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ABSTRACT

MODEL REDUCTION OF NONLINEAR
STRUCTURAL SYSTEMS USING NONLINEAR
NORMAL MODES AND COMPONENT MODE
SYNTHESIS

By

Polarit Apiwattanalunggarn

This work addresses the general problem of model size reduction for describing the
nonlinear vibration of structural elements and systems. The aim is to provide
computational tools that allow one to accurately capture nonlinear dynamic behavior
using a minimal number of degrees of freedom. In typical applications the finite element
(FE) method is used to generate structural dynamic models, and model size reduction is
carried out using linear modal analysis with truncation. However, in some cases one must
retain many modes in order to accurately capture essential nonlinear coupling between
the linear modes. In this work we utilize nonlinear normal modes (NNMs) defined in
terms of invariant manifolds for the purposes of model size reduction, since it directly
addresses modal coupling. This approach, which makes use of master and slave modes,
along with the concept of dynamic invariance, allows one to generate accurate reduced
order models (ROM) with only a few DOF, while capturing the effects of all modeled
linear modes without directly simulating them. There are three main contributions of the

present effort:



(1) Two new numerical approaches for solving the invariant manifold equations are
introduced. = Both approaches employ master modal displacement and velocity
coordinates and are based on weighted-residual techniques. When compared with
previous methods that utilize amplitude and phase variables, the new methods are found

to be superior in terms of computational time but inferior in terms of accuracy.

(2) A specific application is considered: the finite amplitude vibrations of a rotating
beam, which is a crude model for a rotorcraft blade. This system is known to possess
essential nonlinear coupling between axial and transverse displacements, thereby leading
to slow modal convergence. The proposed method systematically captures this coupling
and provides an accurate single degree of freedom ROM. These results demonstrate the
utility of NNM-based ROM, since they combine the versatility of the finite element

method with the accurate NNM model reduction technique.

(3) A model reduction technique suitable for structures that can be partitioned into
substructures is developed. This allows one to build ROMs using NNMs at the
substructure level and to assemble these using a component mode synthesis (CMS)
technique. It is found that the proposed nonlinear CMS technique generally provides an

accurate model only when the couplings between substructures are weak.
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CHAPTER 1

Introduction

1.1 Motivation

Modern engineers are sometimes required to accurately model the motions of complex
structural systems, i.e., rotorcraft, turbo machines (turbines), vehicles, aircraft, bridges,
off-shore platforms, robotic arms, etc., so that they can function properly and safely under
certain operating conditions. Nowadays such structural systems are designed to be lighter,
have more complex geometry, and operate at high speeds in order to enhance performance.
These conditions can cause structural systems to experience responses in the nonlinear
regime. To mathematically describe such motions, one must formulate nonlinear models,
either discrete or continuous in nature. If they are continuous, in practice engineers typ-
cially discretize them by using either direct modal discretization (Rayleigh-Ritz method)
or the finite element (FE) method. The FE method is typically prefered in practice since
it is a versatile tool for modeling very complex structures. However, it has a disadvantage
in that it often requires a very large number of degrees of freedom (DOF) to accurately
model the structure ([4]). The dynamic analysis (e.g., determination of natural frequen-
cies, simulations, etc.) of nonlinear structures is typically more easily performed in modal
coordinates than in physical coordinates, since it requires a smaller number of DOF. How-
ever, many modal coordinates are still needed for some nonlinear structures, typically those
with some type of essential coupling between the linear modes. Therefore, this can result

in considerable computational effort when ones try to analyze their dynamics ([5]).



The main objective of this research is to develop a class of techniques for generating ac-
curate reduced order models for nonlinear structural systems. Our starting point is gener-
ally a nonlinear model, from either modal or FE analysis, whose dynamics are expressed
by equations of motion expressed in terms of the linear modal coordinates. First, this
work demonstrates a general framework on how to obtain nonlinear reduced order mod-
els (ROMs) using nonlinear normal modes (NNMs) that are defined in terms of invariant
manifolds. Next, a methodology for obtaining nonlinear ROMs from FE based descriptions
of structural elements is demonstrated through an example, the nonlinear rotating beam,
which is a crude model for a helicopter rotor blade. Lastly, this work demonstrates how
one can synthesize nonlinear ROMs using NNMs of relatively simple substructures that are

assembled to form a complex structural system.

In this first chapter we offer brief overviews and literature surveys of the main themes
considered in the thesis, specifically: nonlinear normal modes, rotating beams, and
component mode synthesis. These are considered sequentially, and are followed by a

description of the outline of the remainder of the thesis.

1.2 Nonlinear Normal Modes

Linear modal analysis is a fundamental tool used in linear vibration theory. It allows one to
decompose a general motion into a linear combination of the fundamental motions (modal
motions) that take place on the eigenspaces in the system phase space; this is the essence of
superposition. These modal responses are invariant, since, if one starts with a purely modal
response, the system stays in that mode for all time. Similarly, if the system is started with
energy in a subset of modes, only those modes will be active during the ensuing response.
For general responses, the individual modal responses remain uncoupled from one another

during the motion.



