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ABSTRACT

NON-LINEAR DYNAMICS OF A FRICTIONALLY EXCITED

CANTILEVER BEAM

BY

Jeffrey Larkin Quinby

The main motivation of this thesis is to study a phenomenon of extremely low

frequency responses to periodically excited structural oscillators, and to observe this and

other non-linear dynamic phenomena in an experiment. The tip of a cantilevered beam in

an experiment exhibited extreme low frequency (on the order of 1/20 to 1/100 of the

driving frequency) as well as chaotic and quasi-periodic responses under different forcing

frequencies. Performing a frequency sweep experiment, regions of dynamic activity

were identified. Then, to examine these regions more closely, fixed frequencies that

belonged to the regions were selected. Data gathered by a strain gages attached to the

cantilever beam were examined in the Poincaré section. This in turn allowed for graphic

representations of the dynamics occurring in the oscillating beam. The Poincaré section

data was further processed into torus-angle return maps and Poincaré section of Poincare

section data to help characterize the dynamic responses of the system. The FFT was also

taken using the original data as well as the Poincaré section data. These methods of

examining the gathered data confirmed the types of responses observed in the beam.
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Chapter 1

Introduction

This thesis presents a study of a cantilevered beam undergoing frictional

excitation. Under different forcing frequencies the tip of the cantilevered beam appeared

to exhibit extreme subharmonic as well as chaotic and quasi-periodic responses. This

phenomenon was referred to in the doctoral thesis of Ramana V Kappagantu [1].

However, the subharmonic phenomenon was noted but was not of primary interest in his

thesis. In this work, we follow-up those initial observations with more detailed

observations of the responses of the same experiment. We look at very low-order

subharmonic responses, and characterize the dynamics of these and other responses.

1.1 Motivation

The main motivation of this thesis is to study a phenomenon of extremely low

frequency responses to periodically excited structural oscillators, and to observe this

phenomenon in an experiment. Subharmonics are defined as response frequencies that

are smaller than the primary forcing frequency. In some works subharmonics are a

periodic response that can be thought of in terms of a Fourier series with fundamental

frequency a). If Q is the forcing frequency, then co/Q defines the order of the

subharmonic response. Typical subharmonic orders are 1/2, 1/3, or 1/4. In this work, we

observe subharmonic responses with much lower orders, in addition to typical

subharmonic responses. Because we are interested in the denominator we will use the

inverse of the definition. In this thesis the subharmonic order will be defined as Q/co. It



should be clarified that what we are after is not a subharmonic-resonance periodic

response of frequency a), rather we are looking for a dominate frequency in which the

response is chaotic or quasi-periodic.

1.2 Background on Low-Frequency Behavior

The phenomena that are present in this thesis deal with low frequency behaviors.

In the following sections examples of different types of low frequency responses will be

given. These examples have been characterized into the following four groupings: high-

to-low frequency energy transfer, ultra sub harmonic, frequency demultiplication, and

dither.

1.2.1 High-to-Low Frequency Energy Transfer

The concept of an energy transfer from high-to-low frequency modes was the

focus of a lot of research in the mid 90’s. Some of the groundwork was laid in the

summer of 1988 at a conference at the Virginia Polytechnic Institute and State

University. Haddow & Hasan [2] gave a talk that dealt with the experimental results of a

base excited cantilever beam. They noticed that if the beam was excited at a relatively

high resonance it would react in the expected mode shape. But as time elapsed it

appeared that energy would ‘cascade’ from the higher modes down to the lower modes.

What ultimately came about was a combination of first-mode steady-state response at the

lowest modal frequency, plus the resonated mode.



This type ofphenomena became of great interest to Ali Hasan Nayfeh who is an

accomplished scholar in the field nonlinear dynamics. In the early 90’s A. H. Nayfeh

was second author to his son S. A. Nayfeh in two journal papers that discussed an energy

transfer from high- to low-frequency modes in a flexible structure [3,4]. The first paper,

which was published in 1993, gave an analytical study of a nonlinear two-degree-of-

freedom system with widely spaced modes being excited by a simple-harmonic. The

results from this analytical study, which largely used the method of averaging, gave

valuable insight when the jump was made to an experiment of a multi—degree-of-freedom

system in their second paper. The experiment that the father and son team investigated in

their second paper was a cantilever beam undergoing base excitation. Their experimental

analysis revealed how nonlinear coupling between linear modes provided an avenue for

the energy cascade.

In 1995 Nayfeh & Mook [5] wrote a similar journal paper, which concluded that a

low amplitude high frequency excitation can generate a large amplitude low frequency

response at a modal frequency. In the same year Nayfeh & Chin [6] discussed a

parametrically excited system with a comparable outcome in a paper for Nonlinear

Dynamics. Over the next couple of years Oh & Nayfeh [7, 8] worked on resonance and

modal interactions in composite cantilever plates. Once again the energy transfer between

high and low frequency modes had an effect on the dynamic system. In 1996 Anderson,

Nayfeh & Balachandran [9] published work on the coupling between high-frequency and

low—frequency modes. Their findings showed that interaction between the first mode and

the third and fourth modes of their cantilever beam resulted in a transfer of energy from a

high-frequency excitation to a low-frequency mode.



The signature for this phenomenon is an input at a frequency near a higher modal

frequency, and a steady-state response with a low-mode component at the corresponding

lower modal frequency. This is relevant because in our research the dynamic response of

our beam seems to following a similar trend, but with an added twist. A high forcing

frequency with low amplitude is producing a low frequency large amplitude response.

However, the low frequency may be lower then the lowest modal frequency.

1.2.2 Ultra-subharmonic Responses

An “ultra-subharmonic” response is defined as a subharmonic response of a

fractional order [10]. Nayfeh & Mook’s book Nonlinear Oscillations [10] suggests that

ultra-subharmonic resonances exist if the constant m is even in the following relation:

Q, = m0, and (00 z1/2(Q2 i: Q, ), where Q] & Q; are forcing frequencies and (no is the

natural frequency. In 1994 Qriouet & Mira [11] took the Duffing-Rayleigh equation and

subjected it to an external periodic driving force. According to the authors “this first

elementary study” produced complex fractional harmonics that forced them to limit their

numerical approach to low frequency periodic solutions. Four years later Yagasaki [12]

theoretically described ultra-subharmonic resonance motion using a third-order averaging

technique.

1.2.3 Frequency Demultiplication

In 1927 Van Der Pol & Van Der Mark [13] designed an electrical system that

when a sinusoidal forcing frequency is applied the output is has a response that is whole



submultiples of the applied sinusoid. The response frequency becomes a fraction of the

initial applied frequency, i.e. (0/2, (0/3, (0/4 up to (0/40. The system would only oscillate

with “discrete frequencies” or submultiple frequencies. In the experiment, as the

capacitance of the circuit was changed the response frequency remained constant until the

capacitance was large enough to cause a jump in the frequency, creating a bifirrcation

diagram, showing that the response followed steps of submultiple frequencies with

respect to the capacitance parameter. The demultiplying frequencies followed a minor

scale and “strongly reminds one of the tunes of a bagpipes.”
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Figure 1.1: A hand sketch of a figure taken from Van Der Pol & Van Der Mark 1927

Nature paper [13].



1.2.4 Dither

“Dither” is the application of a high-frequency excitation (much higher than the

system’s characteristic frequency) to a system with the hopes of affecting the low-

frequency behavior of the system. Various oscillatory systems with poor response

behavior can be restored by dither. Examples of this are quenching limit cycle behavior

[14], stabilizing an equilibrium (inverted pendulum) [15], and improving friction

behavior [16]. Dithering excitation makes a system compliant to averaging because its

frequency is much higher then the characteristic frequency of the system. This creates

two time scales, one slow scale coupled with the oscillator itself and one fast scale

coupled with the dither. Feeny & Moon [17] investigated this phenomena and its affect

on stick-slip chaos in 2000. By applying dither to a low-frequency forced stick-slip

friction oscillator they found that the chaos that was typically intrinsic to the system was

extinguished.

This alleviation of stick-slip chaos by using dither seems to be ironic because the

experimental research done for this thesis appeared to have the opposite effect. We will

see that “dither” was applied to our frictionally excited system, which in turn created a

low-frequency chaotic or quasi—periodic stick-slip response.

1.2.5 Beating

Linear and non-linear systems can exhibit beating if responses have two similar

frequency components, a)I and (0,. The result is a low frequency amplitude variation at

the frequency cob = ((02 — a), )/2 . An FFT of the beating signal will show spikes at (01



and (02, not (0b. Non-linear effects can give rise to spikes that are some type of linear

combination of the two frequencies, like a), = 2602 — 60,.

1.2.6 Other Studies

Some other studies that can be classified as having low-frequency behavior are

presented here. Miranda & Thomsen [18] set up a simple model for predicting vibration

induced sliding of a mass, which was able to slide along a beam under going base

excitation. The results of the model retained features of a real system, which would allow

the model to be used in research in using vibration induced sliding for passive vibration

damping. One can also notice in the response graphs that the collar slides along the beam

at a very low frequency. Zhang & Tao [19] observed beats between subharmonic and

super subharmonic responses in an experiment that dealt with nonlinear vibrations in a

thin loudspeaker cone. The results of this experiment showed that the nonlinear

vibrations are associated with the bending resonance of the loudspeaker cone.

It is also worth mentioning squeak and squeal. These are characterized by high

frequency noises resulting form low frequency, or steady sliding motions. While quite

the opposite of subharmonic interest, it may involve large-order frequency ratios between

input and output. On the other side, brake grunt, growl, and groan may be characterized

by lower-frequency noises. If this results form steady sliding (as in braking) it may not

be obvious how to define the “order” of the response harmonics.



1.3 Background on Frictionally Excited Systems

Friction is a complex non-linear property that has been studied extensively. Dry

fiiction gives rise to stick-slip motion. As the term stick-slip suggests, at any give time

an object my be sticking to a base object while a short time later the same object may

now be sliding along the base object. This time independent change between static and

dynamic friction can result in chaotic motions that are extremely interesting to watch.

Stick-slip oscillators correspond to velocity-field discontinuities, and low dimensional

systems have a fundamental characteristic that allows their dynamic responses to be one-

dimensionally mapped [20, 21, 22].

There has been a huge global research effort on friction problems in dynamics.

Phenomena studied are friction-induced vibration, fiiction-induced noise (squeak &

squeal), such as with stick slip dynamics, control issues, dynamical fiiction modeling,

and friction damping.

R. A. Ibrahim [23] provided an extensive review on the mechanics of friction,

giving the science community a better understanding of this complex force involving

sliding surfaces. A system’s behavior, if it encountered friction, strongly relies on several

factors, including: materials and the geometry of sliding surfaces, surface roughness,

sliding velocity, temperature, and normal load. In 1994 B. Armstrong-Hélouvry, P.

Dupont & C. Canudas de Wit discussed how friction affects the controls community [24].

Using the results from tribology, lubrication and physics literature and combining it with

the findings in the controls community, a set of tools and models were created to

incorporate friction with control systems. B. Feeny et.al. gave a historical review of the

dynamics of systems with fiiction in 1998 [25] and S. Shaw presented a study on



dynamic response of a system with dry friction [21]. Kappagantu’s Ph.D. thesis [1] dealt

with the modal reduction of a system undergoing frictional excitation. The experiment for

our research is an offshoot of Kappagantu’s work.

1.4 Overview of Thesis

In Chapter 2 a description of the experiment will be given. It will include a

background on Ramana Kappagantu’s Ph.D. thesis; an in-depth look at the experimental

set up and system characteristics; a qualitative summary of Kappagantu’s friction

measurements; and a look at the methods that were used to analyze data gathered during

the experiment. In Chapter 3 and Chapter 4 the results of the analysis of the experiment

will be given. This will include a discussion on how the system dynamic responses were

characterized. Chapter 3 includes dynamics during frequency sweeps and identifies

frequency ranges of interesting dynamics are identified. Chapter 4 includes in-depth

studies of responses at fixed, selected parameter values. Chapter 5 contains the

conclusion, giving a summery of the experimental research conducted and possible

research that could be taken on in the future.



