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ABSTRACT

OPTIMAL CONTROL OF DYNAMICAL SYSTEMS

WITH JUMP MARKOV PERTURBATIONS

By

Alexey G Stepanov

The control problem of a dynamical system with jump Markov perturbations is

considered. The partial differential equation of dynamic programming for the value

function V(t, x, y) is derived. Also an integral equation for the value function V(t, x, y) is

obtained and is used to construct a sequence of functions that converge unifomly to the

value function V(t, x, y) from above.
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INTRODUCTION

Optimal control theory has seen tremendous growth over the past four decades,

with important applications in finance, networks, manufacturing, medicine, operations

research, and other areas of science and engineering. Optimal control theory is crucial to

the design and operation of complicated modern systems since it ensures that vital

variables are kept in check, regardless ofthe disturbance the system undergoes. In a

variety of naturally occurring problems, we wish to control the system governed by a set

of differential equations in order to minimize (or'maximize) a given performance

criterion.

In this dissertation, we discuss an optimal control problem of a system with a

jump Markov disturbance. The evolution of the system is described by a system of

differential equations, and there is a running (instantaneous) cost and a terminal cost

associated with the process. A control is chosen in order to minimize the total cost of the

process. However, due to a random jump Markov disturbance in the system, the position

of the system at any given time is also random, and so is the total cost associated with the

process. Thus, the control is chosen in order to minimize the expected value of the total

cost of the process, and is also random, depending only on the present state of the

process, and maybe also its past states.

The two main approaches used in control problems are the Dynamic

Programming approach and Pontryagin’s maximum principle.



In Dynamic Programming approach, the minimum (infimum) value of the

performance criterion is considered as a function of the initial (starting) point. This

function is called the value firnction, and in many ways it holds the key to solving the

optimal control problem. R. Bellman [1] applied dynamic programming to the optimal

control of discrete-time systems, demonstrating that the natural direction for solving

optimal control problems is backwards in time. That is, we start solving an optimal

control problem by first finding the optimal control policy on the very last step. Then,

armed with that information, we search for the optimal control on the second to last step

and so on, each time using the fact that we already have the optimal control policy for the

steps that follow the one that is being currently considered. The dynamic programming

approach decomposes the optimal control problem into a sequence of minimization

problems that are carried out over the space of controls, and are far simpler than the

original problem.

To illustrate the idea of dynamic programming, suppose the state of a system at

time k is described by a process x k e R n, satisfying

xk+1=f(xk,uk), OSkSN—l,

where u k is the control at time k whose value is chosen from the set of admissible

controls Uk c R m. Suppose that the performance criterion is given by Jo (x, 11.), where

N

J,-(x,u.)=ng(xk,uk), OSiSN,xeRn.

k=i

is the performance of the process between time i and time N initiating from x = x,- at time

i, when the control policy u. = (uO , u] , , uN) is used. Let



Vk(x)=inf{Jk(x,u.)}, 0SkSN,xeRn.

“0

Then

VN(x)= inf {8N(stuN)}a x E Rn,
uNEUN

and

Vk(x)=uilelf ng(xk’uk)+Vk+l(f(xkauk))}a OSkSN— Lx 6 R"-

It It

The problem of minimizing the performance criterion J0 (x, u.) over the choice of the

entire control policy u. = (uo , "1 , , uN) splits up into a sequence of smaller and

simpler problems of finding the optimal choice of each u k separately, working backwards -

in time. Furthermore, the values of u k where the infimum is achieved on each step, u; ,

O S k S N, form the optimal (overall) control policy u: = (u6,u; ,...,u;v ).

For continuous-time systems, the dynamic programming approach uses the same

idea of working backwards in time, and uses the value function as a tool in the analysis of

the optimal control problem. At time s, we choose the control u(s) for our process x(s),

based on the assumption that the optimal control would be used after time s. Here,

whenever the value function is differentiable, it satisfies a first order partial differential

equation called the partial differential equation of dynamic programming. Suppose that

the state of a system at time s is described by a process x(s) e R n, satisfying the system

of differential equations

dx(s) = a(s,x(s),u(s)), 0 S t S s S T,
 



with initial condition

x(t) =x e R",

where u(s) is the control process whose value at time s can be chosen from the set of

admissible controls U(s, x) c: R m. Suppose that the performance criterion is given by

T

J(t,x, u(-)) = I<D(s,x(s),u(s))ds + ‘P(x(T)).

Then if the value function V(t,x)=11(1f{J(t,x,u(-))} is differentiable, it satisfies the

(Hamilton-Jacobi-)Bellman equation (or dynamic programming equation)

V:(t,x)+ in(f ){Vx(t,x)-a(t,x,v)+(D(t,x,v)}=O, 0 St < T,x e R".
veU 1,):

with initial condition

V(T,x)= ‘P(x), x e R".

The dynamic programming equation is often rewritten as

—V,(t,x)+ sup H(t,x,Vx(t,x),v)=O, OSt<T,xeRn,

veU 1.x

where

H(t,x,p,v)= -p - a(t,x,v)—<I>(t,x,v).

H(t, x, p, v) is generally called the Hamiltonian in analogy with a corresponding quantity

occurring in classical mechanics.

Solving the (Hamilton-Jacobi-)Bellman equation gives us the value function.

Moreover, the dynamic programming equation can be used to find the optimal control



policy. Similarly to the discrete-time case, the values of v e U(t, x) where the infimum is

achieved are the values of the optimal control policy u* (I).

If the value function fails to be differentiable at some points (i, x), it does not

satisfy the dynamic programming equation everywhere. Thus, we need to consider a

generalized solution to the dynamic programming equation if we wish to use the dynamic

programming approach. However, we may encounter a serious lack of uniqueness when

dealing with generalized solution. Crandall and Lions [2] introduced the concept of the

viscosity solution. For a large class of optimal control problems, the value function is the

unique viscosity solution of the related dynamic programming equation in the case when

the value function is not smooth enough to be a classical solution. For more on viscosity

solutions see Fleming, Soneri[8]. ‘ i

The optimal control policy may not exist in some optimal control problems. Then

for some points (I, x), the imfimum will not be achieved in the dynamic programming

equation. In this case, the dynamic programming approach can be used to obtain an e-

optimal (almost optimal) control policy.

In general, the dynamic programming equation is hard to solve. In some cases

one has to resort to numerical solution of the dynamic programming equations.

Typically, the state space and the control space are discretized, and the minimization is

carried out for the final number of states. However, the computational difficulties may be

too restrictive for complex multidimensional problems.

