Order2 %The first polynomial is larger
Pad=zeros (1, (Orderl-Order2)); %Create the Pad
Poly2=[Pad, Poly2?]; $Pad the smaller polynomial

PolyOut=Polyl+Poly2; %Add the polynomials

elseif Order2 > Orderl %$The second polynomial is larger
Pad=zeros (1, (Order2-Orderl)); %Create the Pad
Polyl=[Pad, Polyl]; $Pad the smaller polynomial
PolyOut=Polyl+Poly2; %Add the polynomials

else $%The polynomials are equal in size
PolyOut=Polyl+Poly2; %Add the polynomials

end

%**i*************i********t**ii********************t************i*i*i******i

$* End Of Program *
g+ *
%$* Last Update: 02-19-2003 b
$* *

46

%* v1.0: creation version *
§* *

%****************************t********t*************tt**********************

JoinMap.m

function ObjectConnect=JoinMap (JoinConnect)
%*************************i**********ti**i**i*i************ii***t***********

& * *
%$* Author: Clark J. Radcliffe *
g Date: 05-14-2002 *
$* Group: i-EDA System Dynamics *
%* *
%$* Function: JoinMap.m v 1.1 *
$* Inputs: JoinConnect - A Join-Centric Nodal Connectivity Table (see *
F* notes for details). *
$* Outputs: ObjectConnect - An Object-Centric Nodal Connectivity Table *
§* (see nodes for details). *
$* *
$* Purpose: JoinMap(JoinConnect) converts from the join-based nodal *
$* nodal connectivity table that is easily understood by users *
§* to the object based nodal connectivity table which is more *
§* practical for programming. *
%i *
$* Required Matlab Functions: *
%* *
$* NOTES: Join Based Nodal Connectivity Tables: *
§* A connection based nodal connectivity table has each row *
§* defining the connections. For example, the JoinConnect *
g matrix *
§* JoinConnect = [112 2 ; *
$* 1323; *
§* 1221 *
§* defines a physical system where *
$* join 1 (row 1):(component#l, port#l) & (component#2, port#2) *
§* join 2 (row 2):(component#l, port#3) & (component#2, port#3) *
B join 3 (row 3):(component#l, port#2) & (component#2, port#l) *
§* *
$* Object Based Nodal Connectivity Tables: *
§* An object based nodal connectivity table has each row *
$* correspoding to a component, and each column corresponds to an *
§* object's port. For example, the JoinConnect Matrix above *
§* would convert to the ObjectConnect Matrix *
g ObjectConnect = [1 3 2 ; *
§* 312] *
§* which is the equivalent of saying that *
§* For component #1l: portl=>joinl, port2=>join3, port3=>join2 *
§* For component #2: portl=>join3, port2=>joinl, port3=>join2 *
%t *

*

%i*****i*******i**********************it**************t**t***ﬁ******t*t****

%===
% Declare and Initialize Variables
%==:========================
MaxComp=[]; %The largest component number

MaxDOF=[] ; $The largest component port #

47

ObjectConnect=[]; %The object based nodal connectivity table

MaxComp=max (max (JoinConnect (:,1:2:size(JoinConnect,2))));
MaxDOF=max (max (JoinConnect (:,2:2:size (JoinConnect,2)))) ;

for i=1:size(JoinConnect,1) %Loop over list of connections
for j=1:(size(JoinConnect,2)/2) $Loop over ports in connection
a=(2*j)-1;
CJ=JoinConnect (i,a:a+l) ;
if CJ(1)~=0
ObjectConnect (CJ(1),CJ(2))=1i;
end
end
end

%******************i****itﬁi*ttt*i****t*t***iﬁ*ii*ii****i*i***********i*i***

$* End Of Program *
%* *
$* Last Update: 02-19-2003 *
§* *
$* v1.1: Reformatted Header and Comment Information (D.R.R) *
$* v1.0: Creation Version (C.J.R.) *
%* *
%*******'k****i******t**i*****&ttttti*ﬁ***i********t**Q*****tt****tﬁ*****tﬁ**

PostMultCell.m

function [ArrayOut]=PostMultCell (CellArray, Matrix)

%t*********i******fii*******i*t*******t*************it*it****t*t****t***t***

%t *
$* Author: Drew R. Reichenbach *
$* Date: 04-04-2003 *
%$* Group: i-EDA System Dynamics *
g * *
%$* Function: PostMultCell.m v1.0 *
> Inputs: CellArray - A NxM Cell Array of numeric values. Cell *
§* contents are l-dimensional numeric arrays. *
§* Matrix - A MxM square matrix of scalar values. *
$* Outputs: ArrayOut - A NxM Cell array that has been through the matrix *
$* multiply operation. Post-multiplication ONLY. *
%* *

48

$* Purpose: PostMultCell (Matrix, CellArray) performs the matrix *
§* post-multiplication operation on a 2-dimensional scalar *
§* matrix and a 2-dimensional cell array of 1-dimensional *
g* numeric arrays which represent polynomial coefficients. *
%* *
%* Required Matlab Functions: *
* addpoly.m - Adds polynomials of non-similar order. *
§* *
%$* NOTES: *
%* *

*

%**ti***i***********t************i*****t*************i*tt****t**i**t*t*****

N=[]; %The number of rows in the input cell array
M=[]; %The number of columns in the input cell array
templ=[]; %A temporary variable

temp2=[]; %A second temporary variable

Cellout={}; %The output cell array

tempvect=[]; %A temporary vector (one row of Matrix)

% Check matrix size, create output array

[templ, temp2]=size(Matrix);
if templ-=M | temp2-=M $Error Check Input

error ('Matrix and Cell Array Inner Dimensions do not match');
end

ArrayOut=cell (size(CellArray)); %Create output array
§ mm o o e e e e em e
% Perform Matrix Post-multiplication
& o o e e eememcmeemmme-

for i=1:N %Loop over output array rows
for j=1:M %Loop over output array columns
tempvect=(0] ;
for k=1:N $%Loop over the elements to be added
tempvect=addpoly (tempvect, (CellArray{i, k}*Matrix(k,j)));
end
ArrayOut{i,j}=tempvect;
end
end

%******t**i**f**t*i******ﬁ*****************i*ﬁ*i*i****tii******tii*ﬁ**ii****

$* End Of Program *

g+ *

49

$* Last Update: 04-04-2003
%*
$* v1.0: creation version
%*

%************t**i'k*************i***********t*'k**'ki*t**it*t***********tﬁ***t

PreMultCell.m

function [ArrayOut]=PreMultCell (Matrix, CellArray)

*
*
*
*
*

%*******i*i**i**t****'k******ii***ii*iii*'k***t**t*t**i***ii*******i**t**i*iﬁ*

%*

$* Author: Drew R. Reichenbach
$* Date: 04-04-2003

$* Group: i-EDA System Dynamics
%*

$* Function: PreMultCell.m v1.0

$* Inputs: Matrix - A NxN square matrix of scalar values.

