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ABSTRACT

ELLIPTIC GRID GENERATION, SMOOTHING, AND REFINEMENT FOR

STRUCTURED AND UNSTRUCTURED MESHES

By

Deepak Tiwari

Finite difference (FD), finite volume (FV), and finite-element (FE) methods are very

powerful techniques for obtaining solutions to partial differential equations that govern

fluid flow problems. However, in order to use these methods, it is necessary to replace

the spatial domain of the problem being studied by a finite number of grid points or cells.

Depending upon how the grid points or cells are connected to each other, the resulting

grid is referred to as structured or unstructured. In this study, an algorithm based on

elliptic partial differential equations, a technique used to generate and smooth structured

grids, has been generalized to be used with both structured and unstructured grids. The

algorithm implemented enables uniform local or global smoothing across all block

boundaries. It also enables directional smoothing of the grid to allow for high-aspect

ratio grids that are aligned with the flow direction. The algorithm developed also enables

grid refinement and coarsening. Refinement and coarsening are achieved by simply

inserting and deleting grid points, and redistributing them by elliptic or directional

smoothing. The usefulness of the method developed is illustrated by applying it to

generate, smooth, and refine grids for several example problems, including the grids for

the combustion chamber of an internal combustion engine with complicated shape piston

bowls and cylinder heads.
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CHAPTER 1 INTRODUCTION

1.1 Preliminary

Finite difference (FD), finite volume (FV), and finite—element (FE) methods are powerful

techniques for obtaining solutions to partial differential equations that govern fluid flow

problems. However, in order to use these methods, it is necessary to replace the spatial

domain of the problem by a finite number of grid points or cells. The process of

replacing a spatial domain by a system of grid points or cells is referred to as grid

generation. Grid generation is a very important part of FD, FV, and FE methods because

the system of grid points or cells used strongly affects the accuracy, efficiency and ease

with which these methods generate solutions. In some instances, the ability or inability to

generate an “acceptable” grid system determines whether FD, FV, or FE methods can or

cannot be used. An “acceptable” grid is one that would resolve not only the geometry but

also the flow physics to the desired accuracy with minimal grid-induced errors. We focus

this study on how to generate "acceptable" grid to facilitate FD, FV, and FE methods.

All grid systems can be classified as structured, unstructured, or mixed, depending

upon how the grid points are connected to each other to form cells (see for example Refs.

1 and 2). Structured grids can be generated by algebraic or partial differential equations.

Algebraic methods include the two-, four-, and six-boundary methods (Refs. 2 and 3) and

multi—surface methods (Ref. 2 and 4). Partial differential equation (PDE) methods

include those based on elliptic, parabolic, and hyperbolic PDEs (Ref. 4). Of the PDE

methods, those based on elliptic PDEs are the most widely used because they are the

most versatile. Two types of elliptic PDEs have been used, Laplace and Poisson. The

Laplace equation ensures a smooth grid (i.e., it distributes grids points uniformly



throughout the domain, forming cells with nearly the same area in two dimensions or

volume in three dimensions throughout the domain). In addition to smoothing, the

Laplace equation guarantees no overlap in grid lines. The Poisson equation allows grid

points to be clustered about any point or lines in the spatial domain. But, there is no

guarantee that grid lines will not overlap. Although there is no guarantee in all cases,

there are ways to define the coefficients of the Poisson equation to ensure no overlap in

certain cases. It is worth mentioning here that in structured meshes these operators can be

applied directionally, that is, the smoothing or clustering operations can be done

selectively in a chosen vectorial functional direction.

Unstructured grids are generated by methods that are quite different from those

used to generate structured grids. Unstructured grids can be classified as isotropic and

anisotropic mesh (Ref. 5). The generation of anisotropic mesh is still in a state of

development (see, e.g., Ref. 6). The generation of isotropic mesh is well developed with

a variety of techniques (e.g., advancing front and advancing layers) and has been applied

to numerous applications. All methods use the concept of Delaunay triangulation (or

tetrahedralization) when forming “isotropic” cells. Delaunay triangulation (or

tetrahedralization) is an effective criterion for generating "acceptable" grid. “Acceptable”

cells are constructed iteratively by edge or face swapping. In 2-D, a unique isotropic

mesh can be generated. In 3—D, Delaunay triangulation cannot guarantee of an

“acceptable” mesh. “Slivers” (i.e., 3-D cells that appear as if they are 2-D) invariably

form, and they must however, be smoothened. The use of unstructured grids with FV

methods is gaining wider acceptance in industry and academia, and considerable research

is still going on in this area (Refs. 4, 5, 6).