Of course, these facts do not generally hold for nonlinear systems. Certainly superposition
does not extend to nonlinear systems. But, the concept of fundamental invariant responses
does carry over, even if one cannot construct general responses by combining them, whether
in a linear or nonlinear manner. Rosenberg and Atkinson ([6] and [7]) provided the pio-
neering ideas which tried to extend the idea of fundamental motions to nonlinear systems.
Rosenberg and coworkers carried out several studies along these lines ([6], (8], [7], [9], [10],
[11]) and summarized these results in a classical review paper [12], in which Rosenberg
offered a break-through definition of nonlinear normal modes (NNMs). In that work, the
NNMs of conservative systems with n degrees of freedom were defined as vibration in uni-
son, i.e., vibrations such that all degrees of freedom reach their extrema at the same time
and pass through zero at the same time. By this definition, one can express all generalized
displacements as functions of a chosen generalized displacement. When these systems pos-
sess certain types of symmetries, the constraint relations are linear in the configurations
space (just as they always are in the linear case) and are referred to as “similar” NNMs. For
more general, but still conservative, systems the constraint relations are nonlinear and the
nonlinear modes are called “non-similar” NNMs, which can be depicted by curved lines in
the configuration space. This definition was picked up and used by subsequent researchers
who used it to construct NNMs and study their stability and bifurcations that occur due to
changes in system parameters and system energy levels. These were typically conservative
systems with two degrees of freedom (DOF) system ([13], [14], [15]). This definition, to-
gether with the conservation of energy, were employed by Vakakis to construct non-similar
NNMs of a two DOF-conservative system in [16]. It was also used to study the steady
state motions of two DOF systems subjected to periodic forcing; see [17] for similar NNMs
and (18] for nonsimilar NNMs. Vakakis also discovered that the important phenomenon of
mode localization can occur for NNMs, even for perfectly tuned subsystems [16]. This is
in contrast to linear systems, wherein localized modes exist only when the subsystems are
slightly mistuned. A good account of NNMs, their stability and bifurcations in unforced
nonlinear systems, their existence in forced nonlinear systems, and their application to

engineering systems is given in the monograph by Vakakis [19].



The NNM concept has been generalized to a wide class of systems, which includes discrete
systems with dissipation and gyroscopic terms, as well as quite general continuous systems
by Shaw and Pierre in ([20] and [21]). Therein, a definition of NNMs is given in terms of
invariant manifolds, which are a natural way to define and construct fundamental motions
of nonlinear systems. The procedures used to obtain the NNMs by this approach are
closely related to center manifold theory, which is used for bifurcation analysis ((22]),
and inertial manifold theory, which is used to study the long time behavior of dissipative
partial differential equations (PDEs) ([23], [24]). Using this definition, the nonlinear system
equations are restricted to a two-dimensional invariant manifold that describes the NNM of
interest. The behavior on the NNM manifold is governed by a single second order differential
equation of motion, which corresponds to the equation of motion for a nonlinear single mode
reduced order model. In Shaw and Pierre ([20], [21]) approximate solutions of the invariant
manifold equation were obtained by asymptotic expansions using polynomials expressed in

terms of a generalized position-velocity pair of state variables.

King and Vakakis ([25]) developed an energy-based NNM approach based on [21] to investi-
gate NNMs of one dimensional, conservative, continuous systems. Nayfeh and Nayfeh ([26])
computed NNMs of continuous systems based on a complex amplitude/phase formulation
and the method of multiple scales. Nayfeh ([27]) compared the various methods for con-
structing NNMs of continuous systems as developed by Shaw and Pierre, King and Vakakis,
Nayfeh and Nayfeh, and a new approach that employed normal form theory. They con-
cluded that all expansion methods yielded the same results, but claimed that the method

of multiple scales with complex variables was the simplest to implement.

All of these approaches are in some manner equivalent, but differ in terms of formulation,
solution, and range of applicability. However, the invariant manifold definition is the most
general, since it covers the widest range of systems and responses. It can also be generalized
to the case of multiple modes, as required for the case of internal resonances, or if one

requires a model that is valid over a wide frequency range. By defining the NNMs in terms



of two-dimensional invariant manifolds, the individual NNMs can be constructed, but they
can not interact with each other once a motion is initiated on any one of them. Therefore,
a motion involving multiple modes cannot be captured by this definition. In addition,
the concept of mode superposition cannot be applied to construct non-linear multi-mode
models using individual NNMSs, since the essential interaction between the NNMs will be
missing. Boivin et al. ([28]) generalized the individual NNM concept by defining a motion
involving M NNMs as a motion that takes place on a 2M-dimensional invariant manifold
in the system’s phase space. By this definition, the non-linear ODEs are restricted to the
M-NNMs invariant manifold of interest. The behavior on the manifold is governed by
M second order, coupled equations of motion (a nonlinear M-degree-of-freedom system).
Boivin et al. also described how to detect the case of internal resonances from the multi-
mode invariant manifold formulation [29]. NNMs were also constructed for discrete systems
with internal resonances, based on the complex formulation, by Nayfeh et al. [30]. King
et al. ([31]) also extended the energy-based NNM approach to cover the case of internal

resonances. These latter two studies were for the case of M = 2 NNMs.

Slater ([32]) developed a numerical method for determining individual NNMs based on
numerical searching techniques for periodic solutions of conservative non-linear systems.
Using this approach, individual solutions are found, but the entire family of motions on
the NNM manifold cannot be obtained, therefore one cannot develop ROMs using this ap-
proach. A similar shooting technique has been used in this work and by previous resarchers
in the author’s research group ([3], [33], [34], [35] and [36]). In this thesis it is employed
for comparing ROMs with simulations of the original system, which has the full number of

DOF-.

