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ABSTRACT

OPTIMAL CONTROL OF DYNAMICAL SYSTEMS
WITH JUMP MARKOV PERTURBATIONS

By

Alexey G Stepanov

The control problem of a dynamical system with jump Markov perturbations is
considered. The partial differential equation of dynamic programming for the value
function V(t, x, y) is derived. Also an integral equation for the value function V(¢ x, y) is
obtained and is used to construct a sequence of functions that converge uniformly to the

value function V(¢, x, y) from above.
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INTRODUCTION

Optimal control theory has seen tremendous growth over the past four decades,
with important applications in finance, networks, manufacturing, medicine, operations
research, and other areas of science and engineering. Optimal control theory is crucial to
the design and operation of complicated modern systems since it ensures that vital
variables are kept in check, regardless of the disturbance the system undergoes. In a
variety of naturally occurring problems, we wish to control the system governed by a set
of differential equations in order to minimize (or maximize) a given performance
criterion.

In this dissertation, we discuss an optimal control problem of a system with a
jump Markov disturbance. The evolution of the system is described by a system of
differential equations, and there is a running (instantaneous) cost and a terminal cost
associated with the process. A control is chosen in order to minimize the total cost of the
process. However, due to a random jump Markov disturbance in the system, the position
of the system at any given time is also random, and so is the total cost associated with the
process. Thus, the control is chosen in order to minimize the expected value of the total
cost of the process, and is also random, depending only on the present state of the
process, and maybe also its past states.

The two main approaches used in control problems are the Dynamic

Programming approach and Pontryagin’s maximum principle.



In Dynamic Programming approach, the minimum (infimum) value of the
performance criterion is considered as a function of the initial (starting) point. This
function is called the value function, and in many ways it holds the key to solving the
optimal control problem. R. Bellman [1] applied dynamic programming to the optimal
control of discrete-time systems, demonstrating that the natural direction for solving
optimal control problems is backwards in time. That is, we start solving an optimal
control problem by first finding the optimal control policy on the very last step. Then,
armed with that information, we search for the optimal control on the second to last step
and so on, each time using the fact that we already have the optimal control policy for the
steps that follow the one that is being currently considered. The dynamic programming
approach decomposes the optimal control problem into a sequence of minimization
problems that are carried out over the space of controls, and are far simpler than the
original problem.

To illustrate the idea of dynamic programming, suppose the state of a system at
time k is described by a process x € R n satisfying
X1 =S g g 0<k<N-1,

where u is the control at time k whose value is chosen from the set of admissible

controls Uy c R m Suppose that the performance criterion is given by J (x, u.), where
N
Jilxue) = gilxg.uy ), 0<i<N,xeR"
k=i

is the performance of the process between time i and time N initiating from x = x; at time

i, when the control policy u, = (ug,uq,...,up)isused. Let



Vi(x)=inf {4 (x,u, )}, 0<k<N,xeR"

U,
Then
VN(X)=u;2£N{8N(xN,UN)}, xeR",
and
Vi(x)= inf {gi(croup )+ Vit (F i) )} 0<k<N-1,xeR"

upely
The problem of minimizing the performance criterion Jg(x,u, ) over the choice of the
entire control policy u, = (u(), 4, ..., ) splits up into a sequence of smaller and

simpler problems of finding the optimal choice of each u separately, working backwards -

. . . . . *
in time. Furthermore, the values of u ; where the infimum is achieved on each step, u,

] *

0 <k < N, form the optimal (overall) control policy Uy = (u(‘),ul yeens U N )

For continuous-time systems, the dynamic programming approach uses the same
idea of working backwards in time, and uses the value function as a tool in the analysis of
the optimal control problem. At time s, we choose the control u(s) for our process x(s),
based on the assumption that the optimal control would be used after time s. Here,
whenever the value function is differentiable, it satisfies a first order partial differential

equation called the partial differential equation of dynamic programming. Suppose that

the state of a system at time s is described by a process x(s) € R", satisfying the system
of differential equations

i".(s_)=a(s,x(s),u(s)), 0<r<s<T,
&)



with initial condition
x()=x€eR n

where u(s) is the control process whose value at time s can be chosen from the set of

admissible controls U(s, x) c R"". Suppose that the performance criterion is given by
T
J(t,x,u()) = jm(s,x(s),u(s))ds +¥(x(D)).

Then if the value function V(t,x)= 11(11)" {J(t,x,u("))} is differentiable, it satisfies the

(Hamilton-Jacobi-)Bellman equation (or dynamic programming equation)

V(t,x)+ inf {V.(e.x) alt,x,v)+ o(t,x,v)}=0, 0<t<T,xeR"
veU( ,x)
with initial condition
V(T,x)= lP(x), x e R".

The dynamic programming equation is often rewritten as

—V,(t,x)+ sup H(t,x.V,(t,x)v)=0, 0<t<T,xeR",

veU(t,x
where
H(t,x,p,v)= —p-alt,x,v)- o, x,v).
H(t,x, p,v) is generally called the Hamiltonian in analogy with a corresponding quantity
occurring in classical mechanics.

Solving the (Hamilton-Jacobi-)Bellman equation gives us the value function.

Moreover, the dynamic programming equation can be used to find the optimal control



policy. Similarly to the discrete-time case, the values of v € U(t, x) where the infimum is

achieved are the values of the optimal control policy u (t).

If the value function fails to be differentiable at some points (¢, x), it does not
satisfy the dynamic programming equation everywhere. Thus, we need to consider a
generalized solution to the dynamic programming equation if we wish to use the dynamic
programming approach. However, we may encounter a serious lack of uniqueness when
dealing with generalized solution. Crandall and Lions [2] introduced the concept of the
viscosity solution. For a large class of optimal control problems, the value function is the
unique viscosity solution of the related dynamic programming equation in the case when
the value function is not smooth enough to be a classical solution. For more on viscosity
solutions see Fleming, Sonerl[8]. | |

The optimal control policy may not exist in some optimal control problems. Then
for some points (¢, x), the imfimum will not be achieved in the dynamic programming
equation. In this case, the dynamic programming approach can be used to obtain an €-
optimal (almost optimal) control policy.

In general, the dynamic programming equation is hard to solve. In some cases
one has to resort to numerical solution of the dynamic programming equations.
Typically, the state space and the control space are discretized, and the minimization is
carried out for the final number of states. However, the computational difficulties may be
too restrictive for complex multidimensional problems.

