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ABSTRACT

MAPPING AND MODELING TROPICAL DEFOLIATION:

A CASE STUDY ON THE EFFECTS OF PLAN COLOMBIA

By

Paul Larry Delamater

This research explores the effects of aerial fumigation as part of the

Drug War on Putumayo, Colombia. Green fractional coverage (fc) is

examined in a time series of Landsat ETM+ images to quantify and

describe the damage resulting from fumigation. No studies have

attempted to quantify these effects.

I used remote sensing technology and fieldwork to build a direct

parameterization of surface phenomena and a classification of landuse

and landcover (LULC) types. This was accomplished by using fc as a

biophysical variable that characterized the effects of defoliation and a

hybrid classification method of LULC. I validating the use of fc by

collecting ground truth data to show the linear relationship that exists

between image fc and ground fc. I proved that Plan Colombia spraying

during 2002 was not discriminate over the landscape by relating LULC

classes to changes in fc over space and time.
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Chapter 1 : INTRODUCTION

This research explores the effects of aerial fumigation as part of the Drug

War on Putumayo, Colombia. More specifically, green fractional coverage (fc)

change is calculated, validated, and examined in a time series of Landsat ETM+

images to explore the effects of aerial fumigation on a landscape. The location of

this study is Colombia, in the Putumayo Department, where fumigation of coca

fields has been and continues to occur as a part of Plan Colombia, a US funded

program to combat drug production in Colombia. Fumigation is one method used

by the Colombian government to eradicate the cultivation of coca in this region.

The coca plant is a perennial shrub of the genus Erythroxylum and grows very

well in poor, acidic soils that cannot support many other commercially cultivated

crops (Peterson 2002). A coca plant can produce harvestable leaves within one

year of being planted, can produce harvestable leaves up to 4 times per year,

and can remain productive for up to twenty five years (Clawson and Lee 1996;

Gardner 2001 ). The leaves of the coca plant are ground to a pulp that is one of

the primary ingredients in the illegal narcotic, cocaine.

The Putumayo Department is located in the southwestern Colombia and

shares borders with the Sucumbios canton of Ecuador and the Loreto

department of Peru. The intensive study area is roughly 40 km x 60 km located

in southwestern Putumayo, bordering Sucumbios (see study area box in Figure



1.1). Putumayo is just east of the Andes Mountains and is a part of the greater

Amazon River Basin.

 

     
Figure 1.1 Study area maps

Located very near the Equator, Putumayo’s geographic region has a

KOppen-Geiger-Pohl Climate Classification of Af or Tropical rainforest climate.

The average temperature of every month is above 18°C and annual precipitation

generally is above 500cm and exceeds annual evaporation. This water surplus

and the warm soil temperatures produce soils rich in iron oxides with a deep red

color (see Figure 1.2); these soils belong to the Oxisols soil class (Strahler and

Strahler 1992). The landscape can be characterized as a mix of agricultural

(mostly subsistence) fields and lowland (Amazonian) tropical forest (see Figure

1.2). The province has a population of roughly 330,000 people who are mostly

small-scale farmers and colonized the area through in-migration (Dudley 2000).



 

 

   
 

Figure 1.2 Photos showing Oxisols and tropical rainforest vegetation

Putumayo and the proximal regions in Colombia are considered only

marginally controled by the Colombian government. The left-wing guerilla group,

the Fuerzas Armadas Revolucionan'as de Colombia (FARC) (Revolutionary

Armed Forces of Colombia) and various other right-wing paramilitary groups

such as the Autodefensas Unidas de Colombia (AUC) (United Self-Defense



Groups of Colombia) have a significant local presence, while the government has

very little control. Due to its remote location and marginal governmental control,

over the past 10-15 years, Putumayo (and especially southwestern Putumayo)

has become one of the world’s largest coca producing areas. Various reports

estimate that Colombia produces the leaves for 80% of the world’s cocaine

(Bibes 2001) and Putumayo produces about 50% of the leaves in Colombia

resulting in an astonishing 40% of the world’s coca leaf production originating in

Putumayo (Penhaul 2001). Because of these enormous levels of coca

cultivation, Putumayo has become an area that is heavily targeted by the coca

eradication efforts of Plan Colombia, the attempt by the Colombian and US

governments to reduce the supply of coca for cocaine production. Putumayo has

been referred to as “the ground zero” of Plan Colombia (LaFranchi 2001; lsacson

and Vaicius 2001).

According to the United Nations Office on Drugs and Crime, over 400,000

ha of coca have been fumigated in Colombia since 1994, but, astonishingly, the

amount of area in coca cultivation throughout the country has grown from 3,871

ha in 1994 to 102,071 ha in 2002 (however, the area in cultivation has dropped

from a maximum of 163,289 ha in 2000) (UNODC 2003a). Many members of the

media have spoken out against the fumigation efforts of Plan Colombia over

these statistics, over reports of indiscriminate spraying of the landscape, over the

amount of military equipment being supplied to Colombia, and over other social,

political, and environmental issues (Alvarez 2003; Berger 2001; Brown 2000;

Driver 2001; lsacson and Vaicius 2001; Kratz 2002; Penhaul 2001; Peterson



2002; Vaicius and lsacson 2003; Wilson 2003). The US. Department of State

(2002) published Colombia's Environmental Auditor's parameters detailing

conditions that must be met for spraying to be conducted, including thresholds for

wind speed, temperature, and relative humidity. The USDS acknowledges that

although they try to minimize mistakes in fumigation due to human and

mechanical errors, occasional errors are unavoidable (USDS 2002).

Early fumigation efforts focused on large, “industrial” type coca fields,

often ignoring smaller fields. However, between July and October of 2002, the

push into Putumayo and Caqueta (a neighboring department, see Figure 1.3)

commenced in which no differentiation between large and small coca fields was

made and any field identified with coca became a target (Vaicius and lsacson

2003). Although Putumayo (and southwestern Colombia) was the focus of much

of the fumigation in 2002 (over 50% of the total area fumigated in Colombia

during 2002), the trend, more recently, has shifted away from these departments

and to the departments of Guaviare and Nariflo (see Figure 1.3) (UNODC

2003b).

Life for the people of southwestern Putumayo is not a life of luxury. Most

of the farmers are very poor and are accustomed to violence associated with the

presence of the FARC and other paramilitary groups and the results of cultivating

an illegal crop. One local farmer remarked to lsacson and Viacius (2001) that,

“life in Putumayo is not worth 1500 pesos ($0.75).” Unfortunately for the people

in the Putumayo, there are few other alternatives for cash crops (Cooper 2001).



 

     
Figure 1.3 Colombia Departments

Because of the unrest of the people living in Putumayo and the presence

of the FARC, conducting research in this region is far too dangerous for

outsiders. This danger has also spread south from Colombia into northern

Ecuador. Whereas, field teams from the University of North Carolina at Chapel

Hill had previously conducted research in and around Lago Agn'o, Ecuador

(Messina and Walsh 2001), the base for field studies has been moved more

south to Coca, Ecuador (see Figure 1.4). Lago Agrio has a population of around

24,000 people and the region was covered by primary forest 40 years ago. The

population of Lago Agrio has risen greatly since the discovery of oil in 1967 by

Texaco/Gulf and the agrarian reform laws that were passed in 1964 and 1973

(Perreault 2003). Although visiting Lago Agrio is safe, conducting research in the

countryside is considered dangerous, as many believe that FARC members

cross the border for rest and recovery in the Lago Agrio area. Famam (2002)



reported that from January to June of 2002, assassins of the FARC or the other

Colombian paramilitary groups working in Ecuador have killed more than 100

people in Lago Agrio. The situation in Lago Agrio had not gotten any safer in

2003 (when field work was scheduled for this research) and Ecuadorian

colleagues advised the field team to go elsewhere. Conducting research in

Coca, Ecuador allowed for a safe observation of a landscape with similar

biophysical characteristics and similar climatic conditions while still being located

in the same Landsat ETM+ scene as southwestern Putumayo (see Figure 1.4).

As mentioned previously, this region has a tropical rainforest climate. Although

the distance between these two areas is roughly 100 km, there are no significant

elevation changes between the coca growing areas of Putumayo and the areas

surrounding Coca, Ecuador. Also, no geomorphical features exist between the

areas that would significantly differentiate their respective biophysical or climatic

conditions.
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PROBLEM STATEMENT & RESEARCH OBJECTIVES

Descriptions of the visual damage from the spraying have been reported

at great length, however no follow-up studies have been attempted that quantify

the defoliation and subsequent regeneration of the coca fields, agricultural fields,

or other vegetation types affected by fumigation in Putumayo. The UNODC has

reported the amount of area in coca cultivation and the amount eradicated, but

the methods used are questionable, particularly as the results do not explain

exactly what is considered eradicated. There also have been reports of

indiscriminate spraying on the landscape. These, however, have only been

anecdotal reports from farmers and unsubstantiated stories by reporters. They

also stand in conflict with the strict guidelines laid out by the Colombian

Govemment’s Environmental Auditor. Because of the paramilitary presence

(FARC and AUC) and the unrest of the general population in Putumayo, such

assessments of the effects of Plan Colombia cannot be safely completed in the

field. Alternative methods of data collection and quantification must be employed.

The overall objective of this study is to quantitatively and qualitatively

measure the defoliation and regeneration of the vegetation due to the Plan

Colombia fumigation in Putumayo, Colombia. More specifically, the objectives of

this research are to:

1. Use remote sensing techniques to detect the biophysical attribute changes

that have occurred as a result of fumigation.

2. Verify and calibrate the detected biophysical attribute changes by

conducting field measurements in Ecuador.



3. Quantify the amount of defoliation of vegetation using the field-calibrated

4.

data.

Identify the primary land cover classes affected by fumigation and attempt

to identify whether the spraying is discriminate.