Chapter 2

Description of the Experiment

This chapter, as the title suggests, is a description of the experiment. It contains

an in-depth look at the physical set up, equipment, materials and contact geometry used

in the experiment, as well as the methods used to gather measurement data such as

nonlinear response data, frequency response data, modal frequencies and shaker contact

frequencies.

2.1 Background

This experiment exhibits a phenomenon that was referred to in the doctoral thesis

of Ramana V. Kappagantu. Kappagantu’s thesis [1], as his title suggests, dealt with “A

method oforder reduction in modeling multi-degree—offreedom and continuous systems

with frictional excitation The tip of his cantilevered beam experiment with frictional

excitation appeared to behave in subharmonic as well as chaotic and quasi-periodic

response under different forcing frequencies. This phenomenon was noted but was not of

primary interest in Kappagantu’s thesis.

The research presented in this thesis took the same experimental setup of

Kappagantu and looked more closely at this interesting phenomenon. Poincare' methods

were used to get a better view of the dynamical system behavior. It was found that the

system did in fact have chaotic and quasi-periodic motion with very large order

subharmonic frequencies.

10



2.2 Experimental Setup

The shaker was a PM Vibration Exciter Type 4808 with a Power Amplifier Type

2712, both products by Brfiel & Kjaar. A Stanford Research Systems Model D8340

lSMHz Synthesized Function Generator was used to produce the forcing function. These

experimental components were used to force the cantilever beam via friction excitation.

This accrues because a rubber nub at the tip of the cantilever beam rests on a contact

surface that is being shaken by the B&K shaker.

The cantilever beam was instrumented with strain gages. A 2100 System Stain

Gage Conditioner and Amplifier System, by Instruments Division Measurements Group

INC., amplified the strain gage data. That data was then sent to the TEAC GX-l

Integrated Recorder, which was used as a data acquisition system. Matlab and Fortan

were used to post process the experimental data.

Figure 2.2 is a general diagram of the experimental setup and Figure 2.3 shows a

rotated View of the two sections. It is important to understand the coordinate system

XYZ in Figures 2.2 and 2.3. X is along the length of the cantilever beam, Y is along the

thickness of the beam and Z is along the width/height of the beam. According to this

coordinate system the crosswise oscillation is in the Y direction.

11



 
Figure 2.1: Experimental set up.
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Figure 2.2: Diagram of experimental setup.
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Figure 2.3: Rotated View of sections A-A and BB.

The shaker was fixed to the vibration table with clamps. This effectively

eliminated all normal and rotational vibration of the shaker. Kappagantu had the shaker

placed at a slight angle in the Y-Z plane, which made the contact friction between the

cantilever beam and the shaker vary depending on the location of the contact. In our

experiment this was achieved by rotating the fixed end of the cantilever in the Y-Z plane.

This rotation as it turns out this is very important to the behavior of the cantilever. The

tilt with the loading beam provided a variation in the normal load of about 0.035 N/cm,

where the tip position was estimated in a static displacement, and the load at the midpoint

of the surface was 0.63 N. Over the 7 cm span of motion on the surface, the load ranges

from 0.466 N to 0.655 N.

The cantilever beam used by Kappagantu was also used in this experiment.

Unlike Kappagantu, who was concerned with modal principles, our experiment aimed at

a qualitative description of the dynamics. We used only the strain gage pair closest to the

clamped end of the cantilever to produce time series data. Thus, as we are interested in

the qualitative nature of the behavior of the cantilever beam, we are using the strain gage

l3



pair as an observer. The cantilever beam was constructed from a piece of mild steel with

dimensions of 0.4000 x 0.0128 x 0.00086 m3, elasticity ofE = 128x 109 N/mz, and a

density ofp = 7488 kg/m3. Another piece ofmild steel, with dimensions

0.064 x 0.0134 x 0.00056 m3, elasticity ofE = 126 x109 N/mz, and a density

ofp = 6777 kg/m3, was attached to the free end of the cantilever beam with its flexural

direction rotated 90° to act as a leaf spring. The leaf spring, referred to as a loading

beam, had a small rubber nub attached at its free end. The mass of the fixture that

connected the cantilever beam to the loading beam was 0.01226 kg. The total length of

the cantilever beam and the loading beam setup was 0.464 m. The bending axes of the

two beams were perpendicular, meaning the loading beam thickness was along the Z-axis

and the width was along the Y-axis while the cantilever thickness is along the Y-axis and

the width/height was along the Z-axis. This allowed for forces on the tip of the loading

beam to be transmitted to the cantilever.

2.3 System Characteristics

This experiment can be classified as a frictional stick-slip problem. As such, there

are two different dynamic states. In the first state the rubber tip sticks to the slider

surface, much like a pinned beam. In the second case, the rubber tip slips over the slider

surface, such that it deforms like a free beam. A stick-slip response can be seen as an

interchange between pinned beam and free beam dynamics. With these two different

dynamic cases it is beneficial is to see the Fast Fourier Transform (FFT) of the system

pinned and free to locate the model frequencies of the each state.

14



We examined the linear behavior of both the free and the pinned beam. Loading

the tip with a large normal force, such that sliding was not likely to occur, approximated

the linear pinned beam case. Figure 2.4 shows the FFT of the unloaded or free floating

cantilever and Figure 2.5 shows the FFT of the loaded case, where there was a high

normal load between surfaces. The first five modal frequencies for the unloaded case

were approximately 2.5, 19.5, 57.5, 112 and 180 Hz. The small peak that can be seen at

approximately 37 Hz is believed to be a distortion. The lowest frequencies of the loaded

modes were approximately 13.5, 43.5, 93 and 171.5 Hz. It was determined later that it

was also important to know the modal frequencies in the vertical (normal) direction

because the beam appeared to resonate in the normal direction at several different

frequencies. The normal modal frequencies were found by giving the pinned (loaded)

beam an impulse along the Z-axis at the fixture between the beam and the loading beam.

The output signal taken from the paired strain gages on the loading beam where then FFT

by the TEAC. The first normal modal frequency was found to be approximately 47 Hz.
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Figure 2.6: FFT response of the impulse test of vertical motion of the loaded beam.

With the modal frequencies we are now interested in finding the forcing

frequencies in which the tip dynamics were present and showed appealing characteristics.

The signal generator was set to approximately 5H2 and slowly increased to

approximately 60Hz during which the tip of the beam was observed for interesting and

exciting dynamic behavior. In the end we focused on 11 different frequencies: 8, 9.8,

21.9, 22.1, 22.3, 25.7, 37.9, 43.8, 44.4, 45.2 and 45.6Hz. Each one of these frequencies

had similar but distinct tip movements that were fascinating to watch.

2.4 Friction Characteristics

Kappagantu, in his thesis, did an extensive study on the friction characteristics of

his cantilever beam and the surface that it rested on. Since our experiment is using the

17

 



same beam and a frictional surface made of the same material, the friction characteristics

should be similar to the results of Kappagantu. Since we expect the same qualitative

friction behavior, and our interest is in a qualitative description of the dynamics, we have

not quantified the current fiiction behavior; rather we summarize Kappagantu’s friction

measurements.

The Figure 2.7 (which came from Kappagantu’s thesis) shows the apparatus used

by Kappagantu to investigate fiiction characteristic for his experiment. This setup used

equipment and materials that were very similar to his main experiment and allowed him

to gather information about the displacement, velocity, friction force and effective normal

load which the cantilever beam would experience during his experiment (Figure 2.8 taken

from Kappagantu’s thesis shows this). He was also able to see the relationship between

the friction force and displacement of the beam (Figure 2.9 taken from Kappagantu’s

thesis) as well as the relationship between the friction force and the velocity of the beam

(Figure 2.10 taken from Kappagantu’s thesis).

The hysteresis in the force-velocity curve in Fig. 2.9 is consistent with a

compliant contact with negligible mass. Kappagantu measured the contact compliance

and crosschecked it with the stick-slip transition velocity. The contact stiffness was

estimated to be Ky: —20 kN/m and the coefficient of sliding fiiction was u=0.55 [1].
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Figure 2.7: Kappagantu’s friction measurement setup.

19

 

 



 

d
i
s
p

i
n
m

0
U
!

E

   

 

 
 

 

  
 

 

_5 1 I l J I

l 1.2 1.4 1.5 1.8 2 2.2

0.2 . . , r .
in

E

.E 0 a

3

>

-02 I l l L l

1 1.2 1.4 1.6 1.8 2 2.2

2 T I I I I

2

E

.5 0 ‘
L3

”'_2 r 1 r r i

Z l 1.2 1.4 1.6 1.8 2 2.2

IE I I I I r I I I I I

131.865 '

a

:9 1.86

E1855

i) r r r r i r i r r I I
 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

timeins

Figure 2.8: Kappagantu’s sampled time—series of displacement, velocity, friction force &

effective normal load.

20



f
r
i
c
t
i
o
n
f
o
r
c
e

i
n
N

f
r
i
c
t
i
o
n
f
o
r
c
e
i
n
N

 

 
 

    
 
 

 

   
 

1.5 I I T I I M I I

‘ i- ( . . ‘ ‘
-r

0.5 1. . . . .
.1

o b y 1 q

-o.5 + q

’ ’ ’ ‘ , - ~. ~’. ‘ !1‘. ‘

-1.5 A l I l I I I 1 l

-2.5 -2 .-1.5 —1 -o.5 o 0.5 1 1.5 2 2.5

displacement in m x 10"

Figure 2.9: Kappagantu’s friction-displacement relation.

1.5 I I 7F Y Y

-18 1 l L 1 L

.15 -o.1 -o.os o 0.05 0.1 0.15

velocity in m/sec

Figure 2.10: Kappagantu’s friction-velocity relation.

21



2.5 Method of Poincaré Sections

Jules Henri Poincare was a French mathematician who lived from the mid-

nineteenth to the early twentieth century. He is considered by many as the grandfather of

topology and qualitative dynamics. His work helped the development of deterministic

chaos [26]. With our experiment we used one of Poincaré’s techniques to help us view

our data.

Since the inputfit) is periodic, if you make 0 equal to the phase off(t), you are

effectively adding a periodic or cyclic axis to the state space. If the response states are If

and ii , then the Poincaré section is a cross section, 2, of the 3-D state space. Response

trajectories form points as they pierce 2. As a result, a discrete map represents the

continuous flow on 2. This is depicted in Figure 2.11.

More generally, there are n response states, and so the Poincare’ section 2 is n-

dimensional. In our work, we extract one component from the n-dimensional Poincare

section, and look at the sampled series of this component.

/ /
x
1
-

M
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Figure 2.11: Phase representation of the Poincaré plot.
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Poincaré section.

With the sinusoid from the signal generator used as the input signal and the strain

gage response-signal as the output signal, the strain gage signal was mapped at specific

moments with respect to the input signal. More specifically, every time the leading edge

of the signal generator input (which in all cases was a sine wave at some specified

frequency) passed through zero with a positive slope, the corresponding point in the

output signal was flagged and saved. This results in the sampling of one coordinate from

the Poincare section. Figure 2.12 shows an example of this; however in this case both

signals are sine waves.
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With our data the output signal is not going to be a perfect sine wave like the

example given. Rather it is the response signal from the strain gage closest to the base of

the cantilever beam.