Pontryagin’s maximum principle developed by L.S. Pontryagin [15] gives a

necessary condition that must hold on an optimal trajectory. Simply stated, if »*(s) and



x*(s) represent the optimal control and the state trajectory, then there exists an R "-valued
function P(s) called an adjoint variable, such that together u*(s), x*(s) and P(s) satisfy

dx_;}f) =—H ,(s,x*(s), P(s).u*(s))

d%gsz = Hx(s,x*(s). P(s),u "'(s))

and for all s, 0 <5 < T, the optimal control »*(s) is the value of v maximizing
H(s,x*(s) P(s)v),i.e., forall v e U(s,x),

H(s,x*(s) P(s)v)< H(s, x*(s) P(s) u*(s)).
If V is differentiable at each point (s, x*(s)) of the optimal trajectory, then a candidate for
an adjoint variable is P(s)=V,(s,x*(s)). Under certain conditions, Pontryagin’s
maximum principle can also be a sufficient condition for optimality.

Let y(s) be a jump Markov process, and suppose that the state of a system at time

s is described by a stochastic process x(s) € R " satisfying the system of differential

equations

(1) % = a(s, x(s), y(5), u(s)), 0<t<s<T,
with initial condition

() x()=xeR".

In (1), u(s) is a parameter whose value we can choose at any instant in a set

U < R™ in order to control the process x(s). Thus the control u(s) = u(s, o) isa
stochastic process. Since our decision at time s must be based upon what happened up to

time s, the function ® — u(s, ®) must be measurable with respect to



3, = a’{(x(r), y(r)), r< s} )

The Markovian nature of the problem suggests that it might suffice to consider

control processes of the form
u(s) = u(s,x(s), ¥(s)).

Suppose that the performance criterion is given by

T
J(t,%,y,u()) = E,,x,y{ [®(s, x(s), y(s), u(s))ds + LP(x(T)y(T))}
t
3)
T
- E{ [(s, x(s), y(s),u(s))ds + ‘P(x(T),y(T))lx(t) = x, (1) = y}
t

The problem is - for each (t,x, y) € [O, T]x R" xY -to find the number V{1, x, )

and the pair (x*(s), u‘(s)), t <s <T, satisfying (1) and (2), such that
@ ¥ (tx,9) = inf {650} = J(tx0°0),
ul-

where the infimum is taken over a given suitable class U of controls. V{(¢, x, y) is called

the value function.
In similar deterministic optimization problems, examples show that optimal
controls may be discontinuous and that the partial differential equation of Dynamic

Programming (Hamilton-Jacobi-Bellman equation) may not have a smooth solution. A
similar situation is to be expected here, so class U of controls should include
discontinuous controls.

Problems similar to the one described above with the disturbance being a finite

state continuous time Markov chain and terminal cost were investigated by Rishel [16].



For earlier work see Krassovskii and Lidskii [11], [14], where the control problem is on
an infinite interval and terminal conditions are not imposed. Florentin [9] discussed the
optimal control of systems with disturbance inputs being generalized Poisson processes.
Wonham [20] considered the special case of the linear regulator version of this problem.
He explicitly computes the optimal control law for this case. In a slightly different
setting Kushner [13] defined a stochastic maximal principle. Sworder [18] gave a
maximal principle for fixed terminal time linear problems without terminal conditions.
Rishel [16] discussed the relationship between dynamic programming optimality
conditions and stochastic minimum principle optimality conditions different from those
in [13] and [18]. Goor [10] proved the existence of the optimal control in some special
cases.

The systems with finite state jump Markov disturbances are the most general
special class of piecewise deterministic processes (PDPs), first introduced explicitly by
Davis [3]. Roughly speaking, such processes are continuous time Markov processes
consisting of a mixture of deterministic motion and random jumps. PDPs, with stochastic
pure jump processes and deterministic dynamical systems as special cases, include nearly
all non-diffusion continuous time processes in applied probability. The optimal control
theory of PDPs was developed by Vermes [19], Davis [4], Soner [17] and Dempster and
Ye [5], [6]. PDPs, with stochastic pure jump processes and deterministic dynamical
systems as special cases, include virtually all of the stochastic models of applied
probability except those involving diffusions. For the optimal control problems involving

diffusions see Krylov [12].



In this paper the partial differential equation of dynamic programming for the
value function V{1, x, y) is derived. Also an integral equation for the value function
V(t, x, y) is obtained and is used to construct a sequence of functions that converge
uniformly to the value function V{(t, x, y) from above. This sequence can be used to
obtain the value function without solving the partial differential equation of dynamic
programming, and the value function, in turn, can be used to obtain the optimal control, if

it exists. Moreover, the convergence to the value function V{(, x, y) is uniform in
(t.x,y)e[0,T]x R" x Y, this sequence of functions can be used to obtain & - optimal

control functions, (that is, controls u,(-) for which J(t,x,y,u.()) SV (t,x,y)+ ¢ for all

(t.x,y)e [O,T]x R" x Y for some &£>0). In fact, each function in the sequence is a

performance function of a control that is selected from a class of controls M that is more
general than U. We will also show that if there is an optimal control in the class U, then

that control is also optimal in class M. Therefore, while constructing the sequence of

functions that converge uniformly to the value function V(¢, x, y) from above, we would

also construct a sequence of controls that are ¢ - optimal in class M.



CHAPTER 1

PRELIMINARIES

Let (Q, 7, P) be a probability space.

Let Y be a complete separable metric space, and let By denote the Borel c-algebra

onY.

Let y(s) be a jump Markov process with values in Y defined on [0, 7] with

transition probabilities P(t, y, s, 4),0<t<s, ye Y, A € By.

Suppose that forallt € [0, T), ye ¥, 4 € By.

1
-Sj[P(t,y,s, A)- IA(y)] - TI1(t,y, A)
uniformly in (¢, y, A)as s > t, s> 1.
Suppose that for fixed (y, 4) (y € Y, 4 € By) I1(t, y, A) is continuous in ¢

uniformly in (y, 4).
Let
Aey)=T1{6,p, 7\ {y}) = -T1(e. ,{3}),
and suppose that for some K

At,y)<K forall te[0,T), ye.

Suppose that the values of the controls are restricted to a closed subset U of R™.



Let Q denote [0,T)x R" x ¥ and O denote [0.T]xR"x Y.

Let the vector function a(t,x,y,u):0x U — R” and the running (instantaneous)
cost <D(t,x, ¥, u):(—z x U = R be continuous in (¢, x, #) uniformly in y and differentiable in
(¢, x, u) foreach y €Y. Suppose also that a,(t,x,y,u), a,(t,x,y,u), a,(t,x,y,u),
O,(t,x,y,u), D,(t,x,y,u), ®,(t,x,y,u) are all continuous in (¢, x, ¥) uniformly in y, and
a,(t,x,y,u) and ®,(t,x,y,u) are continuously differentiable in (¢, x, u) for each y € Y.