RESEARCH HYPOTHESES

| hypothesize that:

1. Green fractional coverage derived from ETM+ data accurately quantifies

vegetation cover.

Hybrid classification techniques applied to ETM+ data identify LULC

classes.

Changes in is indicate changes due to defoliation.

Defoliation in Putumayo, Colombia occurs indiscriminately over the

landscape affecting cover types other than coca.

Landsat ETM+ data provides the synoptic coverage with adequate

resolution characteristics suitable for study.
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Chapter 2 : LITERATURE REVIEW

THE UNITED STATES AND THE DRUG WAR IN SOUTH AMERICA

Reports of US government involvement with South American countries in

battling illegal drug related activities go back about 30 years. In 1973, the US

government began a four year, $6,000,000 training program for 600 law

enforcement officials to fight marijuana cultivation in Colombia (Sharpe 1988).

However, the US interdiction efforts in South American illegal drug trafficking

escalated greatly with President Reagan’s “war on drugs” of the early 1980’s

(Bagley 1988a). Many of the efforts resulting from this war have targeted the

supply end of the drug chain. In the Anti-Drug Act passed by Congress and

signed by President Reagan in 1986, approximately 75% of the $3.9 billion to be

spent in 1987 were dedicated to supply and programs such as expanded

enforcement, interdiction, and eradication/substitution versus the 25% dedicated

to demand end programs such as education, prevention, treatment, and

rehabilitation (Bagley 1988b). Over the last 20 years, narcotics control has

become a foreign policy priority as the US has carried out massive drug

interdiction operations in Colombia, Peru, and Bolivia (Vellinga 2000). The US

military has also been very active in fighting the production and trafficking of

drugs during this time period as spending increased from $0 in 1981 to $389

million in 1987. The Department of Defense (DOD) also loaned $303.5 million

11



dollars worth of equipment to various authorities enforcing drug laws from 1981

to 1987 (Mabry 1988).

Some of the early interdiction efforts centered around attempts to target

production at the source. During the early 1980's in Peru, local police carried out

manual eradication of coca fields with logistical support provided by the US Drug

Enforcement Agency (DEA), yet these programs showed only minor localized

reductions while total cultivation in Peru rose. The program expanded to include

spraying coca fields with herbicides in 1989, but demonstrations and a wave of

guerrilla attacks prompted a return to the previously used manual procedures of

eradication (Kay 1999).

No South American nation has received more US assistance in the drug

war than Colombia. From the years 1986 to 1996 the US State Department

estimated that over a half a billion dollars were spent in Colombia (Millett 1997).

COCA AND COLOMBIA

Colombia’s recent history has been littered with violent and bloody clashes

between people and the government and also between right-wing and left-wing

political groups. These clashes have often left many people dead such as the

period of La Violencia (from the late 1940’s to early 1960’s) which was

characterized by extreme violence, cruelty, and wanton killing, and claimed an

estimated 2-3% of the country’s total population (Guzman et al. 1962 and

Kalmanovitz 1988 as cited in Thoumi 1992). Colombia has also seen the rise to

power of left-wing guerilla groups, such as the FARC, the oldest guerrilla force in

12



the Americas (Browitt 2001), and the Ejercito de Liberacion Nacional (ELN)

(National Liberation Army), the rise of right-wing paramilitary groups, such as the

AUC, who attempt to combat the left-wing groups, and a very powerful

emergence (and a later disappearance) by major drug-trafficking groups such as

the Medellin and Cali cartels, all during the last 50 years. The FARC has

garnered so much political power in Colombia that the Colombian government

ceded a large portion of land in southern Colombia (roughly 40% of the total area

of Colombia) to the group in 2002 (Nagle 2002). The Putumayo department is a

stronghold of the FARC guerillas (Penhaul 2001) and is an underdeveloped area

of very marginal governmental control with a long history of illegal activity

(Marcella 2002).

Colombia also has a dubious and complex history of illegal narcotic

production. The de-Iegitimization of its government system over the past 45

years has allowed the country to gain an “advantage” in terms of illegal drug

production (Thoumi 1992). The Colombian government continues to struggle for

legitimacy as it faces challenges such as questioning of the current peace

process, corruption, weak institutions, and inability to provide basic public goods

(Meltzer 2001).

During the 19705, marijuana cultivation came to Colombia as eradication

efforts were commencing in Mexico. Colombians then shifted to exporting

cocaine during the late 1980s as marijuana cultivation shifted back to Mexico.

During this time period, the raw materials (the coca leaves) were being imported

from Bolivia and Peru and the coca paste was produced in Colombia. This

13



changed again however in the early 19903 as Colombia began growing opium

poppies, began producing and exporting heroin, and began growing much more

coca (Vargas 2002). Poppy production has also been a target of Plan Colombia,

however the small amount of area in poppy production (3,828 ha in 2002 ) and

the sparse distribution throughout the mountainous areas of Colombia make it

very difficult to study (UNODC 2003). The 19803 and 1990s also saw the rise

and fall of the major drug cartels in Colombia. The Medellin and Cali cartels

grew in power and during this time period owned over one twelfth of Colombia’s

land or roughly 9.5 million ha (Ehrenfeld 1990). The Medellin cartel, during the

early 1980s, launched a brutal campaign of terrorism against Colombia's

government and citizens (Dishman 2001). The emergence of groups, as

powerful as the cartels, specifically the left-wing guerillas and paramilitaries, has

been a major factor in the destabilization of Colombia. The coca growth has

escalated since the early 1990s (as noted earlier) as Bolivia and Peru’s

production of coca has declined significantly. Much of the coca in Colombia is

grown in regions located outside of the realm of control of the Colombian

government (areas controlled by guerillas or paramilitaries). Although the

numbers vary significantly, estimates place the 68% of Colombia's cocaine

production in the departments of Putumayo, Guaviare, and Caqueta (DNE 2000)

as reported in (Moreno-Sanchez et al. 2003) and 50% in Putumayo alone

(Penhaul 2001). Coca came to Putumayo in the late 1970’s, but was not a major

factor until the mid-1990’s when fumigation efforts by the Colombian government

in Guaviare and Caqueta drove much of the coca production to the more remote

14



Putumayo department (lsacson and Vaicius 2001). The late 1990’s also saw the

demise of the Cali cartel, which had purchased their much of their coca leaves

from Peru. This, along with Peruvian efforts to battle coca growth locally, led

narcotics traffickers to promote the growth of coca in Colombia (Rojas 2003).

Between 1990 and 1995, the area in coca cultivation more than doubled to

80,000 ha and that number swelled to between 120,000 and 150,000 ha in

cultivation by 2000 (Thoumi 2002); (Uribe 1997), rose to 169,800 ha in 2002,

before finally falling to 144,450 ha in 2003 (United States General Accounting

Office (USGAO 2003) as reported by the Office of National Drug Control Policy

[ONDCP]). However, as is often the case with many of the reports, there are

discrepancies between one group’s figures compared to others. The UNODC

(2003a) estimates for area in coca cultivation are found in Figure 2.1.

In Colombia, much of the coca (estimates vary greatly) is grown on small

plots by poor subsistence farmers who have few alternatives for the production of

cash crops (Cooper 2001; Fratepietro 2001; Stauder 2001). The first step in the

processing of the coca leaves usually occurs very near the fields in rudimentary

laboratories (often nothing more than wooden shacks) as farmers use gasoline,

bleach, and sulfuric acid to create the coca paste from the coca leaves (Dudley

2000). A farmer can sell a kilogram of coca paste for $900, which is enough to

cover production costs, pay his workers, and feed his family (Stauder 2001).
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Figure 2.1 UNODC estimates of coca cultivation in Colombia

However, the paramilitary group or guerilla group who control the area

often tax the money earned by the farmer from growing coca. The paramilitaries

and guerilla groups use this tax to finance their wars against each other and the

Colombian government. Colombian authorities have reported that the FARC

makes nearly $500 million dollars per year in coca growing areas and the right-

wing paramilitaries, with unofficial help of the Colombian military and police,

make over $200 million per year via drug trafficking (Dudley 2000). These taxes,

combined with farming expenses, often leave the farmer making only slightly

more than the Colombian minimum wage of $150 per month ($1800 per year)

(Fratepietro 2001; lsacson and Vaicius 2001). Although the farmers are
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surviving, they are not prospering. In some regions of Colombia, the guerilla

groups are so involved in the dmg production and trafficking that the distinction

between fighting the drug war and fighting the guerilla war is blurred as the same

equipment, intelligence, and personnel are used in both. US policy has been

tough to implement as the focus is solely to combat drug trafficking, not the

guerilla insurgency (Bibes 2001).

PLAN COLOMBIA

The US has a history of involvement in Colombian affairs that dates back

to the early 19603 (Petras 2001). “Plan Colombia” was developed during the

Clinton Administration as an attempt to reduce the impacts of drugs in the United

States and was signed into law in 2000 (Crandall 2002). The specific goals of

Plan Colombia are: a push into Southern Colombia; support for narcotics

interdiction efforts; support for the Colombian National Police; support for

developmental and particularly alternative development programs and

approaches; support for justice and other social sector reform; and support for

issues outside of Colombia, forward-operating locations, as well as several other

counties that are affected by what happens in Colombia (USDS 2001). By 2002,

Colombia had received over $2 billion for Plan Colombia with $1.7 billion coming

from the United States and the rest contributed by various European countries,

Canada, and Japan (Frechette 2003). Plan Colombia’s support for narcotics

interdiction efforts includes the use of aerial fumigation, which is employed in an

effort to eradicate the cultivation of coca plants in Colombia, and voluntary
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manual eradication pacts with aid to help farmers make a living with legal crops

(USDS 2002). Plan Colombia was renamed the Andean Regional Initiative by

President George W. Bush and continues to be sold as the key component in the

war on drugs (Driver 2001). (Although the program has been renamed, it is still

generally referred to as “Plan Colombia” and will be referred to as such

throughout the rest of this document)

The aerial fumigation program is carried out using crop dusters to spray a

herbicide called RoundUp Ultra (a combination of glyphosate, Cosmo Flux-411f,

and Cosmo-iN-D) onto the fields (lsacson and Vaicius 2001, many others have

also covered this topic). Glyphosate, the main ingredient used in RoundUp Ultra,

is the most widely used herbicide used in the United States and is generally not

harmful to humans and animals (USDS 2002). The other ingredients in

RoundUp Ultra are used to 1: more easily covert the liquid into a mist and 2:

allow the substance to stick to the vegetation better (as RoundUp in its native

form can be washed off with water, a concern in the humid tropics). The

fumigation is carried out using a mixture of methods and equipment. The first

stage is a reconnaissance flight where the aircraft is equipped with a digital

imaging system that records multispectral information and identifies crop types.