Figure 2.13 shows a small sample of actual response data and the series of data of

a component of the Poincare section with respect to the forcing phase. This Poincaré data

allows us to investigate what type of dynamic motion the cantilever is undergoing. Even

from the small sample provided above it can be seen that the Poincare data allows a

pattern that might otherwise be over looked to be seen. The Poincaré data is then mapped

as a delay map that allows the observer to see the path the Poincaré data follows in a

reconstruction of the Poincare section. This was a starting point to see what type of

analyses should follow. In some cases it was easy to tell that the data behaved as if it was

24



moving through a torus or a torus doubling. In others however it was difficult to

determine the behavior. Visual inspection of the delay map allowed us to see which way

our investigation should head regardless of the case examined.
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Chapter 3

Frequency Sweeps

This chapter contains the results from frequency sweeps. Up and down sweeps

were performed, which consisted of sweeping though frequencies from 8 to 50 Hz and 50

to 8 Hz receptively. The input and output data were collected via a strain gage. The

main question was whether there were frequencies where the cantilever beam behavior

was relevant to our study. The simple answer to this is a resounding yes. The frequency

sweeps identified frequency intervals of interesting dynamics, and helped estimate the

order of the response frequencies.

3.] Frequency Data Sweeps

A frequency sweep window of 8 to 50 Hz was chosen after the casual inspection

from 5 to 60 Hz mentioned in section 2.3. It was felt that this window of 42 Hz was

convenient because it incorporated all the regions that presented the phenomena we

wanted to study. For these sweeps the amplifier gain of the B&K power amplifier was

set to approximately 5.5 with the output impedance set to “high”. The function generator

amplitude was set to 4.00 peak-to-peak voltage. The function generator frequency was

increased (or decreased for the down sweep) at approximately 0.01 Hz every 0.31

seconds. The total time of the sweep was just under 22 minutes. Thus, at 8 Hz, there

were about 2 1/2 cycles of excitation for each frequency setting in the sweep. If the

response had, say, a subharmonic at order 5, then there would only be half of a response

cycle occurring before the sweep parameter changed. At the high-frequency end of the
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sweep, say 50 Hz, there were about 15 input cycles per 0.01 Hz sweep parameter

increment. Still, if the response subharmonic had high order, insufficient response cycles

would take place for each sweep parameter value for the system to approach steady-state.

As such, the resulting sweep responses do not approach steady state at each parameter

setting. Rather, the sweeps really represent transient responses with a slowly varying

parameter. (The effect of the slowly varying sweep vs. steady state in a nonlinear system

has been examined by Raman, Bajaj, & Davies [27].) Nonetheless, we use these sweeps

to give hints at how the responses depend on frequency and what frequency values

generate interesting forced responses.

The sampling rate was 5000 Hz. Twenty-two minutes of data amounted to 6.6

million data. To reduce this, we retained the strain responses in the Poincaré section.

When the data was extracted from the Poincare section, the period between extracted

Poincare-sections data was also determined, thereby providing the driving frequency

associated with each data point. As a result, we obtained, for our sweep data, strains in

the Poincaré section, and driving frequencies.

A response point in the Poincare section does not have constant drift, amplitude

and phase information. It became clear that we could not tell from the frequency sweep

data if the large amplitudes being presented were real or just the beam being displaced

about a new equilibrium and having small oscillation about this new point. To reduce

this problem we created a low-pass filter program in Matlab to draw out the DC drift for

the original data sample. The low pass filter was set to 0.25 Hz. The filter was applied

 using the transfer function, where a = 0.25 * 2 * 7r (rad/sec), b = 24a with

52 +bs+a2

J = 0.707 , and s is the Laplace transform variable. The filter was applied to the data
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first by integrating the signal as input to the filter, using Matlab’s lsim command. This

filtered signal was then reversed and applied to the same transfer function using the same

Matlab function. The reversal of the data was applied to nearly cancel the filter’s phase

effects. The double application of this transfer function amounts to a 4th order filter with

a cutoff frequency at a. Subtracting this DC drift from the original data effectively

allowed one to view the data as if it was oscillating about the same equilibrium the entire

time. Figures 3.1 and 3.2 show the up and down frequency sweep data respectively. The

nonzero DC components ofx indicate an effective quadratic nonlinearity in the system.

Frequency Up Sweep Data
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Figure 3.1: Frequency up sweep data showing the Poincare, the DC drift and the Poincare

minus the DC drift.
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Frequency Down Sweep Data
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Figure 3.2: Frequency down sweep data showing the Poincaré, the DC drift and the

Poincaré minus the DC drift.

The response in the Poincare variable minus dc drift figures are not the actual

amplitude that is experienced doing the experiment, but rather Poincare section samples

taken for the experimental data. The data shown is more analogous to the real part of the

complex oscillation. An approximate calibration for the dc drift is that one-volt positive

or negative is equal to about one centimeter on either side of the strain gage equilibrium.

Frequency intervals for which significant oscillations occurred are labeled as Regions 1-

VI in Figures 3.1 and 3.2. It should be remembered that the modal frequencies for the

unloaded case were approximately 2.5, 19.5, 57.5, 112, and 180 Hz, and that none of the

regions of dynamics drift occurred at these frequencies. The first two loaded model

frequencies were approximately 13.5 and 43.5 Hz, which occurred at the edges of regions

I and VI respectively. The normal-degree-of-freedom frequency, which is approximately
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47 Hz, lines up with region VI and is mostly likely the reason for the response that

occurs. This normal vibration became noticeable in region hybrid and VI. In fact the

normal vibration was very large in the first subregion, but became somewhat subdued in

the second subregion. The comparison of these two regions will be discussed in more

detail in section 3.3. Labeled on both of the Poincaré-minus—DC graphs are regions of

oscillatory activity. These regions, though different, do appear to be comparable. Since

Figure 3.2, the down sweep, shows the most distinct regions, it was used to number the

regions. The “hybrid ” region of the Figure 3.1 does not fit into the mold set by Figure

3.2. Rather the “hybrid ” region appears to be a combination of regions [11 and IV from

the down sweep, where region [11 has slide up the frequency scale and region IV has

moved down the frequency scale. This could be the case since the initial conditions of

the beam will differ between the up and down sweeps making the corresponding

responses of the beam analogous but still unique.

3.2 Subharmonic Order in each Region

From the behavior of the beam we felt that it was important to look at the

“subharmonic order” of the regions of interest. We accomplished this by taking a region

and performing a short-time average FFT calculation on a small window of data. This

window of data started at the beginning of the region. Index by index we calculated the

average FFT for each window. The end product was a short-time average of the FFT

across each window, whence we obtain the average subharmonic at each point of the

region.
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In this context, what we mean by “subharmonic order” is the ratio Q/a) , where a)

is the dominant frequency in a response that may not be periodic. This reference to a

“subharmonic response” may thus be different from the traditional reference to a periodic

response of a period which is a multiple of the excitation period. We use the terminology

“subharmonic order” since many of our response have a dominant component at a

frequency which is lower then the excitation frequency.

In each frequency region, a short-time window length q was chosen to be large

enough to capture the lowest frequency expected (from previous inspections of the data),

yet small enough to represent a narrow frequency interval. Given q , the frequency

window for each short-time FFT was from the sweep parameter window, [fmin , fmax ],

from which we estimate the average driving frequency as fd = (fmin + m )/2. Given q

and fd , the approximate time record for a short-time FFT was q/fd . This defined the

frequency resolution (minimum frequency) in the short-time FFT as fd /q . The

maximum frequency of the short-time FFT was based on the Nyquist criterion as fd /2.

Hence, a given short-time FFT had a minimum detectable frequency of fd /q and a

maximum detectable frequency of fd /2. The short-time FFT frequency axis has values

fd/q, Zfd/q, 3fd/q kfd/qu fd/Z-

In the calculation of the subharmonic order, we found the frequency for which the

short-time FFT was a maximum, say k fd /q . Then we computed the subharmonic order

as fd /(k fd /q) = q/k , where k can have an integer value from 1 to q/2 . The reciprocal

of the order would be k/q . Comparing k =1 and k = 2 corresponds to a factor of two in

the order. Signals with aberrant low frequency components (for example due to
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transients and changes in dynamic behavior across the window) lead to small k .

Because of this, if k = 1, we set the order to zero to omit that case and limit the scale of

the order axis in the plots. Thus, the maximum presentable subharmonic order is q/2 .

3.2.1 Region I

In this case, q = 50 , leading to a maximum presentable subharmonic order of 25,

and a frequency window width for the short time FFTs of the up and down sweep of

approximately 0.15 and 0.153 Hz respectively. Region I is located approximately

between 8 and 13.5 Hz. Figure 3.3 shows the frequency up sweep Poincare-section strain

signal of the region along with its subharmonic order. Figure 3.4 displays the same as

Figure 3.3 but is of the down sweep.

Both up and down sweeps are rather consistent in indicating subharmonic orders

in ranging from of 3 to 7, depending on the input frequency. Isolated incidents of large

subharmonic orders are likely due to shifts in the sweep response, which would be

represented as large changes in the course of the short-time signal window, and hence

correspond to low frequency components. It is also possible that chaotic responses with

broad band FFTs are present, such that the lower frequencies in the FFTs dominate.
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Figure 3.3: Frequency up sweep of region I and the subharmonic orders of the response.
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Figure 3.4: Frequency down sweep of region I and the subharmonic orders.
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3.2.2 Region II

In this case, q = 200 , leading to a maximum detectable subharmonic order of 100,

and an average short-time FFT frequency window for the up and down sweep of

approximately 0.29 and 0.3 Hz respectively. Region II is located approximately between

20.8 and 23.2 Hz. Figure 3.5 shows the Poincare' section of the up sweep of the region

along with its subharmonics and Figure 3.6 shows the Poincaré section of the down

sweep of the region along with its subharmonics. Viewing Figure 3.5, the subharmonics

jump around like so: 40, 28.5, 50, 67, 5, 40, 18, 33.5 and 40 Hz. To compare, in Figure

3.6 the subharmonic orders are as follows: 25, 28.5, 33.5, 40, 50, 28.5, 25 and 33.5Hz.

Here, the isolated “regular-order” subharmonic is not observed (as in the order 5 seen in

the upsweep). It is possible that the finite sweep rate glossed over it. Thus, in general the

values of the subharmonic orders do differ but a basic pattern stays the same between the

up and down sweeps, which implies that the up and down sweeps in fact share a similar

dynamic behavior in region 11 although the absolute response may very slightly. Again,

the incidents of zero-subharmonic orders in the plot arise in fact from the maximal

subharmonic order, reset to zero for the plot, disregarded as they are likely to indicate

low frequency transients during the sweep.
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3.2.3 Region Hybrid, III & IV

In this case, q = 200, leading to a maximum presentable subharmonic order of

100, and the average short-time FFT frequency windows for the hybrid, III, and IV

regions are approximately 0.24, 0.26, and 0.23 Hz respectively. The “Hybrid” region is

located approximately between 25 and 28.3 Hz. Region III and IV are located

approximately between 22.5 to 26.5 Hz and 27.2 to 28.8 Hz respectively. As mentioned

earlier the Hybrid region of the frequency up sweep appeared to be a combination of

regions 11] and IV of the frequency down sweep. By looking more closely at Figure 3.7,

which shows the Hybrid region, it is unmistakable that there are two regions present.

Figure 3.8 and Figure 3.10 separates these distinct regions of the Hybrid region into two

sub regions. For simplicity Figure 3.9, region 111, and Figure 3.11, region IV, have been

placed where they are because of the uncanny similarity to their previous Figures 3.8 and

3.10.

Region III is characterized by subharmonic orders in the range of about 10-13.

The hybrid region shows subharmonic orders that are consistently around 12-13 for the

first segment of the up sweep, then jump to over 20, thereafter decreasing markedly to ten

as the parameter increases. A similar trend will be seen again in another region.
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Figure 3.7: Frequency up sweep of the Hybrid region and the subharmonic orders.
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Figure 3.1]: Frequency down sweep of region IV and the subharmonic orders.