Other works, related to the use of invariant manifolds for the generation of ROMs, include
the use of Karhunen-Loeve (K-L) decomposition to develop accurate low-order models, by
using data obtained from transient simulations of large-scale systems. See [37], [38], [39],

and [40], for example.



In references [20], [21], (28], [41], and [29], the NNM invariant manifolds were approximated
by a polynomial expansion (asymptotic series) of position-velocity pairs of chosen (master)
modes, which provides a solution that is locally valid. The approximate invariant manifolds
obtained by such an asymptotic series will diverge from the actual invariant manifold in
some amplitude regime. Typically, the domain of validity of the approximation is not
known a priori. Hence, the reduced equations of motion will generate inaccurate time
responses when the amplitudes of the modes are “too large”. Pesheck et al. ([33]) improved
the approximation of the invariant manifolds by expressing the invariant manifolds as an
expansion of basis functions defined over a specified domain and numerically solving the
invariant manifold equations. The expansion of basis functions is introduced into the PDEs
governing the NNM invariant manifold, and, using a Galerkin projection, the nonlinear
equations for the expansion coefficients were obtained and then solved numerically. By
this approach, the domain of approximation can be selected by the user, and the error
of approximation can be minimized over the chosen domain by selection of the number
and type of basis functions. Since the computational cost associated with the Galerkin
projection can be quite expensive, the collocation method has recently been adopted in [35]
to minimize computational efforts associated with this method. In this approach, instead
of projecting each manifold governing equation onto each basis function, each manifold
governing equation is projected onto a set of Dirac delta functions in the master coordinates,
thereby providing a solution that minimizes an error that is measured in a point-wise

manner.

Research on the construction and use of NNMs continues; here we outline recent work by
others in the MSU/UM NNM research group, in particular by Mr. Dongying Jiang, a
Ph.D. student at UM. Jiang et al. ([36]) have applied the work of Pesheck et al. ([33])
to construct NNMs of piecewise linear systems, and are working on systems with friction
elements. They have also extended the work of Pesheck et al. ([33]) to numerically construct
multi-NNM models which can capture internal resonances among participating modes, and
are valid over a large range of amplitudes ([42]). They have also numerically constructed

NNMs of nonlinear systems under periodic excitation ([43]). In this case the manifolds are



time-periodic in nature, and responses on them represent the steady-state responses of the
full system. Current work is aimed at distilling ROMs from detailed FE models for rotor
blades.

A detailed summary of the invariant manifold approach to NNMs, and the computational

issues associated with its solution, are presented in Chapter 2 of this thesis.

1.3 Beam (Blade) Dynamics

The dynamic analyses of helicopter blades, turbopropeller blades, wind-turbine blades and
robotic arms has provided motivation for investigations of the vibration of rotating beams.
To predict the dynamic characteristics of rotating flexible structures, the kinematics must
be carefully modeled, which leads to nonlinear coupling effects between degrees of freedom
(DOF) in different directions. These coupling effects can cause slow modal convergence,
thereby often requiring large system models for accurate dynamic representation. Simula-
tion of such large-scale models is a time consuming process, which slows parametric studies

and design cycles.

Much work has been done using finite elements (FE) to model the nonlinear, large amplitude
vibrations of rotating beams, including [44], [45], [46], [47], (48], and [49]. These models are
typically complex in nature due to their geometry, degrees of freedom (flap, lead-lag, axial,
and torsion), and nonlinear coupling effects. Furthermore, because of the nature of the
finite element approach, many elements are required in order to obtain an accurate model.
A common approach is to use linearization of the finite element model about the nonlinear
static equilibrium position and solve the eigenvalue problem of the resulting linearized
model to obtain the linear natural frequencies of the system ([44] and [49]). Bauchau and
Hong ([45]) also utilized finite elements in time to obtain nonlinear responses and stability

results of the rotating beam undergoing large deflections. However, the computational time



associated with obtaining the equilibrium solution was expensive, because all of the spatial
degrees of freedom are coupled at all time steps. Perturbation modes ([50] and [51]) were
applied to the finite element model of a helicopter rotor blade in order to obtain a reduced
order model ([46]). Bauchau and Bottasso ([52]) applied the perturbation modes to the
space-time finite element model of a beam subjected to a sinusoidal load in order to obtain
a reduced order model. Crespo da Silva ([53]) utilized a truncated set of eigenfunctions or
eigenvectors obtained from the linearized system of PDEs or the linearized finite element
model about the nonlinear static equilibrium position in order to obtain a reduced order
model of a beam in planar motion. Crespo da Silva ([54]) also extended his work to handle

multi-beam structures in planar motion.

In most nonlinear structures, there is no simple expansion of basis vectors which decouples
the DOF (i.e., modes) in the frequency range of interest from those outside that range. For
the rotating-beam problem, this is evident in the nonlinear coupling between transverse and
axial motions. Therefore, some (potentially important) nonlinear effects may be ignored
in the truncation process, unless one is careful. Generally, many linear modes must be
retained in the nonlinear model in order to minimize these effects. NNMs is a natural

approach for handling this issue.