In addition, suppose that for all (s,x,y,u) e Q0 x U
a) for suitable B

la(s,x, y,u)| < By(1+|x]),
b) for suitable By(R)
lax(s.x, ».u)| < By(R),
whenever |x|< R,
c) there exist uy € U such that for suitable C;
(D(s,x,y, u) > -C) and <D(s,x,y, uo) <@,
d) for suitable Co(R)
|CDx(s,x,y,u)| <Cy(R),
whenever |x|< R.

Let the terminal cost LP(x, y): R" x Y = R be continuous in x uniformly in y and

differentiable in x for each y €Y, with ¥, (x,y) continuous in x uniformly in y.



Suppose also that for all (x,y) e R" x Y
e) for suitable D)
¥(x.y)< Dy,
f) for suitable Dy(R)

¥, (x.7) < Do (R),

whenever |x| <R.

Let r,o(a))=t, and fork=1,2,3,..,let
r,k(w) = inf{s > r,k_l(a)) 2 y(s,0) # y(r,k(w), a))} AT,

ie. r,k () is the time of ¥ jump of the process y(s, ) after time r.
Lt ye@)=y @),  k=0,1,2,..

With these notation, (1) becomes

dx(s)

—-9;—- = a(S,X(s)’ yk’u(s)) ’

r,"Ss<r,k+', k=0,1,2, ...
Since y(s) is independent of x(s) and u(s), the randomness of the system is due to

the “outside” disturbance y(s), neither the control u(s) nor the trajectory x(s) of the system

have any impact on it.

Therefore, instead of considering controls of the form u(s) = u(s,x(s), ¥(s)), let us

consider deterministic (non-random) intrajump control functions of the open loop nature

u(-)= u(-;t,x, y) which need to be specified from 7 to the terminal time 7 in case no jump

12



of y(s) occurs before 7. If a jump occurs at time 7 before 7to y'eY say, the control

function u( 7,% y)(t x),y ) is used next, where

©) x,“,g;)(sx x+j'a(r x,g,)(rx ) y.u (rtxy))d t<s<T.

Ideally, one could expect to find continuous u(t,x,y) forall (t,x,y) € Q (then

x(s) would be continuously differentiable between the jumps of y(s) ). However, it would

be more realistic to search for piecewise continuous u(-;t,x, y), and then x(s) would be

continuous with piecewise continuous derivative.

Without loss of generality, we can assume that u(+1,x, ) is continuous from the
right for all (¢,x,y) €Q.
Let U be the set of all collections of piecewise continuous intrajump open loop

(deterministic) control functions

(6) U = {u() = u(5t,%,y).0 > PC([(LTYU)},

where PC ([t,T);U ) denotes the set of all piecewise continuous functions u(s):[t,T) ->U

continuous from the right.

For yeY, t<s,let

A(t,s,y) = P(r,l > |y(l) = y) = exp{— I?L(r, y)dr}.
t

Then

s

P(r,l Ss,y(r,l) ed|y(r)= y) = IA(t,r,y)H(r,y,A \ {y})dr.

t



Let D, be the set of all functions f(f,x,y):0 — R that are bounded and

continuous in (¢, x) uniformly in y, and such that fx(t,x, y) exists for all (t,x, y) €Q,and
fx(t,x,y) is also bounded and continuous in (£, x) uniformly in y.

For v eU define
@) A f(t.x,y) = fe(t.x,y)-a(t,x,y,v) - G, f(t,x,)

for functions f(t,x,y) € Dy, where

GH(y) = - [, [#(2) - s, y, ).

Lemma 1.

a) For every (t,x,y) €Q,
V(r.x.y) s C(T-1)+ Dy.

b) For every ¢ e[O,T] , yeY and every x,x'e R",
W (t.x,y)-V(t.x',y) < Mglx —x],

whenever |x|< R, |x|< R, where

_[ Ca(Ry) ) B,(R)T-1) _ Ca(R))
Mo=| 2R b p _GR)
R (32(R1)+D2( Dje By(R)

B,(T—l) -

where R) =(1+ R)e 1.

Proof:

a)  Since ®(s,x,y,u) 2 ~C; and ¥(x,y)2-Dy, V(t,x,y) 2 ~Cy(T -1)- Dy.



On the other hand, by choosing u(s;!',x',y') =g forall (r',x',y)eQ, r'<s<T,
T

V(t,x,y)= E [®(s,x(5), ¥(5),u9)ds + ¥ (x(T), W(T)) t < C|(T - ) + Dy.
t

b) For any control u(-) eU, t<s<T,

L+ x(s)| < (1+ [x()) + Jla(r.x(r), y(r),u(r))|dr < (1+]x(@0)]) + [ By(1+ [x(r)|)ar .
t t

Thus,
|x(s)| < (1 + |x(t)|)eB' () _1 for r<s<T ,

and therefore,

x(s)] <Ry, t<s<T, whenever |x(r)| <R.

For a fixed £> 0, there exist a control u,(-) € U such that

J(t.x, y,u () sV(t,x,p)+ ¢ forall (r,x,y) €Q.
Let [x|< R, |x|< R, and let x(s) be the solution of the system of differential
equations
dx;s)=a(s,x(s),y(s),u€(s)), t<s<T,
s
x()=xeR".

Let #'(-) be such that
u(r; s, x,y) = udr; s, x(s), y) forall (1,x,y) €Q.

Let x'(s) be the solution of the system of differential equations

dx;l(s)=a(s,x'(s),y(s),u'(s)), t<s<T,
s




x'(t)=x'eR",

Then
|x(s) - x'(s)[ < |x - x'| + ?Bz(Rl )|x(r) - x'(r)ldr ,t<s<T.
t

Therefore,
B,(R,)(s-1)

|x(s) - x'(s)] < |x - x'|e R t<s<T.

Hence,

T T
[@(s,x(5), y(s)ug(s))ds - [@(s,x'(s), y(s),u'(5))ds| <
t t

T
SC R ! BZ(RI)(S_’)d =C2(Rl) BZ(RI)(T—I)__I - '.
2(Rpe =] fe e Jie=

Also

W(x(T ), y(T))=W(x'(T ), y(T)) < Dy( Ry JeB2 RN} _ x].
Therefore,

V(e,x,y)-V(e.x',y)< It x, p.ug(-)-J(.x", y.u'(-)) < Mg|x - x|,

and the assertion immediately follows after a similar symmetric argument.

Lemma 1 (b) states that V(¢, x, y) is locally Lipschitz in x. Then by Rademacher’s

Theorem, V,(t,x,y) exists for almost all x € R”, for all ¢ e[O,T] ,yeY.

