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ABSTRACT

MODEL REDUCTION OF NONLINEAR

STRUCTURAL SYSTEMS USING NONLINEAR

NORMAL MODES AND COMPONENT MODE

SYNTHESIS

By

Polarit Apiwattanalunggarn

This work addresses the general problem of model size reduction for describing the

nonlinear vibration of structural elements and systems. The aim is to provide

computational tools that allow one to accurately capture nonlinear dynamic behavior

using a minimal number of degrees of freedom. In typical applications the finite element

(FE) method is used to generate structural dynamic models, and model size reduction is

carried out using linear modal analysis with truncation. However, in some cases one must

retain many modes in order to accurately capture essential nonlinear coupling between

the linear modes. In this work we utilize nonlinear normal modes (NNMs) defined in

terms of invariant manifolds for the purposes of model size reduction, since it directly

addresses modal coupling. This approach, which makes use of master and slave modes,

along with the concept of dynamic invariance, allows one to generate accurate reduced

order models (ROM) with only a few DOF, while capturing the effects of all modeled

linear modes without directly simulating them. There are three main contributions of the

present effort:



(1) Two new numerical approaches for solving the invariant manifold equations are

introduced. Both approaches employ master modal displacement and velocity

coordinates and are based on weighted-residual techniques. When compared with

previous methods that utilize amplitude and phase variables, the new methods are found

to be superior in terms of computational time but inferior in terms of accuracy.

(2) A specific application is considered: the finite amplitude vibrations of a rotating

beam, which is a crude model for a rotorcraft blade. This system is known to possess

essential nonlinear coupling between axial and transverse displacements, thereby leading

to slow modal convergence. The proposed method systematically captures this coupling

and provides an accurate single degree of freedom ROM. These results demonstrate the

utility of NNM-based ROM, since they combine the versatility of the finite element

method with the accurate NNM model reduction technique.

(3) A model reduction technique suitable for structures that can be partitioned into

substructures is developed. This allows one to build ROMs using NNMs at the

substructure level and to assemble these using a component mode synthesis (CMS)

technique. It is found that the proposed nonlinear CMS technique generally provides an

accurate model only when the couplings between substructures are weak.
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CHAPTER 1

Introduction

1.1 Motivation

h‘lodern engineers are sometimes required to accurately model the motions of complex

structural systems, i.e., rotorcraft, turbo machines (turbines), vehicles, aircraft, bridges,

off-shore platforms, robotic arms, etc., so that they can function properly and safely under

certain operating conditions. Nowadays such structural systems are designed to be lighter,

have more complex geometry, and operate at high speeds in order to enhance performance.

These conditions can cause structural systems to experience responses in the nonlinear

regime. To mathematically describe such motions, one must formulate nonlinear models,

either discrete or continuous in nature. If they are continuous, in practice engineers typ-

cially discretize them by using either direct modal discretization (Rayleigh-Ritz method)

or the finite element (FE) method. The FE method is typically prefered in practice since

it is a versatile tool for modeling very complex structures. However, it has a disadvantage

in that it often requires a very large number of degrees of freedom (DOF) to accurately

model the structure ([4]). The dynamic analysis (e.g., determination of natural frequen-

cies, simulations, etc.) of nonlinear structures is typically more easily performed in modal

coordinates than in physical coordinates, since it requires a smaller number of DOF. How-

ever, many modal coordinates are still needed for some nonlinear structures, typically those

with some type of essential coupling between the linear modes. Therefore, this can result

in considerable computational effort when ones try to analyze their dynamics ([5]).



The main objective of this research is to develop a class of techniques for generating ac-

curate reduced order models for nonlinear structural systems. Our starting point is gener-

ally a nonlinear model, from either modal or FE analysis, whose dynamics are expressed

by equations of motion expressed in terms of the linear modal coordinates. First, this

work demonstrates a general framework on how to obtain nonlinear reduced order mod-

els (ROMS) using nonlinear normal modes (NNMS) that are defined in terms of invariant

manifolds. Next, a methodology for obtaining nonlinear ROMS from FE based descriptions

of structural elements is demonstrated through an example, the nonlinear rotating beam,

which is a crude model for a helicopter rotor blade. Lastly, this work demonstrates how

one can synthesize nonlinear ROMS using NNMs of relatively simple substructures that are

assembled to form a complex structural system.

In this first chapter we offer brief overviews and literature surveys of the main themes

considered in the thesis, Specifically: nonlinear normal modes, rotating beams, and

component mode synthesis. These are considered sequentially, and are followed by a

description of the outline of the remainder of the thesis.

1.2 Nonlinear Normal Modes

Linear modal analysis is a fundamental tool used in linear vibration theory. It allows one to

decompose a general motion into a linear combination of the fundamental motions (modal

motions) that take place on the eigenspaces in the system phase space; this is the essence of

superposition. These modal responses are invariant, since, if one starts with a purely modal

response, the system stays in that mode for all time. Similarly, if the system is started with

energy in a subset of modes, only those modes will be active during the ensuing response.

For general responses, the individual modal responses remain uncoupled from one another

during the motion.



Of course, these facts do not generally hold for nonlinear systems. Certainly superposition

does not extend to nonlinear systems. But, the concept of fundamental invariant responses

does carry over, even if one cannot construct general responses by combining them, whether

in a linear or nonlinear manner. Rosenberg and Atkinson ([6] and [7]) provided the pio-

neering ideas which tried to extend the idea of fundamental motions to nonlinear systems.

Rosenberg and coworkers carried out several studies along these lines ([6], [8], [7], [9], [10],

[11]) and summarized these results in a classical review paper [12], in which Rosenberg

offered a break-through definition of nonlinear normal modes (NNMS). In that work, the

NNMS of conservative systems with 71 degrees of freedom were defined as vibration in uni-

son, i.e., vibrations such that all degrees of freedom reach their extrema at the same time

and pass through zero at the same time. By this definition, one can express all generalized

displacements as functions of a chosen generalized displacement. When these systems pos-

sess certain types of symmetries, the constraint relations are linear in the configurations

space (just as they always are in the linear case) and are referred to as “Similar” NNMS. For

more general, but still conservative, systems the constraint relations are nonlinear and the

nonlinear modes are called “non-similar” NNMs, which can be depicted by curved lines in

the configuration Space. This definition was picked up and used by subsequent researchers

who used it to construct NNMS and study their stability and bifurcations that occur due to

changes in system parameters and system energy levels. These were typically conservative

systems with two degrees of freedom (DOF) system ([13], [14], [15]). This definition, to-

gether with the conservation of energy, were employed by Vakakis to construct non-similar

NNMS of a two DOF-conservative system in [16]. It was also used to study the steady

state motions of two DOF systems subjected to periodic forcing; see [17] for similar NNMs

and [18] for nonsimilar NNMS. Vakakis also discovered that the important phenomenon of

mode localization can occur for NNMS, even for perfectly tuned subsystems [16]. This is

in contrast to linear systems, wherein localized modes exist only when the subsystems are

Slightly mistuned. A good account of NNMS, their stability and bifurcations in unforced

nonlinear systems, their existence in forced nonlinear systems, and their application to

engineering systems is given in the monograph by Vakakis [19].



The NNM concept has been generalized to a wide class of systems, which includes discrete

systems with dissipation and gyroscopic terms, as well as quite general continuous systems

by Shaw and Pierre in ([20] and [21]). Therein, a definition of NNMS is given in terms of

invariant manifolds, which are a natural way to define and construct fundamental motions

of nonlinear systems. The procedures used to obtain the NNMS by this approach are

closely related to center manifold theory, which is used for bifurcation analysis ([22]),

and inertial manifold theory, which is used to study the long time behavior of dissipative

partial diflereiitial equations (PDES) ([23], [24]). Using this definition, the nonlinear system

equations are restricted to a two-dimensional invariant manifold that describes the NNM of

interest. The behavior on the NNM manifold is governed by a Single second order differential

equation of motion, which corresponds to the equation of motion for a nonlinear single mode

reduced order model. In Shaw and Pierre ([20], [21]) approximate solutions of the invariant

manifold equation were obtained by asymptotic expansions using polynomials expressed in

terms of a generalized position-velocity pair of state variables.

King and Vakakis ([25]) developed an energy—based NNM approach based on [21] to investi—

gate NNMs of one dimensional, conservative, continuous systems. Nayfeh and Nayfeh ([26])

computed NNMS of continuous systems based on a complex amplitude/phase formulation

and the method of multiple scales. Nayfeh ([27]) compared the various methods for con-

structing NNMS of continuous systems as developed by Shaw and Pierre, King and Vakakis,

Nayfeh and Nayfeh, and a new approach that employed normal form theory. They con-

cluded that all expansion methods yielded the same results, but claimed that the method

of multiple scales with complex variables was the simplest to implement.

All of these approaches are in some manner equivalent, but differ in terms of formulation,

solution, and range of applicability. However. the invariant manifold definition is the most

general, since it covers the widest range of systems and responses. It can also be generalized

to the case of multiple modes, as required for the case of internal resonances, or if one

fecmires a model that is valid over a wide frequency range. By defining the NNMS in terms



of two-dimensional invariant manifolds, the individual NNMS can be constructed, but they

can not interact with each other once a motion is initiated on any one of them. Therefore,

a motion involving multiple modes cannot be captured by this definition. In addition,

the concept of mode superposition cannot be applied to construct non-linear multi-mode

models using individual NNMS, since the essential interaction between the NNMS will be

missing. Boivin et al. ([28]) generalized the individual NNM concept by defining a motion

involving M NNMS as a motion that takes place on a 2M-dimensional invariant manifold

in the system’s phase space. By this definition, the non-linear ODES are restricted to the

M-NNMS invariant manifold of interest. The behavior on the manifold is governed by

M second order, coupled equations of motion (a nonlinear M-degree-of-freedom system).

Boivin et al. also described how to detect the case of internal resonances from the multi-

mode invariant manifold formulation [29]. NNMS were also constructed for discrete systems

with internal resonances, based on the complex formulation, by Nayfeh et al. [30]. King

et al. ([31]) also extended the energy-based NNM approach to cover the case of internal

resonances. These latter two studies were for the case of M = 2 NNMs.

Slater ([32]) developed a numerical method for determining individual NNMS based on

numerical searching techniques for periodic solutions of conservative non-linear systems.

Using this approach, individual solutions are found, but the entire family of motions on

the NNM manifold cannot be obtained, therefore one cannot develop ROMS using this ap-

proach. A similar shooting technique has been used in this work and by previous resarchers

in the author’s research group ([3], [33], [34], [35] and [36]). In this thesis it is employed

for comparing ROMS with simulations of the original system, which has the full number of

DOF.

Other works, related to the use of invariant manifolds for the generation of ROMS, include

the use of Karhunen-Loeve (K-L) decomposition to develop accurate low-order models, by

using data obtained from transient simulations of large-scale systems. See [37], [38], [39],

and [40], for example.



In references [20], [21], [28], [41], and [29], the NNM invariant manifolds were approximated

by a polynomial expansion (asymptotic series) of position-velocity pairs of chosen (master)

modes, which provides a solution that is locally valid. The approximate invariant manifolds

obtained by such an asymptotic series will diverge from the actual invariant manifold in

some amplitude regime. Typically, the domain of validity of the approximation is not

known a priori. Hence, the reduced equations of motion will generate inaccurate time

responses when the amplitudes of the modes are “too large”. Pesheck et al. ([33]) improved

the approximation of the invariant manifolds by expressing the invariant manifolds as an

expansion of basis functions defined over a specified domain and numerically solving the

invariant manifold equations. The expansion of basis functions is introduced into the PDES

governing the NNM invariant manifold, and, using a Galerkin projection, the nonlinear

equations for the expansion coefficients were obtained and then solved numerically. By

this approach, the domain of approximation can be selected by the user, and the error

of approximation can be minimized over the chosen domain by selection of the number

and type of basis functions. Since the computational cost associated with the Galerkin

projection can be quite expensive, the collocation method has recently been adopted in [35]

to minimize computational efforts associated with this method. In this approach, instead

of projecting each manifold governing equation onto each basis function, each manifold

governing equation is projected onto a set of Dirac delta functions in the master coordinates,

thereby providing a solution that minimizes an error that is measured in a point-wise

manner.

Research on the construction and use of NNMS continues; here we outline recent work by

others in the MSU/UM NNM research group, in particular by Mr. Dongying Jiang, a

Ph.D. student at UM. Jiang et al. ([36]) have applied the work of Pesheck et al. ([33])

to construct NNMS of piecewise linear systems, and are working on systems with friction

elements. They have also extended the work of Pesheck et al. ( [33]) to numerically construct

multi-NNM models which can capture internal resonances among participating modes, and

are valid over a large range of amplitudes ([42]). They have also numerically constructed

NNMS of nonlinear systems under periodic excitation ([43]). In this case the manifolds are



time-periodic in nature, and responses on them represent the steady-state responses of the

full system. Current work is aimed at distilling ROMS from detailed FE models for rotor

blades.

A detailed summary of the invariant manifold approach to NNMS, and the computational

issues associated with its solution, are presented in Chapter 2 of this thesis.

1.3 Beam (Blade) Dynamics

The dynamic analyses of helicopter blades, turbopropeller blades, wind-turbine blades and

robotic arms has provided motivation for investigations of the vibration of rotating beams.

To predict the dynamic characteristics of rotating flexible structures, the kinematics must

be carefully modeled, which leads to nonlinear coupling effects between degrees of freedom

(DOF) in different directions. These coupling effects can cause Slow modal convergence,

thereby often requiring large system models for accurate dynamic representation. Simula-

tion of such large—scale models is a time consuming process, which slows parametric studies

and design cycles.

Much work has been done using finite elements (FE) to model the nonlinear, large amplitude

vibrations of rotating beams, including [44], [45], [46], [47], [48], and [49]. These models are

typically complex in nature due to their geometry, degrees of freedom (flap, lead-lag, axial,

and torsion), and nonlinear coupling effects. Furthermore, because of the nature of the

finite element approach, many elements are required in order to obtain an accurate model.

A common approach is to use linearization of the finite element model about the nonlinear

static equilibrium position and solve the eigenvalue problem of the resulting linearized

model to obtain the linear natural frequencies of the system ([44] and [49]). Bauchau and

Hong ([45]) also utilized finite elements in time to obtain nonlinear responses and stability

results of the rotating beam undergoing large deflections. However, the computational time



associated with obtaining the equilibrium solution was expensive, because all of the spatial

degrees of freedom are coupled at all time steps. Perturbation modes ([50] and [51]) were

applied to the finite element model of a helicopter rotor blade in order to obtain a reduced

order model ([46]). Bauchau and Bottasso ([52]) applied the perturbation modes to the

Space-time finite element model of a beam subjected to a sinusoidal load in order to obtain

a reduced order model. Crespo da Silva ([53]) utilized a truncated set of eigenfunctions or

eigenvectors obtained from the linearized system of PDES or the linearized finite element

model about the nonlinear static equilibrium position in order to obtain a reduced order

model of a beam in planar motion. Crespo da Silva ([54]) also extended his work to handle

multi-beam structures in planar motion.

In most nonlinear structures, there is no simple expansion of basis vectors which decouples

the DOF (i.e., modes) in the frequency range of interest from those outside that range. For

the rotating-beam problem, this is evident in the nonlinear coupling between transverse and

axial motions. Therefore, some (potentially important) nonlinear effects may be ignored

in the truncation process, unless one is careful. Generally, many linear modes must be

retained in the nonlinear model in order to minimize these effects. NNMS is a natural

approach for handling this issue.

Over the past decade, systematic procedures have been developed to obtain ROMS via

NNMS that are based on invariant manifolds in the state space of nonlinear systems,

as described above. These procedures initially used asymptotic series to approximate

the geometry of the invariant manifold and have been used to study the nonlinear

rotating Euler-Bernoulli Beam ([3]). More recent work has employed a numerically-based

Galerkin approach to obtain the geometry of the NNM invariant manifolds out to large

amplitudes ([33]). These procedures can be applied to more general nonlinearities over

wider amplitude ranges, and have been recently applied to study the vibrations of a

rotating Euler-Bernoulli beam ([34]). These approaches have provided accurate models

for the fundamental nonlinear flapping mode, by systematically capturing the essential

dynamic coupling that exists between the linear modes of the system. Chapter 3 of this



thesis considers this problem in detail, by investigating the NNMS of a rotating beam that

is modeled using a nonlinear finite element formulation.

1.4 Substructure Synthesis

Many complex structures are composed of several relatively simple substructures that

are assembled together. This occurs in trusses, bladed disk assemblies in turbine rotors,

aerospace and ground vehicles, and other applications. In such cases it is convenient to

develop a dynamic model for the overall structure by taking advantage of the dynamic

properties of the substructures. Methods for doing this for linear structural models are

well developed and have been used extensively, especially in the aerospace industry ([55],

[56], [57], [58], etc). These techniques construct ROMS of the overall structure by making

use of modal-based ROM descriptions of the substructures and combining these using

a technique known as Component Mode Synthesis (CMS). In this section we offer an

overview of CMS for linear systems and describe the two main CMS approaches, fixed-

and free- interface CMS. A thorough review of substructuring and CMS can be found in [59].

1.4.1 Component Mode Synthesis

CMS was developed to synthesize models that are described in terms of substructures,

and to take advantage of model size reduction carried out at the substructure level ([60],

[61], [62]). In CMS, the dynamics of each substructure is described by a set of dynamic

(normal) modes and a set of static (constraint or residual attachment) modes that are used

to describe the interfaces between the substructures. A set of component normal modes

is selected from each substructure and are chosen and truncated in such a way that the

modes lie-in the frequency range of interest. A set of static (so-called constraint) modes

is a key component for the low frequency response of the structure ([63]) and are used to

couple the substructures together. There are two general types of CMS methods; they are



known as the fixed-interface and the free-interface approaches, as briefly described below.

1.4.1.1 Fixed—Interface Linear CMS

The fixed-interface CMS technique, developed by [62], is widely used, since the procedures

are straightforward. Moreover, it produces very accurate models with very few component

modes ([64]). The dynamics of each substructure is described by its modal description,

which is composed of substructure normal modes (component modes) and constraint

modes. The component normal modes are the normal modes of the substructure derived

for the case when the interface coordinates between the substructures are held fixed. A

constraint mode (static mode) of the substructure is the deflection obtained by imposing a

unit displacement on one of the interface coordinates and holding the remaining interface

coordinates fixed. To obtain all of the constraint modes, the process is applied in turn

to each of the interface coordinates. By applying displacement and force compatibility

conditions at the interface coordinates, one can obtain the reduced synthesized system,

which is described by the component normal-mode coordinates and the generalized

constrained coordinates. This approach is known as the Craig-Bampton method.

1.4.1.2 Free-Interface Linear CMS

Ree-interface CMS methods are more attractive than fixed-interface CMS methods when

the component modes are obtained from modal testing or when an experimental verification

of the component modes is required ([65]). The free-interface CMS technique developed by

Craig and Chang ([66], [67] and [63]) is the most accurate among the free-interface CMS

techniques. It is a modified version of Rubin’s method [68] and MacNeal’s method [69].

It is superior to the CMS of Craig-Bampton in terms of accuracy, but is more difficult to

implement ([64] ).
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In this synthesis technique, the dynamics of each substructure is described by a set of

substructure component normal modes and residual attachment modes. The component

normal modes are the normal modes of the substructures for the case when the interface

coordinates between the substructures are free. The residual attachment modes of the

substructure are a Special type of static modes that are used to couple the substructures

together, and they also account (at least partially) for the static deflections of the truncated

normal modes of the substructures ([66], [67] and [63]). By applying the displacement

and force compatibility conditions at the interface coordinates, and neglecting the inertial

effects associated with the generalized residual attachment coordinates, one can obtain the

reduced synthesized system. It is described in terms of only the component normal mode

coordinates since, in this approach, the residual attachment modes can be condensed out

of the equations of motion ([66], [67] and [63]). This approach is known as the Craig-Chang

method.

Chapter 4 of this dissertation describes a CMS methodology developed for nonlinear

systems, wherein the substructure ROMS are developed using NNMS, and these are

assembled using a newly developed technique that is a extension of the fixed-interface

CMS method.

1.5 Dissertation Organization

The Dissertation is organized as follows.

In Chapter 2, the formulation and solution of NNM invariant manifold equations are de-

scribed. Both previous and original work is described. Asymptotic series expansions and

weighted-residual type methods, i.e., Galerkin and collocation, are the methods employed

to solve for the manifolds. In this chapter, two new methods, similar to those described in

[33], are developed and implemented to solve for the single-mode manifold solutions. They

11



are both formulated in terms of modal position and velocity. The first alternative is to solve

for the manifold solution using globally defined basis functions using the Galerkin method.

The second is to obtain the manifold solution over several small patches using locally de-

fined basis functions, and solving these smaller problems using a collocation method. A

rough comparison of the relative computational efforts of these approaches is provided.

Also, a two-DOF nonlinear spring-mass system and a FE model of a rotating beam are

used for demonstrating these approaches and comparing their accuracies, by direct time

simulations of the corresponding ROMS and the original system models (with full DOF).

In Chapter 3, the generation of nonlinear ROMS from FE based descriptions is demon-

strated through the application to a nonlinear rotating beam, which is a highly idealized

model for a helicopter rotor blade. First, the nonlinear FE model of a rotating beam is gen-

erated and converted into a truncated (but still large—scale) modal form that is convenient

for the NNM analysis. The invariant manifold equations are formulated, and a numerical

collocation method is used to obtain the solution of the NNM invariant manifold for the

fundamental flapping mode of the beam. This invariant manifold is used to construct a

nonlinear single DOF ROM, which is subsequently used for a Simulation study. Note that

the results of Chapter 3 have been recently published [35].

In Chapter 4, the development of NNMs, as needed for the individual substructures is first

reviewed. The associated invariant manifold equations, parameterized by modal position

and velocity, are formulated, and the numerical collocation method is reviewed, since it

allows one to obtain the solution of the NNM invariant manifold. Then, the procedures

for the fixed-interface nonlinear CMS are described. A five—DOF spring-mass system and a

forty-one-DOF spring-mass system are used to demonstrate the effectiveness of the method,

via direct time—simulation comparisons of different ROMS.

Chapter 5 offers a summary of the contributions of this research to the field of nonlinear

structural dynamics, along with a discussion of potential areas for further work in this area.
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CHAPTER 2

Comparison of Methods for

Constructing Invariant Manifolds for

Nonlinear Normal Modes

2.1 Introduction

In linear vibration theory one can decompose a general free vibration response as a linear

combination of the fundamental motions (modal motions) that take place on the eigenspaces

of the system. These motions are invariant, that is, if one initiates a purely modal response,

the system remains in that mode for all time. The works of Rosenberg and Atkinson ([6]

and [7]) were the pioneering works which extended the idea of fundamental motions to

nonlinear systems. In those works, nonlinear spring-mass systems with two degrees of

freedom (DOF) were studied. Due to special symmetries possessed by the systems, they

were able to construct linear modal-constraint relations, the attendant nonlinear natural

frequencies, and the stability of each nonlinear mode in terms of its amplitude. Rosenberg

summarized his works ( [6], [8], [7], [9], [10], [11]) on normal mode vibrations of nonlinear

systems in [12], in which a fundamental definition of nonlinear normal modes (NNMS)

for multi-DOF systems was given. In that work the concepts of similar and non-similar

modes were introduced. Caughey et al. ([14]) studied similar normal modes and their

bifurcations in terms of system parameters for two-DOF nonlinear conservative system,
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based on Atkinson’s work ([7]). Rand et al. ([15]) studied the general class of two-DOF

nonlinear conservative systems. In that study, they were able to determine the number and

stability of periodic motions of which the non-similar modes were special cases and also

studied the bifurcation of the periodic motions in terms of system parameters. Vakakis

([16]) studied the non-similar modes of two-DOF nonlinear conservative systems, where

the construction of the non-Similar modes exploited the conservation of energy.

Shaw and Pierre ([70] and [20]) generalized the definition of NNMS by using concepts

from invariant manifold theory, which encompassed a wide class of quite general nonlinear

systems. The technique was constructive and allowed for traveling wave (that is, complex)

and damped NNMS. Boivin and co-workers et al. ([28], [29], [71]) extended the construction

of the single—mode NNM manifold developed by Shaw and Pierre to the multi—mode case,

which allowed for the dynamic interactions among a subset of nonlinear modes of interest.

A summary of these works by Shaw, Pierre, and coworkers ([72], [73], [41], [28], [29], and

[71]) can be found in [74]. In these papers, the solution of the invariant manifold equatiosn

were sought in terms of locally valid asymptotic power series expansions.

Pesheck et al. ([33]) developed a numerical method for solving the invariant manifold

equations, such that the solution, while not analytically available, was valid over a relatively

large amplitude range. An added feature of this approach is that the nonlinear terms

are not limited to being smooth functions, which allows for extensions to more general

classes of problems ([36]). Even though the Galerkin method gives accurate solutions, the

computational cost of acquiring solutions is quite expensive, especially when one attempts

to generate multi-mode models ([75]). This motivated the application of the collocation

method, which significantly reduces computational costs, but does not sacrifice much in the

way of accuracy ( [76], [77], and [78]). This method has been applied in [35] to study the

dynamics of a finite-element model of a rotating beam. In the forthcoming work of Jiang

et al. ([42]), the Galerkin method developed by Pesheck et al. ([33]) has been generalized

to construct accurate multi-mode manifolds that are able to capture internal resonances,

and this method is applied to a model of a rotating beam.

14



In this chapter, we develop two alternative methods for the numerical solution of the

single-mode invariant manifold equations, and offer a comparison of the various methods

that have been used in this and previous studies. The new methods are Galerkin-based,

in the same spirit of that developed in [33], except that the equations are formulated in

terms of modal position and velocity, instead of modal amplitude and phase. The first new

method uses global basis functions and obtains the unknown coefficients for the manifold

solution using the Galerkin method; this method is described in section 2.3.2.2. The second

new method uses a local patchwork of basis functions, and the unknown coefficients for the

manifold solution are obtained using the collocation method; this method is described in

section 2.3.2.4. In terms of computational time, both new methods have advantages over

the approaches used in [33] and [35]; this is summarized in section 2.3.3.

This chapter is outlined as follows. The formulations for the NNM invariant manifolds

are first introduced. The power series expansions methods and the weighted-residual

type methods, i.e., Galerkin and collocation methods, are described in detail, for both

amplitude—phase and displacement-velocity formulations. The computational effort

associated with each approach is then discussed, and the accuracy of each approach is

considered through direct comparisons in general terms and for calculations carried out

for two example problems. Some conclusions are drawn at the end of the chapter.

2.2 Formulations of NNM Invariant Manifold

We begin with a general discrete representation of the vibrations of a nonlinear structural

system obtained either by a finite element model followed by linear modal expansion, or

by a Rayleigh-Ritz approach. We assume that the system at linear order is undamped.

(This assumption greatly simplifies the problem, but can be relaxed, in principle.) In this

case, the equations of motion for a Q-DOF system are uncoupled at linear order and can
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be expressed in the form:

Ifi+An=f(n,ii) (2.1)

where I is the identity matrix, A the diagonal matrix of squared linear natural frequencies,

f (17, 1'7) a vector of nonlinear forces, 77 the modal position vector, and 7'] the modal velocity

vector. The component form of equation (2.1) is given by

777i+wi2 7h = fiMjflij) (2-2)

for i,j=1,2,3,...,Q

where w,- is the linear natural frequency of mode 2' and Q is the number of retained linear

modes.

2.2.1 Invariant Manifold Equations in Terms of Modal Position

and Velocity

The fundamental concepts for nonlinear normal modes of discrete, conservative, nonlinear

systems were laid out by Rosenberg ([12]). Shaw and Pierre ([70], [20], [21]) used

the theory of invariant manifolds for dynamical systems to generalize the concept of a

nonlinear normal mode to a wide class of systems, including continuous systems and

systems with dissipation and gyroscopic terms. Boivin et al. ([28], [29], [71]) extended

the single-nonlinear-mode construction developed by Shaw and Pierre to the multi-mode
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case, which is able to capture the dynamic interactions among a set of nonlinear modes of

interest. A summary on the initial series of works by Shaw, Pierre, and coworkers ([72],

[73], [41], [28], [29], and [71]) can be found in [74]. Below we provide a Short account of

the geometric definition of NNM invariant manifolds and methods of constructing single-

and multi-mode versions of NNM models.

2.2.1.1 Singe-Mode Manifold Formulation

For present purposes one can consider an invariant manifold to be a low dimensional surface

living in the system state space, such that motions initiated on the surface will remain on

it for all time. This concept is the key to obtaining a reduced order NNM model, that is,

a lower-dimensional dynamical system, specifically by restricting the equations of motion

to this surface. In an N-degree-of-freedom, undamped, nongyroscopic, linear vibratory

system, individual modal motions are synchronous responses that take place on a two-

dimensional plane (linear eigenspace) in the 2N-dimensional system state space. In this

case the response of the system is a time-harmonic standing wave in which all degrees

of freedom reach their extrema and pass through zero simultaneously. Such motions are

governed by two first-order linear differential equations or, equivalently, by one second-order

linear differential equation, which in this case is a simple undamped oscillator. For linear

systems with gyroscopic and/or general dissipative terms this concept is also applicable,

however the motions taking place on the invariant planes are generally nonsynchronous,

and represent traveling wave responses of the system. This concept can be extended to

nonlinear systems as well, however, the motions generally take place on non-planar surfaces,

and the motions are governed by two first-order nonlinear differential equations, or by one

second—order nonlinear differential equation. For smooth nonlinear systems, the manifolds

are curved surfaces that are tangent to the manifolds (eigenplanes) of the linearized systems.

In [74], a definition for NNMS based on invariant manifolds was offered, as follows:

A normal mode for a nonlinear system is a motion that takes place on a two-
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dimensional invariant manifold in the system’s phase space. This manifold

passes through the stable equilibrium point of interest and, at that point, is tan-

gent to a two-dimensional eigenspace of the system linearized about that equi-

librium. On this manifold, the system dynamics are governed by an equation

of motion involving a pair of state variables; that is, it behaves like a single-

degr‘ee-of-freedom system.

Based on the above definition, the construction of the nonlinear-mode manifold is straight-

forward. In order to search for a particular individual NNM, it is assumed that the NNM

manifold is parameterized by a single modal position-velocity pair corresponding to the

mode of interest, referred to as the master mode. This is accomplished by using the fact

that for a NNM response all of the remaining modal positions and velocities are slaved

(constrained) to this master mode. For the kth nonlinear mode, we take uk 2 71k, and

vk = Ilk- as the master states. The remaining Slave states are expressed as

772' = Xikast’H = Xif’lkflik)

7h = Witt-Wk.) = 33(77ka'7ik)

for i = 1,2,3,...,Q, i 74 k.

Equations (2.3) and (2.4) constitute a set of constraint equations that are to be determined.

The constraint functions in equations (2.3) and (2.4) are obtained by an invariant manifold

procedure that generates equations that can be solved for the unknown constraint relations.