In this study it is proposed to generalize the PDE approaches developed for

structured meshes to smooth, cluster, and refine unstructured meshes. In many cases, a

final "acceptable" unstructured mesh is generated by repeated and alternate smoothing

(PDE approach) and swapping (Delaunay) operations. Clever use of smoothing would

reduce the number of iterations for the more expensive Delaunay triangulation (or

tetrahedralization).

The algorithm was applied to a set of multiblock structured grid from KIVA-3V

and simple two-dimensional unstructured grids. An internal combustion engine geometry

was chosen to generate the initial multiblock structured mesh. The initial mesh had bad

quality regions due to which KIVA would reject the input in critical cases. Such cases

were typical when piston head was close to the top dead center and mesh was particularly

bad with high volume ratios and skewness (mathematically defined in chapter 4). A

sample two—dimensional unstructured mesh was generated to apply the generalized

algorithm in unstructured meshes. The final mesh was a definite and significant

improvement over the initial mesh. The final mesh was “acceptable” in terms of

quantitative grid quality measure and KIVA accepted the mesh in all steps.

1.2 Objective

The objective of this study is to generalize elliptic PDE methods developed for

generating structured grids for unstructured grids. More specifically, the objectives are as

follows:

1. Develop an algorithm based on the Laplace equation using unstructured data

format to smooth structured multi-block grids.



. Generalize the Laplace equation to enable directional smoothing of structured

gfids

. Specify the Poisson operator to generate structured grids with clustering

without overlap.

. Generalize the Laplace equation for generating unstructured isotropic mesh.

. Generalize the Laplace operator to enable refining and coarsening of

unstructured grids based on weighted averaging.



CHAPTER 2 ALGORITHM

2.1 Introduction

In this chapter, we will describe and formulate the algorithm to smooth and cluster a pre-

existing grid that guarantees no overlap by using elliptic PDEs. The most common

examples of elliptic PDEs are Laplace, Poisson, and Helmholtz equations. We consider a

grid system, where location of the boundary nodes are either fixed or are allowed to move

in a well-defined manner. This means that we know the boundary value of the function

involved in these equations, at all times. Thus the problem is defined.

We use Laplace operator to smooth the grid. We use Poisson operator to cluster

the grid in a specified direction or in a region of interest in a way that it ensures smooth

clustering and no overlap. We will first formulate the Laplace operator for structured and

multi-block structured grid and then generalize the algorithm for unstructured grid. We

then describe a generalized Poisson operator that can be applied to structured and

unstructured grids.

2.2 The Laplace Operator for Multi-Block Structured Mesh

The numerical method discussed here is based on discrete laplacian. A discrete laplacian

does not guarantee that there would be no overlap of grid lines in all cases. When the

domain is convex (or almost convex), discrete laplacian strategy will generally produce

good grids. However, for nonconvex regions and other special situations, it may produce

grids that are not valid (Ref 5). Winslow (Ref 7) suggests smoothing based on weighted

averaging to solve this problem. We use the concept of weighted averaging based on

nodal distance to smooth the grid thus eliminating possibility of grid overlap in any case.

We transform the physical domain in the Cartesian coordinate system to generalized co—



ordinate system, creating the computational domain. It is customary approach to

transform the domain to generalized co-ordinate system to simplify the problem domain,

but is not a requirement. The idea is to map whole domain to a square (or cube for 3D).

For example in the domain each quadrilateral cell can be mapped onto a square cell in the

computational domain. Similarly each hexahedral cell can be mapped onto a cubical cell

in the computational domain. Use of computational domain simplifies the boundary

conditions, measurements and application of constraints.