*
*
*
*
*
*
*
$* CellArray - A NxM Cell Array of numeric values. *
$* contents are l-dimensional numeric arrays. *
$* Outputs: ArrayOut - A NxM Cell array that has been through the matrix *
§* multiply operation. Pre-multiplication ONLY. *
5* *
¥* Purpose: PreMultCell (Matrix, CellArray) performs the matrix *
§* pre-multiplication operation on a 2-dimensional scalar *
§* matrix and a 2-dimensional cell array of 1l-dimensional *
$* numeric arrays which represent polynomial coefficients. *
%t *
$* Required Matlab Functions: *
G* addpoly.m - Adds polynomials of non-similar order. *
%* *
%* NOTES: *
%* *
*

%*************t*i****ﬁ**t******if*****t******tﬁi***t****i*t***********ti***

N=[]; %The number of rows in the input cell array
M=[]; $%The number of columns in the input cell array
templ=[]; %A temporary variable

temp2=[]; %A second temporary variable

CellOut={}; $%The output cell array

tempvect=[]; %A temporary vector (one row of Matrix)

% Check matrix size, create output array

[templ, temp2]=size(Matrix);
if templ~=N | temp2~=N $%Error Check Input

error ('Matrix and Cell Array Inner Dimensions do not match');
end

ArrayOut=cell (size(CellArray)); %Create output array
§ m m m e o o oo o e e o e e e e e emmmmcmceeeo-

% Perform Matrix Pre-multiplication
g

for i=1:N $%Loop over output array rows
for j=1:M %Loop over output array columns
tempvect=[0] ;
for k=1:N %Loop over the elements to be added
tempvect=addpoly (tempvect, (Matrix(i,k)*CellArray{k,j}));
end
ArrayOut{i,j}=tempvect;
end
end

%**********i**********tti******i**ii*t'ﬁt*t***i***************it****i**i***t*

$* End Of Program *
$* *
$* Last Update: 04-04-2003 *
%* *
$* v1.0: creation version *
%t *

*

%*'k****************************i******ti************i*iiit*******t*t****i*i

RotateDynamicBar.m

function [RotatedBar]=RotateDynamicBar (Bar, Sine, Cosine)
%**i********t***************tii*ti*i*iﬁ***t'k******i*ﬁ**ﬁ*********t*********i

%* *
%$* Author: Drew R. Reichenbach b
§* Date: 04-04-2003 *
$* Group: i-EDA System Dynamics *
%* *
$* Function: RotateDynamicBar.m vl.1 *
g * Inputs: Bar - A Cell array containing the vectors of polynomial *
§* coefficients that make up a two dimensional i-EDA *
$* dynamic bar model. *
$ Sine - A floating point value that represents the sine of the *
$* angle to which the bar must be rotated. *
§* Cosine - A floating point value that represents the cosine of *
§* angle to which the bar must be rotated. *
$* Outputs: RotatedBar - A Cell array containing the vectors of *
§* polynomial coefficients that make up a two *
$* dimensional i-EDA dynamic bar model after it *
$* has been rotated. *
$* *
$* Purpose: RotateDynamicBar (args) uses the directional sine and cosine *
§* to rotate the model of a dynamic bar so that it can be used *
$* in either a dynamic truss or a dynamic span. *
%* *

*

%$* Required Matlab Functions:

51

E* PreMultCell.m - Performs the matrix pre-multiply operation *
> with a NxN numeric matrix and a NxM cell array of numeric *
* vectors. *
&> PostMultCell.m - Performs the matrix post-multiply operation *
$* with a NxM cell array of numeric vectors and a MxM numeric *
g+ matrix. *
g * *
%$* NOTES: *
&> *

*

%****i*********************************t*******i************i**************

% Declare and Initialize Variables
§==z===========z==z=====z=z====
T=[]; %The rotational matrix, T

HalfRot={}; %The half rotated cell array (pre multiplied by T')

M=[]; %The Number of rows in the input cell array

N=[]; %The Number of columns in the input cell array

DirtyVect=[]; %The vector which may have leading zeros

CleanVect=[]; %The vector which does not have leading zeros

%===
% Main Program
%=======================:===================‘_‘===============================
% ___
% Define the Two Dimensional rotation matrix, T
% ___
T=[Cosine Sine 0 0 ;
-1*Sine Cosine 0 0 :

0 0 Cosine Sine ;

0 0 -1*Sine Cosine];
% __

% To rotate the dynamics, use T'*R*T
% Done in two steps: Pre-multiply by T'
% then Post-multiply by T

tperform the first part of the rotation
HalfRot=PreMultCell(T', Bar);

%perform the second part of the rotation
RotatedBar=PostMultCell (HalfRot,T) ;

[M,N] =size (RotatedBar); %determine the size of the array

for i=1:M $%Loop over the rows
for j=1:N $Loop over the columns
DirtyVect=RotatedBar{i,j};
if isempty(find(DirtyVect)) %If the vector has no Non-Zero entries
CleanVect=[0]; %Store a single zero

52

else %Otherwise
CleanVect=DirtyVect (min(find (DirtyVect)) :length(DirtyVect));
%$Store the input vector from the first non-zero entry to
% the last element in the vector

end

RotatedBar{i,j}=CleanVect; %Put the cleaned vector back in the cell

end
end

%*******************************t*******i**tti**************************it*#

%* End Of Program *
g * *
%$* Last Update: 04-09-2003 *
$* *
$* vl1.1l: Added code to remove leading zeros from entries that only *
% stiffnesses, but were padded due to the matrix multiply *
$* operation. *
¥* v1.0: creation version *
§* *

*

%***********ﬁ*****i**********************************t*********************

cell2str.m

function [StrOut] = cell2str(Cellln)

%*********f**#***********i**t*******i********t****t*****i**********i*i******

§* *
%$* Author: Drew R. Reichenbach *
§* Date: 11-24-2002 *
$* Group: i-EDA System Dynamics *
§* *
%* Function: cell2str.m vl1.1 *
§* Inputs: Cellln - A cell array of unknown size that is to be converted *
$* Outputs: StrOut - A single string which can be reconverted to a cell *
§* array with the command str2num *
%* *
%¥* DPurpose: cell2str(CellIn) takes a cell array of unknown size (2D only) *
G* and converts it into a string. The string includes all *
S of the required brackets to be easily reconverted into a *
§* cell array using the str2num() function. *
$* *
%* Required Matlab Functions: *
$* size() - finds the n-dimensional size of the input args. *
$* sprintf (format,arg) - converts arg into a string array using *
B the format string. *
§* *
%$* NOTES: cell2str was designed to produce an output string properly *
$* formatted for use within the i-EDA Dynamic System *
$* models. The formatting can be adjusted by changing *
$* format string, according to the information found in *
$* the Matlab help file for sprintf.m *
§* *
%******i*i**i***i**************i********************t***ﬁ********t**********

