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ABSTRACT 
 

INTRAPLATE VOLCANISM OF THE WESTERN PACIFIC: NEW INSIGHTS 
FROM GEOLOGICAL AND GEOPHYSICAL OBSERVATIONS IN THE 

PIGAFETTA BASIN 
 

By 
 

Timothy J. Stadler 
 

 
Understanding intraplate volcanism is a key to deciphering the Earth’s magmatic history. 

One of the largest intraplate volcanic events occurred during the mid Cretaceous, roughly 75 to 

125 Ma in the western Pacific. To investigate the origin and effects of this volcanism on various 

Earth systems, we present the first comprehensive study of volcanism in the Pigafetta Basin 

using seismic surveys, magnetic and gravity modeling, and Ocean Drilling Program drill core 

and well log data from Site 801. Our results show that intraplate volcanism in the Pigafetta Basin 

coincides with the rest of the western Pacific, supporting the plumelets scenario for the origin of 

intraplate volcanism during the mid Cretaceous volcanic event. We also discover that the late 

stage volcanism does not overprint the original ocean crust in the Pigafetta Basin, and hence, 

marine magnetic anomalies recorded in the Jurassic basement are preserved. Also, the formerly 

identified Rough Smooth Boundary (RSB) is indistinguishable from any other rough-smooth 

topographic boundaries throughout the survey area suggesting that the RSB is unlikely to be a 

Cretaceous sill-Jurassic basement boundary. Lastly, the apparent ages and spatial distribution of 

volcanic features suggests a dynamic history of hydrothermal circulation in the Pigafetta Basin, 

indicating that hydrothermal circulation was ongoing well past 100 Ma.  
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1. Introduction  

Understanding intraplate volcanism is a key to deciphering the Earth’s magmatic history. 

Intraplate volcanism has been globally observed in both terrestrial [e.g. Morgan, 1971; Crisp, 

1984; Nicholson and Shirey, 1990] and marine settings [e.g. Wilson, 1963; Wessel, 1997; 

Clouard and Bonneville, 2001] and has been linked to a series of events throughout Earth’s 

history including mass extinctions [Rampino and Stothers, 1988; Stothers, 1993], global sea 

level transgressions [Schlanger et al., 1981], and oceanic anoxic events [Jenkyns, 1980; Jones 

and Jenkyns, 2001]. 

Seafloor, hosting global lithosphere-hydrosphere-atmosphere interactions, forms at mid 

ocean ridges (MOR’s) and covers roughly 70 percent of the Earth’s surface [Showman and 

Dowling, 2014]. The Pacific seafloor, covering approximately 50% of the world’s ocean basins 

[e.g. Longhurst, 2007], is marked by numerous intraplate volcanic features such as large oceanic 

plateaus [e.g. Coffin and Eldholm, 1994], seamounts [e.g. Menard, 1964; Heezen et al., 1973], 

and deep-sea sills/flows [e.g. Larson and Schlanger, 1981; Schlanger and Moberly, 1986]. 

Volcanic activity and crustal emplacement mechanisms, including seamounts, at on- and off-axis 

regions of MORs have been extensively studied [e.g. Hess, 1962; Vine, 1966; Haymon et al., 

1991; Haymon et al., 1993; Carbotte et al., 1994; Hooft et al., 1996 Fornari et al., 1998; 

Curewitz and Karson, 1998; Chadwick and Embley, 1998;]; however, the origin and implications 

of intraplate volcanism is in debate because of the great extent of these volcanic features [cf. 

Larson and Schlanger, 1981; McNutt et al., 1990; Wessel, 1997; Koppers et al., 2001; Koppers 

et al., 2003a, Korenaga, 2005].  

The Pigafetta Basin, one of the oldest portions of the Pacific plate, is a NW-SE trending 

deep-sea basin located approximately 700 km east of the Mariana Trench in the western Pacific  
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Ocean (Figure 1). The Pigafetta Basin has a nominal water depth of ~5800 m and is marked by 

Mesozoic sequence Japanese magnetic lineations [e.g. Handschumacher et al., 1988; Nakanishi 
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et al., 1989] where Chron M42 has been dated at 167 Ma [Pringle, 1992; Koppers et al., 2003b]. 

Although surrounded by the Marcus-Wake and Magellan Seamount chains as a result of 

Cretaceous supervolcanism [i.e. Larson, 1991], seafloor in the Pigafetta Basin appears to be little 

disturbed by the Cretaceous volcanism, allowing the basin to be extensively used as a corridor 

for research on the early history of Pacific plate evolution. 

Over the past few decades, a series of research efforts, including seismic surveys [Ewing et 

al., 1968; Abrams et al., 1992, 1993], marine magnetic surveys [Handschumacher et al., 1988; 

Sager et al., 1998; Tivey et al., 2006; Tominaga et al., 2008], and Ocean Drilling Program (ODP) 

Legs (129 and 185), [Lancelot et al., 1990b, Plank et al., 2000] have investigated the formation 

and evolution of the Pigafetta Basin. Despite these efforts, an important line of observations has 

been lacking to understand the origin of late-stage volcanism that shaped the Pigafetta Basin, its 

effects on the original Jurassic seafloor, and its implications on intraplate volcanism in the 

western Pacific.  

