

J

”
1
2
:

‘
A
l
f
:

‘
‘4

”
m
m
:

5
3

0
1
1
3
3
6
-
1
9
"
)

1

n
.
.
.

c
-

.. .

5-335? x: .2"
‘ -:?‘s’zi: . -, .

.. . ‘ ”3513“; a

i‘r.i 9! r; ' 1:9“ 4 ' ‘ ‘ . ’ m..-»
ihgéél‘ in, ~ . r .y. . 3%.“. v ' ‘ ‘ ”35; ,3‘ {$111 ‘ . _ ' 7‘ ‘ :2 ' a' "N

:1 7

3.3.1.3 " '
3

7
1
5
.
9
:

.
.
A
“
!

,
.

d
.

“
3
:
4

k
:

“
3
.
7
;
.

..
_

u
,
.
,

fi
r
m
}
:

m
u
n
,

3
1
.
.
.
.
.
.

m
y

1. z;

:3
II

‘ r

i. 3.!

m;- 5415‘:

‘ try-€532
2,53;mx.u

/ a LIBRARY

Michigan State

University

This is to certify that the

thesis entitled

BTAUDIO (BLUETOOTH AUDIO PROGRAM) AND QUITE

TALK PROFILE

presented by

JUN CHEN

has been accepted towards fulfillment

of the requirements for the

MS. degree in Computer Science and

Eggineering

MM ‘

Major Profess :Signature

49/1I/az

Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c:/ClFlC/DateDue.p65p 15

BTAUDIO (BLUETOOTH AUDIO PROGRAM) AND

QUITE TALK PROFILE

By

Jun Chen

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2003

Abstract

BTAudio (Bluetooth Audio Program) and Quite Talk Profile

By

Jun Chen

In this thesis, we discuss the Bluetooth audio gateway design and implementation. We

implement the audio gateway into a program named BTAudio. BTAudio is developed on

the top of BlueZ (Official Linux Bluetooth protocol Stack) to fulfill its core functions.

BTAudio also provides a graphical user interface written in GTK+.

By running BTAudio, the computer can control a Bluetooth device, which is attached

to it. Then the Bluetooth device can act as the audio gateway. The audio gateway has

these main functions: build connection, receive or send audio data from or to headset and

release connection.

We also conducted some experiments on the Bluetooth devices by using BTAudio.

From the experiments we arrived at some important results about Bluetooth technology.

In the end, we propose a new Bluetooth profile: Quite Talk Profile. This profile

describes how the Bluetooth devices can provide a mobile, full duplex, and hand-free

way for up to three people to communicate.

Acknowledgments

It is not easy that I finish this thesis. Here I want to thank all the people who have

helped me in this work.

First, I am very grateful to my advisor: Dr. Lionel M. Ni. He helps me finish this very

interesting thesis research and always gives me direction when I feel lost in my thesis

research. I also acknowledge Dr. Abdol-H. Esfahanian and Dr. Matt W. Mutka. Their

inspiring comments are very important to my thesis research.

I also want to thank Yunhao Liu, Hongbo Zhou, Abhishek P. Patil, Pei Zheng and

other colleagues in ELAN8. Their advice helps me overcome many obstacles.

At last many thanks to my family, especially my husband: yuan. He gives me great

support in spirit.

iii

Table of Contents

1. INTRODUCTION 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVE ... 2

1.3 ORGANIZATION .. 3

2. BLUETOOTH SPECIFICATION 3

2.1 OVERVIEW ... 3

2.2 BLUETOOTH PROTOCOL STACK.. 5

2.3 RADIO .. 6

2.4 BASEBAND ... 7

2.5 LINK CONTROLLER .. 10

2.6 LINK MANAGER ... 12

2.7 HOST CONTROLLER INTERFACE (HCI) ... 13

2.8 LOGICAL LINK CONTROL AND ADAPTATION PROTOCOL (L2CAP) 15

2.9 RFCOMM ... 15

2.10 SERVICE DISCOVERY PROTOCOL (SDP) ... 16

3. BLUETOOTH PROFILE 17

3.1 BLUETOOTH PROFILE RELATIONSHIPS ... 17

3.2 GENERIC ACCESS PROFILE (GAP) .. 18

3.3 SERIAL PORT PROFILE (SPP) .. 19

iv

4. BLUETOOTH AUDIO GATEWAY DESIGN - - 20

4.1 HEADSET PROFILE .. 20

4.1.] Roles in Headset Profile.. 21

4.1.2 Headset Profile Stack .. 21

4.1.3 Headset Profile Requirement .. 23

4.2 AUDIO DATA REQUIREMENTS .. 24

4.3 FUNCTIONALITIES OF BLUETOOTH AUDIO GATEWAY .. 30

4.3.1 Outgoing Audio Connection .. 30

4.3.2 Incoming Audio Connection .. 31

4.3.3 Audio Connection Release .. 32

5. BLUETOOTH AUDIO GATEWAY INIPLENIENTATION: BTAUDIO..... 34

5.1 SYSTEM REQUIREMENTS .. 34

5.2 SUPPORTED HARDWARE... 38

5.3 BTAUDIO CORE FUNCTIONS .. 4O

5.3. I Overview.. 40

5.3.2 Check the Voice Setting ... 44

5.3.3 Create RFCOMM Channel ... 44

5.3.4 Create SCO Channel... 45

5.3.5 Transfer Data on the RFCOMM and SC0 Channel 46

5.4 BTAUDIO GUI ... 48

5.4.1 Introduction ... 48

5.4.2 Send out musicfile... 50

5.4.3 Record voicefrom Headset ... 52

6. BTAUDIO EXPERIMENTS AND RESULTS _ 54

6.1 BTAUDIO EXPERIMENTS .. 54

6.2 RESULTS... 57

6.2.1 Relationship Between Quality of Transmission and Distance 57

6.2.2 Transmission Rate in Diflerent Areas ... 58

6.2.3 Size ofSCO Packets .. 59

6.2.4 Put the Headset in Diflerent Containers ... 61

6.2.5 Summary.. 61

7. NEW BLUETOOTH PROFILE: QUITE TALK PROFILE 62

7.1 OVERVIEW ... 62

7.2 SYSTEM REQUIREMENTS .. 63

7.3 FUNCTIONALITIES OF QUITE TALK PROFILE ... 64

7.3.1 Audio Connection .. 64

7.3.2 Audio Data Transmission .. 66

7.3.3 Audio Connection Release .. 67

7.4 FEATURE OF QUITE TALK PROFILE... 69

8. CONCLUSION AND FUTURE WORK 70

8. 1 CONCLUSION .. 70

8.2 FUTURE WORK ... 71

BIBLIOGRAPHY 74

APPENDIX A. CONTENT OF HCIUSB.PATCH 75

APPENDIX B. RECOMPILE THE LINUX KERNEL - 76

vi

APPENDIX C. INSTALL AND CONFIGURE BLUEZ 76

C. 1 INSTALL BLUEZ ... 76

C2 CHANGE THE MODULE CONFIGURATION FILE .. 77

C3 CHANGE THE BLUEPIN FOR PAIRING .. 78

vii

LIST OF TABLES

Table l: Mandatory AT Commands in Headset Profile .. 22

Table 2: Optional At Commands in Headset Profile... 22

Table 3: Comparison of Audio Data ... 30

Table 4: Voice Setting Value and Parameter Description... 41

Table 5: the Relationship Between the Quality of Music Heard and the Distance 58

viii

LIST OF FIGURES

Figure 1: Bluetooth Specification Protocol Stack ... 5

Figure 2: 081 Reference Model and Bluetooth Protocol Stack .. 6

Figure 3: Frequency Hopping Example .. 8

Figure 4: Piconets with a Single Slave (a), Multiple Slaves (b) and a Scattemet (c) 9

Figure 5: State Diagram of Bluetooth Link Controller [1] .. 11

Figure 6: End-to-End Overview of Lower Software Layers to Transfer Data [1] 14

Figure 7: SDP Client-Server Interaction Mechanism ... 16

Figure 8: Bluetooth Profile .. 17

Figure 9: Headset Protocol Model .. 21

Figure 10: SLR Measurement Set—up .. 25

Figure 11: RLR Measurement Set-up ... 26

Figure 12: Bluetooth Audio System [9] .. 28

Figure 13: Outgoing Audio Connection Establishment .. 31

Figure 14: Incoming Audio Connection Establishment .. 32

Figure 15: Audio Connection Release - AG Launched .. 33

Figure 16: Audio Connection Release - HS Launched ... 33

Figure 17: BlueZ Overall Architecture ... 35

Figure 18: Bluetooth Module Setting .. 36

Figure 19: Commands to Load Modules and Get the Device UP 37

Figure 20: Result of sdptool Inquiry Result .. 38

Figure 21: The Headset and USB Dongle Used in Our System .. 39

: Flow Diagram of BTAudio Bluetooth Part ... 43

: Procedure to Build RFCOMM Channel .. 45

: Procedure to Set Up the SCO Channel .. 46

: Sequence Diagram of the Data Transfer on the RFCOMM and SCO Channels

.. 48

Figure 26: BTAudio User Interface .. 49

Figure 27: Checking the Voice Setting ... 51

Figure 28: User Interface after Sending Out Music .. 52

Figure 29: The Dialog to Give a Name to the Record File ... 52

Figure 30: The Example to Record Voice from the Headset .. 53

Figure 31: Map of Experiment Areas .. 56

Figure 32: Average Transmission Rate When Headset in Different Areas 59

Figure 33: The Size of SCO Packet When Headset in Different Areas 60

Figure 34: Audio Connection in Quite Talk Profile .. 65

Figure 35: Audio Data Transmission in Quite Talk Profile .. 67

Figure 36: Audio Connection Release .. 69

Figure 37: Bluetooth Applications in Car ... 72

Figure 38: Bluetooth Enabled Devices.. 73

Figure 39: Content of hciusb.patch ... 76

Figure 40: Install ALSA and Recompile the Linux Kernel .. 76

Figure 41: One Example to Install BlueZ package ... 77

1. Introduction

1.1 Motivation

As a new technology with a history of nine years, Bluetooth [1] wireless technology

has rapidly gained a lot of consumer awareness and product penetration across a range of

diverse industries. More and more manufacturers plan to launch products using Bluetooth

technology.

Bluetooth is the new technology using short-range frequency-hopping radio link

between mobile computers, mobile phones, PDA, headset and other portable devices.

Originally Bluetooth is brought out as a cable-replacement technology. After plugging a

small, cheap radio chip into computers, printers, keyboards, etc, people are set free from

the cable entanglement. The interest in Bluetooth is soaring because of its key features:

robustness, low complexity, and low power. Later on people think about a lot of idea with

using Bluetooth, such as building a dial-up networking on the laptop Via a cellular phone,

sending files from a PDA to a laptop, sending music from a computer to a headset and so

on.

Some applications for Bluetooth are a carrier of audio data. In theory, up to three full-

duplex audio channels can be provided in one Bluetooth chip. The audio quality provided

by Bluetooth shall be same as that of a cellular telephone because Bluetooth uses the

same audio data format as the GSM (Global System for Mobile Communication) system.