%==:=============:::========
% Declare and Initialize Variables

i= []; $Row Dimension Counter

j = [(1; $Column Dimension Counter

format = ['SE ']; $Format the output string to have Exponential Notation
StrOut = []; $The Output String (begins empty)

CellRow = []; %$The Number of rows in the Cell Array

CellCol = []; $The Number of columns in the Cell Array
§===
% Main Program
§===z=T=Z=ZZ=======
& e o e e e e

% Determine the size of the input cell array

o e e o oo e mmao o

[CellRow, CellCol] = size(Cellln);

f-mmmc e e e e e e e e mm e e e e m— .- -
$ Create the output string by looping through each cell
| T T P A
strout = ['{']; $Begin the string with the cell array curly brace
for i=1:CellRow $Loop Through the Array Rows
for j=1:CellCol $Loop Through the Array Columns
StrOut=[Strout,' [',sprintf(format,CellIn{i,j}),'] 'I;
%$Append the contents of the (i,j)th cell to the string
end
StrOut=[StrOut,' ; ']; $End the ith row with a semi-colon
end

StrOut=[Strout,' }']; %Close the string with the cell array curly brace

%i****************i*******ﬁ**********t*************ii**********ﬁ*ﬁ****ﬁ*ii**

%$* End Of Program *
%* *
%$* Last Update: 12-05-2002 *
%* *
$* vl.1: added a space to the format string to correct format error *
$* v1.0: creation version *
§* ' *

*

%k***t'k********i**t**t*******************************i*****ttt***i**ti****i

SolveDynamics.m

function [Solution,TimeVector,lamda]=SolveDynamics (SYSAscii, InputDOF,
OutputDOF, FixedDOF, ITypeAscii, IValue,dt,Tsim)

%*****ﬁ****************ﬁ*t*******t**t**********************'h**************i*

§* *
$* Author: Drew R. Reichenbach *
S+ Date: 04/11/2003 *
$* Group: i-EDA System Dynamics *
3 *
$* Function: Solvedynamics.m v1.0 *
$* Inputs: SYSAscii - A Vector of ASCII character codes that contain *
$* the dynamics for the system being solved. *
§* InputDOF - A double precicion value that specifies which DOF *
§* will have the input applied to it *
§* OutputDOF - A double precision value that specifies which DOF *
$* the output will be recorded for. *

54

§* FixedDOF - A vector of integer vauses that specify which DOF +
i d are going to be fixed (Boundary Conditions) *
$* ITypeAscii - An Optional input equal to: A vector of ASCII *
$* character codes that convert to a string to *
t* specify what type of input is being applied. *
$* Current Options are: Impulse and Step. Default *
$* value is step. *
§* IValue - An optional input equal to a vector of applied input *
F* magnitudes. Default value is unity. *
$* dt - The time step for running the simulation. *
§* Tsim - The final simulation time. *
$* Outputs: Solution - A Nx1 vector of double precicion values that are *
$* the result of system simulation. *
$* TimeVector - A Nx1 vector of double precision values that are *
¥ the time at which each Solution entry occurs. *
§* EigV - A complex vector containing the eigenvalues for the *
* constrained system. *
$* *
$* Purpose: SolveDynamics(args) solves the i-EDA dynamics problem. *
* Inputs are applied at a specified location and outputs *
$* are measured at the specified location. Boundary *
$* conditions are applied before inverting the system. *
%t *
$* Required Matlab Functions: *
E* CellArrayDet.m - Determinant of a cell array. Recursive. *
$* CellArrayAdjoint.m - Adjoint of a cell array. *
§* ApplyBoundaryCond.m - Applies fixed boundary conditions *
%* *
$* NOTES: Simulation times are user specified, because eigenvalue *
§* analysis was not working properly. *
%* *

*

%***it*i**i***it****i*******i******i**tt***i**i**t'ﬁ*it****i*ii*i**ittt***t*

SySunConst={}; %The input system in cell array form

SYS={}; $%The constrained system

IType=[]; %A String that represents the type of input to apply to SYS
idof=[]; %The vector of inputs adjusted to fit the constrained system
odof=[]; %The vector of outputs adjusted to fit the constrained system
NUM={}; %A Cell array of Transfer Function Numerator Polynomials
CharPoly=[]; %The system characteristic polynomial

DEN={}; %A Cell array of Transfer Function Denominator Polynomials
TFSYS=[]; %A TF object (LTI OBJECT) for the constrained system
lamda=[]; %The constrained system eigenvalues

sigma=[]); %The real part of the eigenvalues

omega=[]; %The imaginary part of the eigenvalues

TimeVector=[]; %The simulation time vector

U=[); %A matrix of forcing functions for LSIM

Y=(]}; %A full fledged output matrix from LSIM

Solution=[]; %The parsed output vector.

if nargin < 5

ITypeAscii=double(['Step']); %Default Value for IType is Step response
end
if nargin < 6

for i=1:length (InputDOF)

IValue(i)=1; %Default value for IValue is unity

end

end

SYSunConst=eval (char (SYSAscii)); %convert the input system to a cell array
IType=char (ITypeAscii); %Convert the input type to a string

if nargin < 4
error ('Not Enough Input Arguments!');

elseif size(SYSunConst,1)~=size(SYSunConst, 2)
error ('Input System Is Not Square');

elseif size(SYSunConst,1l) <= length (FixedDOF)
error ('The system has no unconstrained DOF');

end

§ o o o o o e
% Invert the system into Y=G(s)*U form
Y
switch size(SYS,1)
case 1
$After constraint, the system is SISO
NUM=[1] ;
DEN=SYS{1,1};
otherwise
$After constraint, the system is MIMO
NUM=CellArrayAdjoint (SYS) ;
CharPoly=CellArrayDet (SYS) ;
$Fill the DEN cell array with the Determinant
DEN=cell (size (NUM)) ;
for i=1l:size(NUM, 1)
for j=1:size(NUM, 2)
DEN{i, j}=CharPoly;
end
end
end
§ m m e e e e e o e e o e e e e mmee oo