To address these questions, we carried out a detailed, systematic investigation of volcanic 

features in the Pigafetta Basin by integrating three multichannel seismic reflection survey 

datasets, drill core and wireline logging data from ODP Site 801, satellite gravity data, and sea 

surface level magnetic anomalies.  
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2. Background 

2.1. Tectonic and volcanic history of the Pacific plate 

The Pacific plate was formed at the Phoenix-Izanagi-Farallon triple junction in the Mid 

Jurassic (175 - 180 Ma) as a consequence of the break up of the last supercontinent Pangaea 

[Nakanishi et al., 1989; Coffin et al., 2000; Bartolini and Larson, 2001]. Three magnetic 

lineation sets, the Japanese, Hawaiian, and Phoenix, outline this early tectonic evolution of the 

Pacific plate as it expanded from the triple junction system and moved northwards to its present 

location (Figure 1) [Larson and Chase, 1972; Hilde et al., 1976; Woods and Davies, 1982; 

Nakanishi et al., 1992]. Chron M29 [Cande et al., 1978; Kent and Gradstein, 1985; Channell et 

al., 1995], currently dated at 157 Ma [Gradstein et al., 1994, 2012], is the oldest, widely 

accepted coherent magnetic lineation in all three lineation sets of the western Pacific (Figure 1). 

Prior to Chron M29, the validity of magnetic anomalies remains in debate due to the Jurassic 

Magnetic Quiet Zone (JQZ), a region of ocean crust with low amplitude, short wavelength, 

difficult to correlate magnetic anomalies [Heirtzler and Hayes, 1967; Taylor et al., 1968; Emery 

et al., 1970; Larson and Pitman, 1972; Hayes and Rabinowitz, 1975; Barrett and Keen, 1976; 

Hilde et al., 1976; Cande et al., 1978; Handschumacher et al., 1988; Sager et al., 1998; Tivey et 

al., 2006; Tominaga et al., 2008]. 

Widespread intra-plate volcanic features mark the western Pacific seafloor, including the 

Mid Pacific Mountains [e.g. Hamilton, 1956], Marshall-Gilbert Islands [e.g. Morgan, 1972], 

Magellan Seamounts [e.g. Smith et al., 1989], and Marcus-Wake Seamounts [Heezen et al., 

1973] (Figure 1). The style of magmatism that emplaced these widespread volcanic features has 

been extensively discussed. The nonsystematic spatial and age distributions [e.g. Larson, 1991; 

Winterer et al., 1993; Koppers et al., 2003a] of these volcanic features suggest the existence of a  
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contemporaneous volumetrically large magma source under the western Pacific. Absolute 

40Ar/39Ar dating of seamounts in the Marcus-Wake and Magellan Seamount chains yields ages 
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ranging from 75-125 Ma [e.g. Ozima et al., 1984; Clouard and Bonneville, 2004]. The Pigafetta 

Basin, compared to the surrounding seamount provinces, however, shows minimal volcanic 

features on its seafloor. Previous studies have suggested that late stage volcanic features 

dominantly emerge as deep-sea sills and flows in this basin [Abrams et al., 1993]. 

The numerous intraplate volcanic features in the western Pacific have casted a shadow on 

the authenticity of the geological signature recorded within the original Jurassic seafloor and 

therefore on the JQZ magnetic anomalies [Kent and Gradstein, 1985; Lancelot et al., 1990; 

Tominaga et al., 2008]. In the Pigafetta Basin, continued research on marine magnetic anomalies 

using high-resolution, near source survey approaches have provided correlatable low amplitude 

anomalies back to M44 (~170 Ma) [Sager et al., 1998; Tivey et al., 2006; Tominaga et al., 2008]. 

A region of extremely low amplitude anomalies, namely the Low Amplitude Zone (LAZ) [Tivey 

et al., 2006; Tominaga et al., 2008], was revealed in the course of their effort. Whether the 

anomalies in the JQZ and LAZ are of geomagnetic field origin or Cretaceous volcanic overprint 

remains in debate [Kent and Gradstein, 1985; Lancelot et al., 1990; Tominaga et al., 2008]. 

 

2.2 Ocean Drilling Results 

ODP Hole 801C is located at 18° 38.538’N 156° 21.588’E in the Pigafetta Basin (Figure 2). 

Drilling and coring was initiated during ODP Leg 129 [Lancelot et al., 1990a; Lancelot et al., 

1990b] and deepened during ODP Leg 185 [Plank et al., 2000]. A total of 461.6 and 474 m of 

sediment and basement sequences were cored, respectively, providing details about 

sedimentation history [Behl and Smith, 1992; Karpoff, 1992; Ogg et al., 1992], basement ages 

[Pringle, 1992], and ocean crust formation and evolution [Castillo et al., 1992; Floyd and 

Castillo, 1992; Alt and Teagle, 1999]. Core samples at 801C from ODP Leg 185 yielded high-
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resolution 40Ar/39Ar dating of basement rocks at Hole 801C (167.4 ± 1.4/3.4 Ma, 

internal/absolute error) [Koppers et al. 2003b].  

Wireline logging operations at Hole 801B and 801C were conducted during ODP Legs 129, 

144 and 185 (Figure 3) [Lancelot et al., 1990b; Premoli Silva et al., 1993; Plank et al., 2000]. 