2.2.1 Elliptic Grid Generation Based on Weighted Laplacian

The position of any grid point in Cartesian coordinate system X ,Y,Z can be expressed

as a function of generalized coordinates 5, 77, 4,“ and time. Ignoring the time dependency,

the harmonic mapping can be represented as:
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Figure 1. The Coordinate Transformation in 2—D



where X ,Y,Z can be expressed as a function of generalized coordinates 6,77,; and

vice-versa; i.e.,

X =X(§.n.§) (2.2)

Y =Y(€.n,{) (23)

Z =Z(§.n.() (2.4)

If the Laplacian is used to relate X ,Y,Z and 6,77, 5 , (Ref. 4) then:
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Step 1: Each derivative with respect to the Coordinate variables can be expressed as

derivatives of generalized coordinates as illustrated.

i=6 __a_+77 1+; .8—

BX X36 X87] X35

(2.8)



For convenience we will derive all the formulations for one of the dimensions.

Corresponding equations in other dimensions can easily be derived using the similar

logic. Proceeding to second derivatives
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Rearranging,
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Similarly deriving in Y,Z , adding up and using equations 2.5, 2.6, and 2.7,
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An important measure of mapping and grid generation is the mathematical entity

Jacobian. A positive definite Jacobian indicates the correctness of transformation. The

Jacobian, which is the direct measure of physical magnification of transformation, is

  

definedas

X X x
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Derivatives of generalized coordinates can be expressed in terms of Jacobian and the

derivatives of cartesian coordinates, e.g.,
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And defining,
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The equation (2.13) reduces to,
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Step II: Interchange dependent and independent variables
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Equation (2.24) represents the two-coupled PDEs that must be solved. To solve equation

(2.24) in pseudo time, the formulation changes to
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Using finite differencing,
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and,
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the derivatives of cartesian coordinates can be expressed using central differencing,

_ Xi+l,j,k—Xi—l,j,k

5 2A:

 

X (2.29)

2.3 The Generalized Laplace operator for unstructured mesh

The laplace operator formulated for three-dimensional single-block structured mesh can

be generalized for unstructured mesh. The generalized laplacian is based on another form

of discretized laplacian where each point inside the region must be an average of the

neighboring points. This can mathematically be represented as:

(it: (2 X. —nX)/n (2.30)

i=1

where (fix is the required shift in x coordinate of point X, and X ,- represents x coordinate

of the neighboring points. This simple averaging operator works well in cases where the

12



unstructured cells are largely isotropic (e.g., the angles in a triangular mesh are all close

to 60 degrees). In case where this is not true we will get the desired results by using

weighted averaging instead of simple averaging. This averaging can be based on nodal

distance or face area.

2.4 The Poisson operator

The poisson operator is used to cluster the grid points in a particular vectorial direction in

a particular region of interest. The general poisson operator is represented by:

2 2 2

a: 877 8;

The general poisson operator does not guarantee that there would be no overlap of

grid and depending on the choice of function s(X,Y,Z) might assume different forms. In

case when s(X,Y,Z) = O, the poisson’s equation reduces to laplace equation. Simplifying

to one dimension the generalized poisson equation reduces to:

BZV(5,77.§)
2 +s(4.77.4) =0 (2.32)

as“

A clever choice of the function s(§,77,g) would guarantee no overlap of grids. A

simplified case is:

2

a—)—{-+k-al(—--0 (2.33)

342 35 _

l3



where, O < k < 2. This clusters the grid in x—direction with guarantee of no

overlap. We would use this simplified case to demonstrate a few grid—clustering results.
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CHAPTER 3 GRID QUALITY MEASURES

3.1 Introduction

As discussed in Chapter 1, smoothing and clustering are some of the tools to create an

“acceptable” grid from a pre—existing grid. The next question that arises here is what

exactly an “acceptable” grid is. What mathematical or other problem specific scales (e.g.,

based on flow physics) can be defined to measure the grid quality and what do they

mean? These measures are an objective tool in our hand that helps us identify the “good”

region from the “bad” region. Apart from just being a mathematical measure it physically

identifies the possible points in space the solution might potentially fail. This gives us the

freedom to apply the smoothing and clustering tools only in areas of interest where the

grid quality is “bad” or “unacceptable” or where it is crucial to resolve the flow physics

very minutely. In other words we localize the problem before we fix it. This approach

thus is computationally more efficient.