Pontryagin’s maximum principle developed by LS. Pontryagin [15] gives a

necessary condition that must hold on an optimal trajectory. Simply stated, if u*(s) and



x*(s) represent the optimal control and the state trajectory, then there exists an R "-valued

function P(s) called an adjoint variable, such that together u*(s), x*(s) and P(s) satisfy

41;? = —Hp (s,x * (s), P(s),u * (5))

gigs) = Hx(s,x*(s). P(s),u :"(S))

and for all s, 0 S s S T, the optimal control u*(s) is the value of v maximizing

H(s, x * (s), P(s), v) , i.e., for all v e U(s, x),

H(s, x * (s), P(s), v) S H(s, x "‘ (s), P(s), u * (3)).

If V is differentiable at each point (3, x*(s)) of the optimal trajectory, then a candidate for

an adjoint variable is P(s) = Vx (s, x * (3)). Under certain conditions, Pontryagin’s

maximum principle can also be a sufficient condition for optimality.

Let y(s) be a jump Markov process, and suppose that the state of a system at time

s is described by a stochastic process x(s) e R n, satisfying the system of differential

equations

(1) $49 = a(s,x(s), y(s), u(s)), 0 St S S S T ,

with initial condition

(2) x(t) = x e R".

In (1), u(s) is a parameter whose value we can choose at any instant in a set

U c Rm in order to control the process x(s). Thus the control u(s) = u(s, (o) is a

stochastic process. Since our decision at time 5 must be based upon what happened up to

time s, the function u) ——) u(s, to) must be measurable with respect to



35 = 0'{(x(r),y(r)), r S s} .

The Markovian nature of the problem suggests that it might suffice to consider

control processes of the form

11(5) = y(s,X(S),y(S)).

Suppose that the performance criterion is given by

T

J(t,x, y,u(-)) = Et,x,y{ j(I>(s,x(s), y(s),u(s))ds + ‘I’(x(T), y(T))}

t

(3)

T

= E j<b(s,x(s), y(s),u(s))ds + ‘P(x(T), y(T))

I  

x(t) = x,y(t) = y}

The problem is - for each (t, x, y) e [0, T]x R” x Y - to find the number V(t, x, y)

and the pair (x*(s),u* (s)), t S s S T , satisfying (1) and (2), such that

(4) V(t,x,y) = inf)‘{J(t,x,y,u(~))} = J(t,x,y,u*(-)) ,

u .

where the infimum is taken over a given suitable class “(.1 of controls. V(t, x, y) is called

the value function.

In similar deterministic optimization problems, examples show that optimal

controls may be discontinuous and that the partial differential equation of Dynamic

Programming (Hamilton-Jacobi-Bellman equation) may not have a smooth solution. A

similar situation is to be expected here, so class (L! of controls should include

discontinuous controls.

Problems similar to the one described above with the disturbance being a finite

state continuous time Markov chain and terminal cost were investigated by Rishel [16].



For earlier work see Krassovskii and Lidskii [11], [14], where the control problem is on

an infinite interval and terminal conditions are not imposed. Florentin [9] discussed the

optimal control of systems with disturbance inputs being generalized Poisson processes.

Wonham [20] considered the special case of the linear regulator version of this problem.

He explicitly computes the optimal control law for this case. In a slightly different

setting Kushner [13] defined a stochastic maximal principle. Sworder [18] gave a

maximal principle for fixed terminal time linear problems without terminal conditions.

Rishel [16] discussed the relationship between dynamic programming optimality

conditions and stochastic minimum principle optimality conditions different from those

in [13] and [l 8]. Goor [10] proved the existence of the optimal control in some special

cases.

The systems with finite state jump Markov disturbances are the most general

special class of piecewise deterministic processes (PDPs), first introduced explicitly by

Davis [3]. Roughly speaking, such processes are continuous time Markov processes

consisting of a mixture of deterministic motion and random jumps. PDPs, with stochastic

pure jump processes and deterministic dynamical systems as special cases, include nearly

all non-diffusion continuous time processes in applied probability. The optimal control

theory of PDPs was developed by Vermes [19], Davis [4], Soner [17] and Dempster and

Ye [5], [6]. PDPs, with stochastic pure jump processes and deterministic dynamical

systems as special cases, include virtually all of the stochastic models of applied

probability except those involving diffusions. For the optimal control problems involving

diffusions see Krylov [12].



In this paper the partial differential equation of dynamic programming for the

value function V(t, x, y) is derived. Also an integral equation for the value function

V(t, x, y) is obtained and is used to construct a sequence of functions that converge

uniformly to the value function V(t, x, y) from above. This sequence can be used to

obtain the value function without solving the partial differential equation of dynamic

programming, and the value fimction, in turn, can be used to obtain the optimal control, if

it exists. Moreover, the convergence to the value function V(t, x, y) is uniform in

(t, x, y) e [O,T]x R" x Y , this sequence of functions can be used to obtain 8- optimal

control functions, (that is, controls u£(-) for which J(t,x, y,ug(-)) S V(t,x, y) + a for all

(t,x, y) e [0, T]x R" x Y for some a> 0). In fact, each function in the sequence is a

performance function of a control that is selected from a class of controls M that is more

general than “LI. We will also show that if there is an optimal control in the class “ll, then

that control is also optimal in class M. Therefore, while constructing the sequence of

functions that converge uniformly to the value function V(t, x, y) from above, we would

also construct a sequence of controls that are 6‘ - optimal in class M.



CHAPTER 1

PRELIMINARIES

Let (Q, 7", P) be a probability space.

Let Y be a complete separable metric space, and let By denote the Borel o-algebra

on Y.

Let y(s) be a jump Markov process with values in Y defined on [0, T] with

transition probabilities P(t, y, s, A), 0 S t S s, y e Y, A 6 By.

Suppose that for all t e [0, T), y 6 Y, A 6 By.

1

E: P(t,y,s, A) — 1A(y)] ——) TI(t,y,A)

uniformly in (t, y, A) as s —) t, s > 1.

Suppose that for fixed (y, A) (y 6 Y, A 6 By) II(t, y, A) is continuous int

uniformly in (y, A).

Let

Way) = “(WY \ M) = “(Walylia

and suppose that for some K

1(t,y)S K for all t6 [0, T), y e Y.

Suppose that the values of the controls are restricted to a closed subset U of R'".

 



Let Q denote [O,T)x R" x Y and (2 denote [0,T] x R" x Y.

Let the vector function a(t,x, y,u):é x U ——> R" and the running (instantaneous)

cost <D(t,x, y,u):é x U —> R be continuous in (t, x, u) unifome in y and differentiable in

(t, x, u) for each y e Y . Suppose also that a,(t,x,y,u) , ax(t,x,y,u) , au(t,x, y,u) ,

(D,(t,x,y,u), (bx (t,x, y, u), (Du(t,x,y,u) are all continuous in (t, x, u) unifonnly in y, and

au (t,x, y, u) and (I)u(t,x, y,u) are continuously differentiable in (t, x, u) for each y 6 Y.

In addition, suppose that for all (s,x, y, u) e a x U

a) for suitable B]

la(s,x,y,u)l S Bl(1 + Ixi) ,

b) for suitable Bz(R) .