The logging data covers from ~60 - 450 meters below sea floor (mbsf) and ~470 – 850 mbsf but 

does not cover the sediment-basement interface. Downhole lithofacies analyses documented the 

crustal formation at a fast spreading ridge [Pockalny and Larson, 2003], and revealed multiple 

magnetic reversals in the oceanic basement, suggesting a scenario that the low anomaly 

amplitudes in the JQZ can be attributed to the superposition of oppositely magnetized blocks, 

canceling directional magnetic signals [Steiner, 2001; Tivey et al., 2005].  

 

2.3 Seismic Surveys of the Pigafetta Basin 

The western Pacific sub-seafloor is composed of mainly red clay, siliceous oozes (chert and 

radiolarite), volcaniclastic sediments, and volcanic basement [e.g. Winterer et al., 1971b; 

Lancelot et al., 1990b]. Stratigraphy was established by a series of drilling expeditions [Heezen 

et al., 1969a; Heezen et al., 1969b; Winterer et al., 1969; Winterer et al., 1971a; Winterer et al., 

1971b; Heezen et al., 1971a; Heezen et al., 1971b] and coring and logging results from Site 801 

[Lancelot et al., 1990b] that ground-truthed early seismic surveys in the western Pacific [Ewing 

et al., 1968]: (1) an upper transparent unit (to frequencies of 60-120Hz) (weakly reflective) 

corresponding to pelagic clay, (2) an upper opaque layer (highly reflective and/or well stratified) 

corresponding to chert, (3) a lower transparent layer corresponding to volcaniclastic turbidites 

and radiolarite, and (4) basement (rough acoustic basement surface) corresponding to Jurassic to 

early Cretaceous age ocean crust.  
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The seismic stratigraphy of the Pigafetta Basin was further confirmed by two active source 

seismic surveys, FM35-12 and MESOPAC II. Abrams et al. [1993] used profiles from both 

surveys to map the extent of a volcanic sequence termed “Horizon B”. This reflector covers 

much of the Pigafetta Basin and was interpreted to be Cretaceous sills overlying Jurassic 

basement. They also pointed out a distinct change in acoustic basement topography, termed the 

Rough Smooth Boundary (RSB) that may coincide with the edge of mid-Cretaceous sills in the 

southeast Pigafetta Basin (Figure 2).  

The Japan Coast Guard Hydrographic and Oceanographic Department conducted a seismic 

reflection and refraction survey, MTr5, in the Pigafetta Basin in 2006 (Figure 2a) [Kaneda et al. 

2010]. The MTr5 survey line extends from the Pigafetta Basin to two Marcus-Wake seamounts 

providing a velocity model of the crust and suggesting a constant crustal thickness of 7.5 – 8 km 

in the Pigafetta Basin. 

 

 

 

 

 

Survey Name 
Year Acquired

Survey
Length

Distance from 
Hole 801V/H Resolution Source Size

FM35-12
1987

MESOPAC II
1989

Mtr5
2006

>1500 
km

~ 400 
km

~ 250 
km

50 and 70 km 
to N and S

< 3 km N

~ 25 km W

25 m/ 25 m

10 m/ 10 m

10 m/ 10 m

 Various Airguns
40.65 L volume 

average

4 to 6 1.3 L 
waterguns

2 16 L aairguns

36 airguns, 
132 L total 

volume

Receiver 
Length

No. of 
channels

3200 m

undoc

6000 m

96

96

480

Table 1: Available data processing and acquisition parameters from Abrams et al. [1992], [1993], Kaneda et al. [2010], 
and Shipley et al. [2012]
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3. Methods 

3.1 Seismic Data 

To document volcanic features in the Pigafetta basin on a basinwide scale, we used 2D 

multichannel seismic (MCS) reflection profiles from three surveys focusing on the region around 

ODP Hole 801C (Figure 2): FM35-12, MESOPAC II [Shipley, 2012], and MTr5 [Kaneda et al., 

2010]. We used approximately 1500 km of profiles from survey FM35-12 outlining the edge of 

the study area. We used one profile, approximately 400 km long, from MESOPAC II, which 

crosses within 3 km of Hole 801C and intersects FM35-12 Line 11 at its northwest end. We also 

used an approximately 250 km long profile from the southern end of MTr5 line, which intersects 

FM35-12 profiles in two locations and MESOPAC II near Hole 801C (Figure 2). Although each 

survey used different acquisition systems and data processing schemes, we could use the data 

because our primary objective, to characterize volcanic features, was not hindered by any of the 

survey parameters (Table 1).  

 

3.2 Seismic Interpretation 

To display the seismic lines for our interpretation, we used OpendTect v.4.6.0 software.  