Many grid quality measures have been developed for flow problems. Some

measures are purely mathematical and based of parameters of the grid or cell, while some

are based on flow solution or flow physics. To simplify the analysis we have used a

couple of basic mathematical measures in this analysis. These are smoothness, aspect

ratio, and skewness. These grid quality measures are simple to calculate and easy to

implement. These measures might exist in some variations but the basic idea remains the

same. The measures objectively segregate the poor quality region for the whole domain.

This information helps us in selectively implementing grid relaxation, refinement and

error analysis.

15



On the same lines, the Laplacian operator developed is not only capable of global

grid improvement but also to improve a small portion of the grid, which is called the

“dirty” region. The automatic identification and application of the Laplacian operator

requires that we extract the bad grid region based on our mathematic definition of “dirty”

region using the pre-defined grid quality measures.

3.2 Grid Smoothness

In two-dimensional grids ‘Area ratio’ at a cell is defined as the ratio of cell face area to

adjacent cells (usually four). We can represent the ratio for the cell with the largest or

smallest value of the ratio.

 

\ Neighbor

I c...  

Figure 2. The two-dimensional cell and the top neighbor

Area Ratio = Area (Cell)/Area (Neighbor) (3.1)

An acceptable value of this measure is close to 1. Let us try to understand how this is

related to flow physics. For solving a partial differential equation, which is the Navier

Stokes equation in our case using finite difference the solution, will always break down at

a bad point in case of forward or backward differencing. Central differencing will

produce an acceptable result for a single point but if the grid is continuously bad then

neighboring values will not correspond and the scheme will break down. This effect is

16



most dominant close to the boundary layer where we implement the gradient conditions.

A sudden jump in the ‘Area ratio’ breaks down this implementation of the boundary

condition.

In three-dimensional grids the ‘Volume Ratio’ is the measure of smoothness, and

is defined as the ratio of cell volume to volume of the neighboring cells. Again we

represent the ‘Volume Ratio’ by a single number that is representative of the worst ratio.

fl

/ /

Neighbor

_
\

. Cell /

Figure 3. Three-dimensional cell and the top neighbor

Volume Ratio = Volume (Cell)/Volume (Neighbor) (3.2)

3.3 Grid Aspect Ratio

In a two-dimensional grid the ‘Aspect ratio’ of a cell is defined as the ratio of cell width

and the cell height.

17
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Figure 4. Two-dimensional cell

Aspect Ratio 2 Cell Width / Cell Height (3.3)

In three-dimensional grids the ‘Aspect Ratio’ is defined as the ratio of maximum face

area to minimum face area in the cell.

 

 

  
 

  
 

TLB 11213

/ /
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,2 4/
BLF BRF

*— Width ——->

Thickness

Figure 5. Three-dimensional cell

Aspect Ratio = Maximum Area of a face / Minimum Area of a face (3.4)

For a highly irregular flow where the direction of flow is not easy to discern, it is

advisable to keep the ‘Aspect Ratio’ as close to 1 as possible. In many cases though high

18



aspect ratio grids are intentionally used. Let’s consider the case of fully developed

laminar boundary layer in flow through a pipe or a channel. In this case there is no

significant change in the flow properties in the flow direction. In other words the gradient

in the flow properties in the direction of the flow is negligible. The gradient is still

significant in the direction perpendicular to the flow. In this case we can utilize grids with

high aspect ratio to increase computational efficiency. We must exercise caution when

making such a choice. In highly turbulent flows with recirculation and other complexities

like combustion the aspect ration must be kept close to l.

3.4 Grid Skewness

In two-dimensional grids the ‘Skewness’ is defined as the ratio of the two principal

diagonals of the cell.