% Create the Transfer Function for the system

clear i $clear i for use as the imaginary operator
lamda=eig (TFSYS)'; %find the eigenvalues

dt

Tsim

%Calculate Simulation Time
TimeVector=0:dt:Tsim;

G e o e e e e emcmmmem e
% Prepare U(t), the LSIM input vector
§ e e e e e — e
U=zeros (length(TimeVector),bsize(SYS,1)); %initialize the forcing function

$insert the forcing values (from IValue)
for i=1:length(idof) %loop over the input degrees of freedom
switch IType
case 'Step'
U(:,idof (i))=IValue(i); %create a step input on the idof(i)th input

case 'Impulse'
U(1l,idof (i))=IValue(i); %create an impulse input on the idof(i)th

$input
otherwise
error (['Input Type ', IType,' is not defined'])

end
end
§ e m e
% Run the Simulation
S

Solution=zeros (length(TimeVector), length(odof)) ;
$initialize the output vector to be TxODOF

for i=1:1length (odof)
Solution(:,1)=Y(:,odof (1)) ;

end

Solution=Solution';

%**ﬁi*i********************************'k*****'k**t*t****************iit******

t* End Of Program *
g* *
%¥* Last Update: 04-11-2003 *
§* *
%* v1.0: creation version *
g* *

57

E

%*****i********************************t********************ﬁ******i*******ﬁ

ApplyBoundaryCond.m

function

[SYSOut, Input DOFOut , Output DOFOut] =ApplyBoundaryCond (SYS, InputDOF, OutputDOF, Fixe
dDOF)
%**************'k**********i******************t*******t****i*t*t*************
$*

%$* Author: Drew R. Reichenbach

%* Date: 04-12-2003

%$* Group: i-EDA System Dynamics

& *

$* Function: ApplyBoundaryCond.m v1.0

$* Inputs: SYS - A NxN Cell Array of vectors. Each Vector contains the
$* coefficients to a polynomial in terms of s that

$* represents the system dynamics from the i-th output to
§* the j-th input. R(s), inverse of TF, G(s).

§* InputDOF - A vector of integers that list the DOF to which an
$* input is going to be applied.

§* OutputDOF - A vector of integers that lists the DOF at which
§* the output is going to be measured.

$* FixedDOF - A vector of integers that lists the DOF at which a
$* fixed boundary condition (output==0) is going to
§* be applied.

$* Outputs: SYSOut - A MxM Cell Array of vectors obtained by removing the
$* rows and columns for the DOF that are fixed.

g* InputDOFOut - A vector of integers that list the DOF of the
E* constrained system (SYSOut) to which an input
§* is going to be applied.

§* OutputDOFOut - A vector of integers that lists the DOF of the
g constrained system (SYSOut) at which the

§* output is going to be measured.

$*

%¥* DPurpose: ApplyBoundaryCond(args) performs several tasks related to the
E* related to the application of the fixed boundary condition
§* to a model written in the i-EDA cannonical form. First, the
§* function removes the rows and columns of the R(s) array that
$* correspond to the DOF which are being fixed. Then, the

$* vectors that correspond to the input and output DOF are

$* adjusted to be in terms of the DOF of the output constrained
$* system.

§*

$* Required Matlab Functions:

$*

%* NOTES:

&*

*

*

»

* % % % * % * * * % * ¥ * * * A * * ¥ % % * * * * % ¥ ¥ * * * * ¥ * %

%*********************i*******************ﬁ******i******t***t*t********t**t*

N=[]; %The size of the unconstrained system
RemainDOF=[]; %The DOF remaining after boundary conditions are applied
trash=[]; %A variable for storing data that does not need to be used

58

if size(SYS,1)~=size(SYS,2)
$if the number of rows and columns are not the same
$the input system is not square, and cannot be solved.
error ('Input System Array is not square')
elseif size(SYS,1) < length(FixedDOF)+length (InputDOF)
$if the number of DOF in the input system is less
$than the number of DOF to be fixed and the number of inputs applied
$then the system cannot be solved (no inputs).
error ('No Unconstrained DOF Remain. Decrease the number of Fixed DOF');
end

N=size (SYS,1); %find the size of the unconstrained system
RemainDOF=(1:N); $%Before BC application, all DOF are present

for i=1:length(FixedDOF) %loop over the elements of the FixedDOF vector
RemainDOF (FixedDOF (i))=0; %put a zero in place of the fixed DOF
end

§ o o e e e e e e e e e e e e e e mccmcmeeeoo
% Remove the FixedDOF rows and columns from SYS

§ mm e e e e e e e e e e e e e m e mmmemmmmmmm—m— o

M=length (RemainDOF); %find the size of the constrained array
SYSOut=cell (M, M); $initialize the constrained array

for i=1:M $%loop over output array rows
I=RemainDOF (i) ; %relate the output and input array rows
for j=1:M $%loop over output array columns
J=RemainDOF(j); %relate the output and input array columns
$fill the constrained array cell by cell.
SyYsout{i,j}=SYS{I,J}; %build the output array
end
end

% Adjust the Input DOF matrix to account for the missing DOF
% Adjust the Output DOF matrix to accound for the missing DOF

InputDOFOut=InputDOF; %$Initialize InputDOFOut
OutputDOFOut=OutputDOF; %Initialize OutputDOFOut

59

for i=1:length (FixedDOF)
$Adjust Input DOF
for j=1:length(InputDOF)
if FixedDOF (i) < InputDOF(j)
InputDOFOut (j) =InputDOFOut (j)-1;
end
end

$Adjust Output DOF
for k=1:length(OutputDOF)
if FixedDOF (i) < OutputDOF (k)
OutputDOFOut (k) =OutputDOFOut (k) -1;
end
end
end

%ii********'k************************i*ittti***i*iﬁ*i**t*t***t*********i*****

$* End Of Program *
§* *
$* Last Update: 04-12-2003 *
§* *
$* v1.0: creation version *
§* *

*

%***********i*t*iiﬁ*i***t***i*************t**ﬁ**ﬁ*ii***tti*itt***titﬁ*ttitt

CellArrayAdjoint.m

function [CellAdjoOut]=CellArrayAdjoint (InputArray)
%***i**************i'kt**i*t**t***ti**ii***'k***'ﬁi*ﬁ*f********tt*i**ﬁ*i&t*i*f*
$*

%* Author: Drew R. Reichenbach

$* Date: 04/11/2003

$* Group: i-EDA System Dynamics

§*

%$* Function: CellArrayAdjoint.m v1.0

$* Inputs: InputArray - A Cell Array of numeric vectors. Each vector

$* contains the coeficients of polynomials in
§* decreasing order.