Bluetooth manufacturers produce a very nice Bluetooth device: Bluetooth headset. It

is lightweight, small and convenient to use. Normally it weighs less than an ounce. We

can hang the headset on our ear to receive audio data. After a while, we will forget there

is a headset on our ear. This Bluetooth device set people free from the wired headset.

The common headset usage is to connect to cell telephone. But there is one important

potential function of the headset: connecting headset to Bluetooth enabled computer or

PDA. With this function, we can enjoy the music on the headset Without sitting close to

the computer or PDA. We can hear music without carrying anything except the

lightweight headset. How to accomplish this function is a big step in Bluetooth

technology.

1.2 Objective

In this thesis we plan to design and implement the Bluetooth audio gateway in a

computer to accomplish this function. Because the headset is very passive, it only has the

button as the input. Thus the major work has to be on the computer side. The major

function of the audio gateway is to build connection, receive or send audio data from or

to headset and release connection.

After accomplishing the implementation, we want to perform some experiments on the

Bluetooth devices to discover some properties of the Bluetooth technology.

Furthermore, We want to propose a new Bluetooth profile. If we can transmit audio

data between the headset and audio gateway, we can let the two headsets communicate

with help of the audio gateway. Then we can provide a new short-range, mobile, full

duplex and hand-free way for communication using Bluetooth technology.

1.3 Organization

Chapter 2 covers Bluetooth specifications, which gives basic information about the

Bluetooth technology. Chapter 3 talks about the Bluetooth profiles. Chapter 4 discusses

the audio gateway design. Chapter 5 is mainly about how to implement the audio

gateway into a program named BTAudio. Chapter 6 describes the experiments we

conduct on the Bluetooth devices using BTAudio and gives the results. Chapter 7

proposes a new Bluetooth profile: Quite Talk Profile. Chapter 8 summarizes all the works

carried out in this thesis research and lists the future work.

2. BLUETOOTH SPECIFICATION

2.1 Overview

Bluetooth is brought out as a replacement of the cable by Ericsson Mobile

Communications in 1994. In 1998 Ericsson Mobile Communications, Intel Corp., IBM

Corp., Toshiba Corp. and Nokia Mobile Phones formed the Bluetooth Special Interest

Group (SIG). SIG is a group of companies that work together to promote and define the

Bluetooth specification. Version 1.0 of the Bluetooth specifications came out in July

1999. The name of Bluetooth comes from a tenth—century Danish king who united

Denmark and Norway. They chose this name because they expect Bluetooth to unify the

telecommunications and computing industries.

A critical feature of the Bluetooth specification is that it aims to allow devices from

lots of different manufacturers to work with each other. For this Objective, Bluetooth does

not only define the radio system; it also defines a software stack to enable applications to

find the services that can be provided in other devices.

The Bluetooth Specification is made up of two parts: core specification and profiles.

We also call the first part as Bluetooth specification, which is mainly about the layers in

the Bluetooth stack. The second part: Bluetooth profile gives details about how

applications use the Bluetooth protocol stack. We will talk about Bluetooth specification

in this chapter. The Bluetooth profiles will be covered in next chapter.

2.2 Bluetooth Protocol Stack

Applications

 .
L
V

Other

Interfaces Service

Discovery

Protocol

D
U
B
L
I
I
U
I
O
O

 RFCOMM

 1

Logical Link Control and

Adaptation (L2CAP)

l

Host Controller Interface (HCI)

1

Link Manager (LM)

1

Link Controller

I

Baseband

1

Radio

Figure 1: Bluetooth Specification Protocol Stack

Figure 1 illustrates the Bluetooth specification protocol stack. It is made up of eight

layers: radio, baseband, link controller, link manager, host controller interface, logical

link control and adaptation, RFCOMM or service discovery protocol, and applications.

The comparison of the Bluetooth protocol stack and 081 (Open System Interconnect)

Standard reference model is displayed in Figure 2. Although there is no perfect mapping

between them, it helps people to understand the Bluetooth protocol stack. The

functionality of each layer in Bluetooth protocol stack will be explained later.

Application layer Application Layer

mum“my“ RFCOMM/SDP

Sessron layer L2CAP

T layer Host Controller Interface

linkManager

Network Layer

link Controller

Data link layer

Baseband

Physrcal layer Radio

(BI Referenc Model Bluetooth Protocol Stack

Figure 2: 081 Reference Model and Bluetooth Protocol Stack

2.3 Radio

Bluetooth Radio operates in the 2.4 GHz ISM (Industrial Scientific Medicine) band. In

most of the countries around the world Bluetooth uses a frequency hop technology with

79 hops displaced by lMHz, starting at 2,400 MHz and stopping at 2,483.5 MHz. In

some countries like France, the frequency range is 2,446.5- 2,483.5 MHz and Bluetooth

uses a frequency hop technology with 23 hops.

Each Bluetooth has an antenna to send out the radio signal. The Bluetooth equipment

is classified into three power classes by the power levels at the antenna connector. Power

Class 1 is the equipment with maximum output power of about IOOmW, which normally

can communicate for a maximum of around 100 meters. Power Class 2 is the equipment

with maximum output power Of about 2.5mW, which may cover a range of 30 meters.

Power Class 3 is the one with maximum output power of about 1mW, which can

communicate Within 10 meters area.

2.4 Baseband

The baseband manages physical channels and links. It also handles packets, error

correction, pages and inquiries to access the Bluetooth devices Within its area.

The channel in baseband is represented by a pseudo-random hopping sequence

hopping through the 79 or 23 channels. The Bluetooth device takes 1600 hops in one

second. The channel is divided into 625 us time slots. Figure 3 shows one frequency-

hopping example. At the first time slot it uses channel 78. It jumps to channel 77 in the

second time slot.

Frequency Frequency Hopping Function

MHz Channel f (l) f (2) f (3) f (4) f (5) f (6) f (7)

2480

2479

2478

2403 n

2402 I‘II _

.Packet Multi¥slot packet Time

Figure 3: Frequency Hopping Example

Two or more Bluetooth devices can form a piconet by using the same frequency

hopping sequence. In each piconet there is one master and one or more slave(s). The

hopping sequence unique for the piconet is determined by the Bluetooth address

(BD_ADDR) of the master. The phase in the hopping sequence is determined by the

Bluetooth clock of the master. A scattemet is the multiple piconets with overlapping

Bluetooth device, that is more than one device joins more than one piconet. But each

piconet has a different master. One Bluetooth device cannot act as a master of two

piconets. If one device acts as the master of two piconets, then the hopping sequence will

be same for the two piconets. Then it will turn the scattemet into a piconet.

Figure 4 shows the topology of a point—to-point link between Master and Slave. The

example of two piconets are displayed in the diagram (3) and (b). In diagram (a) there is

one master and one slave. In diagram (b) there is one master and two slaves. The diagram

(c) gives one example of scattemet: the master of one piconet becomes a slave of another

piconet.

0 Master

Slave

(a) (b) (c)

Figure 4: Piconets with a Single Slave (a), Multiple Slaves (b) and a Scattemet (c)

The baseband manages two types of links: Synchronous Connection-Oriented (SCO)

link and Asynchronous Connection-Less (ACL) link. The ACL link is a point-to-

multipoint link between the master and all the slaves in the piconet. The SCO link is a

point-to-point link between a master and a single slave participating the piconet. The

master maintains the SCO links by using reserved slots at regular intervals. When the

slots are not reserved for the SCO link, the master can establish an ACL link on a per-slot

basis to any slave, including the slave(s) already engaged in an SCO link.

An ACL link exists between the master and slaves as soon as a connection has been

established. The ACL link provides a packet-switched connection Where data is

exchanged sporadically when data is available. The choice of which slave to send out to

or receive from is up to the master on a slot-by-slot basis.

A SCO link provides a circuit-switched connection between the master and a slave

with reserved channel bandwidth and regular periodic exchange of data in the form of

reserved slots. The SCO link is mainly used to transmit time-bounded information such

as audio data.

There are 13 different packet types defined for the baseband. Some are for both SCO

and ACL links. Some are for ACL link only. Some are only for SCO link. Most ACL

packets perform error checking and retransmission to assure data integrity. The SCO

packets are never retransmitted. Baseband provides the following error correction and

detection for the ACL packets: FEC (Forward Error Correction), CRC (Cyclic

Redundancy Checksum) and ARQ (Automatic Repeat Request) scheme.

In baseband, five logical channels are defined to transfer different types of

information. LC (Link Control) channel and LM (Link Manager) channel are used at the

link control level and link manager level. The user channels: UA (User Asynchronous

Data), UI (User Isochronous Data), US (User Synchronous Data) channels are used to

carry asynchronous, isochronous, and synchronous user information, respectively.

2.5 Link Controller

The link controller layer performs higher-level Operation such as inquiry and paging

and manages multiple links between different devices.

For Bluetooth devices in link controller layer, there are two major states: STANDBY

and CONNECTION and seven substates: page, page scan, inquiry, inquiry scan, master

response, slave response and inquiry response. The substates are interim states that are

for the devices to stay while they join a piconet. Either commands from the Bluetooth

10

link manager or internal signals in the link controller can make the devices move from

one state to the other. Figure 5 illustrates the movement between these states.

Figure 5: State Diagram of Bluetooth Link Controller [1]

In order to establish new connection between unknown devices, the inquiry

procedures and access procedures must be performed sequentially. If a device knows the

destination device’s address, only access procedure is needed.

The inquiry procedure enables a discovering unit to collect the Bluetooth device

addresses and clock of all devices that respond to the inquiry message. A normal inquiry

procedure is carried out in the below way:

1) The source device enters the inquiry state and broadcasts inquiry packets.

2) The destination device in inquiry scan state receives the inquiry packets.

ll

3) The destination device will then enter inquiry response state and send an

inquiry reply packet containing its address and clock to the source device.

During the access procedure, important information: the channel access code and the

channel hopping sequence are exchanged between each other. And their clocks are

synchronized. Typically the access procedure occurs the following:

1)

2)

3)

4)

5)

6)

7)

The source device enters page state to page another device.

The destination device in the page scan state receives the page packets.

The destination device enters slave response state and sends a reply to the

source.

The source device enters the master response state and sends packets contains

important information such channel hopping sequence to the destination

device.

The destination device sends it’s second reply packet to the source.

The destination and source devices then follow the source channel parameters.

The connection state starts when a POLL packet sent by the source device to

verify the destination device has switched to the source’s timing and channel

frequency hopping sequence.

2.6 Link Manager

The major task Of Link Manager is to translate the Host Controller Interface

commands into operations at the baseband level. A Bluetooth Link Manager

communicates with Link Manager on other Bluetooth device by using the Link

Management Protocol messages. Link Manager provides the following functions:

12

attaching slaves to a piconet, configuring the link including controlling Master/Slave

switches, setting up ACL and SCO links, and so on.

2.7 Host Controller Interface (HCI)

The HCI provides a uniform interface method of accessing the hardware capabilities

of Bluetooth devices. The HCI is made up of three parts: the HCI firmware driver, HCI

transport layer and HCI driver.