Over the past decade, systematic procedures have been developed to obtain ROMs via
NNMs that are based on invariant manifolds in the state space of nonlinear systems,
as described above. These procedures initially used asymptotic series to approximate
the geometry of the invariant manifold and have been used to study the nonlinear
rotating Euler-Bernoulli Beam ([3]). More recent work has employed a numerically-based
Galerkin approach to obtain the geometry of the NNM invariant manifolds out to large
amplitudes ([33]). These procedures can be applied to more general nonlinearities over
wider amplitude ranges, and have been recently applied to study the vibrations of a
rotating Euler-Bernoulli beam ([34]). These approaches have provided accurate models
for the fundamental nonlinear flapping mode, by systematically capturing the essential

dynamic coupling that exists between the linear modes of the system. Chapter 3 of this



thesis considers this problem in detail, by investigating the NNMs of a rotating beam that

is modeled using a nonlinear finite element formulation.

1.4 Substructure Synthesis

Many complex structures are composed of several relatively simple substructures that
are assembled together. This occurs in trusses, bladed disk assemblies in turbine rotors,
aerospace and ground vehicles, and other applications. In such cases it is convenient to
develop a dynamic model for the overall structure by taking advantage of the dynamic
properties of the substructures. Methods for doing this for linear structural models are
well developed and have been used extensively, especially in the aerospace industry ([55],
[56], [57], (58], etc.). These techniques construct ROMs of the overall structure by making
use of modal-based ROM descriptions of the substructures and combining these using
a technique known as Component Mode Synthesis (CMS). In this section we offer an
overview of CMS for linear systems and describe the two main CMS approaches, fixed-

and free- interface CMS. A thorough review of substructuring and CMS can be found in [59].

1.4.1 Component Mode Synthesis

CMS was developed to synthesize models that are described in terms of substructures,
and to take advantage of model size reduction carried out at the substructure level ([60],
[61], [62]). In CMS, the dynamics of each substructure is described by a set of dynamic
(normal) modes and a set of static (constraint or residual attachment) modes that are used
to describe the interfaces between the substructures. A set of component normal modes
is selected from each substructure and are chosen and truncated in such a way that the
modes lie-in the frequency range of interest. A set of static (so-called constraint) modes
is a key component for the low frequency response of the structure ([63]) and are used to

couple the substructures together. There are two general types of CMS methods; they are



known as the fixed-interface and the free-interface approaches, as briefly described below.

1.4.1.1 Fixed-Interface Linear CMS

The fixed-interface CMS technique, developed by [62], is widely used, since the procedures
are straightforward. Moreover, it produces very accurate models with very few component
modes ([64]). The dynamics of each substructure is described by its modal description,
which is composed of substructure normal modes (component modes) and constraint
modes. The component normal modes are the normal modes of the substructure derived
for the case when the interface coordinates between the substructures are held fixed. A
constraint mode (static mode) of the substructure is the deflection obtained by imposing a
unit displacement on one of the interface coordinates and holding the remaining interface
coordinates fixed. To obtain all of the constraint modes, the process is applied in turn
to each of the interface coordinates. By applying displacement and force compatibility
conditions at the interface coordinates, one can obtain the reduced synthesized system,
which is described by the component normal-mode coordinates and the generalized

constrained coordinates. This approach is known as the Craig-Bampton method.

1.4.1.2 Free-Interface Linear CMS

Free-interface CMS methods are more attractive than fixed-interface CMS methods when
the component modes are obtained from modal testing or when an experimental verification
of the component modes is required ([65]). The free-interface CMS technique developed by
Craig and Chang ([66], [67] and [63]) is the most accurate among the free-interface CMS
techniques. It is a modified version of Rubin’s method [68] and MacNeal’s method [69].
It is superior to the CMS of Craig-Bampton in terms of accuracy, but is more difficult to

implement ([64]).

10



In this synthesis technique, the dynamics of each substructure is described by a set of
substructure component normal modes and residual attachment modes. The component
normal modes are the normal modes of the substructures for the case when the interface
coordinates between the substructures are free. The residual attachment modes of the
substructure are a special type of static modes that are used to couple the substructures
together, and they also account (at least partially) for the static deflections of the truncated
normal modes of the substructures ([66], [67] and [63]). By applying the displacement
and force compatibility conditions at the interface coordinates, and neglecting the inertial
effects associated with the generalized residual attachment coordinates, one can obtain the
reduced synthesized system. It is described in terms of only the component normal mode
coordinates since, in this approach, the residual attachment modes can be condensed out
of the equations of motion ([66], [67] and [63]). This approach is known as the Craig-Chang

method.

Chapter 4 of this dissertation describes a CMS methodology developed for nonlinear
systems, wherein the substructure ROMs are developed using NNMs, and these are
assembled using a newly developed technique that is a extension of the fixed-interface

CMS method.

1.5 Dissertation Organization

The Dissertation is organized as follows.

In Chapter 2, the formulation and solution of NNM invariant manifold equations are de-
scribed. Both previous and original work is described. Asymptotic series expansions and
weighted-residual type methods, i.e., Galerkin and collocation, are the methods employed
to solve for the manifolds. In this chapter, two new methods, similar to those described in

(33], are developed and implemented to solve for the single-mode manifold solutions. They

11



are both formulated in terms of modal position and velocity. The first alternative is to solve
for the manifold solution using globally defined basis functions using the Galerkin method.
The second is to obtain the manifold solution over several small patches using locally de-
fined basis functions, and solving these smaller problems using a collocation method. A
rough comparison of the relative computational efforts of these approaches is provided.
Also, a two-DOF nonlinear spring-mass system and a FE model of a rotating beam are
used for demonstrating these approaches and comparing their accuracies, by direct time

simulations of the corresponding ROMs and the original system models (with full DOF).