This device is connected to 3 Geographic Positioning System (GPS) receiver that

records position information to be used with the crop type data. Mission planning

for the actual spraying aircraft is carried out using this data, however the pilots

use a visual identification method before spraying (USDS 2002). In 2000, with

significant support from the US, the Colombian Government began this major
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aerial eradication program in Putumayo and promised support to farmers who

willingly self-eradicated their own coca crops (Ernst 2002). Over the last few

years, two major fumigation efforts have taken place in Putumayo. The first

period of flights lasted from December 2000 to February 2001 covering 25,000

hectares and the second, from July to October of 2002, covered 60,500 hectares

(Vaicius and lsacson 2003). Because of the different methods used, reports of

the amount of area fumigated vary greatly (Ford 2003). The UNODC, using

remotely sensed imagery, report slightly higher numbers in Putumayo with

32,506 ha fumigated in 2001 and 71,891 ha in 2002 (UNODC 2003). In a

hearing before the US Senate, Colombian Vice President Santos-Calderon (US

Senate 2003) reported that overall in Colombia, 130,000 ha were sprayed in

2002, 65,000 ha were sprayed between January 2003 and June 2003, and the

goal was to spray 150,000 ha by the end of 2003. The UNODC estimates for the

amount of area fumigated in Colombia from 1994-2002 are found in Figure 2.2.

Although spraying has occurred over large, industrial-type coca fields,

much of the coca growing area in Putumayo is composed of small coca and

agricultural fields interwoven together on the landscape. The complex layout of

the Colombian landscape and the effects of wind drift and runoff have resulted in

many non-coca fields being adversely affected by the fumigation. Many reports

exist that detail how food and other subsistence crops have been sprayed and

destroyed (Berger 2001; Cooper 2001; Fratepietro 2001; lsacson and Vaicius

2001; Kratz 2002; Penhaul 2001; Peterson 2002; Stauder 2001; Vaicius and

lsacson 2003; Wilson 2003).
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Figure 2.2 UNODC estimates of coca fumigation in Colombia

Often, the farmers grow food crops in fields directly adjacent to their coca crops

or intermixed with coca crops and have seen these fields damaged or destroyed

by the fumigation efforts (Forero 2002). County officials in the Guamuez Valley

have tallied more than 800 cases where there was a claim of legal crops being

destroyed by spraying (Hodgson 2001) (see Figure 2.3).

Others argue that fumigation is also harmful to ecosystems and the

environment, threatening the biodiversity of the area (Peterson 2002; Vargas

2002), and fosters displacement of farmers, causing deforestation (Dudley 2000;

Ecuador 2001; Forero 2002; Vargas 2002; Wilson 2003).
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Figure 2.3 Guamez Valley Map

As of 2000, there were already reports of hundreds of Colombian refugees

fleeing across the border to Ecuador causing the US to increase related aid to

Ecuador (LaFranchi 2000) and during the first 10 months of 2001, an estimated

13,500 people fled Colombia with most of them going to Ecuador (Valenzuela

2002)

There also exists the possibility of moving coca production to bordering

countries. Reports have surfaced of Ecuadorian farmers living near the southern

Colombian border being offered money by drug traffickers to begin coca

production (Cooper 2001). The overseer of the United Nations Drug Control

Programs’s (UNDCP) office in Colombia, Klaus Nyholm, commented,

“Fumigation has an effect, but we would argue it‘s an effect of displacement”

(Forero 2002). Critics of Plan Colombia also point to statistics from the UN and

UNDCP (2002a) that showed a rise in the amount of area in coca cultivation

21



despite the eradication efforts. They use this as evidence that eradication is a

failed approach to drug control (Moreno-Sanchez et al. 2003).

More recently the US has attempted to distance themselves from further

promising more help to Colombia. President Bush’s administration has used

words such as “endgame” and “exit strategy" in the descriptions of future

strategies pertaining to Colombian aid, even as Colombian President Alvaro

Uribe seeks more help (Wilson 2003).

MONITORING VEGETATION USING REMOTE SENSING

The data collected by many earth observing satellites throughout the past

30+ years has given birth to a variety of methods for researchers to use in

monitoring vegetation change. The development of extensive imagery

databases has been the major factor contributing to the growth of remote sensing

technologies for studying change detection (Lunetta et al. 2002). Also, as time

progressed, visual interpretation of aerial photography and satellite imagery has

given way to quantitative and qualitative measures of the information collected by

the sensor. These measures attempt to remove the bias that can occur during

human interpretation. Included in these measures are numerous vegetation

indices that try to model the characteristics and the biophysical attributes of the

vegetation present on the ground. These indices are a primary source of

information for operational monitoring of vegetation cover (Gilabert et al. 2002).

Many of the indices have become very popular such as the Normalized

Difference Vegetation Index (NDVI) (Rouse et al. 1974), the Soil Adjusted
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Vegetation Index (SAVI) (Huete 1988), the Modified SAVI (MSAVI) (Qi et al.

1994), the Leaf Area Index (LAI) (Price and Bausch 1995), and Green Fractional

Coverage (fc) (Qi et al. 2000) and research continues towards efforts to find the

most accurate relationships between the calculated biophysical variables and the

true state of the vegetation on the ground (Cohen et al. 2003; Xavier and

Vettorazzi 2004). Other research has also been conducted that models

statistical relationships between each of these indices (Carlson and Ripley 1997;

Leprieur et al. 2000; North 2002; Purevdorj et al. 1998; Zha et al. 2003). The

most widely used vegetation index is NDVI as it is a simple algorithm to compute

and most of the satellite imagery in use provide the necessary spectral bands for

computation. NDVI and the other vegetation indices can be extremely useful in

change detection studies using time-series data over the same area. Fung and

Siu (2000) used the differences between image NDVI values to monitor the

environmental changes occurring in Hong Kong from 1987 to 1995 due to such

factors as land reclamation (from the sea), new urban development, and forest

fires. Weiss et al. (2001) used the Coefficient of Variation observed between

NDVI values to evaluate the effects of grazing in Saudi Arabia’s rangelands.

Other studies have used observed changes in NDVI to create masks to aid in the

search for areas most likely to have undergone a LULC change (Lunetta et al.

2002)

An index that has been derived from NDVI in an attempt to model the

percent of a pixel covered with green vegetation is fc. Green vegetation cover is

an important factor in vegetation status and as an indicator of land degradation

23



(Purevdorj et al. 1998). Although multiple methods exist that attempt to derive fc.

the most popular is a process of linear spectral unmixing of the NDVI value. The

radiation reflected from heterogeneous materials and recorded in a satellite pixel

can be considered a mixture of a number of spectrally pure materials (Van Der

Meer 1999). Di et al. (2000) used this concept assuming that the pixel signal is

made up of two components, vegetation and non-vegetation. This study was a

preliminary investigation without a proven method of ground truth data collection,

however the results were encouraging. Previous studies have also been

attempted and showed success using both NDVI and LAI in the estimation of fc

(Carlson and Ripley 1997; Choudhury et al. 1994; Gillies and Carlson 1995).
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Chapter 3 : METHODS

IMAGE PRE—PROCESSING

Three Landsat ETM+ scenes were ordered from the Center for Global

Change and Earth Observations at Michigan State University (through

www.landsat.org). The three co-located scenes (Path 9, Row 60 of the World

Reference System) and were acquired by the satellite on September 9, 2001;

September 12, 2002; and October 14, 2002 (see Figure 3.1). These scenes

represent the only available images with less than 30% cloud cover that have

been acquired by the satellite since the most recent Plan Colombia fumigation

commenced. Although these are the only images available, the September and

October images were collected during the second of the two major fumigation

efforts in Putumayo which (as previously mentioned) lasted from July to October

of 2002.

The original images on Compact Discs were imported from the

Hierarchical Data Format (HDF) directly into ERDAS Imagine as raw 8-bit data

representing Digital Pixel Values or Digital Numbers (DNs). Because the images

were going to be compared against each other quantitatively, a series of steps

were taken to normalize sensor collection errors and atmospheric effects present

in each image.
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Figure 3.1 Landsat ETM+ Scenes (Path 9, Row 60)

The first step was to perform a Radiometric correction on each of the images.

The Radiometric correction involves converting the DN3 of the image to

Radiance values then converting the Radiance values to Top of Atmosphere

(TOA) reflectance values. The equation for the first step, conversion to Radiance

(Equation 3.1), is found below (NASA).

Lma _Lmin

L1 =(m)*( Qcal—Qcalmin )+LmiM

where:

L ,1 = Spectral Radiance at the sensor’s aperture

Lmaxl = Spectral radiance that is scaled to Qcalmax

me = Spectral radiance that is scaled to Qcalmin

Qcal = Quantized calibrated pixel value or DN

Qcalmax = Maximum quantized calibrated pixel value

Qcalmin = Minimum quantized calibrated pixel value

Equation 3.1 Conversion of DNs to Radiance values
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Next, the images were converted to TOA reflectance values using Equation 3.2.