The HCI firmware carries out the HCI commands to the Bluetooth hardware by

accessing baseband commands, link manager commands, hardware status registers,

control registers and event registers. The HCI driver on the host transmits data, packets

and commands with the HCI firmware on the Bluetooth hardware. The HCI transport

layer exists between the HCI driver on the host system and the HCI firmware in the

Bluetooth hardware to provide the ability to transfer data without intimate knowledge of

the data.

There are three HCI transport layers: USB (Universal Serial Bus), RS-232 (a serial

interface with error correction) and UART (Universal Asynchronous Receiver

Transmitter, a serial interface Without error correction). The Figure 6 illustrates the path

of data exchange between two Bluetooth device enabled hosts.

13

“NRA'M‘VI'JEW'J _

l
/0:10.151]?

1 ./

firmware%

Illllllllll

Physical bus 7

firmware

1 1 [1 1'1

L

n
1
1
2
1
1
1
1
1
1
1

D
r

M ’f'iia' ~Xiillliilb
u
t

Yxil"

E] Software

Flrmware

 ‘

User Data

A

r 1 1- 1 - 1 1T

Other higer E; W' l '3

. Ire ess '
layer dnver 3;. 3;

a“. v

,2, r".

i i

1 Bluetooth hardware Bluetooth hardware

N''-"-~-w-'-~''...""-1 ’ "Ain‘tn'nwnwvnuu1".

-Baseband Controller . . Baseband Controller ii ,

I. n‘rnunnn'u-‘vn-u-'W.

'I7/

wrea

1fillllllllllA g

//Illlllllllrlllll/

' Bluetooth host '

\nuuvme“

ha): Physical bus

driver

Im“

E Hardware

Figure 6: End-to-End Overview of Lower Software Layers to Transfer Data [1]

2.8 Logical Link Control and Adaptation Protocol

(L2CAP)

L2CAP provides protocol multiplexing between different higher layer protocols such

as service discovery protocol and RFCOMM. Protocol multiplexing allows higher layer

protocols to share the lower layer links.

L2CAP performs segmentation and reassembly operation to allow transfer of larger

packets than lower layers can support. L2CAP allows higher-level protocols and

applications to transmit and receive L2CAP data packets up to 64 kilobytes in length.

L2CAP carries out group management and quality of service management for higher

layer protocols

2.9 RFCOMM

RFCOMM emulates the serial cable line settings and status of an RS-232 serial port.

To build an RFCOMM connection, an L2CAP connection must be set up in advance.

RFCOMM frames are sent in the payload field of the L2CAP packets. RFCOMM

provides multiple concurrent connections by replying on L2CAP to perform multiplexing

over single connections, and to provide connection to several devices. RFCOMM

depends on the baseband to provide reliable in-sequence delivery of byte streams for it

does not have any ability to correct errors.

RFCOMM supports two types of devices. A type 1 device is the end of a

communications path and supports an application over RFCOMM.A type 2 device is an

intermediate device and has a physical RS-232 serial port over RFCOMM.

15

2.1

mt

Oll

2.10 Service Discovery Protocol (SDP)

SDP resides on the top of L2CAP levels. SDP employs a Client—Server interaction

mechanism as Shown is Figure 7. This mechanism provides a way for client applications

on one Bluetooth device to discover the existence of services offered by server

application in another device as well as the attributes of those services.

SDP requests

,1

SDP Client SDP Server

‘

I SDP responses I

Client Server

Applications Applications

Figure 7: SDP Client-Server Interaction Mechanism

The SDP server maintains a database of service records. Each service record describes

he characteristics and contains information about a single service. A SDP client can get

the information about a service record maintained by the SDP server by issuing an SDP

request. If the client wants to use a service, it must open a separate connection to the

service provider to utilize the service. Although SDP provides a mechanism for

discovering services and their attributes, it does not provide a mechanism to use those

services.

16

 .81
3 l

3.1

The
stun

produc

each ol

h pm

the lo

Each

Gene

3. BLUETOOTH PROFILE

3.1 Bluetooth Profile Relationships

The purpose of a profile is to give a clear description of how a full specification of a

standard system to implement a given function. If everyone implement the function into

products as describe in the profile, then each product shall be able to interoperate with

each other. Bluetooth profiles have the same functionality. They ensure interoperability

by providing a well-defined set of higher layer procedures and uniform means of using

the lower layers. Figure 8 shows how the Bluetooth profiles are built up in layers [5].

Each profile relies upon the layers below. For example, Headset Profile depends on

Generic Access Profile and Serial Port Profile.

Generic Access Profile

Service Discovery TCS Binary based profiles

Application Profile

Serial Port Profile , ,

Generic ObJCCt

Dial-up Networking Exchange Profile

Profile

File Transfer Profile

Fax Profile

Object Push Profile

Headset Profile

Synchronization

Profile

 LAN Access Profile

Figure 8: Bluetooth Profile

17

In this chapter we only briefly talked about Generic Access Profile (GAP) and Serial

Port Profile. Headset profile will be covered in next chapter. For detailed information

about other profiles, please look at the profile part of specification of the Bluetooth

technology.

3.2 Generic Access Profile (GAP)

The GAP forms a common basis for all other Bluetooth profiles. The objective of the

GAP is to make sure that all devices can successfully establish a baseband link. To obtain

this objective, the GAP defines the requirements of the features which must be

implemented in all devices, general procedure to discover Bluetooth devices, procedures

related to the use of security in different layers and common format requirement of

device parameters on the user interface level. The GAP also provides link management

facilities for connecting to Bluetooth devices [6].

In Generic Access Profile two devices sharing a link key is called bonded. The

procedure to create a relationship based on a common link key is called bonding.

Bonding creates a link especially for the purpose of creating and exchanging a common

link key. During bonding, the link managers verify that they share a secret key, which is

called authentication. After authentication, the link managers will create and exchange a

link key. The authentication in link level and link key generation is collectively called

pairing.

The GAP defines modes of operation for Bluetooth devices and defines which one is

compulsory and which one is optional. The four modes are the following:

18

l) Discoverability (Controls the use of the inquiry scan and whether other devices

can discover a Bluetooth device when it is within their area of radio coverage.)

2) Connectivity (Controls the use of the inquiry scan and whether other devices

can connect to a Bluetooth device when it is within their area of radio

coverage.)

3) Pairability (Controls the use of the link manager’s pairing facilities, which are

used to create link keys for use in encrypted links.

4) Security (Control when and how encryption is initialed in a link.)

Three types of discoverability mode are the following: non-discoverable, limited

discoverable and general discoverable. There are two connectivity modes: connectable

and non-connectable. Two pairability modes are pairable and non-pairable. There are

three security modes: non-secure, service level enforced security and link level enforced

security.

3.3 Serial Port Profile (SPP)

The SPP defines the necessary requirements of Bluetooth devices for building

emulated serial cable connections using RFCOMM between two peer devices [7]. The

requirements are expressed in terms of services offered to applications and by defining

the features and procedures that are compulsory for interoperability between Bluetooth

devices.

The SPP is based on the GSM standard GSM 07.10. It allows multiplexing of several

serial connections over one serial link. It supports two device types: a communication

endpoint and an intermediate device. A computer is an example of the communication

19

endpoint. A modem is an example of the intermediate device, which forms part of a

communication link.

Support for security is mandatory in the SPP. But security does not have to be used.

Either device can request bonding, which requires the use of a shared secret PIN. The

PIN can be pre-configured, or can be entered via a user interface. If the devices do not

know the common PIN, users will have to exchange the PIN by way other than

Bluetooth. Then either side can request the baseband to be encrypted.

The SPP describes how to set up virtual serial ports on two Bluetooth enabled devices

and connect them with Bluetooth to emulate a serial cable between the two devices. The

three-step application layer procedure is the following:

1) The source device establishes a link and sets up virtual serial connection.

2) The destination device then accepts the link and establishes virtual serial

connection

3) Both of the devices register service record for application in local SDP

database.

4.B|uetooth Audio Gateway Design

4.1 Headset Profile

Bluetooth audio gateway is just one essential part of Bluetooth headset profile. Thus it

should follow all the essential protocols and procedures defined in Headset profile. In this

section we will give some general information about the Headset Profile.

20

4.1.1 Roles in Headset Profile

There are two roles defined in headset profile: Audio Gateway (AG) and Headset

(HS). AG acts as the gateway of the audio, both for input and output. Typical devices

acting as AG are cellular phones, computer and PDA. HS is the device acting as the AG’s

remote audio input and output device.

4.1.2 Headset Profile Stack

Figure 9 illustrates the protocols and entities used in the headset profile. Headset

control is responsible for handling headset specific control signaling.

Application . Application

(Audio port emulation) (Audio driver)

Headset Control e Headset Control

RFCOMM SDP s i RFCOMM SDP

LMP L2CAP ‘— d LMP L2CAP

Baseband t t Baseband

Audio Gateway side Headset side

Figure 9: Headset Protocol Model

The headset control signaling is based on AT command. In the original definition, AT

command is any instructions sent to a modem that begin with “AT”. It is widely used in

GSM. The headset profile only uses a subset of AT commands and result codes from

existing standards.

The name and description of the AT commands which is mandatory in Bluetooth

headset profile are shown in table 1.

21

Table 1: Mandatory AT Commands in Headset Profile

AT Command Name Description

RING The indication of the incoming call in V.250 [8]

+CKPD The command to control keypad in GSM TS 07.07

[8]. For <keys>, the value of 200 indicates that the

button of the headset is being pressed. In the headset

profile, the <pause> and <time> parameters have no

meaning.

The name, description, syntax and values of the AT commands which is optional in

Bluetooth headset profile are shown in table 2.

Table 2: Optional At Commands in Headset Profile

AT Command Name Description Syntax Values

Microphone gain level It is the command used +VGM = <gain> <gain>: 0-

report by the HS to report its 15

microphone gain level

setting to the AG.

<gain> is an unsigned

octet, representing a

particular volume level

controlled by the HS.

Speaker gain level It is the command used +VGS=<gain> <gain>:0-

22

indication report by HS to report the

current speaker gain

level setting to the AG.

The definition of

<gain> is same as that

in Microphone gain

level report.

15

Microphone gain It is the command used

by the AG to set the

microphone gain level

of the HS. The

definition of <gain> is

same as above.

+VGM=<gain> <gain>:0-

lS

Speaker gain

It is the command used

by the AG to set the

speaker gain level of

the HS. The definition

of <gain> is same as

above
+VGS=<gain>

<gain>:0-

15

4.1.3 Headset Profile Requirement

The restrictions applied to Headset Profile are the following:

23

1)

2)

3)

4)

5)

6)

It is assumed that the headset use case is the only one use case active between

the AG and HS.

It is mandatory that the transmission of audio data must use CVSD for

encoding and decoding.

At a time only one audio connection can exist between headset and the audio

gateway.

It is the audio gateway that controls the SCO link establishment and release.

The headset will directly connect (disconnect) the internal audio stream once

the SCO link is established (released).