First, we generated a synthetic seismogram from ODP Hole 801C density (g/cm3) and P-wave 

velocity (km/s) logs. Next, we correlated traces from the synthetic seismogram to acoustic 

reflectors where the MESOPAC II survey line crosses the ODP Hole 801C location, and 

extrapolated the correlation across the MESOPAC II profile (Figure 4b). Lastly, we extrapolated 

the interpretation to MrT5 and FM35-12 survey profiles using the log-reflector correlation where 

the lines intersected with the MESOPAC II survey (Figure 2).   
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We assigned ages to sedimentary reflectors using biostratigraphic and radiometric ages 

recovered from Hole 801C core data [Lancelot et al., 1990b]: an age of 72 Ma (Campanian-

Maastrichtian boundary) to the top of the upper opaque unit (chert horizon); an age of 93.9 Ma to 

the top of the upper transparent unit; and an age of 113 Ma to the top of the lower transparent 

unit. Basement age at Hole 801C is ~167.5 Ma [Koppers et al., 2003b]. 
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Figure 3: Summary of seismic stratigraphy at Site 801 showing correlations from MESOPAC II line with synthet-
ic seismogram, unit thicknesses, and well logs. Dashed lines show correlation, cyan line corresponds to clay, chert 
boundary, and magenta line corresponds to chert, volcaniclastic boundary. Green line corresponds to volcaniclas-
tic, radiolarite boundary, and blue corresponds to sediment, basement interface. This correlation was basis for 
seismic interpretation of Pigafetta Basin. Logging data taken from ODP well log database. Logs taken in upper 
450 m from Leg 129 Hole 801B, and logs taken in lower 450 m from Leg 185 Hole 801C.
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We mapped inferred Horizon B-Jurassic basement boundaries based on Abrams et al. [1993] 

interpretation to be consistent with refraction data, and accepted a middle Cretaceous age to 

Horizon B (assigned by Abrams et al. [1993]).  

In addition to the seafloor, major sedimentary unit reflectors, and acoustic basement, we 

identified three types of volcanic features: seamounts, vertical seismic disturbance zones 

(VSDZs), and sills. We assigned an apparent age to each volcanic feature based on their 

crosscutting relationships with the sedimentary reflectors with assigned ages as described above. 

We determined the height of seamounts from the seafloor, converting the difference in travel 

time to meters by using a constant velocity of 1500 m/s in the water column. We determined the 

width of features by calculating the distance in between each trace in the profile. We determined 

the height of VSDZs by measuring the distance from acoustic basement to the top of the feature 

in the sediment packet, assigning a constant velocity to the sediment packet of 2 km/s from 

Abrams et al. [1992], and Hole 801B and 801C data [Lancelot et al., 1990b]. 

 

3.3 Gravity model 

To obtain a model of crustal structure and depth to Moho in the Pigafetta Basin, we 

conducted forward gravity modeling along each seismic line (Figure 4). We extracted observed 

gravity profiles from the global satellite gravity anomaly map by Sandwell et al. [2014] v. 23.1. 

We exported horizons from our seismic lines to constrain the upper crust and sedimentary 

sequence thicknesses. Only survey MTr5 imaged the Moho (Figure 4a), allowing us to place a 

plausible estimate on the depth (~13.5 km) and topography of the Moho throughout the other two 

seismic survey profiles.  
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Modeled gravity anomalies were calculated using Parker [1973] Fourier transformation 

approach. We assigned densities and thickness of layers from Hole 801C data and a crustal 

density of 2.67 g/cm3 [e.g. Oikawa and Kaneda, 2007] and 3.3 g/cm3 for the upper mantle 

[Kaneda et al., 2010]. We assigned a constant density for layer 2 and 3 because: (1) the layer 2/3 

boundary is unclear in the Pigafetta Basin (seismic velocity analysis from Kaneda et al., [2010] 

and predictions based on spreading rate by Purdy et al., [1992] disagree by > 1 km), and (2) a 

density contrast between upper and lower crust in the Pigafetta Basin creates unreasonable 

anomalies and geologic implications that do not match similar gravity models [e.g. Contreras-

Reyes et al., 2010] (see Appendix Figure 1). A 4 km Gaussian filter was applied to smooth the 

data before adjusting layer structure and thickness.  

 

3.4 Magnetic model 

To assess the effect of late stage volcanic overprint on in situ magnetization in the Jurassic 

basement, we conducted forward magnetic modeling based on Parker [1973] Fourier 

transformation approach. We first created a crustal model with three layers; Layer 1 - sediments,  

Layer 2 – extrusive basalts, and Layer 3 – sheeted dikes, with magnetizations of 0.5 A/m, 2.0 to -

2.0 A/m, and 1.0 A/m respectively [e.g. Pariso and Johnson, 1991] (Figure 8). We assigned a 

thickness of 0.5 km for sediments, similar to Pigafetta Basin sediment thickness, 1.0 km for 

Layer 2, and 1.0 km for Layer 3. We assigned a thickness of 1.0 km and magnetizations ranging 

from 2.0 to -2.0 A/m for Layer 2 (the highly magnetized layer) [Sager et al., 1998; Tominaga et 

al., 2008] (Figure 4b). We also assigned the paleo inclination and declination values based on 

Larson and Sager [1992] and today’s inclination and declination values from IGRF11 model to 

properly calculate skewed magnetic anomalies observable in the Pigafetta Basin. We used 
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polarity reversal block models with vertical polarity boundaries, at intervals of < 5 km up to 60 

km. We emplaced VSDZs and sills extending from Layer 2 into the sedimentary layer and 

assigned widths of 10 km to 80 m that are consistent with the dimensions of features we 

documented in the seismic profiles in the Pigafetta Basin (Figure 8). An 8 km Gaussian filter was 

applied to smooth the edge effects at the each polarity boundary.  
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4. Results 

4.1 Volcanic features  

We documented coherently observed volcanic features throughout all three seismic surveys 

in the Pigafetta Basin and categorized these features into three groups based on their acoustic 

attributes: (1) vertical seismic disturbance zones (VSDZs), (2) seamounts and (3) sills. A total of 

55 volcanic features were identified, including 35 VSDZs, 17 seamounts, and 3 sills (Table 2, 

Figure 6a). 