In Chapter 3, the generation of nonlinear ROMs from FE based descriptions is demon-
strated through the application to a nonlinear rotating beam, which is a highly idealized
model for a helicopter rotor blade. First, the nonlinear FE model of a rotating beam is gen-
erated and converted into a truncated (but still large-scale) modal form that is convenient
for the NNM analysis. The invariant manifold equations are formulated, and a numerical
collocation method is used to obtain the solution of the NNM invariant manifold for the
fundamental flapping mode of the beam. This invariant manifold is used to construct a
nonlinear single DOF ROM, which is subsequently used for a simulation study. Note that

the results of Chapter 3 have been recently published [35].

In Chapter 4, the development of NNMs, as needed for the individual substructures is first
reviewed. The associated invariant manifold equations, parameterized by modal position
and velocity, are formulated, and the numerical collocation method is reviewed, since it
allows one to obtain the solution of the NNM invariant manifold. Then, the procedures
for the fixed-interface nonlinear CMS are described. A five-DOF spring-mass system and a
forty-one-DOF spring-mass system are used to demonstrate the effectiveness of the method,

via direct time-simulation comparisons of different ROMs.

Chapter 5 offers a summary of the contributions of this research to the field of nonlinear

structural dynamics, along with a discussion of potential areas for further work in this area.
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CHAPTER 2

Comparison of Methods for
Constructing Invariant Manifolds for

Nonlinear Normal Modes

2.1 Introduction

In linear vibration theory one can decompose a general free vibration response as a linear
combination of the fundamental motions (modal motions) that take place on the eigenspaces
of the system. These motions are invariant, that is, if one initiates a purely modal response,
the system remains in that mode for all time. The works of Rosenberg and Atkinson ([6]
and [7]) were the pioneering works which extended the idea of fundamental motions to
nonlinear systems. In those works, nonlinear spring-mass systems with two degrees of
freedom (DOF) were studied. Due to special symmetries possessed by the systems, they
were able to construct linear modal-constraint relations, the attendant nonlinear natural
frequencies, and the stability of each nonlinear mode in terms of its amplitude. Rosenberg
summarized his works ([6], (8], (7], [9], [10], [11]) on normal mode vibrations of nonlinear
systems in [12], in which a fundamental definition of nonlinear normal modes (NNMs)
for multi-DOF systems was given. In that work the concepts of similar and non-similar
modes were introduced. Caughey et al. ([14]) studied similar normal modes and their

bifurcations in terms of system parameters for two-DOF nonlinear conservative system,
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based on Atkinson's work ([7]). Rand et al. ([15]) studied the general class of two-DOF
nonlinear conservative systems. In that study, they were able to determine the number and
stability of periodic motions of which the non-similar modes were special cases and also
studied the bifurcation of the periodic motions in terms of system parameters. Vakakis
([16]) studied the non-similar modes of two-DOF nonlinear conservative systems, where

the construction of the non-similar modes exploited the conservation of energy.

Shaw and Pierre ([70] and [20]) generalized the definition of NNMs by using concepts
from invariant manifold theory, which encompassed a wide class of quite general nonlinear
systems. The technique was constructive and allowed for traveling wave (that is, complex)
and damped NNMs. Boivin and co-workers et al. ([28], [29], [71]) extended the construction
of the single-mode NNM manifold developed by Shaw and Pierre to the multi-mode case,
which allowed for the dynamic interactions among a subset of nonlinear modes of interest.
A summary of these works by Shaw, Pierre, and coworkers ([72], (73], [41], (28], [29], and
[71]) can be found in [74]. In these papers, the solution of the invariant manifold equatiosn

were sought in terms of locally valid asymptotic power series expansions.

Pesheck et al. ([33]) developed a numerical method for solving the invariant manifold
equations, such that the solution, while not analytically available, was valid over a relatively
large amplitude range. An added feature of this approach is that the nonlinear terms
are not limited to being smooth functions, which allows for extensions to more general
classes of problems ([36]). Even though the Galerkin method gives accurate solutions, the
computational cost of acquiring solutions is quite expensive, especially when one attempts
to generate multi-mode models ([75]). This motivated the application of the collocation
method, which significantly reduces computational costs, but does not sacrifice much in the
way of accuracy ([76], [77], and [78]). This method has been applied in [35] to study the
dynamics of a finite-element model of a rotating beam. In the forthcoming work of Jiang
et al. ([42]), the Galerkin method developed by Pesheck et al. ([33]) has been generalized
to construct accurate multi-mode manifolds that are able to capture internal resonances,

and this method is applied to a model of a rotating beam.
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In this chapter, we develop two alternative methods for the numerical solution of the
single-mode invariant manifold equations, and offer a comparison of the various methods
that have been used in this and previous studies. The new methods are Galerkin-based,
in the same spirit of that developed in [33], except that the equations are formulated in
terms of modal position and velocity, instead of modal amplitude and phase. The first new
method uses global basis functions and obtains the unknown coefficients for the manifold
solution using the Galerkin method; this method is described in section 2.3.2.2. The second
new method uses a local patchwork of basis functions, and the unknown coefficients for the
manifold solution are obtained using the collocation method; this method is described in
section 2.3.2.4. In terms of computational time, both new methods have advantages over

the approaches used in [33] and [35]; this is summarized in section 2.3.3.