“ax(s,x,y,u)‘l S BZ(R) ,

whenever |x| S R ,

0) there exist no 6 U such that for suitable C j

(D(s,x,y, u) 2 -C1 and <D(s,x,y,u0) S C] ,

d) for suitable C2(R)

|¢x(s,x,y,u)[ S C2(R) ,

whenever lxl S R.

Let the terminal cost LP(x, y): R" x Y —> R be continuous in x uniformly in y and

differentiable in x for each y e Y , with ‘I’x (x, y) continuous in x uniformly in y.



Suppose also that for all (x, y) e R" x Y

e) for suitable D1

l‘I’(x, y)| S D],

t) for suitable D2(R)

I‘Yx(x,y)IS Dz(R),

whenever |x| S R.

Let 19(0)) = t , and for k =1, 2, 3, , let

r,k(a)) = inf{s > r,"“(a)) : y(s,a)) ¢ y(z',k(a)),a))) A T,

i.e. rk (w) is the time of km jump ofthe process y(s, (a) after time t.
I

With these notation, (1) becomes

dx(s)
?— = u(S,X(S)ayk’u(S)) ’

rsz<r,k+l, k=0,1,2,....

Since y(s) is independent ofx(s) and u(s), the randomness of the system is due to

the “outside” disturbance y(s), neither the control u(s) nor the trajectory x(s) of the system

have any impact on it.

Therefore, instead of considering controls of the form u(s) = y(s,x(s), y(s)) , let us

consider deterministic (non-random) intrajump control functions of the open loop nature

u(-) = u(.;t,x, y) which need to be specified from t to the terminal time T in case no jump

12  



ofy(s) occurs before T. If a jump occurs at time 2' before T to y' 6 Y say, the control

function u(; r,ng;)(r,x),y') is used next, where

S

(5) ng)(s,x) = x + ja(r,ng,)(r,x),y,u(r;t,x,y))dr , t S s S T.

t

Ideally, one could expect to find continuous u(-;t,x, y) for all (t,x, y) 6 Q (then

x(s) would be continuously differentiable between the jumps ofy(s) ). However, it would

be more realistic to search for piecewise continuous u(-;t,x, y), and then x(s) would be

continuous with piecewise continuous derivative.

Without loss of generality, we can assume that u(-;t,x, y) is continuous from the

right for all (t,x, y) 6 Q.

Let ‘L1 be the set of all collections of piecewise continuous intrajump open loop

(deterministic) control functions

(6) 11 = {u(.) = u(-;t,x, y):Q —> PC([t,T);U)),

where PC([t,T);U) denotes the set of all piecewise continuous functions u(s):[t,T) —) U

continuous from the right.

For er, t<s,let

A(t,s,y) = P(r,l > s |y(t) = y) = exp{— ?k(r,y)dr}.

t

Then

S

P(r,l S s,y(1’1)e A |y(t) = y) = )A(t,r,y)II(r,y,A \ {y})dr.

 



Let DA be the set of all functions f(t,x, y):-Q— —-> R that are bounded and

continuous in (t, x) uniformly in y, and such that fx(t,x, y) exists for all (t,x, y) e _Q— , and

fx (r,x, y) is also bounded and continuous in (t, x) uniformly in y.

For v EU define

(7) Avf(t,x,y) = fx (t,x,y)- a(t,x,y,v) — G,f(t,x,y)

for functions f(t,x, y) 6 DA, where

Gt¢(y) = — ly[¢(y') - ¢(y)]H(t,y,dy').

Lemma 1.

a) For every (t,x,y) 6? ,

|V((,x,y)l S C1(T — I) + D] .

b) For every t e[O,T] , y 6 Y and every x,x'e R",

[V(t,x,y) — V(t,x',y)) S MRlx — x'
 
9

whenever |x| S R ,
 
x'l S R , where

_ C2(R1) ) B,(R,)(T-t) C2(R,)
M — —— R __ ’

(thklNDz‘ ') 8 82m)

T—r) _where R1 = (1+ R)eB'( 1.

Proof:

a) Since <D(s,x, y, u) 2 —C1 and ‘I’(x,y) 2 ‘0] , V(t,x,y) 2 —CI(T — t) — D].

 



On the other hand, by choosing u(s;t',x', y') = uo for all (t',x', y') e Q , t'S s < T ,

T

V(t,x,y) = E,,x,y{ [(D(s,x(s),y(s),u0)ds + ‘I’(x(T),y(T))} S C](T - t) + D].

t

b) For any control u(-) 611, t S s S T ,

1 + [x(s)] S (I + |x(t)]) + ]|a(r,x(r), y(r),u(r))|dr S (I + |x(t)|) + [81(1 + |x(r)|)dr .

I 1

Thus,

 

|x(s)| s (1 + |x(z)|)e3'(s") — 1 for t s s s T,

and therefore,
 
x(s)| S R], t S s S T, whenever lx(t)| S R.

For a fixed e> 0, there exist a control ug(-) 611 such that

J(t,x,y,u£(-)) S V(t,x,y) + a for all (t,x,y) e Q.

Let |x|S R,
 
x'| S R , and let x(s) be the solution of the system of differential

equations

dX(S)_
 

—a(s,x(s),y(s),u8(s)), tSsST,

x(t) = x e R".

Let u’(-) be such that

u'(r; s, x, y) = u£(r; s, x(s), y) for all (t,x, y) 6 Q.

Let x'(s) be the solution of the system of differential equations

612(8)=a(s,x'(s),y(s),u'(s)), tSsST,

s

 



x'(t) = x' e R" ,

Then

|x(s) — x'(s)| S Ix — x'| + j'Bz(Rl)lx(r) — x'(r)|dr , t S s S T.

1

Therefore,

9
[x(s) — x'(s)| S [x — x'leBzml )(s-t) t S s S T.

Hence,

 

T T

[<D(s,x(s),y(s),u8(s))ds— [¢(s,x'(s),y(s),u'(s))ds S

t t

T

3C R __ . 32(R.)(s-t)d =C2(R1) 32(11’.)(T-t)__1 _ ..
2( ])|x xltje s 32(R1)(e )Ix x|

Also

I‘P(x(T).y(T))— x(x'rrmnl s 02(R1)e32(R1’(T")Ix — x' 

Therefore,

V(t,x,y)—V(t,x',y)S J(t,x,y,u8(-))—J(t,x',y,u’(-))S MRIx—x'
 
9

and the assertion immediately follows after a similar symmetric argument.

Lemma 1 (b) states that V(t, x, y) is locally Lipschitz in x. Then by Rademacher’s

Theorem, Vx(t,x, y) exists for almost all x e R" , for all t e[O,T] , y e Y .

l6



CHAPTER 2

DYNAMIC PROGRAMMING

Lemma 2.