We identified VSDZs as features that crosscut acoustic basement and are confined to the 

subsurface with little effect (<50 m) on seafloor topography (Figure 4). Upward drag on both 

edges and/or onlap of adjacent reflectors was also noted as attributes of VSDZs. Apparent ages 

of VSDZs range from 72-113 Ma (Figure 6d), and apparent heights of VSDZs range from 165 to 

435 m (Figure 6b). In survey MTr5 VSDZs were traced > 1 km into basement.  

We classify a seamount as a vertically continuous seismic disturbance zone with a 

topographic expression greater than 50 m above the seafloor (to match global data sets [i.e. Smith 

and Cann, 1990; Wessel et al., 2010]). Seamounts are marked by upward drag on both edges 

and/or onlap and crosscutting of adjacent reflectors. A total of 17 seamounts were covered in the 

survey lines (Figures 5, 6a, and Table 2). Apparent ages range from 72-113 Ma (Fig. 6d). 

Seamount heights range from 55 to 1600 m above the seafloor (one exception > 5000 m, named 

Grand Pacific Seamount) (Figure 6c). A size-frequency distribution plot of seamounts in the 

Pigafetta Basin appears to follow the power law relationship (Figure 7). 

Sills are in general identified as saucer shape to flat, high amplitude, highly reflective intra-

sediment horizons flanked by a VSDZ on one or both sides [Planke et al., 2005; Hanson and 

Cartwright, 2006; Polteau et al., 2008] while having little or no effect on seafloor topography. 
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We note three sills in our seismic profiles, apparent ages range from 93.9-113 Ma. Widths of the 

sills range from 3 to 12 km (Table 2), and up-dip (~100 msec) is observed across horizons in 

FM35-12 survey lines. 

Apparent ages of these volcanic features in the Pigafetta basin range from 72-113 Ma 

(Figure 6d), and the age distribution map (Figure 5a) shows no clear age linearity or progressions 

on a basin wide scale. Spatial distribution of the features in the Pigafetta Basin appears to be also 

nonsystematic (Figure 5a), showing no clear coherent pattern on a basin wide scale.  
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4.2 Moho topography and crustal structure from gravity modeling 

Forward gravity modeling results (Figure 4) show an average crustal thickness of ~7.5 - 8 

km consistent with seismic velocity analysis by Kaneda et al. [2010]. Large seamounts are 

isostatically compensated by downward flexure of the Moho proportional to the seamount size 

while smaller volcanic features (VSDZs and sills) have little effect on Moho depth. Moho depth 

appears to be around 13.5 to 14 km below sea level, consistent with Kaneda et al. [2010] 

observations. 
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4.3 Magnetic anomaly modeling  

Results from our magnetic model show that the volcanic features produce a minimal (up to a 

few nT), short wavelength effect on the overall magnetic anomaly that is not detectable when the 

whole crust is taken into account. Late stage sills and VSDZs have almost no effect on the longer 

wavelength anomalies produced by the crust (Figure 8).  
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5. Discussion 

5.1 Mid Cretaceous late stage intra-plate volcanism 

Early studies on the origin of intraplate volcanism in the western Pacific suggested that a 

superplume, an anomalously large volume magma source, existed under the region during the 

mid-Cretaceous [e.g. Menard, 1964; McNutt and Fisher, 1987; Larson, 1991; McNutt, 1998], 

and emplaced various seamount provinces such as the Marcus-Wake [Van Waasbergen and 

Winterer, 1993; Winterer et al., 1993], Magellan [Smith et al., 1989; Koppers et al., 1998], and 

Mid Pacific Mountain seamount chains [e.g. Schlanger et al., 1981; Rea and Vallier, 1983] 

(Figure 1 and 2). Koppers et al., [2003a] conducted absolute 40Ar/39Ar age dating of igneous 

basement samples from these ‘superplume’ seamount provinces to more closely define the 

possible origin of volcanic emplacement, suggesting that these seamount provinces in the 

western Pacific were formed by magmatic activities induced by multiple, closely spaced, short-

lived ‘plumelets’ that stemmed from a main magma body, and that magmatic upwelling was 

driven primarily by lithosphere weakening due to regional extension.  

The evaluation of the age, size-frequency, and spatial distribution of volcanic features in the 

Pigafetta Basin provides a key to further understand the origin of intraplate volcanism in the 

western Pacific. Apparent ages of volcanic features in the Pigafetta Basin (Figure 6d) are 

consistent with surrounding seamount provinces and the Cretaceous volcanic event in the 

western Pacific [Rea and Vallier, 1983; Smith et al., 1989; Larson, 1991; Winterer et al., 1993; 

Koppers et al., 2003a], indicating that the timing of volcanism in the Pigafetta Basin coincided 

with volcanism of the surrounding mid Cretaceous seamount provinces. 