$* Outputs: CellDet - A Cell Array containing the Adjoint of the Input
$* Cell Array. Each entry is a vector containing
§* the coeficients of polynomials in decreasing
$* order.

g *

%$* Purpose: CellArrayAdjoint (args) takes the Adjoint of an input cell
$* array. The Adjoint definition used is the transpose of the
G+ matrix of cofactors. (see notes for ref).

§*

%* Required Matlab Functions:

$* CellArrayDet.m - Determinant of a cell array. Recursive.

$*

%* NOTES: Adjoint definition taken from:
2 Phillips, Charles L. and Harbor, Royce D., 2000, "Feedback Control

* % o * % * * * % ¥ * % * * % ¥ * * * * % * * * ¥ *»

§* Systems", Fourth Edition, Prentice Hall, Upper Saddle River, NJ.
* Pg. 630.
%*

60

%***********i*********ﬁ****t***********i*****t***************t*********i****

M=[]; $%Number of rows in the input array
N=[]); %Number of columns in the input array
Minor={}; %The minor array

m=[]; %The size of the minor array

S
% Error Check the Input
§ o e e e cmmcccemeees
if M~=N
error ('Input Array Must Be Square');
end
S
% Take The Adjoint
fmmmmmmmmm—mm—————

CellAadjOut=cell(M,M); %Initialize the output array

for I=1:M %Loop over the input array rows
for J=1:M $%Loop over the input array columns

m=M-1; %Define the size of the minor
Minor=cell (m,m); %Initialize the minor

P
% Each entry must be put into the minor
% one by one, because they are cells

o o e e ccemceoo-

for i=1:m %Loop over the minor rows
for j=1:m %$Loop over the minor columns

% The row and column being removed from the
% input matrix to form the minor determines
% how the indexing to form the minor must go

ifI==1&J==
$The First Row and the First Column is removed
Minor{i,j}=InputArray{i+1,j+1};

elseif I == 1 & J == M

$The First Row and the Last Column is removed
Minor{i, j}=InputArray{i+1,j};

61

elseif I == 1 & J >1 & J < M

$The First Row and the Middle Columns are removed

if j < J
$The Columns to the left of the removed column
Minor{i,j}=InputArray{i+1,j};

elseif j >=J
$The Columns to the right of the removed column
Minor({i,j}=InputArray{i+1,j+1};

else
error('I==1, J~=(1|M) Minor Failure');

end

elseif I == M & J ==
%The Last Row and The First Column is removed
Minor{i,j}=InputArray{i,j+1};

elseif I == M & J == M
$The Last Row and The Last Column is removed
Minor{i,j}=InputArray{i,j};

elseif I ==M&J >1&J <M

%$The Last Row and the Middle Columns are removed

if j < J
$The Columns to the left of the removed column
Minor{i, j}=InputArray{i,j};

elseif j >= 4
$The columns to the right of the removed column
Minor{i,j}=InputArray{i,j+1};

else
error ('I==M, J~(1|M) Minor Failure');

end

elseif I >1 &I <M&J ==
$The Middle Rows and the First Column are removed
if i <1I
$The rows above the removed row
Minor{i,j}=InputArray{i,j+1};
elseif i >=1
$The rows below the removed row
Minor{i,j}=InputArray{i+l,j+1};
else
error('I~=(1|M), J==1 Minor Failure');
end

elseif I >1 &I <Mg&J ==
$The Middle Rows and the Last Column are removed
if 1 <1
$The Rows above the removed row
Minor{i, j}=InputArray{i,j};
elseif i1 >=1
$The rows below the removed row
Minor{i,j}=InputArray{i+1,j}
else
error('I~=(1|M), J==M Minor Failure');
end

elseif I >1 &I «<M&J >16&J <M

62

%$The Middle Rows and the Middle Columns are removed

% This entry goes quadrant by quadrant. The
% quadrants are defined as:

$

$ e

% | Q1 | Q2 |
- J R s R-----

3 | @3 | o4 |
& e

% where R is the removed entry

ifi<I&j<d
$The entries in Quadrant 1
Minor({i,j}=InputArray{i,j};
elseif 1 < I & j >=J
$The entries in Quadrant 2
Minor{i,j}=InputArray{i,j+1};
elseif 1 >= 1 & j < d
$The entries in Quadrant 3
Minor{i,j}=InputArray{i+1,j};
elseif 1 >= 1 & j >=J
$The entries in Quadrant 4
Minor{i,j}=InputArray{i+1,j+1};

else
error('I~=(1|M), J~=(1|M) Minor Failure');
end
else
error ('Minor Indexing Failure. Case does not exist.');
end

$This is the End of the indexing into the minor array
end
end

$REM this used to state that the cofactor required convolution
% that statement was false. (see Phillips & Harbor)

$ The Adjoint is the transpose of the cofactors, therefore
% the I,Jth cofactor goes in the J,Ith position in the
% adjoint output array

CellAdjout{J, I}=Cofactor;
end

63

end

%**********************************t******'k**********ﬁ**t*t*********itt*****

$* End Of Program

e
$* Last Update: 04-11-2003
%*
$* v1.0: creation version
%t

%*i********i**i*ﬁ********************i***i****************ﬁ*********it*****

CellArrayDet.m

function [CellDetOut]=CellArrayDet (InputArray)

*
*
*
*
*
*
*

%*******ﬁ********i********************t****t*******************t************

%*

%* Author: Drew R. Reichenbach
§* Date: 04/11/2003

$* Group: i-EDA System Dynamics
L *x

$* Function: CellArrayDet.m v2.1

> Inputs: InputArray - A Cell Array of numeric vectors. Each vector

F* contains the coeficients of polynomials in
$* decreasing order.

%$* Outputs: CellDet - A vector containing the coerficients of the

$* characteristic polynomial for the input array.
§*

%$* Purpose: CellArrayDet (args) takes the determinant of a cell array of
* unspecified size. This function is recursive, so large
* input arrays could take a while to solve.

§*

%$* Required Matlab Functions:

F* addpoly.m - adds vectors (polynomials) of dissimilar length
%*

%$* NOTES: This function is recursive in nature. This means that large
$* input arrays could take some time to solve.