Forall (t,x,y)eQ and tSsST,

SA r,'

V(t,x, y) = int; Et,x,y j<D(r,x(r),y(r),u(r))dr + V(s A r},x(s A 1,1),y(s A 7,1 )) .

u ' 1

Proof:

Fix a control u(-) 61!.

For any a > O , there exists control ug,,(-) e‘ll such that for every

(t',x',y') e(t,T) x R" x Y

J(t',x',y',u5,t(-)) S V(t',x',y') + .9.

Define

~

us,t,s(r;t',x',y') = u(r;t',x',y')-19613,} + u£,,(r;t',x',y')-(1—1{r<s,,.S,})

for all (t',x',y') eQ and t S r < T.

Then

V(t,x,y) S J[t,x,y,z~4£‘,,s(.)] :-

l7

 



= Et,x,y{ l‘tD(r,X(r),y(r),u(r))dr + J(5 A Ttlax“ A 7:] )aJ’(S A Ti] )su£,t('))} S

t

S E,,x,y{ [C’D(r,x(r),y(r),u(r))dr + V(s A r},x(s A 1,1),y(s A 7}”) + a

I

Since 6‘ > 0 is arbitrary, we get

SA r,‘

V(t,x,y) S E,,x,y{ [<D(r,x(r),y(r),u(r))dr + V(s A r},x(s A I} ),y(s A 1,1 ))}

t

for any u(-) 611.

A

On the other hand, for any 5 > 0 there exists ug(-) 611 for which

a + V(t,x,y) 2 J[t,x,y,ug(o)] =

= E,,x,y{ [(D(r,x(r),y(r),u(r))dr + J(s A 1,1,x(s A 2'} ),y(s A r,‘ ),Ug(')]} Z

t

2 E,’x,y{ [(D(r,x(r),y(r),u(r))dr + V(s A r},x(s A 7,] ),y(s A 1,1 ))).

t

Remark.

Only u(-;t,x, y) is used on [I,s A 1)), no transition to the next intrajump control

occurs. Therefore, the assertion of Lemma 2 could be restated in the following way:

18



V(t,x,y)= “(lttlfy)E,H5/:Tlxy{j <D(r,()x,"y (,r x),;y,u(r t, x,y))dr +

+ V(S/\ T,,x:lg,)(S/\lr,,xx),y(SA 95)} ,

where the infimum is taken over all u(-;t,x, y) e PC([t,T);U).

Theorem 1.

If V(t,x, y) 6 DA,

then V,(t,x, y) exists for all (t,x, y) 6 Q , and V(t, x, y) satisfies the dynamic

programming equation

(8) V,(t,x, y) + 325{(D(t,x,y,v) + AvV(t,x,y)) = 0, (t,x, y) 6 Q,

and boundary (terminal) condition

(9) V(T,x,y) = LI’(x,y) .

Proof:

Let (t,x,y)eQ and tSsST.

Then for u(-) 611,

t

E,,x,y{[<D(r, x(r), y(r), u(r))dr + V(s A 7,1,x(s A 1,), y(s A I,))}=

= A(t,s,y)l:sj¢(ra xf‘g)(r,X)ay,u(r;t,x.y))dr + V(s, x,"(y)(s,x)U] +

l



+ ]A(t, w,y)k(w,y)[?®(r,ng)(r,x), y,u(r;t,x, y))dr:|dw +

t t

+ ]A(t, w, y)[ [n{y} V(w,xzg)(w,x), y')I'I(w, y,dy')]dw =

t

S

= IA(t’r’y)®(r,ng)(r,x)’y,u(r;t,x,y))dr
+ A(t,S,y)V(S,xtu,g)(s,x)’y)

+

I

+ ?A(t,r,y)[ [n { y} V(I‘,x,’:g)(r,x), y')l'I(r, y, dy')]dr .

Then Lemma 2 and the Fundamental Theorem of Calculus imply

0 = A(t,s,y)[V(3’x’y)‘ V(”x’y)] +

S _ - _

+ inf {[A(t,r, y)<l>(r,x(“,g)(r,x), y, u(r;t,x, y))dr +

u(-;t,x,y) t

S

+ ]A(t,s, y)Vx (s,x,u,gj)(r,x), y) - a(r,xz(},)(r,x), y,u(r;t,x, y))dr +

t

+ ?A(t,r, y) IY\{y} [V(r,ng)(r,x), y') — V(t,x,y)]l'l(r,y,dy’)dr) .

For any u(-;t,x, y) e PC([t,T);U) ,

3

lim —1— ]A(t,r,y)<1>(r,x,”§;)(r,x),y,u(r;t,x,y))dr = ¢(r,x,y,u(t;t,x,y)),

5—)! S -t t ’

S

limL ]A(t,s, y)Vx(s,x,u,g)(r,x), y) - a(r,x,'fg)(r,x), y, u(r;t,x, y))dr =

s—MS-tt

= Vx(t,x, y) - a(t,x.y,u(t;t,x,y)) ,
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lim -—1—}A(t,r,y)[H{y} [V(r,xzg)(r,x), y') - V(t,x,y)]I'I(r, y, dy')dr =

5—)! S — t t

= —G,V(t,x,y) .

Therefore, V,(t,x, y) exists and

V,(t,x,y) + Eg{¢(t,x,y,v) + A"V(t,x,y)) = 0.

The boundary (terminal) condition immediately follows from the definition of

V(t,x, y) .

In an easier case when y(s) is a finite-state Markov chain, the dynamic

programming equation has the form

V,(t,x,y) + i25{(b(t,x,y,v) + Vx(t,x,y) - a(t,x,y,v)) +

v

+ zit/(m, y') — V(t,x, y)]II(t, y,{y'}) = 0 .

a system of partial differential equations indexed by y 6 Y (note that Y is a finite set

now).

Fleming and Rishel [7] derive the continuous-time dynamic programming

equation of optimal stochastic control theory

mt,y)+;nezglw(ny,v)+mum}:o.

2l



for a somewhat more general case, where Av (s) is the generator of the controlled Markov

process y(s). In our problem, the control process x(s) is not a Markov process, but the

two-component process (x(s), y(s)) is a Markov process, and Av is its generator.

Lemma 3. (Dynkin’s Formula)

Let f(t,x, y) 6 DA, and suppose f,(t,x, y) exists and is bounded and continuous

in (t, x) uniformly in y.

Let u(-) 671, and let x(s) be the corresponding trajectory of the system.

ThenforOStSsST

E,,x,y{f(s,x(s),y(s))) — f(taxay) =

= E,,x,y{j[f,(r,x(r),y(r)) + A"(r)f(r,x(r),y(r))]dr}.

1

Proof:

f(S,X(S),y(
s))— f(l,x,y) =

=Z(+[fSA1,k ,x(S/\ 1,,k+l)y(SA1,k))—f(SA1,k,x(SA1,k),y(SA1,k)) +

 

k>0

+2k>o fk+(S/\Z', ,x(SA Z',k+l),y(S/\ Z’,k+l))-f(S/\Z',k+l,x(S/\ 1,1‘+l),y(SA1,))]=

 

=Zl+22.