The process begins by taking a time derivative of the constraint equations, yielding
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. 8X, , 0X, ,

- = ' . — i. 2.5
7h auk uh + aUk 1A ( )

.. (913 . BY .
r), — 0a]. uk + —ka vk (2.6)

for i:1,2,3,...,Q, 2'75 k.

The time dependence in these equations is eliminated by using the following relations:

ti), = vk, v'k = 7)), = —w,%, 11k+fk(nj,7'7j), and 77',- = ‘wi2 n,+f,-(r)j,7'7j). Then, the constraints

(equations (2.3) and (2.4)) are substituted in the resulting expression everywhere in place of

the slave state variables, resulting in a set of partial differential equations for the functions

(X,(uk, vk), Y,(uk, vk)). This set of 2Q - 2, time-independent, partial differential equations

govern the geometry of the kth manifold, and are given by

8X,- 8X, , 2

Buk “I + 81—ik (—wk uk

+fk(X',Yj, ltk,'Uk)) (2.7)

BY BY'

w? X.- + Miner... vi.) = 57212;. + 5—7 (we? ”is

+fk(Xj,YJ-,uk,vk)) (2.8)

for i,j:1,2,3,...,Q, i,j;£ k.

These equations are not solvable in closed form (except in very special cases) and meth-

ods for obtaining approximate solutions for X.1- and Y, are described in detail in this chapter.
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2.2.1.2 Multi-Mode Manifold Formulation

Single-mode motions are not general motions, since they take place on two dimensional

manifolds in the system state space. In structural dynamics, we are also interested in

more general motions in which more than a single mode participates. For linear systems,

multi—mode motions take place in the Space spanned by a set of two-dimensional planes

that are the linear eigenspaces of the modes of interest. Furthermore, using superposition,

multi-mode motions of linear systems can be obtained through a linear combination of

responses of the individual modes of interest. For nonlinear systems, multi-mode motions

cannot be obtained through the superposition of individual NNM responses, since the

coupling between the NNMS cannot be accounted for in this manner. However, the idea

of a nonlinear Single-mode manifold can be generalized by defining a nonlinear multi-mode

manifold to be a multi- dimensional surface that is tangent to the multi-dimensional linear

eigenspace of the corresponding linear modes of interest.

Based on these ideas, in [74] the following definition of a nonlinear-multi mode was offered:

A nonlinear ll/I-mode invariant motion of a system is a response that takes

place on a 2M-dimensional invariant manifold in the system’s phase space;

the manifold passes through the stable equilibrium point of interest, and at that

point it is tangent to a 2M-dimensi0nal eigenspace of the system linearized about

that equilibrium (representing M linear modes). On this manifold, the system

dynamics are governed by ll”! pairs of state variables; that is, it behaves like an

M’ -degree-0f—freedom system.

The procedure for constructing the multi-mode manifold is Similar to the procedure given

in section 2.2.1.1, except that the manifolds are now parameterized by 2M variables. Note

that the Single-mode manifold is a special case of the multi-mode manifold with M = 1.

Specifically, we take uk 2 71k: and vk = 771:» for h 6 SM, where SM is a set of indices

that describes the modes of interest (master modes). For example, if one is interested in
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constructing a model that captures the interactions between the second, third and fifth

nonlinear modes, then SM = {2,3,5}. The sets {uk} and {vk}, k 6 SM, are denoted by

uM and vM respectively. The remaining slave states are expressed as

m = Xi(UM, vM) (2-9)

le'umwm (2.10)H

7h

for i=1,2,3,...,Q, re SM.

The procedure described in section 2.2.1.1 is again applied here by taking a time derivative

of the constraint equations, eliminating the time dependence by using the default rela-

tions, the equations of motion of the master modes, and the equations of motion of the

slave modes, and substituting the constraints every where in place of the slave state vari-

ables, yielding the following set of 2Q — 2M partial differential equations for the constraint

functions:

 

Yi = Z [351(ka + %
(_w% “k

keSM

+fk(Xj»}/ja"-Ika ”kl” (2.11)

“Wt-2 Xi + fr(Xja33~‘llkvl"k~) I Z [Silly/f + 37):: (“9f “k

keSM ,

+fk(inYj»“k~1/’l.~.))]
(2.12)

for i,j=1,2,3,...,Q, i,j ¢ SA].

AS in section 2.2.1.1, closed-form solutions do not generally exist. The method for
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obtaining approximate solutions for X,- and Y,- in terms of power series expansions is

reviewed in section 2.3.1.2.

2.2.2 Invariant Manifold Equations in Terms of Modal Ampli-

tude and Phase

Pesheck et al. ([33]) developed an alternative form of the single-mode invariant manifold

equations that are expressed in terms of modal amplitude and phase. The procedure was

similar to the formulation in modal position and velocity, and yields results that are, of

course, equivalent. Recently Jiang et al. ([42]) have extended this formulation to the

multi-mode case. These formulations are described in the following sections.

2.2.2.1 Singe-Mode Manifold Formulation

The coordinate transformations used here are typical of those used in the method of averag-

ing ([79]), and are similar to those used in the method of variation of parameters, since they

employ a time-varying amplitude and phase. They relate the master modal displacement

and velocity (nk, 77k) to the master modal amplitude and phase (ak, (bk) via the following

invertible transformation:

77k : ak cos((,bk) (2.13)

ifk = —ak wk 8111(Ok). (2.14)

Hence, the constraints for the slave modes, equations (2.3) and (2.4), can be expressed in

term of at and 3,, as

22



7h = PAM-Jim) = XiUIt-(a-k,$k)fl7'i.-(ak,¢k)) (2-15)

7h = Qi(aka¢kl = K(72k(ak»¢k)ifik(ak,¢kll (2.16)

for i: 1,2,3,...,Q, 1'72 k.

Using equations (2.13) and (2.14), the equation of motion governing the master mode can

be expressed as two coupled 1st order ODES in ak and risk, as follows,

— .P', -, , . -dk = fi.( 1le :1: <31.) 8111031.), (2.17)

k

.- .P', ',a.,ct). coscb.@k : wk_fA(JQ] i. A) (A), (2.18)

“k. wk

 

 

for j=1,2,3,...,Q, jaé k.

In order to determine the slave constraints, the procedure is identical to that for the (uk, vk)

formulation, adapted to these coordinates. Using steps similar to those in equations (2.5)

and (2.6), we obtain

  

, 3P,- , 0P,- ,-

4 ,- = — .. — . 2.19
7)! aak (1k + 00k Qbh ( )

_ 8Qi . 3Qz‘ '
r), — Oak "k + 00k¢k (2.20)

for i: 1,2,3,...,Q, i 7f k.
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The time dependence in these equations is eliminated by using equations (2.17), (2.18), and

r); 2: wot-2 771+ fi(7lj, 17]). Then, the constraints (equations (2.15) and (2.16)) are substituted

in the resulting expression everywhere in place of the slave state variables, resulting in a set

of partial differential equations for the functions (Pi(ak, (pk), Q,(ak, pk». This set of 2Q -

2, time-independent, partial differential equations govern the geometry of the kth manifold,

and are given by

  
0Pi(-fk(PinjJI/e~¢kl Sinf‘r’lkl)

  

 

 

Qi = B
("k wk

8P, fk(Pj9Qj‘a'k3¢k) COS<QDk>

+86% (wk - ak wk ) (221)

, (9 ‘ —fk(P*Qaa“¢) SIII(¢.)

_w’12Pi+fi(Pjanaakv@k) = a—Q—I( J J k A A )
ak wk

' .P'. ',,..‘,.‘I.,argue _ fi( 3 Qgfli M) (080514)) (2.22)

00h. Gk Wk

for i,j:1,2,3,...,Q, i,j;£ k.

These equations are more complicated than the invariant-manifold governing equations

represented in modal position and velocity, and have potential singularities at zero modal

amplitude. However, as mentioned in [33], the constraint equations of the slave state

variables are periodic in ct], with period 2n, and therefore a Fourier basis can be used for

shape functions in the (bk direction. The methods for obtaining approximate solutions for

P,- and Q,- are described in section 4.2.2.

2.2.2.2 Multi-Mode Manifold Formulation

The multi-mode manifold formulation in terms of modal amplitudes and phase angles can
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be developed in the same manner as was done for the case of modal displacements and

velocities. To avoid redundancy, only the important steps are given here. The trans-

formations relating the master modal position and velocity (77k, in.) to the master modal

amplitude and phase (ak, (bk) are given in equations (2.13) and (2.14); these are employed

with k E SM, where SM has the same definition as before. The sets {ak} and {m} are

denoted by aM and d)M respectively. The remaining slaved states are expressed as

7h = PilaMs (PM) (223)

7h = Qi(aMa (PM) (224)

for i=1,2,3,...,Q, i¢ SA].

Equations (2.17) and (2.18) are still valid with j if SM. Next, we take a time derivative of

the constraint equations, eliminate the time dependence by using the first—order equations

of motion for the master and slave modes, and substitute the constraints every where in

place of the slave state variables. This yields the following 2Q — 2M equations for the

multi—mode invariant manifolds:
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Qt

_ Z [911 (-fk(Pj»Qj.ak.ak) sums“)
 

 

 

 

kESAI (90k wk

+11 (Wk _ fi.( JQJ a}. <91.) C05(C’A))] (225)

30k ak Wk

—w,-2 P7; +fi(Pj,Qjaak,¢k)

: Z [991(-fk(Pinjiak~¢L-) SinI¢kl>

kE 3111 80 k
wk

+6121 (wk _ fi( JQJ 0]. Oi.) 009090)] (2.26)

dcfik ak wk.

for i,j=1,2,3,...,Q, i,j¢ SM.

As before, closed-form solutions do not generally exist. A method for obtaining accurate

approximate solutions for the P,- and Q,- is described and implemented on example systems

in [42].

2.3 Solution of the Invariant Manifold Equations

In general, solutions of the invariant-manifold equations cannot be determined in closed

form, since such a solution represents a family of solutions to the original equations of

motion. However, in some special cases involving symmetries, closed-form solutions, which

typically represent flat manifolds, can be determined ([14]). More generally, though, the

manifolds are not flat, and other approaches are required (such as those described in sections

2.3.1 and 2.3.2). In the early works by Shaw and Pierre ([70], [20], [21]), approximate

solutions for the NNM manifolds of smooth systems were obtained in the. form of asymptotic
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series expansions. Shaw, Pierre, and co—workers ([72], [73], [41], [28], [29], and [71]) used

this approach to solve a variety of problems, as did others, notably [26], [27], [30], [18], [16],

and [19]. However, the asymptotic series approximation of the manifold is only locally valid;

therefore, if one tries to simulate a NNM model at large amplitudes, the time response of

the NNM model will deviate from the time response of the original model. The primary

difference is in the frequency of oscillation, which results in a phase drift.

AS mentioned in section 2.1, the work by Pesheck et al. ([33]) employs a Galerkin method

to solve the invariant manifold equations, which allows one to obtain accurate approximate

individual NNM manifolds up to large amplitude ranges. This approach is also not limited

to smooth systems, so that the nonlinear terms can be more general functions. However, the

computational cost of acquiring such solutions can be quite expensive. Therefore, efficient

means of computing coefficients in the Galerkin expansions were sought and, in particular,

the collocation method has been found to provide accurate solutions with much greater

computational efficiency.

The series expansion method is reviewed briefly in section 2.3.1, for both individual

and multi-mode NNM models. The Galerkin and collocation methods for individual

NNM models are reviewed in section 2.3.2. However, the Galerkin method used to

solve multi-mode NNM manifolds, developed by Jiang et al. ([42]) is not reviewed here.

Interested readers are referred to [42].

2.3.1 Solution by Asymptotic Series Expansion

A good summary of the series expansion method for individual and multi-mode NNM

manifolds was given in [74]. A brief version of the method is given here. To use the series

expansion method, the nonlinear terms in equation (2.2) are assumed to be second and

third degree polynomials in the modal displacements. This assumption can be generalized
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such that velocity-dependent and mixed nonlinear terms are included, but the solutions

will be more complicated ([20]). Therefore, the form of the forces f,- in equation (2.2) is

given by

Q Q Q Q Q

f2- : —ZZa.pqnpnq—ZZZa-pqrnpnan. (2.27)

p=1q=p p=lq=PT=q

2.3.1.1 Solutions for Individual NNM Manifolds

To construct the single—mode manifold, approximate local solutions of X,- and Y,- can be

found using a power series expansions in terms of uk and vk as

X, = afiuk + agivk + aging, + allaukvk

+agivg + aging + afiuzvk + agiukvg + agivg + . .. (2.28)

Yz‘ = bib-u], + blig’vk + bitui + bitukvk

+b§ge§ + (£5,172 + bani/e, + b§,,ukeg + 145,212+ . .. (2.29)

The a’s and b’s are the unknown coefficients to be determined, and there are 9 x (262 — 2)

of them. These coefficients can be determined by substituting equations (2.28) and (2.29)

into equations (2.7) and (2.8) and collecting like powers in uk and 12),. This yields a set

of linear equations for the unknown coefficients, which can be solved successively. The

first-order (linear) coefficients are solved for first, and they are all found to be zero. This

is because equation (2.2) is given in terms of the linear modal coordinates, and therefore

the linear parts are already uncoupled, and must remain so since the linear model satisfies

invariance for its modes. Next, the 3 x (262 — 2) second—order coefficients are obtained, and

they are required in the solution of the 4 x (2Q — 2) third-order coefficients (as is typical

in expansion solutions). General formulas for the as and b’s can be found in [74].
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Once all of the expansion coefficients are obtained, the X’s and Y’s, which describe the

slaved modes, are known functions of the master states (uk, vk). For i = k, these known

functions are used to express fk in equation (2.2) in terms of only uk and 22),, rendering a

single-DOF oscillator as the reduced-order-model for the kth NNM.

The coeflicients of the polynomials in the expansions become Singular when there exists

low order resonances between modes. For the quadratic and cubic terms, 1:1, 2:1, and/or

321 resonances ([79]) between the linear natural frequencies of the master and slave modes

will give rise to these Singularities. In these cases there exists nonlinear coupling such

that energy is exchanged among the resonant modes, and therefore these modes cannot

be dynamically separated from one another, as is required for the construction of an

individual NNM model. We should note that in this case the response of an individual

NNM is not stable, and any perturbation will cause the response to leave the neighborhood

of the NNM manifold, as the energy flows from that mode to others (and in most cases,

back to that mode again at a later time). In these situations, the multi-mode formulation

described in section 2.2.1.2 is required, with the necessary inclusion of the resonant modes.

The series solution of these multi-mode manifolds is described in the next section.

2.3.1.2 Solution of Multi-NNM Manifolds

Here there are M pairs of master displacements and velocities. The assumed forms of the

slave constraints X,- and Y,- in terms of uk and U}, are given by
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k k k.l k,l k,l
Xi(uM,vM) = 2 (anti), + “11%) + Z Z ((23,2-1tkuz + a4’ikaUl + 05,11‘kvl)

kESAy ICES)” [65]”

+ Z Z Z (aéj‘qukuluq + aéj‘qukujvq + agj’qukvlvq

ICES)” lESM (168114

+ ugli’qvkvlvq) + . .. (2.30)

eluM. vM) — Z ( Link + gel/k) + Z Z ( 3,,U'ku‘i + 4,1-urcv1+ 5,2-vkvi)

kESM ICES!” [63M

k 1, k1. '.l.

+ Z: Z Z (b6:z‘ qukuluq + biz-qukulvq + bggi'qukvlvq

kESAJ 1651” (165M

+ bgjg‘qvktqvq) + . .. (2.31)

The as and b’s are the unknown coefficients to be determined, of which there are (2M +

3M2 + 4M3) x (26.2 -— 2M ). These coefficients can be determined by substituting equations

(2.30) and (2.31) into equations (2.7) and (2.8) and collecting like powers in the master

displacements and velocities. This yields a set of (2M + 3M2 + 4M3) x (2Q - 2M) linear

equations for the (2M+3M2 +4M3) x (262- 2M) unknown coefficients, which can be solved

at successive orders. Since the multi—mode invariant—manifold equations are formulated in

terms of the linear modal coordinates, the linear terms in the above expansions are again

zero. The formulas for the remaining a’s and b’s can be found in [74].

The coefficients a’s and b’s in equations (2.28) and (2.29) of the individual NNM manifold

formulation become Singular when w,- : wk and/or to,- : 2wk and/or w,- = 3%. This is

a flag indicating that there exists 1:1, 2:1, and/or 3:1 internal resonance(s) among slave

modes 2' 75 k and master mode is: ([79]). In this case there exists energy exchange among the

resonant modes and the motions necessarily take place on higher-dimensional (dimension

greater than two) manifolds. Once all of the participating modes in the internal resonance

are included in the set SM, the singularities in the coefficients a’s and b’s will be removed (at

least up to polynomial degree 3) in uk and 12),. Then we obtain the multi-mode invariant

manifold that captures the internal resonance, and allows energy exchange among the
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master modes.

Similarly, there are possibilities that the coefficient a’s and b’s in equations (2.30) and (2.31)

of the multi-mode manifold formulation become singular when co, 2 wk and/or to, = 2wk

and/or w,- = 3a)];C and/or w,- : [wk ital] and/or to,- = |2wk ital] and/or to,- 2 [wk :lzwl :Ewml.

This is another flag indicating that there exists 1:1, 2:1, and/or 3:1 internal resonances

among a slave mode i d SM and a master mode k, l, m E SM- The singularities in the

coefficients a’s and b’s can be removed at least up to polynomial degree 3 (third order) in

uk and 2);, by redefining the new set SM such that it includes those extra modes.

Once all of the expansion coefficients are obtained, the X ’s and Y’s, which describe the

slaved modes, are known functions of the master states (uk, vk), where k E SM- For i = k,

these known functions are used to express fk in equation (2.2) in terms of only the uk

and vk, rendering a M-DOF oscillator, which is the reduced—order—model that includes the

desired NNMS.

2.3.2 Solution by Galerkin and Collocation Methods

The Galerkin and Collocation methods are techniques that employ a. variational formulation

to solve for discrete approximate solutions of continuous problems. Both methods belong

to the general class of techniques known as weighted—residual methods. A good account of

the theoretical aspects of these methods, and examples of how to apply them to engineering

systems, can be found in [77]. Many useful guidelines and rules of thumb on how to use the

methods effectively can be found in [78]. A brief summary of the methods is given here.

Consider the operator equation of the form
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A(u(a:)) = f(;1:) (2.32)

in an open domain Q with apprOpriate homogeneous boundary conditions, where :c E Q is

the independent variable, A is an operator, u(r) is the dependent variable to be determined

such that it satisfies the operator equation and the boundary conditions, and f (:13) is a

known function that represents a driving term. In the weighted-residual method, u(:r) is

approximated by uN(a:) in the expanded form

N

um e um) = Z ea) (2.33)

i=1

where {dz-(12)} are elements of a complete set of basis functions that are differentiable up to

the order of differential operator A and satisfy all homogeneous boundary conditions, and

the c, are constants to be determined. Substituting equation (2.33) in (2.32), we obtain

the residual, RN

RN03, c,) Al'urvtv» — f(~’r), (1334)

which is generally not zero, since uN(r) is an approximation of u(.r). Note that uN(a:) lies

in a finite-dimensional space since uN(;1:) is represented by a finite linear combination of

elements of the basis. However, u(a?) lies in infinite—dimensional space, since to represent

u(.r) all elements of the basis are generally required.

If {tb,(:r)} is a complete set of basis functions (possibly different from {gb,-(.r)}) in the space
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that A(u(;r)) and f(:r) live in, then by projecting RN(a:,c,-) onto am) using the usual

L2(Q) inner product, and equating the resulting terms to zero, we obtain

<RN(4EaCi)e’¢I’A-.($)> = AR.~'($.Ci)'¢’k(I)d$ = 0 (235)

If the set {'zl',(:r)} is an orthonormal basis, 7‘}, = < RN(:r, oi), u’!k(a:) > is the representation

of RN(:r, Ci) in that basis. We then have N algebraic equations with N unknowns, the {C1}.

Solving for the {C1} that satisfy equation (2.35) would make RN(a:,c,-) small over Q. In

the limit N —) 00, RN(r, ci) must go to zero. This method is called the weighted-residual

method.

If one chooses different basis functions for expansion and projection, 21),, # pk, the approach

is known as the Petrov-Galerkin method. If one chooses the same basis functions wk 2 (pk,

it is known as the Bubnov-Galerkin method, or, more commonly in the West, the Galerkin

method.

If one chooses "l’k : 6(r —:rk), where 6 (:13) is the Dirac delta function and it), are N selected

points (called collocation points), this becomes the collocation method. The collocation

method will force the residual RN(a:, c2) to be zero at points it), in f). This greatly speeds

up the calculations, due to the simplification of the integrals.

In the following sections, the Galerkin method will be applied to equations (2.21) and

(2.22) in a domain (1;, E [0,a0] and dk E [0,27r], and also to equations (2.7) and (2.8) in

a domain uk 6 [—Ub, U5] and vk E [—Vb, Vb]. The collocation method will be applied to

equations (2.21) and (2.22) in a local domain defined later, and also to equations (2.7) and
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(2.8) in another local domain defined later.

2.3.2.1 Galerkin Method with Global-Basis Functions in Modal Amplitude

and Phase Angle

Pesheck et al. ([33]) applied the Galerkin method to solve equations (2.21) and (2.22) for

P2: and Q,- in the domain (1;, E [0, no] and a}, E [0, 2r] using an expansion of basis functions.

A brief summary of the approach in [33] is reviewed here.

The unknown position and velocity constraints (P,, (2,) are expanded as a double series in

the master modal amplitude ark and phase (bk as

Na N92

, l.-

Pilawo = EEC/”nausea (2.36)

l=1m=1

Na Ne 1

(Maker) = ZZDi’mUzJ—nlakaek) (2-37)

l=1rn=1

for i=1,2,3,...,Q,i71- k,

where sz‘m and Dg’m are coefficients to be determined, T1,",(abqbk) and Ul.m(ak~ 3),.) are

known basis functions. The basis functions T1,",(ak. m.) and Ul,,,,(ak, (pk) are products of

selected basis functions in the (1k and (bk directions, and they are defined over the domain

61k E [0, a0] and (pk E [0, 2n]. Na and Ng are the number of shape functions used in ak and

Qk respectively. Since. (pk has period 2rr, the basis functions in the (1);, direction are chosen

to be the Fourier basis, {1, cos(ncf)), sin(no)}. The basis functions in the a}, direction

are Chosen to be polynomial functions, L1(ak). Therefore the form of T17m(ak,q)k) and

Ul,m(ak. (bk) are given by
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Tl.m(aka¢k) = Llialc) 608((771-1)¢k) (2.38)

Ul,m(akv¢>k) = L1(ak)sin(m¢k). (2.39)

It can be shown that for a conservative non-gyroscopic system to posses synchronous mo—

tions only the cosine functions are needed for basis functions in a), for Tim» and only sine

functions are needed in (pk for Ul,m- The polynomial functions L,(ak) are chosen to be a

set of polynomials defined over the domain ak E [0, a0] with zero value and zero slope at

ak = 0, which will satisfy the conditions that the invariant manifold pass through the ori-

gin (ak, pk) = (0,0) (the stable-equilibrium point) and be tangent to the two-dimensional

eigenspace at that point . Also, for convenience, they are chosen to satisfy the orthogonality

condition

“0 (1.", 1 for 'l :j

/ —2- Li(ak) Lj(ak) dak = (2.40)

0 (10 O for i 75 j,

which can be achieved by starting with a set of polynomial functions

“k 2 0k 3 “k
{(—) ,(--) .(——

a0 a0 00

of the L1(ak) can be found in [33]. Equations (2.36) and (2.37) are substituted into the

)4, }, and then applying the Gram—Schmidt process ([80]). The form

invariant-manifold governing equations, equations (2.21) and (2.22), and each of these is

projected onto each basis function using the Lg-inner product over the entire domain.

This leads to
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or, _
0 ___ / (1_2 )Up.q ‘ak EDI,n'liU1,111++20%,.111 l. n( fk a}; SiIl(¢1))

a

 

 

k‘f’k 031,171 l,m 8(1k(wk

0T .

+2: Cl171 lm( l. 1.1.111. -M) dak (lgbk (2.41)

lm wk

1 1 8U1 —f a sin (b )

0 = / <—,> qu ..aiZC’’3—11... at f.+ZD aaml “j, (k)
“A ilk (’0 l,m lm k k

0U . .

+ 2: D1m[m( z. ,wk — ————f]‘(083%)) dak (lpk (2.42)

lm. wk

for i: 1,2,3...-,Q, 1% k;

The integrations in equations (2.41) and (2.42) are computed numerically. Therefore, equa-

tions (2.41) and (2.42) result in a set of 2(Q — 1)N11N¢, nonlinear algebraic equations in the

C’s and D’s. For simplicity in referring to the method subsequently, this method is named

“the global a —— ct approach”.

Note that for the special case of a conservative non-gyroscopic system with only cubic

nonlinearities in the modal positions, all harmonic terms in the expansion of basis functions

for each state are needed. Therefore, the number of nontrivial coefficients remains 2(Q —

1)NaN¢. This fact is observed by performing numerical experiments. In contrast, for the

global u — v approach, this special case results in a reduction in the number of coefficients,

as described in section 2.3.2.2.

Once all of the expansion coefficients are obtained, the PS and Q’s, which describe the

slaved modes, are known functions of the master states ((111,651). These known functions

are used to express f1. in equations (2.17) and (2.18) in terms of only ak and (111., rendering
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a single-DOF oscillator as the reduced-order-model for the km NNM.

2.3.2.2 Galerkin Method with Global-Basis Functions in Modal Position and

Velocity

In this section, we apply the Galerkin method to solve equations (2.7) and (2.8) for X,-

and Y,- in the domain uk 6 [—U1,,U1,] and v1, 6 [—V1,, V1,] using an expansion of polynomial

basis functions. For nonlinear structures, the form of nonlinear terms is often a polynomial

function, and solving the invariant manifold equations in modal position and velocity would

have advantages over those in modal amplitude and phase angle. This is so Since the terms

that are necessarily zero from symmetry , i.e., the trivial terms, are easily identified and can

be removed from the expansion of basis functions. Moreover, the integration of polynomial

functions can be computed exactly using Gaussian integration, while the integration of

sine and cosine functions in equations (2.41) and (2.42) cannot be computed explicitly.

Therefore, the integrands in equations (2.41) and (2.42) have to be evaluated at many

points, which in turn increases the computational effort of the procedure.

The unknown position and velocity constraints (X1, Y1) are expanded as a double series in

the master modal position 11;, and velocity vk as

Np,u Npgv l

X1('tik,vk) = Z Z Czi’lel/I1,m(uk,vk) (2.43)

[:1 m=1

Nan Nprv
1’.

YiWieivk) = Z ZDimLAIIJanaUk) (244)

1:1 m=1

for i = 1,2,3, ...,Q, i 729 k,

l,m l,-m . .

where C,- and DI. are to-be-determmed coeffic1ents, and the L1,",(i.i.k,vk) are known
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basis functions. The basis functions L1m('u1,v1.) are chosen to be two—dimensional

polynomial-basis functions in uk and vk such that L1g.,,,(0,0) = 0, (31m (0 0): 0,

(1.1

and #(0,0) = 0 , which insure that the invariant manifold passes through the ori-

Uk

gin (v.1, v1.) = (0, 0) (the stable equilibrium point) and is tangent to the two-dimensional

eigenspace at that point. The construction of LM1,m(u1., U1.) is obtained by performing the

tensor product of two sets of polynomial functions given by

 

(_l1 t_.l12 (11. 3 11.1. 1_1

L = 1, —— — ,... 2.45

(I’kb (L7. 2 “A: 3 ”k m—l
[I : Q 0.. 0.. O I

v . u .

The terms 1, (vi), and (F2) are eliminated from the set {LAI1’m(uk,vk)}, since they do

not satisfy the boundary conditions at the origin. The Gram-Schmidt process is applied

to the reduced set {LM1,,,,(u1., 111)}, such that the following orthogonality conditions are

satisfied:

Vb Ub 1 1 1 for [iii 2 pg

/ f (U)(V ) L111",(u1, i1.) L'llpq(u1., t1.) du1. (111.: (2.47)

Vb Ub b b 0 for lrn. sé pq.

Samples of the {LA/1,",(u1, 111)} can be found in Appendix 2A. Equations (2.43) and (2.44)

are substituted into the invariant-manifold governing equations, equations (2.7) and (2.8),

and each of these is projected onto each basis function using the Lg—inner product over the

entire domain. This leads to:
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1 1
lm

0 = f —, — LAI, — 0’ LM
u1..v1,( lb) (V1,) pq Z i l,m

(l-l-m.)yé2.3

1.171 8141311."; 1.171 CLAIM" 2

't' 2 Ci ’UkW 'i- 2 Ci jive—(-001: 1L1. + fk) dllk (ll/'1.

(l+m)¢2,3 (l+m)7é2.3

_ Yrq
: Fz‘ (2.48)

_ 1 1 , 2 1,171
0 _ (-U—) (V) LMW .e, 2 C, L111", — f,-

11.1.,v1. b b (l+m)7é2,3

Lm aLAIlJn [.m aLjubm 2

‘i‘ Z _ Di 1'1. ——(9Ti_1:_ + 2 Di w(—wk Ilk + f1) du1, d‘l’k

(l+m)¢2,3 (l+-m);£2,3

s Ff“ (2.49)

for i = 1,2,3,...,Q, i 79 k;

p :1""’1N1)‘u;

7

q :1,...,1‘\Ip.11;

and (p + (1) 7f 2, 3 .

The integration in equations (2.48) and (2.49) is computed numerically. Therefore, equa-

tions (2.48) and (2.49) represent a set of 2(Q — 1)(Np,.u]Vp,v — 3) nonlinear-algebraic equa-

tions in the C’s and D’s. For simplicity in referring to the method subsequently, this

method is named “the global u — 11 approach”.

For a conservative non-gyroscopic system to posses a synchronous modal response, some of

the C’s and D’s must be zero. The basis functions corresponding to such C’s are the ones

that are generated from
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{(1214), (3512(3). (“413(3), (“Avid—"1. (315(31. It,

31:3 36:23 “£233 $323 E5433 35533

I) . 11 ’U . U. . I} . ll . ‘ll . 11.. ”U . ”(1. U.

—‘— 5. <—" —* 5 i 2 —")5 —"—>3 —">5 —‘— 4 ——‘—>5 i— 5 415.-.}. (2.50)
Vb Ub Vb ’ Us Vb ’ Ub Vb ’ Ub Vb ’ Ub Vb

. ‘ , . I . 1’1. 1 1’1. 3 1’1. 5 1." .

where the elements 111 the set are linear in (—) , (—) , (———) , The basrs functions

Vb Vb Vb

corresponding to such D’s are the ones that are generated from

on,{1a)2,1u)3,(u_k,4,1u_k)5,_
Ub Ub Ub Ub

3'12 31 a2 3.23:2 n3a2 a4a2 322531;?