.IL/IR

'\ /
m Dl

 

BL BR

Figure 6. Two-dimensional cell with diagonals

Skewness = D2 / D1 (3.5)

In three-dimensional grids the ‘skewness’ is defined as the ratio of largest principal

diagonal to smallest principal diagonal.
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Figure 7. Three-dimensional cell with diagonals

 

Skewness = DL / DS (3.6)

If the grid is generated using advancing front schemes grid of high skewness is usually

produced at the surface. Sometimes when the surfaces intersect at oblique angles, grids of

high skewness are produced. Usually skewness between 0.90 and 1 are universally

acceptable for most practical purposes though different applications have different

requirements. For unstructured grids skewness is defined as the maximum angle that a

face normal deviates from the vector between the node of the tetrahedron not on the face

and the centroid of the face. In this case, a value close to zero indicates an equilateral

tetrahedron and is the desirable case.
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CHAPTER 4 CODE STRUCTURE

4.1 Introduction

The input to the system is a multi block structured or unstructured grid in an unstructured

data format. This data format is the simplest data format that can be easily read from and

written to a flat file. The computational time is proportional to the grid size and reading a

file is computationally most expensive. This is because the file is read to sequentially

extract the grid information like the neighborhood and connectivity data. The process is

improved by using a cache of this transient data during the analysis and a sequential file

is generated at the end that can be used for subsequent operation on the same grid file.

This improves the computational efficiency of the code. A translator has been used in

each step to format the grid according to the visualization tool used at each user interface.

This will be reduced down in case a standardized tool or format is followed. The

algorithms discussed in Chapter 2 have been implemented using C-H- and Fortran. The

basic code skeleton has been explained in the following paragraphs and flow charts.

4.2 The Algorithm

4.2.1 Decipher the Grid Structure

The formulation has been developed independent of the format in which data is available.

The grid can directly or indirectly address the neighborhood issue. In former case all the

points (nodes) in the domain can be uniquely identified with a three dimensional index.

Laplace equation can be directly solved in the domain using explicit pointers to the

nodes. In later case the most commonly used format is sometimes referred to as ‘Block-

Structure’ or FE Block structure. This format enumerates all the points and first specifies

the point locations and then specifies the connectivity (tri, quad, tet or hex) of the
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enumerated points. The indirect addressing of neighboring points requires further

processing to extract enough neighborhood information for each point to be able to solve

the finite difference formulation.

4.2.2 Extract the Neighborhood Information

The understanding of the grid structure makes it feasible to extract, remove or introduce

new points in the domain and to rearrange the existing points in the domain. The

extraction of neighborhood information is the first step in the algorithm. As mentioned

earlier, we only know all the points in the domain, which are enumerated, and secondly

how they are connected to each other. The neighborhood information can be obtained

from this information. This makes it possible to implement the averaging Laplace

strategy.

4.2.3 Identify the Bad Quality Region

After extracting the neighborhood information for each node, we can proceed to measure

the grid quality based on a suitable measure. This indicates the dirty or bad quality region

in the flow domain. We now would want to improve the grid quality or repair the bad

grid using our algorithm. In two approaches we can either fix an independent boundary in

the sense that the nodes on the boundary do not move only the interior is rearranged or

make the nodes on the boundary free to slide on the boundary. The choice depends on

application, geometry information available as well as on personal preference.

4.2.4 Refine / Coarsen the Grid

For further grid refinement or grid generation we introduce new points in the domain.

The new points can be introduced as per Delaunay refinement strategy or we can just

introduce a new point over an existing point. This way it is easier to control exact number
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of new cells we want to introduce. We can introduce as few as one more cell. Similarly

the grid can be easily coarsened in a required area by deleting some nodes.

4.2.5 Relax the Grid

Now apply the laplace operator in the whole or a part of the domain. The laplace Operator

ascertains that there is no overlap in the grids and that grids increasingly become convex.

In the process the connectivity information remains the same but the point coordinates

change. After enough iterations or attaining the convergence we get the final location of

points. This overwrites the input point coordinate information.

4.3 Program Flow-Chart

The program outline has been put in a flow chart to demonstrate the logic and data flow

in the program. Figure.4.l elaborates the general skeleton of the program and Figures.4.2

and 4.3 elaborate the basic steps inside the global and local operator.
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Figure 8. The Program Flow Chart
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Figure 9. The Global PDE Operator Flow Chart
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CHAPTER 5 RESULTS AND DISCUSSION

The algorithms developed have been applied to various types of grids used in different

applications. Some of the representative results are shown and discussed in this chapter.

The Laplace and Poisson operators have been implemented and applied to structured and

unstructured grid systems.