From the Fundamental Theorem of Calculus

22



E,,x,y{21} = E,,x,y{l[fi(r.x(r).y(r>)+fx(r.x(r).y(r))-a(r.x(r>.y<r).u(r))]dr).

t

22 requires more careful consideration.

= E(,x,y{[f((SA Ttk+1x(SA Tr+1)ka)— f(S/\ I',k+l ,x(SA T,k+1)T’y;)]1{q,..Ss}}=

0
.
.
_
,
h

‘
-

: —E,,x,y(l{r’t55} A(1,k,r,yk )G,f(r,x(r),yk)dr} =

T:

= —E,,x,y{ ] A(s A 1,k,r,yk)G,f(r,x(r),yk)dr).

SA 1,‘

Also

E,,x,y{]G,f(r,x(r), yk)dr)-— E,x’le{1{kx(s) [Grf(r,x(r), yk)dr}+

SAT,
rr

3

+ E,,x’y{1{rtt SS<T,‘M} [G,f(r,x(r),yk)dr) = E1+ E2 .

Tl

E1: Et,x,y{1 {1 gs} [A(T, ,w, ”()1(w,yk)[ jG,f(r,x(r),yk)dr]dw) =

k

T1

= Et,x,y{1{z_'k <3) 1[]A(1,k ,w, yk)/l(w, yk)dw]G,f(r,x(r), yk)dr}=

1’

~

2 E,,x,y{l {r <S}1[A(1,,r,yk)— A(1,k,s,yk)]G,f(r,x(r),yk)dr}=

23



= E,,x,y{ it [A(s A 1,k,r,yk) — A(s A 1,k,s,yk)]G,f(r,x(r),yk)dr}.

SA 1,

S

E2 = E,,x,y{l{rfSS}A(Ttk,s,y/,) [G,f(r,x(r),yk)dr) =

T,

= E,,x,y{A(s A 1,k,s,yk) [G,f(r,x(r),yk)dr).

SA 1,‘

Therefore,

Et,x,y{22} = TEt,x,y{[Grf(rax(r):)’(r))dr}a

t

and the assertion of the lemma immediately follows.

Theorem 2. (Verification Theorem)

Let W(t,x, y) e 1),, be such that W,(t,x, y) exists for all (t,x, y) e Q , and suppose

that W, (t,x, y) is bounded and continuous in (t, x) uniformly in y.

a) Suppose W(t,x, y) satisfies for all (t,x, y) e Q the inequality

W,(t,x,y) + inf {(D(t,x,y,v) + AvW(l,x,y)) Z O

veU

and boundary (terminal) condition

W(T,x,y) = LI’(x,y).

Then for all (t,x,y) EQ and u(-) 671

W(t,x,y) S J(t,x,y,u(-)) ,

24



and therefore,

W(t,x, y) S V(t,x, y) .

b) If we can find for every (t,x, y) e Q, u‘(r;, y) e U such that

w, (t,x, y) + <I>(t,x, y,_u*(t,x,y)) + Aa‘l’wlwna,y) = o,

and if

u*(.) = {Joanny) = u‘(s,x;jg>(s,x), y),(t,x, y) e Q,t s s < T) 671,

then u*(-) is optimal.

c) If we can find y£(t,x, y) e U such that

W,(t,x, y) + <D(t,x, y,a,(i,x,y)) + Az-‘"("x’y)W(t,x, y) s f: ,

and if

a,(.) = {u,(s;t,x,y) = a,(s,x;jg>(s,x),y),(i,x, y) e Q,t s s < T) 611,

then u£(-) is s- optimal, i.e.

J(t,x,y,u£(-)) S V(t,x,y) + s for all (t,x,y) e Q.

Proof:

a) Let u(-) 671.

Since for all (t,x, y) e Q ,

W,(t,x,y) + Au(')W(t,x,y) 2 —<D(t,x,y,u(t)) a

we obtain by Lemma 3
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E,,,,,{Lv(x(T).y(T))} = Et,x,y{W(T,x(T>sy(T))} =

T

= W(t,x, y) + E,,x,y{ [[W,(s,x(s), y(s)) + Au(S)W(s,x(s), y(s))]ds} Z

t

T

Z W(t,x,y) — E,,x,y{ j<D(s,x(s), y(s),u(s))ds} ,

t

and the assertion immediately follows.

b) The same line of arguments works, only the inequality becomes equality.

c) Again, the same line of arguments as in (a) works. We obtain with the help of (a)

J(t,x,y,u8(-)) S W(t,x,y) + a S V(t,x,y) + 5.
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CHAPTER 3

REDUCTION TO A FAMILY OF DETERMINISTIC

CONTROL PROBLEMS

Let 8 denote the set of all functions f(t, x, y): Q —> R such that

|f(t, x, y) S Cl (T -t)+ D] for all (t, x, y) e Q, and let

“Up = {u(-) 6 “LI: J(t,x,y,u(-)) e 8}.

Notice that (LI 0 is non-empty since uo(-) for which uo(s; t, x, y) = up for all

(t, x, y) e Q, t S s < T, is in 110, and if there is an optimal control in the class 11, then that

control is in “LI 0. Lemma 1 (a) states that V(t, x, y) e 8.

For every u(-) 6 “LI, define the function j(t,x, y, u(-)): [0, T] x Rn x Y—> R by

T

J(t, x, y, u())= [A(t, s, y)<D(s, x,y)(s,x),y,u(s;t,x,y))l's+A(t,T,y)‘P(x,y)(T, x), y).

For every u(-) G “Ll, define operators

T“(')f(t,x, y) J(t, x, y, u(-)+) /\(,t s y){L“(,sx,y s, x), y')](s,y, dy')}ds,

and define
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Tf(t,x,y)= inf {J(,t x, y, u('.))+ [A(t, s, y){L{y}ffs(y’)/(s x),y')‘l(s, y, dy'ds)}},

u(-,'t,x,y)

where the infimum is taken over all u(-;t,x, y) e PC([t,T);U).

Lemma 4.

a) For any control u(-) 6 (LI, J(t,x, y,u(-)) satisfies the integral equation

J(t, x, y, u(-)) = Tum-[(1. x, y,u(-))

i.e.

T

J(t, x, y, u())= [AA,(t s, y)(D(s,sx,y(s,.x), y, u(st x, y))is+A(t,T, y)‘I’(xty)(T x), y)+

+ [A(t, s, ”(I'MJ,s(x,y)(s x),',y u(-))'I(s, y, dy'ds)}.

b) For any control u(-) e 110, if W(t, x, y) e 8 satisfies W(t, x, y) = T“(')W(t, x,y),

then

W(t, x, y) = J(t, x. y. um)-

c) u(-) G “U is optimal if and only if V(t, x, y) = Tu”V(t, x, y).