1‘14 ”_k 21:4 2121;“ £3114 3434 “4:524 251

Vb ’(Ub Vb ’Ub Vb ’Ub) V1, ’(Ub) v1, ’Ub) V1,) "'"} (' l

. , , v . v. v .

where the elements in the set are linear 1n (~15)0 —A 2 , (“villi

bVb ’Vb

the number of nonlinear algebraic equations to be solved for the remaining 0’5 and D’s is

(Q _ 1)(J’Vp‘u]\’rpyv "' 3).

, Therefore, in this case

For a conservative non-gyroscopic system with cubic nonlinearities, the additional C ”s and

D’s that correspond to l +m 2 an even number, would all be zero. Therefore, the number of

nonlinear-algebraic equations in the C ”S and D’s to be solved is about 15(6) - 1)(i’Vp,uNp,v —

3).

Once all of the expansion coefficients are obtained, the X ‘s and Y’s, which describe the

slaved modes, are known functions of the master states (111,111.). For i = it, these known

functions are used to express f1. in equation (2.2) in terms of only 111. and U17, rendering a

single—DOF oscillator as the reduced-order—model for the lath NNM.
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2.3.2.3 Collocation Method with Local-Basis Functions in Modal Amplitude

and Phase Angle (Annular Strip Representation)

In [33], Pesheck et al. mentioned that as the number of retained linear modes Q increases,

the computational time associated with solving equations (2.41) and (2.42) increases drasti-

cally. Therefore, they developed a new approach to solve the invariant manifold equations.

In this approach, the desired domain in the (L1 direction is divided into K small sections,

producing annular subdomains given by (:31. E [0, 27f] and a1. 6 [a1,j,a1.,j + Aak]. For each

subdomain, as before the shape functions in the $1. direction are chosen to be the Fourier

basis. However, the shape functions in the a1. direction are chosen to be piecewise linear

segments, which are accurate, providing the subdomains are sufficiently small. Therefore

P1(a1., (t1) and Q1(a1., (.21.) can be expressed over the jth interval as:

. 1,- ,.

Pilaka 991:) = Z 01""71,112(<lk» 01-)

1,171

NO 01 (11 -
l,m ‘ _ “,j

= c, __

2 l , < >
m=l

, a . — (1.,-

+C.2""(1 — i—Ei) cos((m — 1M) (2.52)
1' Auk

. l,

Q1((l1.,¢)1.) : ZDimUl,m(ake‘f’k)

l.m

NCS l m 0k — {11;}, 2 m 0k "' alcj

= 2 [Di] (——'——) + Dz? (1—- —) sin(m(;')) (2.53)

17121 A01. A01.

for i:1,2,3,...,Q,i7$k.

The Galerkin method is then applied over each subdomain. Therefore, equations (2.41)

1 . Y
and (2.42) without the scaling factor (7) are valid for each subdomam as well. Note that

at)
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there are K sets of 0’5 and D’s, one for each Aa1. interval. These individual solutions

are assembled to construct the invariant manifold. Note that this approach was applied to

construct the accurate ROM of a nonlinear rotating beam in [34].

The computational effort associated with evaluating and solving equations (2.41) and (2.42)

can be quite high. To reduce it, Apiwattanalunggarn et al. ([35]) implemented the collo-

cation method to construct an accurate ROM for a nonlinear finite element model of the

rotating beam. For this implementation of the collocation method, the nonlinear-algebraic

equations (similar to equations (2.41) and (2.42)) are given by

- _, , l,m
() = / 0((11 -— (1.1.31), 01. — (31,111) “'01; 2 D,‘ Ul,m

“ki‘f’k l,m

 
+2Cl,m 0T1 in (—fk (11. 8111(01.))

 

1m 6(11Iw1.

+Z CI"IIIIIII 1w1. —M) dak dqbk (2.54)

l,m wk

-
l. .

0 = / 1 Olak - ak,p~¢k - 651,112) “112 “1: ZC,"‘T1m - ak ft

(11 ¢b l,m

l,maUlm (“f1 (1}; 5111(01)

+2:0 a . , >
[Hi (Ik wk

. 0U . co.‘ '.

+ Z Dfi‘m 012:; (aka)(111—w) . (1(11. (1&1. (2.55)

w .

l,m I"

for i = 1,2,3,...,Q, i # h;

12:12,

()2 =1 "NC“

where (ak,p~¢k,q1) E [(ik‘j,a1.,j + Aa1] x[0,2rr] are collocation points associated with
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Q1(a1.,¢1.) and (a1‘p.q‘91,q,2) E [a1J-,a1.,j + Auk] ><[0,27r] are collocation points associated

with P1(ak, $1.). The collocation method greatly simplifies the integrals. Equations (2.54)

and (2.55) are a set of 4(Q —- 1)N¢ nonlinear-algebraic equations in the C’s and D’s. Recall,

that one must solve K such sets of equations to obtain the manifold over the entire domain.

For simplicity in referring to the method subsequently, this method is named “the local

a — qt approach”.

For a conservative non-gyroscopic system, only half of the harmonic terms in the expan—

sion of the basis functions for each state are needed. Therefore the number of nontrivial

coefficients is 2(Q — 1)N¢,. This fact is known from the symmetry of such solutions, and is

also confirmed by numerical calculations.

Once all of the expansion coefficients are obtained, the P’s and Q’s, which describe the

slaved modes, are known functions of the master states (a1, (151). These known functions

are used to express f1. in equations (2.17) and (2.18) in terms of only a1 and (1)1, rendering

a single-DOF oscillator as the reduced-order—model for the kth NNM.

2.3.2.4 Collocation Method with Local-Basis Functions in Modal Position and

Velocity (Patch Representation)

The approach developed in section 2.3.2.2 has the same disadvantage as that described in

section 2.3.2.1 when the number of retained linear modes Q increases. Hence, in this section

we develop an approach similar to the approach given in section 2.3.2.3. However, we take

the slightly different approach from that of section 2.3.2.3, wherein we use rectangular

subdomains defined in the modal displacement and velocity. The solution is expanded

over each such subdomain using two-dimensional polynomial basis functions. Since these

subdomains are small, we can use low degree polynomial functions to describe the invariant

manifold over the subdomain, which significantly reduces the computational time of solving

for the invariant manifold.
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Here we describe the development of the method for a local domain described by u): E

[—u1,,u1,] and v): 6 [-v1,, vb]. Once this procedure has been developed, it can be applied to

each patch, and the final result is obtained by collecting the results for all patches such that

the entire domain is covered. The relations between the coordinates in the global domain

(111,111.) and those in the local domain (vi, 111:) are given by

 

u1. = (111+u‘1'i, (2.56)

Uk : (11! + PE, (257)

2U

where ([11 : —U1, + ( N:)(eu — I) + ab, (2.58)

u

r 2‘6) P

and d1. = —I’1, + (NEIIIIU — 1) + vb, (2.59)

LI

where eu and e1. are the patch indices in the 11.1. and v1. directions respectively, and N5 and

N5 are the number of patches used in the u 1. and v1, directions, respectively, and du and

~ - - , e ,,e e
(11, represent the Shift from the origin of (211,111,) to (111,111,). Here eu runs from 1 to Nu

and ev runs from 1 to NS.

Substituting equations (2.56) and (2.57) into equations (2.7) and (2.8), the partial differen-

tial equations governing the geometry of the kth manifold in the local coordinates (vi, vi)

are given by:
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W42 Xi + filXjanadu + aide + vii)

for

6X- 3 -

’(d. + vi.) + 21-...1 (d. + at)
 

57; av;

+ fk(XJ-. Yjadu + ui..de + vii) (2.60)

aY- av-

ggéav + vii) + Egg—wt a, + at.)

+ f1.(XJ-, Yj,du + uz, dv + vi.» (2.61)

2.1 = 1,2,3,...,Q, 231 2k.

The solution of equations (2.60) and (2.61) on the local domain is obtained by expanding

(X1, Y1) in terms of basis functions as:

IVPyu Npav

x,(uf;,e,f) = Z ZCf~’”L—M,,,,,,(u;,eg) (2.62)

[:1 m=1

NW NW

Y,(ui,,v£) = Z Z Dfi'ImLA’IlmiIUZaDZ), (2.63)

[:1 m=1

where Lll>[1,,.,,(u‘}:;,v;) = T1_1(ui./u1,)me_1(v,‘;/vb), (2.64)

where T1_1(.'L‘) and Tm_1(a) are standard Chebyshev polynomials defined over a: E [—1, +1],

and the C’s and D’s are the to-be-determined expansion coefficients. Equations (2.62) and

(2.63) are substituted into the local manifold-governing equations, equations (2.60) and

(2.61). Normally, each of the resulting equations is projected onto the basis functions, but

here we employ a collocation method, which is computationally more efficient, yet retains

very good accuracy. This is carried out by projection of the equations onto Dirac delta

functions in the local master coordinates over the local domain, as follows:
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for

, l,m

/ e 6(111. — 111.4,, vi. - vi‘q) — 2 D, LNLm

IUZ’Uk

l,m. e 011]”th

"i”:Cz- (d1) +Uk)—_8—(IZ—-

l,m ‘

FYJ’Q

l

l,m

(9LM1m
l,m 2

+ Z Ci w(—wk(du ‘i‘ HZ) + fk) duck (iv/I:

l,m

(2.65)

, _. . 2 l,m ,

/ e 501.: _ 112,1),‘11; — 1):”) “’2' ZCi Lflfl’m _ f2.

e .,,.
uk’ck

e 0121111.,"lm

+2 DY d»,+v.—,—..—

l (I II ()uz,

lm

F.Xm

2

i=1,2,3,...,Q,i7€k;

q :19 ..., AGLU,

l,m

31.1111,”
l,m . 2 , € . e ,e’i‘ E: Di WI—wkIdu 'I‘ 11k) + fk) duk dl'k

,rn

(2.66)

where (“gal/£11) E [—u1,,u1,] x[—v1,,v1,] are the collocation points, which are zeroes of

TNp‘u(ui/ub) and YINmeUiI/"bh respectively ([78], [81]). Equations (2.65) and (2.66) con-

stitute a set of 2(Q — 1)} P-UNP.“ nonlinear equations in the C’s and D’s. Note that there

are N5 x N5 sets of Cs and D’s. However, if the system is conservative, non-gyroscopic,

and the nonlinear terms are functions of solely the modal positions, then only :11 x N5 x N5

sets of C’s and D‘s need to be obtained, and the remaining coefficients can be generated

using symmetries in the solution. For Simplicity in referring to the method subsequently,

this method is named “the local u -— v approach”.

Once all of the expansion coefficients are obtained, the X ’s and Y’s, which describe the

slaved modes, are known functions of the master states ((12,162). For i = [6, these known
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functions are used to express f1. in equation (2.2) in terms of only ui and vi, rendering a

single-DOF oscillator as the reduced-order-model for the km NNM.

2.3.3 Comparison of Computational Efforts

To compare the computational efforts of the approaches described above, there are three

main aspects that we must consider: the total number of unknown coefficients, the

number of evaluation points needed for the integrands in order to compute the integrals,

and the methods used to solve the nonlinear-algebraic equations. First, the reduction

in the number of unknown coeflicients C’s and D’s for a specific class of systems of all

four approaches (the global a — (16, the global u — v, the local a — <15, and the local u — v

approaches) is described. Next, a. comparison of the number of unknown coefficients 0’8

and D’s and a comparison of the number of evaluation points needed for the integrands of

the global approaches (the global a — qt and the global u — v approaches) are described.

Then, a comparison of the number of unknown coefficients 0’3 and D’s of the local

approaches (the local a — (b and the local u — v approaches) are described. This section is

closed with a comparison of the methods used to solve the nonlinear-algebraic equations

in this study. Summaries for the total number of unknown coefficients and the number of

evaluation points for the global-domain and local-domain approaches are shown in Tables

2.1 and 2.2, respectively.

2.3.3.1 Coefficient Reduction for a Specific Class of Systems

For the most general class of systems, that is, those with general (i.e., non-Caughey)

damping, gyroscopic effects, etc., one must obtain the entire set of C and D coefficients.

However, in some commonly encountered cases the number of coefficients can be reduced

simply due to symmetries in the equations of motion and the resulting responses. These

symmetries may be in terms of temporal or spatial dependence. Specifically, consider the
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forms of equations (2.41), (2.48), (2.54), and (2.65). If the nonlinear terms are functions

of the modal positions only, it can be seen that the D’s can be expressed as functions of

the C’s. By using this result in equations (2.42), (2.49), (2.55), and (2.66), the number

of equations and the number of unknowns in all four approaches can be reduced by half,

thereby reducing the computational time accordingly. We now turn to the details of the

four approaches.

2.3.3.2 Comparison of Coefficients and Evaluation Points for the Global-

Domain Approaches

Here a comparison of the number of unknown coefficients C ’s and D’s of the global a — (b

and the global u — v approaches is described first. This comparison is based on the systems

having nonlinear forces of polynomial types. The numbers of unknown coefficients 0’3

and D’s of the global a — (t and the global u — v approaches for this class of systems

have been described in sections 2.3.2.1 and 2.3.2.2. Second, a comparison on the reuse

of previously-computed integrals, which is based on how the slave states are represented

by the expansion of basis functions, is described. Then comparisons of the number of

evaluation points needed for the integrands in order to compute the integrals of the global

a — d and the global u -— v approaches are described.

For the global-domain approaches, solving the invariant—manifold equations in terms of

modal position and velocity has three advantages over solving them in modal amplitude

and phase angle.

First, for systems having specific polynomial nonlinear terms, either quadratic or cubic,

the trivial basis functions of the global u — v approach (mentioned in section 2.3.2.2) can

be easily determined, and therefore the number of coefficients can be Significantly reduced.

However for the global (L — (1’) approach (mentioned in section 2.3.2.1), we can not take such

an advantage from this specific class of systems.
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Second, the basis functions of the Slave positions and slave velocities, expressed in terms

of the master position and velocity, are the same, therefore equations (2.48) and (2.49)

share the same integrals. However, this is not true for equations (2.41) and (2.42) for the

global a — ¢ approach, since the basis functions of the slave positions and slave velocities

expressed in terms of the master amplitude and phase angle are different.

Third, as mentioned in [82], the number of evaluation points in the (151. direction of the

global a — r1) approach is taken to be at least 10N¢ to provide good results, and typically

N11 2 12. The number of evaluation points in the v1 direction of the global u — v approach,

for which gaussian integration ([80]) is used, iS (ngxv — 2). Assuming that the number of

terms used for the modal displacement is comparable to that used for the modal amplitude,

i.e. Npru % Na, therefore the number of evaluation points in the uk and the a1 directions,

for which gaussian integration are used, are comparable, i.e., (ngfl, — 2) z (3N0 + 3).

Hence, one can make a comparison by considering the number of terms needed for the

modal velocity versus those needed for the modal phase. If NW, is assumed to be 12, which

is the minimum number required for N15, it can be seen that the number of evaluation

points in the 961 direction is much higher than in vk direction, i.e., (10M), = 10 x 12) >>

(gs/p,“ — 2 = 3 x 12 —- 2).

2.3.3.3 Comparison of Coefficients for the Local-Domain Approaches

Here, a comparison on the reuse of already-computed integrals, which is based on how the

slave states are represented by the expansion of basis functions, is described first. Second,

a comparison of computational times, which is based on how many terms in the expansion

of basis functions are needed to sufficiently describe the Slave states, is described. Note

that the number of terms in the expansion of basis functions is determined from experience

gained from numerical experiments. Note that a comparison of the number of evaluation

points needed for the integrands in order to compute the integrals for the local a~<t and the

local u — v approaches is not considered since both approaches use the collocation method.
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First, the basis functions for the slave positions and slave velocities, expressed in terms of

master position and velocity, are the same, in the local u — v approach, therefore equations

(2.65) and (2.66) share the same integrals. However, this is not true for equations (2.54)

and (2.55) for the local a - (f) approach.

Second, the numbers of basis functions in the ak and uk directions for the local a — 45

and the local u — v approaches, respectively, are comparable to each other since the

manifold is described in the ak and uk directions using local basis functions and typically

Na = 2 and typically NP,” 2 3. Many harmonic terms, typically N¢ Z 12 (as previously

mentioned), are needed to describe the manifold globally in the 45k direction. In contrast,

only a few Chebyshev-polynomial basis terms, typically Np,” : 2, are needed to describe

the manifold locally in the Uk direction. Therefore, the dimension of each subproblem of

the local u — v approach is much smaller than the local a — gb approach, which implies

that the computational time for each subproblem of the former method is much less than

that for the latter method. Even though for each grid (piece) along the uk direction

many pieces along the Uk direction are needed, the total computational time for each grid

(piece) along the uk direction is just the sum of the computational times for the pieces

along the vk direction. However the computational time for each grid (piece) along the

CL], direction does not grow proportionally with the number of harmonic terms N¢, i.e.,

it grows nonlinearly with Ngb' Hence, there is a tendency that the local 21. — 12 approach

uses less computational time than the local 0. — (25 approach. Note that this is only an

educated estimate. In section 2.4.2.1, the computational times for the local a — q!) and the

local u — v approaches will be measured and reported. Note that for both local-domain

approaches applied to conservative non-gyroscopic systems, the conservative condition and

the associated symmetry in the manifold solution are fully employed.
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2.3.3.4 Comparison of Methods Used to Solve the Nonlinear-Algebraic Equa-

tions

In this study, three methods have been implemented to solve the system of nonlinear-

algebraic equations for the unknown coefficients. They are Powell’s Hybrid method ([83]),

the Newton-Raphson method ([80]), and the Secant method ([80]). All three methods have

been used in this study, and by previous researchers in this line of research. Note that this

is a cooperative research program between the Department of Mechanical Engineering at

Michigan State University and the Department of Mechanical Engineering at the University

of Michigan. Powell’s Hybrid method, as implemented via the NAG (Numerical Algorithms

Group) routines, is available at the University of Michigan, and was used in the studies

by Pesheck et al. ([33], [34], [71], and [82]), and in the study by Apiwattanalunggarn

et al. ([35]). However the NAG routines are not available at Michigan State University,

and therefore the Newton-Raphson method was implemented via the Numerical-Recipes

routines([84]), and the Secant method was developed in-house and used in other parts of

this study.

Powell’s Hybrid method is a method used to find a minimum solution of an objective

function, which in our case it is a summation of nonlinear-algebraic equations squared,

whose global minimum point is the best available solution of the system of nonlinear-

algebraic equations. The method requires no information on derivatives of the objective

function. However it maintains a set of independent directions, where the number of

directions is equal to the number of dimensions of the solution, and it performs successive

line searches along the set in a cyclical manner. The set is also updated at each iteration.

As mentioned in [84] and [83], for a problem with N unknowns, the quadratic-objective

function would take N iterations of the basic procedure, which results in N2 + 0(N) exact

line searches, i.e., the minima is obtained along each line search. This estimate can be

used as a guide for a general function since locally it behaves like a quadratic function at

an arbitrary point. As mentioned in [82], it takes on average about 1.25N iterations to
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reach a solution to equations (2.41) and (2.42) (with the D’s expressed as functions of the

C’s), for either the global domain approach or the local domain approach (for one single

strip) using this approach. Also, as mentioned in [82], the computational effort of the local

(1 — 45 approach using Powell’s Hybrid method is only %V§g% of the global a - d) approach

using Powell’s Hybrid method. This is because for large :mplitude motions many terms of

polynomial basis (Na) are needed to describe the manifold globally along the ak direction

for the global (L — (p approach. This causes the number of iterations to reach a solution

to equations (2.41) and (2.42) to increase as Na increases, and the number of evaluation

points needed for the integrands increases as well. However this is not the case for the

local a — (I) approach since Na is fixed at 2, the number of evaluation points needed for the

integrands is fixed, and the total computational effort for the whole domain is just the sum

of the computational efforts for each annular strip.

The Newton-Raphson method uses gradient information (the Jacobian matrix) of the sys-

tem of nonlinear-algebraic equations, evaluated at a current step, to determine the direction

of the subsequent step, which advances the process towards the solution. The gradient in—

formation of the Newton-Raphson method is determined in closed form from the system

of nonlinear-algebraic equations. For a single nonlinear equation, the order of convergence

([80]) of the method is determined from lim M = ' w= c, where r is the
n—+oo [enlp n.—-+oo [Tn — TIP

th iteration, rn+1 is the approximateexact solution, Tn is the approximate solution at the n

solution at the (n + 1)th iteration, c is a constant called the asymptotic error (c 75 0 ), and

p is a constant called the order of convergence, where p 2 1. For a system of nonlinear

equations, similar definitions can be formed using norms instead of absolute values ([85]).

For the Newton-Raphson method, the order of convergence is 2 (quadratic convergence)

([80], [85]). There is no such estimate for the number of iterations needed in order to reach

the solution from an initial guess, since in practice the solution is not known beforehand, so

the error at each iteration is not known. Also, the order of convergence and the asymptotic

error constant hold only when the iterates are close to the solution.

The Secant method is similar to the Newton-Raphson method. However, the gradient
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information is determined approximately using finite difference methods. The order of

convergence of the Secant method is 1.6 (between linear and quadratic convergence) ([80],

[85]). Just as for the Newton-Raphson method, there is no estimate for the number of

iterations needed in order to reach the solution from an initial guess.

Among these three methods, Powell’s Hybrid method has an advantage over the Newton-

Raphson and the Secant methods. Since both Newton-Raphson and Secant methods require

the Jacobian matrix, and the cost of computing the Jacobian grows rapidly as the dimension

of the problem increases. The Newton-Raphson method would have an advantage over the

Secant method since it generally requires fewer steps to reach the solution, due to the

order of convergence ([80]). However, when the system of nonlinear-algebraic equations is

complicated, the Secant method is efficient for computing the Jacobian matrix, since each

entry of the Jacobian cannot be determined in closed form, or is complicated and therefore

it takes significant time to compute.

In the next section, direct comparisons of the accuracy of the four approaches, both

global-dOmain and local—domain, each using modal displacement/velocity and modal

amplitude/phase, are made by comparing time simulations from two example systems.

2.4 Examples

A two-DOF nonlinear spring-mass system and a finite element (FE) model of a rotating

beam are used as examples to demonstrate the accuracy of the four approaches used to

solve the invariant manifold equations. The first example is used as a “proof of concept,”

while the second demonstrates the utility of the approach for systems with several DOF.

For simplicity in identifying the various approaches, they are labeled as follows: global

(L — gb, global u — 1), local a — (f), and local u — v, as described in sections 2.3.2.1, 2.3.2.2,

2.3.2.3, and 2.3.2.4, respectively. For the two—DOF nonlinear spring-mass system, all four
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methods are considered. For the rotating beam, only the local a — a) and local u — v

approaches are considered.

2.4.1 A Two-DOF Nonlinear Spring-Mass System

The two-DOF nonlinear spring-mass system considered here is the same as the system

studied in [33]. The system has nonlinear springs, described by linear spring stiffnesses In

and k3 and nonlinear spring parameters kg and k4; it is schematically depicted in Figure

2.1. The system parameters are m1 = 7712 2: 1, and k1 = 1,192 = 2,k3 = 5, and k4 = 1. A

comparison of a — gb and u — v global methods is considered first, followed by a comparison

of local methods in a -— (f) and u — v.

2.4.1.1 Comparison of Global Methods

The accuracy of the global methods is studied through a comparison of motions taking

place on the NNM manifold of the first mode of the system. This manifold can be depicted

as a pair of constraint surfaces which depend on either the first modal amplitude-phase

or the first modal position—velocity. The two constraint surfaces restrict the second mode

displacement and velocity, respectively, and describe motions that take place on the 2-

dimensional NNM manifold in the 4-dimensional state space.

The C coefficients describing the manifold solution in equation (2.36), with the D’s con-

densed out, were solved using Powell’s Hybrid method implemented in the C language on a

work-station computer (this was carried out by Mr. Dongying Jiang, a graduate student at

the University of Michigan, and a collaborator on this project). A sample of such surfaces

is shown in Figure 2.2, which corresponds to the contribution from the second linear mode

displacement to the NNM manifold.

The boundary of all constraint surfaces in terms of modal amplitude is given by a0 : 2.6.
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These surfaces are obtained by using Na = 5 polynomials and N¢ = 12 harmonics, which

are the same as used in [33]. Note that Na 2 5 and Nd) = 12 result in 60 coefficients

for each state when the conservative (symmetry) condition is used. Here the range of

validity of the surfaces is based on comparing simulations of the original model and the

NNM ROM. If the motion is initiated beyond a certain amplitude of the master mode, the

time responses of the original model begin to have high frequency components. We define

this amplitude to be the boundary of the valid domain. As mentioned in [33], the surfaces

are valid up to a = 1.5 with a0 = 2.22. Here with (10 = 2.6, the surfaces are valid up to

a = 1.7. Therefore, we suspect that an instability of the first NNM manifold may exist at

near this amplitude limit. This suspicion is based on the fact that instabilities of NNMS

were observed in 2-DOF systems with symmetry by Rosenberg et al. ( [6], [15], and [19]).

The C coefficients describing the manifold solution in equation (2.43), with the D’s con-

densed out, are solved using the secant method implemented with the symbolic processor

TA!
Mathematica on a personal computer. To yield a comparable number of C’s for this

case, the number of polynomials along uk and uh would need to be NW) 2 11 and Np,” = 11.

TM , and are therefore computa-Here the manifold-solver codes are written in Mathematica

tionally slower. Thus, for acceptable computational time we used MW 2 8 and NW, = 8.

Note that Np,“ = 8 and Np,” = 8 result in 15 coefficients for each state when the con-

servative and odd-polynomial conditions are imposed. The C coefficients are solved with

three different sets of boundaries, given by: (Ub, Vb) = (1.5,1.5), (Ub, Vb) = (1.7,1.7 X an),

and (Ub, Vb) = (26,26 X en), where w] = 0.69 rad/sec is the linear natural frequency of

the first mode. The contributions from the second linear mode position to the first NNM

manifold for the three different sets of boundaries are depicted in Figures 2.3, 2.5, and 2.7,

respectively. Using the transformations given in equations (2.13) and (2.14), the previous

contributions can be expressed as functions of modal amplitude and phase, as depicted in

Figures 2.4, 2.6, and 2.8. It can be seen from Figure 2.5 that the surface bends sharply

at around u = 1.3. Also, from Figure 2.8, which is solved for the larger amplitude, the

solution surface shape looks completely different from the lower amplitude surfaces. These

two observations are a sign of some type of instability, either dynamic or numerical, in the
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first NNM manifold or its solution. Therefore, in order to compare the accuracy of the

global a. — d) and global u. — v approaches, the surface in Figure 2.4 is used to generate the

time responses.

Figure 2.9 depicts the time responses of the first nonlinear mode displacement in obtained

from the ROM of the global u —- 22 approach, the ROM of the global a — d) approach, and

the original model. The dotted line is the time response of the ROM defined at the end

of section 2.3.2.2 with initial modal displacement 771(0) 2 1.3 and velocity 771(0) = 0.0.

The dashed line is the time response of the ROM defined at the end of section 2.3.2.1 with

initial modal amplitude (11(0) = 1.3 and phase angle (131(0) 2 0.0. The solid line is the

time response of the original model (2 DOFS) initiated quite precisely on the first-NNM

manifold (as determined by a shooting algorithm that finds periodic responses). As these

responses all appear to be quite close, an examination of the slaved modes is used to offer

a more refined look at the methods.

Figure 2.10 depicts the time responses of the second linear mode displacement obtained

from the ROM of the global u - v approach, the ROM of the global a — 4) method, and

the original model. The dotted line is obtained by applying the master—slave constraint

(depicted in Figure 2.3) to the numerical solution of the ROM of the global u — v approach

(the dotted line in Figure 2.9). The dashed line is obtained by applying the master-slave

constraint (depicted in Figure 2.2) to the numerical solution of the ROM of the global

(L — ¢ approach (the dashed line in Figure 2.9). The solid line is obtained from the 2-DOF

original model initiated on the NNM manifold.

Figure 2.11 depicts the time responses of the physical displacement 2:1 from Figure 2.1 for

the ROM of the global u — 22 approach, the ROM of the global a - qb approach, and the

original model. The line types definitions are the same as in the previous figure.

Horn Figures 2.9, 2.10, and 2.11, it can be seen that the time responses from the global

a — ab approach are closer to the original model than the global u. — v approach. However,
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this is not surprising, since the number of basis functions used for the global (L — ab approach

was twice the number of basis functions used for the global u — v approach.

2.4.1.2 Comparison of Local Methods

Similarly, the accuracy of the two local methods is studied through a comparison of motions

taking place on the first NNM manifold.

For the local 0. — (,7) method the C coefficients describing the manifold solution in equation

(2.52), with the D’s condensed out, were solved using Powell’s Hybrid method implemented

with the C language on a computer work-station (again, by Mr. D. Jiang). A sample of

such a surface is shown in Figure 2.12, which depicts the contribution from the second

linear mode displacement to the first NNM manifold. This NNM manifold is obtained over

an amplitude range of a E [0, 2.6], which is generated using 52 piecewise linear manifold

segments in a of width Aa = 0.05, and N4, = 12 harmonics in ¢- Note that Na = 2 and

N9), = 12 result in 24 coefficients for each state within each strip when the conservative

symmetry condition is used. The total number of coefficients for the local a — (25 approach

is (Q — 1) x 2N¢ x Nsm‘p = 1248. Here the surfaces are valid up to a = 1.7.

For the local u - v method the C coefficients describing the manifold solution in equation

(2.62), with the D’s condensed out, are solved using the secant method implemented with

the C language on a personal computer. The contribution from the second linear mode

displacement to the first NNM manifold is depicted in Figure 2.13. The boundaries of all

surfaces along the modal position and velocity are Ub = 2.6 and Vb = 1.79, respectively.

All surfaces are obtained by using Chebyshev polynomials along u; and v]: with Np," = 3

and NW) = 2, respectively, and the number of pieces along uk and U), to be N5 = 100 and

N5 = 100, respectively. The total number of coefficients for the local u — v approach is

1

(Q _ 1) X 2N1),uNp,v X ENSIVS = 30,000 .
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Figure 2.14 depicts the time responses of the first nonlinear mode displacement m obtained

from the ROM of the local u — v approach, the ROM of the local a - (15 approach, and

the original model. The dotted line is the time response of the ROM defined at the end

of section 2.3.2.4 with initial modal displacement 711(0) 2 1.5 and velocity 1')1(0) = 0.0.

The dashed line is the time response of the ROM defined at the end of section 2.3.2.3 with

initial modal amplitude (11(0) = 1.5 and phase angle ¢1(0) = 0.0. The solid line is the

time response of the original model (2 DOFs) initiated quite precisely on the first-NNM

manifold (again, found using a shooting algorithm). Again, since these responses all appear

to be quite close, an examination of the slaved modes is in order.

Figure 2.15 depicts the time responses of the second linear mode displacement obtained

from the ROM of the local u — 21 approach, the ROM of the local a — 45 approach, and

the original model, using the previously defined line types. Figure 2.16 depicts the time

responses of the physical displacement 1:1 from Figure 2.1 for the ROM of the local u — 11

approach, the ROM of the local a — (15 approach, and the original model.