The Laplacian algorithm is capable of performing grid relaxation without any

overlap in grid lines. The Poisson operator can cluster the grids in a chosen direction. The

outcome depends on the specific form of the passion equation. In certain cases (as

implemented here) it is possible to cluster without overlap. All the algorithms can be

applied locally or globally. In former case a bad quality region is extracted from the

whole domain and the elliptic operator is applied only to the selected region. In later case

the operator is applied on the whole domain. All the approaches, relaxation, refinement,

and clustering can be either boundary conforming or sliding. In a boundary conforming

grid the nodes on the boundary are fixed and do not move during the iteration. In sliding

mesh the boundary nodes are allowed to slide on the boundary surface, making it a more

efficient approach in some cases. One restriction though is that the boundary should be

mathematically well defined and appropriate interpolation functions should be used.

Results demonstrating the capability of the code have been presented in this chapter.

5.1 Multi Block Structured Hexahedral Mesh

The algorithm was particularly applied to grid generated for analysis of flow in an

internal combustion engine. The initial grid was generated for analysis of flow using

KIVA 3V code. The grid quality is a critical factor in case of analysis using KIVA 3V.

The code typically failed to execute (it rejects the input grid) in critical cases where the
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piston was close to the top dead center. In this particular application the grid that is

attached to the piston moves with the piston in next time step. The rest of the grid moves

in a particular quake motion. The movement of a particular grid point depends on its

distance from the piston and has no control on actual grid distribution. Relaxation and

clustering operators are needed to improve the grid quality. The results shown below

(Fig. 10 - Fig. 13) demonstrate a small portion of the grid before and after the operator

has been applied. As we can see the final grid is relaxed and has improved smoothness.

The improvement has been mathematically measured but in all cases (as ones shown

below) the difference can be noticed by visual comparison. The visualization tool used is

Tecplot 9.0.

 

 

   
Figure 12. Example of Local grid smoothing with fixed boundary
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Figure 14. Example of Global grid smoothing with fixed boundary

5.2 Unstructured (triangular) Mesh

5.2.1 Laplace Operator on sliding mesh

The Laplace and Poisson operators were generalized for unstructured meshes. These

operators can be applied to triangular and tetrahedral grids. The code capabilities are

mostly the same. The operator can be applied across the block boundary, can be

implemented locally or globally, and can be applied to sliding boundaries. Some

representative results with two—dimensional triangular grid have been presented in the

following discussion.

29



The Laplace operator smoothens the grid or generates cells of fairly equal sizes.

This mathematically has been described and measured as area or volume ratios. We start

with a simple two-dimensional unstructured grid as shown in Fig.14. We compare two

cases that have been implemented. Fig. 15 represents the final grid where the boundary

nodes are fixed, that is the grid is not allowed to move or slide on the boundary. Fig. 16

represents the final grid when boundary grid nodes are allowed to slide along the

boundary. As we see the sliding mesh produces better results but the application can be

limited in cases where the boundary is not well defined.
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Figure 15. Laplace operator; Initial Bad Triangular Mesh
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Figure 16. Laplace operator; Boundary Conforming Triangular Mesh, After 1 Iteration

The Internal region is smoothened. Boundary regions still have some highly anisotropic

triangular elements. The region of interest is the internal region because the smoothing

algorithm in this case is ‘boundary confirming’ i.e. points on the boundary are not

modified. Below shown is result with sliding mesh. Grid quality is improved in the whole

domain.
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Figure 17. Laplace operator; Sliding Triangular Mesh, After 1 Iteration

5.2.2 Elliptic Operator as a Grid Generation Tool

The advantage of sliding approach is that the Elliptic Operator can be used not only. for

Grid Relaxation but also very efficiently for Grid Generation and Grid Refinement. The

Grid Generation algorithm works exactly the same way as Grid Relaxation algorithm but

all the non-boundary nodes are put at the local origin for the grid domain. A simple

example is shown below which finally generates the same grid as previous result (after

enough iterations). Another faster approach would be that instead of putting all non-

boundary points at origin or at a single point on boundary the nodes can be distributed on

the boundary.