3.2.4 Region V

Region V is located approximately between 30.2 and 34 Hz. With q=200, the

subharmonics of this region feature a general harmonic around 2.2 Hz, though there are

short instants where the harmonics jumped to around 20 Hz, but this still did not create a

beam response that was interesting in our study. Figure 3.12 and Figure 3.13 in the

appendix to see the graphs of the frequency up and down sweeps of region V and their

sub-order harmonics.
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Figure 3.12: Frequency up sweep of region V and the subharmonic orders.
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3.2.5 Region VI

In this case, q = 400, leading to a maximum presentable subharmonic order of

200, and short-time FFT frequency windows for the up and down sweeps were 0.28 and

0.284 Hz respectively. Region V1 is located approximately between 43 and 47.3 Hz.

Figure 3.14 shows the frequency up sweep Poincare section of region VI along with its

subharmonic order and Figure 3.15 shows the down sweep. Upon looking at the

frequency up and down sweep graphs of region VI it becomes clear that there are two

distinct regions, similar to the Hybrid region. Figure 3.16 to Figure 3.19 show region VI

subdivided into to separate regions.
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Figure 3.14: Frequency up sweep of region VI and the subharmonic order.
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Down Sweep Region VI
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Figure 3.15: Frequency down sweep of region VI and the subharmonic order.
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Figure 3.16: Frequency up sweep region VI sub 1 and the subharmonic order.
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Figure 3.17: Frequency up sweep region VI sub 2 and the subharmonic order.
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Figure 3.18: Frequency down sweep of region VI sub 1 and the subharmonic order.
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Figure 3.19: Frequency down sweep of region VI sub 2 and the subharmonic order.

In the 43-45 Hz window, we see rather subharmonic orders ranging from about 7

to 9 (Figures 3.16 & 3.18). The 45 to 46.5 Hz window shows a gradual change in

subharmonic order, quantized in steps due to our order resolution defined by q/k .

Following driving frequency (in either the up or down sweep) downward from 46.5 Hz,

for which the subharmonic order is about 40, the subharmonic order increases, actually

according to a smooth curve to a remarkably high value (well over 100) before the

system bifurcates into the “order-10” subharmonic region.

This gradual change in subharmonic orders is predominately represented by

quasi—periodic dynamics, as the order is likely typically irrational. The “order-10”
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subharmonic region is also quantized, and typically represented by quasi-periodic

dynamics.

Our graph measures subharmonic orders up to 130, as a quantization of some

irrational order, during a test with a slow sweep rate. It is interesting to fathom the

behavior for true steady-state dynamics as a function of driving frequency.

If we plot the reciprocal of the subharmonic order, i.e. f/fM, , for regions VI

sub 2, we get plots, like Figure 3.20, which resemble the frequency demultiplication plots

of Van Der Pol and Van Der Mark [13]. It is not the same behavior. Our steps are due to

frequency resolution in the short-time FFT plots. The steps of Van Der P01 and Van Der

Mark were observed as discrete subharmonic responses, sustained for a parameter

interval, and the bifurcating to the next subharmonic, often with accompanying noise at

the bifurcation.
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I I f I I I I I

E

O

D a

3 _—

g 0.01 — .

0005 l 1 1 l l l 1 l 1

45 45.2 45.4 45.6 45.8 46 46.2 46.4 46.6 46.8 47

I I I 7 I I I I I

5 0.025 " _ _.

g .
3o
0 2 002 >- 0”— —

5 8 “

C

3 g O_015 »— ——-—- —1

o f: __
3

5".) 0,01 .. __ 4

0005 l l l %   
 

1 1 1 1 I

45 45.2 45.4 45.6 45.8 46 46.2 46.4 46.6 46.8 47

Frequency Hz

Figure 3.20: Apparent demultiplication of region VI sub 2.

3.3 Summary

The similarity between the hybrid region and region V] are almost unmistakable.

By comparing Figure 3.7 with Figure 3.14 or 3.15 you can see a bifurcation between two

zones of the subharmonic responses. With the region VI having magnified subharmonic

orders compared to the hybrid region. Region VI involved vibrations in the normal

degree of freedom, and it occurs close to the normal modal frequency of 47 Hz. The

hybrid region also was affected by normal vibration and it occurred close to 47/2 Hz.

From this information we can interpret that the normal degree of freedom plays a

roll in the dynamics, in one case (VI) the 47 Hz normal degree of freedom is resonated

directly, and in the other case (hybrid) through a superharmonic resonance of order 2
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(from comma, /a)d,,,,e, 5 2). Such a superharmonic resonance of order two requires a

quadratic non-linearity, which must already exist by virtue of DC drift figures.
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Chapter 4

Fixed-Frequency Responses

In this chapter the frequencies noticed, during the sweeps, to cause the tip of the

cantilever beam to under go what appeared to be chaotic or quasi-periodic drift were

examined in more detail. As stated in Chapter 2, we focused on 11 different frequencies:

8, 9.8, 21.9, 22.1, 22.3, 25.7, 37.9, 43.8, 44.4, 45.2 and 45.6 Hz. We will group these

frequencies with their corresponding regions from Chapter 3. Region I holds 8 and 9.8

Hz; region 11 holds 21 .9, 22.1, and 22.3 Hz; region III/Hybrid holds 25.7 Hz; and region

VI holds 43.8, 44.4, 45.2, and 45.6 Hz. The only frequency that is not in a region is 37.9

Hz; this frequency was examined not because it caused the chaotic tip drift we wanted to

study, rather because its strain gage response signal during the sweep was almost a

perfect triangle wave which was a curious quirk.

4.1 Fixed Frequency Examination

Once the fixed frequencies of interest were chosen, a quick estimation of the

cantilever tip characteristic drift period was used to estimate the length of the time trace

data needed to effectively examine the response behavior of the cantilever beam at the

given frequency. In general the higher driving frequencies needed a longer time trace

than the lower driving frequencies because they generated lower frequency responses.

This time trace data was then post-processed by Matlab to gather data in the Poincaré

sections, through which most of the dynamical analyses were performed. Using the

Poincaré section condensed the amount of data to be analyzed. A time trace with
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millions of data points was reduced to only tens of thousands of Poincare section data

points.

Data from the Poincare section was viewed in a delay map to provide a

reconstruction of the true Poincare section. The pseudo Poincaré section enabled us to

glimpse how the cantilever beam was behaving. This allowed us to come up with other

types of analyses, such as taking the Poincare section of the Poincare section, or a

looking at the torus angle of possible tori, to gather more information about this dynamic

phenomenon.

To get a sense of the dimension of the dynamics, we looked at the false nearest

neighbors (FNNs) [28] and the fractal (correlation) dimension [29]. The correlation

dimension is a measure of the dimension of the attractor (or attracting set), while the

FNNs give information on the dimension of the phase space needed to describe the

attractor.

We also looked at FFT’s of the response signals to understand the frequency

content. In performing the FFT’s we applied a Hanning window to the data to reduce

leakage distortions. We performed the FFT’s using the first 10,000 data points of the

collected data of each frequency. We omitted data to reduce the sampling rate and

thereby fix the Nyquist frequency, and hence the scale of the FFT plot, to a reasonable

value (two to five times the driving frequency). In some cases we displayed the FFT of

the Poincare section data to magnify the subharmonic contributions.

4.1.1 Region I (8 & 9.8 Hz)

8 and 9.8 Hz were the forcing frequencies selected from region I. The cantilever

beam was then forced at the given frequency for an extended amount of time to allow it
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to settle into a steady state after which the collection of data was started. Data was

collected for 15 minutes at 8 Hz and for 20 minutes at 9.8 Hz. This time trace data was

then imported into Matlab and the Poincaré section was taken. Plotting the Poincaré

section in a delay map helped in visualization of the data. Figure 4.1 and Figure 4.2 show

the delay map with a delay of one index of the Poincaré section samples of 8 and 9.8 Hz

respectively. Three iterates of the 8 Hz data travel clockwise in the Poincaré section,

moving from spot to spot, occasionally getting trapped in the area of (-0.2, -0.2) for

several iterates. The iterates of the 9.8 Hz data also circle clockwise. While the distance

from the center of the data (2, 2) increases and decreases, circular motions in the Poincare

sections suggest toroidal dynamics, although in these cases the torus would be fat.

Thinking this way, we took the Poincaré section of the Poincare section and the torus

angle to look for dynamical structure. The torus angle was taken about the approximate

center of the torus of the delay map of the original Poincaré section.
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Figure 4.3 shows the Poincare section of the Poincaré section for 8 Hz. The

Matlab program that performed the Poincare section of the Poincaré section flagged

Poincare section data that crossed the diagonal from positive to negative, the positive

being the bottom right half and thus the negative being the top left half. By viewing the

delay map of the 2"d Poincare section in Figure 4.3 we see that, for the most part, the

Poincare data wraps around the torus, fluctuating at (-O.7, -0.70, but there is also another

mini torus the Poincaré periodically visits at (-O.3, -.O3). However, Figure 4.3 does not

reveal any structure in these toruidal fluctuations, suggesting higher dimensional

dynamics between the two components of the torus. Refer to Figure A.1 in the Appendix

to see the Poincare section of the Poincare section verses its index to see when the mini

torus is visited with respect to the larger torus.
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The Poincare section of the Poincare section for 9.8 Hz is unlike the 8 Hz

case because this time the Matlab program flagged the Poincare section data that crossed

the diagonal from negative to positive. This was chosen after looking at Figure 4.2 and it

was felt that it was a clearer crossing than ifwe were to go from positive to negative.

Figure A2 in the Appendix shows the outcome, which is that the Poincaré data crosses

the diagonal in one continuous area.

 
 

 

Figure 4.4: Torus angle model.
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Figure 4.4 shows a simple schematic model of how the torus angle return map

was created from the Poincare section delay map. Matlab was used to calculate the angle

9 in each Poincare section with respect to a given center. Figure 4.5 and Figure 4.6 show

the delay maps of the torus angles, 9, for 8 Hz and 9.8 Hz respectively. At 8 Hz the

center coordinates x-bar and y-bar were at -0.5 on Figure 4.1. The x-bar and y-bar, for

9.8 Hz, were 2.1 on Figure 4.2. Figure 4.5 shows that Poincaré section data at an angle of

approximately -0.3 rad will map to an angle of approximately -O.2 rad. These data then

map to around 9 equal to -O.5 rad. Data at 9 approximately equal to -O.5 rad mostly map

to 9 equal to 1-2 rad, but occasionally map to values of 9 approximately equal to 0-1 rad.

In this region the data is almost trapped, most often mapping back to the same region of

9. This is the “mini torus.” Occaisionally they map back to the previous region, but data

in the positive end of the 0-1 rad region get cleanly mapped to 9 values of +1 .5-2.5 rad.

These data go to 6 approximately equal to rt, and wrap to 9 equal to negative 7t, where the

process starts over again.

Hence the 9 map indicates rather deterministic travel around the main turus, but

dynamical interaction which is not a simple l-D map at the region of the “mini torus.”

Figure 4.6 shows, for the 9.8 Hz case, a strong band resembling a circle map,

clouded by additional dynamics off the circle map. It suggests that some higher

dimensional dynamics occurs with some strong tendency torward circle map, dynamics,

yet it does not “settle in” on the circle map. This makes sense, as a thin torus is not

apparent in Figure 4.2. The underlying circle map has a near tangency with the indentity

diagonal, suggesting intermittency in the dynamics [30].
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The figures also give us information on the winding number, which has units of

radians per cycle. The winding number for 8 Hz is -1 .3376 rads/cyc (or -O.2129 cyc/cyc)

and for 9.8 Hz it is -1.445 rads/cyc (or -O.23 cyc/cyc).