16



CHAPTER 2

DYNAMIC PROGRAMMING

Lemma 2.

Forall (,x,y)eQ and r<s<T,

1
SAT,

V(t,x,y)= 1r(1f)~ Eixyy [®(r.x(r),y(r),u(r))dr + V(s At x(sat))y(sntl )) .
ug- t

Proof:

Fix a control u(-) eU.
For any £> 0, there exists control u, ,(-) € U such that for every
(r.x',y)e(t.T)xR" xY

J(t',x',y',ug,,(-)) < V(t',x',y') +€£.

Define

~

uess(rst'x',y)= “(’§"’x")")'1{r<s,t'5:} + ”s.t(';"vx"yl)'(l - 1{r<s.t'sr})
forall (,x',y')eQ and t<r<T.

Then

V(t,x,)’) < J[I,x,y,us,t,s(')] =

17



= Et'x,y{ f‘lb(r,x(r),y(r),u(r))dr + J(s ATLX(S AT AT ),ue,,(.))} <

!

< E,,x,y{ | CID(r,x(r), y(r),u(r))dr + V(s At x(sat))y(sat ))} +e
t

Since &> 0 is arbitrary, we get

SAT,

V(t,x,y)< E,’x’y{ [®(r,x(r), y(r),u(r))dr + V(s At x(sath,y(sa Tl ))}
t

for any u(-) eU.

A

On the other hand, for any £ > 0 there exists ug(-) € U for which

e+V(t,x,y)2 J(t',x,y,ug(.)J -

= E,,x,y{ j’t'D(r,x(r),y(r),u(r))dr + J(s A z',',x(s A r,l ), y(s A r,' ),ug(-))} >

t

> E,’x,y{ Iél)(r,x(r),y(r),u(r))dr + V(s A r,',x(s A r,l ), y(s A r,l ))} .
t

Remark.

Only u(t,x, y) is used on [r,s A z',]), no transition to the next intrajump control

occurs. Therefore, the assertion of Lemma 2 could be restated in the following way:

18



V(t,x,y)= u(ltn,fy)E’xy{ | CD(r x,y r,x y,u(r;t,x,y))dr+

+ V(s AT, ,x,“g,)(s AThx ),y(s AT ))} ,

where the infimum is taken over all u(t,x,y) € PC ([t, T),U ) )

Theorem 1.

If V(t,x,y) € Dy,

then V,(1,x,) exists for all (1,x,y) € Q, and V1, x, y) satisfies the dynamic
programming equation
(8) Vi(t,x,y)+ ilellfj{(D(t’x’y,V) + AVV(t,x,y)} =0, (nxy)eQ,
v

and boundary (terminal) condition

) V(T,x,y)="¥(x.y).

Proof:

Let (r,x,y)€Q and r<s<T.

Then for u(-) e U,

E, . y{ [O(r,x(r), y(r).u(r))dr + V(s At x(s Az y(s AT ))}

= A(r.s, y)|: IO(r x; g,)(r,x), you(rt,x, y))dr + V(s % y)(s x), y):l

t



+SJ‘A(1,W,)’)/1(W,y)[‘f<D(r X, y)(r x) yu(r;t,x y))dr}

+ :[A(t,w,y)[ .[y\{y} (w x, u( )(w x),y ) (w,y,d)/')]dw =

S

= [A(t,r y)CD(r x:‘g,) (r.x) y,u(r;t,x,y))dr +A(1,s, YV (s Xty (s x), y)

~

+ IA(I r,y) [Iy\ (r x5 (r.x), y)l'l(r,y,dy')]dr.
Then Lemma 2 and the Fundamental Theorem of Calculus imply

0= A5, yfV(s.x.0) - V(t.x,y)] +

u(t,x,y)

+ lnf {IA(’ r y)(D(r x’u( )(r .x)’yau(r;taxsy))dr+

+ IA(I s,y (s x; y)(r x), ) a(r Xty (r x), y,u(r;t,x y))dr

t

' ?A(I’r’y)jy \{y}[ (ER S ')‘ V("x,y)]ﬂ(r,y,dy')dr}.

For any u(-;t,x,y) € PC([I,T);U) R

llm_l_IA(t r y)(()(r x, Wy (r x) y,u(r;t,x y))dr = (b(r x,yu(t;t,x y))

st S— t

llm— IA(I s, y)V (s X g,)(r x) y) a(r X y)(r x) y, u(r t,x y))d

SS— t

= Vx(taxﬂy) ) a(t’x’y’u(’;t’x’y)) ’
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lim —— IA(t r y)j'y\ |: (r x,"g,) (r.x), y') -V(t,x, y)]l'[(r, y,dy')dr =

s>t — t
= —G,V(t,x,y) .

Therefore, ¥,(t,x,y) exists and
V,(I,x,y) + ig{d%t,x,y, v) + AvV(t,x,y)} =0.
v

The boundary (terminal) condition immediately follows from the definition of

V(t,x,y).

In an easier case when y(s) is a finite-state Markov chain, the dynamic

programming equation has the form

Vi(t,x,y)+ irellf/{d>(t,x,y,v) +Ve(t,x,)-a(t,x,y, v)} +
A\ %

+ ZlV(t,x,y') - V(t,x,y)]H(t,y,{y'}) =0,

y'e
a system of partial differential equations indexed by y €Y (note that Y is a finite set
now).
Fleming and Rishel [7] derive the continuous-time dynamic programming

equation of optimal stochastic control theory

V(t y +‘r)rgg{®(t y,v)+ 4 ( )V(t,y)}zO,
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for a somewhat more general case, where 4" (s) is the generator of the controlled Markov

process )(s). In our problem, the control process x(s) is not a Markov process, but the

two-component process (x(s), y(s)) is a Markov process, and 4" is its generator.

Lemma 3. (Dynkin’s Formula)

Let f(t,x,y) € Dy, and suppose f,(t,x,y) exists and is bounded and continuous
in (¢, x) uniformly in y.
Let u(-) €U, and let x(s) be the corresponding trajectory of the system.

Thenfor 0<t<s<T

Ep ey {f(s.:x(5). 99))} - f(t.%.y) =

= E,’x’y{[[f,(r,x(r),y(r)) + A"(’)f(r,x(r),y(r))]dr} )
t

Proof:
f(S,x(s),y(s)) - f(t,x,y) =

=Y [f(s/\ z',k+l,x(sxx T,k+]),y(S/\ r,k))—f(SA r,k,x(sx\ z',k),y(S/\ r,k)) +

k>0

+ 2

f(SA r,kH,x(sx\ r,l‘+l),y(sz\ r,k+]))— f(S/\ T,“],X(S/\ T/‘H),}’(S/\ Txk))] =
k>0

=2]+22.