The Grid Refinement algorithm would again work the same way. In the places /

regions that need greater concentration of points we will introduce more points
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overlapping the existing points close to the region or at the boundary or at the internal

points in the region.
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Figure 18. Grid Generation; Initial Mesh
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Figure 19. Grid Generation; Mesh after 1 Iteration
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Figure 20. Grid Generation; Mesh after 2 Iterations
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Figure 22. Grid Generation; Mesh after 4 Iterations
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Figure 23. Grid Generation; Mesh after 10 Iterations
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5.2.3 Poisson Operator

The Poisson operator has also been generalized to cluster the grid around a point, a line

or in a desired direction. A simple example has been demonstrated below.
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Figure 24. Grid Clustering; Initial and Intermediate grid
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Figure 25. Grid Clustering; Intermediate and Final grid
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5.2.4 Grid Refining

Inserting a point in the desired region and applying the elliptic operator in steps can

easily achieve grid refining.

  

  

  

 

          

 

 
 

 

 

Figure 26. Grid Refining; Initial and Intermediate grid
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Figure 27. Grid Refining; Intermediate and Final grid

5.2.5 Grid Coarsening

Grid coarsening works same as refining and can be easily achieved by deleting a point in

the desired region and applying the elliptic operator in steps.
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Figure 28. Grid Coarsening; Initial and Intermediate grid
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Figure 29. Grid Coarsening; Interrn

38

 

 

 
     

 

A

edi

l I

ate and Fi

l l

nal grid

l l L

 

  

 



REFERENCES

39



REFERENCES

1. PR. Eiseman and G. Erlbacher, ‘Grid generation for the solution of partial differential

equations’, ICASE Report No. 87-57, NASA Langley Research Center, Hampton, VA,

1987; also NASA CR-178365, 1987.

2. Shih, T.I—P., Bailey, R.T., Nguyen, H.L., and Roelke, R.J., “Algebraic Grid Generation

for Complex Geometries,” International Journalfor Numerical Methods in Fluids, Vol.

13,1991, pp. 1-31.

3. Steinthorsson, E., Shih, T.I—P., and Roelke, R.J., “Enhancing Control of Grid

Distribution in Algebraic Grid Generation,” International Journalfor Numerical Methods

in Fluids, Vol. 15, 1992, pp. 297-311.

4. Thompson, J.F., Soni, B.K., and Weatherill, N.P., Editors, Handbook of Grid

Generation, CRC Press, Boca Raton, 1998.

5. Carey, G.F., Computational Grids: Generation, Adaptation, and Solution Strategies,

Taylor & Francis, Washington, DC, 1997.

6. Shimada, K., Yamada, A., and Itoh, T., “Anisotropic Triangular Meshing of Parametric

Surfaces via Close Packing of Ellipsoidal Bubbles,” 6th International Meshing

Roundtable (Organized by Sandia National Lab.), 1997.

7. Winslow, A.M. “Equipotential Zoning of Two—dimensional Meshes.” Rept. UCRL-

7312. University of California, 1963.

8. A. Jameson and D. Mavriplis, ‘Finite volume solution of the two-dimensional Euler

equations on unstructured triangular mesh’, AIAA Paper 87-0435, 1985.

9. D. Mavripilis and A. Jameson, ‘Multigrid solution of the two-dimensional Euler

equations on a regular triangular mesh’, AIAA Paper 87-0353, 1987.

10. IA. Desideri and A. Dervieux, ‘Compressible flow solvers using unstructured grids’,

Von Karman Institute lecture Series 1988-05, 7-11 March 1988, pp. 1-115.

11. SR. Allmaras and MB. Giles, ‘A second order flux split scheme for the unsteady 2-

D Euler equations on arbitrary meshes’, AIAA Paper 87-1119, 1987.

12. DJ. Mavripilis, ‘Accurate multigrid solution of the Euler equations on unstructured

and adaptive meshes’, AIAA/ASME/SIAM/APS First Natl Fluid Dynamics Congr.,

1988.

13. TI. Barth and DC. Jespersen,’The design and application of upwind schemes on

unstructured meshes’, AIAA Paper 89-0366, 1989.

40



14. S. Sengupta, J Hauser, P.R. Eiseman and IF Thompson (eds), Numerical Grid

Generation in Computational Fluid Mechanics ’88, Pineridge Press, Swansea, 1988.

15. Jones, RE. “A Self-Organizing Mesh Generation Program.” Trans. ASME PVP-13

(1974): 1-7.

41





  Iiiililljljliij‘iii"