After viewing the torus angle figures we see that although there is a definite

pattern to the Poincare section, it appears that the dynamics are only loosely based on a

torus. Figure 4.5 show how the Poincare section jumps from one stage to the next as well

as how it might get hung up between two stages. Figure 4.6 appears to fit the

classification of a torus little better, but a more of special type of torus known as a fat

torus.

The Poincare sections and torus angle maps show that the dynamics are of higher

dimension than 3. It is important to see exactly what dimensions we are dealing with. To

do this, a Fortran and a Matlab program were created to find the FNNs (False Nearest

Neighbors) [28] and the correlation dimension [29] respectively. Table 4.1 shows the

number of FNNs as well as the percent of FFNs to total number of Poincaré section data

in each corresponding reconstruction dimension. It is difficult to pinpoint the embedding

dimension of the deterministic dynamics, as experimental noise contributes to the FNN

counts. If we were to (arbitrarily) prescribe a 1% criterion, it would lead to embedding

dimensions of 5 for the 8 Hz data, and 6 for the 9.8 Hz case. The correlation dimension

program allows user to view log C(r) vs. log (r) (where C(r) is the correlation sum as a

function of distance r), choose a scaling region, and find the slope in the scaling region.

This slope is an approximation of the fractal (correlation) dimension. The correlation

program also allows the user to view an approximation of the derivative of the log C(r)

vs. log (r). This works as a nice check to see if the fractal dimension is right. Refer to
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Figure A3 in the Appendix to see the correlation data for 8 and 9.8 Hz. It should be said

that the correlation dimension slope, dc, is r dependent, and suggesting that the fractal

scaling varies with the size scale. The correlation dimension might be represented by the

maximum dc, or alternatively by the slope of a in the linear region of the log C(r) vs.

log(r) plot. The FNN and dc should agree, i.e. the embedding dimension of the FNN, d5,

should have the relationship of dC < dE S ZdC + 1 . At any rate the correlation dimension

is 3.3275 at 8 Hz and 3.7394 at 9.8 Hz.

 

 

8 Hz 9.8 Hz

Dimension FFN Percent FFN Percent

First 7086 98.43% 12144 99.44%

Second 3499 48.60% 8022 65.69%

Third 802 11.14% 2680 21.95%

Fourth 151 2.10% 635 5.20%

Fifth 44 0.61% 197 1.61%

Sixth 16 0.22% 62 0.51%

Seventh 4 0.06% 1 1 0.09%

Eighth 0 0.00% 0 0.00%

Ninth 0 0.00% 0 0.00%       
Table 4.1: FNN data of 8 and 9.8 Hz.

Figure 4.7 and Figure 4.8 show the FFTs as well as the FFTs of the Poincare

sections of 8 Hz and 9.8 respectively. These figures both show the driving frequency as

the dominant spike, but the first spikes on both of the FFT graphs occur at 1/4 the driving

frequency. This type of subharmonic resonance suggests that the beam’s behavior is

affected by period doubling {31] at both 8 and 9.8 Hz, although clear period doublings

are not apparent in the frequency sweeps of Chapter 3. This may be due to the speed of

the sweeps, as discussed in Chapter 3.
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After viewing the FFT figures and understanding the winding number given from

the torus angle dynamic figures, we can see a direct correlation between the subharmonic

spike and the winding number. It is also noticeable that the driving frequency divided by

the subharmonic spike frequency yields values that are comparable to the subharmonic

orders found from the frequency sweep data of Chapter 3.

For the case of 8 Hz, the winding number in cycles per cycles multiplied by the

driving frequency produces a subharmonic frequency value of 1.703 Hz (ignoring the

minus sign). This in not close to the subharmonic spike frequency of 2 Hz but this may

be because of the mini torus winds faster than the larger torus, and does not contribute to

the changes in 8, causing this error. Indeed, with the coupling between the “mini torus”

and the large torus, using one torus angle may not be representative of the dynamics.

In the case of 9.8 Hz the subharmonic frequency value produced is 2.2534 Hz.

This is value is closer to the subharmonic spike frequency. Dividing the driving

frequency by the subharmonic frequency will yield the subharmonic order; these values

of 4.6976 for 8 Hz and 4.349 for 9.8 Hz correspond closely with the subharmonic orders

of region I of Chapter 3.

4.1.2 Region II (21.9, 22.1 & 22.3 Hz)

The forcing frequencies selected from region 11 were 21.9, 22.1, and 22.3 Hz.

The cantilever beam was then forced at the given frequency for an extended amount of

time to allow it to settle into a steady state, after which the collection of data was started.

Data was collected for 15 minutes at 21.9 Hz and for 20 minutes at 22.1 and 22.3 Hz.

This time trace data was then imported into Matlab and the Poincaré section was taken.
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By plotting the Poincaré section in a delay map we were able to observe what path the

Poincare data follows in higher dimension. Figures 4.9 and Figure 4.10 shows the

Poincaré section and the Poincaré section of the Poincaré section of 21 .9 Hz respectively.

In Figure 4.9, the map has an interchange between dynamics around the circular cloud,

and the dynamics in the diagonal dark band.
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Figure 4.9: Poincaré section delay map of 21 .9 Hz.
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Figure 4.10: Poincare section of the Poincaré section of 21 .9 Hz plotted against its index.
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Figure 4.11: Sample of the Poincaré section data at 21.9 Hz plotted against its index.
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The delay map of the Poincare section of the Poincare section of 21.9 Hz did not

give any insight into how Figure 4.9 was behaving; refer to the Appendix Figure A.4 to

see the delay map of the cross-section of the Poincaré section of 21 .9. Figure 4.10 on the

other hand tells us that the Poincaré section of Figure 4.9 represents an attractor, rather

than a case were the dynamics of the cantilever beam suddenly change to give us two

different responses.

The next frequency to be presented is a case were during the data collection there

is a change in the responses and thus two different responses are present. The Matlab

program that preformed the cross-section of the Poincare section of 21.9 Hz flagged

Poincaré section data that crossed the diagonal from positive to negative, the positive

being the bottom right half and thus the negative being the top left half. Figure 4.11

allows one to see how long the dynamic behavior tends to spend in the slow part (“flat

torus”) versus how long it spends in the oscillatory part (“round torus”).
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Figure 4.12: Poincare section of the Poincaré section of 22.1 Hz plotted against its index.

Figure 4.12 shows the Poincare section of the Poincaré section at a frequency of

22.1 Hz plotted against its index. This figure clearly shows that there are two different

segments of the response. It is likely that the slight changes in parameter, such as

friction, due to, e. g., temperature and wear, led to a change in the nonlinear system

response. As such we have taken the liberty of breaking the response data in to two

different sub regions. Below, Figure 4.13 and Figure 4.14 show the Poincaré section

delay maps of each region. The figures have the same scale so the reader will be able to

see how the data segments would have overlapped and important information would have

been missed. Figure 4.14 appears to be a better-defined torus which allows us to use the

torus angle program in Matlab to see if in fact it is a torus.

63



Poincare 01221 Hz with a Delay of 1 Sub 1

i I I I
 1,

X
(
N
+
1
)

1L
1

N

I

 

   4|; 4 A; l J

-3 ~28 -26 ~24 -2.2 -2 -1.3 -1.6 -1.4

X(N)
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Figure 4.14: Delay map ofthe Poincare section of 22.1 Hz of data segment 2.
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Figure 4.15 shows the Poincaré section of 22.3 Hz. The dynamics are similar to

those of the 21.9 Hz case, in that the map of the data alternates between going around the

toroidal loop, and iterating on the diagonal dark band. After viewing this figure we

decided that we would be unable to take the Poincaré section of the Poincaré section of

the 22.3 Hz data. The problem was that the majority of the data appeared to be along the

diagonal axis we wanted to take the cross section along. But as one can see there is still a

clear hole in the torus, which allows us to define a center point to use the torus angle

 

   
 

program in Matlab.
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Figure 4.15: Poincare section of 22.3 Hz with a delay of 1.

Figure 4.16 and Figure 4.17 show the delay map of the torus angle return maps of

the Poincaré section of 22.1 Hz data segment 2 and 22.3 Hz respectively. These are

more clearly defined, compared to the torus-angle figures in section 2.1.1. The graphs
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inform us that the Poincare sections are in fact toruses, and the dynamics are governed by

circle maps. The winding numbers are -1.3367 rads/cyc (-0.2127 cyc/cyc) and -O.24981

rads/cyc (-0.0398 cyc/cyc). The first circle map is monotonic, suggesting quasi-periodic

dynamics with some higher dimensional fluctuation. The second circle map has a nearly

zero-slope portion, and may therefore be on the brink of chaos by torus wrinkling. The

dynamics are similar to those of he 21.9 Hz case, in that the map of the data alternates

between going around the toroidal loop and interacting on the diagonal dark band.

Considering a diagonal line along the identity (separating the top left from the bottom

right) in the plot there are near tangencies at —2 and —2 suggesting intermittency [30].

The existence of some higher dimensional dynamics (evident in the fatness of the plot)

might combine with intermittency to generate chaos. Figure 4.18 shows a sample of the

Poincare section data versus its index, which suggests how long the dynamic behaviors

tend to spend in each part of the torus.
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Sample of the Poincare Section Data at 22.3 Hz
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Figure 4.18: Sample of the Poincaré section data at 22.3 Hz plotted against its index.

For of 21 .9, 22.1, and 22.3 Hz, the FNN and correlation dimension programs were

run to gather information about the dimension of the dynamics at these frequencies. Table

4.2 contains the FNN information. Refer to the Appendix, Figure A5, to examine the

correlation dimension information which yields a correlation dimension of 2.4439 at 29.1

Hz, 3.3973 at 22.1 Hz, and 3.1805 at 22.3 Hz.
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21.9 Hz 22.1 Hz 22.3 Hz

Dimension FFN Percent FFN Percent FNN Percent

First 19640 99.43% 26458 99.67% 2661 1 99.21%

Second 1 1526 58.35% 18125 68.28% 15293 57.02%

Third 2244 11.36% 4919 18.53% 3399 12.67%

Fourth 41 1 2.08% 750 2.83% 689 2.57%

Fifth 83 0.42% 99 0.37% 191 0.71%

Sixth 27 0.14% 18 0.07% 58 0.22%

Seventh 8 0.04% 3 0.01% 15 0.06%

Eighth 0 0.00% 0 0.00% 0 0.00%

Ninth 0 0.00% 0 0.00% 0 0.00%
  

Table 4.2: FNN data of21.9, 22.1, and 22.3 Hz.

Figure 4.19, Figure 4.20, and Figure 4.21 show the FFT and the Poincare-section

FFT of 21 .9, 22.1, and 22.3 Hz respectively. Figure 4.19 highlights some very interesting

frequencies. There are two pairs of frequency peaks on either side of the driving

frequency of 21.9 Hz. These paired frequencies have distances of 0.4 and 4.27 Hz from

the driving frequency. These distances match up with the first two peaks in the FFT,

which have frequencies of 0.4 and 4.27 Hz respectively. Taking these frequencies and

dividing them by the driving frequency produces (probably) irrational numbers. If

0.4/21.9 and 4.27/21.9 were truly representing rational ratios, then we would know we

have some sort of period doubling going on, which is similar to what was taking place in

the pervious section with 8 and 9.8 Hz. But here the fraction is (seemingly) irrational,

which means these frequencies arise on their own, and are independent of the driving

frequency. This means there are three frequencies that are affecting the dynamic

behavior of the cantilever beam. The slightly elevated spectrum near the frequency peaks

suggests a narrow-band chaos. As such were classified this as chaos with 3-frequency

quasi-periodicity [30].

69



The order of the subharmonic is 21.9/0.4 as well as 21.9/4.27 giving subharmonic

orders of 54.75 and 5.129 respectively, which are similar to the subharmonic orders of

 

region II in chapter 3.
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Figure 4.19: FFT and the Poincaré FFT of21.9 Hz.