Proof:

a) Fix a control u(-) 6 “LI. Then
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T

J(t, x, y. u(-)) = E,,x,y[1{r}=r}{ [q>(s, x(s), y(s), u(s))ds + lP(xfl), y(T))}] +

t

+E,,,1xy[{,g.T:}{[¢(sx(s) y(s) u(s))dswwnMDH = Ei + Ea.

Straightforward calculations yield

t

E, =A(t,T,y{T[<D(s, x,y)(s, x), y, u(s, t, x, y))is+‘I’(x,u§,)(T(T,x),y)].

T 5

E2 = [A(t,s, y)7L(s, y{ [(D(r, x,y'4) (r, x), y, u(r;t,x, y))lr:lds+

t l

+Etix,y[1{t}<1}'](‘ix7;)(t'x)y(1i)“('))]=

T

= I{A(t,r,y)—A(t,T,y)}<I>(r, x,y)(r, x), y, u(r, t, x, y)Pr+

N

+IA(t,,sy){L\{y} J(,sx,y(,sx),'y, u())'l(s,,')ds,ydy}

and the assertion immediately follows.

b) Suppose sup [W(t, x,y)—J(t,x, y, u(-)) = n > O, and (t, x, y) 6 Q is such that

(my)

[W(t,x,y)-J(t,x,y,u(s))Z’q-e—K'T 7%.

Then

n—e—K'T~%S|W(t,x,y)—J(t,x,y,u(-))=

 

T'WWa, x, y) — T“(')J(t, x, y, u(-)) =
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T

[A(t, s, y){ LVN [W(s, x,lf(')(s, x), y')— V(s, xx?) (3, x), y')}‘fls, y, dy' ))ds

t

S

  

S (1 - A(t, T, y))n S (l — e-K 'T ) n. Contradiction.

Therefore, W(t, x, y) = J(t, x, y, u(-)).

c) Immediately follows from (a) and (b).

Corollary.

Finding the optimal u(-) e rLl is equivalent to finding, for each (t, x, y) 6 Q, an

optimal deterministic open loop control function u(-; t, x, y) minimizing

T ..

[A(t, s, y)(D(s, xi?) (s,x),y, u(s; t, x, y))b +A(t, T, y)‘I’(x,1f)(,') (T, x),y),

t

where

(D(s, x, y, u): <D(s, x, y,u)+ L{y}V(s, x, y')'I(s, y, dy').

A wider class of controls could be considered. Let us consider controls that have

one firnctional form until a jump ofy(s) and then another functional form after each jump.

Let

M = {u(-) = u, (-,'t, x, y): Q —> PC([t,T),-U), k = 0,1, 2,...},

Define

V(t) = {number ofjumps ofy(s) on [0, t]}.

30



The intrajump control function uv(,) (-; t, x, y) is used from time t up to the terminal

time T or the time of the first jump ofy(s) after t, whatever comes first. Now the control

functions and thus the state of the system x(s) depend on the past of y(s).

Notice that controls u(-) e “L! also are in class M, they are constant in the index k.

It can be seen from Corollary 4.1 that if there is an optimal control in the class “Ll,

then that control is also optimal in class M, and therefore, no advantage can be gained by

 

going to the wider class M.

Theorem 3. (Integral equation for the value function V(t, x, y))

a) V(t, x, y) satisfies the integral equation

(10) V(t, x, y) = T V(t, x, y)

i.e.

T

V(t, x, y) = inf {JA(I, s, y)<D(s, xx?) (3, x), y, u(s; t, x, y))ds +A(t, T,y)‘P(x,'f§,) (T, x), y)+

u(r,'t,x,y) ,

+ 7[A(t, S, y){ Ll{y}V(S’ xx?) (5, x). y')‘l(s, y, dy')}ds} ,

where the infimum is taken over all u( t, x, y) e PC([t, T); U).

b) If W(t, x, y) e 8 satisfies W(t, x, y) = T W(t, x, y), then W(t, x, y) = V(t, x, y).

c) u(-) 6 (LI is optimal if and only if J(t, x, y, u(-)) = T J(t, x, y, u(-)).
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Proof:

Let (t, x, y) e Q. Fix a control u(-) 6 (LI.

For any a> 0, there exists control as, (-) e ‘11 such that for every

(t',x',y') e (t, T) x R" x Y

J(t',x',y’,u8',(-))SV(t',x',y’)+s.

Define

142,1 (r,'t',x',y')= u("r"’rx'r)")°1{t’St] +u8,t(r;t"x'iy')'1{I'M}

for all (t', x', y') 6 Q and t S r < T.

Then by Lemma 4

V(t, x, y)S J(t, x, y, 118,, {-)J =

= 7W, s, y)o(3, x39) (3, x), y, u(s,-i, x, y))rs+x(i, 1, mpg) (T, x) ))+

t

+ :[A(t, s, y){ L\{y}J(s, xx?) (5, x), y', "3.! {-)hIS, y. dY')}ds S

s Tm, s, y)(D(s, xrf'1 (s, x), y, u(s; i, x, y))o + A(t, T, nygQ) (T, x), y)+

,

+ T[A(t,s,y){L\{y}V(s, x396, x),yr)1(s,y,dy')}ds +8.0 — A(,, T, y»

Since £> 0 is arbitrary, we get
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V(t,x,y)ST[A(t,s,y)<D(s, x,§,)(s x), y, u(s, t, x, y))ls+A(t, T, y)‘P(x,y)T(T, x),y)+

+:[A(,,{y}tsy){£,\ V(s,x,y)ds(,,',,'sx)y)'l(sydy)}),

for any u(, t, x, y) 6 PC([t, T); U).

Also by Lemma 4

J(t, x, y, u())= :[A(t, s, y)<D(s, x,y(s, x), y,u(s;t,x, y))is+A(t,T, y)‘~I’(x,y)(T x), ))+)

+ [A(t, s, y){[{y}(J.s x,“,.’(s)x y')u())1(sy dy’))ds>

2?A(t,s,y)¢(s 117;)(3, x), y, u(s, t, x, y))is+A(,t T, y)‘~I’(x,"()(T, x), y)+

+)A(I,S.{y}y){L\V(,Sx,y)(s,x),y'.,'ds‘,)1(sydy)}

and the assertion follows.

b) Suppose sup |W(t,x,y)— V(t, x,y)| = n > O, and (t, x, y) 6 Q is such that

(my)

|W(t,x,y)—V(t,x,y)| 2 n—e‘” ‘X.

Without loss of generality, W(t, x, y) > V(t, x, y).

There exists a control u(-) e ’U such that

Tu(')V(t,x,y)STV(t,x,y)+e—K'T1%.