This chapter is outlined as follows. The formulations for the NNM invariant manifolds
are first introduced. The power series expansions methods and the weighted-residual
type methods, i.e., Galerkin and collocation methods, are described in detail, for both
amplitude-phase and displacement-velocity formulations. = The computational effort
associated with each approach is then discussed, and the accuracy of each approach is
considered through direct comparisons in general terms and for calculations carried out

for two example problems. Some conclusions are drawn at the end of the chapter.

2.2 Formulations of NNM Invariant Manifold

We begin with a general discrete representation of the vibrations of a nonlinear structural
system obtained either by a finite element model followed by linear modal expansion, or
by a Rayleigh-Ritz approach. We assume that the system at linear order is undamped.
(This assumption greatly simplifies the problem, but can be relaxed, in principle.) In this

case, the equations of motion for a @Q-DOF system are uncoupled at linear order and can



be expressed in the form:

Iij+An=f(nn) (2.1)

where I is the identity matrix, A the diagonal matrix of squared linear natural frequencies,
f(n, 1) a vector of nonlinear forces, n the modal position vector, and 7 the modal velocity

vector. The component form of equation (2.1) is given by

mivwing o= filnj,n) (2.2)

for i,j=123,..Q

where w; is the linear natural frequency of mode ¢ and @ is the number of retained linear

modes.

2.2.1 Invariant Manifold Equations in Terms of Modal Position

and Velocity

The fundamental concepts for nonlinear normal modes of discrete, conservative, nonlinear
systems were laid out by Rosenberg ([12]). Shaw and Pierre ([70], [20], [21]) used
the theory of invariant manifolds for dynamical systems to generalize the concept of a
nonlinear normal mode to a wide class of systems, including continuous systems and
systems with dissipation and gyroscopic terms. Boivin et al. ([28], [29], [71]) extended

the single-nonlinear-mode construction developed by Shaw and Pierre to the multi-mode
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case, which is able to capture the dynamic interactions among a set of nonlinear modes of
interest. A summary on the initial series of works by Shaw, Pierre, and coworkers ([72],
(73], [41], [28], [29], and [71]) can be found in [74]. Below we provide a short account of
the geometric definition of NNM invariant manifolds and methods of constructing single-

and multi-mode versions of NNM models.

2.2.1.1 Singe-Mode Manifold Formulation

For present purposes one can consider an invariant manifold to be a low dimensional surface
living in the system state space, such that motions initiated on the surface will remain on
it for all time. This concept is the key to obtaining a reduced order NNM model, that is,
a lower-dimensional dynamical system, specifically by restricting the equations of motion
to this surface. In an N-degree-of-freedom, undamped, nongyroscopic, linear vibratory
system, individual modal motions are synchronous responses that take place on a two-
dimensional plane (linear eigenspace) in the 2N-dimensional system state space. In this
case the response of the system is a time-harmonic standing wave in which all degrees
of freedom reach their extrema and pass through zero simultaneously. Such motions are
governed by two first-order linear differential equations or, equivalently, by one second-order
linear differential equation, which in this case is a simple undamped oscillator. For linear
systems with gyroscopic and/or general dissipative terms this concept is also applicable,
however the motions taking place on the invariant planes are generally nonsynchronous,
and represent traveling wave responses of the system. This concept can be extended to
nonlinear systems as well, however, the motions generally take place on non-planar surfaces,
and the motions are governed by two first-order nonlinear differential equations, or by one
second-order nonlinear differential equation. For smooth nonlinear systems, the manifolds

are curved surfaces that are tangent to the manifolds (eigenplanes) of the linearized systems.

In [74], a definition for NNMs based on invariant manifolds was offered, as follows:

A normal mode for a nonlinear system is a motion that takes place on a two-
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dimensional invariant manifold in the system’s phase space. This manifold
passes through the stable equilibrium point of interest and, at that point, is tan-
gent to a two-dimensional eigenspace of the system linearized about that equi-
librium. On this manifold, the system dynamics are governed by an equation

of motion involving a pair of state variables; that is, it behaves like a single-

degree-of-freedom system.

Based on the above definition, the construction of the nonlinear-mode manifold is straight-

forward. In order to search for a particular individual NNM, it is assumed that the NNM

manifold is parameterized by a single modal position-velocity pair corresponding to the

mode of interest, referred to as the master mode. This is accomplished by using the fact

that for a NNM response all of the remaining modal positions and velocities are slaved

(constrained) to this master mode. For the kth nonlinear mode, we take u; = n, and

v = 7). as the master states. The remaining slave states are expressed as

n = Xitw,vr) = X k)

i = Yi(ur,vp) = Yi(ng, i)

for i=1,2,3,..,Q, i £k

Equations (2.3) and (2.4) constitute a set of constraint equations that are to be determined.

The constraint functions in equations (2.3) and (2.4) are obtained by an invariant manifold

procedure that generates equations that can be solved for the unknown constraint relations.

The process begins by taking a time derivative of the constraint equations, yielding
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Duy,
oY; .
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Oug, k
9Y; .

i=1,2,3,...Q, i #k.