In Figure 4.20 there are several frequency peaks but only three of these peaks

have a convincing affect on the driving frequency. It seems likely that the behavior that

was noticed with 21.9 Hz is also appearing here. Figure 4.20 has a pair of frequencies

that accompany the driving frequency on either side. These frequencies have distances

from the driving frequency of 5.05 Hz in the first sub region and 4.83 in the second sub

region. Once again the first peak on each FFT has a frequency that matches this

difference. And similarly this frequency divided by the driving frequency yields an

irrational number. The small peak to the right of 22.1 Hz occurs at a distance of 22.1
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minus 2(10.5). The FFT is slightly raised. Adding the 10.5 Hz peak, we conclude that

the dynamics is either very narrow-band chaotic or quasi-periodic with 3-frequencies, and

that this structure occurs in both the sub intervals 1 and 2. Therefore we concluded that

the behavior of the cantilever beam at 22.1 Hz can be classified as qusai-periodic or

narrow band chaos with 3-frequency quasi-periodicity.

Highlighted in Figure 4.21 for the 27.3 Hz case are the frequencies that are paired

to the driving frequency and their governing response frequency of 0.68 Hz. This

subharmonic order is approximately 33. There is a broadband of the spectrum elevated

above the noise level, suggesting chaos or stochasticity. Again the response frequency

divided by the driving frequency yields (probably) an irrational number and we can

conclude that the behavior of the cantilever beam at 22.3 Hz can be classified as chaos

with 2-frequency quasi-periodicity and intermittency.

In summary, in Region II we see chaotic and quasi-periodic dynamics associated

with either 3-frequency quasi-periodicity or 2-frequency quasi-periodicity with torus

wrinkling and intermittency.

71



d
3

d
8

d
8

d
B

-100

-150 g

-200

-250

0

-100

-150

-200

-250

~100

-150

-200

-250

-300

FFT 0122.1 Hz Sub 1

 

 

5.05 Hz

I I I I

17.05 Hz

/
27.15 Hz

/

l l 1 l   
15 20 25 30 35

FFT 01221 Hz Sub 2

45 50

 

I

 

I I l

17.27 112

/ 2.5.93 112

  

Figure 4.20: FFT of 22.1 Hz segments 1 & 2.

10 15 20 25 30 35

FFT of 22.3hz

40 45 50

 

0.68 Hz

 

I I I I

21.62 Hz

I l 1 l

20 25 30 35

Poincare FFT 0122.3hz

45 50

 

 

I I I I

Hz

 

Figure 4.21: FFT and the Poincaré FFT of 22.3 Hz.
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4.1.3 Region III & Hybrid (25.7 Hz)

Figure 4.22 displays the six graphs that show Poincare section of the Poincare

section, in both delay and index from, at a frequency of 25.7 Hz and its sub divided

regions which were picked form the obvious change in the response signal.
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Figure 4.22: Poincare section of the Poincare section for 25.7 Hz and its two sub regions.

These graphs give valuable insight in to the behavior the cantilever beam. We

can clearly see that there are two distinct responses going on in the first sub region. If we

were to plot the Poincare section in a delay map ofjust this region it would appear to be

just a thick torus, that is presented in Figure 4.23, but after analyzing data from 45.6 Hz

we can conclude that what is going on at 25.7 Hz is a fat torus shrinking to a thinner torus
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as the dynamics changes. Section 4.2 will focus on this phenomena, is also showing the

delay map of the 25.7 Hz Poincaré section.

Poincare Section of 25.7 Hz with a Delay of 1
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Figure 4.23: Delay map ofthe Poincaré section of 25.7 Hz.

The 0 dynamics was taking with respect to each sub segment, which both have a

common center, the x-bar is -2.3 and the y—bar is -2.3 on the Poincare section delay map.

The winding number was calculated to be -O.52297 rads/cyc (—0.0832 cyc/cyc) for the

first segment and —0.55395 rads/cyc (-0.0882 cyc/cyc) for the second segment. Figure

4.24 and Figure 4.25 present the delayed 9 dynamics plot and we can conform that the

plot is in fact a torus governed by circle map dynamics. There is no strong indication of

torus winkling (negative slope regions on the circle map), and hence the dynamics look

quasi-periodic. However, the segment 1 plot has a “kink” in it, so maybe there is a very

narrow banded chaos involved, maybe related to the fatness of torus. Once again if you
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consider the diagonal line in the plots there are near tangencies at -2, -2 and 1,1. The

near tangency of the torus angle return map to the diagonal indicated that intermittency

plays a role in the quasi-periodic dynamics.
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Figure 4.24: Torus angle dynamics at 25.7 Hz of sub 1.
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Figure 4.25: Torus angle dynamics at 25.7 Hz of sub 2.

To get an idea of the dimensionality at 25.7 Hz, the FNN and correlation

dimension programs where run. Table 4.3 contains the FNN information. Refer to the

Appendix, Figure A.6, to examine the correlation dimension information, which yields a

correlation dimension of 2.4579.

 

 

   

1 25.7 Hz

Dimension FFN Percent

First 23056 99.59%

Second 1 1572 49.98%

Third 1673 7.23%

Fourth 89 0.38%

Fifth 6 0.03%

Sixth 0 0.00%

Seventh 0 0.00%

Eighth 0 0.00%

Ninth 0 0.00%   
 

Table 2.3: FNN data of 25.7 Hz.
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Figure 4.26 highlights the FFT frequencies that are paired to the driving

frequency and the subharmonic response frequencies of 2.08 Hz in the first data segment

and 2.37 Hz in the second data segment. In the second region the subharmonic frequency

minus the driving frequency does not match up with the spike highlighted in the figure

but is only off by 0.01 so this maybe because of frequency resolution effects and thus is

treated as if it was at 23.33 Hz. Again the frequency divided by the driving frequency

yields an irrational number and we can conclude that the behavior of the cantilever beam

at 25.7 Hz can be classified as dominantly 2-frequency quasi-periodicity. Using the

winding numbers given in the torus angle figures for both segments to estimate the

subharmonic frequencies of each segment yields values of 2.139 Hz for the first segment

and 2.266 Hz for the second segment. From the FFT it appears that these frequencies are

the torus frequencies. These subharmonic frequencies yield a similar subharmonic order

for region 111 of Chapter 3. Looking at the peak that is to the right of the driving

frequency in Figure 4.27 it is interesting to note that the frequency is close to half the

fundamental normal frequency of 47 Hz. Therefore the normal degree-of-freedom

resonance that was noticed could have come about through this relationship.
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Figure 4.26: FFT of 22.1 Hz Sub l & Sub 2.

4.1.4 Region VI (43.8, 44.4, 45.2 & 45.6)

43.8, 44.4, 45.2 and 45.6 Hz were the forcing frequencies selected from region

VI. The cantilever beam was then forced at the given frequency for an extended amount

of time to allow it to settle into a steady state, afier which the collection of data was

started. Data was collected for 15 minutes at 45.2 Hz, for 30 minutes at 45.6 Hz, and for

40 minutes at 43.8 and 44.4 Hz. This time trace data was then imported into Matlab and

the Poincare section was taken. Unfortunately the data that was taken at 43.8 Hz was

corrupted and was rendered useless. But the other frequencies of region VI revealed

some of the most interesting dynamics yet.

Figure 4.27 shows the delay map of the Poincare section at 44.4 Hz, which

displays a very nicely defined torus. The Poincare section of the Poincare section was
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not performed on this data because no new information could be gathered. Figure 4.28

shows the delay map of the Poincaré section at 45.2 Hz, which displays an unusually

shaped torus. A delay of 5 was used to see this torus in its “optimal” form. Again the

Poincare section of the Poincaré section was not used because no new information could

be obtained. Figure 4.29 shows the delay map of the Poincare section at 45.6 Hz, which

displays what appears to be some sort of doubled torus. A delay of 3 was use to see this

torus in its optimal form. For this case the Poincare section of the Poincare section could

come in handy to see the torus size variation in this response data. Refer to Section 4.2

for more on this phenomenon.
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Figure 4.27: Poincare section of 44.4 Hz with a delay of 1.
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Figure 4.28: Poincare section of 45.2 Hz with a delay of S.
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Figure 4.29: Poincare section of 45.6 Hz with a delay of 3.
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The torus angle return plots of 44.4, 45.2, and 45.6 Hz are Figure 4.30, Figure

4.31, and Figure 4.32 respectively, and give some insight into the structure of the tori.

The winding numbers were -O.76796 rads/cyc (-O.1222 cyc/cyc) at 44.4 Hz, -0.10303

rads/cyc (-0.0164 cyc/cyc) at 45.2 Hz, and 0090993 rads/cyc (-0.0145 cyc/cyc) at 45.6

Hz. No wrinkling is evident in the circle map at 44.4 Hz and hence the dynamics are

dominantly quasi-periodic. The circle maps for 45.2 Hz and 45.6 Hz lie close to the

diagonal, corresponding to the small winding numbers. If there is any wrinkling, as

might be suspected from Figure 4.28, it is only on a very small scale in 6. Hence, the

I'

dynamics are dominantly quasi-periodic. Intermittency may play a role in the dynamics

that take place at 44.4 Hz, but it is unlikely that intermittency is involved with the

dynamics that take place at 45.2 and 45.6 Hz because in this case the torus return maps

place the dynamic response along the diagonal for the entire time.

The doubled torus at 45.6 Hz is clear in the double circle map on 0. A single-

valued circle map could be obtained by redefining the angle to cover two loops (47:

radians) around the torus. A question may arise as to whether the data from 45.2 and

45.6 Hz surround a torus doubling bifurcation. This is addressed later. If torus doubling

has occurred, it is accompanied by the doubling of the circle map in a higher dimensional

manifold.
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Figure 4.30: Torus angle dynamics of 44.4 Hz.
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Figure 4.31: Torus angle dynamics of45.2 Hz.
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Figure 4.32: Torus angle dynamics of 45.6 Hz.

To get an idea of the dimensions of dynamics at 44.4, 45.2, and 45.6 Hz, the FNN

and correlation dimension programs where run. Table 4.3 contains the FNN information.

Refer to the Appendix, Figure A.6, to examine the correlation dimension information.

The correlation dimensions are 3.5714 at 44.4 Hz, 2.8328 at 45.2 Hz, and 2.9595 at 45.6

 

 

       

Hz.

44.4 Hz 45.2 Hz 45.6 Hz

Dimension FFN Percent FFN Percent FNN Percent

First 107159 99.54% 40139 98.58% 109221 99.57%

Second 68768 63.88% 16755 41 .15% 45828 41 .78%

Third 14677 13.63% 2725 6.69% 6974 6.36%

Fourth 1848 1 .72% 402 0.99% 977 0.89%

Fifth 180 0.17% 85 0.21% 213 0.19%

Sixth 9 0.01% 23 0.06% 48 0.04%

Seventh 0 0.00% 6 0.01% 22 0.02%

Eighth 0 0.00% 0 0.00% 0 0.00%

Ninth 0 0.00% 0 0.00% 0 0.00%
 

Table 4.4: FNN data of 44.4, 45.2, and 45.6 Hz.
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The FNNs yield information about how many delay cords are needed to describe

the data, not the bifurcation. A torus doubling bifurcation requires at least a four-

dimensional phase space.  
Figure 4.33 to Figure 4.35 give the FFT and the FFT of the Poincaré section at

44.4, 45.2, and 45.6 respectively. The FFT of 44.4 Hz displays a similar reponse to the

frequencies in region 11. In this case the subharmonic frequency is 5.32 Hz, which

complements the driving frequency at 39.08 and 49.72 Hz. This informs us that once

 

again we are dealing with 2-frequency quasi-periodicity. We were unable to find a

correlation between the other spikes, which can be seen in the FFT, and the driving

frequency. But these are of relatively low order, and are likely to be associated with the

torus being slightly fat. By multiplying the winding number in cycles per cycles by the

 
driving frequency of 44.4 Hz the result is 5.423 Hz is close to the subharmonic frequency

spike at 5.32 Hz and thus the yields that the torus frequency. (If examined closely one

will notice a peak right up against the Y-axis, at a frequency of 0.4 Hz. Notice that there

are similar peaks on either side of the driving frequency peak. If these were judged as

significant, we could classify the response behavior to be 3-frequency quasi-periodic).