From the Fundamental Theorem of Calculus
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E xy{Zi} = E,,x,y{ I[ﬁ(r,x(r>,y<r))+fx(r,x<r>,y<r))-a(r,x(r),y<r>,u(r))]dr}.
t

2, requires more careful consideration.

E,,x'y{f(sx\ r,k ,X(s A r,k+]) y(sA r,k+l)) f(S/\ r,k+l x(sA k+l) Y(sAT ))}

= E,,x,y{[f SA r,k” x(sA r, )yk+1) f(S/\Z',k+l x(sA r,k“) yk)]l{T’..ISS}}=

= _Et,x,y{ {r <s} J;A(Trka’va)Grf(r’x(r)’}’k)dr} =

)

=-E .y | A(S/\ t,",r,yk)G,f(r,x(r),yk)dr i
SAr‘

Also

E,,x’y{ IIG,f(r,x(r),yk)dr} = Et,x,y{l{rf"q} jG f(r x(r), yk)dr}+

k
SAT, tl

S
+ Et,x,y{l{,,* SKT’M} [G,f(r,x(r),yk)dr} =E+E;.

4

E = E,,x’y{ (<) _[A(r, w, yk),l(w yk)|: '[G,f(r,x(r),yk)drjldw}=

- E,,x,yjl{ <) | (e w31 JA(w, ya)ebw (G, (7 x(r), v e { =

T, Lr i

Se
k k
= Efx,p1 l{r‘ss} { A(Tt s”}’k)‘l\(ft >8> Vi
ol

\—/‘

G,f(r,x(r),yk)dr b =

J )
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= E,,x’y{ ?‘ [A(S/\ r,k,r,yk) - A(s A r,",s,yk)JG,f(r,x(r),yk)dr}.

SAT,

ot

E, = Et,x,y{l{z-" SS}A(z',k,s,yk) IG,f(r,x(r),yk)dr} =

k
SAT,

S
= E,,x,y{/\(s A z',k,s,yk) IG,f(r,x(r),yk)dr} .
Therefore,

E’,X,Y{EZ} = _El,x,y{J-Grf(rax(r):)’(’))dr},
t

and the assertion of the lemma immediately follows.

Theorem 2. (Verification Theorem)

Let W (t,x,y) € D, be such that W,(t,x,y) exists for all (1,x,y) € 0, and suppose

that W,(¢,x,y) is bounded and continuous in (¢, x) uniformly in y.

a) Suppose W (t,x,y) satisfies for all (1,x,y) €O the inequality
W,(r,x,y)+ inf {(D(t,x,y,v) + AvW(l,x,y)} >0
veU

and boundary (terminal) condition
W(T,x,y) = LI’(x,y) .

Then for all (¢,x, y) €Q and u(-) eU

W(t,x,y) < J(t,x,y,u(-)),
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and therefore,

w(tx,y)<V(t,x,y).
b)  If we can find for every (1,x,y) €Q, u (1,x,y) €U such that
W(t,x.5) + 065y (659)) + 4° W (e,x,) =0,
and if
u’()= {u‘(s;f,x, 3) =i (s (5x) 7 (1x,3) €@t <5 < T} U,
then u" () is optimal.
c)  Ifwecanfind u,(f,x,y) €U such that
W,(1,x.y) + D(t,x, y,u(t,x, y)) 4+ gty )W(t,x, y)< % ,
and if
us()= {ug(s;t,x, ¥) =[5 x5 Xy (1., 7) €0 <5 < r} U,

then u.(") is £- optimal, i.e.

J(t.x, yu () <sV(t,x,y)+ ¢ forall (t,x,y) €Q.

Proof:

a) Let u(-) eld.
Since for all (¢,x,y) €Q,

Wy(t,x,y)+ A“(’)W(t,x,y) > —D(1,x, y,u(r)),

we obtain by Lemma 3
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Eyx y{ YD) 0(D))} = Ey o p{W (T x(T), (D))} =

T
=W(r,x,y)+ E,,x’y{ j'[W,(s,x(s),y(s)) + A"(S)W(s,x(s),y(s))]ds} >
t

T
2W(t,x,y)- E, . y{ (s, x(s), y(s),u(s))ds} ,
t

and the assertion immediately follows.
b) The same line of arguments works, only the inequality becomes equality.

c) Again, the same line of arguments as in (a) works. We obtain with the help of (a)

J(t,x,y,ug(-)) < W(t,x,y) +¢£< V(t,x,y) + €.
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CHAPTER 3

REDUCTION TO A FAMILY OF DETERMINISTIC

CONTROL PROBLEMS

Let & denote the set of all functions f (t, X, y) : é — R such that
f(t.x,y)<C\(T-t)+ D, forall (t,x,y) € O, and let
Uo={u(-) e U: J(t,x,y,u(-)) € E}.
Notice that U  is non-empty sin;:e uo(-) for which u(s; ¢, x, y) = u for all
(t,x,y) e OQ,t<s<T,isin U, and if there is an optimal control in the class U, then that
control is in U y. Lemma 1 (a) states that V(¢ x, y) € &.

For every u(-) € U, define the function j(t,x, y,u(-)): [0, T} x R" x Y - R by

(t x, yu(- )) IA(t S, y)d)(s x,y (s,x), y,u(s;t,x,y)}ls+A(I,T,y)‘w}’(x:f§,')(T,x), y).

For every u(-) € U, define operators

T £(t,x,y)=J(t. x, y u(-))+ tsy){L sx,y (s.x y)'](sydy}

and define
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T
T fxy)= inf {J(t,x,y,u('))+ fat.s. 0 I,\{y}f(s,x:f;"(s.x),y'h(s,y,dy')}ds},
t

u(-;t,x,y)

where the infimum is taken over all «(;,x,y) € PC([1,T);U).

Lemma 4.

a) For any control u(-) € U, J (t,x, y,u(~)) satisfies the integral equation

J(t,x,y, u(-)) = T“(')J(t,x,y,u(-))

i.e.

T
J(t, x, yu(-))= IA(t, s, y)d)(s, x,u_g,') (s.x) y. u(s; t,x, y)Ps + A(t, T, y)‘l‘(x,'fg,') (T, x), y)+
t ‘ :

+ ?A(t, s, y){ L\{y}J(s, x:;-) (s,x).y", u(-))'l(s, y, dy’)}ds .

b) For any control u(-) € U o, if W(t, x, y) € E satisfies W(t,x,y) = T"(')W(t, x,y),

then

W(I,x,y)=J(t,x,y,u(-)).

c) u(-) € U is optimal if and only if ¥(t,x, y)=T*('V (1, x, y).