Global-scale analyses of seamount size frequency distributions using both satellite gravity 

[Wessel, 1997; Wessel and Lyons, 1997; Wessel, 2001; Wessel et al., 2010; Kim and Wessel, 
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2011] and shipboard bathymetry data [Jordan et al., 1983; Smith and Jordan, 1987; Smith and 

Jordan, 1988; Hillier and Watts, 2007] have been conducted to reveal the nature of seafloor 

volcanism, magma generation, and to predict the global population of seamounts, including the 

seamount provinces in the western Pacific. The relationship between seamount populations and 

height distributions can be described either by an exponential [e.g. Jordan et al., 1983; Smith and 

Jordan, 1987] or power law [e.g. Wessel, 2001; Wessel et al., 2010] curve that provides a 

prediction of the global population for smaller seamounts, for which ship tracks are not available 

and the scale is beyond the resolution of satellite gravity data. The height distribution of volcanic 

features in the Pigafetta Basin follows the smaller spectrum (<1km) of the globally predicted 

seamount population curve (Figure 7), indicating that volcanism in the Pigafetta Basin represents  
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the smallest end-member of global seamount populations. This non-uniqueness suggests that the 

source and emplacement mechanism of intraplate volcanism in the Pigafetta Basin should be 

analogous to the western Pacific seamount population. 

 

The spatial distributions of volcanic features in the Pigafetta Basin show no lineation or 

provincial assemblage; rather, their location of emplacement appears to be nonsystematic, 

making it consistent with the general distribution of seamounts in the western Pacific [e.g. 

Koppers et al., 2003a]. Together with similarity in the age range and size distributions, we 

suggest that the volcanic features in the Pigafetta Basin can be attributed to intraplate volcanism 

that emplaced the surrounding seamount provinces.  

One might argue that the intraplate volcanism in the Pigafetta Basin could be induced by 

mechanisms other than closely spaced “plumelets”, such as lithospheric cracking from 
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superplume uplift that associates with crustal deformation and thickening [e.g. McNutt et al., 

1990]. However, MTr5 shows no evidence of wholesale crustal deformation in the Pigafetta 

Basin [Kaneda et al., 2010]. Furthermore, our gravity modeling results show a constant crustal 

thickness in the Pigafetta Basin, suggesting little crustal thickening by excess magmatism 

(Figure 4). Another possible scenario could be lithospheric cracking from differential plate 

cooling that is manifested by evenly spaced cracks in the lithosphere and linear volcanic ridges 

on the seafloor [e.g. Winterer and Sandwell, 1987; Searle et al., 1995; Lynch, 1999; Sandwell 

and Fialko, 2004]. This mechanism is unlikely because the volcanic features do not appear along 

distinct ridges throughout the Pigafetta Basin, and we do not see evidence for regular spacing of 

lithosphere cracks in our seismic data. 
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shipboard data (blue) [Smith and Jordan 1987]. Gray lines show correlation between seamounts < 1km 
height in Pigafetta Basin versus global population trend.
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Recent numerical modeling results of mantle plume behavior shows that lateral 

offshoot/distribution of melt occurs in a variety of magmatic environments from on- and off-axis 

MOR regions to intraplate settings, often resulting in volcanic emplacement events at regions up 

to hundreds of km from the main conduit [e.g. Olson, 1990; Ribe and Christensen, 1994; Sleep, 

1996; Sleep, 2008; Katz and Weatherly, 2012]. These results also augment the possible scenario 

that an anomalously large magma body existed under the western Pacific in the mid Cretaceous, 

feeding many smaller scale plumelets that spread laterally over the entire region and formed the 

seamount provinces and volcanic features we observe in this study [e.g. Koppers et al., 2003a].  

 

5.2 Volcanic overprint or not? The survival of Jurassic basement 

In their original study of Cretaceous volcanic sequences in the Pigafetta Basin, Abrams et al. 

[1993] pointed out a distinct change in reflection character of acoustic basement, transitioning 

from a flat lying “smooth” to a higher relief “rough” surface, named the Rough Smooth 

Boundary (RSB) (Figure 2). This topographic change in basement structure was interpreted to 

mark the extent of widespread middle Cretaceous sills covering Jurassic crust, and was mapped 

across the Pigafetta Basin according to its reflection characteristics [Abrams et al., 1993].  

Our observation from MCS profiles over the Pigafetta Basin casts the interpretation of a 

distinct RSB by Abrams et al. [1993] into question. Although we see a change in acoustic 

basement reflection character throughout the Pigafetta Basin, the distribution of the transition 

from rough to smooth is ubiquitous, making it difficult to construct a straightforward 

interpretation on the unique RSB location for a few reasons. First, the RSB coincides with 

volcanic features on the seismic profiles (Figures 4c and d); therefore we prefer to conclude that 

the disruption of acoustic basement (and changing to “rough”) is probably a result of these 
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features instead of the edge of a widespread sill [Abrams et al., 1993]. In addition, according to 

drilling results at Site 801, a Cretaceous sill would have intruded on top of >100 m of late 

Jurassic-early Cretaceous sediments in the Pigafetta Basin. At the RSB, the acoustic basement 

reflector appears to be continuous as it undergoes the topography change, indicating no existence 

of a >100 m sediment blanket. We suggest that the RSB is one of many topographic changes 

observed in the Pigafetta Basin, but does not uniquely define a sill-basement edge. 