$* A 7x7 determinant solves in less than a second. 2521 calls
G+ A 10x10 determinant requires over 2 minutes. 1814401 calls

&>

%*t*************************t**‘h*t****i***************t******i*************

M=[]; %Number of rows in the input array

N=[]; %Number of columns in the input array
CellDet=[]; %Output Vector (perhaps with leading zeros)
Minor={}; %The minor array

m=[); %The size of the minor array

CellDetOut=[]; %Output Vector (no leading zeros)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

if M~-=N

end

switch M %Chose the determinant method based on the input array size
case 1 %For a 1x1 input array
CellDet=InputArray{1l,1}; %the determinant is the cell contents
case 2 %For a 2x2 input array
CellDet=addpoly (conv (InputArray{1l,1}, InputArray{2,2}),...
(-1) *conv (InputArray{2,1}, InputArray{1,2}));
$Take the determinant by hand
$Note: The 2x2 case is done by hand to improve computational speed
$ And to reduce the number of recursive function calls.
otherwise %For 3x3 to MxM arrays

CellDet=[0]; $%Initialize the Output

for J=1:M %Loop along the first row of the input array
m=M-1; %The size of the minor array is M-1xM-1
Minor=cell (m,m); %Create the Minor Array

for i=1:m %$Loop along the rows of the minor array
for j=1:m %$Loop along the columns of the minor array
switch J %Minor entry selection based on column removed
case 1 $First column removed
Minor{i,j}=InputArray{i+1l,j+1};
case M %Last column removed
Minor({i,j}=InputArray{i+l,j};
otherwise %Remaining columns
if j <= J-1 %$for the first half
Minor{i,j}=InputArray{i+1,j};
elseif j >= J %$for the second half
Minor({i,j}=InputArray{i+l,j+1};
else
error ('The Minor Filling Function Failed');
end
end

% Take the Determinant as the sum of the product of the entry
$ and its cofactor (signed minor)

65

CofactorProd=conv (InputArray{1,J}, ((-1) *(1+J)) *CellArrayDet (Minor)) ;
CellDet=addpoly(CellDet, CofactorProd) ;
end
end

if isempty(find(CellDet)) $%No Non-Zero Entries
CellDetOut=[0]; %Output a single zero

else
CellDetOut=CellDet (min(find(CellDet)) :length(CellDet));
%$Output the input vector from the first non-zero entry to
$ The last element in the vector

end

%****t****************t*********i***i************i******ﬁ*****t*****iﬁt***t*

¥* End Of Program *
* *
$* Last Update: 04-11-2003 *
* *
$* v2.1l: Added code to strip leading zeros from output vector *
%$* v2.0: wupdated to handle cell arrays of vectors. *
$* v1.0: creation version (replication of matrix determinant) *
* *

*

%*******iﬁ'ﬁ****t************ttt******t*********i*i*f*****i**i********t*****

66

Appendix C Dynamic Response Client Documentation

IEDADynamicsWebClient.vi

IEDADynamicsWebClient.vi is an interface for the i-EDA system. The program sends the
dynamics query to the specified agent, and retrieves the dynamic stiffness matrix as a response.
The client then applies boundary conditions, inverts to find the transfer function, and solves for
the time response. Most of the computation is performed using Matlab.

Connector Pane

Dyn
Chent:

67

Front Panel

“(2# 40Q) pu3 ony uo
N0 pue o4 ‘paxly 2 pu3 3421 1eg

@07 324

(s) suny

L 0+300°0+ 04+300°0
N.uo.oo.m N.u&uo.n N.un"Oo,o N.uﬁ“_u_u,m 2-3000'¢ 2-3000'€ 2-3000'Z 2Z-3000°'1
| | | |

L3000+ D+300°0
1043000+ 0

00'D

{D+300°0+ 0+30

(w) uondayeq

LH300°0F O3
1€432€" 1+ Z+3€€" [-

| €+32€°1- 2+3¢€ "1~

D om-_onmow_ slueuiqg

asuodsay awn]

sjuaby ubisaq Hulsaaulbul Joulaiur

68

Controls and Indicators

Agent

Go Button

{27y Force (N)

Time Step (s)

Simulation Lenth (s)

Structural Boundary Conditions & Force Location
Retrieving Stiffness

Computing Deflection

Select Agent

Time Response

Simulation Type

= .
kst EigenValues

e

Numeric

69

Block Diagram

,:L.ﬂjJ
Toooooouod« b0lb My omeT

4« 17011 Pk

70

ol EHE RN e NsNsgaRegs ol nddd.ﬂ.ﬁu'ndd

/ SR e Ep A puk Jualy LUipkad Al =

Dnn_n:udu_unnnuuﬂunuunnunun,n_m J§5

I FI T F -“,&.\-‘y SageXealinse

yededeeinyeie sugeninia

J[sbuns,, b._on_o_a [043U0D Adand)
ay) buisn juabe ABojoJuO Asanb ayy wouy sauanb pie
4O 351} @ Y3Im |043U00 J03IB¢RS , AdanD), 8Y) dn $33s SIy

[Isburas
i — i

s

J[Jsburizs,

Ajiado.d |043u0D Juaby ayy
buisn juabe Ansibay ayy woij
sjuabe pyeA Jo 3s)| e y3im [043u0
10339p95 Juaby, ayj dn s3as sy

71

NeXafeRefeleeReReiaGefetnioynfeZaaKaHa 2_ggng-gz-g-a‘-g-g-g-g-%-x&-g-y-g-g-;g-‘ﬁ-g‘;-%

.4 §

s 307

Wait for Go button Push]

P e AKA

l§i§i§'.§-5-“;"-xnm:-z{iﬁiﬁ.ﬁ-%-!lg{l‘

; | [After Go... %
! Zero Time Response Display i N
i [Zero EigenValues e
EigenValues|
‘ 0= D
Belect Agent| bk £
£]- PTE]
Time Resgonsel .
[- 0] L
= 5]

2N N A XRARRNONS: - 7007 K0T NN L0 YA HN O

2
g
¥
¢

SOk PN

finuwgagagesnk

foXeFokofeSe

%
%
%
1)
>
£
K3
3
H
3
H
3
b
b4
i
¥
%
§
i
%
®

lﬁnﬁnglgn§l§§n§€'n§g.§§.§.§l§-§l§Q-Q-ﬂlﬁnﬁl&ij

ry 1[0.4] ~
Dynamics
TCP/IP Address| i
S 3 CPIIP Address| [tring | trip off the units
2 b DATA aer 5
.2 CLIENT
int
-~ Send Dynamics Query and
s Recieve Dynamics String

+ O
@b@enu brnavics
E‘e‘:t Retrieving

nt_| Biffness :
[
Py alue E@]

: Structure Type
7 ¥ Selector

L4

btiffness Matrix Retrieval Done|

etrieving Stiffness|
0
P alue @J,

[
!
|
|
]

AR

Select the proper input depending on
the simulation type

Simulation Type

(132§

73

A

Select the proper input depending on

the simulation type

grTEEE—_" - ‘emrm——

jegingagaagngugagayangningeagefeynzagatnfntinsagegogaafutngafagaioBangafngaRanGuRaiugafal

List of

o

IFTR

int

ere] Dynamics String]=+

i=1—DBL) [Simulation
Type

0T | T
[Compute Deflection H

0, Default ¥ ime Step (s, I
fi ;= 3
[Set 170 and Boundary YT [I - ==SMATLAB Script
[Conditions k- ;
E B %Set the path =,
TET ’
d .1, path(path,'C:\server files\2-20-2003 i- gt
[Output Location] pathipath, G
foutput Location W EDA_Files\-EDA Source Files\Matiab Code)
@ ~ %Run the function 4 gkl
| (50, Time, Eigal}=SolveDynamics(5YS, idof,

. odof fdof, IType, Ival, dt, Tsim)

[¢]
HeHeHsNeNsReRsHoHsReReNeRsNoReReNsReHeReRsReHoReRsNoRsReNeHoRsReNaReReReHeRaNsReNHeRsReRshs

1 v i - P
Set 1O and Boundary Set 1/0 and Boundary
[Conditions (Conditions
Bz
[Output Location
!