 

mL *dz

( i )Pp: E

sun/1 * 60868

where:

p, = Planetary reflectance

L,1 = Spectral Radiance at the sensor’s aperture

11 = Earth-Sun distance in astronomical units

Em) = Mean solar exoatmospheric irradiances

cos(~)s = Solar zenith angle

Equation 3.2 Conversion of Radiance to TOA reflectance

After the images were converted to TOA reflectance values, a Simulation

of the Satellite Signal in the Solar Spectrum (58) atmospheric correction (Tanre

et al. 1990) was applied to remove the effects of the atmosphere on the signal

and to bring the pixel values to surface reflectance values. The code in the 5S

correction computes the solar radiation that is backseattered by the surface and

atmosphere as observed by the satellite (Mackay et al. 1998). The decision to

use an atmospheric correction was driven by studies showing the advantages of

correction for change detection studies (Song et al. 2001) and because NDVI

was going to calculated. Teillet et al. (1997) point out that the best

representation of NDVI derived from image data is the NDVI of the surface

reflectance values (p) as it is a function of the reflectance values of the

vegetation and will be skewed by the effects of the atmosphere found in pp.
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Although, there are much more robust methods for this correction, they require

detailed information on the local atmospheric conditions on the date of image

collection. That information was not available for this area so these methods

could not be used. The input parameters used for the SS correction are found in

Table 3.1 and were easily obtainable for the study area except for visibility. l was

not able to locate the on-ground visibility data for this region at the specified time

period. I chose to use the default value of 17 miles and used this for all the

images. The parameters, site elevation, sensor elevation, sensor zenith, sensor

azimuth, model type, standard atmospheric model, aerosol model, and visibility

did not change between images as all images were collected by the same

satellite and the study area is in the same location in all images. The only

parameters that were different between images were solar zenith, solar azimuth,

and date. I obtained these parameters by viewing the header file of the original

image data.

 

Site Elevation

Sensor Elevation

Solar Zenith

Solar Azimuth

Sensor Zenith

Sensor Azimuth

Model Type

Standard Atmospheric Model

Aerosol Model

Visibility

Date

 

 

 

 

 

 

 

 

 

    
Table 3.1 58 atmospheric correction input parameters
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Other methods of atmospheric correction such as Dark Object Subtraction (DOS)

and Psuedo-Invariant Feature (PIF) are easier to use, however they do not

perform as well (Song et al. 2001). The output parameters of the 5S correction

are a series of values modeling surface reflectance at each band. A model was

constructed by using a linear regression through the corresponding p and pp

values. The 58 atmospheric correction was implemented by using the equations

gathered from the 58 code and thelinear regression to create the new image in

ERDAS Model Maker. The detailed input and output parameters used for the

correction of each image and can be found in Appendix A and Appendix B.

Equation 3.3 is a simplified representation of the 58 correction of the image.

p = f(pp , atmospheric conditions)

where:

pp = Planetary reflectance

,0 = Surface reflectance

Equation 3.3 58 atmospheric correction

Once the images were converted to surface reflectance, the Normalized

Difference Vegetation Index (NDVI), a measure of vegetation vigor, was

calculated (see Equation 3.4) using Band 4 (NIR) and Band 3 (Red) of each

image (Weiss et al. 2001). NDVI was calculated as a transition product for fc

calculation. A model was constructed in ERDAS Imagine to create the NDVI

layer for each image.
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NDVI ____( PNIR - pRed )

PNIR + pRed

where:

pNIR = Near Infi'ared pixel reflectance value (Landsat ETM+ Band 4)

pm = Red pixel reflectance value (Landsat ETM+ Band 3)

Equation 3.4 NDVI calculation

The next step was to calculate the fc for each pixel. Green fractional

coverage (fc) is a measure of the areal amount of a pixel that is covered by

green vegetation (Qi et al. 2000). This is not biomass or Leaf Area Index (LAI)

which attempt to add a 3rd dimension (volume) to the calculation (in the case of

LAI, although it’s name implies the measurement of area, an attempt is made to

model and detect situations where more than one piece of vegetation is directly

below another and is more of a density measure). The calculation of fc is an

attempt to construct a 2D model of the amount of area within a pixel that has

green vegetation between the sensor and the ground. Typically, the vegetation

contained within pixel boundaries is not homogenous therefore fc is the measure

of the combination of all the vegetated areas and bare soil areas contained within

a pixel boundary (Equation 3.5).

II

fc = Zarean * % vegetation covern

o

where:

arean = Area represented by a homogenous % vegetation cover

% vegatation covern = The percent of green vegetation covering the ground

Equation 3.5 fc definition
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Figure 3.2 shows how the fc of a pixel is determined by the amount of area

covered with green vegetation within the pixel boundaries. It also shows some of

the infinitely possible scenarios for an fc pixel value (Scanlon et al. 2002).

 

Theoretical pixel 1 Theoretical pixel 2

Bare soil    

 

Forest with

75%

canopy

coverage

  

 

  
   

Forest with Bare $0“

100% canopy vevltgtgti/oon

coverage cog/erage  
Theoretical pixel 3 Theoretical pixel 4
 

Pasture with

10% vegetation

coverage Pasture Forest

with 10% with 90%

vegetation canopy

Forest with coverage coverage

90% canopy

coverage  

 

prier1 = (75%)*(100%) + (25%)*(0%) = 75%

prier 2 = (75%)*(0%) + (25%)*(75%) = 18.75%

prier 3 = (50%)*(90%) + (50%)*(10%) = 50%

prier 4 = (50%)*(90%) + (50%)*(10%) = 50%  
 

Figure 3.2 Green Fractional Coverage
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The fc layers were calculated from the existing NDVI layers using Equation 3.6

(Qi et al. 2000).

NDVI -— NDVIsoil )

NDVIveg — NDVIsoil

 

fc=(

where:

NDVI = NDVI value ofpixel

NDVIso" = NDVI value ofa 100% bare soil pixel

NDVIveg = NDVI value of a 100% vegetated pixel

Equation 3.6 fc calculation

Because the possibility for human error involved in calculating fc from NDVI, the

NDVlsoi. and NDVI...g values are very important. These values were selected by

first creating a small Area Of Interest (AOl) (25 x 25 pixels) over primary forests

and the African palm plantations for the 100% vegetated pixels (NDVlveg) with

downtown urban areas and cleared areas for the 100% bare pixels (NDVIsoil).

Because this step involved a visual interpretation of the images, an attempt was

made to keep the location of the AOls very close between all three images. The

descriptive statistics from inside the AOI were then used to select the end

member values (see Table 3.2).

 

 

 

 

Landsat Image NDVI,“ NDVlson

10/14/2002 0.97 0.10

9/12/2002 0.95 0.10

9/9/2001 0.95 0.10     

Table 3.2 NDVI values used to calculate fc for Landsat images

The maximum NDVI value inside the AOls was assumed to be the best

representation of the NDVI value for a 100% vegetated pixel and minimum NDVI
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value (taken from separate AOls) for the 100% bare pixel). Although a concerted

effort was taken to normalize the images, the variation in the NDVI.” value from

the10/14/2002 image is a result of the small collection differences that occur

between every Landsat image and cannot be fully removed.

The decision to use fc to measure defoliation was based on the theory

that fc actually represents a biophysical measure of the vegetation on the

ground. As noted earlier, the defoliation statistics produced by the UNODC and

other sources are based on the visual interpretation of satellite imagery. l

hypothesize that visual interpretation of the defoliation cannot accurately identify

the smaller amounts of defoliation occurring due to drift and/or runoff.

The last step in the image pre-processing step was to geometrically rectify

the images and the fc layers. This correction was completed using an image

previously rectified (supplied by the University of North Carolina at Chapel Hill,

Carolina Population Center) and finding features identifiable on all images to use

as control points. Once the control points were identified, each image was

geometrically rectified using a 2"d order polynomial transformation (using the

Nearest Neighbor interpolation method) and a model of the rectification

parameters for each image was generated. The three images were all corrected

to an acceptable level of accuracy (see Table 3.3).

 

 

 

 

 

       

9/9/2001 9/12/2002 10/14/2002

Error (pixels) Error (meters) Error (pixels) Error (meters) Error (pixels) Error (meters)

X 0.0179 0.537 0.0884 2.652 0.0234 0.702

Y 0.0227 0.681 0.0456 1.368 0.0262 0.786

Total 0.0289 0.867 0.0884 2.652 0.0351 1.053
 

Table 3.3 Geometric rectification errors
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The fc layers and the original images were then rectified using the

correction models generated in the previous step. This correction was applied to

the fc layer after computation in an effort to reduce the affects that could occur

by calculating a biophysical variable (which are very dependent on pixel values)

from pixels that had been interpolated during the rectification process.

After the rectification process was completed, a cloud mask was created

by heads-up digitizing any and all areas covered by clouds or their shadows in

the study area. I attempted to create a classification method that would identify

clouds automatically, however I was not able to accurately classify the clouds

and shadows. Most of the problem in this was due to the edges of the clouds

were signal from the ground reaches the sensor, but is slightly degraded by the

cloud. After multiple attempts to solve this problem, I decided that the only

method that could produce the level of accuracy for cloud removal was to

manually trace the borders of the clouds and shadows, hence the heads-up

digitizing. Unless othenivise noted, this cloud mask was used to exclude these

areas in all of the following steps in image processing, sample point generation,

and change detection.

SAMPLE POINTS

The to layers were created for use in preliminary investigations and also

as the basis for a stratified random sampling scheme. The stratified random

scheme was implemented as an attempt to sample pixels that covered the range

(0% - 100%) of fc values that could be found both on the landscape and in the
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image. The sample points were based on fc values from the 09/12/02 image as

it contained significantly less cloud cover throughout the study area. Although

the 10/14/02 image date is closer to the dates of ground truthing, the clouds

sprinkled throughout the study area would have voided too much of the image.