The profile only provides basic interoperability. It will not handle multiple

calls at the same audio gateway.

The only assumption on the headset side is the possibility to detect a user-

initiated action such as pressing the button.

4.2 Audio Data Requirements

To implement the Bluetooth audio gateway, we need to know the requirements of the

audio input data for Bluetooth devices. In this section we will study the details of

Bluetooth audio system and at last decide what kind of audio data we will use for the

Bluetooth audio gateway.

Bluetooth doesn’t define the maximum sound pressure for an audio device. It’s the

responsibility of each Bluetooth manufacturer to design their audio products in a safe

way with regards not to injury the human ear. Audio levels are calculated as Send

Loudness Rating (SLR) and Receive Loudness Rating (RLR).

24

Figure 10 illustrates the components to measure SLR. MRP is mouth reference point.

A/D is analog/digital converter. PGA is programmable gain amplifier. PCM is pulse code

modulation. CVSD is continuously variable slop data modulation. Bluetooth specifies

three different audio coding techniques: Log PCM coding using either A-law or p-law

and CVSD. We will talk about these techniques in the below section. BTR stands for the

binary file transfer.

PCM /
Filter -— PGA A/D CVSD BTR

Figure 10: SLR Measurement Set-up

Figure 11 shows the components of RLR measurement. ERP stands for ear reference

point.

25

ERP

E
D/A F— Filter —- PGA

PCM /

BTR CVSD

Figure l 1: RLR Measurement Set-up

Log PCM coding is widely used in many existing devices such as the PTSN (Public

Switched Telephone Network) and fixed-line telephone handsets. Log PCM coding

compresses the input data using a logarithmic transfer function so as to present the more

accurate (higher bit width) input data with a less accurate (lower bit width) output value.

But the logarithmic transfer function guarantees that the effect of the compression gives

rise to a minimal decrease in quality as perceived by the human ear. The specification of

the exact characteristics are given in the International Telecommunications Union (ITU-

T) [8], recommendation G.711, which provides conversion tables to and from linear PCM

and log PCM for both A-law or u-law compression.

The input to the log PCM encoder is up to 3 channels of l3—bit (for A-law) or 14-bit

(for u-law) linear PCM at 8kHz. The output of the log PCM is up to 3 channels of 8-bit

encoded data at 8kHz.

CVSD is a more complex method than log coding. It utilizes the strong correlation

between adjacent audio samples by quantizing the difference of amplitude between the

26

two samples as compared to the entire sample amplitude. This needs fewer quantization

steps for the same signal quality, and consequently lowers bandwidth. The approach

referred as Differential PCM can be revised to reduce the required bandwidth even

further by making the quantization step adaptive, which is called Adaptive PCM. This

method represents low-amplitude signals with acceptable accuracy without decreasing

performance on large-amplitude signals. In a word, CVSD is Adaptive PCM using delta

modulation.

CVSD processes l6-bit samples and single-bit symbols at 64 kHz, which are different

from those for log PCM. In fact the extra information represented by the 16 bit samples at

64kHz is redundant and merely a side effect of the CVSD process. Moreover, the data

rate is too high to make it sensible to pass on to another device as it is, especially if the

audio is to be routed via HCI. Thus, it is necessary to interpolate and decimate to reduce

the 64kHz sample rate to 8kHz rate as required for the log PCM encoder.

The speech quality of CVSD output is not very good, but is acceptable for most

Bluetooth application. In fact CVSD has been used in military communications systems

because of its encoded nature, low bandwidth and acceptable quality.

Figure 12 illustrates the typical Bluetooth audio subsystem. As referred before, the log

PCM encoding and decoding functions share a common path to and from the PCM data

at 8kHz while the CVSD encoder and decoder requires interpolation and decimation

respectively. We have discussed each of the blocks shown in Figure 12.

27

/ 8 bit \

M-Law ‘ Parallel

Encoder to Serial '

13,14 or 16

Serial

Linear PCM 8 bit Bitstream

at 8 kHz.
A-Law * Parallel ——> M

Encoder to Serial

16 bits at

8 kHz 16 bits at

64 kHz CVSD
,__, Interpolator _____> Encoder __,

\ y

/

\

8 bit

M-Law Parallel

13,14 or 16 Decoder to Serial '

Linear PCM < 7 Serial

at 8 kHZ l
8 bit Bitstream

' ' $.01:in *—* Parallel +— M

to Serial

[6 bits at

8UP 16mmm

. 64 ”11 CVSD

‘__. Decrmator ‘___ Decoder .

\
/

Figure 12: Bluetooth Audio System [9]

Although some SCO packets are corrected by FEC, none of the audio packets are

protected by a CRC. Thus the re-transmission is nearly impossible due to the time-

bounded nature of SCO data. Much work has been made to decrease the error rate of

CVSD to random bit errors. But it is always possible that enough errors will occur so as

to make a packet unusable. The errors may not be detected in the packet payload, but it is

very possible that the access code may be rejected. In this situation, there will not be a

valid packet for the decoder to decode.

28

Thus a mechanism for filling in or masking the missing packet is required. A simple

way is to repeat the previous packet again. A more sophisticated method is to lower the

following “repeat” packets with a random white noise to reduce the possibility of an

audible tone due. If a new packet is not received after a predetermined time, it may be

necessary to decrease the audio level to avoid the repetition becoming audible.

Since CVSD is a different method, the decoder output depends on many previous data

(unlike log PCM). When a packet is lost, the information about the current status of the

accumulator and the size of the step is also lost. There are various methods to restart the

algorithm when a new packet arrives. The simplest one is to reset the step size and

accumulator to their initial values when a new packet arrives. Thus the algorithm

recovers itself quickly. Even multiple missing bursts happen, the effect on the sound

quality is small.

Table 3 shows the comparison of the different type of audio data in different systems.

The level of audio quality provided by Bluetooth SCO channel is almost equivalent to

that of the GSM cellular telephone audio channel. It is surely not surprising considering

that the origins of the Bluetooth standard is based on GSM. Although transmitting MP3

(MPEG Layer3) audio data may be feasible by using two or three SCO channels, version

1.0b of the Bluetooth specifications does not define a profile for such a service. Thus

using MP3 data as audio source for Bluetooth audio gateway is not feasible for now.

The frequency shown in the column “Quality” is the sampling rate. The number of bit

shown in the column “Quality” is the size of each sample. The data rate is computed by

multiplying the sampling rate by the size of each sample.

29

Table 3: Comparison of Audio Data

System Quality Data Rate

(kb/s)

Audio CD Stereo 16 bit @ 44.1kHz 705.6

MP3-encoded Audio Stereo Near-CD Quality 128

POST Telephone Mono 8 bit @ l 1.025kHz 88

GSM Audio Mono 8 bit @8kHz 64

Bluetooth SCO Mono 8 bit @8kHz 64

Channel

At last, we decide to use the audio data with quality of Mono 8 bit @ 8kHz as the

audio input for the Bluetooth audio gateway to fit the requirement of the SCO channel.

4.3 Functionalities of Bluetooth Audio Gateway

Bluetooth audio gateway shall have the following functionalities: outgoing audio

connection, incoming audio connection, audio connection release, and remote audio

volume control.

4.3.1 Outgoing Audio Connection

The procedure to build outgoing audio connection is shown in Figure 13. The steps to

finish the procedure are:

l) The audio gateway initiates the connection establishment.

2) An unsolicited result code RING will be sent to headset.

30

3) The RING may be repeated for as long as the connection establishment is

finished.

4) The user presses the button on the headset to accept this connection.

5) The headset then sends out the AT+CKPD command to the audio gateway

6) The audio gateway will establish the SCO link if it is not established.

Headset Audio Gateway

Connection establishment

A

RING

SCO link establishment

A
l

RING

User Initiated action I

AT+CKPD

< SCO link establishment

Figure 13: Outgoing Audio Connection Establishment

4.3.2 Incoming Audio Connection

The procedure to build incoming audio connection is a little simpler than the outgoing

connection, which is shown in Figure 14.

The steps to finish this procedure are:

l) The user presses the button on the headset to initiate the link.

31

2) The headset then initiates the connection establishment.

3) The headset will then send out the AT+CKPD command to audio gateway.

4) The audio gateway establishes the SCO link.

Headset Audio Gateway

User initiated action

b

Connection establishment

AT+CKPD

<r SCO link establishment

Figure 14: Incoming Audio Connection Establishment

4.3.3 Audio Connection Release

The SCO link can be ended either by the headset or by the audio gateway. Either the

button on the headset be pressed or the internal action on the audio gateway can trigger

this action. But no matter which initiate the release, audio gateway is responsible for

releasing the connection.

Figure 15 shows the procedure to release an audio connection if audio gateway

initiates the release. The steps for this procedure are:

1) Internal event or user action of the Audio Gateway takes place.

2) The audio gateway then releases the SCO link.

3) At last the audio gateway releases the connection.

32

Headset Audio Gateway

Internal event/ user action

4—

SCO link release

Connection release

Figure 15: Audio Connection Release — AG Launched

Figure 16 illustrates the procedure to release an audio connection if headset initiates

the release. The general steps for this procedure are:

1) The user presses the button on the headset.

2) The AT command “AT+CKPD” will be sent to audio gateway.

3) Then audio gateway releases the SCO link.

4) The audio gateway releases the connection.

Headset Audio Gateway

User pressed the button AT+CKPD

< sco link release]

< Connection release I

Figure 16: Audio Connection Release - HS Launched

33

5. Bluetooth Audio Gateway Implementation:

BTAudio

5.1 System Requirements

We have implemented the Bluetooth Audio Gateway into a program named BTAudio

in Linux. BTAudio can control the Bluetooth device to send or record music file to or

from a headset. It is mainly developed on top of BlueZ.

BlueZ is the official Linux Bluetooth protocol stack. Originally it was developed by

Qualcomm Incorporated. Now it is an open source project with many contributors all

over the world. BlueZ is already part of the official Linux kernel after version 2.4.6.

Figure 17 shows the overall architecture of BlueZ. BlueZ provides standard Berkeley

socket interface to all Bluetooth layers, which makes it possible to program in application

layer.

34

Bluetooth Application

Berkley

Socket ----------------e --------- - - - -

'"tedace HCI RFCOMM sco

Commands Sockets Sockets

Protocol __________________________ _ _ __

Interface

BlueZ Core

Driver __________________________

Interface 3 3 :-

Other UART USB

Drivers Driver Driver

HCI mi---------r --------i

Bluetooth Hardware
Figure 17: BlueZ Overall Architecture

BlueZ provides support for a variety of Bluetooth devices. It can support Bluetooth

PCMCIA and compact flash cards, Bluetooth USB adapters, Bluetooth serial dongles and

other Bluetooth devices.

Before we talk about how to design and write the BTAudio, we will give the steps

how we installed BlueZ, which is mandatory to use BTAudio. If the user cannot install

the BlueZ properly, BTAudio may not work as it expected. What we described is just a

specific example; different people may have a different way to install BlueZ.