From Figures 2.14, 2.15, and 2.16, it can be seen that the time responses from the local

a — 45 approach are generally closer to the original model than those from the local u — v

approach. Hence, for this example, and considering the number of coefficients used for

each method, we conclude that the local a — qb approach provides more accurate manifold

solutions than the local u — v approach.

2.4.2 A Finite-Element-Based Model of a Rotating Beam

The finite element (FE) model of a. rotating beam used here is the same as that described

in [35], and analyzed in detail in the next chapter. The system consists of a uniform,

unloaded Euler-Bernoulli beam attached to a hub that is rotating at a constant rate. The

beam is restricted to vibrate in a plane that is parallel to the axis of rotation and rotating
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with the hub, so that only transverse vibrations in one direction and axial vibrations are

allowed. The corresponding transverse vibrations are commonly referred to as “flapping”

motions, while transverse vibrations out of this plane are known as “lead-lag” motions. In

this model, torsion, lead-lag, and other motions are neglected. The system is schematically

depicted in Figure 2.17. The rotating beam parameters are L = 9 m, m = 10 kg/m,

E1 = 3.99 x 105 N -m2, EA = 2.23 x 108 N, n = 30 rad/s, and h = 0.5 m.

The objective here is to compare the accuracy of the methods for generating NNM

manifolds (this model is discussed in more detail in the next chapter). The beam is

modeled using 182 elements, which are used to construct linear modes and associated

nonlinear coupling terms. This model is truncated to Q = 21 DOF, expressed in linear

modal coordinates, and this is used as a starting point for developing the NNM ROM. This

model has 9 transverse modes and 12 axial modes, selected according to the information

described in the next chapter. For this system only the local methods in a — d) and u —- v

are considered. As mentioned in section 2.3.3.4 the computational effort for the local

a — d) approach with Powell’s Hybrid method implemented is only %f6—§% of the global

a -— (35 approach with Powell’s Hybrid method implemented (as estimated by Pesheck

in his dissertation [82]). Based on this estimate, it is reasonable to assume that the

local approach is generally much faster than the global approach. Therefore the global

approaches are not considered in this example.

2.4.2.1 Comparison of Local Methods

The accuracy of the local methods is studied by direct comparison of motions taking place

on the computed first NNM manifold.

In collaboration with Mr. D. Jiang, the C coefficients describing the manifold solutions

in equation (2.52) (with the D’s condensed out) are obtained using Newton’s method,

implemented via the Numerical-Recipes routines ([84]) with the C language on a personal
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computer. Note that for a single NNM there are 40 slave functions for this problem, that

is, 40 constraint surfaces. Samples of these surfaces obtained by the local a — (f) approach

are shown in Figures 2.18, 2.19, 2.20, and 2.21. These correspond to the contributions from

the second and fifth linear flapping mode displacements and the first and sixth linear axial

mode displacements to the first NNM manifold, respectively. The first NNM manifold is

obtained over an amplitude range of a 6 [0.6.0], which is generated using 120 piecewise

linear manifold segments in a with width Ac. 2 0.05, and M), = 16 harmonics in 4). Note

that Na = 2 and NC, = 16 result in 16 coefficients for each state within one strip, when the

conservative symmetry condition is used. Thus, there are a total of 120 problems, each with

16 unknowns, that must be solved, and it took about 12 hours to solve for the manifold

solution using a 2.0 GHz personal computer. We will consider simulations of this model

after describing the solution obtained using the local u — 11 method.

The C coefficients describing the manifold solution in equation (2.62) (again, with the

D’s condensed out) were next solved using the secant method implemented with the C

language on a 2.0 GHz personal computer. To yield a comparable number of the C’s over

the whole domain, the number of segments along uk and 1);, are taken to be approximately

N5 = 40 and N5 = 40 with NW, = 3 and NW, = 2 to cover u E [-6.0,6.0] and v E

[—6.0 x w1,6.0 x wl], where M = 34.03 rad/sec is the linear natural frequency of the

first flapping mode. It takes about 40 minutes for the manifold solution with N5 = 40 and

N5 = 40 to converge. However, the residuals of the manifold-governing equations are large.

To obtain the appropriate boundary Uh, we fix Ub to be 6.0 and then increase the number

of patches, for instance, N5 = 100 and N5 = 100. Then we simply observe the residuals

for pieces along the 1);, direction for a few of the first pieces along the uk direction. From

these observations, we can determine the range in the 2);, direction that gives acceptable

residuals. This allows one to compute the appropriate Vb and the appropriate Ub. We then

choose the same N5 and NS for these reduced values of Ub and Vb, i.e., we choose N5 = 100

and N5 = 100. Therefore, we take N5 = 100 and N5 = 100 to cover the smaller domain,

u E [—4.0,4.0] and v E [-4.0 x w1,4.0 x ml]. This procedure yields small residuals over

the entire domain. In this manner it takes about 4 hours to obtain the manifold solution.
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Samples of constraint surfaces obtained by the local u — v approach are shown in Figures

2.22, 2.23, 2.24, and 2.25, which correspond to the contributions from the second and fifth

linear flapping mode displacements and the first and sixth linear axial mode displacements

to the first NNM manifold, respectively.

Figure 2.26 depicts the time responses of the first nonlinear mode displacement 771 obtained

from the ROM of the local u — 12 approach, the ROM of the local (1 — cf) approach, and

the original model with the full 21 DOF. The dotted line is the time response of the ROM

of the local u —- v approach with initial modal displacement 771(0) = 2.375 and velocity

171(0) = 0.0. The dashed line is the time response of the ROM of the local a — c3 approach

with initial modal amplitude (11(0) = 2.375 and phase angle 961(0) 2 0.0. The solid line

is the time response of the original model (21 DOF) initiated on first NNM manifold as

obtained from a shooting algorithm. Figures 2.27, 2.28, 2.29, and 2.30 depict the time

responses of the second and fifth linear flapping mode displacements and the first and sixth

linear axial mode displacements obtained from the ROM of the local u — v approach, the

ROM of the local a — ab approach, and the original model, respectively. Figures 2.31 and

2.32 depict the time responses of the beam-tip flapping deflection and the time responses

of the beam—tip axial deflection, respectively.

From the above figures, it is obvious that the time responses from the local (1 — a5 approach

are closer to the original model than the local u—v approach. We conclude that the local (1-

¢ approach yields more accurate manifold solutions than the local u —— v approach. However

the local u — v approach yields the manifold solutions with significantly less computational

time. Therefore, the local u — v approach can be used as a preliminary study or for a study

in which very high accuracy is not required.

The drawbacks of using it —— v coordinates might be eliminated by first applying the

invertible van der Pol transformation ([22]) to the master u -— v coordinates. This would

results in a new rectangular coordinate system that rotates with the linear response,

which would uncouple the governing equations of the master states up to linear order. In
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other words, we would parameterize the invariant manifold using a dynamically motivated

rotating-coordinate system. Once the invariant-manifold governing equations are reformu-

lated, then the patch approach can be applied again with low-degree polynomials. Note

that this idea has yet to be tested.

2.5 Conclusions

In this chapter, we have proposed two new methods for solving for individual NNM in—

variant manifolds. For both of these methods the manifold is parameterized by the master

displacement and velocity and the manifold is obtained using Galerkin approaches. For

the first method, the manifold is solved using global polynomial basis functions over the

domain of interest. For the second method, the domain of interest is subdivided into small

pieces and the manifold is solved using the collocation method over these sub domains,

and then pieced together. These methods are compared, in terms of computational times

and accuracy, to similar methods that employ amplitude and phase master coordinates, as

developed by Pesheck et al. ([33]). In terms of computational time, the proposed methods

have advantages over the. methods of Pesheck et al.. In terms of accuracy, the methods

of Pesheck et al. are superior to the methods proposed herein. In general, a combination

of these approaches, which uses rotating rectangular coordinates, as described above, may

offer good efficiency and accuracy.
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2.6 Tables

 

 

 

 

    

Approaches No. of Coefficients No. of Eval. Points

Consv. Syst. Consv.-Cubic-NL Syst. per integrand

Section 2.3.2.1 (Q — 1) (Q — 1) (3N, + 3)

Global (1 — Q X2NaN¢ x2NaN¢ x10N¢

Section 2.3.2.2 (Q — 1) (Q - 1) (57%,, — 2)

Global 11. — v x (NMNW. — 3) x impart,” - 3) x (gNm — 2)
  

Table 2.1. Comparison of the total number of unknown coefficients and the number of

evaluation points needed for the integrands in order to compute the integrals for the global

domain approaches.

 

Approaches No. of Coefficients

for Consv. Syst.

No. of Eval. Points

per Integrand
 

 

Section 2.3.2.3 (Q —— 1) 1

Local (1 — ¢ x2N¢, x Nsm'p

Section 2.3.2.4 (Q - 1) 1

Local 11 — Iv     x2NEuM x iNfiNg
 

Table 2.2. Comparison of the total number of unknown coefficients and the number of

evaluation points needed for the integrands in order to compute the integrals for the local

domain approaches.
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2.7 Figures
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Figure 2.1. A two-DOF nonlinear spring-mass system.
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Figure 2.2. The contribution of the second linear mode position 712 = P2(a1, Q61) to the first

nonlinear mode manifold obtained by the global a — cf) approach.
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approach with Ub = 1.5 and Vb = 1.5.
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Figure 2.3. The contribution of the second linear mode position m = X2(n1,7'71) to the
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Figure 2.9. The time responses of the first nonlinear mode displacement for the ROM of

the global u — v approach with 771(0) = 1.3,1'71(0) = 0.0, the ROM of the global a — (b

approach with al (0) = 1.3, c51(0) = 0.0, and the original model with initial conditions from

the shooting algorithm.
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Figure 2.10. The time responses of the second linear mode displacement 772 on the first

nonlinear mode manifold for the ROM of the global u — v approach, the ROM of the global

a - (25 approach, and the original model.
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Figure 2.11. The time responses of the displacement 2:1 from Figure 2.1 for the ROM of

the global u — 11 approach, the ROM of the global a — Q approach, and the original model.

 

 
Figure 2.12. The contribution of the second linear mode position 772 = P2(a1,Q1) to the

first nonlinear mode manifold obtained by the local a — Q approach.
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Figure 2.13. The contribution of the second linear mode position n2 = X2(n1,1'71) to the

first nonlinear mode manifold obtained by the local 11 — 12 approach.
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Figure 2.14. The time responses of the first nonlinear mode displacement for the ROM

the ROM of the local a — Q

1.5, Q1(0) = 0.0, and the original model with initial conditions from

7
0.0)O= 1.5,i11(0)(of the local 11 — 11 approach with 171

approach with a1(0)

the shooting algorithm.
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Figure 2.15. The time responses of the second linear mode displacement In on the first

nonlinear mode manifold for the ROM of the local 11 — v approach, the ROM of the local

a — Q approach, and the original model.
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Figure 2.16. The time responses of the displacement $1 from Figure 2.1 for the ROM of

the local 11 — 12 approach, the ROM of the local (1 — Q approach, and the original model.
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Figure 2.17. Finite element representation of a rotating beam with Q = constant.
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Figure 2.18. The contribution of the second linear flapping mode ”()2 = P2(a1,Q1) to the

first nonlinear mode manifold obtained by the local a — Q approach.
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Figure 2.19. The contribution of the fifth linear flapping mode 712 = P5(a1,Q1) to the first

nonlinear mode manifold obtained by the local a — Q approach.
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nonlinear mode manifold obtained by the local a — Q approach.
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ial mode 7715 = P15(a1,Q1) t0 the firstinear axFigure 2.21. The contribution of the sixth l

nonlinear mode manifold obtained by the local (1 — Q approach.
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Figure 2.22. The contribution of the second linear flapping mode 712 = X2(n1,r']1) to the

first nonlinear mode manifold obtained by the local 11 — 11 approach.
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nonlinear mode manifold obtained by the local u -— 11 approach.

Figure 2.24. The contribution of the first linear axial mode 7710 = X10(n1,1')1) to the first
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nonlinear mode manifold obtained by the local u — 11 approach.

Figure 2.23. The contribution of the fifth linear flapping mode 712 X5(T}1,fil) t0 the first
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Figure 2.25. The contribution of the sixth linear axial mode m5 = X150113771) to the first

nonlinear mode manifold obtained by the local u — 11 approach.
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Figure 2.26. The time responses of the first nonlinear flapping mode displacement n1 for

the ROM of the local u — v approach with n1(()) 2 2.375,7‘]1(0) = 0.0, the ROM of the

local (1 — d) approach with (11(0) = 2.375, (151(0) = 0.0, and the original model with initial

conditions from the shooting algorithm.
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Figure 2.27. The time responses of the second linear flapping mode displacement 772 on the

first nonlinear mode manifold for the ROM of the local u —— v approach, the ROM of the

local a — Q5 approach, and the original model.
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Figure 2.28. The time responses of the fifth linear flapping mode displacement 775 on the

first nonlinear mode manifold for the ROM of the local u — v approach, the ROM of the

local a — qb approach, and the original model.
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Figure 2.29. The time responses of the first linear axial mode displacement 7710 on the first

nonlinear mode manifold for the ROM of the local u — 11 approach, the ROM of the local

or — 96 approach, and the original model.
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Figure 2.30. The time responses of the sixth linear axial mode displacement 7715 on the

first nonlinear mode manifold for the ROM of the local u — 11 approach, the ROM of the

local a — qb approach, and the original model.
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Figure 2.32. The time dependence of the beam-tip axial deflection, u(L, t), for the ROM

of the local u — v approach, the ROM of the local (1 — ab approach, and the original model.
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2.8 Appendix 2A

The samples of {Lilll‘m(’uk, 1.115)} for NW, 2 3 and NIH) = 3 in section 2.3.2.2 are as follows:

L1l11,1(“ka“k)

Lrl11.2(ltk~vk)

“11.30%: We)

L1112‘1(‘llk,llk)

L1‘12,2(Uk~ ’Uk)

LAI‘ZBULk, 1’1.)

LM3.1(UA«, vk)

LA13.2(“ka'Uk)

LA'13,3(UA~, We)

0

0

1.11803(L,k)2

l“b

O

_ “k U}:

1.3 — ——

“k 1% 2
1.93649 — —(U1. )< V.)

1.55605(%/‘i)2 — 65.7441(%)10 +172.187(-:’/i)8

b b b

—163.124(%)6 + 67.1689(%~)4 —11.19«=13(;7’i)2

b b b

we 9 Uk 7 ’Uk 5
17.4667 — — 40.4492 —— 32.1214 —

— 9.99334(:’/—")3 + 2.88269(%)2(:—5)
b b ’b

—1.47321(;‘j—"')2 + 62.4849(:)/—k)10 —163.651(%)8

b b b

+155.033(5’f—‘)6 — 63.839(”—{“‘)"1 + 39153.3(3)2 + 5.17352(

‘ b V6 V6
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2.9 Appendix 2B

Equations (2.48) and (2.49) in section 2.3.2.2 are solved using the Secant method. The

method implemented is described here by assuming that the nonlinear term fi in equation

(2.2) is a function of the modal positions only. The orthogonality conditions from equation

(2.47) are used in equations (2.48) and (2.49), the simplified equations are given respectively

by

0 = FF”

: _Dg’~q+ Z A'gq‘l“"‘(C)Cf“"' (2.67)

(l+m)#2,3

0 = Fix“

= ..ch’~q—f§’*q(0)+ Z Kgq’l’m(C)D:’m, (2.68)

(l+m);é2,3

, where Kgq‘l‘m, Kgq‘l’m, and fip‘q are given by

r1).q.l.m _ ,p.q.l.m

AC _ AD

1 1 8121‘”).

= / (—) (7) LAIDJ] “k TE

“k!”k b f) llk

6LAI,

+ (“-1.01% “k + fk) —()i—lr£:|l (111k dirk (2.69)

’k

, l 1

'“kd’k L'b b

Note that if either the conservative conditions (equations (2.50) and (2.51)) or both the
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conservative conditions (equations (2.50) and (2.51)) and the odd-polynomial conditions

are used, then Kgq‘l’m 76 Kgq'l’m.

From equation (2.67), it can be seen that we can express the D’s as functions of the C’s.

Those expressions are used in equation (2.68). Hence Fix’p’q will be functions of the C’s

only and they are given by

F.X"’“’(C) = 0 . (2.71)

If C’“ is a solution of equation (2.71) in vector form, then equation (2.71) in vector form

FX’1’"? (C) can be approximated using the Taylor series expansion about C(O) , which is

close to C", up to the first-order terms by

81?"11M!

0 = FX’P’WC) z FX’qu(C(°)) + T(C(°))(C — 0(0)) . (2.72)

an’p’q 0

Defining the Jacobian matrix J E —8—C_(C( )), the approximate C* is given by

0* a: —J-1 vapv4(c(0)) + 0(0) . (2.73)

If J is determined in closed form, then the method is called the Newton-Raphson method.

If J is determined approximately using the finite difference method and its components

are given by
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X,l.m Xilsm IMHO) ‘ _ X,l,m p,q,(0)

WHILE—05(C(O))zFi (Ci “:2 F2- (Cj ), (2.74) 

where AC is a chosen small number, then the method is called the Secant method. For each

component Ji’JI-nip’q, it is required to recompute Kgq‘l’m and Kgq’l’m at each step due to

the perturbed C's. Therefore, the computation of each component can be very expensive.

The following algorithm is implemented instead:

(i) Initialize n. = 0, tol 2 small number, norm > to], and 0“».

(ii) \Nhile norm > tol

(a) Compute Kg” = {Kgq‘l‘m}(n) and Kg) = {A’lqu’l‘m}(") using equation

(2.69).

(b) Compute FX’p’q(C(n)) using equation (2.71).

(c) Compute J(") : J(")(C(n),K(Cn),Kgl),FX’p’q(C(n))) using equation

(2.74). Note that here Kgt) and Kg) from step (a) are used instead of recom-

puting them with the perturbed C’s.

(d) Compute 6C(") = —(J("))_1inp’q(C(")).

(e) Compute = || 60“” 12

(f) Compute C("+1) = C(") + 600‘).

(g) Compute n = n + 1_

Similarly, equations (2.65) and (2.66) in section 2.3.2.4 are solved using the Secant method.

Therefore, equations similar to equations (2.67) and (2.68) are given by
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0 = FVPI’P‘P
l

.1777 DI.771 (,I,(m

= 2763 +216
[.771 Im

0 = Fxm
7

:. Z(_w12)A,p711”C.I7711.777

l,m

qI 771 A4)..711,.I m A.p,(1,I.-m A,]).71.I.In,rp

.'}).(].I.nz _ [pq./.772

I‘CJ _ ADJ

: —LIl’[[’m (11:31” 11;”)

A,p.ql.m x1) (12.I771

C2 AD

8L1“
: (do + vz)_I.771

).

f: q = fil(u’.

_le)~(qC

BLIl-I
0 + a, éfll

If}; bk

(1)09” (2.75)
2

)+ Z Kp’P2P“ "’( C)Df.P'"‘, (2.76)

l,m

, and ff“) are given by

(2.77)

6,3777, + up + ml (2.78)
J (UZZUZJJ‘UEZUE‘g)

(2.79)

Note that the algorithm used to solve equations (2.75) and (2.76) can be developed in the

same manner as the one described above.
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CHAPTER 3

Finite-Element-Based Nonlinear

Modal Reduction of a Rotating Beam

with Large-Amplitude Motion

3.1 Introduction

The dynamic analyses of helicopter blades, turbopropeller blades. wind-turbine blades and

robotic arms has provided motivation for investigations of the vibration of rotating beams.

To predict the dynamic characteristics of rotating flexible structures, the kinematics must

be carefully modeled, which leads to nonlinear coupling effects between degrees of freedom

(DOF) in different directions. These coupling effects can cause slow modal convergence.

thereby often requiring large system models for accurate dynamic representation. Simula-

tion of such large—scale models is a time consuming process, which slows parametric studies

and design cycles.

Much work has been done using finite elements (FE) to model the nonlinear, large amplitude

vibrations of rotating beams, including [44], [45]. [46], [47], [48], and [49]. These models are

typically quite complicated due to their geometry. degrees of freedom (flap, lead-lag. axial.

and torsion), and nonlinear coupling effects. Furthermore, because of the nature of the

finite element approach, many elements are required in order to obtain an accurate model.

85



A common approach is to use linearization of the finite element model about the nonlinear

static equilibrium position and solve the eigenvalue problem of the resulting linearized

model to obtain the linear natural frequencies of the system ([44] and [49]). Bauchau and

Hong ([45]) also utilized finite elements in time to obtain nonlinear responses and stability

results of the rotating beam undergoing large deflections. However, the computational time

associated with obtaining the equilibrium solution was expensive, because all the spatial

degrees of freedom at all time steps are coupled. Perturbation modes ([50] and [51]) were

applied to the finite element model of a helicopter rotor blade in order to obtain a reduced

order model ([46]). Bauchau and Bottasso ([52]) applied perturbation modes to the space-

time finite element model of a beam subjected to a sinusoidal load in order to obtain a

reduced order model. Crespo da Silva ([53]) utilized a truncated set of eigenfunctions or

eigenvectors obtained from the linearized system of partial differential equations (PDES)

or the linearized finite element model about the nonlinear static equilibrium position in

order to obtain a reduced order model of a beam in planar motion. Crespo da Silva

([54]) also extended his work to handle multi-beam structures in planar motion. In most

nonlinear structures, there is no simple expansion of basis vectors which decouples the DOF

(i.e., modes) in the frequency range of interest from those outside that range. Therefore,

some (potentially important) nonlinear effects will be ignored in the truncation process.

Generally, many linear modes must be retained in the nonlinear model in order to minimize

these effects.

Over the past decade, systematic procedures have been developed to obtain reduced order

models (ROM) via nonlinear normal modes (NNM) that are based on invariant manifolds

in the state space of nonlinear systems ([20], [21], and [74]). These procedures initially

used asymptotic series to approximate the geometry of the invariant manifold and have

been used to study the nonlinear rotating Euler-Bernoulli Beam ([3]) More recent work

has employed a numerically-based Galerkin approach to obtain the geometry of the NNM

invariant manifolds out to large amplitudes ([33]). These procedures can be applied to

more general nonlinearities over wider amplitude ranges. and have been recently applied to

study the vibrations of a rotating Euler-Bernoulli beam ([34]). In that study, the system
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of PDES governing the axial and transverse motions of the nonlinear rotating beam are

derived by Hamilton’s principle and discretized by a Rayleigh-Ritz method. These PDES

are similar to those in [86], which were derived by Newtonian methods.

The study presented here uses the same PDE model considered in [34]. However, in this

study we use Hamilton’s principle as a basis for deriving a nonlinear finite element model

of the rotating beam. The primary goal of this effort is to demonstrate that the invariant

manifold NNM approach can interface with nonlinear FE models, thereby Opening the door

to the application of the approach to systems with more complex geometries and additional

degrees of freedom (e.g., lead-lag and torsion).

This chapter is outlined as follows. The nonlinear FE model is first generated and

converted into a truncated (but still large-scale) modal form that is convenient for

the NNM analysis. The invariant manifold equations are formulated, and a numerical

collocation method is used to obtain the solution of the NNM invariant manifold for the

fundamental flapping mode of the beam. This invariant manifold is used to construct a

nonlinear single DOF ROM, which is subsequently used for a simulation study. The linear

natural frequencies of the transverse motion, obtained by solving the eigenvalue problem

of the linearized FE model, are verified against analytical solutions from [1] and [2]. A

study is also carried out to determine the size of an appropriate reference model for the

full nonlinear system, which is used for comparisons with the ROM. Detailed results for

the fundamental nonlinear flapping mode form the bulk of the numerical results, including

the amplitude-frequency relationship. the nature of the NNM invariant manifold, the

associated master-slave modal relations, and the actual beam dynamics. In all cases, the

results obtained from the ROM are checked against. the full reference model, and against

the collocation-based ROM determined in [34]. Some conclusions are drawn at the end of

the chapter.
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3.2 Rotating Blade Formulation

A dynamic model for the vibrations of a uniform, cantilevered, Euler-Bernoulli beam,

attached to a rigid rotating hub is considered. The system is schematically shown in

Figure 3.1. In the formulation, the following assumptions are made: rotary inertia is

neglected; the motion is restricted to axial and transverse vibrations in a rotating plane,

i.e., twist and lead-lag motions are not considered; and, the nonlinear axial strain due to

element extension is included *. A finite element approach is adopted, which is based on

the element. kinetic energy, T, and the element potential energy, U which are expressed as

follows,

1 “+1 -2 -2 2 2
T = —2- m(u. +17,y )+ 7710 (h + :L‘ + 17.) 71:1: (3.1)

Jig

1 ‘1'P+1 1

U = 2 / ‘ Bream)? + 132107,, + §(w,3;)2)2d:r (3.2)

1'76

where u(;r, t) and w(.r, t) are the axial and transverse displacements, respectively, (-),x is a

derivative with respect to the spatial variable :6, an overdot represents a time derivative, h

is the hub radius, 9 is the constant angular velocity of the hub/beam, m is the beam mass

per unit length, E, A, I are the usual beam material and geometric parameters, and are

and :66“ are the global coordinates at nodes 6 and e + 1, respectively, of a typical element.

By applying Hamilton’s principle to these two expressions, the weak formulation for the

equations of motion is obtained:

 

‘Note that other sources of nonlinearity, such as finite curvature effects, while potentially significant in

magnitude, are not considered here, since our primary interest is the axial/transverse coupling.
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t2 xvi-1 .. 2 ..

f / [—-mu + 7779 (h + :r + 17)](517 + [—771w]75w +

f1 fife

[—EA(u,_., + {,(w,,.)2)](6u,r + 76,6173.) +

[—EI‘I.U,1':[]6LU,I$ (ILITdt : 0. (3.3)

A finite element model of the simplified rotorcraft blade is developed by introducing fol-

lowing expansions into the weak formulation

17"(;7:,t) RP“ Z ¢7(I)uzfi(t) 106(117: t) z E IIP7('I)87(I) (3-4)
.

7:1 721

where 778 and we are u and to restricted to the spatial domain of element 6, 735,:(17) are

standard linear shape functions, 17,-(7) are nodal variables for axial displacements, 712,-(3) are

standard cubic shape functions, and 3,-(t) are nodal variables for transverse displacements

and rotation angles. By substituting these approximations into the weak formulation, one

obtains the linear element mass and stiffness matrices, the force vector due to rotational

effects, and the quadratic and cubic nonlinear force vectors, for both axial and transverse

deflections. These are given by the following expressions:
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~77 PTe+1 . ,

777,-]- : / mo,(a:)rpj(:r) dx, (3.5)

’l

  

 

 

C

, Ic+l ([0 (IO

1;; = < 7,— (,1 n camera) dx (36)
Te '

77 Ie+1 2 ,

f, = mil (I7+:7')7,9,P(.r) (1.7 (3 7)

1‘8

4 4

9:1 : Ezafinslsn,
(3.8)

[=1 77:1

”38+1 1 (1(5- du”) d773,,

Pl . I" = —EA—‘—£—'—'—— (in. .

“1618 all” f", 2 711‘ 711‘ 71.7: I (3 9)

, Pre+1

and 777.21 : / 777,72’.7k(;7.‘)7,5',(.r) 71:6, (3.10)
Te

:7) 6’ +1 d211,,“ (i211!)I

ks: = / E1 ' 71;, 3.11

A" 1'7: 611:2 (11:2 E ( )

4 2

g“: = Z Z ailmslum, (3.12)

[:1 77721

$e+l dwk (11?) d- 1.9777

VVllCI‘C (121," = A EAE—IZE— (11' 1, (3.13)

--e . .

4 4 4

and hi. 2 ZZZbilmslsnsr, (3.14)

[=1 n:1r=l

xe+l 1 717,17;C d717, 7111!" (IL/’7

where bZ'Inr : [L -2- fi-E—d—T— dT (11‘, (315)

e .. .. ..

where the indices take on values as follows {7' = 1,2}, {j = 1,2}, {k = 1,2,3,4}, {I =

1,2,3,4}, {777 = 1,2}, {77, = l,2,3,4}, and {r = 1,2,3,4}. (-)“‘ denotes quantities in

the u direction. 777?]- is the ij component of the linear axial mass matrix, kluj is the ij

component of the linear axial stiffness matrix, f,” is the 7' component of the axial force

vector, y? is the 2' component of the quadratic nonlinear axial force vector, and ai‘m is the

In quadratic nonlinear coefficient. of 913‘. (-)3 denotes quantities in the .9 direction. mil is the

kl component of the linear transverse mass matrix, k2] is the kl component of the linear

transverse stiffness matrix, 9;: is the It component of the quadratic nonlinear transverse

force vector, “film is the [777 quadratic nonlinear coefficient of 9):, hi}: is the I: component of
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the cubic nonlinear transverse force vector, and (’13:an is the [777 cubic nonlinear coefficient

of hi.

M one-dimensional beam elements are used and assembled using standard procedures ([87]).

Since there are three degrees of freedom at each node, and accounting for the boundary

conditions, one obtains 3M nonlinear equations of motion in the nodal coordinates, which

can be expressed as follows:

MUU + KUU + GU(S) : Fa (3.16)

MSs+KSS+GS(U, S) +HS(S) = o (3.17)

where U is the global axial displacement vector and S contains the global transverse

displacement W and rotation angle vectors 6). Quantities in the U direction are denoted

(-)U, as follows: MU and KU are the linear axial global mass and stiffness matrices,

respectively, and GU(S) is the quadratic nonlinear axial global force vector. F9 is the axial

global force vector due to rotational effects. Quantities in the 8' direction are denoted by

(0)5 , as follows: MS and KS are the linear transverse global mass and stiffness matrices,

respectively, and GS (U, S) and HS(S) are the quadratic and cubic nonlinear transverse

global force vectors, respectively.

To include rotational effects in the transverse stiffness KS , thus accounting for centrifugal

stiffening, the axial displacement U is separated into static and dynamic components, as

follows:
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where Us is the “static” axial blade deflection due to F9 and Ud is the dynamic axial

displacement relative to U3. U3 is obtained by solving for the axial deformation in the

case of no vibration in either the transverse or axial directions, i.e.,

KUUS = F9, (3.19)

where GU(0) = O has been used.

Figure 3.2 depicts the comparison between Us obtained by a 182-element model and an

analytical solution ([3]), indicating very close agreement. (In fact, good agreement can be

achieved with as few as five elements for this simple shape.)