 

5.3 Possible implications of intra-plate volcanism as a source of magnetic overprint in the JQZ 

The Jurassic Quiet Zone (JQZ) is Jurassic age oceanic crust where low amplitude, short 

wavelength magnetic anomalies are difficult to correlate [Heirtzler and Hayes, 1967; Hayes and 

Pittman, 1970; Vogt et al., 1971; Larson and Chase, 1972; Hayes and Rabinowitz, 1975]. The 

JQZ has been most extensively studied in the Pigafetta Basin, where magnetic lineations have 

been mapped by various survey approaches [Hayes and Pittman, 1970; Larson and Chase, 1972; 

Larson and Pittman, 1972; Hilde et al., 1976; Cande et al., 1978; Handschumacher et al., 1988; 

Sager et al., 1998; Tivey et al., 2006; Tominaga et al., 2008]. Although it has been extensively 

investigated and anomaly correlations have pushed the Japanese lineations back to M44 the 

cause of the low amplitude anomalies remains unclear. One possible suggestion is that late stage 

magmatism could have overprinted the original magnetic signature of the ocean crust [Taylor et 

al., 1968; Emery et al., 1970; Vogt et al., 1971; Barrett and Keen, 1976; Sager et al., 1998; 

Tominaga et al., 2008].  

The results from our seismic interpretation and potential field models show, however, that 

there is no clear one to one correlation between (1) magnetic anomaly peaks and troughs versus  

 



25 
 

 

the location of sills and dikes, and (2) the decrease in magnetic anomaly amplitude (including the 

LAZ) versus the location of a gravity anomaly or lithosphere thinning or thickening (Figure 4b). 

Furthermore, our forward magnetic models show that VSDZs and sills have a minimal effect (up 

to a few nT) on magnetic anomalies (Figure 8); hence, we suggest that the Cretaceous volcanic 

features do not destroy the original magnetic signature of the ocean crust in the Pigafetta Basin, 

and that the Cretaceous volcanism is not a cause of the systematic decrease in anomaly 

amplitudes in the Jurassic Quiet Zone. 

 

5.4 Implications for hydrothermal circulation from intra-plate volcanic features 

Early lithosphere cooling models from heat flow experiments suggest that convective open 

system hydrothermal circulation remains active between ocean crust and seawater up to ~ 65 Ma 

after formation of the crust, after which the seafloor becomes sealed by increased sediment cover 
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with age and accumulation of precipitated minerals in pore spaces [Von Herzen and Uyeda, 

1963; Anderson et al., 1977; Stein and Stein, 1994]. At a local scale, on the other hand, 

seamounts and basement outcrops have been noted to concentrate heat and fluid flow and guide 

hydrothermal recharge and discharge at mid ocean ridge flanks [e.g. Fisher et al., 2003; Hutnak 

et al., 2008] and deep sea abyssal plains [e.g. Embley et al., 1983; Noel and Hounslow, 1988] in 

crust up to 106 Ma [e.g. Noel and Hounslow, 1988]. Furthermore, recent models of hydrothermal 

circulation in oceanic basement coupled with heat flow measurements and seismic data indicate 

that convective hydrothermal circulation can continue is ocean crust up to tens of millions of 

years after the 65 Ma mark where basement topography is variable [e.g. Von Herzen, 2004; 

Fisher and von Herzen, 2005]. 

The volcanic features we observe in this study suggest a dynamic history of localized 

hydrothermal exchange from seafloor into deeper ocean crust in the Pigafetta Basin. The ages of 

widespread seamounts and subsurface intrusions in the Pigafetta Basin falls during the mid-

Cretaceous (70-120 Ma), in ocean crust roughly 50 to 100 million years old. Carbonate 

precipitation in the crust can still be ongoing [Alt and Teagle, 1999], suggesting that at least 

closed system circulation is active in the Pigafetta Basin today. For facilitating possible open 

system hydrothermal circulation, ODP Hole 801C coring and wireline logging results showed 

that the upper basement is still highly permeable [Larson et al., 1993]. The presence of 

seamounts and thinly sedimented intrusions observed as VSDZs in the Pigafetta Basin further 

indicate active open system hydrothermal circulation. Active open system hydrothermal 

circulation in ocean crust has also been recognized by (1) the presence of ‘pits’ in sediment 

above basement highs and faults [Moore et al., 2007], and (2) varying sedimentation patterns 

affected by abyssal hills and multiple generations of faults in the sediment package [Tominaga et 
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al., 2011]. In this study we observe similar features to those noted by Moore et al., [2007] above 

a few of the subsurface intrusions (ex. Line 10c, 10b1, and 12a4). We also note many faults in 

basement and sediments (Table 2), and sediment focusing between basement highs and lows, 

where basins have high sediment cover, and intrusions and seamounts have low sediment cover 

(Figure 4 all). The presence of these basement outcrops in the Pigafetta Basin indicates that on a 

local scale, the sediment packet does not seal the ocean crust, and that open system hydrothermal 

circulation could be active in ocean crust up to and possibly greater than 100 million years after 

its formation. 
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6. Conclusions 

We derive the following conclusions in this study. 