Because BlueZ is not a mature system, there are some problems existing in the USB

SCO driver. To solve these problems we need to install ALSA (Advanced Linux Sound

Architecture) packages and apply a patch to Linux kernel. The ALSA packages and patch

can be found at these website: http://www.alsa-projectcrg/ and

http://www.dcs.gla.ac.uk/~jp/snd-bluez-sco/.

35

First we need to build a new Linux kernel for BlueZ. Download the Linux kernel

2.4.22 source file: linux_2.4.22.tar.gz from this website

http://www.kemel.orglpub/linux/kemel/VZA/ and store the zip file into directory lusr/srcl.

Before compiling the kernel, we need to create one patch: hciusb.patch to fix the problem

in USB SCO driver. The content of the patch is shown in Appendix A.

Then unzip the source file, apply patch, configure the kernel, compile the kernel and

reboot the system. The setting for Bluetooth modules is shown below in Figure 18. One

example to demonstrate all the above steps is given in Appendix B.

#

Bluetooth support

#

CONFIG_BLUEZ=m

CONFIG_BLUEZ_L2CAP=m

CONFIG_BLUEZ_SCO=m

CONFIG_BLUEZ_RFCOMM=m

CONFIG_BLUEZ_RFCOMM_TTY=y

CONFIG_BLUEZ_BNEP is not set

#

Bluetooth device drivers

#

CONFIG_BLUEZ_HCIUSB=m

CONFIG_BLUEZ_USB_SCO=y

CONFIG_BLUEZ_USB_ZERO_PACKET=y

CONFIG_BLUEZ_HCIUART=m

CONFIG_BLUEZ_HCIUART_H4=y

CONFIG_BLUEZ_HCIUART_BCSP=y

CONFIG_BLUEZ_HCIUART_BCSP_TXCRC=y

CONFIG_BLUEZ_HCIBFUSB=m

CONFIG_BLUEZ_HCIDTL1=m

CONFIG_BLUEZ_HCIBT3C=m

CONFIG_BLUEZ_HCIBLUECARD=m

CONFIG_BLUEZ_HCIBTUART=m

CONFIG_BLUEZ_HCIVHCI=m
Figure 18: Bluetooth Module Setting

After entering the new Linux kernel, we download all the BlueZ packages from the

website http://bluez.sourceforge.net/download/download.htm|. Then we unzip these

36

packages, install them, edit the module configure file and so on. Please see details about

this part installation in Appendix C.

Every time we want to use the BTAudio, we shall make sure that all the Bluetooth

modules have been loaded, the Bluetooth USB dongle has been set up and the proper

setting has been applied to the device. The user can use the commands shown in Figure

19 to fulfill these functions.

#Load all BlueZ modules

modprobe bluez

modprobe hci_usb

modprobe 12cap

modprobe rfcomm

modprobe sco

#Start BlueZ

/etc/init.d/bluetooth start

#Get up the Bluetooth device

hciconfig hciO up

hciconfig hciO voice 0x0040
Figure 19: Commands to Load Modules and Get the Device UP

Before we begin use BTAudio, we should know the Bluetooth address of the

destination headset and the number of the RFCOMM channel. We can use BlueZ service

discovery command: sdptool to get the information. The result of service discovery

inquiry is shown in Figure 20. From the result, we can know the address of headset is

00:0A:D9:52:1D:A6 and the RFCOMM channel is 2.

37

5.2

‘1

Blur

Shox

the l

[root@loca1host bluetooth]# sdptool search HSET

Inquiring ...

Searching for HSET on 00:0A:D9:52:1D:A6 ...

Service Name: Headset u

Service RecHandle: 0x10001

Service Class ID List:

"Headset” (0x1108)

"Generic Audio" (0x1203)

Protocol Descriptor List:

”L2CAP" (0x0100)

“RFCOMM” (0x0003)

Channel: 2

Profile Descriptor List:

“Headset" (0x1108)

Version: 0x0100

Figure 20: Result of sdptool Inquiry Result

5.2 Supported Hardware

We use the BTAudio with 3Com Bluetooth USB dongle 3CREB96 and Sony Ericsson

Bluetooth headset HBH-60. The picture of the headset, USB dongle and a US quarter is

shown in Figure 21. After plugging the Bluetooth USB dongle into the USB interface of

the computer, we can control the USB dongle by running the BTAudio on the computer.

38

Figure 21: The Headset and USB Dongle Used in Our System

Any Bluetooth headset that complies with the Bluetooth specifications 1.1 can act as

the headset. All the current headsets are not programmable. The only thing we can do on

the Bluetooth headset is to press some buttons to release connection, increase or decrease

the sound volume.

In theory BTAudio can work with other Bluetooth devices such as Bluetooth

PCMCIA card and serial dongle if only the SCO service is provided in these devices’

drivers in BlueZ. Please see the BlueZ supported hardware at this website:

http://www.holtmann.org[linux/bluetooth/devices.html.

39

5.3 BTAudio Core Functions

5.3.1 Overview

BTAudio is made up of two parts: Bluetooth part and GUI part. The GUI part is

written in GTK+ and provides a nice user interface. We will talk about the GUI part in

later section. In this section, we will only discuss the Bluetooth part.

Currently BTAudio provides the following four functionalities by controlling the

Bluetooth device connected to the computer. These functions are core of audio gateway

functions and already referred before.

1) Given the address of the destination headset, BTAudio can send audio file to the

headset.

2) Given the address of the destination headset, BTAudio can record audio into

files from the headset.

3) During the local Bluetooth device is connected to the headset, BTAudio can

release the connection if the button on the headset is pressed.

4) During the local Bluetooth device is connected to the headset, BTAudio can

release the connection if the user on the gateway side wants to end the

connection.

In fact BTAudio can send out and receive audio data at the same time because the

connection between the audio gateway and headset is full duplex. But in practice people

seldom record their voice while listening to the music. So the current BTAudio doesn’t

provide this function.

40

\l'hc‘

setting

parame

configr

size. 31

Bluetoi

Table ~‘

When BTAudio starts audio data transmission, the first thing is to check the voice

setting of the local Bluetooth device, which is very important to audio connection. The

parameters of voice setting control the configuration for voice connections. The

configuration consists of input coding, air coding format, input data format, input sample

size, and linear PCM parameter. All these settings apply to all audio connections. In

Bluetooth there are two bytes for voice setting. But only the last 10 bits are meaningful.

Table 4 illustrates the value for voice setting and the description of parameters.

Table 4: Voice Setting Value and Parameter Description

Value Parameter Description

00XXXXXXXX Linear input coding

OIXXXXXXXX u—law input coding

lOXXXXXXXX A—law input coding

llXXXXXXXX Reserved for future use

XXOOXXXXXX Input data format: l’s complement

XXOIXXXXXX Input data format: 2’s complement

XXlOXXXXXX Input data format: Sign-Magnitude

XXI lXXXXXX Reserved for future use

XXXXOXXXXX Input sample size: 8-bit

XXXXlXXXXX Input sample size: 16-bit

XXXXXnnnXX Linear PCM_Bit_Pos

XXXXXXXXOO CVSD air coding format

XXXXXXXXOI 1.1-law air coding format
41

[n E

coding.

ahcod

Afic

megah

meRF

comnu

SCOc?

meRF

SCOc

BTr

Crawl

SCO C

chann,

RFco

Thr

“60hr

XXXXXXXXIO A-law air coding format

XXXXXXXXll Reserved for future use

In BTAudio, the voice setting should be 0x0040. That means we use linear input

coding, 2’s complement as input data format, 8-bit for input sample size and CVSD for

air coding format.

After verifying the voice setting is correct, BTAudio creates the two channels between

the gateway and the headset. One channel is called RFCOMM channel, which is built in

the RFCOMM layer. The RFCOMM channel is used for signal controlling. All the AT

commands are exchanged in this channel. The other channel is named SCO channel. The

SCO channel is used to transmit audio data. Furthermore, the SCO channel is built after

the RFCOMM channel is created. Thus if the RFCOMM channel cannot be created, the

SCO channel cannot be created neither.

BTAudio will create the two channels with use of socket. If the RFCOMM channel is

created successfully, BTAudio will build the SCO channel further. After setting up the

SCO channel, BTAudio enter the loop to receive and send out data from or to on the SCO

channel. Meanwhile BTAudio still checks and replies the AT commands on the

RFCOMM channel in the loop.

The flow diagram of BTAudio is shown in Figure 22. We will describe in detail how

we check the voice setting and create RFCOMM and SCO channels in the later sections.

42

Start

1

Check the local

device voice setting

Is the voice setting correct?

Create the

RFCOMM channel

Create the SCO

channel

Continue the current

connection?

Receive and Send

in the RFCOMM

channel
V

Send or receive in E . t

the SCO channel xr

l

Figure 22: Flow Diagram of BTAudio Bluetooth Part

43

5.3.2 Check the Voice Setting

BTAudio checked the device voice setting by sending inquiry request into HCI layer.

BTAudio accomplish its inquiry by calling the functions provided by BlueZ. The

procedure is described below.

First BTAudio shall declare one variable rp with type of read_voice_setting_rp and

another variable rq with type of hci_request. The read_voice_setting_rp is a data type for

storing the voice setting. The hci_request is a structure for carrying the result of HCI

inquiry request. There is one component of hci_request: rparam with type of void *. By

assigning rparam with the pointer of different type, the hci_request can be used to inquiry

of different information.

The function hci_send_req will fulfill the inquiry by returning the hci_request with the

component rparam carrying the inquiry result. In BTAudio, read_voice_setting_rp

pointer of rp will be assigned to hci_request’s component rparam. After calling the

function hci_send_req, BTAudio can get the voice setting from the variable rp.

5.3.3 Create RFCOMM Channel

BTAudio uses the standard Berkeley socket to create RFCOMM channel. The general

procedure to create RFCOMM channel is almost same as other socket program. BTAudio

uses these functions: socket, bind and connect to set up the channel.

BTAudio selects PF_BLUETOOTH as the protocol family, chooses SOCK_STREAM

as the service type and uses BTPROTO_RFCOMM as the protocol. The channel number

for local device is set as 0, while the channel number of the destination is set as the

RFCOMM channel number of the destination headset. We can get the information of the

RFCOMM channel number in destination headset by using the service discovery inquiry,

which we have talked in section 5.1. Figure 23 shows the general procedure to build the

RFCOMM channel.

s = socket(PF_BLUETOOTH, SOCK_STREAM,

BTPROTO_RFCOMM)

bind(s, (struct sockaddr *)&srcAddr, sizeof(srcAddr))

connect(s, (struct sockaddr *)&dstAddr, sizeof(dstAddr))

Figure 23: Procedure to Build RFCOMM Channel

5.3.4 Create SCO Channel

After the RFCOMM channel is built, BTAudio begins setting up the SCO channel.

The procedure of setting up the SCO channel is very similar to that for RFCOMM

channel. BTAudio just need to revise some settings when setting up the SCO channel.

Figure 24 illustrates the procedure to build SCO channel.