Proof:

a) Fix a control u(-) € U. Then
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J(t.x,y,u())= E,xyh }{j¢(s x(s), y(s),u(s)ds +¥(x(T), y(T))H

T
+E . y[l {‘3<T}{ j ®(s, x(s), y(s),u(s))ds + ¥ (x(T ), y(T ))H = E +E,.
t
Straightforward calculations yield

E; =A(t,T,y{TJ‘(D(s x,y (s x) yu s t,x, y)}is+‘P(x,“§,)(T,x).y)].

T s
E, = IA(t,s,y)?»(s, y{jd)(r x,y)(r x) y,ulrt,x y)}l ]ds+
o[ kbt -

T
- [(6er.)-ACT. ok <26 . ) vt x )+

t

+ ?A(t, s, y){ L\{y} J(s_ xt‘f;') (s,x).y", u(-))'l(s, y, dy')}ds

and the assertion immediately follows.

b) Suppose sup ‘W(t, x,y)—J(t,x, V. u(-)l =n>0, and (4, x, y) € Q is such that
(tx.y)

[W(I,x,y)—J(t,x,y,u(.)l Zn—e"K'T %
Then

n_e'K-T.%s|W(t,x,y)-J("xvy'“(')l =

T Wt x,y)-T“J(t,x, y, u(-)j =
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<

7j/\(t, S, y){ L\{y} L'V(s x,'f(') (s, x), y’)— V(s, x,lf(') (s,x), y')}'l(s, y,dy' )}ds
t

<(Q-A(tT,y)n< (1 —e KT ) n. Contradiction.
Therefore, W(t,x,y)=J(t,x, y, u(-)).

c) Immediately follows from (a) and (b).

Corollary.

Finding the optimal »(-) € U is equivalent to finding, for each (¢, x, y) € O, an

optimal deterministic open loop control function u(-; ¢, x, y) minimizing

T -~
IA(t, s, y)CD(s, x,'fg,') (s, x) y.u(s;e,x, y))l.v +A(,T, y)‘P(x:fg,') (T, x) y),

t

where

(})(s, X,y u) = (D(s, X, Y, u)+ L\{y}V(s, X, y’)’l(s, Y, dy') .

A wider class of controls could be considered. Let us consider controls that have
one functional form until a jump of y(s) and then another functional form after each jump.

Let

M={u(-)=u,(;,x,y): Q- PC(t,T):U) k=0,1,2,..},

Define

v(t) = {number of jumps of y(s) on [0, 7]}.

30



The intrajump control function u,,, )( t,x,y) is used from time ¢ up to the terminal

time T or the time of the first jump of y(s) after ¢, whatever comes first. Now the control

functions and thus the state of the system x(s) depend on the past of y(s).

Notice that controls u(-) € U also are in class M, they are constant in the index k.
It can be seen from Corollary 4.1 that if there is an optimal control in the class U,

then that control is also optimal in class M, and therefore, no advantage can be gained by

going to the wider class M.

Theorem 3. (Integral equation for the value function ¥{(t, x, y))

a) V¢, x, y) satisfies the integral equation
(10) V(t, X, y)= T V(t,x, y)
i.e.

T
V(t, X, y)= inf {IA(t,s,y)(D(s, x,u'g,') (s, x), Y, u(s,'t, X, y)}is +A(I,T,y)'~l’(x,u'§,') (T, x), y)+

u(;t.x.y)|

+ TJ‘A(I, s, y){ L\{y}V(s, x:‘j;) (s, x) y')'l(s. Y, dy’)}ds} ,

where the infimum is taken over all u(-;t,x, y) e PC([t, T).U).

b) If W(t, x, y) € E satisfies W(t,x,y)=TW(t, x,y),then W(t, x, y) = V(t, x, y).

c) u(-) € U is optimal if and only if J(t,x, y,u(-))=T J(t, x, y,u(-)).
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Proof:

Let (¢, x,y) € Q. Fix a control u(-) € U.

For any £> 0, there exists control u¢,(-) € U such that for every

@, x, e, Dx R" xY

——Y

J(t',x’,y’,ue_,(-))s V(t’,x’,y')+8

M S

Define

uet(r 0% ) =ulr; 0 X y) Upggy +ue (r 0% ¥') Hpsy)

forall (/,x',y)e Qandt<r<T.

Then by Lemma 4

V(t, X, y)S J(I, XY, l:e.t (')] =

=?A(t, s,y)tb(s xty)(s x) y,u(s;t,x, y)Ls+A (a y)‘i’(X,y (r, x) }’)+
A, s, y){L Jls, x,"g,) (s.%).y" ug, ('))'l(s,y, dy')}dss
‘ TIA(t.s. Dol 547651 .ot x s+ AT Wt 1.y o

t S, y){ L\ Vis, x:‘g}) S, x), y')'l(s, y, dﬁv')}ds+s.(l—A(t,T, y))

Since £> 0 is arbitrary, we get
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T

Vi, x,y)< IA(I, s, y)d)(s, x:fg,') (s, x) y.u(s; 1, x, y)}is +A(T, y)‘l’(x,’fﬁ,’) (T.x) y)+
t

+ 7:[A(t, s, y){ L\{y} V(s, xl‘fg;) (s, x) y')'l(s, Y, dy’)}dS} ,

for any u(t,x,y)e PC([t, T)U).

Also by Lemma 4

T
J(t, XY, u(-)) = IA(I, s, y)<D(s, x,u'g,') (s, x), V, u(s,' t,x, y)}is + A(t, T, y)‘{’(x:fg,') (T, x), y)+
t
T
+ IA(I, s, y){ L\{y}J(s, x,'fg,') (s.x). ", u(-))'l(s, b2 dy')}ds >
t
T
> IA(t, s, y)d)(s, x, g,') (s.x) y,uls; t.x, y)}ls +A( T, y)‘i’(x,’f g,') (T, x) y)+
t

+ ?A(t, s, y){ L\ o) V(s, x20) s, x), y')'l(s, y, dy')}ds ,

and the assertion follows.

b) Suppose sup |W(t,x,y)-V(t,x,y)=n>0,and (t,x,y) € Q is such that
(tx.y)

[W(t,x,y)—V(t.x,y)] 2n—e'K'T %
Without loss of generality, W(t, x, y) > V(t, x, y).