(1) The age, spatial, and size frequency distribution of volcanic features across the basin 

suggests that volcanism in the Pigafetta Basin coincided with that of the surrounding western 

Pacific mid-Cretaceous volcanic event and was emplaced in a similar style. Along with recent 

improvements to our understanding of plume behavior and lithosphere thickness, our results 

support the previously suggested scenario that multiple closely spaced, contemporaneous 

plumelets, fed by a deeper magmatic source, spread out under the western Pacific in the mid 

Cretaceous and emplaced the surrounding seamount provinces and smaller scale volcanic 

features we observe in the Pigafetta Basin [Koppers et al., 2003a]. 

(2) The origin of the RSB in the Pigafetta Basin is in debate. We suggest that the RSB is 

more likely caused by volcanic disruption of the basement, a phenomena seen ubiquitously 

across the Pigafetta Basin, and that the RSB does not uniquely define a specific sill-basement 

edge. 

(3) The subsurface volcanic structure in the Pigafetta Basin suggests that small-scale 

volcanic features disrupt basement on a local scale throughout the basin; however, forward 

magnetic modeling shows that the volcanic features are too small to disrupt the overall magnetic 

signature of the crust in the Pigafetta Basin. Therefore, there is no late stage magmatic overprint 

caused by intraplate volcanism in the Pigafetta Basin, suggesting that low-amplitude marine 

magnetic anomalies have a geomagnetic field origin in the Jurassic.   

(4) The timing of volcanism suggests that on a local scale, open system hydrothermal 

circulation was reactivated in the Pigafetta Basin when the crust was 50 – 100 Ma old. Although 

we have no data to suggest that active hydrothermal circulation is ongoing, the presence of small 
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seamounts, subsurface intrusions, and rough basement topography in the Pigafetta basin suggests 

that open hydrothermal circulation could have existed in the Pigafetta Basin in crust well past 

100 Ma. 
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Type Longitude Latitude Apparent Age (Ma) Apparent Height (m) Line
1 154.1583 20.2139 93.9 400 mp2-06
1 154.4025 20.0417 93.9 450 mp2-06
1 154.7386 19.8042 93.9 350 mp2-06
1 154.8517 19.7244 93.9 300 mp2-06
2 154.9736 19.6381 93.9 60 mp2-06
1 155.3556 19.3686 72 400 mp2-06
1 155.4503 19.3022 93.9 350 mp2-06
1 155.6339 19.1753 72 400 mp2-06
1 155.7583 19.0894 93.9 375 mp2-06
2 155.9369 18.9658 72 610 mp2-06
2 156.1428 18.8236 93.9 55 mp2-06
2 156.5514 18.5447 113 90 mp2-06
1 156.6347 18.485 72 350 mp2-06
1 157.8889 14.5956 93.9 350 9c
1 157.9583 14.6758 93.9 200 9c
2 158.2144 14.9494 93.9 120 9c
1 158.2417 14.9739 93.9 325 9c
2 158.5986 15.4053 93.9 700 9d1
2 158.8517 15.7458 93.9 410 9d1
1 159.3136 16.3869 93.9 200 9d2
1 159.3519 17.0308 72 250 10
2 158.9669 17.3061 93.9 215 10
1 157.7869 18.2056 72 300 10b1
1 157.5111 18.3889 93.9 250 10b1
1 157.2783 18.5431 93.9 275 10b1
1 157.0969 18.6614 93.9 275 10b2
1 156.7319 18.9858 72 400 10b2
2 155.5497 19.6958 113 80 10b3
2 156.0275 19.4356 93.9 100 10b3
3 155.8175 19.5619 93.9 NaN 10b3
1 154.7947 20.3136 93.9 200 10c
1 154.4342 20.5714 93.9 400 10c
2 153.7394 19.9297 72 5000 11
2 154.9431 18.9 93.9 285 12a2
2 155.2672 18.6422 72 1600 12a2
2 156.3078 17.8858 72 1050 12a3
1 156.4836 17.7506 93.9 275 12a4
1 156.5767 17.6844 93.9 275 12a4
1 156.6486 17.6358 93.9 275 12a4
3 156.7631 17.5742 93.9 NaN 12a4
2 156.9397 17.4408 93.9 145 12a4
2 155.859 17.5845 72 240 Mtr5
2 155.8814 17.7179 72 365 Mtr5
1 155.9095 17.7923 93.9 200 Mtr5
1 156.0333 18.4383 72 375 Mtr5
1 156.0418 18.472 113 150 Mtr5
1 156.0632 18.5046 72 400 Mtr5
1 156.0877 18.5374 72 325 Mtr5
1 156.0735 18.5824 93.9 350 Mtr5
1 156.0845 18.6404 72 400 Mtr5
1 156.1495 18.9047 93.9 200 Mtr5
3 156.162 18.9363 113 NaN Mtr5
1 156..1709 18.9888 93.9 350 Mtr5
2 156.1701 19.06 93.9 80 Mtr5
1 156.2867 19.4552 113 200 Mtr5
1 156.3369 19.6561 113 300 Mtr5

Table 2: Volcanic feature data. 1 = VSDZ, 2 = Seamount, 3 = Sill
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