45

s = socket(PF_BLUETOOTH, SOCK_SEQPACKET,

BTPROTO_SCO)

bind(s, (struct sockaddr *)&srcAddr, sizeof(srcAddr)

connect(s, (struct sockaddr *)&dstAddr, sizeof(dstAddr)

Figure 24: Procedure to Set Up the SCO Channel

Once the SCO channel is built, BTAudio invokes the function getsockopt provided by

BlueZ. We can get the HCI handle number and MTU (Maximum Transmission Unit) in

SCO channel by using the function getsockopt.

5.3.5 Transfer Data on the RFCOMM and SCO Channel

After the SCO channel is built, BTAudio will send or receive audio data to or from the

headset in the SCO channel while it still check and reply the AT commands in the

RFCOMM channel.

To transfer data on the RFCOMM and SCO channels, BTAudio use UNIX system call

read and write, which are accessed from C program through two functions called read

and write: “int n_read 2 read (int fd, char *buf, int n)” and “int n_write = write (int fd,

char *buf, int n). The first argument can be a file descriptor or a socket descriptor. The

second argument is a character array where the data go to or come from. The third

46

argument is the number of byte to be transferred. Each function returns a count of the

number of byte transferred which may be less than the number requested.

Every time BTAudio reads the AT commands from the RFCOMM channel, it will

judge whether it is “+CKPD =200”. If yes, that means the headset wants to release the

connection. Then BTAudio will release the RFCOMM and SCO channels. For each

command BTAudio received, it will reply a command “OK”.

When BTAudio wants to send data onto the SCO channel, it needs to receive data

first. The number of byte to be sent depends on how many bytes it received from the SCO

channel. This method is very flexible. When the connection between headset and audio

gateway is lost, the size of data received in SCO channel will 0. In this case, sending data

into the SCO channel is useless. Secondly, the size of SCO packet in the headset side

may be fixed because of imbedded procedure in the headset side. Using this way it avoid

sending the SCO packets bigger than the headset can handle.

To send audio data to headset, BTAudio gets the source data from music file stored in

the local computer. After receiving audio data from the headset, BTAudio stores the data

into music file. BTAudio uses the system calls: open, read and write to complete these

functions.

Figure 25 illustrated the sequence diagram of the data transfer on the RFCOMM and

SCO channels. In this example the audio gateway received the AT command “+CKPD

=200” and closed the connection.

47

RF MM 1 Audig ggway W

I i l

l l I

—L .4— ...L

it Retrieve AT commands

AT commands are sent

------------------- Receive audio data

i

Audio data are sent

(.—

Send out audio data

’

Audio data are received

6.. ___________________

Check whether received

Release SCO channel

u

OK

Release RFCOMM channel 6— -------------------__

I

l

OK i
--------------------—) l

r I
I -v-‘ I

l l l

l l l

Figure 25: Sequence Diagram of the Data Transfer on the RFCOMM and SCO Channels

5.4 BTAudio GUI

5.4.1 Introduction

The GUI for the BTAudio is developed using GTK+[3]. GTK+ is a multi-platform

toolkit for developing graphical user interfaces and has been designed from the ground up

to support a range of languages, such as C/C++, Perl and Python.

48

The graphic user interface of BTAudio is shown in Figure 26

boxes, one text window and five buttons.

i" .Blusiooiiiayifierregem

. It consists of two list

Headset Address list Music file list

"I E l
Address RFCOMM Channel to .2 [Name .

0&0A:D§:SZIID:A6 2 , spacemusicsb i

(1104:76:EI:AB:DI 3 ' recordsb i

3 E
I

it] 11:] El 7 t] I

' l

I Add music file I I Add headset I I Exit I i
i

I Send muslc to headset I I Record from headset I
l

System Information

Welcome to Bluetooth Audo Program 2

I

i

I .4
.

Ll

Figure 26: BTAudio User Interface

Before running the BTAudio, the user shall have prepared two text files: deviceList.txt

and musicList.txt. The file deviceList.txt stores the information for destination headset.

The file musicList.txt contains the information of the audio files, which may be sent to

the headset. The format for deviceList.txt is one line for one device. The address should

be written at the very beginning, which is followed by the RFCOMM channel number.

But there should be at least one empty space to separate the address and the channel

number. The format for musicList.txt is one line for one file. The name of the file should

be put into each line without any character in front of it. All the audio files should be

49

mono files with sample rate at 8kHz. Also, the two text files and audio files should be

stored under the same directory as the BTAudio executable file.

One of the list boxes displays the destination device address and its RFCOMM

channel number. The other displays the name of the music files. BTAudio gets these

information by reading two text files: musicList.txt and deviceList.txt.

The text window is used to display system information to the user. The button with

label “Add music file” is used to add one music file into the music list box. The button

labeled with “Add headset” is for adding one Bluetooth device into the device list box.

The user can click the button with label “Send music to headset” and the button with

label “Record from the headset” to send out or record audio file to or from the headset.

The button labeled “Exit” can be used to close the program.

5.4.2 Send out music file

To send out a music file to headset, the user needs to select the destination device in

device list box and the file name he wants to transmit by clicking the items in the list

boxes. Then the user needs to click the button to send out the music.

BTAudio will check the voice setting before connecting to destination device. If the

voice setting is not correct, the BTAudio will ask the user to change the voice setting and

abort this action. BTAudio will abort the action too if the user didn’t choose the device or

the music file name. One example that the BTAudio aborted its action is shown in Figure

27.

50

 '39 -eiysteemgewgramw

Headset Address list - Music file list

I t] I lfl [fl DI

I Add music file I I Add headset I I Exit I

ISWmusKtoheade T Rm“ "u“ ““5“ j

System Information , -

2 Welcome to Bluetooth Audo Program i
t
]

i Voice setting of local device is mooso

IThe voice setting must be @0040.

1 Please change the vdce setting.

 L
t
T

Figure 27: Checking the Voice Setting

During the process of sending out the music, the text window will display the system

information such as which step BTAudio is taking and the AT commands it received. We

can see one example in Figure 28. From the text window we can see that the SCO HCI

handle ID is 43 and MTU size is 64. The string starts with AT+ are all AT commands.

After the connection is built, BTAudio will send out AT command “AT*ECBP=?” to

inquiry about the speaker’s gain level. The AT command “ AT+VGS=8” is the reply

from the headset. The following AT commands such as “AT+VGS=10” appears because

the user adjusts the speaker gain level. When the user adjusts the speaker gain level, it

will automatically inform its audio gateway. At the end of the text window we can see

that BTAudio informs the user about the amount of data sent, the time used for

transmitting and the average transmission rate.

51

5 Blu eioulli Audio anglcllll

{mmwnssllstw— , ~ ~— —e ~ 'Mnsicfllellst-ww A s, c ._._ ”r ~

.. ‘ ' rm. g .
spacemuslc.sb

recordsb

‘ ini-tmrirgic ,l :11:

.Vdce setting of local device is oitoow

reconnecting to headset 0&0A:D9:52:1D:A6

RFCOMM channel is connected

.7 iSCO channel is connected. Hande to is 43, MTU Is 64.

*Begn playing file: spacemuslc__1.sb

" .AT“ECBP-?

: AT+VGS-8

--: 7AT+VGS-10

>3AT+VGS-12

EAT+VGS=14 a:

: _AT+VGS-15

; 'AT+VGS-l4

; AT+VGS-12

. ..AT+VGS-10

—, .Reach the end of the tile.

.7 1536768 byta are sent in 3.20m with average speed 7.81 kh{s

VI
M
I

{i
i

ii
i.

Figure 28: User Interface after Sending Out Music

5.4.3 Record voice from Headset

When the user wants to record voice from the headset, he can click the button with

label “Record from headset”. Then a dialog shown in Figure 29 will appear for the user to

give the name for the record file.

r= ,. .

7V __L,ive_§ajnaiiie_to_[he record tile ,_

Figure 29: The Dialog to Give a Name to the Record File

52

After filling in the record file name, the user can click button with label “OK” for

further steps. The user can speak on the headset after he hears a ring on the headset.

When he finishes his talking, he can inform the audio gateway by pressing the button on

the headset. The AT command “AT+CKPD=200” will be sent to audio gateway. Then

the audio gateway will close the connection. The example is shown in Figure 30.

Headset Address list , Music file list I
. T I: ;

ID +— Name I — .

. . .~ .. r. .. - spacemuslcsb '

. 0&04:76:E1:AB:DI 3 . recordsb I

i ‘ i

' . spacemuschsb I

I ..e ..l I

L Li I

ii
' I Add music file I I Add headset I I Exit I I

9 l s..................... J lemme] i
i i
' System information -- I

_ Voice setting of local device is 0x0040 ...

Connecting to headset 0&0A:D9:52:IIIA6

RFCOMM channel is connected ’

, SCO channel is connected. Hands ID is 43, MTU is 64. I

Begn recording voice to file: record4.sb I

I AT'ECBPs? .

; AT+VGS-10 I

AT+CKPD-200 i

I Connection is released. H I

911976 bytes are sent in 1.90m with average speed 7.81 kb/s .1. I

Figure 30: The Example to Record Voice from the Headset

53

6. BTAudio Experiments and Results

6.1 BTAudio Experiments

We conduct the experiments on Bluetooth devices mainly by sending audio data to the

headset. We did not perform experiments by recording the voice from the headset. The

reasons are below. First, we cannot separate the effects of the quality of the microphone

on the headset. There is some noise in the audio data even the audio gate way is very

close to the headset. We do not think it is caused by the Bluetooth transmission for the

quality of the music heard on the headset is very good when the headset is very close to

the audio gateway. Second, the difference between recording from headset and sending

audio data to headset is just the difference in direction. In essential they are same because

the full duplex character of the SCO channel. If we find the properties of sending audio

data to headset, recording from headset will surely have the same properties too.

The main method is to compare the quality of the data transmission, the transmission

rate, and the size of SCO packets when we change the distance between the audio

gateway and headset. We also put the headset in different containers to test the Bluetooth

device propagation ability.

Currently, we do not have a metrics to judge the quality of data transmission. We just

judge it by the quality of music heard on the headset by ear. The more noise we hear, the

worse the quality is.

We keep the audio gateway on a computer static while placing the headset in different

areas. We put it in the office, in the hallway, and even outside the building. Figure 31

shows the map of experiment areas. The thinner black line means interior room wall. The

54

thicker black line stands for exterior building wall. We marked five open doors in the

map. But during our experiments, all the doors are closed. The rectangle filled with white

color is the office room we work in. The computer carrying the audio gateway is placed

inside this office room, which is represented by the red computer. All the areas marked

with slantwise lines are the areas we have performed experiments. Except the office

room, all other area are either hall way or doorway.

55

/ . /
\ \

\

\.

_ \ \ \.