There exists a control u(-) € U such that

u(-) -K'T m
T /V(t,x,y)<TV(t.x,y)+e /3

Then
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n—e KT N < Wt 2, ) - V2, 3) = T WU x, )~ TV, x,9) <

<T“COw(t,x,y)-T*vit,x, y)+e KT % <
T
< IA(’ 5,y L [W(s x"(')(s x) y’)—V(s x“(')(s x) y')}'l(s y.ady') ds+e KT .y<
- y Iy \{y} ’ ['y ’ ’ ’ (,y ’ y ) ) 3 -
t

<(-AT, y)n+e KT -%sn—e‘” ,2%_

Contradiction. Therefore, W(t, x, y) = V(t, x, y).

c) Immediately follows from (a) and (b).

Consider uy(-) € U o for which ug(s; t,x,y) =up forall (t,x,y) € Q,t<s<T.

Let xo(s) be the solution of the system of differential equations

dx
Z§S)=a(s,x0(s),y(s),uo), 0<t<s<T,
with initial condition
xo() =x € R".

Define

T
(1) Wo(t.x,y)=J(t.x, y.up(-)) = E,,x,y{ J@ls, xo(5). y(5),ug)ds +¥(xo(T), y(T))},
t

and fork=1,2,3, ..., let

(12) Wi(t,x,y) =T Wi_\ (1, x, ).
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Theorem 4.

Wi (t, x, y) converges to V(¢, x, y) from above uniformly on Q.

Proof:
It is easy to see that Wy (¢, x,y) > V(t, x,y) forallk=0, 1,2, ....

Since Wy (t,x,y) € Eand V(t,x,y) € &,

Wo(t.x,y)=V(t,.x.y)|= sup Wo(t.x,y)-V(t.x,y)}<2-[C;T+D].
(tx,y)

Suppose that for some &,

IIW"(""'Y)_V(”"'Y)||52'[C1T+D1]-(l—e"<‘ry( )
Then

Wi+ (t,x,y)= T W, (t,x,y)s

T
STVLx)+ | A(r,s,y){ fy2lamsn Hi-e KT s, , dy’)}ds -
t

=Wt x,y) + 2-[C1T+D1]-(l—e_K'Ty(+l.

The assertion of the lemma follows by the mathematical induction.

35



CHAPTER 4

FAMILY OF CONTROL PROBLEMS WITH “STOPPED” y(s)

Let
0,y _ 0
z (s)=y(t)=y(z,), t<s<T,

and letfork=1,2, ...

z,k(s) = y(s) forr<s< z',k
z,k(s) = )( r,k) for- t," <s<T.

(z,k (s) is y(s) stopped at the time of the kth jump after t.)
Note that fork=1,2,...,for/=0, 1, ... , k,
z,k(s)zzf,'l(s), 1',[ <s<T.
t

For k=0, 1, 2, ..., consider the control problem where the state of a system is

described by the system of differential equations

dxy(s) k

_ds = a(s, x(8),z, (5), uk(s)), t<s<T,
with initial condition

x(t)=x€R",

and the performance criterion is given by

d k k
Jk(t,x,y,uk (~)) = E,,x’y{ ICD(S, X (8).z; (5), uk(s))ds+ ‘P(xk(T), 2 (T))}.
t
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Since, fork=0,1,2, ..., z,l‘ (s) has at most k jumps on [¢, T), let us consider
controls uy (-) of the form
_ _ LA Iy k.1
ug(s) = “k,l(s) = L‘kil(ss 70Xk (71 )20 (7))

r,l <s< r,l+l,1=0, 1,..., k-1,

k ky k. _k
up(s) =g k() =uy 1 (8570, x4 (77 )2 (7)),
k

7, <s<T.

Let U be the set of all controls u; (-) of this form. Note that U U= M.
k

Fork=0,1, 2, ..., consider the value function

Vi(t.x, )= inf {5 (. x, y.up (1))}
up(-)

Using arguments similar to the ones used earlier, we can prove the following

lemma.

Lemma 5.

If J, (t,x,y.u,:(.))= Vi (t,x,y) and Jk_,(:,x,y,u;_](.))z Ve_1(t.x. ), then
a) u;,]() = u;_l,l_](-) N l= 1, 2, e s k,

b) “/:,o(') minimizes
T up o(9) up o)
(@ (s, X (s,x). y, uk’o(s))ds + ¥ (x,,); (T.x), y) ,
t

where (Do(s,x,y, u) = Cb(s,x,y, u), ‘Po(x,y) = lP(x,y) R
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(O (s, Xy, u) = A(l, s, y){d)(s, X, Y, u)+ L\{y} Vi-1 (s, X, y’)'l(s, ¥, dy’)} R

‘Pk(x,y)=A(t,T,y)LP(x,y), k=1,2,....

For every y € Y, consider the deterministic control problem where the state of a

system is described by the system of differential equations
(13) 4—’;—(—{) = a(s, x(s), y,u(s)), t<s<T,
s

with initial condition
(14) x(t)=x eR",

and the performance criterion is given by
T
Folt.xy.u())= [@ (5. x(s). y.u(s)Mds + ¥4 (x(T) »).
t
Suppose that (@ ) (s.x,y,u) exists for all (s,x,y,u)e (.T)xR" xY xU .
Suppose that (£(s),#(s)), < s < T, is the optimal solution.
Let v(s):[t, T] & R™ be a piecewise continuous function and set
u(s,8)=1a(s)+8-v(s), t<s<T.
Then (13) and (14) with u(s) = u(s,5) have a one-parameter family of solutions

x(s,8), t <s < T, for |8| < &, which contains J'c(s) for 8 = 0. The functions x(s,d) are

continuous and have continuous derivatives with respect to d.

Let
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A(s)= %(3,0), r<s<T.

Then A(s) satisfies the system of differential equations

d’;ﬁs) = 4, (5,5(s) ,(s))- As)+ a, (5, (s} y,d(s)) vls), 1<s<T,

with initial condition
A)=0¢€ R".
Denote by A(s), t <s < T, the n x n matrix-valued function satisfying the

differential equation

dzES) =a.(s,#(s)y,a(s))- A(s), t<s<T,

with initial condition
AD=1,.

Then
A(s) = A(s)- IA—l(r)- a,(r.x(r) y.4(r))-v(r)dr, t<s<T.

Set f(8;v()) = Fo(t. x, y.u(.8)), for 5] <8,
Then f'(8;v(")) exists and
T

7@v0) = (1), GO).)+ [[@), (5. 35) y.i()Als) + (@4 ), s 55).y.i(s)wls)as

t

T
= [olrW(r)r,

t

where
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ols)= (@), (5. 5(s). y.ils))

T

(15) +1(#0), G@) AT + [@4), (%), y. ﬁ(r))A(r)dr}A" (s)ay (s, %(s), y. (s)-

t<s<T.
If (%(s)#(s)), t < s < T, is the optimal solution, then for any piecewise continuous
v(s), £(8;v(")) has a local minimum at § = 0. Then
7/@v0) =0, 77(8:9()) 2 0.