Then
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n—e‘K'T 7% s W(t,x,y)— V(t,x,y) = TW(t,x,y)— T V(t,x,y) s

s T”(')W(t, x, y) — T"(')V(t, x, y) + e'K‘T 7% _<.

T

S [A(t, S, y){ L‘{y}[W(s, xx?) (s, x), y')— V(s, x3201), Y')}7(S, y, 61)" ))ds+e'K'T 1% S

t

S(l—A(t,T,y))r]+e_K'T -T%Sn—e_K'T 2%.

Contradiction. Therefore, W(t, x, y) = V(t, x, y).

c) Immediately follows from (a) and (b).

Consider u0(-) e “U o for which uo(s; t, x, y) = up for all (t, x, y) e Q, t S s < T.

Let xo(s) be the solution of the system of differential equations

dx

——0d—“Z=a(s,x0(s),y(s),u0), OStSsST,

s

with initial condition

xo(t) = x e R".

Define

T

(11) Wow. x, y) = J(t, x. y. uo(-)) = Er,x,y{ Ids. xo(S). y(s). uo)ds + W(xotr), ya»),

t

and fork=1, 2, 3, , let

(12) Wk (fsxsy)=TWk-1(t,x,y)-
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Theorem 4.

W), (t, x, y) converges to V(t, x, y) from above unifome on Q.

Proof:

It is easy to see that W, (t, x, y) 2 V(t, x, y) for all k = 0, l, 2, .

Since W0 (t, x, y) e 8 and V(t, x, y) e 8,

llWo(t,x,y)-V(t,x.y)ll= sup{Wo(t,x,y)-V(t,x,y)}-<—Z'IC1T+D1l-

(axiy)

Suppose that for some k,

||Wk(t,x,y)-V(t,x,y)||S2-[C1T+D1]-(l—e-K'TY.

Then

Wk+1(t,x,y)= TWk (t,x,y)S

T

S T V(t, x, y) + IA(t,s, y){ L\{y}2.[C1T + D, ](1 —e“K-T )k u(s, y, dy')}ds =

t

= V(t,x,y)+ 2-[C,T+Dl]-(1—e‘K'T)‘+'.

The assertion of the lemma follows by the mathematical induction.
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CHAPTER 4

FAMILY OF CONTROL PROBLEMS WITH “STOPPED” y(s)

Let

0 _ _ 0
z,(s)—y(t)—y(1,), tSsST,

and let for k =1, 2,

z,k(s) = y(s) for t S s < 1,k

z,k(s)=y(1,k) for 1,k SSS T.

(2," (s) is y(s) stopped at the time of the kth jump after t.)

Note that for k= 1, 2,, for]: O, 1, , k,

z,k(s)=z:,—I(s), 1,I SsS T.

I

For k = 0, l, 2, , consider the control problem where the state of a system is

described by the system of differential equations

(ix/AS) k
T= a(s,xk(s),z, (s), uk(s)), t S s S T,

with initial condition

x(t) = x e R" ,

and the performance criterion is given by

T k k

J, (t, x, y, uk(.)) = E,_,,,,{ jo(s,x,,(s),z, (s),u,,(s))ds + ‘P(xk(T),z, (T))).

I
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Since, for k = O, l, 2, , z," (s) has at most kjumps on [t, T], let us consider

controls u), (-) of the form

_ _ . I I k I

uk(S) _ "[t,/(S) "' Elk/(S, TI 9xk(TI )921 (TI ))9

1,1Ss< r,’+‘,l=o, 1, ...,k— 1,

141(5) = uk,k(s) = Alt/((5; n" ,xtmk ),21'( (If D,

k

1, SsST.

Let ’le be the set of all controls uk (-) of this form. Note that U ‘le = M.

k

For k = O, 1, 2, , consider the value function

Vk(’»xtJ’)= infiJkIMJWN-Di-

“It ')

Using arguments similar to the ones used earlier, we can prove the following

lemma.

Lemma 5.

If J], (t,x,y,u;(-))= Vk (t,x,y) and Jk_1(t,x,y,u;_l(-))= Vk_l(t,x,y), then

a) 112,10) = u;_l’1_1(-) , l = I, 2, , k,

b) u;,0(-) minimizes

T u), 0()

uk 0()[(Dk(s,x,,); (3.x),yauk,o(3))ds + u(s,); (T’xky) ’
t

where (D0(s,x,y, u) = (I)(s,x, y, u), W0(x,y) = ‘I’(x,y) ,
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o,(.,.,y,..)=A(,,.,,){ots,x,,,.)+ ),,,,thmamas»),

LI’k(x,y)=A(t,T,y)‘I’(x,y), k= 1,2,

For every y e Y, consider the deterministic control problem where the state of a

system is described by the system of differential equations

(13) gig—S) = a(s,x(s),y,u(s)), t S s S T,

s

with initial condition

(14) x(t)=x ER",

and the performance criterion is given by

T

Fo (t,x,y,u(-)) = [$1 (s.x(s),y,u(s))ds + ‘Pt (x(T).y).

t

Suppose that ((1),( )x (s, x,y, u) exists for all (s,x,y,u) e (t, T)x R" x Yx U.

Suppose that (32(3), 12(5)) , t S s S T, is the optimal solution.

Let v(s):[t, T] —+ Rm be a piecewise continuous function and set

u(s,8)=zi(s)+6'v(s), tSsS T.

Then (13) and (14) with u(s) = u(s,8) have a one—parameter family of solutions

x(s,8), t S s S T, for [8] < 50, which contains x(s) for 5 = O. The functions x(s,8) are

continuous and have continuous derivatives with respect to 5.

Let
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A(s)=g%(s,0), tSsS T.

Then A(s) satisfies the system of differential equations

€915) = ax (551(5), y,ti(s ) A(s)+ 0,, (s, 12(5) y,13(s))- v(s), t S S S T,

ds

with initial condition

A(t) = 0 e R”.

Denote by A(s), t S s S T, the n x n matrix-valued function satisfying the

differential equation

5’3?=a.(s,a(,),,,,;(,».,4(.), asst

with initial condition

A(t) = I n.

Then

A(s=) A(s) [A4 (r-)au (,rx(r),,yu(r)) v(r)dr, tSsST.

Set f(5;v(-)) = F0 (t, x, y, u(-,6)) , for |8| < 8 0.

Then f'(6;v(-)) exists and

f(6;v())= (wt)(any))()+Tila>i)csscs)yu(s))A(s)+(¢t). (sxts)yu(s»v(s)lds

= [u(erkIr

where
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<p(s) = (W ),, (s, i(s). y. fi(s))

T

(15) + (‘Pt ), (AT). y)A(T) + [(<I>t ), (r. fir). y. zi(r))A(r)dr)A”l (ska (s. As), y. 136)),

t S 3 S T.