\ \. \

\
\ \ \

‘ \
\\ «I \

‘ C
\

\. \ \\.\

\\\
\\\\ \\

\

~\. \ .\ \

/ “3‘ C \ \ \.\

D \\\ ‘» \\ \

.\ \ - \ ‘»\ \\

\\\ \\ \

\\ \\ \Door\ _ \p001“ \

\D...&)0\m\ \\)I
\ \\\R\{r\ \ \

\\

\\

\

 \
\
\
\
U
\

Audio Gateway

Figure 31: Map of Experiment Areas

After the experiments are finished, we divide the whole area into 4 parts: area A, area

B, area C and area D according to the quality of music heard on the headset. Area A is

56

the area marked with slantwise green lines. In this area, we can clearly hear the music.

Very little noise is heard. Area B is the area marked with slantwise blue lines. In this

area, we can hear some noise accompanying the music. The rhythm of music is still

continuous. Area C is the area marked with slantwise red lines. In this area, we will hear

lots of noise. The rhythm of the music is not continuous. Area D is the area marked with

slantwise black lines. In this area, we can’t hear any music. The connection is totally lost.

These results match what we expected. We know that Bluetooth uses radio signal to

communicate with each other. As the distance gets longer, more loss will occur in the

propagation path. Some materials such as wood furniture can absorb signal. Some

material such as metal can block the signal. If the signal crosses the material such as the

exterior building wall, the distance it can reach will be decreased rapidly.

Area A is the place, which shares the same room as the audio gateway. So the music

quality is good. Area B is separated from the audio gateway by one wall and has longer

distance. Thus the music quality gets a little worse. Area C is the area, which are either

separated with two walls or have much longer distance. It is not surprising that the quality

is bad. Area D is the area, which is separated by two interior walls and one much thicker

exterior wall. Thus the connection is totally lost.

6.2 Results

6.2.1 Relationship Between Quality of Transmission and

Distance

Based on the above experiments, we get the approximate relationship between the

quality of music heard on the headset and the distance between headset and audio

57

gateway, assuming there is no strong signal screen material existing between the headset

and gateway. The relationship is shown in Table 5.

Table 5: the Relationship Between the Quality of Music Heard and the Distance

Distance between Headset and Audio Gateway Quality of Music Heard

(m)

0 — 10 Very clear and no noise

10 — 19 Some noise exists

19 - 26 Many noise heard

> 26 No music can be heard

6.2.2 Transmission Rate in Different Areas

As shown in Figure 32, we compared the average transmission rate on the SCO

channel between the audio gateway and the headset when the distance between them is

different. The transmission rate for area A, B and C are almost same. The transmit speed

in area A is 7.82 Kbytes/s. The transmit speed in area B and C is 7.81 Kbytes/s. The

connection cannot be built in area D. So the transmit speed in area D is O.

58

Average Transmission Rate When Headset in Different

Areas

5 9

3 8

E 7

5 6

3‘35

E3.is:

I_ 3

3, 2

g 1

< o

A B c D

Areas

Figure 32: Average Transmission Rate When Headset in Different Areas

This result matches the theory of Bluetooth. We know that the sampling rate for

Bluetooth audio input data is 8KHz. Each sample has 1 byte. So the data rate for

sampling is 8Kbytesls. In order not to distort the audio data, the transmission rate shall be

8Kbytes/s too. Thus the SCO link in Bluetooth has reserved bandwidth, which guarantees

that SCO data will be transmitted at constant rate of 8Kbytesls.

The transmission rate we got is a little smaller than 8Kbytesls. The reason is that we

need to get the audio data from the music file, which consumes some time.

6.2.3 Size of SCO Packets

After knowing that the transmission rate in area A, B and C are same, we then checked

the size of the packets sent on the SCO channel when the headset are placed in different

areas. We found that the size of SCO packet is always 24 if the connection exists between

the headset and the audio gateway. When the connection is lost, the size of the SCO

59

packet will become 0. Figure 33 shows the size of the SCO packets when the headset is in

different areas.

Size of SCO Package When Headset in Different Areas
N

0
)

0
1

O

M O

—
b

0

S
i
z
e
o
f
s
e
c
P
a
c
k
e
t
s

(
I
n
b
y
t
e
}

0
.

a

0

Areas
Figure 33: The Size of SCO Packet When Headset in Different Areas

We changed the source code of BTAudio to send audio data by manually defining the

packet size. If we define the packet size as 24 bytes, the BTAudio works very well as

before. But if we define the packet size as other values such as 25 or 23, the audio data

transmission cannot continue further.

Now we do not know whether the fixed size of packet is caused by the limitation of

the BlueZ or the limitation of the Bluetooth device. Only the baseband in Bluetooth

defines that the fixed size of voice data is 80 bits in the SCO socket. The upper or

application layer in Bluetooth does not give the limitation of the size of the SCO packets.

In theory, packets of any size in the application layer can be transmitted. The lower layer

will be responsible for segmenting and reassembling the packets.

We guess the reason is because of the Bluetooth headset. The Bluetooth headset is not

programmable. We can only press the buttons to accept the connection, close the

connection, and adjust the speak volume. How the headset receive the audio data and

send out audio data are already imbedded into the Bluetooth chip. Although the audio

gateway is responsible for creating and releasing the connection, it may need to comply

with the settings on the headset. Only by using the setting acceptable by the headset, the

audio data sent to headset can be recognized and played on the headset.

Currently we cannot prove our hypothesis because we only have one headset. If we

have two headsets produced by different manufacturers, we can test them on BTAudio. If

the sizes of the packets for the two headsets are different, it will prove our hypothesis.

6.2.4 Put the Headset in Different Containers

Beside we change the distance, we put the headset inside four containers: steel drawer,

icebox, steel box and microwave oven. The distance between the containers and the audio

gateway is within 5 meters. The result is that the headset still can communicate with the

audio gateway when inside the steel drawer, icebox and steel box. But it cannot

communicate with the audio gateway when inside the microwave oven.

The first three experiments demonstrate that the signal of Bluetooth device has strong

penetration ability. The result of the fourth experiment is not surprising. The microwave

oven has a perfect screen system to prohibit any signal to be transmitted across its wall.

6.2.5 Summary

In conclusion, we get the below properties of the Bluetooth based on the above

experiments:

61

1) When the connection between the headset and audio gateway exists, the average

transmission rate is 7.8Kb/s, which is very close to the data rate for sampling. We

proved that the SCO channel in Bluetooth has fixed bandwidth.

2) During our system, the SCO packet size is fixed when the headset is inside the area

where the connection can be set up.

3) We guess the fixed SCO packet is because of the fixed setting in Headset. This

needs to be proved in the future.

4) Bluetooth device have strong propagation ability. The interior wall, door, thin steel

layer cannot stop its propagation.

7. New Bluetooth Profile: Quite Talk Profile

7.1 Overview

Quite Talk Profile provides a mobile, full duplex, and hand-free, quite way for people

to communicate. For example, in a large room, two persons: A and B far way from each

other wants to talk with each other. Person A needs to use both of his hands on the

computer. Person B needs to walk around several devices and operate them. By using this

profile, they can talk with each other conveniently and quietly without disturbing other

people in the same room.

There are two types of roles in this profile: two or three headsets and one audio

gateway. The headsets can talk to each other by connecting to one audio gateway. The

audio gateway acts as the data transmit server.

62

We know that two headsets cannot pair with each other and cannot create SCO link.

Then they cannot communicate with each other directly. Thus the audio gateway is

necessary in this Quite Talk Profile.

We will talk about its system requirements, the functionality and its feature below.

7.2 System Requirements

Quite Talk Profile has the below requirements:

1)

2)

3)

4)

5)

6)

7)

8)

Up to three SCO link establishments can exist on the audio gateway.

At least two headsets connect to the audio gateway.

There is only one SCO link establishment on each headset.

Every headset connects to the audio gateway.

It is mandatory that the transmission of the audio data must use CVSD for

encoding and decoding.

When the user press the button on one of the headsets, audio gateway will set up

connection between itself and all the headsets.

After connection is built, the user can disconnect the connection by press the

button. Then the audio gateway will disconnect the connection between that

headset and the audio gateway.

If there is only one headset connected to the audio gateway, audio gateway will

release this connection too.

63

7.3 Functionalities of Quite Talk Profile

Quite Talk Profile provides these main functionalities: audio connection, audio data

transmission and audio connection release. The procedures about audio connection, audio

data transmission and audio connection release are given below.

7.3.1 Audio Connection

The procedure to build audio connection between two headsets and audio gateway is

shown in Figure 34. For clarity, we name the headsets as headset A and headset B.

The steps to finish the procedure are:

1) The user presses the button on the headset B to initiate the link.

2) The headset B then initiates the connection establishment.

3) The headset B will then send out the AT+CKPD command to audio gateway.

5) The audio gateway establishes the SCO link between itself and headset B.

6) The audio gateway starts the connection establishment between itself and headset

A.

7) The AT commands RING will be sent to headset A.

8) The RING may be repeated for as long as the audio gateway receives a reply from

the headset.

9) The user presses the button on the headset A to accept this connection.

10) The headset A then sends out the AT+CKPD command to the audio gateway.

11) The audio gateway will establish the SCO link between audio gateway and

headset A if it is not established.

Headset A Audio Gateway Headset B

User pressed

‘ button

Connection

establishment

AT+CKPD
‘

SCO link establishment

Connection

establishment

RING

SCO link establishment

RING

User pressed ‘

bum" N AT+CKPD

D

SCO link establishment

Figure 34: Audio Connection in Quite Talk Profile

The procedure for three headsets and one audio gateway connection is very similar to

the above procedure. The steps for the first two headsets are same as that for the headset

A and B. The step for the third headset is same as that for headset B.

65

7.3.2 Audio Data Transmission

For simplicity we only talk about the procedure of data transmission among two

headsets and audio gateway. The procedure among three headsets and audio gateway is

almost same as that among two headsets and audio gateway.

The procedure to transmit audio data among two headsets and audio gateway is shown

in Figure 35. The steps for audio data transmission between audio gateway and headset A

are the following:

1) The audio gateway starts to receive the audio data from the headset A.

2) The audio data from headset A is stored into Buffer_B.

3) The audio gateway sends out the audio data stored in Buffer_A to headset A.

4) The headset A finishes receiving the audio data.

The steps between headset B and audio gateway is very similar to the steps between

headset A and audio gateway except that they use different buffer to store the incoming

and outgoing data. The audio gateway stores the data from headset A into Buffer_B.

Later the audio gateway will send the data in Buffer_B out to headset B. Thus the audio

data from headset A is sent to headset B. In the same way audio data from headset B will

be sent to headset A.

66

Headset A Audio Gateway Headset B Audio Gateway

Receive the data Receive the data

e 4%

Store the data on Store the data on

Buffer_B Buffer_A

Send out the data Send out the data

stored in Buffer_A stored in Buffer B

a < '

Figure 35: Audio Data Transmission in Quite Talk Profile

7.3.3 Audio Connection Release

In Quite Talk Profile the audio gateway never initiates the audio connection release. It

is always one of the headsets that initiate the audio connection release. Then the audio

gateway is responsible for releasing the audio connection between it and the headset. But

after that the audio gateway will check whether there is only one audio connection left.

The audio gateway will release that audio connection if it is the only audio connection

existing on the audio gateway. This feature is determined by the nature of the Quite Talk

Feature. We know that one person can speak to himself without any tools. Thus it is

required that at least two audio connections existing on the audio gateway. Otherwise the

only connection will be released automatically.