The time dependence in these equations is eliminated by using the following relations:

Up = Vg, U =1 = —w% M+ fr(nj,n;), and ; = _“’1'2 i+ fi(n;,n;). Then, the constraints

(equations (2.3) and (2.4)) are substituted in the resulting expression everywhere in place of

the slave state variables, resulting in a set of partial differential equations for the functions

(X;(up, vg), Yi(ug, vg)). This set of 2Q - 2, time-independent, partial differential equations

govern the geometry of the Ath manifold, and are given by

—wf Xi + fi(Xj. Yy up,vp)

for

gl—)f;l‘k + % (—w‘z Uy,
+ (X5, Y5, ug, vg)

ay, oy,
au T
+ (X5 Y up vp)

(—w,% up,

Z.] = 1?2‘3""7Q! lw,] ?é }\

These equations are not solvable in closed form (except in very special cases) and meth-

ods for obtaining approximate solutions for X; and Y; are described in detail in this chapter.
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2.2.1.2 Multi-Mode Manifold Formulation

Single-mode motions are not general motions, since they take place on two dimensional
manifolds in the system state space. In structural dynamics, we are also interested in
more general motions in which more than a single mode participates. For linear systems,
multi-mode motions take place in the space spanned by a set of two-dimensional planes
that are the linear eigenspaces of the modes of interest. Furthermore, using superposition,
multi-mode motions of linear systems can be obtained through a linear combination of
responses of the individual modes of interest. For nonlinear systems, multi-mode motions
cannot be obtained through the superposition of individual NNM responses, since the
coupling between the NNMs cannot be accounted for in this manner. However, the idea
of a nonlinear single-mode manifold can be generalized by defining a nonlinear multi-mode
manifold to be a multi- dimensional surface that is tangent to the multi-dimensional linear

eigenspace of the corresponding linear modes of interest.

Based on these ideas, in [74] the following definition of a nonlinear-multi mode was offered:

A nonlinear M-mode invariant motion of a system is a response that takes
place on a 2M -dimensional invariant manifold in the system’s phase space;
the manifold passes through the stable equilibrium point of interest, and at that
point it is tangent to a 2M -dimensional eigenspace of the system linearized about
that equilibrium (representing M linear modes). On this manifold, the system
dynamics are governed by M pairs of state variables, that is, it behaves like an

M -degree-of-freedom system.

The procedure for constructing the multi-mode manifold is similar to the procedure given
in section 2.2.1.1, except that the manifolds are now parameterized by 2M variables. Note
that the single-mode manifold is a special case of the multi-mode manifold with M = 1.
Specifically, we take up = m, and v = 7, for k € Syy, where Sys is a set of indices

that describes the modes of interest (master modes). For example, if one is interested in
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constructing a model that captures the interactions between the second, third and fifth
nonlinear modes, then Sy; = {2,3,5}. The sets {uz} and {v;}, k € Spy, are denoted by

ups and vps respectively. The remaining slave states are expressed as

ni = Xi(up,vp) (2.9)

I

7h; Yi(upr.vnr) (2.10)

for 1=1,2,3,..,Q, i ¢ Sas.

The procedure described in section 2.2.1.1 is again applied here by taking a time derivative
of the constraint equations, eliminating the time dependence by using the default rela-
tions, the equations of motion of the master modes, and the equations of motion of the
slave modes, and substituting the constraints every where in place of the slave state vari-
ables, yielding the following set of 2Q — 2M{ partial differential equations for the constraint

functions:

[6X; 0X;
Y;, = g é—ll’k + 0——2 (—wf e
keSyy HOUk Uk
M

+fk(Xj.Yj,uk,vk))] (2.11)

) [ 0Y; i (9
—wi Xi + fil X, Yo v) = Z By Uk + m (_“"k uj.
kGSA] -

+fk(vaYja'“k~1'k))] (2.12)

for i,j = 1‘2,3,...,Q, 1] ¢ S‘,\[.

As in section 2.2.1.1, closed-form solutions do not generally exist. The method for
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obtaining approximate solutions for X; and Y; in terms of power series expansions is

reviewed in section 2.3.1.2.

2.2.2 Invariant Manifold Equations in Terms of Modal Ampli-

tude and Phase

Pesheck et al. ([33]) developed an alternative form of the single-mode invariant manifold
equations that are expressed in terms of modal amplitude and phase. The procedure was
similar to the formulation in modal position and velocity, and yields results that are, of
course, equivalent. Recently Jiang et al. ([42]) have extended this formulation to the

multi-mode case. These formulations are described in the following sections.

2.2.2.1 Singe-Mode Manifold Formulation

The coordinate transformations used here are typical of those used in the method of averag-
ing ([79]), and are similar to those used in the method of variation of parameters, since they
employ a time-varying amplitude and phase. They relate the master modal displacement
and velocity (n, i) to the master modal amplitude and phase (ay, ¢;.) via the following

invertible transformation:

e = ap cos(odp) (2.13)

e = —ag wy sin(oy). (2.14)

Hence, the constraints for the slave modes, equations (2.3) and (2.4), can be expressed in

term of a; and ¢ as
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Pi(ag, o) =

Qi(aka¢)k) =

Xi(e(ag, o), i (ag, o)) (2.15)

Yi(me(ag, o1) ik (ak, ok)) (2.16)

for i=1,2,3,..,Q, i #k.

Using equations (2.13) and (2.14), the equation of motion governing the master mode can

be expressed as two coupled 1st order ODEs in a. and ¢y, as follows,

for

—fi(P},Qj.ar. o) sin(dy)
W
fi(Pj,Qj.ak, &) cos(ép)
aj w

, (2.17)

wy — , (2.18)

j= 132337"'»Qs ]75 k.

In order to determine the slave constraints, the procedure is identical to that for the (uy, vy)

formulation, adapted to these coordinates. Using steps similar to those in equations (2.5)

and (2.6), we obtain

i

i

oP, . OP; .