If (12(3), 17(3)), t S s S T, is the optimal solution, then for any piecewise continuous

v(s), f(8;v(-)) has a local minimum at o = 0. Then

f' (6;v(-)) = 0, f" (5; v(-)) 2 0-

This proves the following lemma:

Lemma 6.

If (x(s), 13(3)): t S s S T, is the optimal solution, then

f' (5;V(-)) = 0, f" (8; v(-)) 2 0

for any piecewise continuous v(~).

The relation

f'(5; V(-)) = 0

holds for any piecewise continuous v() if and only if

(16) (p(s)=0 e R’"

almost everywhere on [t, T].

Set

T

P(s) = (‘I’k )x (x(T),y)A(T)+ “(1),, )x (r,x(r), y, fi(r))A(r)dr) - A_1 (s), t S 3 S T.
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Then since g— A’1 (3) = -A-l (3)- ax (3, 12(3), y,12(s)),

3

d

(17) ,,;-P(s) = —(<Dt ),(s.£(s).y.fi(s))— P(s)- ax (3,x(3),y,12(3)), ts s s T,

and

P(T) = (‘Pt ), (2(1), y)

Define the function Hy(3,x,u, p): [O,T]x R" x U x R" —) R by

Hy(3,x,u,p)= (Dk(s,x,y,u)+ p-a(s,x,y,u).

Then (13), (17) and (16) can be rewritten as

(13.) 113%) = H;(s, 2(a), 12(3)P(s)), is s s r,

(17') if? = -H,),’ (3,)?(3), 12(3), P(s)), IS s s T,

(16') Hg(s,£(s),ii(s),1>(s)) = o, t s 3 s T.

Suppose that

(18) aa 115,,(5, 55(3), 12(3), 10(3)) .1 0, i s s s T.
 

Then since x(s) and P(s) are AC, (16') implies that 12(3) is continuous. Then (13')

and (17') imply that x(s) and P(s) are of class C I. Then (16') implies that 12(3) is also of

classCl.

Also from(16') we get

19 OW)— [Hy [l [Hy Hy Hy ((cp) P() )] < <T() 7T—- ,,,, - su+ xu-a— up- kx+ stax , t_s_ ,
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where the arguments in the derivatives of Hy are (3, 32(3), 12(3), P(s)) , and the arguments in

a, (D), and their derivatives are (3, 2(5), y, 12(3)).

From (16') we also get

20 p()_((p).T. .T)1—(¢).‘ < <T() 3— kuau auau — kuau, t_3_,

where a; is the generalized inverse of n x m matrix a u, and the arguments in a, (D), and

their derivatives are (3, 51(3), y, 12(3)).

Then (19) and (20) imply that 12(3) satisfies the differential equation

dt2(3)

= fy (s.i(s).zi(s)), t s s s T,
d3

 

where the function fy (3, x, u): [t, T)x R" x U —) Rm is continuous and is entirely

determined by functions a, (D), and their derivatives (excluding axx and ((1) k )xx ).

Denote by x(3; t, x, y, v) and u(s; t, x, y, v) the solution of the following system of

differential equations

esl=.(.,xn),,,u(.», zsssz
d3

du(3)

——=fy(s.x(s)u(s)), ms]:
d3

x(t) = x,

u(t) = v e U.

Then we get the following lemma:
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Lemma 7.

If (x(s),12(S)), t S s S T, is the optimal solution and (18) holds, then

a) 12(3) is of class C l,

b) x(s): x(s;t,x,y,12(t)),

12(3) = u(s;t,x,y,12(t)), t S s S T.
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CONCLUSION

While dynamic programming is a simple mathematical technique that has been

used for many years by mathematicians and engineers in a variety of contexts, it is a

powerful systematic tool for optimization problems. The partial differential equation of

dynamic programming provides us with the means for finding both the value function

and the optimal control, along with the necessary and sufficient conditions for optimality.

The method ofdynamic programming encounters the difficulty that for'many

problems the value firnction is not differentiable everywhere. In this case, the (Hamilton-

Jacobi-)Bellman equation cannot be solved in the classical sense, and the value function

is its generalized viscosity solution.

The partial differential equation ofdynamic programming is generally difficult to

solve explicitly, the value function can be found this way only in a few special cases. In

many other cases, numerical methods are needed to solve the (Hamilton-Jacobi-)Bellman

equation approximately, that creates another set of difficulties especially for

multidimensional control problems.

The sequence of functions Wk constructed in this work can be used to

approximate the value function V for an optimal control problem without having to solve

the (Hamilton-Jacobi-)Bellman equation. The sequence Wk converges to Vuniformly

from above with an exponential convergence rate. Once the value function is known or

approximated with the desired accuracy, we can use the ideas of the dynamic
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programming or the Corollary to Lemma 4 to search for an optimal or an s—optimal

control depending on the techniques used to assist the dynamic programming approach

and whether an optimal control exists or not.

In the near future, we plan to investigate under which conditions

a) the sequence of control functions used to obtain Wk(t, x, y) converges, and if it can

be used to obtain (or approximate) the optimal control u*(-) for the main problem.

b) the sequence of functions Vk(t, x, y) converges to V(t, x, y);

c) functions Vk(t, x, y) are differentiable in x;

d) the sequence of control functions 14;,0 (3) converges, and if it can be used to

obtain (or approximate) the optimal control u*(-) for the main problem.

Allow us to suggest a couple of potential further problems. Suppose the Markov

disturbance y(s) in (l) is not a jump Markov process. Ify(s) can be approximated by a

jump Markov process y(s), would an optimal control 17* (3) for the control problem with

the Markov disturbance y(3) , if it exist, perform well for the original control problem

with y(s)?

For another possible firture problem, let {y n , n 2 I} be an ergodic stochastic

process in Y with ergodic distribution p for y n. For a < so, consider the process y8(s),

O S 3 S T, defined by

yg(S)=yn for (n— 1)e Ss<ns.

Consider a stochastic optimal control problem where the evolution of the system is

described by the differential equation
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“353) = a(s,x,,(s), y,(s),u,(s)), 0 s i s s s r, 

with initial condition x8(t) = x, and the performance criterion is given by

J8(t x,y “80 E,,txy ,ICD(S x8(s),y8(s) u8(3))ds+‘P(x€(T))

Let

a(3, x, u) = Ia(s, x,y,u)p(dy), $(s,x,u)= I<D(s,x,y,u)p(dy),

YY

and consider a deterministic optimal control problem where the evolution of the system is

described by the differential equation

ESTES): 0(3, x(s), u(s)), O S t S 3 ST’

with initial condition ;(t) = x , and the performance criterion is given by

txu(-)=) TICD(3, x(,s)(u(s))13+‘I’(x(T)).

Suppose an optimal control 11— (3) exists. Would ; (s) perform well for the original

stochastic control problem for small 8? If 118*(3) is an optimal control for the original

control problem for s < 80, can anything be said about the behavior of u8*(s) and their

._t

relationship to u (3) as s —-> O?
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