The first step in creating the stratified random sampling scheme was to

subset the pixels of the fc layer of the 09/12/02 image that were within 40 km of

Coca, Ecuador and within 250 meters of roads, dirt tracks, and foot paths (see

Figure 3.3). The distance of 40 km was chosen using knowledge gained from

people who had navigated this region. This distance that would allow the field

team adequate time to drive to a point, collect data, and return to the base of

operations in one day. The 250 meter buffer of roads, dirt tracks, and foot paths,

was based on similar knowledge as mentioned in the previous sentences. The

region offers many obstacles that hinder travel away from main roads such as

streams, thick forests, varying topography, wild animals, and heavy rainfalls. By

only including pixels within 250 meters of roads, this would reduce the time to

walk to each sample point. Additional masks were created as AOls (by heads-up

digitizing) to remove unreachable areas (African Palm plantations and river

islands). These masks and the aforementioned cloud mask were used to

exclude unreachable and unusable pixels from consideration for sample

locations. The combination of pixels not masked and within the buffered distance

of roads and the city of Coca left an fc layer that included all of the pixels that

were considered acceptable for sampling (see Table 3.4 and Figure 3.3).

35



 

A pixel to be considered for sampling must be:

Within 40 km of Coca, Ecuador

Within 250 m of road, dirt track, foot path

Not within a cloud or cloud shadow

Not within an African Palmplantation

Not within an island

 

 

 

 

 

   
Table 3.4 Criteria for a sample pixel

This layer was then separated by fc value into 10 separate classes (see Table

3.5) so an equal amount of sample points would be generated for each class.

Although most of the landscape is composed of pixels of 50% fc or above, the

less than 50% fc classes were collected as an attempt to observe as wide a

range of fc values as possible for the construction of a statistical model.

 

 

 

 

 

 

 

 

 

 

    

Class fc values (%)

l 0 - 10

2 10 - 20

3 20 - 30

4 30 - 40

5 40 - 50

6 50 - 60

7 60 - 70

8 70 - 80

9 80 - 90

10 90 - 100
 

Table 3.5 fc classes for stratified random points

30 spatially random points were created inside each class giving 300 unique

sample locations. Another 300 points were generated as a backup to the original

300 in case of loss of data or inaccessibility of the original locations.
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Figure 3.3 Sampling area and sample points

The decision to create 300 points was based on the amount of time that was

allotted for fieldwork. When collecting points for an accuracy assessment of a

LULC classification, the recommended amount of ground truth points per class is
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50 (Congalton and Green 1999). However, the sample point generation was

based on collecting data for validating fc and not LULC. Therefore, the number

of ground truth points only had to be enough to build a statistically significant

relationship between the image fc values and the ground truth fc values.

FIELD EQUIPMENTAND MAPS

Leica LRF 800 Rangefinde — used to measure distances from observer to target

Pentax lQZoom 1045 WR 35mm Camera — used for general photos of the sample

point

Garmin GPS 12XL Unit - used to navigate to sample points

Nikon Coolpix 4500 Digital Camera — used for general photos and for fisheye

canopy photos

Trimble GeoEprorer lI Unit — used to collect a GPS position at each sample

point

Spherical Densiomete — carried as backup instrument for collecting canopy

coverage data

Gateway 3450 Laptop — used for storing data collected each day

Brunton Compass - used for recording bearing data at sample points

A series of maps were constructed for field navigation. These maps were

created from the 10/14/02 Landsat ETM+ image that had been sharpened using

the 15m resolution panchromatic band. I chose to create the maps with a 7,4,2

band combination, which results in vegetation appearing green on the image. I

was attempting to avoid the confusion that often results when showing the maps

produced with the popular 4,3,2 combination (resulting in vegetation appearing
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red) to people not familiar with satellite imagery (especially drivers and property

owners who I assumed would be viewing the maps). The maps’ scale was

1:60388.57 which maximized the map area on a sheet of 8.5" x 11” paper and

each map contained the image as a backdrop with the sample points and the

road network overlayed.

FIELD DATA COLLECTION

Field data collection took place in and around Coca, Ecuador from June 4

to June 21 of 2003. Coca is roughly 100 km from the center of the intensive

study area. However, as mentioned previously (Chapter 1), the physical

(vegetation and soils) and climatic (temperature and precipitation) conditions are

the same in both areas. The only differences in the area are due to

anthropogenic causes. Considering that both areas fall in the same Landsat

scene and are physically similar, data collected in and around Coca will be used

to validate fc over the entire study area.

We navigated by vehicle or on foot to each sample point location using the

Garmin GPS unit. When the point fell on land that was not privately owned, we

walked to the point and collected our information. If the point fell on private

property, such as in a field behind someone’s house, we explained our purpose

to the owner of the property and asked permission to collect information on their

land. In most situations, the owner complied and allowed us to collect our data,
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Figure 3.4 Example of a field map sheet
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however, in a few cases we were denied permission. Once we reached a point,

the Trimble GeoExplorerll GPS unit was used to collect the precise location of

the point (minimum of 200 readings with a PDOP blanket of 4). While collecting

the location with the Trimble unit, the LULC and fa attribute information was

recorded. In each location, a GPS point was collected. However, in areas of

homogenous cover (LULC or fc cover), polygon information was recorded. This

method included using the laser rangefinder to find the distance from the point to

a different cover and then using a compass to observe the bearing of which the

distance measurement was taken (see Figure 3.5). In most cases, this involved

collecting 4 readings to accurately describe the homogenous area of the

landscape. As many as 8 readings were collected in other situations where the

homogenous area was oddly shaped. Collecting the polygon information allowed

for more than one pixel of ground truth data to be collected while only taking the

time to collect one GPS point.

Whereas, there does not exist a proven method for collecting fc ground

truth data where a canopy is not present, a method of collection and a set of

decision rules were created in an effort to match ground truth data to the theory

behind fc. At each sample location, a theoretical “pixel” (matching the 30m x

30m Landsat pixel) was constmcted using the rangefinder and compass. In

areas where the ground cover is homogenous, l visually interpreted the fraction

coverage. This visual interpretation was only completed by one person (Paul
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Figure 3.5 Collection of homogenous (LULC or fc) polygon information

Delamater) and, as a quality control, verified by others in the group (Dr. Joe

Messina or Francis Baquero).

o The visual estimation of the fractional coverage was based on the

vegetation in a polygon area (collected with the rangefinder and compass)

or the vegetation within the distance of one pixel (15-20 meters in every

direction from the GPS point). The following factors (in order of

importance) were used to determine the actual estimate at each collection

point.

1. Amount of vegetation — the amount of individual pieces of

vegetation
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2. Greenness of the vegetation — the greenness of the vegetation (as

opposed to brownness or yellowness)

3. Proximity of the vegetation — the distance between the individual

pieces of vegetation

4. Thickness of the vegetation — the width of the individual pieces of

vegetation

5. Height of the vegetation — the distance from the ground to the top of

the vegetation

6. Other factors such as amount of water present went into the

estimation as often areas were slightly flooded because of heavy

rains that had just occurred. An attempt was made to distinguish

between permanently flooded areas and areas that were only

temporarily flooded.

Considering all of these factors, an fc percentage was estimated from 0%

to 100%. The units were estimated in 5% minimum unit increments (eg. 80 or

85, but not 83). The decision to estimate at this level was based on the

confidence of estimation and the lack of another method to gather fractional

coverage information of a non-canopy area. In a few cases (urban settings), the

fractional coverage was listed at 2% or 3%. This was a result of the amount of

vegetation in an area being present but confidence of at least 5% in the pixel

area being low. In non-homogenous areas, the fa estimation was completed by

using the previously stated method, then factoring in the amount of bare area

and/or the amount of different vegetation percentages in the pixel area (see
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Figure 3.6). This was often accomplished easily in the field estimation. Very

complex and heterogeneous pixels often required a sketch that was later

interpreted manually with a calculator and a transparent grid. This is much like

former methods for estimating area from an aerial photo. (Lay the grid on top of

the sketch and count boxes at each fractional coverage percent. Take the

counts and percents and compute the fractional coverage for the whole area).

 

Example sample 1 Example sample 2

sample

point

0% 0% _

vegetation vegetation

coverage coverage       
 

Figure 3.6 Examples of possible non-homogenous vegetation covers at sample

point locations

In forested areas we used the 4500 camera with the fisheye lens for our field

measurement of fc. To do this, we held the camera above head, and as level as

possible (as close to vertical) and shoot the picture of the canopy (See Figure 3.7

for examples of the fisheye canopy photos). This was made quite easy as the

the 4500 is designed to photograph vertically (it has a swiveling viewfinder that

allows the camera to be held comfortably while the lens is pointing straight up).

Then I recorded the fc information of the understory, which was defined as any



 

June 7, 2003

June 18, 2003

    
Figure 3.7 Examples of canopy photos taken with the fisheye lens
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vegetation lower than the level of the camera at photo collection, using the

previously detailed visual collection method.

All information was collected on a field sheet (see Figure 3.8 and

Appendix C), which was created, from previous field sheets used in Ecuador by

Dr. Joe Messina during similar data collection trips. The field sheet was

designed to maximize the amount of area for the primary information to be

recorded while also allowing for ease of use in recording. Also considered were

areas on the sheet for ancillary information to be collected and an attempt was

made to keep the sheet at one half of a page (to fit 4 sample collections on one

piece of paper).