Substituting equation (3.18) into equations (3.16) and (3.17) offers a convenient form of

the equations of motion. A linear transverse stiffness term in S, Kq(U3), which arises

from rotational effects, can be separated out from G5(U, S). This represents the linear

transverse centrifugal stiffening due to rotation, which is combined with KS to provide the

total transverse stiffness. Also, the rotational force vector is cancelled by using equation

(3.19). The finite element model then takes the form:

MUU‘d + KUUd + GU(S) = o (3.26)

MSS + (KS + Kq)S + GS(Ud, S) + H5(S) = o. (3.21)

These equations have the form desired for the application of modal analysis. In particular,

they have a zero solution, (Ud, S) = (0, 0). Equations (3.20) and (3.21) are then rear-

ranged such that the nodal variables at each node are grouped together, resulting in the

following equations of motion in (finite element) physical coordinates:
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714.57 + KX + G(X) + H(X) = 0 (3.22)

where

X = lUd.2W292l---|Ud.17+1I'l”1,7+19M+1lT- (323)

These equations of motion are next transformed into linear modal coordinates and trun-

cated using the following coordinate transformation:

X 2 (P77 (3.24)

where the 3M x Q matrix <1) is the collection of transverse and axial normal modes of interest

of the linearized rotating beam. Here Q = N7 + N0 is the number of kept modes, where

N)- is the number of kept transverse (flapping) modes and Na is the number of kept axial

modes. This truncation is used to remove unreliable linear modes from the full finite element

model. The model is still relatively large and is to be ultimately reduced to a single DOF.

The component form of the equations of motion in these linear modal coordinates is given

by

Q Q Q

7771+ 4'72. IIn + Z 2 an)1 77)- 771 + ZZ2 73,1)“ '77)- nr 777 = 0 (325)

j=l k2] j=l k=l [=1

for 77=1,2,3,...,Q
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where (on are the natural frequencies associated with the 77th mode, anjk are the coefficients

of the jk quadratic nonlinear terms associated with the 77th mode, and 6,,ij are the

coefficients of the jkl cubic nonlinear terms associated with the nth mode. The formulae

for anjk and fin,“ can be found in Appendix 3. The determination of these nonlinear

coefficients has been computationally automated using the finite element formulation and

the coordinate transformations outlined above.

3.3 Modal Reduction

3.3.1 Galerkin-based Invariant Manifold Approach

Typically, one is interested in the dynamics of modes that exhibit large amplitudes and/or

lie in a certain frequency range, but not in the response of all system modes. To obtain

an accurate ROM of a system of coupled nonlinear ODES, one should not simply truncate

the linear modes that lie outside the frequency range of interest. The contribution of the

truncated modes can have important effects and should be accounted for in the ROM in

order to accurately represent the dynamics of the system. The nonlinear model reduction

approach based on NNM is a systematic procedure that accounts for the contributions of

all linear modes to the NNM of interest, without the direct dynamic simulation of these

linear modes. It does so by slaving the linear modes to the dynamics of the NNM of

interest in a particular manner. The ROM obtained by this procedure can be made to be

very accurate over a large amplitude range if one can accurately construct the invariant

manifold corresponding to the NNM of interest. This has been accomplished by Pesheck

et al. ([34]), by making use of a Galerkin-based numerical approach to solve the invariant

manifold equations. This approach was applied to the rotating beam problem, where a

Raleyigh-Ritz approach was used to create a discretized dynamic model of the blade ([34]).

Some results from that paper are used for comparisons in the present. work.
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A brief summary of the invariant manifold procedure is reviewed here. It is followed by

a description of a solution approach for the invariant manifold equations that is based on

collocation methods, which offers some advantages in terms of computational efficiency.

From equation (3.25), the mode of interest, i.e., the master mode, is taken to be the mth

mode. This linear mode is to be extended in order to generate the corresponding NNM.

The generalized master modal position and velocity, 77m and 77m, are expressed in terms of

a master mode amplitude, 77., and phase, 45. using the coordinate transformation

77m : 0 005(6)) (3.26)

flm : —(I, Wyn Sin(¢). (3.27)

Using these dynamic variables, the equation of motion for the master mode can be expressed

as two coupled lst order ODEs in a and 76, as follows,

—fm Sin (Q)

a = ————-——. (3.28)
Wm

<5 2 Wm _ fm 0054(3)), (3.29)

0 Wm

Q Q Q Q

Where fin Z —( Z: amjk 773' III; + ZZ :78ij 7Ij "It 771 ) (3'30)

j:1k=1 j=1k=11=1

corresponds to the nonlinear terms in the 777th equation of motion, which contain coupling

effects from all linear modes. The remaining Q - 1 linear modal positions and velocities

are slaved to a and 76 through functions that are to be determined. These are expressed as
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772' = Pifaa 45) (3.31)

77'.- = QM, <1) (3.32)

for 7:1,2,3,...,Q,i# m.

Equations (3.31) and (3.32) are substituted back into the components of the equations of

motion (equation (3.25)) associated with the slaved coordinates. The functions P,- and

Q,- are then obtained using a standard invariant manifold approach. The time derivatives

are removed from the equations of motion by the chain rule, resulting in the following

nonlinear, time-independent, partial differential equations which govern the geometry of

the manifold through the functions F, and Q21

  

6P, —- m S. 8P, m

0.- = 357%) + 537 m — L331?) (3.33)

...,-277.”.- : 883i7‘f";:“(f)>+firwm—f—"ij—ZEb—I) (3.34)

for i=1,2,3,...,Q, 2'74 777.

Equations (3.33) and (3.34) are PDES in the PS and Q’s and are solved using an expansion

of basis functions. Via a Galerkin projection, each PDE, after the expansion is introduced,

is projected onto each basis function. These basis functions are products of selected shape

functions in the a. and (6 directions. Since 66 has period 277, the shape functions in the

775 direction are chosen to be a Fourier basis, {1, cos(77.qb), sin(776>)}. The shape functions

in the a direction are chosen to be piecewise linear segments. The desired domain in the

a direction is divided into K small sections. producing annular subdomains given by 76
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E [0, 277] and a. E [77.], aj + A71]. Therefore 13,-(77, <75) and Q,-(a, 0) can be expressed over the

jth interval as:

P7(a.¢>) = gamma)

1,77.

a—aj

7v.

‘ G9

‘ (l — (1' 23., . ,

: Z]Ci1'n(—El—J)+ Ci n(1— -—A—a—)] COS((TI. "1)QD) (3.35)

7721 '

 

arm) = ZDlJWL-nwe)

1,77

Na
' a — a- n a — a- .

= Z]D:’"(_£a_3)+Di2’ (1— (13)] sm(n¢) (3.36)

7721

for i=1,2,3,...,Q,-i7ém

where the C’s and D’s are to-be-determined coefficients. (Note that only a particular subset

of harmonic functions in 72') are required for this conservative, gyroscopic system, since it

possesses synchronous modes [34].) Equations (3.35) and (3.36) are substituted into the

manifold-governing equations, equations (3.33) and (3.34), and each of these is projected

onto each basis function using a Galerkin projection over the domain of interest. This leads

to:

97



 

, 8T -— , ' ’
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for i=1,2,3,...,Q,77£ m;

Equations (3.37) and (3.38) are a set of 2(Q— 1) x 2 X My nonlinear equations in the C’s and

D’s. Note that there are K sets of C’s and D’s, one for each A77 interval. These individual

solutions are assembled to construct the invariant manifold over the domain of interest.

Once all the expansion coefficients are obtained, the PS and Q’s , which are the slaved

linear modal positions and velocities, are known functions in terms of the master variables

(77., 71>). These functions dictate how the slaved linear modes must follow the master mode

such that the equations of motion are satisfied and the overall motion is invariant. These

known functions are used to express fm in equation (3.28) and equation (3.29) in terms

of only a and (f), rendering the ROM single degree of freedom oscillator. The key to the

invariant manifold approach is that the solutions of this oscillator represent solutions of

the full equations of motion for a particular NNM, and they systematically account for

the dynamics of the slaved linear modes. The numerical solution of the invariant manifold

equations allows one to obtain NNMS that are accurate over a large amplitude range.
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3.3.2 Collocation-based Invariant Manifold Approach

The computational cost associated with evaluating and solving equations (3.37) and (3.38)

can be quite expensive. To reduce these computational costs, the collocation method has

been adopted here ([77]). Instead of projecting each manifold-governing equation onto

each basis function, it is instead projected onto a set of Dirac delta functions in the master

coordinates. This amounts to an approximation of the integrals over the domain, and it

 

 

leads to:

_ . ,. Ln, 21,1187) n( “fm a Sin(¢)
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l.n

for i=1,2,3,...,Q, i# m;

19:12,

611—1 .Na:

(12 :11 'aNd)»

where (a.p,o,‘)ql) E [(Lj,(lj + An] x[0,27r] are collocation points associated with Qi(a,gb)

and ((l'pszqoZ) E [aw (1]- + An] x [0, 2n] are collocation points associated with P,(a., g6). This

projection, while an approximation, greatly simplifies the integrals.

99



3.4 Results

The rotating beam parameters used here are the same as in [34]: L = 9 m, m = 10 kg/m,

E1 = 3.99 x 105 N -m2, EA 2 2.23 x 108 N, O = 30 rad/s, and h = 0.5 m, which are

feasible for a rotor blade with sub-sonic tip velocity. First, the convergence of the linear

natural frequencies is considered as the number of elements is varied, and the results are

verified with analytical solutions from [1] and [2]. Then the convergence of the nonlinear

amplitude-dependent fundamental flapping natural frequency is studied and verified against

the reference model and the collocation-based ROM of the model from [34]. Finally, the

time response of the ROM of the fundamental flapping NNM is studied and compared with

the reference model and the ROM based on results from [34].

3.4.1 Linear System Convergence

The finite—element model of the rotating beam is obtained by the procedures outlined in

section 2. There are 8 cases considered: 5, 10, 15, 20, 45, 90, 136 and 182 elements. The

linear natural frequencies of the rotating beam are calculated by solving the eigenvalue

problem of the linear part. of equation (3.22). The first four flapping linear natural fre-

quencies are shown in Figure 3.3 as a function of the number of elements. These natural

frequencies are compared with the natural frequencies from table 7 of [1] and from Table 3

of [2]. In [1], the following dimensionless parameters are defined:

‘1 ‘2
2 mL (2 El

’ z ‘ z __ t 3.41

7’ E1 T mL4 ( )

where a is the dimensionless hub radius, 7} is the dimensionless rotating speed, and T is

the dimensionless time. Since the parameters used here do not fall in the parameter range

used in [1] and [2], the frequencies must be extrapolated in 7} and interpolated in a. The
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first four linear natural (flapping) frequencies in the T time scale are presented in Table

3.1. These frequencies are then converted to frequencies in the t time scale and compared

with the natural frequencies from the finite-element model in Table 3.2.

From Figure 3.3, it is clear that these four linear natural frequencies quickly converge as the

number of elements is increased. In addition, from Table 3.2, the maximum difference be-

tween the reference natural frequencies and the natural frequencies from the finite—element

model is 0.2%.

3.4.2 Nonlinear Model Development

The finite-element model of the rotating blade generated by M one-dimensional beam

elements has 3M degrees of freedom (with boundary conditions included). Due to the

fact that transverse displacement and element rotation degrees of freedom have the same

natural frequencies and mode shapes, the natural frequencies that lie in the frequency range

of modes 1.5M — 3M may be unreliable ([88]). To be conservative, we consider a frequency

range that includes only the first M natural modes (that is, the M with the lowest natural

frequencies), and we desire to keep Q g M retained modes for our reference model. For

this system it has been found that a reliable approach is to maintain an equal ratio of

transverse modes to axial modes when reducing from M to Q. If Nt,M and Na,M represent

the number of transverse and axial modes among the first M modes, respectively, then we

take Nt = Nt.M x (Q/M) and Na, 2 Na.M x (Q/M) I. These Q modes are used in equation

(3.24) to arrive at equation (3.25). The procedure outlined in section 3.3.2 is then applied

to the model in linear modal coordinates to obtain the single DOF ROM.

In particular, the first linear modal coordinate (first flapping mode) is chosen to be the

master mode of interest. The dynamics for this NNM, equations (3.28) and (3.29), are

numerically integrated with initial conditions for mode 1 (flapping) amplitude and phase,

 

lSince NM! + NM” 2 M, then N, + N,, = Q, as desired.
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a(0) = 4.0 and (,b(0) = 0 I. For this amplitude, the NNM frequency is studied as the

number of linear modes and the number of elements are varied. For 90, 136, and 182

elements, the number of kept modes (Q) used to generate the frequency data are 15, 21,

27, 33, 39 and 45, respectively §. From the frequency data, it found that as the number of

elements is increased, the frequency is nearly converged for 182 elements, over a wide range

of values of Q. As the the number of kept modes, Q, increases, the frequency decreases.

For 182 elements and 45 modes, the frequency differs from the 182 element, 39 mode case

by only 0.0375 rad/s. However, it appears that more than 45 kept modes are needed to

demonstrate convergence in a convincing manner. At this point, we employ the 45-mode

model generated from 182 elements for use as the reference model.

The NNM manifold is obtained from this model over an amplitude range of a E [0,60],

which is generated using 120 piecewise linear manifold segments in a with width Aa =

0.05, and N¢ = 16 harmonics in (p'. This amplitude range, in physical terms, corresponds

to the beam tip moving with a peak—to—peak amplitude of about 2.4 meters (recall that the

beam is 9 meters in length). The single DOF ROM is obtained by restricting the dynamics

of the 45 DOF reference model to this invariant manifold. This amounts to restricting

the dynamics, which occur in a 90-dimensional state space, to a two-dimensional invariant

manifold that is described by the master-slave relations given by the Pis and Qi’s. Note

that there are 88 such relations in this case.

Figure 3.4 depicts the natural frequency of the first nonlinear flapping mode as a function

of the initial mode amplitude, a(0), with ¢(0) = 0. The + line is a result of the ROM (1

DOF) which is generated from the finite element reference model. The 0 line is a result

of the ROM (1 DOF) which is generated from the Rayleigh-Ritz model from [34], using

the same N3 and Na as used in the reference model. The solid line is a result of the full

reference model (45 DOF), which is obtained by searching for periodic solutions using a

shooting algorithm 1] The results from the three models are virtually identical over this

 

1This amplitude corresponds to the beam having a peak-to—peak tip vibration amplitude of 1.59 meters.

§Due to computer memory limitations, the maximum number of kept modes we can achieve is 45.

1Note that all modal solutions based on the reference model require use of this shooting algorithm.
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amplitude range.

3.4.3 System Response

We now have a single DOF ROM (equations (3.28) and (3.29)), which is generated from

182 elements and 45 kept modes. This ROM is simulated with initial modal amplitude

(1(0) 2 5.9 and phase 95(0) = 0, and the result is shown as the dashed line in Figure 3.5.

This Figure can be geometrically interpreted as the projection of the motion that occurs

on the NNM manifold onto the linear eigenspace of the first linear flapping mode. This

numerical solution is verified against the numerical solution of the ROM from [34] with the

same initial conditions, which is shown as a dotted line. These two solutions are nearly

identical.

Figure 3.6 depicts the corresponding time responses of the NNM displacement 771 obtained

from three different models. The dashed line is the time response of the ROM obtained

by applying equation (3.26) to the numerical solution shown in Figure 3.5. Obtained by

applying the same procedures, the dotted line is the time response of the ROM from [34],

while the solid line is the time response of the reference model (45 DOF) initiated on the

NNM manifold. These three responses are nearly identical.

Figure 3.7 depicts one of the attendant master-s]ave-constraint relations, specifically the

second linear flapping mode displacement as a function of the NNM amplitude (a) and

phase ((1)). Note that solutions of the ROM are used to obtain (curb), after which the

second linear flapping mode displacement is obtained by the corresponding trace on this

surface. Of course, there are 87 other such surfaces, 43 more slaved displacements and 44

slaved velocities, for the linear modes. Note also that the contribution of this (and all)

linear mode(s) start at zero at a = 0 and increase in amplitude as 0. increases.

Figure 3.8 depicts the time response for the second linear flapping mode displacement
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obtained from the ROM, the ROM from [34], and the reference model. The dashed line is

obtained by applying the master-slave constraint (depicted in Figure 3.7) to the numerical

solution of the ROM (the dashed line in Figure 3.5). The dotted line is obtained by applying

the master-slave constraint from [34] (which is similar to Figure 3.7 but is not shown here)

to the numerical solution of the ROM from [34] (the dotted line in Figure 3.5). The solid

line is obtained from the 45 DOF reference model. Again, the results are virtually identical,

demonstrating that the invariant manifold accurately captures the effects of higher linear

modes.

Further sample results are shown in Figure 3.9, Figure 3.11, and Figure 3.13, which depict

the master-slave constraint relations for the tenth flapping mode, the first axial mode, and

the twelfth axial mode, respectively. Associated with these are Figure 3.10, Figure 3.12,

and Figure 3.14, which are similar in nature to Figure 3.8, and depict the slaved time

responses for the tenth flapping mode, the first axial mode, and the twelfth axial mode, re-

spectively. In all cases the NNM manifold accurately captures the contributions from these

linear modes. It is interesting to note that the first linear axial mode makes a significant

contribution to the fundamental flapping NNM, thus demonstrating the importance of the

nonlinear axial/transverse coupling.

The 88 master—slave—constraint relations will generate the NNM manifold for the first non-

linear flapping mode in the 90-dimensional state space. From Figure 3.7 through Figure

3.14, we see that the responses of the slaved linear flapping modes have the same fundamen-

tal frequency, as that of the NNM. However, the axial modes move at twice the frequency

of the NNM. This arises from the physics of the beam motion, and is discussed below.

Figure 3.15 depicts time responses of the beam-tip transverse deflection obtained from the

present ROM, the ROM from [34], and the reference model. The dashed line is obtained

by applying equation (3.24) to the time responses of the linear flapping and axial modes of

the ROM, and plotting the result for the transverse deflection of the end node of the beam.

Obtained by applying the same procedures, the dotted line is the result from the ROM from
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[34], and the solid line is the result from the reference model. Note that three responses

are very close and correspond to a tip-to-tip deflection of 2.34 meters. The discrepancy in

amplitude is, we believe, related to convergence difficulties with the Rayleigh-Ritz approach

near the beam tip [3].

Figure 3.16, Figure 3.17, and Figure 3.18 depict the spatial nature of the transverse, angle,

and axial motions of the beam in the NNM response for the same initial conditions as

the previous Figures. They represent the motion starting from t = 0 up to a quarter of

the period of the NNM. The time intervals between each deflection curve are equal. The

bottom curves of Figure 3.16 and Figure 3.18 and the top curve of Figure 3.17 are at the

initial time, corresponding to the peak NNM amplitude. The top curves of Figure 3.16 and

Figure 3.18 and the bottom curve of Figure 3.17 are one quarter-period later. The dashed

line in Figure 3.18 (close to the top curve in the Figure) is the static axial extension us due

to rotation of the beam. At the initial time, the beam experiences axial foreshortening due

to nonlinear effects through the transverse deflection, as can be seen by the negative axial

displacements in Figure 3.18. At the quarter period, the transverse deflection is at zero, and

the beam does not experience axial foreshortening, but deforms axially due to centrifugal

loads. Note that during the first quarter-period, the transverse and angle responses go

through a quarter-period of the periodic oscillation, but the axial response goes through

one half of its full oscillation. This is due to the symmetry of the axial response about the

zero transverse and angle deflections condition, that is, the axial foreshortening is the same

for —w and —6 as for +11) and +6. This is why the axial motion has twice the frequency of

the transverse and angle motions.

By combining the transverse deflection from Figure 3.16 and the axial deflection from

Figure 3.18, the deformed shape of the rotating beam on the first nonlinear mode manifold

can be generated. Due to the small scale of the axial motions, the beam shape will be very

close to the shapes shown for the transverse deflection (this is not true at all amplitudes,

but is a very good approximation here). It is important to note that the shape of the beam

changes in a periodic manner through the course of the NNM motion. This is due to the
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contributions from the slaved linear modes, which are not fixed, but vary in time according

to the NNM invariant manifold. This is in distinct contrast to more typical reduction

methods in which the equations of motion are projected onto a single mode shape, resulting

in a response during which the shape of the beam remains the same throughout the course

of the motion.

3.4.4 Computational Considerations

An important issue related to this procedure is that of computational time. As a compar-

ison, we consider here the relative times used to generate the invariant manifold solution

and run simulations on it with those of generating the manifold using a shooting technique.

It takes about 1,600 seconds to generate one strip of the manifold, yielding a total of about

192,000 seconds to generate the manifold. This is not trivial, but with the manifold in

hand, a simulation for a set of initial conditions takes under 500 seconds for about two

periods of response. In contrast, if one generates the manifold directly by using a shoot-

ing technique to find the correct initial conditions, each strip takes nearly 8,400 seconds

to generate, a factor of five higher. And, note that this approach uses the master-slave

relations as starting points for the shooting technique, which are not generally available,

making this result quite conservative.

When parametric studies are required, it is possible that the ROM using invariant manifold

techniques can be extended to handle the situation. A proposed approach is to augment

the system by considering the parameters of interest as elements of the master mode co-

ordinates. This is the so—called “suspension trick” ([89]). By this approach, the single

nonlinear mode manifold of interest will also be a function of the parameters of interest.

Hence, the computational cost of solving the invariant manifold does not become a recur-

ring cost when the parameters of interest are changed, however the initial cost of generating

the “suspended” manifold will be higher. This should be feasible and efficient for a single

parameter.
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3.5 Conclusions

In this chapter, the problem of obtaining nonlinear single—mode ROMS from a finite element

formulation of a rotating beam was addressed using NNMs. Accurate simulations of this

system typically require many DOF, due to the nonlinear coupling effects between axial and

transverse deflections. The problem of obtaining accurate ROM was solved using invariant

manifold-based NNMs. The ROMS obtained govern the dynamics of the NNM of interest

(the master mode), and the approach allows one to accurately capture the dynamics of

the slaved linear modes. Hence, only a single nonlinear oscillator is required for accurate

simulation of the NNM out to large amplitudes. The numerical solution of the NNM

invariant manifold equations was facilitated by employing a collocation method. Excellent

agreement was found for the dynamics of the fundamental flapping mode of the beam, by

comparing results from the single DOF ROM obtained here with the single DOF ROM

based on a Rayleigh-Ritz discretization ([34]) and a full 45 DOF reference model. The

method can be similarly applied to any mode of interest, and can be generalized to include

dissipation effects, both linear and nonlinear.

The results presented demonstrate significant promise, since they combine procedures from

the versatile finite element method with the accurate reduction procedures via numerically

generated NNMs. This will allow the NNM method to be applied to the large amplitude

vibrations of beams with more complex geometry and more nodal DOF, as required for

more realistic models of rotor blades and other structural members. Also, current work on

multi-mode manifolds shows promise for developing nonlinear ROM with two DOF in a

similar manner.
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3.6 Tables

Table 3.1. Dimensionless linear natural frequencies. (.21 and tag were computed using results

 

 

 

     

a = 0.06

77 w1 w2 w3 w4

12.17 13.8248 38.9163 81.37 142.606   

from [1]. .223 and M4 were computed using results from [2].

 

 

 

 

         

h :2 0.5 in

Q cal w2 w3 w4

(rad/s) Analy. FEM Analy. FEM Analy. FEM Analy. FEM

30 34.09 34.03 95.97 95.84 200.67 200.49 351.68 351.49
 

Table 3.2. Comparison of the linear natural frequencies obtained by power series and finite

element methods. The analytical results for (.21 and UJ2 were computed using results from

[1]. The analytical results for w3 and (124 were computed using results from [2].
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3.7 Figures
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Figure 3.1. Finite element representation of a rotating beam with Q = constant.
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Figure 3.3. Convergence of the first four linear natural frequencies (flapping modes) of the

finite element model.
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Figure 3.7. The contribution of the second linear flapping mode 772 = P2(a,¢) to the

first nonlinear mode manifold, solved by the collocation method, as a function of the first

nonlinear mode amplitude and phase.
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Figure 3.8. The time response of the second linear flapping mode deflection 172 =
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Figure 3.9. The contribution of the tenth linear flapping mode 7710 = P10(a,¢) to the

first nonlinear mode manifold, solved by the collocation method, as a function of the first

nonlinear mode amplitude and phase.
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Figure 3.11. The contribution of the first linear axial mode 7122 = P22(a,d)) to the first

nonlinear mode manifold, solved by the collocation method, as a function of the first

nonlinear mode amplitude and phase.
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Figure 3.12. The time response of the first linear axial mode deflection 7722 = P22(a(t), ¢(t))
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Figure 3.13. The contribution of the twelfth linear axial mode n33 = P33(a,¢) to the

first nonlinear mode manifold, solved by the collocation method, as a function of the first

nonlinear mode amplitude and phase.
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P33(a(t), ¢(t)) on the first nonlinear mode manifold for the FE—based ROM, the Rayleigh-

Ritz based ROM, and the reference model.
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FE-based ROM, the Rayleigh-Ritz based ROM, and the reference model.
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Figure 3.16. Transverse deflection w(;r, t) for a quarter-period of motion on the first non-

linear mode manifold. The motion starts at the maximum deflection (the bottom curve)

and moves as shown to the zero deflection at a quarter-period, after which it moves upward

in a symmetric manner about 11) = 0 and then repeats.
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Figure 3.17. Angle deflection 6(13, t) for a quarter-period of motion on the first nonlinear

mode manifold. The motion starts at the maximum deflection (the top curve) and moves

as shown to the zero deflection at a quarter-period, after which it moves downward in a

symmetric manner about 0 = 0 and then repeats.
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Figure 3.18. Axial deflection u(:1:, t) for a quarter-period of motion on the first nonlinear

mode manifold. The dashed line denotes the static deflection, 113(13). The bottom curve

corresponds to the initial condition. The top curve from Figure 3.16 and the bottom curve

from Figure 3.17 correspond to the top u(:1:) curve here, all at one quarter-period. Note

that the axial motion occurs at twice the frequency of the transverse and angle motions,

due to symmetry. As time progresses beyond the quarter—period, the axial motion moves

downward again, and oscillates between the top and bottom curves shown.
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3 .8 Appendix 3

The coefficients of the Jk quadratic nonlinear terms associated with the nth mode are as

follows:

Ill-F1

. LI , ‘1? , e

0an = Z (Owe—2m G'ejk + 99(3e—1)n Oejk + @315)” 063-1.) (342)

821

{71,j, It 2 1,2,3, Q}

(1W

eJk’ aejk and
\vhere 3,]- is the Ij component of the modal matrix in equation (24), and 0U

,9 , .
061k are.

4 4

U U

aejk : :1 "2 GelInjk (3°43)

1141112

W’ W

aeJk 21 "1:10aelrnjk (3'44)

(41 m2

8 -

“BI/r :1 mzlaeQelrnjk (3.40)

N

m1,2,3, ...,M +1}; {J',k =1,2,3,...,Q}

P
M

m H

,9 . . .

elnjk’ 06:1ka and aelmjk (“9‘
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,U

aelnjk

a

{1'

el rnJ'k

(aglnIe ¢(38+I—5)j ¢(3e+n—5)k + (aIlInIE ¢(3€+I—2)j ¢(38+n—2)Ic

{1:12}; {n :12}; {e = 1.2.3. ...,M +1}; {13k =1»2.31~-1Q}

u e—l . u e

(0211.) ¢(3e+l—5)j ¢(3e+n—4)l~ + (Gun) ¢(3e+l—2)j ¢(3e+n—1)l.~

{[21’2}; {71: 3’4}; {8 :112131""A/I +1}; {jak : 1,2131°"1Q}

(a’é‘inle‘l ¢(3e+I—4)J' ¢(36+n—5)k + (aflrrle ¢(Be+I—1)J' ¢(3e+n—2)k (3-45)

{1: 34}; {71:12}; {6 =1,2,3....,M +1}; {j,I€ =1,2,3,...,Q}

)e—l e .U . ' '

(“2m C29(3e+l—4)j ¢(36+n—-4)k + (“(11111) ¢(3e+l—1)j ¢(3e+n—1)k

{1: 3,4}, {711: 3,4}, {8 : 1,2,3,-~11)! +1}; {jk =112131'°'IQ}

(”firmly—1 ¢(3e+l—5)j ¢(3e—5)k + (aII~nz)e ¢(3e+l—2)j ¢(3e—2)k

{1:192}? {771:1}? {6 :192I3IH'1AI +1}’ {jtk :1’2’3’°"’Q}

. 3—1 ' ~

(”filmy ¢(:3e—+l—5)j @(3e—2lk + (ail-mle ¢(3e+l—2)j ¢(3e+1)k

{121,2}; {m = 2}; {e =1,2,3,...,M +1}; {j,k = 1,2,3,...,Q}

(”EIImIe—1 0.5(3e+l—4)j ¢(3r—5)k + (“Ilmle ¢(3e+l—1)j 9(3e—2)k

{I : 3,4}; {77121}; {e = 1,2,3,...,111 +1}; {j,k =1,2,3,...,Q}

Is e—l s c

("31171) @(3€+I—~’l)j CTb(36—2)k + (allrn) Q75(3e+l—-l)j Q75(3e+1)k

{I = 3,4}; {m = 2}; {e =1,2.3,...,.M +1}; {Ik =11213ru-1Q}
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Q ._ 3 0-1 3 e '

0(1ka — ((141171) ¢(3e+1—5)j ¢(3e—5)k+(“2zm) ¢(3e+l—2)j ¢(36—2)k

{121,2}; {77121}; {e : 1,2,3,...,11/1 +1}; {j,k =1,2,3,...,Q}

._ —1 4 . . ,
= (03sz $(3e+z—5)j ¢(3e—2)k + (aglmf ¢(3e+1—2)j ¢(3e+1)k

{1:1’2}; {771: 2}; {e = 1,2,3,...,1711 +1}; {],k =1,2,3,...,Q}

v'c —1 .

= (031,”)6 ¢(3e+1—4)j 9°(3e—5)k+(aglm)e ¢(3e+1—1)j¢(3e—2)k (3-48)

{I = 3,4}; {m =1}; {e = 1,2,3,...,11'1 +1}; {J'Jf- =1,2,3,---,Q}

‘3 ‘_1 . , .

= (“3177.19 ¢(3e+1—4)j ¢(36—2)k + (031706 ¢(3e+z—1)j ¢(3e+1)k

{1: 3,4}; {m = 2}; {e =1,2,3,...,M+1}; {j,k =1,2,3,..-,Q}

vvhere (-)e—l denotes quantities associated with element 6 — 1, (~)" denotes quantities asso-

ciated with element 6?, and of“”n and “2172; are quantities defined by equations (9) and (13),

1‘espect ively.

The coefficients of the jkl cubic nonlinear terms associated with the nth mode are as

fEDIIOWS

Al+l

, , ,/ w .~ ,1 e
flujkz = Z (0(3e—l)n flejkz + ¢’(3e)n 13631-1) (3-49)

621

{71,j,k,l = 1,2,3» --:Q}

n a o / ’1, /

w}1ere (bl-j is the ij component of the modal matrix In equation (24), and 3.15:3“ and .52“

flare :
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4 4

33kt = Z :233ka1

vvhere {3‘}; and [[33

e nrrjkl
3."er are:
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(3.51)



,/ W

"361*nrjkl

__1 ,

[( 31*721')e ¢(3e+l*—5)j ¢(3€+n-—5)k ¢(36+r—5)l

+(b‘fp.,,,.)e ¢(3e+z*—2)j ¢(3e+n—2)k¢(3e+r—2)z}

{1* 21,2}; {n = 1,2}; {1" =1,2}; {e =1,2,3,.