The subharmonic order of 8.3 matches well with Chapter 3.
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Figure 4.33: FFT and the Poincaré FFT of 44.4 Hz.

The FFT of 45.2 Hz held some very interesting subharmonics. The many spikes

 
that can be see Figure 4.34 possess a pattern that that follows: 0.44, 0.9, 1.34, 1.8, 2.24,

2.68, 3.14, 3.58, 4.04, 4.48, 4.92,. . ., etc. It may be easier to see the pattern like this: 0, 1,

0, 1, O, O, 1, O, 1, O, O, 1, ..., etc. where 0 represents an addition of 0.44 Hz to the

pervious frequency and 1 represents adding 0.46 Hz to the previous frequency. This

pattern continues though out the entire FFT; 0, 1, O, 1, 0 back to O, 1, O, l, O and again,

and again, and again. The combination of these frequencies eventually adds up to the

driving frequency of 45.2 Hz. This interesting pattern is probably due to the frequency

resolution, which is mentioned in Chapter 3. So, this behavior appears to be a case where

there are two predominant frequencies with the subharmonic occurring on the order of

about 100. This order matches with region V1 in Chapter 3. The dynamics corresponds

to 2-frequency quasi-periodicity.
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 Figure 4.34: FFT and the Poincaré FFT of 45.2 Hz.

The FFT of 45.6 Hz, displayed in Figure 4.35, has a similar behavior to the 45.2

Hz case, in that the subharmonic is extremely dominant. In this case, the subharmonic

frequency of 0.6 Hz is associated with the main torus, and the winding number. The 0.3

Hz is then a subharmonic resonance of the 0.6 Hz component, associated with torus

doubling. This subharmonic is at an order of 152 with respect to the excitation! The

dynamics are classified as 2-frequency quasi-periodic with torus doubling. The winding

number of —0.0145 cyc/cyc matches well with the subharmonic of order 76, which

corresponds to the main (undoubled) torus.
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Figure 4.35: FFT and the Poincare' FFT of 45.6 Hz.

4.1.5 Analysis of 37.9 Hz

The behavior of the cantilever beam when it was forced at 37.9 Hz was unlike

anything that has been presented thus far. In fact the beam did not really “do” anything;

the cantilever was stationary and it appeared that nothing was going on. What caught our

attention was that during the frequency sweeps it was noticed that the response strain

gage signal became what appeared to be a triangle wave accompanied by an audible ring

coming from the beam. Figure 4.36 presents the FFT and a sample of the time trace

response signal. The first peak is the driving frequency; this peak is followed by a peak at

double the driving frequnecy and then a peak at triple the drive frequency and so forth

and so on; even the 10th and 11th harmonics are significant. This would then be a

superharmonic resonance. The response of the cantilever beam in Matlab does not really
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appear do be a triangle wave. This may be do to the way the GxView and TEAC

interpretation of the response data, or the response could be a bit different than during the

frequency sweeps.
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Figure 4.36: The FFT and sample time trace of 37.9 Hz.
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4.2 Torus Doubling

Figure 4.37 shows the Poincaré section of the Poincare section plotted against its index of

45.6 Hz, and present what appears to be four torus cycles. Indeed the top two infrequent

toroidal crossings are due to a warping of the torus in higher dimensions, and are not

indicative of data circumnavigating the torus. But viewing the torus doubling in Figure

4.26 we can see that there is definitely a double torus involved in the behavior of the

cantilever beam’s response.
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Figure 4.37: Poincaré section of the Poincaré section of 45.6 Hz plotted against its index.

This torus warping phenomenon has appeared in two of our cases, at 25.7 and

45.6 Hz. The case at 25.7 Hz was a little weird because the torus was not really visible,

but after viewing the Poincaré section of the Poincaré section in both the delay maps and

against its index (Figure 4.22), what at first glimpse looks like torus doubling turned out

to really be torus warping. In Figure 4.38 we present samples of short data records at

various frequencies in Poincare section delay maps. This data was taken in the given

order: starting at 46 Hz we swept down slowly to 45.84 Hz where the torus doubling

phenomena began. Notice that there are two cases at 45.84 Hz. In the first one case there

is no indication of a torus doubling, while a little will later data was taken at that same

frequency and the torus doubling had become active and as the frequency was increased

again, the doubled torus disappeared. Figure 4.38 is interesting to see because it gives a

visual idea of how torus doubling becomes active as well as how it becomes dormant.
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Chapter 5

Conclusion

This thesis has given a better understanding into the dynamic behavior of a

cantilever beam undergoing friction forced excitation at its tip. From the frequency

sweep stand point we were able to see regions in which active dynamics were taking

place. Dynamics in these regions were then investigated more closely by examining the

cantilever beam behavior at specified frequencies.

In region 1, the two frequencies chosen were 8 and 9.8 Hz. These frequencies

induced the beam to behave with the desired dynamics. Upon examination it was found

that the subharmonic frequencies of 8 and 9.8 Hz approximately matched the

subharmonic order of region I. It was also determined that the cantilever beam was

probably behaving due to the effects of period doubling.

In region 11, three frequencies were chosen to inspect the characteristics of the

cantilever beam. These frequencies were 21 .9, 22.1, and 22.3 Hz. Each one of these

frequencies presented its unique behavior. In the case of 21.9 Hz, the inspection of the

strain gage data yielded a system which behaved something like coupled tori, with one of

the tori fat and the other skinny. As it turned out, at a driving frequency of 21.9 Hz the

system had two independent subharmonic frequencies, which meant there were three

frequencies that affected the dynamic behavior of the cantilever beam. This behavior was

classified as chaos arising from 3-frequency quasi-periodicity. Also the subharmonic

order approximately matched the subharmonic order of region 11 in chapter 3. The lowest

frequency was 54.75 times smaller than the driving frequency.
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In the case of 22.1 Hz, the examination indicated that there were two different

dynamic time segments. How this change in the dynamics took place can only be

speculated, but it most likely came about because of small changes in the parameters. By

splitting up the dynamic segment we were able to see the different types of dynamic

response that arose. The main difference between the two segments was that the second

segment produced a better-defined torus; the first segment appeared to be a cloud like T

torus with one edge relatively well defined and the other scattered. The subharmonic

 frequency of the system excited at 22.1 Hz in both segments yielded the same basic

response, which was classified as quasi-periodic or narrow band chaos with 3-frequency

quasi-periodicity. Once again the subharmonic frequency gave way to a subharmonic

order the resembled that of region [I in chapter 3.

In the final case in region 11, the driving frequency of 22.3 Hz produced a

dynamic response that appeared to be on the brink of chaos by torus wrinkling. This was

interpreted from the fact that the torus angle return map, Figure 4.16, had a nearly zero-

slope region. The FFT in Figure 4.19 implies that the dynamic behavior had the same

basic type of response as the 22.1 Hz case and thus was classified as chaos with 2-  
frequency quasi-periodicity. Plus, the subharmonic frequency yielded a subharmonic

order of about 33, which was equivalent to that of region 11 in chapter 3.

Region III and the Hybrid region shared the next frequency of interest of 25.7 Hz.

Once again the strain gage data was divided into two segments after it was noticed that

the response changed significantly. In the first segment it appeared that the dynamic

response was due to a fat torus shrinking into a thinner torus. The subharmonic

frequencies for both segments allowed us to classify the systems behavior as dominantly
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2-frequency quasi-periodicity. These subharmonic frequencies gave way to a

subharmonic order (around 12 for the first segment of data) that resembled those in

region 111 of chapter 3.

In region VI, four frequencies were selected to investigate the dynamic properties

of the cantilever beam they were: 43.8, 44.4, 45.2, and 45.6 Hz. The data taken at 43.8

Hz was corrupted and was rendered useless. But data from the other frequencies data

revealed some of the most interesting results. In the case of 44.4 Hz, the dynamics were

determined to be dominantly quasi-periodic.

In the case of 45.2 Hz, the small winding number and proximity to the diagonal in

the torus angle return map, suggested that there might be some torus wrinkling, but it was

only on a very small scale in the torus angle, and thus the dynamics were considered to be

dominantly quasi-periodic. The subharmonic order in this case was on the order of about

100, which resembled the subharmonic order seen in the sweeps of region VI sub 2.

In the case of 45.6 Hz, there was what would appear to be a perfect example of

torus doubling. By examining the FFT ofthe strain gage response and the winding

number a connection between the two became apparent. The main torus was associated

the winding number with a subharmonic order of 75, and the other subharmonic

frequency (order of 150) was associated with the torus doubling.

The normal fundamental frequency became a factor in the response of region VI.

The pattern that the response created was similar to that of the hybrid region but involved

a larger response order. It was deduced that the hybrid region response was because of

the affect of superharmonic resonance of order 2. The fundamental normal frequency

was a 47 Hz, the hybrid region lies close to 47/2 Hz.
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The last frequency that was examined was not part of any regions that were

defined in chapter 3. The frequency was 37.9 Hz and it was interesting because the

response signal appeared to be a triangle wave and an audible ring came from the beam.

The FFT yield information that showed that the superharmonic resonances are an

important part of the behavior of the beam.

The extremely low-frequency responses (observed with subharmonic orders of 33,

54, 100, and even 150) were note worthy. They tended to occur in the range of 0.4 to 0.7

Hz. These frequencies are well below the 2.5 Hz fundamental frequency of the beam.

As such, this beam phenomenon differs from the high-to-low frequency modal energy

cascade documented in the literature. In two parameter regimes, the extreme

subharmonic order was seen to vary continuously, typically incommensurately with the

excitation frequency, yielding quasi-periodic behavior on tori. This differs from

frequency demultiplication, observed by Van der P01 and Van der Mark [13], which

occurs at fixed, pure subharmonics, and then bifurcates. The low frequencies are not the

result of beating as the FFTs indicate the low frequency spikes to be independent ones.

Although is project was not directly tied to any specific engineering problem, it

does have valuable information about the response behaviors of a system that is

undergoing non—linear friction forced excitation. Two of the fundamental frequencies

(2.5 Hz unload and 13.5 Hz load) did not even have an effect the cantilever beam. And

cases where linear modeling would say that nothing should happen; chaos and or quasi-

periodic responses became apparent. This reaffirms the idea that non-linearities can not

be taken lightly and are extremely important if one is to fully understand and appreciate

the dynamics of a given system.
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Some future work can be done to mathematically model the dynamic response of

this system. I would suggest finding the equations of motion for the cantilever beam

using Newtonian and Lagrangian methods; it might also be helpful to use finite element

method as well. The normal degree of freedom was seen to be active in some of the

responses. It might be necessary to include contact compliance in the friction law, as it

was observed in earlier friction measurements [1]. The experiment has a displacement-

dependent normal load, due to the tilt in the beam fixture, influencing the friction. As the

FNN studies indicated four to six delay coordinates needed in the reconstructed Poincare

sections, a low order model may need two transverse (bending) beam modes, plus the

normal degree of freedom. Using the reduced equations of motion, a simulation that

mimics the parameters in the experiment can be run, and the simulation response data can

be compared with the experimental data.
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Appendix

This appendix contains figures that deal with the fixed frequency examination. These

figures are of interest, but were not placed in Chapter 4 to allow for an easier read.
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9.8 Hz Poincare of Poincare
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Figure A.2: Poincaré section of the Poincare section delay map of 9.8 Hz.