The field team was able to collect 211 points in the 18 days in Coca,

Ecuador. This number was less than the 300 point goal, however considering

the unpredictability of the weather (rain) and the sometimes rigorous challenges

associated with collecting points on the Amazonian landscape, we were pleased

with the amount of data collected.
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Date Collection type

 

LULC type Travel time

  
General description

 

Waypoint file name Coordinate x Coordinate Y

  
# pts in file Rover file name

 

Photo #

  

Photo type Canopy height

 

Polygon collection and Sketch area

 

 

 

 
Visual fractional coverage Information and notes

 

Figure 3.8 Field data collection form

Each night during field data collection, the points collected during the day

were downloaded from the Trimble GPS units to a laptop computer.

attribute data gathered were entered into a Microsoft Access database that

contained a relational field to link the database information to the GPS point

FIELD DATA PROCESSING
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location. After field data collection, the GPS points were differentially corrected

using base point data collected in Quito, Ecuador. Unfortunately, three days

worth of base point data were unavailable from the base station and therefore,

the points collected on these days were not useable. Once the GPS data points

were differentially corrected, they were converted to an ArclNFO coverage using

ArcTools.

The next step was to calculate the fa of the points taken under a canopy.

This was performed using the Gap Light Analyzer” (GLA) software created by

Simon Fraser University and the Institute of Ecosystem Studies. This software

was specifically built for use with fisheye lens photography to measure the

amount of canopy coverage by converting the photograph to a binary image and

comparing pixels of sky to canopy. The inputs for the GLA software included:

absolute center of the image, the dimensions of the photo, the distance from the

center of the image, and the threshold for sky. The threshold value is where

adjustments were made for the varied conditions of the sky in each image. After

viewing all of the images, sky conditions were categorized into the following table

and a threshold value (between 0-255) was chosen to best represent the

difference between sky and canopy for each category (see Table 3.6).

 

 

 

 

 

   

Sky Condition Threshold level

Sunny 180

Cloudy 140

Hidden Sunny 125

ery Cloudy 75
 

Table 3.6 GLA threshold values for fisheye lens canopy photos
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After the threshold value was selected, the image was converted to binary data

type as a representation of sky and canopy pixels. The GLA software then

constructed a table with the photograph's file name and the canopy coverage

attributes. The percentage of canopy coverage at each point (generated by the

GLA software) and the understory fc values (recorded in the field) were then

used to construct a model of the true fc at each point by utilizing a custom

neutral model built in the Research Systems Inc. (RSI) Interactive Data

Language (IDLW). Neutral models are spatial models often used in landscape

ecology studies (Gardner et al. 1987). One specific use is as a means of

generating landscapes that share statistical properties with an observed

landscape (Keitt 2000). Although the canopy photos are not a traditional

landscape generally used in landscape ecology, they are a spatial representation

of the vegetation over an area. The fc value at each point was calculated by

modeling the canopy fc and the understory fc using neutral models, then

overlaying the layers to create a comprehensive model of the vegetation cover.

This method implies a random distribution of the vegetation throughout the

canopy and understory. Although this may not be the most robust method to

model the vegetation, it makes an attempt to include all of the vegetation found at

each point. First, a binary neutral model representing the canopy photo, with the

exact same dimensions and shape (from the inputs of the GLA software), was

randomly generated using the fc value calculated by the GLA software. Next,

another binary neutral model (with the same dimensions as the canopy model)

was created using the fc value of the understory. The two neutral models were
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combined as any pixel with a value of 1 or 2 representing vegetation cover (see

Appendix D for IDL code). The vegetated pixels were then compared to the total

number of pixels to create the fc value at the point location. These values were

then entered into the attribute data contained in the Access database.

The final attribute data were imported as a table from the Access

database and joined to the point coverage using a table join in ArcMap. The

GPS points with polygon information were then subsetted using the “collection

type” field. The polygons were constructed according to a set of steps created by

the Carolina Population Center. The steps included creating a temporary line

coverage that held the distance and bearing information collected at the point.

Once the lines representing the distance and bearing information were

constructed around each point, a polygon coverage was created by heads up

digitizing each feature using the endpoints from the line coverage. This process

was greatly aided by the snapping options in ArcMap. The name of the point

with the polygon information was then added as a field in the attributes of the

coverage. The attribute data were joined to the polygon coverage using the

same method discussed earlier.

fc VALIDATION

The first step in validating fc was to remove the points from the ground

truth data where fc information was not collected (e.g. road control points). Next,

to compare the fc values calculated from the image to the ground truth data, the

image fc layer was converted to a point coverage using ArcToolbox. This
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conversion creates a point feature at the center of each pixel in the image

containing the image value In the attributes of the corresponding point. A spatial

join was then performed between the ground truth points and the image points.

A point to point spatial join finds the point nearest the point being joined to

(ground truth) and assigns the attribute value (image fc) to that point. The

resulting point coverage contained the ground truth and image fc values in its

attributes. The attributes were then exported to an Excel spreadsheet and a

linear regression was modeled on the data using the image fc value as the

dependent variable and the ground truth fc as the independent variable (further

discussed in Chapter 4). However, after noticing that many of the ground truth

points did not fall directly in the center of a pixel, the decision was made to

include the image fc values of neighboring pixels in an attempt to model the

image is value away from the center of a pixel. Because the fc value recorded

on the ground was a function of the vegetation surrounding the point (in my

theoretical pixel), I needed to account for when my theoretical pixel bounds did

not match the true pixel bounds in the image. A buffer of 21.5 meters (just over

half the distance from the pixel center to the pixel comer, see Figure 3.9) was

constructed around each of the ground truth points. This distance was chosen

considering that if a ground truth point fell directly in the comer of four pixels,

then the fa value of all four pixels would be represented as the image fc value at

that point. By including the values of the adjacent pixels, l was able to construct

an image fc value that was a better representation of what was on the ground at

points away from the center of a pixel.
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However, if the sample point fell directly on or very near the center of a pixel, no

other pixel values would be represented. The points generated from the image

fc values were then spatially joined to the buffer polygon layer. A point to

polygon spatial join finds the points that fall within the polygon and assigns the

attributes of the points to the polygon. The attributes were then exported to an

Excel spreadsheet. For each of the polygons, the mean of the image fc values

contained within the polygon was calculated. A linear regression was modeled

using the mean image fc value as the dependent variable and the ground truth fc

value as the independent variable.

LULC CLASSIFICATION

The LULC classification, performed on the 9/9/2001 image, was a hybrid

method, combining an unsupervised classification, evaluation of classes, and a

supervised classification. A very similar LULC classification was performed in

this region by Messina and Walsh (2001). The image was chosen for

classification in an attempt to identify classes previous to the fumigation efforts of

2002. The ISODATA unsupervised classification was initialized from the

statistics of the image along the diagonal axis and had 255 potential classes.

The significance of 255 classes is to allow the maximum number of classes to be

generated while keeping the resulting dataset in an 8-bit data structure (which

keeps processing time and file size low). The convergence threshold of the

classification was set at 0.98 or 30 iterations before completion. Each image

reached the desired threshold level before the maximum number of iterations.
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The signatures gathered from this classification were then compared

against each other in an effort to isolate the spectrally significant classes. This

comparison included the evaluation of the transformed divergence matrix

composed of the best average values between classes. The threshold for

keeping classes was a transformed divergence value of >1960. This threshold

value (1960) was chosen after considering the complexity of the landscape and

in an effort to keep the overlap between classes very limited. Each signature

was compared against all of the other signatures in the set. This method

included evaluating an array that contained the transformed divergence values

between signatures and eliminating those with that shared low values with many

other signatures. The end product of the evaluation was a set containing 90

spectrally significant signatures. The last step in the classification was a

maximum likelihood supervised classification performed using the spectrally

significant signatures. This created a classified layer with the value for each pixel

representing the signature (of the 90 spectrally significant signatures) that the

pixel was assigned to. This classified layer was then attributed to a very simple

LULC scheme (see Table 3.7) via a visual interpretation using colors, textures,

and location on the image and a knowledge of the research area (gained during

field work) (Messina and Walsh 2001). The Coca class was identified using the

visual interpretation and also by isolating agricultural areas that only appeared

north of the Rio San Miguel (dividing Colombia and Ecuador) and comprised a

small percentage of the overall image area.
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LULC classes # ofclasses % of image area

lPrimary forest 3 38

Secondary forest 1 17

[Pasture with trees or Rastrojo 2 13

Agriculture or pasture with no trees 5 13

[P_ossible coca 5 6

IOther (includes urban, water, and other LULCs) 74 13

totals: 90 100
 

Table 3.7 LULC classification scheme

An accuracy assessment was not performed on the classification as 1) I did not

have ground truth data for the coca classes (see previously mentioned dangers

of conducting research in Colombia or near its border), 2) the confidence of the

classification was high considering the simple scheme and prior knowledge of the

area, and 3) the desired results did not call for an accuracy assessment (with

more emphasis placed on the number of classes affected).