List of SubVis
@ Beep.vi

C:\Program Files\National Instruments\LabVIEW 6.1\vi.lib\Platform\system.llb\Beep.vi

InternalClient.vi

C:\server files\2-20-2003 i-EDA_Files\i-EDA Source Files\IEDAUtilities.lIb\InternalClient.vi

74

History
"IEDADy

|
Current |

Position

History
“IEDADynamicsWebClient.vi History"
Current Revision: 156

Position in Hierarchy

o [

75

identi
mode
mode!
modu
equat

transf

and t

wher

and

Appendix D Failed Methods for Joining Dynamic System Models

Modular Dynamic System Representation

One of the primary goals of a modular model is for each model to have an
identical input-output topology; both in the model and in the equations that constitute the
model. This allows models (and equations) to be combined with ease; requiring no
model reformulation before it can be combined into a larger model. The equation
modularity also provides system anonymity, as composite systems will have the same
equation representation as a smaller, component level system. Beginning with the

transfer function representation of the state space system

Y(s) CTadjlsI-AJB

U(s) |sT-A| +D M

and then rearranging and substituting to get the form

G(s)Y(s)=H(s)U(s) (2)
where
G(s)={det[sI - A]}i (3)
and
H(s) = {C adj[sI - A]B + (det[sI - A])D} (4)

Assuming an elegant solution that uses this form can be found, finding the adjoint and the
determinant of the system matrices need only happen at the most simplistic (component)

level of the model.

76

conng

whero

and

This 4

Wil] la

Combining Modular Dynamic Systems

Combining modular dynamic systems stored in the form of (2), a modular
connector, or “Join” is required. These Join elements constrain the inputs and outputs at
the connected ports with zero power flow. Before the modular joint can be applied, some
manipulation of the system must take place.

Beginning with the form:

G(s)Y(s)=H(s)U(s) (5)
where
G(s)=D(s)L,, (6)
Y(s)=Y(s), (7)
H(s)=[C adj(sI - A)B + det(sI - A)D] _ 8)
and
U(s)=U(s),., 9

This arranges the transfer functions into a system of n equations. In this system, there
are going to be external input-output pairs that are only affected by the system, and by
boundary conditions. The system will also contain a number of internal input-output
pairs that are affected by the original system and by the system being joined to it. A
generic system, having » input-output pairs, with m internal input-output pairs, will
have a total of p = (n—m) external input-output pairs. The i equation for that system

will take the form

iginj + igikwk =ihijUj + ihikvk (10)
Jj=1

k=p+] j=i k=p+l

77

where
and

m in

If the
equa
now

20K

cons
con
SVt

Syt

The

a n

fOr

where Y, is the external outputs, W, are the internal outputs, U ; are the external inputs,
and V, are the internal inputs. The i" equation for a second system of / equations, with

m internal input-output pairs, and g = (I —m) external input-output pairs would be

ZgUYI-i— Zg‘W Xhu +ZhV (11)

k=q+1 k=g+1
If the systems being joined are both considered in this fashion, there will be n+1 total
equations in the composite system, before the constraints are applied. The systems can
now be joined in the modular modeling fashion. [Byam, 1999; Byam and Radcliffe,
2000]. According to the modular modeling philosophy, the constraints on the system (in
the form of the modular modeling connector, or join) are now applied. Joins apply two
constraints that connect modular subsystems into modular composite systems while
conserving power. Consider the effects of a single join operation on the composite
system. The join will connect the a™ port on the first system to the b™ port on the second

system. The i equation of each system can now be written as

a-|

Zgl.ijyl.j +8.W.t ng 1. ZhluUlj +h Vit Zhl.ikUl.k (12a)
j=1 k

L =a+] k=a+l

b-1

D 82iYe; +8:2W +ng - Zh,UY +h, ,V,, + Zh WU, (12b)

=1 k=b+l1 k=b+1

.

The first constraint forces the subsystem internal outputs to have equal values and creates
a new external output. This constraint is written as

W, =W, =Y, (13)

for the composite system. This allows us to write the composite system as

a-1 n
Zgl.ljyl.j +81iaYac t Zgl.ikYIL ZhluUlj +h V. + th Lk (14a)

j=1 k=a+1 k=a+1

78

whid
cons
new

as

rer

eq1

bh-1 1 b-1 !
ZS:.U YZ.j +8aYs T Zgl.ik Y,, = ZhZ.inZ.j +hy, Vi, + Zhl.ikvl.k (14b)
J=1 j=1

k=b+l k=b+l
which is in terms of only external outputs. The second join constraint is a net power
constraint. This constraint conserves the power output from each subsystem and from the
newly created external input-output pair (provided by the join). This constraint is written
as

V.W, +V2.jwz.j =U,, Y, (15)
for the composite system. From (13) it is known that the internal outputs W, and W, ,

are forced to equal the newly created external output. Combining this with the power
conservation of (15), and canceling the output terms gives

Vi, + V:.,/ =U,, (16)
which is the second constraint equation. This constraint equation requires the linear

combination of the equations representing each of the original systems. For the

combination of two systems, of n and / equations respectively, there are a total of n(/)

possible combinations. However, of those combinations, only (1 +/)—1 are unique. The
remaining equations can all be found through a linear combination of the unique
equations. Restrictions on the selection of equations do exist, and mandate that each
equation in each set must be used at least once. Furthermore, the equations from the two
systems, once selected, must be multiplied through by the term scaling the internal input

from the opposite system as shown in (17a)-(17b).

k=a+l k=a+]

a-1 n a-1 n
hZ.b[Z gVt 8uitac t Z 81] = hZ.b[Zhl.ile.j +h, Vi, + Zhl.ikUl.k] (17a)
= =1