97  



l
o
g
(
C
r
)

l
o
g
(
C
r
)

8hz Correlation Dimension

 

  
 

 

  
 

0

00000&-1 . O

00

o

-2 l f

o

0

,0

-3» f Slope: 3.3275

-4 L .

-2 -1.5 -1 -0.5

9.8hz Correlation Dimension

0 . . .

i To0"

-1 O0

0

-2 1 Slope: 3.7394 (3‘2?)

gf

X?)

'3 a"
-‘O

ooon::-:-:0«:OO
-4 1 1

-2 -1.5 -1 -0.5

'09“)

Derivative of Correlation

 

  
 

 

  
 

4 - -

o 0 0o o

A 3 i O T

t; O O

8’ o

E 2 1 O O .

:6,

a o
“O 1 Q +

o

0 O O C.) . 1

-2 -1.5 -1

Derivative of Correlation

4 i o O O o i

A O O

t: 3.

.8 o

8
§ 2 1 O 1

5 0
1 1

o

o 003000 4 .

-1.5 -1 -0.5

mm

Figure A.3: Correlation dimension and derivative of 8 and 9.8 Hz.

98

 

 
 

 

 



21 .9hz Poincare of Poincare

 

 

-1.8 T T T fir T I o T

e

71‘ °
1"

e ’ ."

-2 - . . —<

e

-2.2 F 4

e

e o

.:.

-2.4 r ~
0 e o

O “a. O

A 050 e O . e 0.. o ‘

1- "." 0 . O’ I ' 'l v.-

* 26 ' ' -. :-‘ . ' 1 .. ’
g - . '— 0'... I... 0 .0. ~ ’08:.gw ' '. Ci

x ° 0” ‘ . o. g . ‘ 8 0"

~55“. , . 3-0 2; ~ ~13 ‘3
e 0.. ‘t" e . . e . e

2 8 F ‘19-: . ‘O 3'5? '. . 1:. . I.
.

- O o —1
‘.. 8. "O O

O I O. s . :0 O . ‘

e‘ e0 8' ' 0 e

.0. o " 2.. e o '

’8 :e ’0‘. 9 . 0 fl

0 ”A. . O. . o. .

-3 P . 0“, I 3. ...O . o .0. q

‘.e:.. . .g .0. '3. o . o

'0'. ..'..o .e. “.:;.¢ . ° "0 e
...,-,(no " 0°: . ' a '

0’; 0‘. .‘dc‘z‘fil...ozk 0 o: .. . .‘ .0 0 e

-32 1— 00 "r‘ on. ' o. 0". fl ’ e .k .0 e . T
”I... O. ‘0' . e 0 0 o. . . .0

. ‘ . 1° 0 . e '0 ..e.‘ .

e . o o O   
 

3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8

X(N)

Figure A.4: Delay Map of the Poincare section of the Poincare section of 21 .9 Hz with

Delay of 1.

99

 



l
o
g
(
C
r
)

21 .9hz Correlation Dimension
 

   

 

   

 

   

c-

000
-1 > 000

”>00

fiery

-3’ 9“ Slope:

-4 000000. 14439 .

-2 -1.5 -1 -0.5 0

22.1hz Correlation Dimension _

0 f r r ' -000

a O“)

'1 i OOU

-2, 00

-3» 9" Slo e: 3.3973 4

009 p

’4 OOCCODO

-2 -1.5 -1 -0.5 0

0 22.3hz Correlation Dimension
. . -0000

00

-1 . 00 i

-0004
-2‘ .fy

-3» deg Slope: 3.1805

4(fip r . .

-2 -1.5 -1 -0.5 0

mm

21.9hz Derivative of Correlation
 

   

 

   

 

   

3

€2.5i (DOOOC) 4

8 00 00

fi 2’ OOQU

E 0

§ 1.5 o O

6 1 ' O *

o

0.5 . .

-2 -1.5 -1 -0.5

4 22.1hz Derivative of Correlation

A o O O

b 3 . O O O o

g 0 O o

B 2 . O- i

8. -

3 1 , U
U o

OQLLO r .

-2 -1.5 -1 -0.5

22.32 Derivative of Correlation
3.5 . .

o O o

S 3 ' O O i

8’ O n
225‘ O 'OO *

é 2* 000

o 0

é’ 1.5. O or

1 O r .

-2 -1.5 -1

mm

Figure A.5: Correlation number and their derivatives vs. log(r) for 21 .9, 22.1 and 22.3

Hz.

100

 

 

 



44.4hz Correlation Dimension Derivative of Correlation
  

    
  

  

    
  

  

  
 

  
 

0 4 o -

o o O

‘1 ' O 100 1 S 3 L O O i

e 2 0000 8’ O 0o

o ' O 5 O 0
V 00 E 2 0 O . ‘

_8_’ -3» .10 S O

‘4’ adj Slope: 3.5714 é’ 1 O O

_5<:>COCOQO L g 1 0 9 o o ‘ . .

-2.5 -2 -1.5 -1 -0.5 0 -2.5 -2 -1.5 —1

0 45.2hz Correlation Dimension Derivative of Correlation

_ 00 A O O

'1 ’ 000900" ‘ b 3 O O i

C -2 . p 000 g, 0 Q n

o -00 U 2 ~ 0 *

3 '3’ o3" §1 O 00 000
4130000 Slope: 2.8328 5 O

_5 . r . . . 0 O r a . i

-2 -1.5 -1 -0.5 0 -2 -1.5 -1 -0.5

0 45.6hz Correlation Dimension Derivative of Correlation

- 00 . o l

'1 t 00000 ‘ E 3 O O O

A (,OOC) 8 O O O

5 -2, £00» 22 O 00

3-3r @909
l %1 O OOOOJ

-4 . , 0'3 Slope: 2.9595 i fi 0

5 CO?” . . . . 0 O . . . .

-2 -1.5 -1 -0.5 0 0.5 -2 -1.5 -1 -0.5

log(r) log(r)

Figure A.6: Correlation number and their derivative vs. log(r) for 44.4, 45.2 and 45.6 Hz.

101

 



[1]

[2]

[61

[9]

[10]

BIBLIOGRAPHY

Ramana Kappagantu V. An “Optimal " Modal Reduction ofSystems with

Frictional Excitation. Ph.D. thesis, Mechanical Engineering, Michigan State

University, 1997.

A. G. Haddow and S. M. Hasan. Nonlinear Oscillation of a Flexible Cantilever: ;

Experimental Results. Abstractfrom Non-Linear Vibrations, Stability, and ‘

Dynamics ofStructures and Mechanisms Conference. Blacksburg, VA June 1-3,

1988.  

S. A. Nayfeh and A. H. Nayfeh. Nonlinear Interactions Between Two Widely

Spaced Modes — External Excitation. International Journal ofBifurcation and

Chaos. 3(2): 417-427, 1993.

S. A. Nayfeh and A. H. Nayfeh. Energy-Transfer from High-Frequency to Low-

Frequency Modes in a Flexible Structure via Modulation. Journal of Vibration

and Acoustics. 116(2): 203-207, 1994.

A. H. Nayfeh andD. T. Mook. Energy-Transfer from High-Frequency to Low-

Frequency Modes in Structures. Journal ofMechanical design. 117:186-195 Sp.

155. B, 1995.

Ali H. Nayfeh and Char-Ming Chin. Nonlinear Interaction in a Parametrically

Excited System with Widely Spaced Frequencies. Nonlinear Dynamics, 7:195-

216, 1995.

K. Oh and Ali H. Nayfeh. Nonlinear Combination Resonances in Cantilever

Composite Plates. Nonlinear Dynamics, 1 1:143-169, 1996.

K. Oh and A. H. Nayfeh. High- to low-frequency modal interactions in a

cantilever composite plate. Journal of Vibration and Acoustics, 120(2): 579-587,

1998.

T. J. Anderson, A. H. Nayfeh, and B. Balachandran. Coupling between High-

Frequency Modes and a Low-frequency Mode: Theory and Experiment.

Nonlinear Dynamics, 1 1:17-36, 1996.

A. H. Nayfeh and D. T. Mook. Nonlinear Oscillations. John Wiley, New York,

1979.

102



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

W]

[22]

[23]

[24]

M. Qriouet and C. Mira. Fractional Harmonic Synchronization in the Duffing-

Rayleigh Differential Equation. International Journal ofBifurcation and Chaos in

Appllied Sciences and Engineering, 4(2):411-426, 1994.

K. Yagasaki. Higher-Order Averaging and Ultra-Subharmonics in Forced

Oscillators. Journal ofSound and Vibration, 210(4):529-553, 1998.

Balth. Van Der P01 and J. Van Der Mark. Frequency Demultiplication. Nature,

120: 363-364, 1927.

N. N. Minorsky. Nonlinear Oscillations. Princeton, NJ: Van Nostrand, chapter 24,

1962.

J. J. Stoker. Nonlinear Vibrations in Mechanical and Electrical Systems. New

York: Interscience Publishers, 1950. ! 
G. Zames and N. A. Schneydor. Dither in Nonlinear Systems. IEEE Transaction

on Automatic Control. 21: 660-667, 1976.

B.F. Feeny and RC. Moon. Quenching Stick-Slip chaos with Dither. Journal of

Sound and Vibration, 237(1): 173-180, 2000.

E. C. Miranda and J. J. Thomsen. Vibration Induced Sliding: Theory and

Experiment for a Beam with a Spring-Loaded Mass. Nonlinear Dynamics,

16:167-186, 1998

Z. L. Zhang and Q. T. Tao. Experimental Study of Non-Linear Vibrations in a

Loudspeaker Cone. Journal ofSound and Vibration, 248(1):1-8, 2001.

B. Feeny. Nonlinear Dynamics of Stick-Slip Oscillators. Aerospace Stuctures:

Nonlinear Dynamics and System Response. AD-Vol. 33, 23-33, 1993.

SW. Shaw. On the Dynamic Response of a System with Dry Friction. Journal of

Sound and Vibration. 108(2): 305-325, 1986.

A. Guran, F. Pfeiffer, and K. Popp. Dynamics with Friction Modeling, Analysis

and Experiment Part I. World Scientific Publishing Co Pte Ltd, Singapore, 1996.

R. A. Ibrahim. Friction-Induced Vibration, Chatter, Squeal, and Chaos: Part I & II

— Mechanics of Friction. In Friction-Induced Vibration, Chatter, Squeal and

Chaos, volume DE-49, 107-138, 1992.

B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit. A Survey of Models,

Analysis Tools and Compensation Methods for the Control of Machines with

Friction. Automatica, 30(7): 1083-1 138, 1994.

103



[25]

[26]

[27]

[28]

[29]

[30]

[31]

B. Feeny, A. Guran, N. Hinrichs and K. Popp. A Historical Review on Dry

Friction and Stick-Slip Phenomoena. Applied Mechanics Reviews. 51(5), May

1998.

http://www.exploratorium.edu/complexity/CompLexicon/poincare.html (Forth of

June 2003).

A. Raman, A. Bajaj, P. Davies. On the Slow Transition Across Instabilities in

Non-Linear Dissipative Systems. Journal ofSound and Vibration, 192 (4): 835-

865 May 16, 1996.

M. Kennel, R. Brown and, H. Abarbanel. Determining Embedding Dimension for

Phase-Space Reconstruction Using a Geometrical Construction. Physical Review,

A. 45 (6): 3403-3411 Mar. 15 1992.

 

P. Grassberger and I. Procaccia. Measuring the Strangeness of Strange Attractors.

Physica 9D (1-2): 189-208, 1983.

P. Berge, Y. Pomeau, C. Vidal. Order within Chaos: Towards a Deterministic

Approach to Turbulence. Wiley-Interscience, 1987.

M. J. Feigenbaum. Quantitative Universality For A Class ofNon-Linear

Transformations. Journal of Statistical Physics. 19 (1): 25-52, 1978.

104



 

llllllllllllllllll