CHANGE DETECTION

For change detection, a subset of the affected area was created via an

AOl in Imagine. The AOI was digitized (heads-up) and represents the area of the

image north of the Ecuador/Colombia border that appeared to be an agricultural

region. The change detection was accomplished by overlaying the fc layers,

subtracting the values of the earlier dated layer from the more recent layer,

recoding the data to only show the pixels that had lost 10% or more of their fc.
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then subsetting the newly created layer using the AOI of the affected area. The

changes occurring between 9/9/2001 and 9/12/2002 were labeled as Event 1 and

the changes occurring between 9/12/2002 and 10/14/2002 were labeled as Event

2. The LULC classification layer was then overlayed with the results of Event 2

to identify the classes with an fc loss of more than 10%.
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Chapter 4 : RESULTS AND DISCUSSION

fc VALIDATION RESULTS

The image fc values and the ground-truth fc values were compared using

a linear regression with the ground-truth fc values as the independent variable

and the image fc values the dependent variable. A linear regression was

chosen, as the expected results were to find a 1:1 relationship between the two

variables. The results of the original regression are found in Figure 4.1A and

Table 4.1. This regression was based on the point to point overtay where the

image to value was compared only against the ground-truth fc value of the pixel

that it fell in. The results of the regression of the mean of the image fc values

within 21.5 meters (see Figure 3.9) against the ground-truth value are found in

Figure 4.1B and Table 4.2. As the results show, these regressions both are

statistically significant. The regressions were also performed after taking out the

large outliers in the data. Given that the Northern Oriente is a very dynamic

landscape and that there was a 9-month lag between the date of image

acquisition and field data collection, I observed changes that had occurred

throughout the landscape. These changes included agricultural plots cleared for

less than 3 months and a farm, for example, where a large portion of secondary

forest had been cut down and cleared the day prior to our visit.
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Figure 4.1 Regression results using (A) the point to point overlay and (B) the

point to mean of points within 21 .5m overlay
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Observations 145

R Square 0.6426]

F 249.936

Si ificance F 7.4E-33

t Stat (intercept) 5.62976

t Stat (slope) 15.8094

P—value (intercept) 9.6E-08

P-value (slope) 7.4E-33
 

Table 4.1 Regression results for point to point overlay with the full dataset

 

 

 

 

 

 

 

   

Observations 145

R Square 0.67173

F 292.621

Significance F 2.1E-36

t Stat (intercept) 6.46025

t Stat (slope) 17.1062

P-value (intercept) 1.5E-09

P-value (slope) 2.1E-36
 

 

 
Table 4.2 Regression results for point to mean of points overlay with the full

dataset

At this point, the image to value was 70% and my field estimation, only

accounting for the remaining understory vegetation, was 15% (see Table 4.3 for

full list). I chose to remove 10% of the data points based on the LULC

information from my field forms and the evaluation of the most erroneous outliers

in the dataset. A total of 14 points were removed from each dataset and the

regressions were completed again. This number of points to remove was chosen

in an attempt to keep a high percentage of the data points (>90%), yet also

account for the changes that may have occurred to the landscape due to

anthropogenic or natural causes. The sample points that were removed were
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chosen by selecting those with the largest difference between image fc value

and ground truth fc value and deleting them from the dataset.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

ground fc image fc difference

1 15 55 40

2 15 70 55

3 20 52 32

4 30 69 39

5 40 79.5 39.5

6 45 93 48

7 50 82.333 32.333

8 65 36 29

9 80 35 45

10 85 52 33

1 1 85 49 36

12 90 44.5 45.5

13 90 32.5 57.5

14 95 49.667 45.333
 

Table 4.3 Removed sample points

 

The regression results can be found Figures 4.2A and 4.2B and Tables 4.4 and

4.5 and show very improved results. The linear regressions of the image to data

and the ground truth to data show a promising trend. Although none of the

relationships proved to be a perfect 1:1, there are factors that may have

contributed to this. The first factor may be the method of calculating the fc value

as a linear function of the NDVI value of the image. Other vegetation indices

such a SAVI and MSAVI are possibly better models of the biophysical properties

of the vegetation as they attempt to eliminate the effects of varying soil

conditions, however the elimination of soil effects should be inherent in the

calculation of fc.
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Figure 4.2 Regression results minus outliers in the data using (A) the point to

point overlay and (B) the point to mean of points within 21 .5m overlay
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Observations 131

R Square 0.82472

F 606.969

Significance F 1.3E-50

t Stat (intercept) 5.46723

t Stat (slope) 24.6367

P-value (intercept) 2.3E-07

P-value (slope) 1.3E-50
 

Table 4.4 Regression results for point to point overlay without the outliers in the

 

 

 

 

 

 

 

  

dataset

Observations 131

R Square 0.8489

F 724.741

Si ificance F 8.8E-55

t Stat (intercept) 5.75114

t Stat (slope) 26.921

P-value (intercept) 6.1E-08

P-value (slope) 8.8E-55  

 

 
Table 4.5 Regression results for point to mean of points overlay without the

outliers in the dataset

Subtracting the NDVI“... value in each pixel should eliminate the amount of

NDVI gained from bare soil in each pixel. Other studies have looked at the

possibility of estimating fc (referred to as VF [vegetation fraction] in the study)

from information in narrow visible bands instead of using NDVI values (Gitelson

et al. 2002). Although the results were promising, this study was conducted only

for wheat and corn over very small areas. Leprieur et al. (2000) and Purevdorj

(1998) have suggested that the relationship between NDVI and fc may be non-

linear when vegetation cover is sparse.
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Another factor causing the non-perfect relationship may be the visual

estimation as a method of collection of ground-truth data. As Figures 4.1 and 4.2

show, the regression matches a variable with a continuous scale against a

variable that borders between continuous and categorical. Although the ground

truth data may appear categorical, it is really a continuous variable with a lesser

precision in collection. This problem was considered in the genesis of creating a

method for collecting ground-truth fc data, however no solution was apparent in

the literature. Zha et al. (2003) attempted to relate fc to NDVI in a semi-arid

grassland in China, but only collected ground fc measurements in 1m2 areas to

compare to the 30m2 Landsat pixel. Other studies used color photography taken

at each sample site to estimate the fc of an area (Purevdorj et al. 1998). This

“void” of a proven method of collection for fc data in non-canopied areas cannot

be filled without studies such as this, which attempt to discover a new method.

However, these results verify my hypothesis that a linear relationship exists

between image fc and ground fc used in this study.

fc AND LULC CHANGE DETECTION

Considering the nature of the observed relationship between to calculated

from the image and the to observed on the ground and the likelihood for natural

changes on the landscape, the change detection was only considered for pixels

that lost more than 10% of their fractional coverage between images. 10%

change was chosen considering non-perfect (not 1:1) relationship between

image fc and ground fc values and in an attempt to not include smaller
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defoliation events that were not due to Plan Colombia fumigation. Zha et al.

(2003) showed that fc was 89% accurate in when comparing ground truth data

and image results grouped in 10% increments (the same increments used for the

sampling scheme in this study, see Table 3.5).

We found that 56,627 ha of 10 % or greater defoliation occurred during

Event 1 (9/9/2001 to 9/12/2002) and 49,551 ha during Event 2 (9/12/2002 to

10/14/2002) of the southwestern Putumayo coca eradication effort. The total area

experiencing 10% or greater defoliation during 2002 coca eradication effort in the

region was 106,178 ha. The results of the change detection in Events 1 and 2

are found in Figures 4.3 and 4.4. The distinguishing characteristic of the spatial

organization of defoliation in both events are the linear patterns that emerge.

Patterns such as these are not found in a naturally occurring environment and

the linearity of the patterns are believed to be the result of the flight lines taken by

the aircraft while spraying. Another observation that shows that the defoliation is

due to spraying is the scale at which it is occurring. As discussed earlier, the

farmers in this area live on very small plots. To have all of them clear their areas

at the same time would require a very large and very unrealistic organized effort.

The last distinguishing spatial characteristic is the temporal variability that exists

between the events. A very noticeable trend is that the defoliated areas of Event

2 are shifted away from the areas in Event 1. This shift in the defoliated areas of

Event 2 is noticeable as the linear patterns of defoliation still generally run north

to south, but are moved to the west of the linear patterns of Event 1.
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Figure 4.3 Maps for defoliation Event 1 and Event 2 (notice extent box for

Figure 4.4)
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Figure 4.4 Close up of defoliation near the Ecuador-Colombia border in Event 2

(notice where identified in Figure 4.3)

This would signal that the defoliation occurring was planned in advance

and the result of fumigation, not due to natural causes or farmers clearing their

land.

According to the UNODC report, coca production over all of Putumayo

.was reduced by 71,891 ha versus our measured defoliation of 106,178 ha (which

does not cover all of Putumayo), an unexplained difference of 34,287 ha. I

believe that this unexplained difference is due to drift and runoff of the herbicide
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and also (discussed in the next paragraph), due to non-coca LULCs being

excluded from the defoliation figures.

Discriminate spraying of coca would limit the total number of spectral

classes heavily impacted by spraying. Further, the areas of greatest magnitude

change in fractional cover would theoretically contain significantly fewer spectral

classes. The defoliation images for each event were broken into defoliation

classes to compare the number of classes represented as the intensity of

defoliation became greater. Surprisingly, in each defoliation class, the numbers

of classes represented are quite similar (see Table 4.6).

 

 

 

 

 

 

 

  

% fc lost Classes represented (Event 1) Classes represented (Event 2)

10-14 49 47

15-19 47 49

20-24 47 47

25-29 45 46

30-39 45 46

40-49 43 44

50-100 38 42   
 

Table 4.6 Defoliation classes and LULC classes represented in each

Also for Events 1 and 2, the three dominant spectral classes represent 24% and

36% of the defoliated landscape, respectively, with the top 10 classes

representing 60% and 69%, respectively. Even assuming that the top 10 most

impacted classes capture most forms of coca production, this still leaves 40%

(Event 1) and 31% (Event 2) of the defoliation occurring in non-coca or coca

intercropped lands. For the 50% and above defoliation class, 57% of the total

spectral classes in event 1 and 63% in event 2, including crops and other non-
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coca producing lands captured in both events, were represented (see Appendix

E for the expanded results).

While a trend exists with fewer classes being defoliated, it does not

represent the expected dramatic reduction one would expect. The complex

spatial organization of the Colombian coca producing landscape appears to

prevent discriminate spraying of defoliants.

CONCLUSIONS

This study used remote sensing technology and fieldwork to quantitatively

and qualitatively measure the defoliation of the vegetation due to the Plan

Colombia fumigation in Putumayo, Colombia. The objectives of the study were

mmbw

1. Identifying fc as a biophysical variable that would sufficiently characterize

the effects of defoliation due to Plan Colombia.

2. Validating the use of fc in this study by collecting ground truth data and

using that data to show the linear relationship that exists between image

fc and ground fc.

3. Quantifying the amount of Plan Colombia defoliation using the field-

calibrated fc data.