.—1

[( gm")? ¢(3e+z*—5)j ¢(3e+n—5)k ¢(3e+r—4)1

+( inn-He ¢(3e+1*—2)j ¢(3e+n—2)k¢(3e+r—1)z}

{1* 21,2};{71 =1,2}; {r = 3,4}; {6 =1,2,3,.

s .—1 -

[( 3m”)? ¢(3e+1*—5)j ¢(3e+n—4)k ¢(3e+r—5)1

+(bf1*n,.)e ¢(3e+z*—2)j ¢(3e+n—1)k¢(3e+r-2)t}

{1* 21,2}; {n = 3,4}; {7‘=1,2}; {e =1,2,3,.

[( 1851““an ¢(3€+l*—5)j ¢(38+n—4)k ¢(3e+r—4)l

+(’)f[*,,r)e ¢(3e+l*—2)j ¢(3e+n—1)k¢(3e+r—1)1}

{1* 21,2}; {71 = 3,4}; {7‘ = 3,4}; {6 =1,2,3,.

, ,—l
,

[(bgfinr)? ¢(36?+l*-4)j ¢(3€+Tl*5)k gD(38-+-1"-—5)l

+(b‘:[*m‘)e ¢(3e+l*—1)j ¢(3e+n—2)k¢(3e+r—2)l}

{1* = 3,4}; {n 21,2}; {7" 21,2}; {6 =1,2,3,.

. —1 1 .

[( §l*-nr)€ ¢(3e+1*—4)j $(3e+n—5)k ¢(3e+r—4)1

+1 'iz*m~)e $(3e+1*—1)j ¢’(3e+n—2)k¢(3e+r—1)l}

{1* = 3,4}; {7121,2}; {1‘ = 3,4}; {(3 =1,2,3,.

.' —1 . .
[( 51*,”16 0(3e+1*—4)j <b(3e+n—4)k ¢(3e+r—5)1

+( .]S:I*nr)e $(3€+l*—1)j ¢(36+n—1)k0(3e+r-2)l}

{1* = 3,4}; {71 = 3,4}; {r 21,2}; {6 21,2,3,.

,' ’—-l '

[(bglxmy ¢(3e+[*—4)j ¢(3e+n—4)k $(3€+1'—4)l

i

+(l)?[*m-)e ¢(3€+l* —1)j @(3c+n—l)k¢(36+r—1)I}

{1* = 3,4}; {11: 3,4}; {7‘ = 3,4}; {8 = 1,2,3,...,11’1 +1}; {j,k,l=1,2,3,...
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..,1W+1}; {j,k,l=1,2,3,...

.;M44x{¢h1=L2ew.

.WM44h{fihl=L2fivu

.,M44h{fih1=L2ew.

..,]W +1}; {j,k,l=1,2,3,...

”JI+U;U$J=IJJW.

H,AI—+1};{j,k,l==1,2,3vu

as»

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}



. G

fiel*nrjkl

—1

[(b4[*m—)e $(3e+l*— 5)j ¢(3e+n— 5)k ¢(38+T—5)l

+(b§)*,,,.)e ¢(36+l*—-2)j ¢(3e+n— 2)k¢(3e+r— 2)1}

{1* 21,2};{71 21,2}; {7" I1,2}; {e =1,2,3,...,

[( 31*n.r)€_1 ¢(3e+1*—5))’ ¢(3e+n— 5)1~ ¢(3e+r-4)z

+(bgl+,,,~)e¢(3e+z*——j2) ¢(3e+n— 2)k¢(3e+r— 1)1}

{1* 21,2}; {72 21,2}; {7“ = 3,4}; {6 =1,2,3,...,

[(b31+n,.)€—1 ¢(3e+1*—5)j ¢(3e+n—4)k ¢(3e+-r—5)1

+(b§1+m)e ¢(36’+l*—2)j ¢(3e+n—1)k¢(3e+r—2)l}

{1* 21,2}; {72: 3,4}; {1‘ 21,2}; {6 =1,2,3,...,

[( lizmfle—l ¢(3e+z*—5)j ¢(3e+n—4)k ¢(3e+r—4)z

+(b3pm-V ¢(3c+l*— 2)j ¢(3e+n— 1)k¢(3€+r— 1)l}

{1* 21,2}; {72: 3,4}; {7‘ : 3,4}; {6 =1,2,3,...,

[(bj[*m-)e—1$(36+1*—j4) $(3e+n—5)k ¢(3e+r—5)z

+( 3pm,.)e ¢(3e+1* 1)) ¢(3e+n2)k¢(3e+r2n}

{l* = 3,4}; {7121,2}; {1‘2 1,2}; {6 =1,2,3,...,

[( 21*n'r)€—1 ¢(3e+l*—4j) Cb(3e+n— 5)k ¢(l3e+-r—4)l

+( 21*72.r)e 90(36+l*—1)j¢(3e+n—2)k¢(3e+r—1)l}

{1* = 3,4}; {72 =1,2}; {r = 3,4}; {6 =1,2,3,...,

[( 31*,” )(J—l ¢(3€’+l*—4)j Cb(3e+n—4)k ¢(3€+1‘—-5)l

+(b2l*nre) Q‘)(3€’+l"‘-1)j (13(364-71 l)k¢(3(+r— 2)l}

{1* = 3,4}; {71: 3,4}; {7“ 21,2}; {6 =1,2,3,...

[(”Liz*m>e_1¢<3e+t*—1)J¢(3e+n—4)k ¢(3e!+r—4>l

+( 21“”)? ¢(3()+l*—l)j ¢(3e+n—1)k¢(36+7‘—1)1}

{1* = 3,4}; {n = 3,4}; {7~ = 3,4}; {6 = 1,2,3,
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M +1}; {j,k,l=1,2,3,...

111 +1}; {j,k,l=1,2,3,...

M+1}; {j,k,l = 1,2,3,...

M+1}; {j,k,l=1,2,3,...

M+ 1}; {j,k,l=1,2,3,...

M+1}; {j,k,l=1,2,3,...

,1” +1}; {j,k,l=1,2,3,...

,3! +1}; {Jk7,l=1,2,3,...

(3.53)

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}

,Q}



w11ere ()9-1 denotes for quantities associated with element 6 — 1, ()8 denotes quantities

zlssociated with element 6, and bZl*nr are quantities defined by equation (15).
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CHAPTER 4

Component Mode Synthesis Using

Nonlinear Normal Modes

4 - 1 Introduction

1\-I any complex structures are composed of several relatively simple substructures that

are assembled together. This occurs in trusses, bladed-disk assemblies in turbine rotors,

aerospace and ground vehicles, and many other applications. In such cases it is convenient

to develop a dynamic model for the overall structure by taking advantage of the dynamic

properties of the substructures. Component Mode Synthesis (CMS) was developed using

these ideas, in order to synthesize models that are described in terms of the component

Structures and to take advantage of model size reduction carried out at the substructure

leVel. There are two general types of CMS methods; they are known as the fixed-interface

and the free-interface approaches. The fixed-interface CMS technique, developed by Hurty

( [60] ,[61]) and simplified by Craig and Bampton ([62]), is widely used, since the reduction

procedure is straightforward and typically produces highly accurate models with relatively

few component modes ([64]). Free-interface CMS methods are more attractive than fixed-

interface CMS methods when the component modes are obtained from modal testing or

‘Vhen an experimental verification of the component modes is required ([65]). The free-

interface CMS technique developed by Craig and Chang ([66], [67] and [63]) is the most

accurate among the free-interface CMS techniques. It is a modified version of Rubin’s
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Inethod [68] and MacNeal’s method [69]. It is superior to the CMS of Craig-Bampton in

terms of accuracy, but is more difficult to implement ([64]). An extensive review on CMS

can be found in [59]. CMS-type methods are well developed for linear structural models

alld they have been used extensively, especially in the aerospace industry, see ([55], [56],

[57] , and [58], for example).

T11e finite element (FE) method is used in CMS to model and characterize the behavior of

the individual substructures. Often, accurate models of the component structures require a

large number of FE degrees of freedom (DOF). For linear systems, model reduction can be

achieved using linear modal analysis, wherein one simply truncates the higher modes of vi-

bration. In fact, this is how one carries out model size reduction at the substructure level in

linear CMS. However, the dynamic analysis (e.g., the determination of natural frequencies,

rnode shapes, time responses) of such structures can require considerable computational

effort, and this is especially true for nonlinear structures ([5]).

The difficult issue of model size reduction for nonlinear structures continues to be a ma-

jor Challenge for computational vibration analysis. For relatively simple systems one can

use nonlinear normal modes (NNMS) for this task. For example, Shaw and Pierre have

developed systematic procedures to obtain reduced-order models (ROM) via NNMS using

invariant manifolds ([20], [21], and [74]). Asymptotic series were initially used to approxi-

mate the geometry of the invariant manifold, and this approach was applied to the study

Of a variety of systems, such as a nonlinear rotating Euler-Bernoulli Beam ([3]). Pesheck

e t al. developed a numerically-based Galerkin approach to calculate the geometry of the

NNlVI invariant manifolds out to large amplitudes of vibration ([33]). These procedures

Can be used for quite general nonlinearities over a wide range of amplitudes, and they have

been applied to many systems, including the rotating beam ([34]). Recently, these methods

have been shown to be applicable in conjunction with nonlinear FE models ([35]), which

Opens a new frontier for their application to more complex nonlinear structural systems.

Jiang et al. have recently extended the work of Pesheck et al. to calculate the geometry

3f Inulti-Inode invariant manifolds that are able to capture the dynamics for Situations
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where more than one mode is active, for example, in the case of internal resonance ([42]).

However the computational cost involved in generating the multi-mode invariant manifold

is still quite high.

The present chapter describes recent research that is aimed at extending the fixed-interface

linear CMS method to nonlinear structures by making use of the fixed-interface NNMS

of the component structures. By synthesizing the reduced-order representations of the

substructures, one can obtain accurate low-order models of structures that are composed

of assemblies of nonlinear substructures, with significantly less computational cost than

by computing the ROM directly from the fully coupled system. It is found that such an

approach is valid, so long as the coupling between substructures is relatively weak. It

is also shown how this method relates to the usual linear CMS, and reduces to it under

linearization of the model.

The chapter is outlined as follows. We first review the development of NNMs, as needed for

the individual substructures. The associated invariant manifold equations, parameterized

by modal position and velocity, are formulated, and a numerical collocation method is

presented that allows one to obtain the solution of the NNM invariant manifold out to

moderate amplitudes. Then, the procedures for fixed-interface nonlinear component mode

synthesis are described. A five-DOF system and a forty-one—DOF system are used as

examples to demonstrate the method, and some conclusions are drawn to close the chapter.

4.2 Formulation of the NNM Invariant Manifolds

4.2.1 Invariant-Manifold Governing Equations

We begin with a general discrete representation of the vibrations of a nonlinear structural

system (in our case, a subsystem component), obtained either by a. finite element model
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followed by linear modal expansion, or by a Rayleigh-Ritz approach using the linear mode

shapes. We assume that the system at linear order is undamped. (This assumption greatly

simplifies the problem, but can be relaxed, in principle.) In this case, the equations of

motion for a Q-DOF system are uncoupled at linear order and can be expressed in the

form:

Iii+An=f(n,7i) (H)

where I is the identity matrix, A is the diagonal matrix of squared linear natural frequen-

cies, f (17, 1'7) a vector of nonlinear forces, 7) the modal position vector, and 1'7 the modal

velocity vector. The component form of equation (4.1) is given by

771+w12 771' = fina’lj) (4-2)

for i,j=1,2,3,...,Q

where w,- is the linear free vibration natural frequency of mode 2' and Q is the number of

retained linear modes.

In order to search for a particular individual NNM, it is assumed that the NNM manifold

is parameterized by a single modal position-velocity pair corresponding to the mode of

interest, referred to as the master mode. This is accomplished by using the fact that for a

NNM response all of the remaining modal positions and velocities are slaved (constrained)

to this master mode. For the kth nonlinear mode, we take “I: = 77k» and Uk 2 77.}: as the

master states. The remaining slave states are expressed as
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7h“ = Xifuka‘l’k) = Xi(77k)7Ik) (4.3)

'77: = W‘llka’l-‘kl = Yi(77ka7lk) (4-4)

for 1: = 1,2,3,...,Q; 2' 7f k.

Equations (4.3) and (4.4) constitute a set of constraint equations that are to be determined.

The constraint functions in equations (4.3) and (4.4) are obtained by an invariant manifold

procedure that generates equations that can be solved for the unknown constraint relations.

The process begins by taking a time derivative of the constraint equations, yielding

 

ax,- ax,-
: ,. 4.

77! (91% “It avk I). ( 5)

.. BY, . 81’,- ,

- = —' . —— ,1. 4.
7]? 011}: ”k + 8L1.“ ( 6)

for i=1,2,3,...,Q; 2% k.

The time dependence in these equations is eliminated by substitutions that make use of

the the equations of motion, as follows: 11k 2 Uk, 1'1), 2 ijk 2 flag m. + fk(nj,1'7j), 7),- =

—w,2 71,-+f,-(nj,'f}J-). Then, the constraints (equations (4.3) and (4.4)) are substituted in the

resulting expression everywhere in place of the slave state variables, resulting in a set of

partial differential equations for the functions (X,(uk, 22k), I’I-(11k, 1%)). This set of 2Q - 2,

time-independent, partial differential equations govern the geometry of the kth manifold,

and are given by
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2 o

—wz X2+f2(Xja)/Jiuk9vk) : Uk+—'

for m' = 1,2,3,...,Q; 1,)“ 72 k.

These equations are not solvable in closed form (except in very special cases). Methods

for obtaining approximate solutions for X,j and Y,- are described in the next section.

4.2.2 Invariant Manifold Solution

Asymptotic expansions can be used to obtain approximate solutions of the invariant man-

ifold equations, equations (4.7) and (4.8), for smooth nonlinearities, but such solutions are

only locally valid ([20], [21]). Numerical Galerkin-based solutions have also been developed,

wherein one can utilize either local or global basis functions to describe the invariant man-

ifold ([33]). In this work we employ a Galerkin-based procedure that relies on a patchwork

of local solutions to obtain a solution that is valid over a given domain: “k E [—Ub, Ub] and

“k E l-le Vbl-

We describe the development of the method for a local domain described by ui E [—11b, 11),]

and v}: E [—v),,1,1b]. Once this procedure has been developed, it can be applied to each

patch, and the final result is obtained by collecting the results for all patches such that

the entire domain is covered. The relations between the coordinates in the global domain

, , 4 ° , ' . f? . (.9 ' ~
(11k, “kl and those in the local domain (11),, Uk) are given by
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uk

'Uk

where du

and dU

du + “Z, (4.9)

(iv + vi, (4.10)

2U

‘Ub + (TV—5X6“ — l) + 11),, (4.11)

u

2V

—V:. + (7%?er — 1) + vb. (4.12)

where eu and e), are the patch indices in the “k and vk directions, respectively, and N5 and

N5 are the number of patches used in the “k and ”k directions, and du and dv represent

the shift from the ori 'in of u ., v. to 116,219, , res ectivel I. Here 6,, runs from 1 to Ne
8 k A k 1, P l u

and ev runs from 1 to N5.

Substituting equations (4.9) and (4.10) into equations (4.7) and (4.8), the partial differential

equations governing the geometry of the kth manifold in the local coordinates (11;, vi.) are

 

given by:

BX' . (9X;
Y2. : 875% + vi) + 8125 (flag ((1,, + 212.)

+fk(vaYjad'u+uiadv+v2)) (4.13)

2 X' , _ , e e _ BY, 6 Yi . 2 , e

“’00)“ z+fz(X]aYJadu+Ukadv+vk) — 51"?de +vk)+51_'5(—wk (d‘u‘l‘uk)

k ’k

+ fk(X)-, Yjadu + ui..dv + 222)) (4-14)

for i,j=1,2,3,...,Q; 2',j # k.

The solution of equations (4.13) and (4.14) on the local domain is obtained by expanding

(X2, Y2) in terms of basis functions as:
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Npm NW!

. l,
X,(u‘,:.,vf;) = Z: Z CimLMl,m(uZ,vi.) (4.15)

[:1 "1:1

Npm NW 1

WM) = Z Z D.‘"‘LM.,...(uz.v;:). (416)

1:1 m=1

where LAI),.m(u‘Z,'v;) = T1_1(uZ/ub)XTm_1(vf./vb), (4.17)

where T)_1(:L‘) and Tm_1 (1') are standard Chebyshev polynomials defined over :1: E [- 1, +1],

and the C”s and D’s are the to-be-determined expansion coefficients. Equations (4.15) and

(4.16) are substituted into the local manifold-governing equations, equations (4.13) and

(4.14). Normally, each of the resulting equations is projected onto the basis functions, but

here we employ a collocation method, which is computationally more efficient, yet retains

very good accuracy. This is carried out by projection of the equations onto Dirac delta

functions in the local master coordinates over the local domain, as follows:

1, 1,. (91.1%.

0 : ff’ 6 6(112—112VUE—vgq) — 2 DZ. mLIWLm + Z Cz- m(dv + ”fl—Efifl

U ”U;
k

I. It I m l,m

1,. 3L1”) ,

+ 2 Ci m ave m (-wg(du + 11%) + fk.) d“): dvi (4.18)

l,m k

. .. , ,, 2 1. 1, 3LMz,m
0 = [6 e 6(‘112—‘112‘pyvz —- “1:,(1) a), Z CimLIl/Il’m — f,- + 2: Di "‘(dv + Up—Bue

U‘k‘vk l,m l,m k

GLAI

+ Z Dg'm—Elyél(—wg(du +112.) + fk) (111;: (1112. (4.19)

l,m.

for 1'.=1,2,3,...,Q;i91é k;

_ T .

P— 13'“) 1),“)

q :1) "'9 Arne)
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where (ugpwz‘q) E [—u),,ub] x[—vb,vb] are the collocation points, which are zeroes of

TNp,u(ui/ub) and TNpJ,('v,‘:,/vb), respectively (see [78], [81]). Equations (4.18) and (4.19)

constitute a set of 2(Q — 1) x Np,” X Np‘v nonlinear equations in the C’s and D’s. Note

that there are N; x NS sets of Cs and D’s, that is, a set for each patch. However, if the

system is conservative and the nonlinear terms are functions of solely the modal positions,

then only 0.25 x N3 x N3 sets of C’s and D’s need to be solved for, and the remaining

coefficients can be generated using symmetries in the NNM manifold. Once all of the

expansion coefficients are obtained, the X ‘s and Y’s, which describe the slaved modes, are

known functions of the master states (112.11%. For 2' = k, these known functions are used to

express fk in equation (4.2) in terms of only 112 and vi, rendering a single-DOF oscillator

as the reduced-order—model for the km NNM.

Once all of the coefficients have been determined for each subdomain, the entire manifold

is known, in a patchwork form. It should be noted that a motion started on this manifold,

that is, one that satisfies the master-slave relations captured by the X’s and Y’s, remains

on that manifold for all time, by dynamic invariance. However, a given response will visit

many subdomains, and thus the solution moves across this two dimensional surface like a

curve tracing across a tiled floor. It should also be noted that these “tiles” are obtained in

a patchwork manner, without any continuity or smoothness constraints, so that the slave

constraints may exhibit jumps as the response moves across the tile boundaries. If the

subdomains are taken to be sufficiently small, these jumps will likewise be small. Examples

of nonlinear modes constructed from a. similar approach can be found in [33] and [34].

4.3 Fixed-Interface Nonlinear Component Mode Syn-

thesis

In this section, we extend the concept of the fixed—interface CMS of Craig and Bamp-

ton ([62]) by making use of the fixed-interface NNMS instead of the fixed-interface linear
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normal modes (LNMs). The aim here is to account for nonlinearities at the substructure

level without having to resort to the retention of several linear modes. First, the nonlin-

ear structural system is partitioned into component substructures. Then, fixed-interface

dynamic representations of the substructures are constructed, where the nonlinear models

are expressed in terms of fixed-interface LNMS, which are coupled through nonlinear terms.

These substructure models are then reduced, each to a single nonlinear mode, using the

NNM constraint relations, and subsequently synthesized with linear constraint modes to

produce a ROM that describes the dynamics of the combined structure.

4.3.1 System Representation in Physical Coordinates

Consider a structure that is partitioned into two substructures, denoted by a and B. The

equations of motion of the substructures in physical coordinates can be written separately,

along with appropriate conditions on the common junction coordinates, as follows:

0 .- O’ O 0

M11 MIJ XI K11 KIJ XI

MJI MJJ XJ KJI KJJ XJ

(4.20)

0 ‘la

Glfx) _ 0

GJ(X) FJ

,1} .. )3 l3 )3

M11 MIJ XI + - K11 KIJ XI

MJI MJJ XJ [KJI KJJ XJ

(4.21)

1'3 ,3

GI(X) _‘ 0

GJ(X) FJ
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with junction boundary conditions on displacements and forces, as follows,

X3 X’B, (4.22)

F9+FJfl : o, (4.23)

where ()0 denotes quantities associated with substructure a, and all terms defined below

have ()3 counterparts. The vector X0: contains all coordinates for the a substructure

and has dimension Na, 3’ is the vector of interior (non-interface) physical coordinates

of dimension 71?, and X“; is the vector of junction (interface) physical coordinates of

dimension nC. G? is a. vector of the nonlinear forces associated with the X? equations,

3‘ is the vector of nonlinear forces associated with the X3" equations, and F? is the

vector of reaction forces from substructure ,8 acting on substructure 02. Mg], Kf’I, etc.,

are mass and stiffness matrices, respectively, defined in an obvious manner.

4.3.2 System Representation in Linear Modal Coordinates

In this section, the (typically) large number of physical coordinates for each substructure is

first reduced to a. smaller (yet still possibly large) number of coordinates by truncating using

the substructures’ fixed-interface linear modes. The physical coordinates of substructures

a and (3 are transformed into a truncated set of fixed—interface linear modal coordinates

using the following coordinate transformations:

0:

Xa : (1,0: "(I : ]: (pa ‘1’0 :] "N (4.24)

N C a

"C
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10
17),,

e- a e- B aX _\11 n _ [‘I’N 11.0] "I, , (4.25)

where (Pg, is the 1 ’0 x n0 matrix of retained fixed-interface linear normal modes, 1710‘} is

the vector of retained fixed-interface linear modal coordinates (of dimension n“ ), \I'g. is

the Na X "C matrix of linear constraint modes, 778. is the vector (of dimension TLC ) of

linear constraint. modal coordinates, and similar terms are defined for substructure 3. The

procedures for calculating the retained fixed-interface linear normal modes and the linear

constraint modes are described below. Note that at this step, the dimension of the system

of equations for substructure a has been reduced from (N0 = n? + 710) to (n0 + mg) with

n” < 71‘}, and similarly for substructure 3.

4.3.2.1 Fixed—Interface Linear and Nonlinear Normal Modes

The concept of fixed-interface linear CMS of Craig and Bampton ([62]) is extended by

making use of the fixed-interface NNMS in place of the fixed-interface LNMS. Since the

procedures for substructures a and )3 are the same, these superscripts will be omitted from

the development here.

Consider equations (4.20) and (4.21) with XJ = 0, that is, with the interface fixed. This

yields

MIIXI + KIIXI + GI(XIs XJ = 0) = 0. (426)

Using standard linear modal analysis (with the modes obtained for GI = 0), we obtain the
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normalized fixed~interface linear modal matrix <1)IN associated with the interior physical

coordinates (of dimension n] X n, where 72 << 711). Then, the retained fixed-interface linear

modal matrix <I>N is defined as

‘I’N = . (4.27)

The nonlinear equations of motion (4.26) are then transformed into fixed-interface linear

modal coordinates using the following coordinate transformation:

XI = ‘I’IN 771v. (428)

This yields the fixed interface nonlinear equations of motion expressed in fixed—interface

linear modal coordinates, as follows:

INN fiN+ANN 77N+GN(77N) = 0 (429)

where INN = @fNMuem (4.30)

ANN = efNKHeIN (4.31)

éNWN) = ‘PfNGI(‘PIN77N.XJ=0)o (432)

This fixed-interface model is still relatively large and is to be ultimately reduced to a

single DOF using the nonlinear modal reduction procedure described in sections 4.2 and

4.2.2. Note that. in terms of matching notation from those sections, the function GN and
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dimension n are —f and Q, respectively. The NNM reduction provides the constraint

relations between the slaved states and the master states of the kth fixed-interface NNM

for a substructure, and can be expressed as follows:

n.” X371? .71.?) (4.33)

, r N , r

"I? = Kim. .7213) (4.34)

for i=1,2,3,...,n; 37$ k.

After obtaining the constraints X,- and Y2, and doing so for each substructure, we have

single mode nonlinear models for the substructures, based on fixed interface models. We

now turn to the procedure for coupling these component structure models to one another

through the interface.

4.3.2.2 Linear Constraint Modes

The definition of a linear constraint mode from Craig and Bampton [62] is adopted here.

It is defined by statically imposing a unit displacement on one physical coordinate of the

set of junction coordinates and zero displacements on the remaining coordinates of the set.

This procedure is applied consecutively to all junction coordinates. Again, this process is

the same for the a and 3 substructures, and therefore these superscripts are omitted. The

collection of linear constraint modes is obtained from

we 2 = , (4.35)
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where ‘I’IC has dimension n I x TLC and IJC has dimension nC x 720.

Note that nonlinear constraint modes are not considered in the present study, for a few rea-

sons. First. to do so would require additional steps involving the derivation of another set of

master-slave relations to describe nonlinear constraint modes (even if they are static). Also,

if one were to use nonlinear constraint modes in the synthesis procedure, the coefficients

of the nonlinear terms would be functions of the constraint mode amplitudes, which would

make the synthesis process cumbersome to the point of being impractical. Furthermore,

and perhaps most importantly, since fixed-interface methods work best for assemblies of

weakly coupled subsystems, for which fixed—interface (linear or nonlinear, as the case may

be) modes are well-suited to describe component motions accurately, it is appropriate to

use linear constraint modes to represent the small interface-induced motions in the com-

ponents. This restriction must be kept in mind, however, since it limits the method to a

class of systems with weak coupling.

Equations (4.20) and (4.21) are transformed into linear modal coordinates using equations

(4.24) and (4.25). The equations of motion for both substructures expressed in terms of

these coordinates have the form

(1 .0 C! a

INN MNC 771v ' + ANN 0 UN

' MCN Mac 150 0 K00 ’10

(4.36)

~ 0 O

GN(77Na770) __ 0

@CMch) ' F0
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INN MNC fiN + ANN 0 7m

MC'N MCC fic 0 K00 no

(4.37)

~ B X3

GN(77N, 77C) _ 0

éC(’7Na 770) PC

with the following junction boundary conditions on the displacements and forces:

X31 = ng 2 n3 -_- Xfi, (4.38)

Fg = Ff; and pg = Ff,’ (4.39)

Fg + pg 2 0. (4.40)

Note that the stiffness matrices are block diagonal due to the orthogonality between <1)N

and WC with respect to K, which results from how (I)N and ‘110 are defined in equations

(4.27) and (4.35), respectively. We now turn to the synthesis procedure.

4.3.3 Synthesis with Nonlinear Modal Reduction

In this section, the model size of the substructures is reduced using the NNM constraint

relations. The substructure ROMS are then synthesized to obtain the final ROM that

describes the dynamics of the combined structure.

In summary, this nonlinear CMS process involves two steps of model reduction, one of

which is standard and uses linear modes, while the other involves the NNMS. First, we
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use the linear modal reduction described in section 4.3.2 to reduce the system DOF from

(n? + n? + rig) to (n0 + nfi + 71.0). Note that this reduction is not central to the technique,

and may not be used in some systems (in fact, it is not done in the examples considered

in the next section). Then, the key step makes use of the nonlinear modal reduction based

on the approach described in sections 4.2 and 4.2.2, which reduces the system size from

(n0 + 72:3 + 72.0) to (2 + 720) DOFS.

Again, the superscripts a and [3 are omitted in the derivation. The component forms of

equations (4.36) and (4.37) are given by

n 1

..N .NC--C 2 N ~N N N C
77,- + "his 713 +w, 77,: +9,- (77) ,7]k ,177.) = O (4.41)

3:1

”C

~N ’VCuC 2 N ~N N N C

m, +2774... Us +wknk +9117); mi. .771) = 0 (4-42)

321

n "C ”C

CV~V CC~C CC C ~C N N C J

7”er ”3' +anrs Us +Zkrs 773 +9r (771 ’77k inr) = Fri (4'43)

j=1 3-1 3:1

for i,l = 1,2,3,...,n; i,l;ék;

r = 1, 2, 3, ..., nC,

where k is the kth fixed—interface master mode defined in section 4.3.2.1 (typically taken to

be the fundamental mode). From equation (4.41), the expression for 77;", is obtained , and

it is used in equation (4.43). Rearranging and grouping terms in equation (4.43) yields
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”C

CC I I .. ~C 1 t N N
mfiN 7')k+ 3: 771,3 “pm e 7),?' + 821 kCC ”SC + 9 up” 8(7), ,nk ,0?) = F,:](4.44)

where mgc‘wdate = 771C? + mac , (4.45)

Tl

mac* = Z —m,C.;-N m19:0, (4.46)

j=ld¢k

g?"“”"““’ = a? + 9? (4.47)
n

and 99* = Z mijN (‘sz 7)]N — 9?), (4.48)

j=ld¥k

for r : 1,2,3,...,n

The modal constraints given in equation (4.33) are used in equations (4.42) and (4.44) to

reduce the equations of motion associated with the synthesized fixed-interface linear modal

coordinates (which are coupled to the constraint modes) onto the km fixed-interface NNM

invariant manifold (which is uncoupled from the constraint modes). This approximation

will yield an accurate ROM if substructures a and [3 are weakly coupled, that is, the actual

NNM invariant manifold of dimension 2 x (2+nC) of the combined structure has invariant 2-

kth
dimensional submanifolds that are close to the fixed-interface NNM invariant manifolds

of the substructures, which are each of dimension 2.

With the NNM reduction of substructures a and ,3, equations (4.42) and (4.44) can be

expressed in matrix form as

O
(1

(1 r O

1 MKC ”iv “1% 0 n?
d t ..

MCK M31}; 0 e "C 0 K00 ”C

(4.49)

(JIM/(Y. fig. 770) _ O

.. d t 7V
—GE? (1 30)}? ,77iv "0) F]
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1 MKC "7713/ + 7.7g 0 77,1,"

d t ..