This proves the following lemma:

Lemma 6.

If (%(s)%(s)), t < s < T, is the optimal solution, then

£/(:v() =0, 7(v() 20

for any piecewise continuous v(-).

The relation

S@v() =0

holds for any piecewise continuous v(-) if and only if
(16) e(s)=0¢€ R™

almost everywhere on [¢, 7.

Set
T

P(s) = (‘I"k )x (i(T),y)A(T)-t- I(d)k )x (rx(r) ¥, &(r))A(r)dr} 47! (s), t<s<T.

A
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Then since %A"l(s)= —A7! (s)-ax (S,f(S)}’vﬁ(S))’

a7 _:Iis P(s) = —(d)k )x (s, J?(s),y, ﬁ(s))— P(s)‘ a, (s,i(s),y,&(s)), t<s<T,
and
P(T)= (%), (x(7).»)

Define the function H” (s, x,u, p):[0,T]x R" xU x R"” — R by

Hy(s,x,u,p)=d)k(s,x,y,u)+p-a(s,x,y,u).

Then (13), (17) and (16) can be rewritten as

a3 %f;‘_) = H(s. () (s). P(s). (<s<T,

a7 i’? —_HY (s, #(s)i(s) P(s) . r<s<T.

(16" H) (s.%(s).a(s), P(s))=0, t<s<T.
Suppose that

(18) detlH?, (s, 5(s).4(s), p(s))| 0, t<s<T

Then since x(s) and P(s) are AC, (16) implies that ﬁ(s) is continuous. Then (13")
and (17') imply that x(s) and P(s) are of class C ! Then (16") implies that &(s) is also of

class C!.

Also from (16') we get

(19) d’”) [H r [H H;,,-a—H,{p-((mk)x+P(s)-ax)], 1<s<T,
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where the arguments in the derivatives of H” are (s, %(s), i(s), P(s)), and the arguments in
a, ®; and their derivatives are (s, £(s), y, i(s)).

From (16') we also get
T ( T T‘ -
(20) P(s)=(d)k)u-au \a, -ay, =(<Dk)u-au, t<s<T,
where a,, is the generalized inverse of » x m matrix a ,, and the arguments in a, ®; and

their derivatives are (s, £(s), y, (s)).

Then (19) and (20) imply that ﬁ(s) satisfies the differential equation

4) _ 13 (s,3(6)(s), rsssT,
ds
where the function f7 (s, x,u): [t, T]x R" xU — R™ is continuous and is entirely

determined by functions a, @y and their derivatives (excluding a,  and (@) )

Denote by x(s; ¢, x, y, v) and u(s; ¢, x, y, v) the solution of the following system of

differential equations

E0) _ of5,5(5) (o) <5<,
ds

du(s) y

As) _ (s x(s)u(s)), (<s<T,
ds

x(H) =x,

uit)=ve U.

Then we get the following lemma:

42



Lemma 7.

If (%(s) #(s)), r < s < T, is the optimal solution and (18) holds, then
a) i(s) is of class C !,

b) %(s) = x(s;t,x, y,a(t)),

i(s) = u(s;t, x, y,u(t)), t<s<T.
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CONCLUSION

While dynamic programming is a simple mathematical technique that has been
used for many years by mathematicians and engineers in a variety of contexts, it is a
powerful systematic tool for optimization problems. The partial differential equation of
dynamic programming provides us with the means for finding both the value function
and the optimal control, along with the necessary and sufficient conditions for optimality.

The method of dynamic programming encounters the difficulty that for‘many
problems the value function is not differentiable everywhere. In this case, the (Hamilton-
Jacobi-)Bellman equation cannot be solved in the classical sense, and the value function
is its generalized viscosity solution.

The partial differential equation of dynamic programming is generally difficult to
solve explicitly, the value function can be found this way only in a few special cases. In
many other cases, numerical methods are needed to solve the (Hamilton-Jacobi-)Bellman
equation approximately, that creates another set of difficulties especially for
multidimensional control problems.

The sequence of functions W constructed in this work can be used to

approximate the value function V for an optimal control problem without having to solve

the (Hamilton-Jacobi-)Bellman equation. The sequence W converges to ¥ uniformly

from above with an exponential convergence rate. Once the value function is known or

approximated with the desired accuracy, we can use the ideas of the dynamic
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programming or the Corollary to Lemma 4 to search for an optimal or an e—optimal
control depending on the techniques used to assist the dynamic programming approach
and whether an optimal control exists or not.

In the near future, we plan to investigate under which conditions
a) the sequence of control functions used to obtain W(, x, y) converges, and if it can
be used to obtain (or approximate) the optimal control #*(-) for the main problem.
b) the sequence of functions V(t, x, y) converges to V{(¢, x, y);

c) functions Vi(t, x, y) are differentiable in x;

d) the sequence of control functions u;’o (s) converges, and if it can be used to

obtain (or approximate) the optimal control #*(-) for the main problem.
Allow us to suggest a couple of potential further problems. Suppose the Markov

disturbance y(s) in (1) is not a jump Markov process. If y(s) can be approximated by a
jump Markov process i(s), would an optimal control & * (s) for the control problem with
the Markov disturbance i(s), if it exist, perform well for the original control problem
with y(s)?

For another possible future problem, let {y,, n > 1} be an ergodic stochastic
process in Y with ergodic distribution p for y, . For € < g, consider the process y(s),
0 <5 < T, defined by

Ye(8)=y, for (n—-1)e<s<ne.

Consider a stochastic optimal control problem where the evolution of the system is

described by the differential equation
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2e0)_ (55, 5) e 5 0<r<s<T

with initial condition x¢(f) = x, and the performance criterion is given by
T

Jo(t.x,yiug ()= By} [0fs.xe(s). ye ) e (s)ds + ¥ (xc (7))

4

Let

alsxu)= fals,xyupld).  Dlsxu)= [olsxyupla),
Y

Y
and consider a deterministic optimal control problem where the evolution of the system is

described by the differential equation

% = als. x(s)u(s)), 0<r<s<T,

with initial condition ;(t) = x, and the performance criterion is given by

T
Je,x;u())= jq)(s,;(s);(s))dsw(;(r)).

t
—% —%
Suppose an optimal control u (s) exists. Would u (s) perform well for the original

stochastic control problem for small €? If ue'(s) is an optimal control for the original

control problem for € < €, can anything be said about the behavior of us*(s) and their

—%
relationship to u (s) as € — 0?
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