= —dai + =—0¢ 2.19
da, & 5o, Ok (2.19)

o 0Q; . 0Q; ;

= day ag + Dox Ok (2.20)

for 1=1,23,...Q, i#k.
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The time dependence in these equations is eliminated by using equations (2.17), (2.18), and
h; = -w? ni+ fi(n;,n;). Then, the constraints (equations (2.15) and (2.16)) are substituted
in the resulting expression everywhere in place of the slave state variables, resulting in a set
of partial differential equations for the functions (P;(aj, @), Q:(ar, dx)). This set of 2Q) -
2, time-independent, partial differential equations govern the geometry of the kth manifold,

and are given by

%(—fk(Pj,Qj,ak.c&k) sin(o’k))

Qi = 3

(39 ‘”k
opP; fk(Pj«Qj»ﬂvk«d)k) cos(¢p.)

oo Ok " ) (221)

3 i, P Jy Qlay . " 3

—w? P+ fi(P;.Qj.ak,0) = a_i?_( fi(Pj. Q5 ag. ox) Sm(cﬁ/\))

k W

+%(wk _ Si(P.Qj.a. 8p) Cos(ék)) (2.22)
ox aj wi

for 4,7=123,.,Q, t.j#k.

These equations are more complicated than the invariant-manifold governing equations
represented in modal position and velocity, and have potential singularities at zero modal
amplitude. However, as mentioned in [33], the constraint equations of the slave state
variables are periodic in ¢ with period 27, and therefore a Fourier basis can be used for
shape functions in the ¢y direction. The methods for obtaining approximate solutions for

P; and Q; are described in section 4.2.2.

2.2.2.2 Multi-Mode Manifold Formulation

The multi-mode manifold formulation in terms of modal amplitudes and phase angles can
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be developed in the same manner as was done for the case of modal displacements and
velocities. To avoid redundancy, only the important steps are given here. The trans-
formations relating the master modal position and velocity (7, ;) to the master modal
amplitude and phase (ay, ¢;) are given in equations (2.13) and (2.14); these are employed
with k € Spy, where Sy has the same definition as before. The sets {a;} and {¢,} are

denoted by aps and ¢ps respectively. The remaining slaved states are expressed as

ni = Pilap.om) (2.23)

i =  Qilap, dMm) (2.24)

for 1=1,2,3,..,Q, i ¢ Syy.

Equations (2.17) and (2.18) are still valid with j € Sjps. Next, we take a time derivative of
the constraint equations, eliminate the time dependence by using the first-order equations
of motion for the master and slave modes, and substitute the constraints every where in
place of the slave state variables. This yields the following 2Q) — 2M equations for the

multi-mode invariant manifolds:
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Qi
. [BPi (—fk(ijijaks¢k) Sin(@k))

h Oay,

keSyy “k

+B_Pf <wk _ fk(Pj, Q5. ag. &) COS(O'k))] (2.25)
00k ap Wi

—“"12 Pi + fi(Pijjvak7¢k)

= [96_2_1 <—fk(Pj,Qj,ak-¢k) Siﬂ(¢k))
keSy; day. Wi

+?Qi (Wk _ fe(Pj. Q5 ag. o) COS(@I;))] (2.26)
0oy, ag W

for 4,7=123..,Q,4j¢Sy.

As before, closed-form solutions do not generally exist. A method for obtaining accurate
approximate solutions for the P; and ; is described and implemented on example systems

in [42].

2.3 Solution of the Invariant Manifold Equations

In general, solutions of the invariant-manifold equations cannot be determined in closed
form, since such a solution represents a family of solutions to the original equations of
motion. However, in some special cases involving symmetries, closed-form solutions, which
typically represent flat manifolds, can be determined ([14]). More generally, though, the
manifolds are not flat, and other approaches are required (such as those described in sections
2.3.1 and 2.3.2). In the early works by Shaw and Pierre ([70], [20], [21]), approximate

solutions for the NNM manifolds of smooth systems were obtained in the form of asymptotic
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series expansions. Shaw, Pierre, and co-workers ([72], (73], [41], [28], [29], and [71]) used
this approach to solve a variety of problems, as did others, notably [26], [27], [30], [18], [16],
and [19]. However, the asymptotic series approximation of the manifold is only locally valid;
therefore, if one tries to simulate a NNM model at large amplitudes, the time response of
the NNM model will deviate from the time response of the original model. The primary

difference is in the frequency of oscillation, which results in a phase drift.

As mentioned in section 2.1, the work by Pesheck et al. ([33]) employs a Galerkin method
to solve the invariant manifold equations, which allows one to obtain accurate approximate
individual NNM manifolds up to large amplitude ranges. This approach is also not limited
to smooth systems, so that the nonlinear terms can be more general functions. However, the
computational cost of acquiring such solutions can be quite expensive. Therefore, efficient
means of computing coefficients in the Galerkin expansions were sought and, in particular,
the collocation method has been found to provide accurate solutions with much greater

computational efficiency.

The series expansion method is reviewed briefly in section 2.3.1, for both individual
and multi-mode NNM models. The Galerkin and collocation methods for individual
NNM models are reviewed in section 2.3.2. However, the Galerkin method used to
solve multi-mode NNM manifolds, developed by Jiang et al. ([42]) is not reviewed here.

Interested readers are referred to [42].

2.3.1 Solution by Asymptotic Series Expansion
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