MCK Mg? 0 e no 0 K00 no

(4.50)

~ N V 3 fl

Gk(nk ’77; an) __ 0

d t '— ’

Cup ”(77,, 77kch) FJ

along with the junction boundary conditions from equations (4.38) and (4.40). The final

form of the synthesized ROM is obtained by imposing the junction conditions, equations

(4.38) and (4.40), on equations (4.49) and (4.50), resulting in

    

        

r 1 0 Mgc - ‘17,?0‘“

0 1 M13“; eff/3

MCK MgK Mé‘giate_ t "C _

, (4.51)

"(4)2 0 0 ”12,?“- l 53 - ’0-

+ 0 (of)? o 77,?” + (if = 0

_ 0 0 KCCJ _nc _ _c':‘g’d“‘8_ _0J

where Mupdate = (Mupdatea+Mupdate,fi) (4-52)

KCC = (KgC+KgC), (4.53)

and ézépdate : Gupdate0(7711CV,a,7.7i:V,a,nC)

+G‘“”““"‘*"’<n,{.VWifif’ma). (4.54)

This is the desired model, which has (2 + 71C) DOF, one for each substructure and "C for

the constraint modes.
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Note that these procedures have been computationally automated. Therefore, it is quite

practical to interface this fixed-interface nonlinear CMS with nonlinear finite element mod-

els of the form in equations (4.20) and (4.21).

4.4 A Five-DOF Nonlinear Spring-Mass System

A five-DOF nonlinear spring-mass system is used as a “proof of concept” example that

demonstrates the procedures and shows the effectiveness of the proposed method. The

system is schematically depicted in Figure 4.1, and naturally partitions into the three sub-

structures shown in Figure 4.2. The general features of this system are that the coupling

mass ml is connected to ground with a very stiff spring In, such that its isolated natu-

ral frequency is significantly larger than the fixed—interface natural frequencies of the two

attached subsystems (that is, when they are attached to ground instead of to m1). In

such a case, mass m1 will have a relatively small amplitude for typical responses, and the

fixed-interface linear modes of the two attached subsystems will be strongly reflected in

the linear modes of the combined system. The subsystems are assumed to vibrate at am-

plitudes such that significant nonlinear effects are encountered, and in a frequency range

such that their responses are dominated by their respective fundamental NNMS. Thus, the

procedure consists in developing single-DOF fixed-interface NNMs for the attached subsys-

tems, and combining these using the proposed method, resulting in a three-DOF nonlinear

ROM that captures the dynamics (except for the high-frequency modes of the two attached

subsystems). However, by using NNMS to describe the subsystems, the essential nonlinear

interactions between the linear modes within each substructure will be contained in the

resulting ROM.

The equations of motion of the five-DOF spring-mass system are given by
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ml 0 0 0 0 ‘ P {fl 1

0 7722 0 0 0 if2

0 0 "1'3 0 0 i3

0 0 0 m4 0 i4

_ 0 0 0 0 ""5 - _ f5 1

(k1 + k2 + *6) ‘1”? 0 4%

..,, (k2 + k4) -’~4 0
+ 0 —k4 A4 0

46 0 0 (kg + log)

L 0
0 O —f~8

—l.‘-3(:F2 *1‘1l3 — (97(174 — 11):;

k3(:172 — 1703 — (“5(1’3 _ I2)3

k5(1‘3 — T2)3
:

k7(;174 - 1‘03 — WW5 — “)3

_ I\2'9(-T5 - “)3
l

   

  

 

  

  

x1

1‘2

333

$4

$5  

(4.55)

The equations of motion for the individual substructures and the junction boundary con-

ditions are given by

_ --a . ,.a _ 0.13 07
7711.731 + £1.11 — FJ + FJ
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0 0 0 If k2 —kg 0 2:1

0 777.2 0 mg + —7.~,2 (k2 + k4) —k4 2:2

(..,/3
L'0 0 7713- -I3- 5 0 A4 k4-bl‘3‘

(4.57)

' 73 ,3 1 ' 3 '
-k3(1‘.'2 — (1:1)3 Féa

1'3 13 3 ,6 1 _

+ 7.3(1:2 — I, )3 — k5(1~‘3 — 172)} — 0

{3 £3

_ A)(l'3 _.I,‘2)3 _ L 0 d

0 0 0 1‘} k6 4.6 0 I x‘,’

0 7714 0 (1'73 + —k6 (k6 + k8) —kg 333'

£17 _ . . 7
-0 0 7775‘ _.1,3J _ 0 kg 1.8 _ L273—

(4.58)

7 ‘ H P a -

—A7(zg—x’{)3 F]

+ 17(12 -— .1793 — k9(:rg - 1:2)3 = O

. kg(173 — 1‘3)3 d L 0 _1

with junction boundary conditions on displacements and forces:

13 '

1'? = 1“, = .23? (4.59)

(13 Lia

F; + FJ = 0 (4.60)

Ff,” + F30 = 0. (4.61)

The system parameters used for this study are ml 2 5,7712 2 1,7713 2 1,771.4 = 1,7715 2

1,k1=50,k2 =1,k3 =2,k4 =5,k5 = 1,196 =4,k7 = 1,k8=45, and kg: 1.
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The linear natural frequency of substructure a is w“ = 3.16 rad/s, the first linear natural

13

frequency of substructure ,8 is wl/ = 0.69 rad/s, and the first linear natural frequency of

substructure '7 is a)? = 1.40 rad/3. Therefore the substructures fl and ”y are coupled through

6 7
substructure 07 via weak coupling, since wa >> “’1 , “’1 .

Applying the procedures from section 4.3.2.1, the fixed-interface nonlinear mode manifolds

for the fundamental modes of substructures fl and 7 are obtained. In this simple case

the manifolds can be expressed as constraint functions in which the second linear modal

position and velocity for a substructure depend on the first modal position and velocity of

that substructure. The results obtained numerically for the modal position functions for the

two multi-DOF substructures are shown in figures (4.3) and (4.4). For substructure 5, the

boundaries of the surface along modal position and velocity are Ub = 2.6 and Vb = 1.79,

respectively, the number of Chebyshev polynomials along each u": and U; are NW1 2 3

and NW, 2 2 respectively, and the number of pieces along uk and vk are N5 = 100 and

Nf,’ = 100, respectively. For substructure 7, the boundaries of the surface along modal

position and velocity are Ub = 12.0, Vb = 16.78, respectively, the number of Chebyshev

polynomials along 21k and along 17], are Np,“ 2: 3 and N71,?! = 2, respectively, and the number

of pieces along uk and vk are N5 = 100 and N5 = 100, respectively. Note that similar

surfaces exist for the slaved modal velocities, although they are not shown here.

Applying the procedures from section 4.3.3, a nonlinear three-DOF ROM is obtained. In

this case it describes the motions of the coupling mass and the first NNM for each of

the attached substructures. This model is simulated with initial conditions initiated on

the first. fixed-interface nonlinear mode manifolds of substructures B and 7, as follows:

N , 73

pi (0) 2: 1.5,77‘1'V’7(0) = 04, along with a constraint amplitude of 770(0) = 0.1, with

initial modal velocities taken to be zero.

For comparison purposes we use four models constructed in various manners. They are:

the original five-DOF nonlinear model given in equation (4.55), a three-DOF nonlinear
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model obtained using linear CMS (that is, by projecting the nonlinear subsystems onto

their fixed-interface linear modes and the linear constraint mode), a three-DOF linear

model obtained using linear CMS (this is the linearized version of the previous model),

and the threeDOF nonlinear CMS model developed by the proposed approach. Figures

(4.5) - (4.9) depict the comparison of the time responses of the various physical degrees

of freedom obtained by simulations of these four models. In these figures the dashed line

labeled NLCMS corresponds to the three-DOF nonlinear CMS model, the dash-dot line

labeled LCMS corresponds to the three-DOF nonlinear model obtained using linear CMS,

the dotted line labeled LCMSLPrb corresponds to the three-DOF linear model obtained

using linear CMS, and the solid line labeled Original Model corresponds to the five-DOF

original model. From the simulation results it is clear that the fixed-interface nonlinear

CMS model outperforms the other low-order models, including the linear CMS model,

which is the approach most commonly used in this type of problems. In particular, the

NLCMS correctly captures the frequencies of the substructures, as well as the effects of

their coupling.

It should be noted that there is a range of system parameters where this method gives

satisfactory results. One particular trend worth noting is obtained by varying the stiffness

to ground k1. As k1 is reduced and approaches the same order as the stiffnesses of the

substructures, the fixed-interface approximation begins to break down and the accuracy of

the NLCMS model deteriorates. On the other hand, as [$1 is increased, the NLCMS model

becomes more accurate, but the amount of substructure interaction is reduced, leading to a

system which consists of essentially decoupled motions for the two attached substructures.

4.5 A Class of Systems

In order to illustrate the general applicability of the proposed method, a class of nonlinear

spring-mass systems is examined. This class of systems is schematically depicted in Figure

4.10, and naturally partitions into Na appendage substructures, as shown in Figure 4.11.
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This system has the same general features as the system in section 4.4 except that each

substructure has (Nnmsg + 1) DOFs. (Note that this is easily generalized to the case where

the substructures have different number of DOF). In the following sections, the model of

this class of systems is first developed and then a system having Na 2 2 and Nmass = 20

is used as an example.

4.5. 1 Model Development

The component forms of the equations of motion of the N = (Na Nmass + 1)—DOF system

are given by

N N

Z "LU I‘j + Z kij .Tj ‘l' gi(X) : 0 (4.62)

j=1 j=1

for '= 1, 2, 3, ..., N.

The formulae for my. Isl-j and 9,- can be found in the Appendix.

The component forms of the equations of motion for the individual substructures and the

junction boundary conditions are given by

-r . . 5'
m1 .7)? + k1 1'? = 2 F? (4.63)

SI1’3.‘7.5,...



(Nmass +1) (Nmass +1)

7712565 + 2 765.15 + g;9(XS)=fS (4.64)

7:1 i=1

for i: 1, 2, 3, ..., (Nmass +1),

and S =13, 7, 6,

with junction boundary conditions on displacements and forces:

1‘? = .77? = :17? = 51:31; 2 (4.65)

F33 +Ff“ = Ff,” +F}"’ 2 F35 +F§a = = 0. (4.66)

The formulae for 7713., kg, 925', and fl-5 can be found in the Appendix.

For bookkeeping of the indices, the procedures from section 4.3.2.1 are slightly modified.

Instead of applying the coordinate transformation from equation (4.28) to equation (4.26),

the coordinate transformation X = q’N'IN is applied to equations (4.20) and (4.21) with

the interface fixed (XJ = 0); this step also lead to equation (4.29).

Therefore the nonlinear vectors of the fixed-interface nonlinear equations of motion, ex-

pressed in fixed—interface linear modal coordinates of substructures S, are given in their

component forms by



715 ”S n5

- E :j :E : N,S, N,S N,S N,S

p=1q=pr=q

for 2': 1, 2, 3, n3

and S =13, 7, 6, ...,

where the formulae for (2327:” can be found in the Appendix. Then the fixed-interface non—

linear mode manifolds for the fundamental modes of substructures ,B, 7, are computed.

Next, the linear constraint modes of the substructures S are computed. Equation (4.64) is

then transformed into linear modal coordinates using the coordinate transformation defined

in section 4.3.2. The nonlinear vectors of the nonlinear equations of motion (expressed in

linear modal coordinates of substructures S) are given in their component forms by

S
(715+nC) (7154-710) (71 +710)

- Z Z Z 5,...

])=1 (1:!) 7:0

for 1:1,293a”°7(n5 + 71C)

and S =13, ’7, 6,

The formulae for (73);, can be found in the Appendix.

4.5.2 Example

As an example we consider a system with Na 2 2 and Nnmss = 20. In the following

sections, the fundamental fixed-interface NNMS of substructures 13’ and 7 are first
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developed. Then, by applying the procedures described in section 4.3.3, a three-DOF

nonlinear CMS model is obtained which describes the motion of the coupling mass and

the first NNM for each of the attached substructures. For comparison purposes, four other

models are also developed. They are: the forty-one—DOF nonlinear original model given

in equation (4.62), a forty-one—DOF nonlinear model obtained by using linear CMS that

retains all the fixed—interface LNMs from individual appendage substructures fl and 7

(n13 = 20, n7 = 20), a three-DOF nonlinear model obtained by using linear CMS that

retains only the first fixed-interface LNM from individual appendage substructures fl and

7 (n5 = 1, 727’ = 1), and a three-DOF linear model obtained by using linear CMS (this

is the linearized version of the previous model).

4.5.2.1 Substructure 13

In this study, the system parameters used to construct the fixed-interface NNM of sub-

structure 13 are first chosen such that the system is similar to the equal—length FE model

of a rod under axial vibration, i.e., each block has the same mass and each spring has the

same spring constant. For the discrete system with equal parameters and under axial vi-

bration, the ratios of the higher linear natural frequencies to the fundamental linear natural

frequency are closed to 3:1 (mode 2 to mode 1), 5:1 (mode 3 to mode 1), 7:1 (mode 7 to

mode 1), etc., which are the ratios of the continuous system under axial vibration ( [90]).

Since the nonlinearities present in the system are cubic polynomials, the system will expe-

rience internal resonances. Moreover, the system parameters chosen in this way will result

in weak nonlinear couplings between the fundamental linear mode and the higher modes,

which causes the fundamental nonlinear mode shape to be close to the fundamental linear

mode shape. To remove internal resonances from the system, and to generate stronger

nonlinear coupling and modal distortion, the linear spring that connects the subsystem to

ground is taken to be softer than the other springs. This causes the fundamental nonlin-

ear mode shape to be very different from the fundamental linear mode shape at the large

amplitudes. Some details of this result follow.
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For the first trial, the system parameters used to construct the fixed-interface NNM of

substructure 6 are 7712 2 m3 2 m4 = = 77721 = 1, k2 2 k3 2 k4 = 2 k4] = 1000.

The number of retained fixed-interface LNMS (773) is chosen to be 20. The first four fixed-

interface (linear) natural frequencies are a)? = 2.42 rad/s, tag 2 7.25 rad/s, w? = 12.04

rad/s, cuff = 16.76 rad/s. The first four fixed-interface LNMs are shown in Figure 4.12.

Figure 4.13 depicts coefficients of the pqr cubic nonlinear terms expressed in fixed-interface

linear modal coordinates and associated with the first mode (master mode). Note that there

are 1540 nonlinear terms ( (71/3 x (n5 + 1) x (nfl + 2)) /6 ) for each retained fixed-interface

LNM. The horizontal axis corresponds to the nth term (i.e. the first term is (179%? , the

second term is (77‘1N’fi)2 7793”” the last term is (n%’fi)3). Note that there are 20 envelopes

in the figure, and each envelope corresponds to a value of the first index p. We can see that

most of the coefficients are zero, which means that the first mode is not strongly coupled

with higher retained fixed—interface LNMs, and therefore they will not be reflected in the

NNM.

The first fixed-interface NNM manifold can be depicted as constraint surfaces depending

on the first modal position and velocity. A total of thirty-eight such constraint surfaces are

needed to describe motions on the first fixed-interface NNM manifold in the 40-dimensional

state space. Samples of such surfaces are shown in Figures 4.14, 4.15, and 4.16, which cor-

respond to the contribution from the second, third, and fourth fixed-interface linear mode

amplitudes to the first fixed-interface NNM manifold. The boundaries of these surfaces

along modal position and velocity are U), = 40.0 and Vb = 96.9, respectively. The sur-

faces are obtained by using Chebyshev polynomials along ui and v}: with Np,” = 3 and

NW, 2 2, respectively, and the number of pieces along uk and vk to be N5 = 50 and

N5 = 50, respectively.

Figure 4.17 depicts the time responses of the first fixed-interface mode displacement ob—
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tained from two different models. The dashed line is the time response of the ROM defined

N.4
at the end of section 4.2.2 with initial modal displacement 771 (0) = 33.9 and velocity

7)1\‘3(0) = 0. The solid line is the time response of the original model (20 DOFs) initiated

on the fixed-interface NNM manifold. Figures 4.18, 4.19, and 4.20 depict the time responses

of the second, third, and fourth, respectively, fixed-interface linear mode displacement ob-

tained from the ROM and the original model. The dashed line is obtained by applying the

master-slave constraints (depicted in Figures 4.14, 4.15, and 4.16) to the numerical solution

of the ROM (the dashed line in Figure 4.17). The solid line is obtained from the 20-DOF

original model. The time responses of the ROM and the original model are almost identi-

cal at the beginning, and as time progress they begin to diverge. From the linear natural

frequencies, we can observe that mg z 3014}, a)? z 2642? —wf , and a)? z w? +7.7)? —w1fi, which

indicates that there are internal resonances (to the first-order perturbation approximation

([79])) among these modes in the fixed-interface system of substructure 3. Therefore, en-

ergy is being exchanged among the modes involved in the internal resonances, which cause

the motion of the original model initiated on (in practice, very near) the first fixed-interface

NNM to eventually leave the manifold. In order to obtain the ROM that embeds the in-

ternal resonances, a multi-mode invariant manifold formulation is needed, as described in

[29], [71], and [42]. The multi-mode invariant manifold formulation is beyond the scope of

the current study. From Figures 4.17, 4.18, 4.19, and 4.20, we can see that the contribution

of the higher modes to the first fixed-interface NNM is less than 3% of the initial modal

displacement ni'V’/3(0) 2: 33.9. Hence we expect that the one-mode nonlinear model, which

is obtained by projecting the fixed-interface subsystem onto the first fixed—interface LNM,

will yield a good time response, at least for a limited time interval.

Figure 4.21 depicts the time responses of the first fixed-interface modal displacement ob-

tained from the linearized one-mode model, the one-mode nonlinear model, and the ROM.

The dotted line is obtained from the linearized one-mode model, which is the linearized

version of the one-mode nonlinear model. The dashed line is obtained from the one-mode

nonlinear model, which is acquired by projecting the fixed-interface subsystem onto the

first fixed-interface linear mode. The solid line is obtained from the NNM ROM. We can
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see that the time response of the one mode nonlinear model is close to the time response

of the ROM for many periods. This is due to the fact that the first fixed-interface linear

mode is not strongly coupled with the higher retained fixed-interface LNMs, as mentioned

above.

To eliminate the internal resonances from the fixed-interface subsystem and to yield strong

coupling between the first fixed-interface linear mode and higher linear modes, a new set

of system parameters are introduced. These will make enhance the nonlinear aspects of

the problem to more fully demonstrate the accuracy of the proposed approach. By observ-

f

A ’S and bN’Smm. ,1qu from the Appendix and Figure 4.12, we can see that theing coefficients b

displacements of DOFs near the fixed-interface of the low-frequency linear mode shapes

N,(3,*
1qu coefficients to be small, or zero. In order toare small, which cause many of b

yield stronger coupling between the first fixed-interface linear mode and higher modes,

a new set of system parameters are considered: m2 = m3 2 m4 = = mm = 1,

k2 = 10, k3 = 164 =2 = [€41 = 1000, which allows DOF near the interface to have

significant displacements, in particular for the fundamental mode.

Twenty fixed-interface linear natural frequencies are presented in Table 4.1, and it is seen

that they do not possess low—order internal resonances among them. Figure 4.22 depicts the

first four fixed-interface LNMs obtained from using the second set of parameters. Figure

4.23 depicts the coefficients of the pqr cubic nonlinear terms expressed in fixed—interface

linear modal coordinates and associated with the first mode (master mode), obtained using

these parameters. Comparing Figure 4.23 with Figure 4.13 indicates that the first fixed-

interface linear mode strongly couples with higher modes for this set of parameters.

Note that for these parameters the first fixed-interface linear mode is similar to a rigid-body

mode. Therefore one might argue that the spring next to the wall is soft and the other

springs are very stiff, which would imply that the fixed-interface subsystem would behave

like a one-DOF lumped-mass system. Therefore the one-mode nonlinear model obtained by

projecting the fixed-interface subsystem onto the first fixed-interface linear mode would be
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adequate to capture the dynamics of the subsystem. However, Figure 4.23 indicates that

the first fixed-interface linear mode is strongly coupled with higher retained fixed-interface

LNMs, which indicates that such an argument is not justified. Hence, the concept of NNM

is needed in order to capture the correct dynamics in the large amplitude regime, which is

illustrated in following results.

Figures 4.24, 4.25, and 4.26 depict the contributions from the second, third, and fourth

fixed-interface linear mode amplitudes to the first fixed-interface NNM manifold. The

surfaces are obtained by using Ub = 3.0, V7, = 2.06, NW) = 3, Np,” = 2, N5 = 40 and

N5 = 40. Note that the maximum contribution from the second linear mode amplitudes

to the first NNM manifold is around 10%, which indicates significant coupling between the

first and second modes.

Figure 4.27 depicts the time responses of the first fixed-interface mode displacement ob-

tained from four different models. The dashed-dotted line, the dotted line, and the dashed

line are the time responses of the linearized one-mode model, the one-mode nonlinear model,

and the ROM (based on invariant manifolds), respectively, with initial modal displacement

77i'v"'3(0) = 1.20 and velocity fii'v’fi(0) = 0. The solid line is the time response of the original

model with initial conditions initiated on the fixed-interface NNM manifold. The time

responses from the ROM and the original model are nearly identical.

Figures 4.28, 4.29, and 4.30 depict the time responses of the second, third, and fourth,

respectively, fixed-interface linear mode displacements obtained from the ROM and the

original model. The dashed and solid lines are the time responses of the ROM and the

original model, respectively. The time responses from the ROM are close to the original

model, and the errors are very small when compared with the amplitude of the overall

response (> 1). (From these figures, there exist discontinuities in the time responses

since continuity between patches of the constraint surfaces is not enforced. However if the

subdomains are taken to be sufficiently small, these jumps will be small.)
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Figures 4.31 and 4.32 depict the time responses of the physical displacements 3’26 and 56%,

respectively, (the leftmost masses of each substructure) with the interface fixed for the lin-

earized one-mode model, the one-mode model, the ROM, and the original model. The time

responses from the ROM and the original model are nearly identical. The time responses

from the linearized one-mode model and the one—mode nonlinear model are significantly

different from the original model, since the contribution from the higher fixed-interface

linear modes is not accounted for in those two models. In other words, the motions of

those two models occur on a flat approximation of the invariant manifold (i.e., the linear

eigenspace), which is inadequate in the present case.

Figure 4.33 depicts the comparison of deflections of all physical coordinates 33:30!) at three

different times: t = 0, the initial time, where the system is at its peak configuration; t = 7%

, one eighth of a period of the nonlinear system; and t = 1:; , a quarter of the period,

at which the system is at zero displacement (with nonzero velocity, of course). Two cases

are shown: the first fixed-interface LNM and the first fixed-interface NNM. Note that the

shape of deflection on the linear mode manifold (linear mode shape) does not change with

time, however the deflection shape on the nonlinear mode manifold (that is, the nonlinear

mode shape) does change with time, due to the time-dependent contributions from the

other retained linear modes, which is significant for this case. The distortion of the NNM

is evident.

Note that the computational time required to obtain the manifold for this case (with

N5 = 40 and N5 = 40)is about 30 minutes. The computational time associated with the

simulation of the twenty-one—DOF original model is about 13 seconds. The computational

time associated with the simulation of the ROM is about 2 seconds. Thus, if one is to carry

out many simulations, the generation of the ROM is worthwhile.

4.5.2.2 Substructure 7

The system parameters used for substructure 7 are 17222 = m23 = 777.24 = = 77741 = 1,
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[£42 2 42.5, 1643 = [644 = = 1681 = 4250. This yields strong nonlinear coupling

between the linear modes, just as was done for substructure 6.

The results that are analogous to Table 4.1 and Figures 4.22 to 4.33 for substructure 6 are

shown in Table 4.2 and Figures 4.34 to 4.45. To avoid redundancy, detailed descriptions

are not repeated here. Note that since the ratio among the linear and nonlinear spring

coefficients are the same as for substructure 3, the surfaces shown in Figures 4.36 to 4.38,

obtained by using Ub = 3.0, Vb = 4.24, NW, 2 3, Np,” = 2, N5 = 40, N5 = 40, are

similar to those shown in Figures 4.24 to 4.26. However, the fixed-interface linear-mode

natural frequencies of substructure 7 are higher than those of substructure 6.

4.5.2.3 Synthesized Structure

The system parameters for the base structure (substructure a) are ml 2 1,500 and

k1 = 24,000, which yields Lac 2 4.0, which is close to the fundamental frequencies of

the substructures. However, since this coupling structure is very stiff, its response will

remain small, consistent with the assumptions needed to employ linear constraint modes.

A comparison of the linear natural frequencies of the three-DOF linear-CMS nonlinear

model and the three-DOF nonlinear-CMS model is shown in Table 4.3. Comparison of the

first sixteen Linear natural frequencies of the forty-one-DOF linear-CMS nonlinear model

and the forty-one-DOF original model are shown in Table 4.4. These two comparisons are

used as the first check to verify that the synthesized models are correct. The linear natural

frequencies from Table 4.3 are in agreement with those from Table 4.4, at least up to the

third decimal digit. Note that the forty—one—DOF linear-CMS nonlinear model is equivalent

to the forty-one-DOF original model since the modal matrices from substructures fl and 7

together represent a complete set of forty-one bases that are used to describe the original

model in the synthesized linear-modal coordinates.

Figure 4.46 depicts the time responses of the first synthesized fixed-interface mode dis-
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placement "(V13 obtained from four different models. The dashed-dotted line, the dotted

line, and the dashed line are the time responses of the three-DOF linear-CMS linear model,

the three-DOF linear-CMS nonlinear model, and the three-DOF nonlinear-CMS model, re-

spectively, with initial modal displacements ni'v’fim) = 1.2, nil/“7(0) = 1.2, 770(0) = 0.03

and modal velocities fii'v’fi (0) = 0, viii/”(0) = 0, 770(0) 2 0. The solid line is the time

response of the forty-one-DOF linear-CMS nonlinear model with initial conditions initiated

on the fixed-interface NNM manifolds of substructures 6 and 7 (this is the full model). We

can see that the time responses of the three-DOF nonlinear-CMS model and the forty-one—

DOF linear-CMS nonlinear model are nearly identical over the time interval shown, and

the other two models show significant errors, especially the fully linear model.

Figures 4.47, 4.48, and 4.49 depict the time responses of the second, third, and fourth,

respectively, synthesized fixed-interface linear mode displacements (77$V’fl , "11;!’fi , and nfiv’fi),

respectively, obtained from the three-DOF nonlinear-CMS model and the forty—one-DOF

linear-CMS nonlinear model. The dashed and solid lines are the time responses of the

three-DOF nonlinear-CMS model and the forty-one—DOF linear—CMS nonlinear model, re-

spectively. They are nearly identical except that the forty-one—DOF linear-CMS nonlinear

model has some high frequency “ringing”. This is because the initial conditions for the

forty-one-DOF linear-CMS nonlinear model are initiated on the fixed-interface NNM man-

ifolds of substructures 13 and 7, which are only an approximation of the actual 6-dimensional

NNM invariant manifold of the whole structure.

Figures 4.50, 4.51, 4.52, and 4.53 are analogous to Figures 4.46, 4.47, 4.48, and 4.49.

Therefore, the descriptions similar to those given for substructure 13 are not repeated here.

The comments related to those analogous figures are also applicable to substructure 7.

Note that since the first fixed-interface nonlinear-mode natural frequency of substructure

7 is higher than that of substructure 13, the time windows in Figures 4.50, 4.51, 4.52, and

4.53 are adjusted in order to depict clear comparisons.

Figures 4.54, 4.55, 4.56, 4.57, and 4.58 depict the time responses of masses 7771, 777-2, 77721,
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77722, and 777.41, respectively, obtained from four different models ( these are the coupling

mass and the end masses of each substructure). The dashed-dotted lines and the dotted

lines are the time responses of the three-DOF linear-CMS linear model and the three-DOF

linear-CMS nonlinear model, respectively, obtained by applying the coordinate transforma-

tions defined in section 4.3.2 to the time responses of the synthesized fixed—interface linear

modal coordinates of both models with n5 = 1, n'7 = 1, and 770 = 1. The dashed lines

are the time responses of the three-DOF nonlinear-CMS model obtained by applying the

coordinate transformations defined in section 4.3.2 to the time responses of the synthesized

fixed-interface linear modal coordinates having n3 = 20, n7 = 20, and no = 1. The

solid lines are the time responses of the forty-one-DOF original model with initial condi-

tions initiated on the fixed-interface NNM manifolds of substructures fl and 7. It is seen

that the time responses of the three—DOF nonlinear-CMS model and the forty-one—DOF

original model are nearly identical. However, the time responses of the three-DOF linear-

CMS linear model and the three-DOF linear-CMS nonlinear model are quite different from

the time responses of the forty-one-DOF original model. This is due to the fact that the

contributions from the higher fixed-interface linear modes are not accounted for in those

two models. In other words, the motions of those two models occur on the flat approx-

imation of the invariant manifold of dimension 6, which is not a good approximation in

this case. (Note that such an approximation would be quite good for the original set of

parameters. for which the modal coupling was small.)

Figures 4.59 and 4.60 depict the time responses of the first synthesized fixed—interface

fl and n‘l'v’l, respectively, obtained from the three-DOF nonlinear-mode displacements niv’

CMS model and the forty-one—DOF linear-CMS nonlinear model. The dashed lines are

the time responses of the three-DOF nonlinear-CMS model with initial modal displace-

ments 77‘,V"'3(0) = 1.3, 771'\"7(0) = 1.3, 77C(0) = 0.04 and modal velocities ifl'v’flw) :-

0, 7)i'v’7(0) = 0, 7)C(0) : 0. The solid lines are the time response of the forty-one—DOF

linear-CMS nonlinear model with initial conditions initiated on the fixed-interface NNM

manifolds of substructures 13 and 7. It is seen that the time responses of the forty-one-DOF

linear-CMS nonlinear model starts to deviate from the three-DOF nonlinear-CMS model
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after several oscillations. This indicates that at these initial conditions, with the base-

structure parameters 771] = 1,500 and k1 = 24, 000, the actual NNM invariant manifold

of the whole structure deviates from the fixed-interface NNM manifolds of substructures )8

and 7. Note that we also performed a numerical experiment by fixing the ratio between m1

and k1 and reducing their values. It was found that the valid time domains of the fixed-

interface NNM manifolds of substructures )8 and 7 are reduced as well. This is expected to

occur, since this parameter trend allows more interaction between substructures fl and 7.

This causes the actual NNM invariant manifold to deviate further from the fixed-interface

NNM manifolds of the individual substructures, especially for large-amplitude motions.

Finally, the computational time associated with the simulation of the three-DOF nonlinear-

CMS model is compared with that of the forty-one—DOF linear-CMS nonlinear model.

It takes about 180 seconds to simulate the forty—one-DOF linear-CMS nonlinear model.

However it takes only 60 seconds to simulate the three-DOF nonlinear-CMS model, which

is a factor of three lower. The primary reason for this is that a smaller time step (a factor

of 2.5 smaller) is needed for the ode-solver to integrate the stiff forty-one-DOF linear-CMS

nonlinear model. Therefore, in terms of computational time associated with the simulation,

the three-DOF nonlinear-CMS model does not have much advantage over the forty-one-

DOF linear—CMS nonlinear model, as we might expect. This is mainly due to the fact

that one is required to compute the nonlinear update terms gf’update in equation (4.44)

of both substructures, which represent nonlinear terms that arise from the slave fixed-

interface linear-modal-coordinate equations of motion. This is the same scenario as for the

forty-one-DOF linear-CMS nonlinear model, since all nonlinear terms in this model need to

be computed. This situation is in contrast to the individual fixed-interface substructures.