4. Identifying the number of LULC classes affected by fumigation and

showing that the Plan Colombia spraying during 2002 was not

discriminate over the landscape.
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l hypothesized that:

1. Green fractional coverage derived from ETM+ data accurately quantifies

vegetation cover.

2. Hybrid classification techniques applied to ETM+ data identify LULC

classes.

3. Changes in fc indicate changes due to defoliation.

4. Defoliation in Putumayo, Colombia occurs indiscriminately over the

landscape affecting cover types other than coca.

5. Landsat ETM+ data provides the synoptic coverage with adequate

resolution characteristics suitable for study.

My hypotheses were verified by 1) validating the linear relationship that exists

between image fc and ground truth fc. 2) performing a LULC classification using

the hybrid method resulting in 90 spectrally significant classes, 3) revealing the

linear spatial patterns of defoliation using an fc change detection, 4) using the

number of LULC classes represented in each defoliation class to show that a

dramatic reduction of classes does not exist and the most conservative estimates

place over 30% of defoliation in non-coca LULC classes, and 5) performing the

aforementioned analysis using Landsat ETM+ data.

FUTURE RESEARCH

Although this study identified effects of aerial fumigation on the landscape

in Putumayo, there exist many possibilities for improvement and also extension

of the research. One area that I would like to explore further is the algorithm
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used to calculate fc. I believe that revisiting the statistical relationship between

NDVI (or any other of the previously mentioned vegetation indices) and fc could

lead to image fc values that match ground fc values with a 1:1 relationship.

Another possibility is to refine the method used for ground tmth fc calculation.

The use of aerial photos and/or high spatial resolution satellite imagery to

calculate fc added to the field estimation improvements could create a high level

of confidence in using fc derived from images of more coarse spatial resolution

such as Landsat ETM+.

I would also like to verify the LULC classes that were created using the

hybrid method. Although an accuracy assessment was not necessary for the

results of this study, the accuracy information would greatly enhance the

understanding of the LULC classes being fumigated and possibly help to explain

the effects of wind drift and runoff of the herbicide used in the fumigation.

Although the chances to find coca in Ecuador are limited, the possibility of

verifying the other LULC classes could illuminate, through a process of

elimination, the coca classes.

In future research, I would like to explore changes that have occurred on

Colombia’s landscape after fumigation. As was mentioned previously, many

believe that fumigation could lead to deforestation. I would like to conduct a

LULC change detection of the area in an attempt to illuminate possible rising

deforestation rates in Putumayo.

I also believe that I should extend this research to northern Ecuador.

Some of the possibilities are: showing whether Plan Colombia fumigation has
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affected vegetation in Ecuador (near the border), calculating deforestation rates

near the border, locating coca cultivation in Ecuador, illuminating changes of the

spatial organization of the landscape in Ecuador due to the influx of Colombians,

and modeling the possible effects of Plan Colombia (the migration of Colombians

into Ecuador) using spatial simulation models.
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APPENDIX A

58 INPUT PARAMETERS

09/09/2001 Image ETM+

 

 

 

 

 

 

 

 

 

 

   

Site Elevation 500 meters

Sensor Elevation 705 kilometers

Solar Zenith 29.5321637

Solar Azimuth 79.5446957

Sensor Zenith 0

Sensor Azimuth 0

Model Type Predefined

Standard Atmos. Model Tropical

Aerosol Model Continental

Visibility 17 kilometers

Date 9/9/2001   
09/12/2002 Image ETM+

 

 

 

 

 

 

 

 

 

 

   

Site Elevation 500 meters

Sensor Elevation 705 kilometers

Solar Zenith 29.3394215

Solar Azimuth 81.645768

Sensor Zenith 0

Sensor Azimuth 0

Model Type Predefined

Standard Atmos. Model Tropical

Aerosol Model Continental

Visibility 17 kilometers

Date 9/12/2002   
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10/14/2002 Image ETM+

 

 

 

 

 

 

 

 

 

 

   

Site Elevation 500 meters

Sensor Elevation 705 kilometers

Solar Zenith 27.727403

Solar Azimuth 107.930127

Sensor Zenith 0

Sensonr Azimuth 0

Model Type Predefined

Standard Atrnos. Model Tropical

Aerosol Model Continental

Nisibility 17 kilometers

Date 10/14/2002  
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APPENDIX B

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

53 OUTPUT PARAMETERS

9/9/2001 Image

Reflectance Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

0 0.0719 0.0395 0.025 0.0123 0.0026 0.0012

0.1 0.1492 0.1188 0.1089 0.0968 0.0893 0.0903

0.2 0.2292 0.1999 0.1944 0.1822 0.1762 0.1796

0.3 0.312 0.2831 0.2813 0.2684 0.2634 0.269

0.4 0.3977 0.3683 0.3697 0.3555 0.3508 0.3585

0.5 0.4866 0.4556 0.4597 0.4435 0.4384 0.4481

9/12/2002 Image

Reflectance Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

0 0.0719 0.0395 0.025 0.0123 0.0026 0.0012

0.1 0.1492 0.1188 0.109 0.0968 0.0893 0.0903

0.2 0.2292 0.2 0.1944 0.1822 0.1762 0.1796

0.3 0.312 0.2831 0.2813 0.2684 0.2634 0.269

0.4 0.3978 0.3684 0.3698 0.3556 0.3508 0.3585

0.5 0.4867 0.4557 0.4598 0.4436 0.4385 0.4481

10/14/2002 Image

Reflectance Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

0 0.0717 0.0394 0.0249 0.0123 0.0026 0.0012

0.1 0.1492 0.1 189 0.109 0.0969 0.0893 0.0904

0.2 0.2295 0.2003 0.1947 0.1824 0.1764 0.1797

0.3 0.3125 0.2836 0.2818 0.2688 0.2636 0.2692

0.4 0.3985 0.3691 0.3704 0.356 0.3511 0.3588

0.5 0.4877 0.4566 0.4606 0.4442 0.4388 0.4485        
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APPENDIX C

DESCRIPTION OF FIELD DATA COLLECTION FORM

Site #2 The site # from the field maps

Date: The date that the information was recorded on

Travel time: The time traveled between the starting point and the current

collection point. Starting point should be noted

LULC type: The LULC at the collection point (see LULC sheet for guidelines)

Collection type: This is either a point, line, or polygon (using just GPS, or GPS

plus rangefinder)

General description: Any comments on general features at the collection point.

This can include vegetation, location, soils, man-made

If pts in file: The number of points collected by the GPS unit at the collection

point

Rover file name: The name given to the rover file location by the GPS unit

Waypoint file name: The name given to each waypoint file by the GPS unit

Coordinate X: The X coordinate recorded by the GPS unit

Coordinate Y: The Y coordinate recorded by the GPS unit

Photo #: The photo number, if needed, at the collection point (may have

multiples)

Photo type: The name of camera that was used to take the photo (Pentax 105,

Pentax 4500)

Canopy height: The height of the canopy (where applicable) in meters

measured with the rangefinder

Polygon collection and Sketch area: The distance and azimuth of polygon

collection and sketches of the area
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Visual fractional coverage information: The FC collection notes, what kind of

collection (photo, visual)
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APPENDIX D

IDL CODE TO SIMULATE CANOPYAND UNDERSTORY

;IDL program photo_fix.pro

;written by Paul Delamater for AAG ELWL and thesis

;creates neutral models to create one fc value when

;a fc photo and fc ground cover data are present

pro photo_fix

time = systime(1)

;define variables

fcphoto = [.83215, .808, .5681, .5612, .0973, .6587, $ .86415,

.1459, .7082, .7824, .7351, .87835]

fcground = [.75, .35, .3, .85, .71, .80, .40, .28, .80, $ .85,

.85, .80]

fcfinal = fltarr(12)

maxiter = 12

;open mask image

mask = read_tiff('c:\paul\research\thesis\mask.tif')

;get circle area

circlearea = n_e1ements(where(mask eq 1))

;start the loop

for i=0, maxiter-l do begin

;create neutral model 1

neutrall = randomu (seed, 1395, 1395)

;create photo model

photo_fc = neutrall le fcphoto(i)

;create neutral model 2

neutra12 = randomu (seed, 1395, 1395)

;create groung model

ground_fc = neutra12 le fcground(i)

;create combined model

comb_fc = photo_fc + ground_fc

greencover = comb_fc gt 0

;mask out edges

greencover = greencover * mask
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;calculate fractional coverage

greenpix = n_e1ements(where(greencover eq 1))

fcfinal(i) = (greenpix * 1.0) / (circlearea * 1.0)

endfor

print, fcfinal

;get the processing time... this code ran very fast

print, 'Total processing time =',(SYSTIME(1) - time)/60, '$

Minutes'

;all good things must come to an

end

85



APPENDIX E

EVENT 1.' % OF DEFOLIATED AREA PER LULC CLASS

% of defoliated area

0.0027

0.0008   c‘D’

_w

0 ther (includes urban, water, and other LULCs)

 

  

 

note: classes not represented have been removed
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EVENT 2: % OF DEFOLIATED AREA PER LULC CLASS

 

% of defoliated area 

 

 

 

 

     
 

 

 

 

 

     

Class 7 0.0087

Class 13 0.0005

Class 16 0.0706

Classl7 0.0118 , ’ g . _ _ '

Class 18 0.0005 . -. " f .7 ,, ,1 .i.’ 1«

Class 19 0.0517 Other (includes urban, water, and other LULCs)

Class 20 0.0069

Class 21 0.3430 note: classes not represented have been removed

Class 22 0.0178

Class 23 0.2309

Class 24 0.0004

Class 25 0.6205
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Class 83 2.2731

Class 84 1.6886

Class 85 0.5853

Class 86 1.6112

Class 87 0.4430

Class 88 0.5726

Class 89 0.2682   
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