79

1aj

Afte

a-1

J=1

Wh

resy

b1 I b-1 I -
hl.u{z 8ritr it 8apts + Z 8:uYau J = hl.a(zhlijul.j +h,,V,, + Zhl.ikUZ‘k J (17b)
j=1 J=l

k=b+1 k=b+1

After this, the system equations can then be combined to form

a-1 b-1
Dbt i+ D hagaiiYa i+ (/Tz.bgl.ia +h a82,ib)"3.c +
i=1 i=1
J j (18a)
n /
D hpgricVix+ D hag2iYak
k=a+l1 k=b+1
a-1 b-1
Do phy UL+ Dol aha iUs j +haphy gVig +
i=1 i=1
J J (18b)
n !
hahaoVap+ D haphicUrk+ D hgha iUy
k=a+l k=b+1

Where (18a) and (18b) are the left and right-hand sides of the composite system equation

respectively. Then, applying (16) to (18a-b) gives

a-1 b-1
D hapgriYij+ Db ag2 Y2 + (h2.bgl.ia +hya82.ip)"3,(- +
~ ~
/ J (19a)
n l
dhpgriaYin+ DhagruYok
k=a+l1 k=b+1
a-1 b-1
Dk Uy j+ D haha jUs i +hyghy pUs o +
~ ~
J J (19b)

n [
D by aUrk + D hyahy iUz i
k=a+l k=b+1

where (19a-b) once again represent the right and left hand sides respectively.
Renumbering the system equations to match with the external ports on the composite

system gives it the form

n+l-1 n+l-1

Z 83 Y}.j = Zhs.u (20)
j=I j=i

80

Wt

acl

the

Tc
(i

(O

W

Which is exactly the form shown in (10) and (11), if there are no more joins to be

performed.

Method Failure

The primary weakness in this method is its dependence on the combination of
equations to combine joined internal inputs into the external input at the join. The
formulation described above depends on the presence of zeros in the H(s) matrix. In

general, H(s) is not sparse, and no combination of rows can occur. For example, consider

the system:
Chy e By by
h 9 h R} h B h -
[G(s)][y]= e M 123 Mo [u]
by By hoyy hyyy
s Iy By, hz.:4_ 1)

To join the third port from the first system to the second port from the second system
(like putting the final join into the truss from three bar models), it requires that the first
(or second) equation be equal to the third (or fourth) equation on the input to be joined.
Performing the proper cross-multiplication (like described above) gives:

hy oy gy + by o hy Uy + By by sy + by by 22)
hy by ey + By by s + by by a4 by b

In order to properly apply the input constraints, the multipliers on u, and u; must be

equal. Given these two equations, and the constraint equations, there is no way for these
equations to be joined in the method required by modular modeling.
It should also be noted that the same logic applies to the failure of the method

when a Transfer Function is used instead of the split Transfer function.

81

do

en!

Additionally, direct application of Byam's methodology using state space systems
does not allow proprietary information to be protected, because the join-history of the

entire system must be included in the constraint equation.

82

LIST OF REFERENCES

Byam, Brooks P., 1999, Modular Modeling of Engineering Systems Using Fixed Input-
Output Structure, Ph. D. Dissertation, Michigan State University, East Lansing,
ML

Byam, Brooks P. and Radcliffe, Clark J., 2000, “Direct-Insertion Realization of Linear
Modular Models of Engineering Systems Using Fixed Input-Output Structure’,

ASME, Proceedings of DETC2000: 26" Design Automation Conference,
Baltimore, MD.

Charlton, T.M., 1954, Model Analysis of Structures, John Wiley & Sons, Inc., New York,
NY.

Computers in Engineering: Chrysler designs paperless cars, 1998, Automotive
Engineering International, Volume 106, Number 6 (June), Page 48.

Friedland, Bernard, 1986, Control System Design: An Introduction to State Space
Methods, McGraw-Hill, Inc., New York, NY.

G.A. Hensley Company, 2000, Design data: scrambled or over easy? Design News,
Volume 55, Number 3 (February), Page 24.

Genta, Giancarlo, 1999, Vibration of Structures and Machines: Practical Aspects,
Springer, New York, NY.

Gosciak, Gary Joseph, 2001, Internet Engineering Design Agents, M.S. Thesis, Michigan
State University, East Lansing, ML

Greenwood, Donald T, 1988, Principles of Dynamics, Second Edition, Prentice Hall,
Englewood Cliffs, NJ pg. 323.

Jost, Kevin, 1998, Chrysler redesigns its large cars for 1998, Automotive Engineering
International, Volume 106, Number 1 (January), Page 10-15.

Kamopp, Dean C., Margolis, Donald L., and Rosenberg, Ronald C., 2000, System

Dynamics: Modeling and Simulation of Mechatronic Systems, John Wiley & Sons,
Inc., New York, NY.

Kerr, Brad, 2000, Redesigning work processes and computing environments, Automotive
Engineering International, Volume 108, Number 7 (July), Page 147-149.

Meirovitch, L., 1967, Analytical Methods in Vibrations, The Macmillan Company, New
York, NY.

83

Phillips, Charles L. and Harbor, Royce D., 2000, Feedback Control Systems, Prentice
Hall, Upper Saddle River, NJ.

Potter, Caren, 2000, Behind GM’s global design success, Automotive Engineering
International, Volume 108, Number 12 (December), Page 74-75.

Radcliffe, Clark J. and Sticklen, Jon H., “Method and System for Creating Designs Using
Internet-Based Agents”, United States Patent No.: 6,295,535 B1, September 25,
2001.

Radcliffe, Clark J. and Sticklen, Jon, 2003, “Modular Distributed Models of Engineering
Structures”, ASME IMECE, Proceedings of IMECE 2003: International

Mechanical Engineering Congress and Exhibition, Washington DC.

Radcliffe, Clark J. and Sticklen, Jon, 2003, “Modular Distributed Models of Engineering
Structures”, ASME IMECE, Proceedings of IMECE 2003: International
Mechanical Engineering Congress and Exhibition, Washington DC.

Radcliffe, Clark J., Sticklen, Jon, and Gosciak, Gary, 2002, “The Internet Engineering
Design Agent System: iEDA”, ASME, Proceedings of 2002 ASME IMECE:

International Mechanical Engineering Conference and Exhibition, New Orleans,
LA.

Reddy, J. N., 1993, An Introduction to the Finite Element Method, McGraw-Hill, Burr
Ridge, IL.

Subcommittee on International Economic Policy and Trade of the Committee on
International Relations, Corporate and Industrial Espionage and Their Effects on
American Competitiveness, 106™ Congress, Second Session, 2000, Serial Number:
106-180, pg 1.

84

i