From section 4.5.2.1, it can be seen that the simulation time of the ROM is a factor of

6.5 smaller than the simulation time of the twenty-DOF original model. This is because

the nonlinear terms of the master mode EOM are only computed in order to simulate the

ROM, but all nonlinear terms in the twenty—DOF original model must be computed in

order to simulate the original model.
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4.6 Conclusions

In this chapter we have shown how to extend the fixed-interface linear CMS technique of

Craig and Bampton ([62]) to nonlinear structures by making use of fixed-interface NNMS in

place of fixed-interface LNMs. This approach allows one to build nonlinear reduced-order

models with improved accuracy for systems that are composed of assemblies of substruc-

tures. The first example system presented here is quite simple, and the model reduction is

not very significant (from five to three DOFs). A second system with many more DOFs

is also used, and it shows a significant reduction in model size (from forty-one to three

DOFs). In fact, the NNM method has been developed to the point where it can be applied

to systems with thousands of DOFs. The roadblock to pushing this method further is that

it is very computationally demanding to generate substructure ROM with more than one

DOF using a NNM approach ([42]). Current work is focusing on systems with many more

DOFs at the unreduced substructure level, and it includes substructures that are modeled

by nonlinear FE techniques.
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4.7 Tables

 

 

    

7th Mode of 1th Mode of

1 0.68596232102650 11 44.72697600017000

2 5.06072722592600 12 48.09670186700000

3 9.94306090168100 13 51.17011958090000

4 14.79648130027000 14 53.92824229550000

5 19.56717359004000 15 56.35403805246000

6 24.22073003072000 16 58.43253131062000

7 28.72676467269000 17 60.15089310481000

8 33.056575986752000 18 61.49851874983000

9 37.18364689122000 19 62.46709231770000

10 41.08177243723000 20 63.05063732260000
 

Table 4.1. Fixed-interface linear natural frequencies of substructure B using the second—trial

 

 

parameters.

1th Mode 02,7 2th Mode w?

1 1.41414755239200 11 92.20702318159000

2 10.43295644747000 12 99.15389102074001

3 20.49814516979000 13 105.4899039538000

4 30.50372764424000 14 111.1759195941000

5 40.33876175326000 15 116. 1768256602000

6 49.93231412311000 16 120.4617492830000

7 59.22174251389000 17 124.0042428732000

8 6814825628723000 18 126.7824443123000

9 76.65605183909000 19 128.7792098755000

10 84.69224352313999 20 129.9822187218000     
Table 4.2. Fixed-interface linear natural frequencies of substructure 7.
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7th Mode 1.7140145 2“ Mode waCMS

1 0.68582383924810 1 0.68582383933910

2 1.41280504607300 2 1.41280505021300

3 4.00456599773800 3 4.00460940350200  
 

Table 4.3. Comparison of the linear natural frequencies of the three-DOF linear-CMS

nonlinear model and the three—DOF nonlinear-CMS model.

 

 

    

2th Mode ijCMSAlDOF 2th Mode 618M

1 0.685823839247 1 0.68582383924720

2 1.41280504587300 2 1.41280504587300

3 4.00452879688600 3 4.00452879688500

4 5.06079466571000 4 5.06079466571000

5 9.94306486412500 5 9.94306486412500

6 10.43301741537000 6 10.43301741538000

7 14. 79648235748000 7 14.79648235748000

8 19.56717401354000 8 19.56717401354000

9 20.49815228625000 9 20.49815228625000

10 24.22073023840000 10 24.22073023840000

11 28.72676478757000 11 28.72676478757000

12 30.50372969952000 12 30.50372969952000

13 33.05675993624000 13 33.05675993624000

14 37. 18364693456000 14 37.18364693456000

15 40.33876259811000 15 40.33876259810000

16 41 .08177246556000 16 41 .08177246556000

 

Table 4.4. Comparison of the first-sixteen linear-natural frequencies of the forty-one-DOF

linear—CIVIS nonlinear model and the forty-one—DOF original model.
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4.8 Figures
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Figure 4.1. A five-DOF nonlinear spring-mass system.
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Figure 4.2. System substructures.
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Figure 4.5. The time response of the displacement $1 of mass m1 from Figure 4.1, which

corresponds to x?, :13? , and 2:17 from Figure 4.2, for the nonlinear-CMS model, the linear-

CMS nonlinear model, the linear-CMS linear model, and the original model.
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Figure 4.6. The time responses of the displacement :52 from Figure 4.1, which corresponds

to 32/23 from Figure 4.2, for the nonlinear-CMS model, the linear-CMS nonlinear model, the

linear-CMS linear model, and the original model.
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Figure 4.7. The time responses of the displacement :173 from Figure 4.1, which corresponds

5
to 1133 from Figure 4.2, for the nonlinear-CMS model, the linear-CMS nonlinear model, the

linear-CMS linear model, and the original model.
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Figure 4.8. The time responses of the (:lisplacen‘ient .174 from Figure 4.1, which corresponds

to 1'3 from Figure 4.2, for the nonlinear-CMS model. the linear—CMS nonlinear model, the

linear—CMS linear model, and the original model.
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Figure 4.9. The time responses of the displacement 9:5 from Figure 4.1, which corresponds

to 2% from Figure 4.2, for the nonlinear-CMS model, the linear-CMS nonlinear model, the

linear—CMS linear model, and the original model.
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Figure 4.13. The coefficients of the pqr cubic nonlinear terms expressed in fixed-interface

linear modal coordinates and associated with the first mode (master mode) of substructure

3 using the first-trial parameters.
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Figure 4.14. The contribution of the second fixed-interface linear mode amplitude 712

X5 ( {V46 , hiv‘fi) to the first fixed-interface nonlinear mode manifold of substructure B using

the first-trial parameters.
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Figure 4.15. The contribution of the third fixed-interface linear mode amplitude "91,5 =

Xg(”{Vfl , fiiv‘fi ) to the first fixed-interface nonlinear mode manifold of substructure fl using

the first—trial parameters.

 

Figure 4.16. The contribution of the fourth fixed—interface linear mode amplitude rig/fl =

X:3 (nivfl , fiiv’fl) to the first fixed-interface nonlinear mode manifold of substructure B using

the first-trial parameters.
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Figure 4.17. The time responses of the first fixed-interface mode displacement "{Vfi for the

ROM and the original model of substructure {3 using the first-trial parameters.

iflwfl) for the ROM and the original model of substructure fl using the
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The time responses of the second fixed-interface linear mode displacement
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first-trial parameters.
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Figure 4.19 The time responses of the third fixed-interface linear mode displacement

n3N’fl—-—3X(nN’5,119”) for the ROM and the original model of substructure fl using the

first-trial parameters.
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Figure 4.20. The time responses of the fourth fixed-interface linear mode displacement

N—flXf(Nfl, N’fl) for the ROM and the original model of substructure 3 using the

first-trial parameters.
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Figure 4.21. The time responses of the first fixed-interface mode displacement 721116 for the

linearized one-mode model, the one-mode model, and the ROM of substructure 5 using

the first-trial parameters.
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Figure 4.22. The first four fixed-interface LNMs of substructure 3 using the second-trial

parameters.
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Figure 4.23. The coefficients of the pqr cubic nonlinear terms expressed in fixed-interface

linear modal coordinates and associated with the first mode (master mode) of substructures

5 using the second-trial parameters.
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Figure 4.24. The contribution of the second fixed-interface linear mode amplitude n2

Xg(”{Vfl’ nil/fl) to the first fixed-interface nonlinear mode manifold of substructure B using

the second-trial parameters.
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Figure 4.25. The contribution of the third fixed-interface linear mode amplitude név’fl =

Xg(niv”[3 , 7'7?” ) to the first fixed-interface nonlinear mode manifold of substructure B using

the second-trial parameters.

 

Figure 4.26. The contribution of the fourth fixed-interface linear mode amplitude nil/fl =

Xfluff} , nil/'5 ) to the first fixed-interface nonlinear mode manifold of substructure fl using

the second-trial parameters.
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Figure 4.27. The time responses of the first fixed-interface mode displacement nil/fl for

the linearized one-mode model, the one-mode model, the ROM, and the original model of

substructure ,3 using the second-trial parameters.
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Figure 4.28. The time responses of the second fixed-interface linear mode displacement

77‘?)V ”3 = Xgmiv’fl, 1'79“} ) on the first fixed-interface nonlinear mode manifold for the ROM

and the original model of substructure ,8 using the second-trial parameters.
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Figure 4.29. The time responses of the third fixed-interface linear mode displacement

név’fi = X:43 (nfV’fi , fiiv’fi ) on the first fixed-interface nonlinear mode manifold for the ROM

and the original model of substructure fl using the second-trial parameters.
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Figure 4.31. The time responses of the displacement $2 from Figure 4.11 with the interface

fixed for the linearized onemode model, the one-mode model, the ROM, and the original

model of substructure fl using the second-trial parameters.
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Figure 4.32. The time responses of the displacement xgl from Figure 4.11 with the interface

fixed for the linearized one-mode model, the one-mode model, the ROM, and the original

model of substructure ,3 using the second-trial parameters.
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Figure 4.33. Comparison of deflections :L‘fU) for a quarter-period of motion on the first

fixed-interface linear mode manifold (linear eigenspace) and on the first fixed-interface

nonlinear mode manifold of substructure B using the second—trial parameters. The motion

starts at the maximum deflection (the bottom curve) and moves as shown to the zero

5
deflection at a quarter-period. Note that linear mode shape is normalized such that $1 is

’3 . .

the same as ar’l of the nonlmear mode shape at each time.
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Figure 4.34. The first four fixed-interface LNMs of substructure 7.
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Figure 4.36. The contribution of the second fixed-interface linear mode amplitude 172

'7) to the first fixed-interface nonlinear mode manifold of substructure 7.
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Figure 4.37. The contribution of the third fixed-interface linear mode amplitude 17?,” =

X; (niv’l, 779]”) to the first fixed-interface nonlinear mode manifold of substructure 7.

 

Figure 4.38. The contribution of the fourth fixed-interface linear mode amplitude nil/'7 =

XZ(n{V’l,17{V‘7) to the first fixed—interface nonlinear mode manifold of substructure 7.
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Figure 4.39. The time responses of the first fixed-interface mode displacement "{Vn for

the linearized one-mode model, the one-mode model, the ROM, and the original model of

substructure 7.
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Figure 4.40. The time responses of the second fixed-interface linear mode displacement
; 7

n3}7 2 X; (17fV’7, 17?“) on the first fixed-interface nonlinear mode manifold for the ROM

and the original model of substructure 7.
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Figure 4.41. The time responses of the third fixed—interface linear mode displacement

I)?” 2 X37 (niN’V, nil/‘7) on the first fixed-interface nonlinear mode manifold for the ROM

and the original model of substructure 7.
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Figure 4.43. The time responses of the displacement at; from Figure 4.11 with the interface

fixed ( x? (t) z 0 ) for the linearized one-mode model, the one-mode model, the ROM, and

the original model of substructure 7.
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Figure 4.44. The time responses of the displacement $31 from Figure 4.11 with the interface

fixed for the linearized one-mode model, the one-mode model, the ROM, and the original

model of substructure 7.
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Figure 4.45. Comparison of deflections $170) for a quarter-period of motion on the first

fixed-interface linear mode manifold (linear eigenspace) and on the first fixed-interface

nonlinear mode manifold of substructure '7. The motion starts at the maximum deflection

(the bottom curve) and moves as shown to the zero deflection at a quarter-period.
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Figure 4.46. The time responses of the first synthesized fixed-interface mode displacement

"{Vfi for the three-DOF linear-CMS linear model, the three-DOF linear-CMS nonlinear

model, the three-DOF nonlinear-CMS model, and the forty-one-DOF linear-CMS nonlinear

model of substructure B.
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Figure 4.47. The time responses of the second synthesized fixed-interface linear mode

displacement név‘fi for the three-DOF nonlinear—CMS model and the forty-one—DOF linear-

CMS nonlinear model of substructure fi.
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Figure 4.48. The time responses of the third synthesized fixed-interface linear mode dis-

placement név’fi for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-

CMS nonlinear model of substructure 5.
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Figure 4.49. The time responses of the fourth synthesized fixed-interface linear mode

displacement niv’fi for the three-DOF nonlinear-CMS model and the forty-one—DOF linear-

CMS nonlinear model of substructure i3-
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Fi ure 4.50. The time responses of the first synthesized fixed-interface mode displacement

r); ’7 for the three-DOF linear-CMS linear model, the three—DOF linear-CMS nonlinear

model, the three-DOF nonlinear—CMS model, and the forty-one-DOF linear-CMS nonlinear

model of substructure '7'.
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Figure 4.51. The time responses of the second synthesized fixed-interface linear mode

displacement 779/” for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-

CMS nonlinear model of substructure 7.
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Figure 4.52. The time responses of the third synthesized fixed-interface linear mode dis-

placement 179’” for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-

CMS nonlinear model of substructure 7'.
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Figure 4.53. The time responses of the fourth synthesized fixed-interface linear mode

displacement n?” for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-

CMS nonlinear model of substructure 'y.
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Figure 4.54. The time response of the displacement 11:1 of mass m1 from Figure 4.10, which

corresponds to x?,xlfi, and :13? from Figure 4.11, for the three-DOF linear-CMS linear

model, the three-DOF linear-CMS nonlinear model, the three—DOF nonlinear-CMS model,

and the forty-oneeDOF original model.
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Figure 4.55. The time response of the displacement 1:2 of mass m2 from Figure 4.10,

from Figure 4.11, for the three-DOF linear-CMS linear model, the

three-DOF linear-CMS nonlinear model, the three-DOF nonlinear-CMS model, and the

which corresponds to a:

forty-one-DOF original model.
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Figure 4.56. The time response of the displacement 3:21 of mass "121 from Figure 4.10,

which corresponds to 33% from Figure 4.11, for the three-DOF linear-CMS linear model,

the three-DOF linear-CMS nonlinear model, the three-DOF nonlinear-CMS model, and the

forty—one—DOF original model.
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Figure 4.57. The time response of the displacement 3:22 of mass mm from Figure 4.10,

which corresponds to at; from Figure 4.11, for the three-DOF linear-CMS linear model, the

three-DOF linear-CMS nonlinear model, the three-DOF nonlinear-CMS model, and the

forty-one-DOF original model.
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Figure 4.58. The time response of the displacement :1:41 of mass m4] from Figure 4.10,

which corresponds to 11:31 from Figure 4.11, for the three—DOF linear-CMS linear model,

the three-DOF linear-CMS nonlinear model, the three-DOF nonlinear-CMS model, and the

forty-one-DOF original model.
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Figure 4.59. The time responses of the first synthesized fixed-interface mode displacement

77;”) for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-CMS nonlinear

model of substructure 5 with niv‘fim) = 1.3, ”{mm = 1.3, 170(0) = 0.04, 7796(0) =

.N, .

0, 721 7(0) = 0, Wm = 0.
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Figure 4.60. The time responses of the first synthesized fixed-interface mode displacement

nix/‘7 for the three-DOF nonlinear-CMS model and the forty-one-DOF linear-CMS nonlinear

model of substructure 'y with niv’flm) = 1.3, ni’vq(0) = 1.3, 77C(O) = 0.04, 77?,”8(O) =

0, 7'2{V”(0) = 0. THO) = 0.
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4.9 Appendix 4

The component forms of the mass and stiffness matrices and the nonlinear force vector of

the class of spring-mass systems from section 4.5 are given by

 m- if j = 2'

7710' "—2 2 (4.69) .1

0 otherwise '
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(Na-1)

k1 + Z k(23Nrnass+2) if i: 1’ j: 1

3:0

—k(2-9Nmass+2) If 2: 1, j : SNma33 + 2,

S : 0,1,2,...,(Na *1)

—k(231lvfll(188) If I: S Nrnass +1, J :2"1,

3 :1,2,...,Na

k(291v'l7l(188) if 7: 2 S anass + 1, j Z 7;,

S :1,2,...,Na

_k(2sifvn1088+2) if I = S NTTIOSS + 2, j = 1,

s =1,2,...,(Na,— 1)

k(2anmss+2) + k(2staSS+4) if i = SNmass + 2’ j = i,

s = 1,2, ..., (Na — 1)

(4.70)
412an....” +4, if i = s Nnms + 2, j = 2' + 1,

s =1,2,...,(Na — 1)

_k-‘(2z'—2) if (2 g 2' S Nnmss)

or (s Nmass + 3 S i S (s + 1) Nmass),

j=i— 1, s: 1,2,...,(Na— 1)

k(2,_2, + km, if (2 S i S Nmass)

0r (8 Nmass + 3 S 2' S (8 + 1) Nmass),

j: 2', s =1,2,...,(Na — 1)

—k'(2,-) if (2 S i _<_ Nmass)

or (s Nmass + 3 gig (8 +1)N7TIGSS)7

j =i+1, s =1,2,...,(Na — 1)

0 otherwise
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f (NW—1)

4 ,. _ 3
— Z: A(2 8 N77103:; +3) (’L(«5' 4N‘TI‘L(£.S’8+2) $1)

320

if i: 1

[C(23Nmass+1)($i - $(i—1))3

if i : SNmass +1, 5 =1,2,...,Na

”2‘
MID

, 3 3

k(231\77nass+3)(xi — I1) — k(2sta33+5)(~T(i+l) — 12,)

if l28N771088+23 S 21,2,...,(Na_1)

k(2i—1)($i — 1*(i—1))3 “ k(2i+1)($(i+1) _ $223

if i = 2, “'3 Nmass, 01' i = SNmass + 3, ..., (3 +1)Nmass, s = 1,2, ..., (Na — 1)

L

for i,j I 1, 2, 3, ..., (Ara [\r'NULSS +1).

The component forms of the mass and stiffness matrices, the nonlinear force vector, and

the reaction force vector for substructures S are given by

0 fiizszl

my: 7% iszi M73

0 otherwise
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1:25 if 2f: 1, j =1

—k§ if i: 1, j =2

_kig2Nmass) if i : Nmass + 1’ j : i - 1

k5 nizN..+Lj=i

1?} = 1 (”ma“) (4.73)

kéi—Q) + kg?) if (2 S 1 S Nrnass), j :2

‘kén if (2 S i S I‘I-mass): .7: i +1

k 0 otherwise

r

—k§(1‘§— 1‘?)3 if i=1

5' ' . .

{12' = klséNmass-l-l)(rig _ xii-UP 1f 1 = Nmass + 1 (4'74)

.5 ,.S S 3 S .S' S 3 ' - __
\ A‘(2i—1)(lz’ — 10.4)) - k(22‘+1)(l(i+1)— 51:2.) 1f 2 —— 2, ..., Nmass

( F5" 1f 2:
J

f? = (4.75)
0 otherwise

for 77,1 -_—. 1, 2, 3 (NW, + 1), and s = a, 7, 5, . Note that mff,’ :-

. 1’3 __ , .13 _ f3 _ ,. .13 _ ., 5 ...
mg, 7713 — m3, mleassd'l) —— m(2’Vnm.ss+l)’ k2 — k2, k3 —— k3, ..., k(2Nmass+l) _

4 '7 _ .7 _ ,. '7 _

A’(2N7nass+1)’ "L2 — "2(Nmass+2)’ m3 _ mmeass—f3)’ m’(N-mass+1) _ ”1(2Nma33‘f1)’

7__,
3_.

.7 _ , . ,.7 _ ,

k2 *— k(2Nmass+2)‘ A“ k(2Nm(133+3)’ "" k(2Nmass+l) _ k(4Nmass+1)’ and SO on.

The coefficients of the pqr cubic nonlinear terms expressed in terms of fixed-interface linear

modal coordinates and associated with the ith mode of substructures S are given by
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bfV,S

ipqr

N,S N,S N,S

N,S.xr __ bipqr + biprq + birpq

I‘M" _ N,S N,S N,S

bipqr + biqpr + biqrp

N,S N,S N,S N,S N,S N,S

bipq’r + biprq + biqp'r + biqrp + birpq + birqp

N,S ‘

where bipqr are

N S (Ninass+1) N S N S

ipfzr Z (phi, bh-Pb"

h=2

for S = 13, 7, 6, ...,

where (1)295 is the hi component of the modal matrix defined in section 4.3.2.1, and b

are given by
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if p = q = 7‘

if p = q
(4.76)

if q = r

otherwise,

(4.77)

N,S

hpqr



7N.S

hpqr —

The coefficients of the pqr cubic nonlinear terms expressed in terms of the linear

N,S N,S .N,S

f

‘5 .N,S ,N.S N,S 5 «NS .N,S [NS .3 -

[A C93p @311 993,, + 3 k5 $31) Cb3q CZ)21'3 02 ¢2q ¢2r — 4‘5

.S .N.S N. .N,S _S (N,S N,S N,S

-3 A5 993,, go'Zq (927' + [‘5 ¢2p cb2q d)27‘

if h=2

N,S N,S N,S,3 .N,S .N,S N,S ,5

[k )Cbhp Cbhq Qbhr —3A'(2h—1)¢hp Cbhq ¢(h—1)1‘(2h—l

.S .N,S .N,S .N.5 _ ,S .N,S N,S N,S

+3 A'(2h-—l) Cohp ¢(h—l)q GUI—UT A(2h—1) <D(h—-1)p ¢(h--l)q ¢(h—l)r

_ S' .N.S NS N5 ,5 .N,S N,S .N,S

A(2h+1) $(h+1)p ¢(}z+l)q $(h+l)r + 3 A(2h+l) ¢(h+1)p ¢(h+1)q ¢hr

.8 INS 1N5 NS _5 WES .N,S N,S

-3 A'(2h+l) d)(h+l)p C{Dhq (9hr + A(2h+l) th whq (ph'r ]

. __ r f

1f (L — 334309U'9A771088

(S .N,S (N,S ”N,S _ ‘S N,S -N,S .N,S

[kwNnmsS'l'U 97);”, @hq 0hr A(2Nmass+1) ¢hP 9bhq $(h-1)7‘

..S' N,S N,S N,S _ ,5 N,S N,S

+3 A(2A"nlass+l) (bill) <b(h-—-1)q ¢(}l—1)7‘ (2Nnu133-i-1) ¢(h—1)p $(h—l L if h : jV'IILUSS + 1

N,S

(h—1)r

modal coordinates and associated with the ith mode of substructures S are given by

where ()5

S

1W!“

If p Z q : r

S S S . _

5.* __ bipqr + biprq + birpq If P — q

ipqr — S S S
. —

bipqr + biqp'r + biqrp If q — T

S S S S S 5 .- .,

bipqr + biprq + biqpr + biqrp + bz'rpq + bin”) OtherWlbea

zpqr are
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(Nmass+1)

 

S __ S S

bipqr '" Z whi bhpqr (4'80)

h=1

for S = ,3, 7, 6

where “Ki",S, is the hi component of the modal matrix defined1n section 4.3. 2, and bhpqr are

given by

[41.5 111.59,, 1:15,, 1.11,:+ 3 k5 115,, 11125,, 11115,.

-3 ’13 #2,. v1.1 1’15}+k3 v1511% 151.]

if h = 1

S ,S S s 5 Is 5 ,5

k(2h— 1) ‘I’hp 1(I1q ‘I’hr " 3 k(2h— 1) Mp “(I111 ”01— 1)r

.1 I,S ,S I,S _ .5 IS I,S

+3 k(2h—1) ‘I‘hp 701—1).) If(I1—1)r k(2h—1) lbw—1);; II’(I1—1)q‘P(I1—1)1~

S = S IS [S ,S .S ,S

bhpqr i k(2h+l)1*(h+1)p f(h+1)q d’(h+1)r+3 k(2h+1) ¢(I1+1)p’(Sh+1)q 1(’hr (4'81)

5 . , ,3 .s .

3 "(2I1+1) "I(h+1)p lI’Izq 15hr + A(2h+1) ‘(hp ‘(hq V’hr

if h = 29 3? 4’ ..., ‘N’,l(l843

.8 1,5 ,5 S _ .5 , s ,5 ,s

[k(21vn.a..s+1) 3),, 11),, m 3 h<2Nmass+11 f’hp f'h-q ‘(m—nr

s s ,3 _ s 1,5 ,5 ,3

+3 k(2Nmass+1) ‘(Iw («h—1)., ”(h—w k(2Nmass+1) zNIH») fez—1m ”(h—m]

it If h 3: Nynass + 1 
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CHAPTER 5

Conclusions and Future Works

Within this work techniques are developed that can be used to construct reduced order

models (ROMS) of nonlinear structural systems. The techniques are numerical in nature

and are all based on invariant manifold-based nonlinear normal modes. The methods consist

of NNM reduction from large-scale models, including those generated by nonlinear FE

analysis, and a component mode synthesis (CMS) technique that incorporates these models

for substructures. This latter method allows one to use NNM ROMS of substructures to

build ROMS of the combined structure through a CMS technique. The contributions made

in these subjects are summarized as follows:

0 In Chapter 2, two new methods to numerically solve for single NNM invariant man-

ifolds are developed. In both of these methods the manifold is parameterized by a

modal master displacement and velocity pair and the resulting invariant manifold

equations are solved using Galerkin approaches. The first method solves for the man-

ifold using global polynomial basis functions over the entire domain of interest. For

the second method, the domain of interest is subdivided into small pieces and the

manifold is solved using low-degree polynomial basis functions over these sub do-

mains, which are then pieced together. When compared with similar methods that

utilize amplitude and phase variables (Pesheck et al., [33]), the new methods are

found to be superior in terms of computational time but inferior in terms of accuracy.

0 In Chapter 3 a specific application is considered; a NNM ROM of a. rotating beam is
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developed from a nonlinear finite element formulation, wherein the invariant manifold

equations are numerically solved using the collocation method. The NNM formula-

tion allows one to systematically account for the nonlinear coupling effects between

axial and transverse motions, which are the source of slow modal convergence for this

type of problem when attacked by conventional approaches. The results demonstrate

promise for the field of nonlinear structural dynamics, since they combine the versa-

tility of the finite element method with the accurate NNM model reduction technique.

However, there is a trade-off between acquiring the accurate ROM and the computa-

tional effort involved, since solving for a single-NNM invariant manifold with many

retained linear modes requires significant computational time.

o In Chapter 4, a model reduction technique is develOped that combines numerically

generated NNMS and the CMS technique. This allows one to build ROMS at the

substructure level and assemble these to formulate a ROM of the assembled structure.

The fixed-interface linear CMS technique of Craig and Bampton ([62]) is extended to

nonlinear structures by making use of fixed-interface NNMS in place of fixed-interface

linear normal modes. This approach is suitable for systems composed of assemblies

of substructures, and it allows one to build nonlinear models with significant model

reduction and improved accuracy. By this approach, engineers can independently

design each nonlinear substructure and then build an approximate multi-mode model

of a complex structure that is the assembly of these substructures. This approach is

much less computationally intensive than a brute force approach that directly uses the

multi-mode models based on the multi-NNM invariant-manifold approach described

in sections 2.1.2 and 2.2.2 ([42]). This is especially true when the number of retained

linear modes of the assembled structure is large. However, the proposed nonlinear

CMS approach generally provides an accurate model only when the couplings between

substructures are weak.

The methods developed in this dissertation are numerical techniques geared toward simple

structural elements and systems that are composed of assemblies of substructures. Much
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work in this field remains to be done. Some ideas that require further investigation, using

both analytical and numerical approaches, along this line of work include the following:

0 An instability of single NNM manifolds in terms of vibration amplitude is suspected

to exist in several of the systems considered. This suspicion is based on the fact that

when the amplitude of the master mode of interest goes beyond a certain point, the

family of trajectories on the exact single-NNM manifold is very difficult to numerically

find using the shooting method. This causes the time response of the original model

to have two components: a component having the nonlinear natural frequency of

interest and a component having a high frequency. This indicates that the NNM

of interest can not be uncoupled from the other NNMS. An analytical approach to

this issue is possible only if the original model size in terms of modes is limited to 2

or 3 degrees of freedom. A numerical approach using a simulation based variational

method and Floquet theory could address this problem for large—scale problems. Such

investigations would provide an estimate of the amplitude range of validity of the

NNMS. If known analytically, such information could be used as a guide to the

computational generation of the NNMs, since one would know a priori the range over

which the formulation is valid. The works of Rosenberg and Atkinson ([6]), Rand et

al. ([15]), and Vakakis et al. ([19]) would be good starting points for guiding such an

investigation.

0 The continuation of a single NNM manifold in terms of a system parameter could be

studied by using the “suspension trick” ([89]), wherein the parameter(s) of interest is

(are) included as dynamics states (with trivial dynamics). Using such an approach,

the NNM of interest will be of higher dimension (2M + p, where 1V! is the number

of NNMs and p is the number of parameters), and will depend on the parameters of

interest. Galerkin-type methods can be used to solve for the parameterized family of

NNM manifolds, and would provide useful information that can be used in the design

process of structural systems. It is unclear, however, that such an approach would be

computationally more efficient than simply generating the family of NNM manifolds

by direct con‘iputation over the parameter range of interest.
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c As mentioned in Chapter 2, the drawbacks of using 11 — v coordinates might be

eliminated by first applying the invertible van der Pol transformation ( [22]) to the

master u — v coordinates. This would result in a new rectangular coordinate system

which rotates at the linear natural frequency of the master mode. In this manner it

would mimic more closely the amplitude and phase formulation, since the variables

would be varying on a slower time scale. In addition, this method uncouples the u and

v equations from one another up to linear order, which may simplify the formulation

of the NNM manifold equations.

It is well known that for systems composed of substructures, if the finite element

mesh of the substructures is refined, the number of generalized constraint coordinates

increases accordingly. This can result in a cumbersome CMS model in which there

are many more constraint modes than substructure modes. For linear structural

systems, Castenier et al. ([91]) have developed an effective technique to reduce the

number of constraint coordinates using the concept of “linear constraint modes”. It

may be possible to develop a similar technique for nonlinear structural systems using

invariant manifolds as the basis for the reduction of the constraint coordinates.

An approximate inulti-mode model of a system possessing an internal resonance can

be developed through the NLCMS technique. This idea can be explored by subdivid-

ing the whole structural system of interest and then synthesizing the substructures

using the NLCMS technique in such a way that the modes participating in the inter-

nal resonance are incorporated in the synthesized model. This idea is appealing due

to the large computational efforts required for attacking such problems directly using

the multi—NNM approach described in sections 2.1.2 and 2.2.2 ([42]).

When the component modes are obtained from modal testing, or when an experimen-

tal verification of the component modes is required, the free-interface CMS methods

are more attractive than the fixed-interface CMS methods. Therefore, it is worthwhile

exploring the idea of extending the free-interface CMS technique developed by Craig

and Chang ([66], [67] and [63]) to nonlinear structures by making use of free-interface

NNMS in place of free-interface linear normal modes (LNMs). The extension of the
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method of assembly to the nonlinear case appears to be challenging and remains for

future work.
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