67

Figure 36 shows the procedure that headset A initiates the audio connection release

when there are two audio connections on the audio gateway. As in the example, the audio

connection between audio gateway and headset B is released automatically.

The steps for the above procedure are below:

1) The user presses the button on headset A.

2) The AT+CKPD command is sent to audio gateway.

3) The audio gateway releases the SCO link between it and headset A.

4) The audio gateway releases the connection between it and headset A.

5) Later the audio gateway checks the number of the audio connection.

6) After finding that there is only one audio connection left, the audio gateway

release the SCO link between it and headset B.

7) The audio gateway releases the connection between it and headset B.

68

Headset A

Audio Gateway

Headset B

User presses the button

D

AT+CKPD

a

SCO link release

Connection release

Check the number

>of audio connection

SCO link release

Connection release

Figure 36: Audio Connection Release

When there are three audio connections existing on the audio gateway, one of three

headsets wants to release the connection. The audio gateway will only release the

connection between it and that headset. The procedure for this action is same as the

procedure of audio connection initiated by the headset, which we described in section

4.3.3.

7.4 Feature of Quite Talk Profile

Quite Talk profile has the following features:

1) It can support up to three headsets to communicate at the same time.

69

2) It is full duplex, which makes the communication more convenient.

3) It is hand-free, which liberate the hands of people. A person can talk while he uses

his hands with something else.

4) It is mobile. People can talk while they keep walking.

8.Conclusion and Future Work

8.1 Conclusion

This thesis discusses the Bluetooth audio gateway design and how to implement it into

the program: BTAudio in Linux. It also covers experiments using the BTAudio in

different conditions and get some important results about Bluetooth. Later it proposes a

new Bluetooth profile: Quite Talk Profile.

The main contributions of this research are the following:

1) Finished the audio gateway design and implementation. BTAudio can be used as

an application program. Also BTAudio can be used as a tool for performing future

research in Bluetooth.

2) Conducted experiments using BTAudio and got some important results about

Bluetooth.

3) Proposed a new Bluetooth profile: Quite Talk Profile. This Profile provides a

mobile, full duplex, and hand-free, quite way for up to three people to

communicate.

7O

8.2 Future Work

Because of limited time, we only accomplish the above tasks. In fact we still have

several problems left for future work.

The first one is how to transfer BTAudio into the PDA. Currently the BTAudio can

only run in computers. It cannot run in PDA. The reason is that the PDA has a small

memory space. We cannot install the compilation tools into it. Thus we cannot compile

the source code of BTAudio on PDA. But using cross compilation can solve this

problem. Cross compilation is that using a compiler running on one system to produce

executable for another system. If we can cross compile the source code in the computer

and get the executable for the PDA. Then this problem can be solved.

The second problem is that testing BTAudio on a headset, which is not produced by

Sony Ericsson. We suspect that the fixed size of packet in the SCO channel might be

caused by the fixed setting on the Bluetooth headset. But because we only have one

Bluetooth headset, we cannot prove whether the hypothesis is correct or not.

The third problem is that we compared the quality of audio data transmission between

the audio gateway and headset by ear. We do not have a metrics to judge the transmission

quality. Finding one way to evaluate the quality of the data transmission will benefit the

Bluetooth research.

The fourth problem is to implement the new Bluetooth profile: Quite Talk Profile.

Although this is not very important to Bluetooth research, this nice application will attract

more Bluetooth user and promote Bluetooth prevalence.

The last problem is to explore new profiles or applications for Bluetooth. Bluetooth

can take effect in many areas, such as in the automotive environment. Current some of

71

the car manufacturers have included Bluetooth devices in the car. There can be many and

various applications in the car.

Figure 37 illustrates the Bluetooth applications in the car. The MP3 player can

transmit the music file to car audio system. Then the speakers in the car can play the

music. If the car has installed GPS (Global Position System) devices, the PDA can get the

location of the car by connecting to the GPS system, compute the direction by using the

maps and send out the guidance commands to headset worn by the driver. The driver can

also send an inquiry to PDA by pressing the button on the headset. Then the PDA can

reply it by connecting to GPS devices.

3 Player Headset

Figure 37: Bluetooth Applications in Car

72

There are many other applications the Bluetooth can be employed. Figure 38 shows

some of the Bluetooth enabled devices. With Bluetooth device everywhere, Bluetooth

promises to be a very powerful technology that will change the world.

Figure 38: Bluetooth Enabled Devices

73

BIBLIOGRAPHY

[1]Telefonaktiebolaget LM Ericsson, International Business Machines Corporation, Intel

Corporation, Nokia Corporation, Toshiba Corporation, “Specification of the Bluetooth

System, Specification Volume 1, Core”, Version 1.0 b, December 1999.

[2]B1ueZ: Official Linux Bluetooth protocol stack,

http://bluez.sourceforge.net/

[3]GTK+: The GIMP Toolkit,

httpg/lwwwgtkorg

[4]Palowireless: Bluetooth Resource Center,

http://www.palowireless.com/infotooth/whatisgsp

[5]Telefonaktiebolaget LM Ericsson, International Business Machines Corporation, Intel

Corporation, Nokia Corporation, Toshiba Corporation, “Specification of the Bluetooth

System, Specification Volume 1, Profiles”, Version 1.0 b, December 1999.

[6]]. Bray and C. F. Sturman, “Bluetooth: connect without cables”, Prentice Hall PTR,

New Jersey, 2001

[7]B. A. Miller and C. Bisdikian, “Bluetooth revealed”, Prentice Hall PTR, New Jersey,

2001

[8]The ITU Telecommunication Standardization Sector (ITU-T), “Q.931, Digital

Subscriber Signaling System No. 1(DSS 1)— ISDN User-Network interface Layer 3

Specification for Basic Call Control”, March 1993

[9]P. Ekstrom, F. Hoel, “Audio over Bluetooth and MOST”, Master Thesis, Sweden,

2002,

74

Appendix A. Content of hciusb.patch

The content of the hciusb.patch is shown in Figure 39.

—-— linux-2.4.22/drivers/bluetooth/hci-usb.c Mon Aug 25 13:44:41 2003

+++ linux-2.4.22.patch/drivers/bluetooth/hci_usb.c Tue Oct 7 09:00:25

2003

@@ —302,7 +302,9 CG

#ifdef CONFIG_BLUEZ_USB_SCO

if (husb->isoc_iface)

- hci_usb_isoc_rx_submit(husb);

for (i = 0; i < HCI_MAX_ISOC_RX; i++)

hci_usb_isoc_rx_submit(husb);

+
+

+

#endif

) else {

clear_bit(HCI_RUNNING, ahdev->flags);

09 -522,10 +524,10 BC

fiifdef CONFIG_BLUEZ_USB_SCO

/' Process SCO queue '/

q = __transmit_q(husb, HCI_SCODATA_PKT);

if (!atomic_read(__pending_tx(husb, HCI_SCODATA_PKT)) &&

- (skb = skb_dequeuelq))) (

— if (hci_usb_send_isoc(husb, skb) < 0)

- skb_queue_head(q. skb);

+ if (atomic_read(__pending_tx(husb, HCI_SCODATA_PKT)) <

HCI_MAX_ISOC_TX &&

+ (skb = skb_dequeue(q))) (

+ if (hci_usb_send_isoc(husb, skb) < 0)

+ skb_queue_head(q, skb);

)

Cendif

@@ —830,8 +832,13 @@

#ifdef CONFIG_BLUEZ_USB_SCO

case USB_ENDPOINT_XFER_ISOC:

if (ep—>wMaxPacketSize < size)

break;

1

+ /* Use only the 9 byte

+ 'One voice channel with 8 bit encoding'

+ endpoint until there is support for

changing

+ the endpoint dynamically. See

+ Bluetooth 1.1 Part H:2, section 2.1 '/

+ if (ep—>wMaxPacketSize != 9)

+ break;

size = ep->wMaxPacketSize;

isoc_iface = iface;

—~- linux~2.4.22/drivers/bluetooth/hci_usb.h Fri Jun 13 16:51:32 2003

+++ linux—2.4.22 patch/drivers/bluetooth/hci_usb h Tue Oct 7 09:00:44

2003

09 -41,6 +41,8 @@

#define HCI_MAX_BULK_TX 4

“define HCI_MAX_BULK_RX 1

+$define HCI_MAX_ISOC_RX 2

+fidefine HCI_MAX_ISOC_TX 2

#define HCI_MAX_ISOC_FRAMES 10

struct _urb_queue {
75

Figure 39: Content of hciusb.patch

Appendix B. Recompile the Linux Kernel

One example of install ALSA and recompile the Linux kernel is shown in Figure 40.

tar -xvf alsa—tools-0.9.6.tar

cd alsa-tools—0.9.6

cd envy24control/

./configure —-disable-alsatest

make

make install

cd ../alek1

./con£igure

make install

cd ../..

tar -xvf alsa-utils—O.9.6.tar

cd alsa-utils*

./configure —-disable-alsatest

make

make install

Cd /usr/src/linux

patch -p1 < hciusb.patch

make xconfig

make dep

make clean

make bzImage

make modules

make modules_install

make install

reboot

Figure 40: Install ALSA and Recompile the Linux Kernel

Appendix C. Install and Configure BlueZ

c.1 Install BlueZ

The steps to install BlueZ packages are shown in Figure 41.

76

cp /home/download/bluez*.* ./

tar -xzvf b1uez-libs—2.4.tar.gz

cd bluez—libs-2.4

./configure

make

make install

cd ..

tar -xzvf b1uez—utils—2.3.tar.gz

cd bluez-utils—2.3

./con£igure

make

make install

cd ..

tar -xzvf bluez-pan—1.1.tar.gz

cd b1uez-pan—l.1

./configure

make

make install

cd ..

tar -xzvf bluez—sdp-l.5.tar.gz

cd bluez-sdp—1.5

./configure

make

make install

cd ..

tar -xzvf bluez-hciemu—1.0.tar.gz

cd b1uez-hciemu-1.0

./configure

make

make install

cd ..

tar ~xzvf bluez-hcidump—1.5.tar.gz

Cd bluez-hcidump-1.S

./configure

make

make install

cd ..

tar —xzvf bluez-b1uefw-O.9.tar.gz

Cd bluez-bluefw—O.9

./configure

make

make install

Figure 41: One Example to Install BlueZ package

02 Change the Module Configuration File

Add the following lines into file module.conf under directory of /etc/:

alias net-pf-3l bluez

alias bt-proto-O 12cap

77

alias bt-proto-2 sco

alias bt-proto-3 rfcomm

alias bt-proto-4 bnep

alias tty-ldisc-lS hci_uart

c.3 Change the Bluepin for Pairing

Replace the content of file bluepin under directory lbin with the following script.

!lbin/sh —e

echo “PIN:0000”

Please notice that 0000 is the PIN number. It is defined by the headset. Different

headset may have different PIN number.

78

 llllLillllgllllllgllilyu

